Sample records for plastic soils

  1. Plastics in soil: Analytical methods and possible sources.

    PubMed

    Bläsing, Melanie; Amelung, Wulf

    2018-01-15

    At least 300 Mio t of plastic are produced annually, from which large parts end up in the environment, where it persists over decades, harms biota and enters the food chain. Yet, almost nothing is known about plastic pollution of soil; hence, the aims of this work are to review current knowledge on i) available methods for the quantification and identification of plastic in soil, ii) the quantity and possible input pathways of plastic into soil, (including first preliminary screening of plastic in compost), and iii) its fate in soil. Methods for plastic analyses in sediments can potentially be adjusted for application to soil; yet, the applicability of these methods for soil needs to be tested. Consequently, the current data base on soil pollution with plastic is still poor. Soils may receive plastic inputs via plastic mulching or the application of plastic containing soil amendments. In compost up to 2.38-1200mg plastic kg -1 have been found so far; the plastic concentration of sewage sludge varies between 1000 and 24,000 plastic items kg -1 . Also irrigation with untreated and treated wastewater (1000-627,000 and 0-125,000 plastic items m -3 , respectively) as well as flooding with lake water (0.82-4.42 plastic items m -3 ) or river water (0-13,751 items km -2 ) can provide major input pathways for plastic into soil. Additional sources comprise littering along roads and trails, illegal waste dumping, road runoff as well as atmospheric input. With these input pathways, plastic concentrations in soil might reach the per mill range of soil organic carbon. Most of plastic (especially >1μm) will presumably be retained in soil, where it persists for decades or longer. Accordingly, further research on the prevalence and fate of such synthetic polymers in soils is urgently warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review.

    PubMed

    Chae, Yooeun; An, Youn-Joo

    2018-05-09

    Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. In particular, the disposal of municipal wastewater effluent, sewage sludge landfill, and plastic mulch from agricultural activities is a serious issue and of major concern regarding soil pollution. Compared to plastic pollution in the marine and freshwater ecosystems, that in the soil ecosystem has been relatively neglected. In this study, we discussed plastic pollution in the soil environment and investigated research on the effects of plastic wastes, especially microplastics, on the soil ecosystem. We found that earthworms have been predominantly used as the test species in investigating the effects of soil plastic pollution on organisms. Therefore, further research investigating the effects of plastic on other species models (invertebrates, plants, microorganisms, and insects) are required to understand the effects of plastic pollution on the overall soil ecosystem. In addition, we suggest other perspectives for future studies on plastic pollution and soil ecotoxicity of plastics wastes, providing a direction for such research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The distribution of microplastics in soil aggregate fractions in southwestern China.

    PubMed

    Zhang, G S; Liu, Y F

    2018-06-09

    Plastic particle accumulation in arable soils is a growing contaminant of concern with unknown consequences for soil productivity and quality. This study aimed to investigate abundance and distribution of plastic particles among soil aggregate fractions in four cropped areas and an established riparian forest buffer zone at Dian Lake, southwestern China. Plastic particles (10-0.05 mm) from fifty soil samples were extracted and then sorted by size, counted, and categorized. Plastic particles were found in all soil samples. The concentration of plastic particles ranges from 7100 to 42,960 particles kg -1 (mean 18,760 particles kg -1 ). 95% of the sampled plastic particles are in the microplastic size (1-0.05 mm) range. The predominant form is plastic fibers, making up on average 92% of each sample followed by fragments and films that contributed with to 8%. Results of this study also show that 72% of plastic particles are associated with soil aggregates, and 28% of plastic particles are dispersed. The abundance of aggregate-associated plastic fibers is significantly greater in the micro-aggregate than that in the macro-aggregate, whereas the less concentrations of plastic films and fragments are found in the micro-aggregate. Compared to the adjacent vegetable soil, the less concentration of plastic particles in the buffer soil implicates that application of soil amendments and irrigation with wastewater must be controlled to reduce accumulation of microplastics in agricultural soils. While the implications of microplastic on ecological and human health are poorly understood, the staggering number of microplastic in agricultural soils should be continually concerned in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils.

    PubMed

    Wang, Jun; Lv, Shenghong; Zhang, Manyun; Chen, Gangcai; Zhu, Tongbin; Zhang, Shen; Teng, Ying; Christie, Peter; Luo, Yongming

    2016-05-01

    Plastic film mulching has played an important role in Chinese agriculture, especially in vegetable production, but large amounts of film residues can accumulate in the soil. The present study investigated the effects of plastic film residues on the occurrence of soil PAEs and microbial activities using a batch pot experiment. PAE concentrations increased with increasing plastic film residues but the soil microbial carbon and nitrogen, enzyme activities and microbial diversity decreased significantly. At the end of the experiment the PAE concentrations were 0-2.02 mg kg(-1) in the different treatments. Soil microbial C and N, enzyme activities, AWCD value, and Shannon-Weaver and Simpson indices declined by about 28.9-76.2%, 14.9-59.0%, 4.9-22.7%, 23.0-42.0% and 1.8-18.7%, respectively. Soil microbial activity was positively correlated with soil PAE concentration, and soil PAE concentrations were impacted by plastic color and residue volume. Correlations among, and molecular mechanisms of, plastic film residues, PAE occurrence and microbial activity require further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina.

    PubMed

    Ramos, Laura; Berenstein, Giselle; Hughes, Enrique A; Zalts, Anita; Montserrat, Javier M

    2015-08-01

    Horticulture makes intensive use of soil and extensive use of polyethylene (PE) sheeting and pesticides, producing an environment where the dynamics between soil and plastics can affect pesticide fate. We have determined that the presence of plastic residues in the horticultural soil of small production units equals 10% of the soil area, being meso and macro-sections the predominant fragment sizes. All soil samples were taken from different plots located in Cuartel V, Moreno district, in the suburbs of Buenos Aires city, Argentina. Laboratory experiments were conducted to see the relations among pesticide, soil and PE film. Endosulfan recovery from LDPE films (25μm and 100μm) was studied, observing evidence that indicated migration to the inside of the plastic matrix. To further analyze the dynamics of pesticide migration to soil and atmosphere, experiments using chlorpyrifos, procymidone and trifluralin were performed in soil-plastic-atmosphere microenvironments, showing that up to 24h significant amounts of pesticides moved away from the PE film. To determine whether PE residues could act as potential pesticide collector in soil, column elution experiments were done using chlorpyrifos, procymidone and trifluralin. Results showed an important pesticide accumulation in the mulch film (584μg-2284μg pesticide/g plastic) compared to soil (13μg-32μg pesticide/g soil). Finally, chemical and photochemical degradation of deltamethrin adsorbed in PE film was studied, finding a protective effect on hydrolysis but no protective effect on photodegradation. We believe that a deeper understanding of the dynamics among soil, plastic and pesticides in horticultural productive systems may contribute to alert for the implications of PE use for plastic sheeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film.

    PubMed

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-09-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg(-1) with a median value of 1.70 mg kg(-1), and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Effect of Lime on characteristics of consolidation, strength, swelling and plasticity of fine grained soil

    NASA Astrophysics Data System (ADS)

    Estabragh, A. R.; Bordbar, A. T.; Parsaee, B.; Eskandari, Gh.

    2009-04-01

    Using Lime as an additive material to clayey soil is one of the best effective technique in building the soil structures to get some purposes such as soil stabilization, soil reinforcement and decreasing soil swelling. In this research the effect of Lime on geotechnical characteristics of a clayey soil was investigated. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of lime, 4, 6, 8 & 10 percent. Some experiments such as CBR, atterburg limits, compaction, consolidation and swelling was conducted on specimens. Results revealed that adding lime to soil would change its physical and mechanical properties. Adding lime increase the compression strength and consolidation coefficient and decrease swelling potential and maximum dry density. According to the results, Atterburg experiments show that presence of lime in soil increase the liquid limit of low plasticity soil and decrease the liquid limit of high plasticity soil, but totally it decreases the plasticity index of soils. Key words: soil stabilization, lime, compression strength, swelling, atterburg limits, compaction

  8. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    PubMed

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers and public perception from both a psychological and economic perspective in order to develop new support strategies for the transition into a more environment-friendly food production. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stress-strain response of plastic waste mixed soil.

    PubMed

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Creep behavior of soil nail walls in high plasticity index (PI) soils : technical report.

    DOT National Transportation Integrated Search

    2017-04-01

    An aspect of particular concern in the Geotechnical Engineering Circular No. 7: Soil Nail Walls (i.e., the soil : nail wall manual and construction guidelines) is the creep behavior of soil nail systems in high-plasticity : clays. This research proje...

  11. Numerical Implementation of the Cohesive Soil Bounding Surface Plasticity Model. Volume I.

    DTIC Science & Technology

    1983-02-01

    AD-R24 866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 1/2 SURFACE PLASTICITY ..(U) CALIFORNIA UNIV DAVIS DEPT OF CIVIL ENGINEERING L R...a study of various numerical means for implementing the bounding surface plasticity model for cohesive soils is presented. A comparison is made of... Plasticity Models 17 3.4 Selection Of Methods For Comparison 17 3.5 Theory 20 3.5.1 Solution Methods 20 3.5.2 Reduction Of The Number Of Equation

  12. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  13. Bioaccumulation of microplastics in the terrestrial food chain: an example from home gardens in SE Mexico

    NASA Astrophysics Data System (ADS)

    Huerta, Esperanza; Mendoza Vega, Jorge; Quej, Victor Ku; Chi, Jesus de los Angeles; Sanchez del Cid, Lucero; Quijano, Cesar; Escalona-Segura, Griselda; Gertsen, Henny; Salánki, Tamás; van der Ploeg, Martine; Koelmans, Albert A.; Geissen, Violette

    2017-04-01

    Plastic in the aquatic environment has been studied since many years and is a well known problem. Plastic in the terrestrial environment is a neglected issue of high importance in regions with waste mismanagement. Therefore, we studied the bioaccumulation of plastics in the terrestrial food chain in home gardens of SE Mexico, a typical example for many countries in development. Plastic waste is not regularly collected and people burn it and burry the residues or the plastic waste directly into the soil of their home gardens, causing the risk of plastic fragmentation, formation of microplastics (MP) in the soil and accumulation in the food chain. To assess the risk, we sampled soil, earthworm cast and chicken feces as well as chicken gizzard and crop in 10 home gardens of Campeche, SE Mexico in September 2016. We analyzed their (micro)plastic content. (Micro)plastics were present in soil with 0.87±1.9 particles g-1, in earthworms casts with 14.8±28.8 particles g-1 casts and in chicken feces with 129.8±82.3 particles g-1 chicken feces), showing a magnification factor of 17±14.6 between the soil and the earthworms casts, and of 149±41.8 between the soil and the chicken feces. Macroplastics were also found in chicken gizzard (57±41.1 particles per chicken) and in the crop (32.4±15.1 particles per chicken). Chicken gizzard is a specialty in the Mexican kitchen and the intake of the present plastics form a strong risk for human health.

  14. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    PubMed

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  15. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    PubMed Central

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M.; DeBruyn, Jennifer M.

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability. PMID:29755440

  16. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles.

    PubMed

    Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao

    2017-02-01

    Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China.

    PubMed

    Wan, Weining; Zhang, Shuzhen; Huang, Honglin; Wu, Tong

    2016-07-01

    This study for the first time reported the occurrence, distribution and concentrations of organophosphate esters (OPEs) in soils caused by plastic waste treatment, as well as their influence on OPE accumulation in wheat (Triticum aestivum L.). Eight OPEs were detected with the total concentrations of 38-1250 ng/g dry weight in the soils from the treatment sites, and tributoxyethyl phosphate and tri(2-chloroethyl) phosphate present as the dominant OPEs. There were similar distribution patterns of OPEs and significant correlations between the total OPE concentrations in the soils from the plastic waste treatment sites with those in the nearby farmlands (P < 0.005), indicating that plastic waste treatment caused the OPE contamination of farmland soils. The uptake and translocation of OPEs by wheat were determined, with OPEs of high hydrophobicity more easily taken up from soils and OPEs with low hydrophobicity more liable to be translocated acropetally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Soil water retention and plant growth response on the soil affected by continuous organic matter and plastic mulch application

    NASA Astrophysics Data System (ADS)

    Rasyid, B.; Oda, M.; Omae, H.

    2018-05-01

    Soil-water and plant growth interaction is a primary key to develop environmental plant production system. The objective of this research is to evaluate change in soil water retention characteristics and plant response as the effect of continuous organic matter and plastic mulch application. The experiment was conducted in the plastic house field with plot size of 5 m (length) x 1 m (width). The field had treatments of plastic mulch type (mesh and poly) and no mulch, nitrogen (0, 10 and 40 kg N ha-1), and 2 ton ha-1 organic matter (incorporated into all plots). Water retention measurement using sand box method for low suction and pressure plate apparatus was applied for high suction. Completely randomized block experimental design and Duncan-MRT were used to analysis the effect of treatment on the parameters. Soil organic carbon and nitrogen increased slightly in both mulch types, but C:N ratio decreased in poly mulch which had the lowest value during two planting season. Various change in soil water retention was shown in different mulch type with mesh mulch had the highest result on lower suction, and control was the lowest water retention on the high suction. Soil water availability was highest in mesh mulch type followed by control and poly mulch type. This study could conclude that continuous incorporation of organic matter and mesh-plastic mulch was useful in achieving environments to improve soil C:N ratio and soil water retention.

  19. Morphological and structural plasticity of grassland species in response to a gradient in saline-sodic soils.

    PubMed

    Huang, Y; Song, Y; Li, G; Drake, P L; Zheng, W; Li, Z; Zhou, D

    2015-11-01

    The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline-sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline-sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline-sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline-sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline-sodic conditions than their paired congeners, which may manifest as an inability to compete with co-occurring species in locations where saline-sodic soils are absent. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Plastic Films for Soil Fumigation: Permeability and Emissions Reduction

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is being increasingly regulated to protect human and environmental health. Current California regulations are based on field data and, in effect, assume that use of a standard polyethylene tarp does not reliably reduce emissions. Plastic tarps used to cover the soil surface during so...

  1. Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations

    DTIC Science & Technology

    2013-04-16

    to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the...resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the calculation of the soil mechanics model

  2. The Influence of Processing Soil With a Coffee Grinder on Soil Classification

    DTIC Science & Technology

    2015-01-20

    shaker, sieves , coffee grinder, plastic limit tool, bowls, spatulas, and scoops. To classify soils, a dry sieve analysis is performed, as is a Plastic...processed with the coffee grinder for 90 seconds as described above. Sieve analysis using the wet preparation method was used to test and classify the soils...one 90 second cycle of Elevator Soil Figure 3: The blades after three 90 second cycles of Elevator Soil 71Page 4.2 Ottawa Sand Dry Sieve Analysis

  3. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  4. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    PubMed

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    PubMed

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.

    ERIC Educational Resources Information Center

    Eshel, Amram

    1997-01-01

    Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)

  7. A standardized approach for estimating the permeability of plastic films to soil fumigants under various field and environmental conditions

    USDA-ARS?s Scientific Manuscript database

    Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor...

  8. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.

  9. The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function

    NASA Astrophysics Data System (ADS)

    Chen, Sandy H. L.; Wu, Xinliu

    2018-03-01

    The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.

  10. Rheological properties of soil: a review

    NASA Astrophysics Data System (ADS)

    Zhu, Guangli; Zhu, Long; Yu, Chao

    2017-05-01

    Recently rheological methods have been applied to investigate the mechanical properties of soil micro-structure. Rheological techniques have a number of quantitative physically based measurements and offer a better understanding of how soil micro-structure behaves when subject to stress. Rheological material is refers to deformation properties similar to the solid and flow properties similar to the liquid of bound water and colloidal substances under stress. Soil rheology is divided into fluid rheology and plasticity rheology. Fluid rheology is produced by rheological material. Plasticity rheology mainly refers to the sliding and peristaltic between soil solid particles under shear stress. It is generally believed that the soft soil rheology mainly belongs to fluid rheology, while the rheology of sand and other coarse grained soil mainly belongs to plasticity rheology. Thus, rheology mechanisms of soft soil and sand are different. This paper introduces the methods of the research progress on the rheology of soil, in the soil rheological mechanism, rheological model and rheological numerical aspects of the research at home and abroad were summarized and analysed, discussed the problems existed in related research, and puts forward some suggestions for the future study on the rheology of soil.

  11. [Effects of plastic mulch on soil moisture and temperature and limiting factors to yield increase for dryland spring maize in the North China].

    PubMed

    Liu, Sheng-Yao; Zhang, Li-Feng; Li, Zhi-Hong; Jia, Jian-Ming; Fan, Feng-Cui; Shi, Yu-Fang

    2014-11-01

    Four treatments, including ridge tillage with plastic mulch (RP), ridge tillage without mulch (RB), flat tillage with plastic mulch (FP) and flat tillage without mulch (FB), were carried out to examine the tillage type and mulch on the effects of soil moisture and temperature, yield and water use efficiency (WUE) of dry land spring maize in the North China. Results showed that the average soil temperature was increased by 1-3 °C and the accumulated soil temperature was increased by 155.2-280.9 °C from sowing to tasseling by plastic mulch, and the growing duration was extended by 5.9-10.7 d. The water conservation effect of plastic mulch was significant from sowing to the seedling establishment, with WUE being increased by 81.6%-136.4% under mulch as compared with that without mulch. From the seedling to jointing stage, which coincided with the dry period in the region, soil water utilization by the maize under mulch could reach the depth of 80-100 cm, and its WUE was about 17.0%-21.6% lower than the maize without mulch, since the latter was affected by dry stress. With the coming of rainy season around the trumpeting stage, soil water in each treatment was replenished and maintained at relative high level up to harvest. Yield of maize was increased by 9.5% under RP as compared with RB. However, yield was reduced by 5.0% under FP, due to the plastic film under flat tillage prevented the infiltration of rainfall and waterlogging occurred. No significant difference in yield was found between RB and FB. Higher yield of spring maize was limited because of the mismatching in water supply and demand characterized by soil water shortage before the rainy season and abundant soil water storage after the rainy season.

  12. Influence of wood-derived biochar on the compactibility and strength of silt loam soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Ahmed; Gariepy, Yvan; Raghavan, Vijaya

    2017-04-01

    Biochar is proven to enhance soil fertility and increase crop productivity. Given that the influence of biochar on soil compaction remains unclear, selected physico-mechanical properties of soil amended with wood-derived biochar were assessed. For unamended silt loam, the bulk density, maximum bulk density, optimum moisture content, plastic limit, liquid limit, and plasticity index were 1.05 Mg m-3, 1.69 Mg m-3, 16.55, 17.1, 29.3, and 12.2%, respectively. The penetration resistance and shear strength of the unamended silt loam compacted in the standard compaction Proctor mold and at its optimum moisture content were 1800 kPa and 850 kPa, respectively. Results from amending the silt loam with 10% particle size ranges (0.5-212 μm) led to relative decreases of 18.1, 17.75, 66.66, and 97.4% in bulk density, maximum bulk density, penetration resistance, and shear strength, respectively; a 26.8% relative increase in optimum moisture content; along with absolute increases in plastic limit, liquid limit, and plasticity index of 5.3, 13.7, and 8.4%, respectively. While the biochar-amended silt loam soil was more susceptible to compaction, however, soil mechanical impedance enhanced.

  13. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    DOT National Transportation Integrated Search

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  14. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators

    NASA Astrophysics Data System (ADS)

    Domagała-Świątkiewicz, Iwona; Siwek, Piotr

    2018-01-01

    In horticulture, degradable materials are desirable alternatives to plastic films. Our aim was to study the impact of soil plastic mulching on the soil properties in the high tunnel and open field production systems of raspberry. The raised beds were mulched with a polypropylene non-woven and two degradable mulches: polypropylene with a photodegradant and non-woven polylactide. The results indicated that the system of raspberry production, as well as the type of mulching had significant impact on soil organic carbon stock, moisture content and water stable aggregate amount. Soils taken from the open field system had a lower bulk density and water stability aggregation index, but higher organic carbon and capillary water content as compared to soils collected from high tunnel conditions. In comparison with the open field system, soil salinity was also found to be higher in high tunnel, as well as with higher P, Mg, Ca, S, Na and B content. Furthermore, mulch covered soils had more organic carbon amount than the bare soils. Soil mulching also enhanced the water capacity expressed as a volume of capillary water content. In addition, mulching improved the soil structure in relation to the bare soil, in particular, in open field conditions. The impact of the compared mulches on soil quality indicators was similar.

  15. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L.)

    PubMed Central

    2016-01-01

    Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment. PMID:27560826

  16. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L.).

    PubMed

    Wang, Xiukang; Xing, Yingying

    2016-01-01

    Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment.

  17. Geological Engineering Characteristics of the Residual Soil: Implementation for Soil Bearing Capacity at Gayungan, Surabaya, East Java

    NASA Astrophysics Data System (ADS)

    Rukmana, Y. Y.; Ridwan, M.

    2018-01-01

    This paper presents the results of soil investigation on the residual soil at Gayungan Surabaya. The methodology of the research consists of Drilling + Standard Penetration Test (ASTM D1586-99), sampling and laboratory test for index properties & mechanical of soil, then analyzed for Soil Bearing Capacity (Meyerhoff, 1976). Field test analysis data showed that Bore Hole.01(BH.01) and Bore Hole.03 (BH.03) were dominated by Sand / Sandy clay layer with Standart Penetration Test (SPT) values: 6-68, whereas in BH.02 was dominated by Clayey sand layer with Standard Penetration Test (SPT) values: 32-68. Based on Soil classification according to Unified Soil Classification System (USCS), the soil type at the research area consisted of ML (Silt with Low plasticity), CL ( Clay with low plasticity), MH (Silt with High plasticity), and SP (Sand with Poor gradation). Based on the borlog data and soil bearing capacity analysis of the research area is recommended: for The Deep foundation to reaches at least 16 meters depth with Qa = 1160.40-2032.80 kN / m2, and Shallow foundation reaches at least 1-2 meters deep with Qa = 718.25 kN / M2.

  18. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    NASA Astrophysics Data System (ADS)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (< 5% chance of failure in 8-15 years after construction) contained soils with a liquid limit < 36%, a plasticity index < 16%, and a clay content < 32%. These data show that if one is constructing embankments and one wants to prevent slope failure of the 3:1 slopes, check the above soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  19. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  20. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    PubMed

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  1. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    NASA Astrophysics Data System (ADS)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  2. Boundary value problems with incremental plasticity in granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.; Costes, N. C.

    1974-01-01

    Discussion of the critical state concept in terms of an incremental theory of plasticity in granular (soil) media, and formulation of the governing equations which are convenient for a computational scheme using the finite element method. It is shown that the critical state concept with its representation by the classical incremental theory of plasticity can provide a powerful means for solving a wide variety of boundary value problems in soil media.

  3. Earthquake-Induced Liquefaction of Fine-Grained Soils - Considerations from Japanese Research

    DTIC Science & Technology

    1988-12-01

    plasticity silt (from Silver Lake , Washington, liquid limit: 26 percent; plastic limit: 22 percent) on particle-to-particle contacts in the sand matrix...Resistance of Damsite 1, Reelfoot -Indian Creek Watershed, Obion County, Tennessee," Report to US Department of Agriculture, Soil Conservation Service

  4. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    PubMed Central

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335

  5. Precipitation alters plastic film mulching impacts on soil respiration in an arid area of northwest China

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Hu, Hongchang; Tian, Fuqiang; Peng, Zhenyang; Yang, Pengju; Luo, Yiqi

    2018-05-01

    Plastic film mulching (PFM) has widely been used around the world to save water and improve crop yield. However, the effect of PFM on soil respiration (Rs) remains unclear and could be further confounded by irrigation and precipitation. To address these topics, controlled experiments were conducted in mulched and non-mulched fields under drip irrigation from 2014 to 2016 in an arid area of the Xinjiang Uygur Autonomous Region, northwest China. The spatio-temporal pattern of soil surface CO2 flux as an index of soil respiration under drip irrigation with PFM was investigated, and the confounded effects of PFM and irrigation/precipitation on soil respiration were explored. The main findings were as follows. (1) Furrows, planting holes, and plastic mulch are three important pathways of soil CO2 emissions in mulched fields, of which the planting hole efflux outweighs that from the furrow, with the largest values of 8.0 and 6.6 µmol m-2 s-1, respectively, and the plastic mulch itself can emit up to 3.6 µmol m-2 s-1 of CO2. (2) The frequent application of water (i.e. through irrigation and precipitation) elevates soil moisture and soil respiration and enhances their variation. The resultant higher variation of soil moisture further alleviates the sensitivity of soil respiration to soil temperature, leading to a weak correlation and lower Q10 values. (3) Soil CO2 effluxes from furrows and ridges in mulched fields outweigh the corresponding values in non-mulched fields in arid areas. However, this outweighing relation attenuates with increasing precipitation. Furthermore, by combining our results with those from the literature, we show that the difference in soil CO2 effluxes between non-mulched and mulched fields presents a linear relation with the amount of precipitation, which results in negative values in arid areas and positive values in humid areas. Therefore, whether PFM increases soil respiration or not depends on the amount of precipitation during the crop-growing season.

  6. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China.

    PubMed

    Li, Kankan; Ma, Dong; Wu, Juan; Chai, Chao; Shi, Yanxi

    2016-12-01

    The content of phthalate esters (PAEs) was investigated in 36 vegetable fields with plastic film mulching in Shandong Peninsula, East China. Soils at depths of 0-10 cm, 10-20 cm, and 20-40 cm were collected, and 16 PAEs were analyzed by gas chromatography-mass spectrometry. PAEs were detected in all the analyzed samples. The total contents of the 16 PAEs (Σ 16 PAEs) ranged from 1.374 to 18.810 mg/kg, with an average of 6.470 mg/kg. Among the four areas of Shandong Peninsula, including Qingdao, Weihai, Weifang, and Yantai, the highest Σ 16 PAE in the soil was observed in Weifang district (9.786 mg/kg), which is famous for large-scale vegetable production. Despite the significant differences among the Σ 16 PAEs, the PAE compositions in soils with plastic film mulching in Shandong Peninsula were comparable. Diethyl phthalate (DEP), diisobutyl phthalate, and di(4-methyl-2-pentyl) phthalate were present in all the samples, whereas di-n-hexyl phthalate was detected only in Qingdao (∼1%) and dicyclohexyl phthalate was observed only in Weifang (5.7-8.2%) in low proportions. The ratios of dimethyl phthalate, DEP, and di-n-butyl phthalate, which exceeded allowable concentrations, were 63.9-100% at different soil depths, indicating high PAE pollution. The concentration of butyl benzyl phthalate detected only in Weifang exceeded the recommended allowable soil concentration. Overall, the high PAE content in the soil with plastic film mulching in Shandong Peninsula is an issue of concern because of the large amounts of plastic film used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    NASA Astrophysics Data System (ADS)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  8. Can plastic mulching replace irrigation in dryland agriculture?

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  9. An experimental study of soil temperature regimes associated with solar disinfestation techniques under greenhouse conditions in Greece.

    PubMed

    Garofalakis, I; Tsiros, I; Frangoudakis, A; Chronopoulos, K; Flouri, F

    2006-01-01

    This paper deals with an experimental study of various techniques that have been applied for soil disinfestation purposes under greenhouse conditions. Various meteorological parameters and soil temperatures were measured for four different experimental soil segments (three associated with different disinfestation techniques and one as a reference) at depths varying between 0-1 m and with a time interval of 5 min in a greenhouse located in the Agricultural University of Athens Campus, Greece. Results showed that plastic polyethylene films such as covers, metallic conductors or a combination of both were able to enhance heat transfer and temperature increase in greenhouse soil. For typical disinfestation conditions, the depth-averaged temperature values for plastic covers, metallic conductors, and the combination of both were found to be higher than those for the reference of about 5 degrees C, 12 degrees C and 15 micro C, respectively. Moreover, the remained population percentages 50 days after the initiation of the experiment were found to be 19.3%, 25.3%, 37.3% Kcat 94% of the initial population, for the combination of metallic conductors and plastic covers, metallic conductors, plastic cover, and for the reference, respectively.

  10. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses.

    PubMed

    Wang, Jun; Chen, Gangcai; Christie, Peter; Zhang, Manyun; Luo, Yongming; Teng, Ying

    2015-08-01

    Phthalate esters (PAEs) are suspected of having adverse effects on human health and have been frequently detected in soils and vegetables. The present study investigated their occurrence and composition in plastic film greenhouse soil-vegetable systems and assessed their potential health risks to farmers exposed to these widespread pollutants. Six priority control phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP), were determined in 44 plastic film greenhouse vegetables and corresponding soils. Total PAEs ranged from 0.51 to 7.16mgkg(-1) in vegetables and 0.40 to 6.20mgkg(-1) in soils with average concentrations of 2.56 and 2.23mgkg(-1), respectively. DnBP, DEHP and DnOP contributed more than 90% of the total PAEs in both vegetables and soils but the proportions of DnBP and DnOP in vegetables were significantly (p<0.05) higher than in soils. The average concentrations of PAEs in pot herb mustard, celery and lettuce were >3.00mgkg(-1) but were <2.50mgkg(-1) in the corresponding soils. Stem and leaf vegetables accumulated more PAEs. There were no clear relationships between vegetable and soil PAEs. Risk assessment indicates that DnBP, DEHP and DnOP exhibited elevated non-cancer risk with values of 0.039, 0.338 and 0.038, respectively. The carcinogenic risk of DEHP was about 3.94×10(-5) to farmers working in plastic film greenhouses. Health risks were mainly by exposure through vegetable consumption and soil ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Installation Restoration Program Records Search for Cannon Air Force Base, New Mexico.

    DTIC Science & Technology

    1983-08-01

    several years. A deteriorating black plastic liner was noted at the edge of the shallow pit. Approximately 4 to 6 inches of soil covered the rest of...subtotal/eximtm subtotal) 56 II. WASTE CARACTERISTICS A. Select the factor score based on the eatimeted quantity, the degree of hazard, and the...anticipated soil properties such as gradation, plasticity , or permea- bility by performing appropriate laboratory tests. In addition, soil samples may be

  12. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    PubMed

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  13. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    PubMed Central

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation. PMID:23712218

  14. Exploratory Research on Bearing Characteristics of Confined Stabilized Soil

    NASA Astrophysics Data System (ADS)

    Wu, Shuai Shuai; Gao, Zheng Guo; Li, Shi Yang; Cui, Wen Bo; Huang, Xin

    2018-06-01

    The performance of a new kind of confined stabilized soil (CSS) was investigated which was constructed by filling the stabilized soil, which was made by mixing soil with a binder containing a high content of expansive component, into an engineering plastic pipe. Cube compressive strength of the stabilized soil formed with constraint and axial compression performance of stabilized soil cylinders confined with the constraint pipe were measured. The results indicated that combining the constraint pipe and the binder containing expansion component could achieve such effects: higher production of expansive hydrates could be adopted so as to fill more voids in the stabilized soil and improve its strength; at the same time compressive prestress built on the core stabilized soil, combined of which hoop constraint provided effective radial compressive force on the core stabilized soil. These effects made the CSS acquire plastic failure mode and more than twice bearing capacity of ordinary stabilized soil with the same binder content.

  15. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    NASA Astrophysics Data System (ADS)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  16. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  17. Energy Dissipation in Earthquake Soil Structure Interaction: The September 3rd, 2016 M5.8 Pawnee Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sinha, S. K.; Feng, Y.; Jeremic, B.

    2016-12-01

    The M5.8 earthquake occurred in Pawnee, Oklahoma on September 3rd 2016 is the strongest seismic event recorded in Oklahoma. Soil structure interaction (SSI) played an important role in this tragic event. As a major aspect of SSI analysis, the propagation and dissipation of seismic energy will be studied in depth, with particular focus on the ground motion recorded in this earthquake. Seismic energy propagates from seismic source to the SSI system and is dissipated within and around the SSI system. Energy dissipation with the SSI system is related to inelastic behavior of soil, rock, contact zone (foundation-soil/rock), structural components and energy dissipators. Accurate evaluation of seismic energy can be used to optimize SSI system for safety and economy. The SSI system can be designed so that majority of seismic energy is dissipated within soil and soil-foundation contact zone, away from the structure.Accurate and theoretically sound modeling of propagation and dissipation is essential to use of seismic energy for design and assessment. The rate of plastic work is defined as the product of stress and the rate of plastic strain. On the other hand, plastic dissipation is defined as a form of heat transfer. The difference between these two quantities, which has been neglected in many studies, is a plastic part of the free energy. By considering energy storage and dissipation at both micro (particle) scale and macro (continuum) scale, it can be shown that the plastic free energy is an intrinsic attribute at the continuum scale due to particle rearrangement. Proper application of thermodynamics to finite element simulations, plastic dissipation can be correctly modeled. Examples will be used to illustrate above point on both constitutive, single element and SSI model scales. In addition, propagation of seismic energy, its dissipation (timing and location) will be used to illustrate use in design and assessment.

  18. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    NASA Astrophysics Data System (ADS)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  19. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  20. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments.

    PubMed

    Joly, François-Xavier; Coulis, Mathieu

    2018-02-01

    It is estimated that 4.5 trillion cigarette butts are discarded annually, making them numerically the most common type of litter on Earth. To accelerate their disappearance after disposal, a new type of cigarette filters made of cellulose, a readily biodegradable compound, has been introduced in the market. Yet, the advantage of these cellulose filters over the conventional plastic ones (cellulose acetate) for decomposition, remains unknown. Here, we compared the decomposition of cellulose and plastic cigarettes filters, either intact or smoked, on the soil surface or within a composting bin over a six-month field decomposition experiment. Within the compost, cellulose filters decomposed faster than plastic filters, but this advantage was strongly reduced when filters had been used for smoking. This indicates that the accumulation of tars and other chemicals during filter use can strongly affect its subsequent decomposition. Strikingly, on the soil surface, we observed no difference in mass loss between cellulose and plastic filters throughout the incubation. Using a first order kinetic model for mass loss of for used filters over the short period of our experiment, we estimated that conventional plastic filters take 7.5-14 years to disappear, in the compost and on the soil surface, respectively. In contrast, we estimated that cellulose filters take 2.3-13 years to disappear, in the compost and on the soil surface, respectively. Our data clearly showed that disposal environments and the use of cellulose filters must be considered when assessing their advantage over plastic filters. In light of our results, we advocate that the shift to cellulose filters should not exempt users from disposing their waste in appropriate collection systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Double mulching application for Panax notoginseng growing seedlings].

    PubMed

    Ou, Xiao-Hong; Fang, Yan; Shi, Ya-Na; Guo, Lan-Ping; Wang, Li; Yang, Yan; Jin, Hang; Liu, Da-Hui

    2014-02-01

    In order to improve the irrigation for Panax notginseng growing seedlings, different mulching ways were carried out to investigate the effects of double mulching. Field experiment was applied to study soil moisture, soil temperature and bulk density of different mulching ways while the germination rate and seedlings growth also were investigated. Compared with the traditional single mulching with pine leaves or straw, double mulching using plastic film combined with pine leaves or straw could reduce 2/3 volumes of irrigation at the early seedling time Double mulching treatments didn't need to irrigate for 40 days from seeding to germination, and kept soil moisture and temperature steady at whole seedling time about 30% and 9.0-16.6 degrees C, respectively. The steady soil moisture and temperature benefited to resist late spring cold and germinate earlier while kept germination regularly, higher rate and seedlings quality. In contrast, single mulching using pine leaves or straw had poor soil moisture and temperature preserving, needed to irrigate every 12-day, meanwhile dropped the germination and booming time 14 days and 24-26 days, respectively, reduced germination rate about 11.3%-8.7%. However, single pine leaves mulching was better than straw mulching. In addition, though better effects of soil moisture and temperature preserving as well as earlier and higher rate of germination with single plastic films mulching had, some disadvantages had also been observed, such as daily soil temperature changed greatly, seedling bed soil hardened easily, more moss and weeds resulted difficulty in later management. To the purpose of saving water and labor as well as getting higher germination rate and seedlings quality, double mulching using plastic films combined pine leaves at the early time and single mulching removing plastic films at the later time is suggested to apply in the growing seedlings of P. notoginseng.

  2. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions.

    PubMed

    Moreno, Marta M; González-Mora, Sara; Villena, Jaime; Campos, Juan A; Moreno, Carmen

    2017-09-15

    Polyethylene plastic mulches are widely used in agriculture due to the countless advantages they have. However, the environmental problems associated with their use have led us to look for alternative mulch materials which degrade naturally and quickly, impact the environment less and function satisfactorily. To this end, biodegradable plastics and paper mulches are being used, but aspects related to their degradation should be studied more in-depth. This work provides the deterioration pattern of six biodegradable mulch materials (i.e. vegetable starch, polylactic acid plastic films or paper mulches) in horticultural crop in the edaphoclimatic conditions of Central Spain in two situations: over the lifetime of the mulches and after being incorporated into the soil. In the first situation, the deterioration levels were evaluated by recording the puncture resistance, weight and area covered in the above-soil and the in-soil part, and after soil incorporation by the number of fragments, their surfaces and weight. In the above-soil part, biodegradable plastics experienced further deterioration, particularly with no crop, while the paper mulch remained practically intact. However, the in-soil paper experienced complete and rapid degradation. At 200 days after soil incorporation, mulch residues were scarce, with the environmental effects it entails. These findings offer practical implications regarding the type of crop. The measurement of the surface covered, rather than the weight, was shown to be a more reliable indicator of the degradation of mulches. Furthermore, visual estimation was found to underestimate the functionality of mulches in comparison to that of the measurement of the surface covered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterizing soil erosion potential using electrical resistivity imaging : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, : water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also : influence soil in situ bulk electric...

  4. Characterizing soil erosion potential using electrical resistivity imaging : technical summary.

    DOT National Transportation Integrated Search

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...

  5. Implementation and Validation of an Anisotropic Plasticity Model for Clay and a Two-Scale Micropolar Constitutive Model for Sand

    NASA Astrophysics Data System (ADS)

    Yonten, Karma

    As a multi-phase material, soil exhibits highly nonlinear, anisotropic, and inelastic behavior. While it may be impractical for one constitutive model to address all features of the soil behavior, one can identify the essential aspects of the soil's stress-strainstrength response for a particular class of problems and develop a suitable constitutive model that captures those aspects. Here, attention is given to two important features of the soil stress-strain-strength behavior: anisotropy and post-failure response. An anisotropic soil plasticity model is implemented to investigate the significance of initial and induced anisotropy on the response of geo-structures founded on cohesive soils. The model is shown to produce realistic responses for a variety of over-consolidation ratios. Moreover, the performance of the model is assessed in a boundary value problem in which a cohesive soil is subjected to the weight of a newly constructed soil embankment. Significance of incorporating anisotropy is clearly demonstrated by comparing the results of the simulation using the model with those obtained by using an isotropic plasticity model. To investigate post-failure response of soils, the issue of strain localization in geostructures is considered. Post-failure analysis of geo-structures using numerical techniques such as mesh-based or mesh-free methods is often faced with convergence issues which may, at times, lead to incorrect failure mechanisms. This is due to the fact that majority of existing constitutive models are formulated within the framework of classical continuum mechanics that leads to ill-posed governing equations at the onset of localization. To overcome this challenge, a critical state two-surface plasticity model is extended to incorporate the micro-structural mechanisms that become significant within the shear band. The extended model is implemented to study the strain localization of granular soils in drained and undrained conditions. It is demonstrated that the extended model is capable of capturing salient features of soil behavior in pre- and post-failure regimes. The effects of soil particle size, initial density and confining pressure on the thickness and orientation of shear band are investigated and compared with the observed behavior of soils.

  6. Methods for Assessment of Biodegradability of Plastic Films in Soil †

    PubMed Central

    Yabannavar, Asha V.; Bartha, Richard

    1994-01-01

    Traditional and novel techniques were tested and compared for their usefulness in evaluating biodegrad-ability claims made for newly formulated “degradable” plastic film products. Photosensitized polyethylene (PE), starch-PE, extensively plasticized polyvinyl chloride (PVC), and polypropylene (PP) films were incorporated into aerobic soil. Biodegradation was measured for 3 months under generally favorable conditions. Carbon dioxide evolution, residual weight recovery, and loss of tensile strength measurements were supplemented, for some films, by gas chromatographic measurements of plasticizer loss and gel permeation chromatographic (GPC) measurement of polymer molecular size distribution. Six- and 12-week sunlight exposures of photosensitized PE films resulted in extensive photochemical damage that failed to promote subsequent mineralization in soil. An 8% starch-PE film and the plasticized PVC film evolved significant amounts of CO2 in biodegradation tests and lost residual weight and tensile strength, but GPC measurements demonstrated that all these changes were confined to the additives and the PE and PVC polymers were not degraded. Carbon dioxide evolution was found to be a useful screening tool for plastic film biodegradation, but for films with additives, polymer biodegradation needs to be confirmed by GPC. Photochemical cross-linking of polymer strands reduces solubility and may interfere with GPC measurements of polymer degradation. PMID:16349408

  7. Prediction of soil stress-strain response incorporates mobilised shear strength envelope of granitic residual soil

    NASA Astrophysics Data System (ADS)

    Rahman, Abdul Samad Abdul; Noor, Mohd Jamaludin Md; Ahmad, Juhaizad Bin; Sidek, Norbaya

    2017-10-01

    The concept of effective stress has been the principal concept in characterizing soil volume change behavior in soil mechanics, the settlement models developed using this concept have been empirical in nature. However, there remain certain unexplained soil volume change behaviors that cannot be explained using the effective stress concept, one such behaviour is the inundation settlement. Studies have begun to indicate the inevitable role of shear strength as a critical element to be incorporated in models to unravel the unexplained soil behaviours. One soil volume change model that applies the concept of effective stress and the shear strength interaction is the Rotational Multiple Yield Surface Framework (RMYSF) model. This model has been developed from the soil-strain behavior under anisotropic stress condition. Hence, the RMYSF actually measure the soil actual elasto-plastic response to stress rather than assuming it to be fully elastic or plastic as normally perceived by the industry. The frameworks measures the increase in the mobilize shear strength when the soil undergo anisotropic settlement.

  8. Soil Quality and Colloid Transport under Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Sintim, Henry; Bandopadhyay, Sreejata; Ghimire, Shuresh; Flury, Markus; Bary, Andy; Schaeffer, Sean; DeBruyn, Jennifer; Miles, Carol; Inglis, Debra

    2016-04-01

    Polyethylene (PE) mulch is commonly used in agriculture to increase water use efficiency, to control weeds, manage plant diseases, and maintain a favorable micro-climate for plant growth. However, producers need to retrieve and safely dispose PE mulch after usage, which creates enormous amounts of plastic waste. Substituting PE mulch with biodegradable plastic mulches could alleviate disposal needs. However, repeated applications of biodegradable mulches, which are incorporated into the soil after the growing season, may cause deterioration of soil quality through breakdown of mulches into colloidal fragments, which can be transported through soil. Findings from year 1 of a 5-year field experiment will be presented.

  9. Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China

    NASA Astrophysics Data System (ADS)

    Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou; Wang, Tianwei

    2017-04-01

    Collapsing gullies are one of the most serious soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have been performed on the relationship of soil Atterberg limits with soil profiles of the collapsing gullies. Soil Atterberg limits, which include plastic limit and liquid limit, have been proposed as indicators for soil vulnerability to degradation. Here, the soil Atterberg limits within different weathering profiles and their relationships with soil physicochemical properties were investigated by characterizing four collapsing gullies in four counties in the hilly granitic region of southern China. The results showed that with the fall of weathering degree, there was a sharp decrease in plastic limit, liquid limit, plasticity index, soil organic matter, cation exchange capacity and free iron oxide. Additionally, there was a gradual increase in liquidity index, a sharp increase in particle density and bulk density followed by a slight decline, a decrease in the finer soil particles, a noticeable decline in the clay contents, and a considerable increase in the gravel and sand contents. The plastic limit varied from 19.43 to 35.93 % in TC, 19.51 to 33.82 % in GX, 19.32 to 35.58 % in AX and 18.91 to 36.56 % in WH, while the liquid limit varied from 30.91 to 62.68 % in TC, 30.89 to 57.70 % in GX, 32.48 to 65.71 % in AX and 30.77 to 62.70 % in WH, respectively. The soil Atterberg limits in the sandy soil layers and detritus layers were lower than those in the surface layers and red soil layers, which results in higher vulnerability of the sandy soil layers and detritus layers to erosion and finally the formation of the collapsing gully. The regression analyses showed that soil Atterberg limits had significant and positive correlation with SOM, clay content, cationic exchange capacity and Fed, significant and negative correlation with sand content and no obvious correlation with other properties. The results of this study revealed that soil Atterberg limits are an informative indicator to reflect the weathering degree of different weathering profiles of the collapsing gullies in the hilly granitic region.

  10. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    PubMed Central

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114

  11. Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, Scott Thomas; Flint, Gregory Mark; Dewers, Thomas

    2015-11-01

    This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failuremore » and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.« less

  12. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    PubMed

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  13. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  14. Simplification of a dust emission scheme and comparison with data

    NASA Astrophysics Data System (ADS)

    Shao, Yaping

    2004-05-01

    A simplification of a dust emission scheme is proposed, which takes into account of saltation bombardment and aggregates disintegration. The statement of the scheme is that dust emission is proportional to streamwise saltation flux, but the proportionality depends on soil texture and soil plastic pressure p. For small p values (loose soils), dust emission rate is proportional to u*4 (u* is friction velocity) but not necessarily so in general. The dust emission predictions using the scheme are compared with several data sets published in the literature. The comparison enables the estimate of a model parameter and soil plastic pressure for various soils. While more data are needed for further verification, a general guideline for choosing model parameters is recommended.

  15. Plasticity in nodal root elongation through the hardpan triggered by rewatering during soil moisture fluctuation stress in rice.

    PubMed

    Suralta, Roel Rodriguez; Niones, Jonathan Manito; Kano-Nakata, Mana; Thi Tran, Thiem; Mitsuya, Shiro; Yamauchi, Akira

    2018-03-12

    Rainfed lowland (RFL) rice fields have hardpans and experience soil moisture fluctuations (SMF) stress, which influence root system development. Here, we clarify the expression and timing of the plasticity in nodal root elongation through the hardpan under SMF and its contribution to shoot growth using a shallow-rooting IR64 and its deep-rooting introgression line, YTH304. Under SMF, soil moisture content had negative relationship with soil penetration resistance, regardless of hardpan bulk densities. YTH304 had greater root system below the hardpan than IR64 in hardpan with 1.50 but not in 1.70 g cm -3 bulk density (BD). YTH304 had greater plasticity in nodal root elongation through the hardpan than IR64 under SMF, which was clearly expressed during rewatering. YTH304 also had greater soil water uptake below the hardpan during drought and greater shoot growth than IR64. The results imply that deep root system development during SMF was due to the plasticity in nodal root elongation through the hardpan expressed during rewatering rather than during drought periods. This is against the long standing belief that active root elongation through the hardpan happens during drought. This also implies a need to revisit current root screening methods to identify rice lines with good hardpan penetration ability.

  16. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: a neglected heavily polluted area.

    PubMed

    Tang, Zhenwu; Huang, Qifei; Cheng, Jiali; Yang, Yufei; Yang, Jun; Guo, Wei; Nie, Zhiqiang; Zeng, Ning; Jin, Lu

    2014-01-01

    The release of pollutants during the recycling of contaminated plastics is a problem which has drawn worldwide attention; however, little information on the transfer of polybrominated diphenyl ethers (PBDEs) in these processes is available. We conducted a survey of PBDEs in soils, sediments, and human hair in a typical plastic waste recycling area in northern China. The total concentrations (ng/g) of 21 PBDEs were 1.25-5504 (average 600), 18.2-9889 (average 1619), and 1.50-861 (average 112) in soils, sediments, and hair, respectively. The PBDE concentrations were comparable to concentrations observed in e-waste recycling areas; however, the concentrations in soils and sediments were 1-3 orders of magnitude higher than in other areas, and the concentrations in hair were much higher than in other areas. This indicates that this area is highly polluted with PBDEs. BDE-209 was the dominant congener (representing 91.23%, 92.3%, and 91.5% of the total PBDEs observed in soils, sediments, and hair, respectively), indicating that the commercial deca-BDE product was dominant. The commercial penta- and octa-BDE products made small contributions to the total PBDE concentrations, unlike what has been found in some e-waste recycling areas. Our results show that crude plastic waste processing is a major contributor of PBDEs to the environment and humans, which should be of great concern.

  17. DEVELOPMENT OF ANAEROBIC SOIL DISINFESTATION FOR FLORIDA VEGETABLE AND FLOWER PRODUCTION

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) combines biological soil disinfestation (Blok et al., 2000; Goud et al., 2004) and soil reductive sterilization (Shinmura, 2004). The development of an ASD system for Florida incorporated soil solarization with clear plastic with the addition of a labile carbon s...

  18. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  19. 7 CFR 1416.401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... season's plastic. Plasticulture means production practices where the soil has been bedded, fumigated, fertilized, an irrigation system installed, and covered with plastic mulch. Specialty crop means any...

  20. Conspecific Plasticity and Invasion: Invasive Populations of Chinese Tallow (Triadica sebifera) Have Performance Advantage over Native Populations Only in Low Soil Salinity

    PubMed Central

    Chen, Leiyi; Tiu, Candice J.; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the “Master-of-some” pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas. PMID:24040366

  1. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    PubMed

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  2. Effect of biofumigation with brassica pellets combined with Brassicaceae cover crops and plastic cover on the survival and infectivity of inoculum of Phytophthora nicotianae Breda de Haan.

    PubMed

    Rodríguez-Molina, M Carmen; Serrano-Pérez, Paula; Palo, Carolina

    2016-07-01

    Biofumigation with defatted seed meal of Brassicaceae in the form of pellets has several advantages over the incorporation of fresh Brassicaceae crops to control soil-borne diseases. Two field experiments were established to evaluate the effect of biofumigation with brassica pellets on the survival and infectivity of Phytophthora nicotianae Breda de Haan inoculum introduced before treatments. In the spring experiment the incorporation of additional Brassicaceae cover crop (Brassica nigra L. and Sinapis alba L.) was tested, and in the summer experiment two brassica pellet doses were applied. Biofumigation with brassica pellets in spring (3000 kg ha(-1) with and without plastic) or in summer (3000 kg ha(-1) with or without plastic; 6000 kg ha(-1) without plastic) had no significant effect on the survival of P. nicotianae, regardless of the incorporation of additional Brassicaceae cover crop in spring. Reduction in infectivity in spring was related to the application of plastic, especially when combined with brassica pellets and Brassicaceae crop. In summer, soil temperature was the main factor in the inactivation of the inoculum, especially when plastic was applied, and no additional inactivation was achieved with brassica pellets. In spring and summer, biofumigation with brassica pellets had no effect on the survival of P. nicotianae. Application of plastic in spring may reduce infectivity. Soil temperature is the main factor in the inactivation of inoculum in summer, especially when plastic is applied. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Can plastic bag derived-microplastics act as vectors for metal exposure in terrestrial invertebrates?

    NASA Astrophysics Data System (ADS)

    E Hodson, Mark; Duffus-Hodson, Calum A.; Prendergast-Miller, Miranda; Thorpe, Karen

    2017-04-01

    Microplastics are widely reported contaminants in marine and freshwater ecosystems and studies have shown that they can be ingested by aquatic organisms and lead to potential negative effects on health. The effects can arise from the physical effects of the plastics (e.g. food displacement and blockages of the digestive tract) and from their potential to adsorb contaminants, primarily organic compounds, resulting in an increased exposure of the organism to toxic contaminants. Studies are beginning to emerge that also show a high abundance of microplastics in the terrestrial environment but there remains a lack of data on the impacts of these terrestrial microplastics or their interaction with other terrestrial pollutants. We conducted Zn adsorption experiments using HDPE microplastics, derived from plastic bags. Zinc adsorption to microplastics was similar to that observed in soils, but in the presence of both soil and microplastics, preferential adsorption onto the soil was observed. In desorption experiments, desorption of Zn from microplastics and soils was minimal (< 10 %) in 0.01 M CaCl2 solution, but in synthetic earthworm guts desorption of 40 - 60% was observed for the microplastics compared to 2 - 15 % for the soils. In earthworm exposure experiments Lumbricus terrestris earthworms cultivated in soils containing 0.35% by mass of Zn-bearing plastic (236 - 4505 mg kg-1) ingested the microplastics with no evidence for either preferential feeding or avoidance. There was no evidence for an accumulation of the microplastics in the earthworm gut or for signs of toxicity. Our experiments demonstrate that earthworms will ingest microplastics and that microplastics can adsorb metals and act as vectors for metal exposure in soil invertebrates. However, for Zn, the risk associated with this exposure appears to be minimal.

  4. [Comparison of molluscicidal effects of two snail control methods with plastic film covering in hilly regions].

    PubMed

    Zhou, Yun; Zhang, Biao; Wang, Zhi-Mei; Zhao, Jia-Huei; Mao, Shu; Xie, De-Bing; Mei, Zhi-Zhong; Zhang, Jun; Hong, Qing-Biao; Wang, Wei; Sun, Le-Ping

    2013-12-01

    To evaluate and compare the molluscicidal effects of colorless and black plastic film covering methods against Oncomelania hupensis snails in hilly regions. A hilly setting with high snail density was selected as the study area, and three groups including the colorless plastic film covering method, black plastic film covering method and control were designed. The snail surveys were conducted 1, 3, 7, 15 days and 30 days in each group following plastic film covering, and the mortality of snails and reduction of snail density were investigated. The air temperature, soil surface temperature in the control group, as well as the soil surface temperature and the temperatures 5 cm and 15 cm under the soil within the film were recorded. The mortality rates of snails were 36.84%, 78.94%, 95.92%, 100.00% and 99.45% 1, 3, 7, 15 days and 30 days following colorless plastic film covering, respectively, and the snail density after 30 days of covering reduced by 99.36% as compared to that before covering, while the mortality rates of snails were 10.08%, 8.94%, 6.11%, 26.15% and 49.32% 1, 3, 7, 15 days and 30 days following black plastic film covering, respectively, and the snail density after 30 days of covering reduced by 58.10% as compared to that before covering. There were significant differences in the 1-, 3-, 7-, 15-day and 30-day snail mortality rates between the colorless and black film covering groups (all P values <0.01), and a significant difference was detected in the snail density between the two groups 30 days after the film covering (P < 0.001). In addition, the speed, amplitude and duration of the rise in the soil surface temperature within the colorless film were all greater than those within the black film. The short-term molluscicidal effect of the colorless plastic film covering method is significantly superior to that of the black plastic film covering method in summer in hilly regions.

  5. Soil properties of crocker formation and its influence on slope instability along the Ranau-Tambunan highway, Sabah

    NASA Astrophysics Data System (ADS)

    Azlan, Noran Nabilla Nor; Simon, Norbert; Hussin, Azimah; Roslee, Rodeano

    2016-11-01

    The Crocker formation on the study area consists of an inter-bedded shale and sandstone. The intense deformation and discontinuity on sandstone and shale beds of the arenaceous Crocker Formation makes them easily exposed to weathering and instability. In this study, a total of 15 selected slopes representing highly weathered material of stable and unstable conditions were studied to identify the characteristics of soil material on both conditions and how these characteristics will lead to instability. Physical properties analysis of soil material were conducted on 5 samples from stable slopes and 10 samples from failed slopes collected along the Ranau-Tambunan highway (RTM), Sabah. The analysis shows that the Crocker Formation consists mainly of poorly graded materials of sandy SILT with low plasticity (MLS) and PI value ranges from 1%-14. The failures materials are largely consist of low water content (0.94%-2.03%), higher finer texture material (11%-71%), intermediate liquid limit (21%-44%) and low plastic limit (20%-30%) while stable material consist of low water content (1.25%-1.80%), higher coarser texture material (43%-78%), low liquid limit (25%-28%) and low plastic limit (22%-25%). Specific gravity shows a ranges value of 2.24-2.60 for both slope conditions. The clay content in failed slope samples exhibit a slightly higher percentage of clay indicating a higher plasticity value compared to stable slopes. Statistical analysis was carried out to examine the association between landslide occurrences with soil physical properties in both stable and unstable slopes. The significant of both slope condition properties association to landslide occurrences was determined by mean rank differences. The study reveals that the grain size and plasticity of soil have contributed largely to slope instability in the study area.

  6. Stabilization of Black Cotton Soil Using Micro-fine Slag

    NASA Astrophysics Data System (ADS)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  7. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Experimental datasets on engineering properties of expansive soil treated with common salt.

    PubMed

    Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E

    2018-06-01

    Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.

  9. Chemical modification of uniform soils and soils with high/low plasticity index.

    DOT National Transportation Integrated Search

    2016-08-01

    The addition of chemicals into the subgrade has been widely used during construction to improve the soil properties. The chemicals, often Lime Kiln Dust (LKD) and Portland cement, are added to the soil to improve its workability, compactability and e...

  10. Toxicity tests of soil contaminated by recycling of scrap plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, M.H.; Chui, V.W.

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  11. Installation Restoration Program. Ohio Air National Guard, Toledo Express Airport, Swanton, Ohio. Site Investigation Work Plan

    DTIC Science & Technology

    1990-09-01

    Initially, cuttings from the borings and wells will be placed on plastic sheeting, covered, and left at the drilling site until a determination can be...Spwmxds Solids (K160.2) X X X X X Nitrate - Nitrate (PE3M.1) X X X X X tPhysical Caracteristics : Soil Enginering Classificatim X X X X X X X X (MQ8-84...site, soil cuttings from drilling the borings and wells will be placed on a plastic tarp and covered until samples of the soil have been screened using

  12. The impact of hazardous waste leachate on performance of clay liners.

    PubMed

    Mosavat, Nasim; Nalbantoglu, Zalihe

    2013-02-01

    Penetration of hazardous liquids through waste containment barriers exerts contamination and considerable alterations in geotechnical properties of clay liners. In general, these changes are attributed to the variation of the dielectric constant and the chemistry of the pore fluids which cause changes in soil structure. In the present study, a series of laboratory tests were performed on natural and contaminated clay soil permeated with different hazardous liquids: ethylene glycol and toluene which are generally found in petroleum-contaminated sites, possessing intermediate and low dielectric constants. Toluene was used in its pure form and ethylene glycol was used at various percentages of 0, 20, 40 and 60% by the volume of distilled water. In addition, natural sea water was also utilized as an inorganic fluid for permeation and salinization of the clay soil. The overall test results indicated that plasticity, sedimentation time, unconfined compressive strength, swell and compressibility generally decreased with increasing organic fluid/water concentration, while a slight increase in the permeability values was observed. Pure toluene resulted in diminution of plasticity and considerable flocculation of the particles which caused the soil to become granular. Sea water also caused particle flocculation and reduction in plasticity, swell potential and unconfined compressive strength, although it was noted that compressibility properties remained unchanged compared to distilled water. Finally, the correlation between the electrical resistivity and plasticity index values suggested that the electrical resistivity measurements can be used as a detecting technique for subsurface soil and waste barrier contamination.

  13. A device for measuring soil frost

    Treesearch

    James H. Patric; Burley D. Fridley

    1969-01-01

    A water-filled plastic tube buried vertically in the soil in a copper casing permitted repeated observation of frost depth without damaging the sampling site. The device is simple and inexpensive and provides data on soil freezing at least as accurate as direct observation by digging through frozen soil.

  14. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    PubMed

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  15. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.

  16. Investigation of Expedient Ground Surfacing with a Glass Fiber-Resin Mixture by a Spray-Deposition Technique,

    DTIC Science & Technology

    PAVEMENTS, *REINFORCED PLASTICS), LANDING FIELDS, SPRAYS, GLASS TEXTILES, LAMINATED PLASTICS, TEST METHODS, FOUNDATIONS(STRUCTURES), SANDWICH CONSTRUCTION, SOILS, FEASIBILITY STUDIES, LOAD DISTRIBUTION

  17. Diffusion and emissions of 1,3-dichloro propene in Florida sandy soil in microplots affected by soil moisture, organic matter, and plastic film.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-04-01

    The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.

  18. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    DOT National Transportation Integrated Search

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  19. Expedient Membrane-Encapsulated Soil Layer (Mesl) Construction In Cold Weather

    DOT National Transportation Integrated Search

    2000-07-01

    A new method of constructing membrane-encapsulated soil layers (MESLs) using plastic membranes, geotextiles, tapes for sealing the membranes, and absorbents for drying the soil was demonstrated. These materials would allow construction of a MESL in c...

  20. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  1. Microplastic transport in soil by earthworms.

    PubMed

    Rillig, Matthias C; Ziersch, Lisa; Hempel, Stefan

    2017-05-02

    Despite great general benefits derived from plastic use, accumulation of plastic material in ecosystems, and especially microplastic, is becoming an increasing environmental concern. Microplastic has been extensively studied in aquatic environments, with very few studies focusing on soils. We here tested the idea that microplastic particles (polyethylene beads) could be transported from the soil surface down the soil profile via earthworms. We used Lumbricus terrestris L., an anecic earthworm species, in a factorial greenhouse experiment with four different microplastic sizes. Presence of earthworms greatly increased the presence of microplastic particles at depth (we examined 3 soil layers, each 3.5 cm deep), with smaller PE microbeads having been transported downward to a greater extent. Our study clearly shows that earthworms can be significant transport agents of microplastics in soils, incorporating this material into soil, likely via casts, burrows (affecting soil hydraulics), egestion and adherence to the earthworm exterior. This movement has potential consequences for exposure of other soil biota to microplastics, for the residence times of microplastic at greater depth, and for the possible eventual arrival of microplastics in the groundwater.

  2. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers.

    PubMed

    Ochi, Shinji

    2011-02-25

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  3. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    PubMed Central

    Ochi, Shinji

    2011-01-01

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms. PMID:28880000

  4. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia.

    PubMed

    Rushdi, Ahmed I; Al-Mutlaq, Khalid F; El-Mubarak, Aarif H; Al-Saleh, Mohammed A; El-Otaibi, Mubarak T; Ibrahim, Sami M M; Simoneit, Bernd R T

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Effects of mulberry/soybean intercropping on the plant growth and rhizosphere soil microbial number and enzyme activities].

    PubMed

    Hu, Ju-Wei; Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Li, Xin; Yue, Bing-Bing; Sun, Guang-yu

    2013-05-01

    A root separation experiment was conducted to investigate the plant growth and rhizosphere soil microbes and enzyme activities in a mulberry/soybean intercropping system. As compared with those in plastic barrier and nylon mesh barrier treatments, the plant height, leaf number, root length, root nodule number, and root/shoot ratio of mulberry and soybean in non-barrier treatment were significantly higher, and the soybean's effective nodule number was larger. The available phosphorous content in the rhizosphere soils of mulberry and soybean in no barrier and nylon mesh barrier treatments was increased by 10.3% and 11.1%, and 5.1% and 4.6%, respectively, as compared with that in plastic barrier treatment. The microbial number, microbial diversity, and enzyme activities in the rhizosphere soils of mulberry and soybean were higher in the treatments of no barrier and nylon mesh barrier than in the treatment of plastic barrier. All the results indicated that there was an obvious interspecific synergistic effect between mulberry and soybean in the mulberry/soybean intercropping system.

  6. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter decomposition rate in the plastic film mulched soil was significantly higher than that in the no plastic film mulched soil. 125 days after incubation, the recovery rates of cotton straw and alfalfa straw were 39.7% and 46.5% with saline water irrigation, 36.3% and 36.5% with brackish water irrigation, and 30.5% and 35.4% with CK, respectively. In conclusion, brackish water drip irrigation had a significant adverse effect on soil enzyme activities, which decreased soil microbial biomass, soil CO2 flux and soil organic matter decomposition, and subsequently deteriorated the soil biological characteristics in oasis farmland.

  7. Assessment and quantification of plastics waste generation in major 60 cities of India.

    PubMed

    Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K

    2013-04-01

    Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.

  8. Environmental Assessment Addressing Privatization of Military Family Housing at Grand Forks Air Force Base, North Dakota

    DTIC Science & Technology

    2011-05-01

    expense. Recycling materials such as paper , cardboard, glass, and plastic would be collected and recycled at an off-installation facility per Grand...available in the NRCS’s web soil survey (NRCS 2010). Most of the soils that were rated for construction limitations are considered to be somewhat to...and accepts paper , glass, plastic, cardboard, metal cans, and compost from all installation facilities (GFAFB 2008e). Additional recycling efforts

  9. Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.

    DOT National Transportation Integrated Search

    2015-08-31

    Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...

  10. Nitrous oxide emissions during biological soil disinfestation with different organic matter and plastic mulch films in laboratory-scale tests.

    PubMed

    Maeda, Morihiro; Kayano, Eisuke; Fujiwara, Taku; Nagare, Hideaki; Akao, Satoshi

    2015-10-23

    Nitrous oxide (N 2 O), which is a greenhouse gas, may be more emitted as an intermediate product of denitrification during biological soil disinfestation. The biological soil disinfestation is a method to suppress soil-borne pathogens under reductive soil conditions produced by the application of organic matter and water irrigation with plastic film. The objective of the study was to determine the effects of different organic matter and mulch films on N 2 O emissions during biological soil disinfestation. Grey lowland soil amended with cattle compost plus rice bran (0.2%), rice husk (0.2%) or dent corn (0.1%, 0.2% and 0.4%) was incubated at 100% water-holding capacity with or without plastic films made of polyvinyl chloride (PVC) and triple-layer polyolefin (3PO) for 72 h at 50°C. Permeation of the two films was also measured at 25°C and 50°C. Results showed that incorporation of organic matter increased N 2 O emissions compared with no organic matter addition at 50°C. Incorporation of rice bran and dent corn with easily decomposable C and low C:N ratios increased N 2 O emissions for the first 12 h, but thereafter, available C supply from these amendments suppressed N 2 O emissions. Permeability of mulch films increased at a higher temperature and was larger for PVC than for 3PO. Our study indicated that rice husk should not be used for soil disinfestation and that application rates of organic matter must be determined based on their decomposability. Moreover, mulch film covering would not suppress N 2 O emission in biological soil disinfestation because of high temperature.

  11. Plasticity solutions for soil behaviour around contracting cavities and tunnels

    NASA Astrophysics Data System (ADS)

    Yu, H. S.; Rowe, R. K.

    1999-10-01

    The action of tunnel excavation reduces the in-situ stresses along the excavated circumference and can therefore be simulated by unloading of cavities from the in-situ stress state. Increasing evidence suggests that soil behavior in the plane perpendicular to the tunnel axis can be modelled reasonably by a contracting cylindrical cavity, while movements ahead of an advancing tunnel heading can be better predicted by spherical cavity contraction theory. In the past, solutions for unloading of cavities from in-situ stresses in cohesive-frictional soils have mainly concentrated on the small strain, cylindrical cavity model. Large strain spherical cavity contraction solutions with a non-associated Mohr-Coulomb model do not seem to be widely available for tunnel applications. Also, cavity unloading solutions in undrained clays have been developed only in terms of total stresses with a linear elastic-perfectly plastic soil model. The total stress analyses do not account for the effects of strain hardening/softening, variable soil stiffness, and soil stress history (OCR). The effect of these simplifying assumptions on the predicted soil behavior around tunnels is not known.In this paper, analytical and semi-analytical solutions are presented for unloading of both cylindrical and spherical cavities from in-situ state of stresses under both drained and undrained conditions. The non-associated Mohr-Coulomb model and various critical state theories are used respectively to describe the drained and undrained stress-strain behaviors of the soils. The analytical solutions presented in this paper are developed in terms of large strain formulations. These solutions can be used to serve two main purposes: (1) to provide models for predicting soil behavior around tunnels; (2) to provide valuable benchmark solutions for verifying various numerical methods involving both Mohr-Coulomb and critical state plasticity models.

  12. Cone penetration tests and soil borings at the Mason Road site in Green Valley, Solano County, California

    USGS Publications Warehouse

    Bennett, Michael J.; Noce, Thomas E.; Lienkaemper, James J.

    2011-01-01

    In support of a study to investigate the history of the Green Valley Fault, 13 cone penetration test soundings and 3 auger borings were made at the Mason Road site in Green Valley, Solano County, California. Three borings were made at or near two of the cone penetration test soundings. The soils are mostly clayey with a few sandy layers or lenses. Fine-grained soils range from low plasticity sandy lean clay to very plastic fat clay. Lack of stratigraphic correlation in the subsurface prevented us from determining whether any channels had been offset at this site. Because the soils are generally very clayey and few sand layers or lenses are loose, the liquefaction potential at the site is very low.

  13. Soil quality as a factor of the distribution of damages at the meizoseismal area of the Kozani-Grevena 1995 earthquake, in Greece ( Ms = 6.6)

    NASA Astrophysics Data System (ADS)

    Christaras, B.; Dimitriou, An; Lemoni, Hel

    The physical and mechanical properties of the soil formations were related to the damages observed in Kozani and Grevena area, in Northern Greece, after the earth-quake of 13th May 1995 ( Ms = 6.6). Properties such as grain size distribution, plasticity, shear strength, compression index, permeability and ultrasonic velocity were measured in order to classify the suitability of the soil formations, for urban planning, and correlate their mechanical behaviour with the damages observed in the construction. According to our observations, a great number of recent buildings were damaged also in areas far away from the seismotectonic zones, where silty and clayey soils dominate, presenting very low permeability, low ultrasonic velocity together with high plasticity and compressibility.

  14. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    PubMed Central

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions. PMID:22856640

  15. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows the prediction of the potential mechanical behaviour of soil crusts generated during soil drying, from initial saturated soil conditions (e.g. waterlogging conditions).

  16. Models of compacted fine-grained soils used as mineral liner for solid waste

    NASA Astrophysics Data System (ADS)

    Sivrikaya, Osman

    2008-02-01

    To prevent the leakage of pollutant liquids into groundwater and sublayers, the compacted fine-grained soils are commonly utilized as mineral liners or a sealing system constructed under municipal solid waste and other containment hazardous materials. This study presents the correlation equations of the compaction parameters required for construction of a mineral liner system. The determination of the characteristic compaction parameters, maximum dry unit weight ( γ dmax) and optimum water content ( w opt) requires considerable time and great effort. In this study, empirical models are described and examined to find which of the index properties correlate well with the compaction characteristics for estimating γ dmax and w opt of fine-grained soils at the standard compactive effort. The compaction data are correlated with different combinations of gravel content ( G), sand content ( S), fine-grained content (FC = clay + silt), plasticity index ( I p), liquid limit ( w L) and plastic limit ( w P) by performing multilinear regression (MLR) analyses. The obtained correlations with statistical parameters are presented and compared with the previous studies. It is found that the maximum dry unit weight and optimum water content have a considerably good correlation with plastic limit in comparison with liquid limit and plasticity index.

  17. Experimental assessment of factors mediating the naturalization of a globally invasive tree on sandy coastal plains: a case study from Brazil

    PubMed Central

    Zimmermann, Thalita G.; Andrade, Antonio C. S.; Richardson, David M.

    2016-01-01

    As all naturalized species are potential invaders, it is important to better understand the determinants of naturalization of alien plants. This study sought to identify traits that enable the alien tree Casuarina equisetifolia to overcome barriers to survival and reproductive and to become naturalized on sandy coastal plains. Restinga vegetation in Brazil was used as a model system to conceptualize and quantify key stressors (high temperature, solar radiation, drought and salinity) which can limit the initial establishment of the plants. Experiments were conducted to evaluate the effects of these environmental factors on seed persistence in the soil (field), germination (laboratory), survival, growth, phenotypic plasticity and phenotypic integration (greenhouse). Results show that the expected viability of the seeds in the soil was 50 months. Seeds germinated in a similar way in constant and alternating temperatures (20–40 °C), except at 40 °C. Low light, and water and salt stresses reduced germination, but seeds recovered germination when stress diminished. Young plants did not tolerate water stress (<2 % of soil moisture) or deep shade. Growth was greater in sunny than in shady conditions. Although a low degree of phenotypic plasticity is important in habitats with multiple stress factors, this species exhibited high germination plasticity, although young plants showed low plasticity. The positive effect of phenotypic integration on plastic expression in the shade shows that in stressful environments traits that show greater phenotypic plasticity values may have significant phenotypic correlations with other characters, which is an important factor in the evolutionary ecology of this invasive species. Long-term seed persistence in the soil, broad germination requirements (temperature and light conditions) and the capacity to survive in a wide range of light intensity favours its naturalization. However, C. equisetifolia did not tolerate water stress and deep shade, which limit its potential to become naturalized on sandy coastal plain. PMID:27339050

  18. Experimental assessment of factors mediating the naturalization of a globally invasive tree on sandy coastal plains: a case study from Brazil.

    PubMed

    Zimmermann, Thalita G; Andrade, Antonio C S; Richardson, David M

    2016-01-01

    As all naturalized species are potential invaders, it is important to better understand the determinants of naturalization of alien plants. This study sought to identify traits that enable the alien tree Casuarina equisetifolia to overcome barriers to survival and reproductive and to become naturalized on sandy coastal plains. Restinga vegetation in Brazil was used as a model system to conceptualize and quantify key stressors (high temperature, solar radiation, drought and salinity) which can limit the initial establishment of the plants. Experiments were conducted to evaluate the effects of these environmental factors on seed persistence in the soil (field), germination (laboratory), survival, growth, phenotypic plasticity and phenotypic integration (greenhouse). Results show that the expected viability of the seeds in the soil was 50 months. Seeds germinated in a similar way in constant and alternating temperatures (20-40 °C), except at 40 °C. Low light, and water and salt stresses reduced germination, but seeds recovered germination when stress diminished. Young plants did not tolerate water stress (<2 % of soil moisture) or deep shade. Growth was greater in sunny than in shady conditions. Although a low degree of phenotypic plasticity is important in habitats with multiple stress factors, this species exhibited high germination plasticity, although young plants showed low plasticity. The positive effect of phenotypic integration on plastic expression in the shade shows that in stressful environments traits that show greater phenotypic plasticity values may have significant phenotypic correlations with other characters, which is an important factor in the evolutionary ecology of this invasive species. Long-term seed persistence in the soil, broad germination requirements (temperature and light conditions) and the capacity to survive in a wide range of light intensity favours its naturalization. However, C. equisetifolia did not tolerate water stress and deep shade, which limit its potential to become naturalized on sandy coastal plain. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. [Response of fine roots to soil nutrient spatial heterogeneity].

    PubMed

    Wang, Qingcheng; Cheng, Yunhuan

    2004-06-01

    The spatial heterogeneity is the complexity and variation of systems or their attributes, and the heterogeneity of soil nutrients is ubiquitous in all natural ecosystems. The scale of spatial heterogeneity varies considerably among different ecosystems, from tens of centimeters to hundred meters. Some of the scales can be detected by individual plant. Because the growth of individual plants can be strongly influenced by soil heterogeneity, it follows that the inter-specific competition should also be affected. During the long process of evolution, plants developed various plastic responses with their root system, including morphological, physiological and mycorrhizal plasticity, to maximize the nutrient acquisition from heterogeneous soil resources. Morphological plasticity, an adjustment in root system spatial allocation and architecture in response to spatial heterogeneous distribution of available soil resources, has been most intensively studied, and root proliferation in nutrient rich patches has been certified for many species. The species that do respond may have an increased rate of nutrient uptake, leading to a competitive advantage. Scale and precision are two important features employed in describing the size and foraging behavior of root system. It was hypothesized that scale and precision is negatively related, i. e., the species with high scale of root system tend to be a less precise forager. The outcomes of different research work have been diverse, far from reaching a consensus. Species with high scale are not necessarily less precise in fine root allocation, and vice versa. The proliferation of fine root in enriched micro-sites is species dependent, and also affected by other factors, such as patch attributes (size and nutrients concentration), nutrients, and overall soil fertility. Beside root proliferation in nutrient enriched patches, plants can also adapt themselves to the heterogeneous soil environment by altering other root characteristics such as fine root diameter, branch angle, length, and spatial architecture of root system. Physiological and mycorrhizal plasticity can add some influence on the morphological plasticity to some extent, but they are less studied. Roots located in different patches can quickly regulate their nutrient uptake kinetics within different nutrient patches, and increase overall nutrient uptake. Physiological response may, to certain extent, reduce morphological response, and is meaningful for plant growth on soils with frequently changing spatial and temporal heterogeneity. Mycorrhizal plasticity has been least studied so far. Some researches revealed that mycorrhiza, rather than fine root, proliferated in enriched patches. But, it is not the case with other studies. The proliferation of mycorrhiza within enriched patches is more profitable in term of carbon invest. The effect of fine root proliferation on nutrient uptake is complex, depending on ion mobility and whether or not neighboring plant exists. The influence of root plasticity on the growth of plants is species specific. Some species (sensitive species) gain growth benefit, while others don't. The ability of an individual plant to response to heterogeneous resources has significant effect on its competitive ability and its fate within the community, and eventually shapes the composition and structure of the community.

  20. Response of soil carbon fractions and dryland maize yield to mulching

    USDA-ARS?s Scientific Manuscript database

    Stimulation of root growth from mulching may enhance soil C fractions under maize (Zea mays L.). We studied the 5-yr straw (SM) and plastic film (PM) mulching effect on soil C fractions and maize yield compared with no mulching (CK) in the Loess Plateau of China. Soil samples collected from 0- to 10...

  1. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  2. Jatropha curcas L. root structure and growth in diverse soils.

    PubMed

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  3. Enhancing the engineering properties of expansive soil using bagasse ash

    NASA Astrophysics Data System (ADS)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  4. Scrap? This Program Grows on It!

    ERIC Educational Resources Information Center

    Schureman, Robert

    1975-01-01

    A high school industrial arts program in plastics recycling provided students direct contact with production methods of the plastics industry as well as awareness of governmental functions. Experimentation included fuel cells, paving and construction composites, soil composites, and watercraft flotation. (EA)

  5. Impact of plastic mulching on nitrous oxide emissions in China's arid agricultural region under climate change conditions

    NASA Astrophysics Data System (ADS)

    Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi

    2017-06-01

    The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.

  6. Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic

    NASA Astrophysics Data System (ADS)

    Munir, E.; Sipayung, F. C.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is an important material and used for many purposes. It is returned to the environment as a waste which is recently considered as the second largest solid waste. The persistency of plastic in the environment has been attracted researchers from a different point of view. The study of the degradation of plastic using bacteria isolated from local landfill soil was conducted. Low density polyethylene (LDPE) plastic was used as tested material. Potential isolates were obtained by culturing the candidates in mineral salt medium broth containing LDPE powder. Two of ten exhibited better growth response in the selection media and were used in degradation study. Results showed that isolate SP2 and SP4 reduced the weight of LDPE film significantly to a weight loss of 10.16% and 12.06%, respectively after four weeks of incubation. Scanning electron micrograph analyses showed the surface of LDPE changed compared to the untreated film. It looked rough and cracked, and bacteria cells attached to the surface was also noticed. Fourier transform infrared spectroscopy analyses confirmed the degradation of LDPE film. These results indicated that bacteria isolated from landfill might play an important role in degrading plastic material in the landfill.

  7. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.

    PubMed

    Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J; Geissen, Violette

    2017-10-01

    Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH 4 + , NO 3 - , dissolved organic phosphorus (DOP), and PO 4 3- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    PubMed

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  9. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    PubMed

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Identification and stabilization methods for problematic silt soils : a laboratory evaluation of modification and stabilization additives.

    DOT National Transportation Integrated Search

    2003-07-01

    The instability and pumping response of non-plastic, high silt (and fine sand) soils was investigated. Common reagents, i.e., lime, lime-fly ash, Portland cement, and slag cement were included as admixtures with three high silt (and fine sand) soils....

  11. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation/irrigation due the absence of soil cover. Contrary, in the MULCH plots most of the nitrate applied was still left in the upper soil layer at the end of simulations. Numerical modeling revealed a large influence of plastic mulch cover on water and nutrient outflow and distribution in soil. Results suggest that under this management practice the nitrogen amounts applied via fertigation can be lowered and optimized (higher application frequencies) to reduce possible negative influence of the nitrogen based fertilizer such as leaching of nitrates to groundwater. Keywords: Plastic mulch cover; Vegetable cultivation; Water flow; Nitrate dynamics; HYDRUS-2D

  12. Influence of film mulching on soil microbial community in a rainfed region of northeastern China.

    PubMed

    Dong, Wenyi; Si, Pengfei; Liu, Enke; Yan, Changrong; Zhang, Zhe; Zhang, Yanqing

    2017-08-16

    Information about the effect of plastic film mulching (PFM) on the soil microbial communities of rainfed regions remains scarce. In the present study, Illumina Hiseq sequencer was employed to compare the soil bacterial and fungal communities under three treatments: no mulching (NM), spring mulching (SM) and autumn mulching (AM) in two layers (0-10 and, 10-20 cm). Our results demonstrated that the plastic film mulching (PFM) application had positive effects on soil physicochemical properties as compared to no-mulching (NM): higher soil temperature (ST), greater soil moisture content (SMC) and better soil nutrients. Moreover, mulching application (especially AM) caused a significant increase of bacterial and fungal richness and diversity and played important roles in shaping microbial community composition. These effects were mainly explained by the ST and SMC induced by the PFM application. The positive effects of AM and SM on species abundances were very similar, while the AM harbored relatively more beneficial microbial taxa than the SM, e.g., taxa related to higher degrading capacity and nutrient cycling. According to the overall effects of AM application on ST, SMC, soil nutrients and microbial diversity, AM is recommended during maize cultivation in rain-fed region of northeast China.

  13. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  14. Reducing insecticide and fungicide loads in runoff from plastic mulch with vegetative-covered furrows.

    PubMed

    Rice, Pamela J; Harman-Fetcho, Jennifer A; Sadeghi, Ali M; McConnell, Laura L; Coffman, C Benjamin; Teasdale, John R; Abdul-Baki, Aref; Starr, James L; McCarty, Gregory W; Herbert, Rachel R; Hapeman, Cathleen J

    2007-02-21

    A common management practice for the production of fresh-market vegetables utilizes polyethylene (plastic) mulch because it increases soil temperature, decreases weed pressure, maintains soil moisture, and minimizes soil contact with the product. However, rain events afford much more erosion and runoff because 50-75% of the field is covered with an impervious surface. A plot study was conducted to compare and to quantify the off-site movement of soil, insecticides, and fungicides associated with runoff from plots planted with Sunbeam tomatoes (Lycopersicon esculentum Mill) using the conventional polyethylene mulch management practice vs an alternative management practice-polyethylene mulch-covered beds with cereal rye (Secale cereale) planted in the furrows between the beds. The use of cereal rye-covered furrows with the conventional polyethylene system decreased runoff volume by more than 40%, soil erosion by more than 80%, and pesticide loads by 48-74%. Results indicate that vegetative furrows are critical to minimizing the negative aspects of this management practice.

  15. Degradation of PVC/rPLA Thick Films in Soil Burial Experiment

    NASA Astrophysics Data System (ADS)

    Nowak, Bożena; Rusinowski, Szymon; Chmielnicki, Blazej; Kamińska-Bach, Grażyna; Bortel, Krzysztof

    2016-10-01

    Some of the biodegradable polymers can be blended with a synthetic polymer to facilitate their biodegradation in the environment. The objective of the study was to investigate the biodegradation of thick films of poly(vinyl chloride)/recycled polylactide (PVC/rPLA). The experiments were carried out in the garden soil or in the mixture of garden soil and hydrocarbon-contaminated soil under laboratory conditions. Since it is widely accepted that the biosurfactants secreted by microorganisms enable biotransformation of various hydrophobic substances in the environment, it was assumed that the use of contaminated soil, rich in biosurfactant producing bacteria, may accelerate biodegradation of plastics. After the experimental period, the more noticeable weight loss of polymer films was observed after incubation in the garden soil. However, more pronounced changes in the film surface morphology and chemical structure as well as decrease of tensile strength were observed after incubation of films in the mixture of garden and contaminated soil. It turned out that as a result of competition between two distinct groups of microorganisms present in the mixture of garden and hydrocarbon-contaminated soils the number of microorganisms and their activity were lower than the activity of indigenous microflora of garden soil as well as the amount of secreted biosurfactants towards plastics.

  16. Scratching technique for the study and analysis of soil surface abrasion mechanism

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan

    2007-11-01

    Aeolian abrasion is the most fundamental and active surface process that takes place in arid and semi-arid environments. Its nature is a wear process for wind blown grains impinging on a soil or sediment surface, which causes particles and aggregates to fracture from the soil surface through a series of plastic and brittle cracking deformation such as cutting, ploughing and brittle fracturing. Using a Universal Micro-Tribometer (UMT), a scratching test was carried out on six soil surfaces (sandy soil, sand loam, silt loam, loam, silt clay loam, and silt clay). The results indicate that traces of normal and tangential force vs. time show a jagged curve, which can reflect the plastic deformation and brittle fracturing of aggregates and particles of various sizes fractured from the soil surfaces. The jagged curve peaks, and the area enclosed underneath, may represent the bonding forces and bonding energies of some aggregates and grains on the soil surface, respectively. Connecting the scratching test with an impact abrasion experiment furthermore demonstrates that soil surface abrasion rates are proportional to the square of speeds of impacting particles and to the 2.6 power of mean soil grain size, and inversely proportional to the 1.5 power of specific surface abrasive energy or to the 1.7 power of specific surface hardness.

  17. Geomechanical Modeling of Gas Hydrate Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Gai, X., Sr.

    2015-12-01

    This contribution focuses on an advance geomechanical model for methane hydrate-bearing soils based on concepts of elasto-plasticity for strain hardening/softening soils and incorporates bonding and damage effects. The core of the proposed model includes: a hierarchical single surface critical state framework, sub-loading concepts for modeling the plastic strains generally observed inside the yield surface and a hydrate enhancement factor to account for the cementing effects provided by the presence of hydrates in sediments. The proposed framework has been validated against recently published experiments involving both, synthetic and natural hydrate soils, as well as different sediments types (i.e., different hydrate saturations, and different hydrates morphologies) and confinement conditions. The performance of the model in these different case studies was very satisfactory.

  18. Key parameters in testing biodegradation of bio-based materials in soil.

    PubMed

    Briassoulis, D; Mistriotis, A

    2018-09-01

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The engineering significance of shrinkage and swelling soils in blast damage investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitton, S.J.; Harris, W.W.

    1996-12-01

    In the US each year it has been estimated that expansive soils cause approximately $9.0 billion in damage to buildings, roads, airports, and other facilities. This figure alone exceeds the damage estimate for earthquakes, floods, tornadoes, and hurricanes combined. Unfortunately, some cases of expansive soil damage (swelling) are blamed on rock blasting operations if the blasting operations are located within the immediate area. While simple tests, such as the Atterberg limits test, can characterize a soil as expansive, it does not necessarily answer the question whether the foundation soils are causing distresses to a structure. In particular, it appears thatmore » once a soil has been labeled as nonexpansive it is no longer considered as a problem soil, in which case blast vibrations become the prime suspect. It should be emphasized, however, that even non-plastic soils, those soils with low to nonexistent plastic indexes, can exhibit significant shrinkage characteristics that can result in significant damage to structures. While expansive soil is a function of the mineralogy of the soil particles, i.e., swelling clay minerals, shrinkage is caused by the loss of moisture from soil as capillary pressures exceed the cohesion or tensile strength and is therefore a function of the soils particle size and its pore size distribution. This is a significant problem for all fine grained soils regardless of the soil`s mineralogy. It`s particularly important for regions of the US that typically have a positive water balance but experience significant drought periods when soil moisture is lost.« less

  20. [Nitrogen mineralization rate in different soil layers and its influence factors under plastic film mulched in Danjiangkou Reservoir area, China].

    PubMed

    Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua

    2018-04-01

    The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.

  1. Stabilization of soft clay subgrades in Virginia : phase I laboratory study.

    DOT National Transportation Integrated Search

    2005-01-01

    Many pavement subgrades in Virginia consist of wet, highly plastic clay or other troublesome soils. Such soils can be treated with traditional lime and cement stabilization methods. Alternatives, including lignosulfonates and polymers, are available,...

  2. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil.

    PubMed

    Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte

    2012-07-01

    Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had significantly greater survivorship in very dry soil than did seedlings with no history of drought. These findings show that plastic responses to naturalistic resource stresses experienced by grandparents and parents can "preadapt" offspring for functioning under the same stresses in ways that measurably influence realized fitness. Possible implications of these environmentally-induced, inherited adaptations are discussed with respect to ecological distribution, persistence under novel stresses, and evolution in natural populations.

  3. Study on Strength Behavior of Organic Soil Stabilized with Fly Ash

    PubMed Central

    Molla, Md. Keramat Ali; Sarkar, Grytan

    2017-01-01

    The aim of this study is to investigate the effect of fly ash on the consistency, compactness, acidic properties, and strength of organic soil. The presence of organic content in the soil has detrimental impacts on the physical and strength behavior of soil. To investigate the effectiveness of fly ash in the stabilization of organic soil, two types of fly ashes (Type I and Type II) at different percentages were used. It is found that fly ash significantly reduces the plasticity index of the organic soil, whereas the liquid and plastic limits increase. The dry density of the fly ash-soil mixture increases significantly, while the water requirement reduces due to the addition of fly ash. The increase of dry density compromises higher strength. The increase of qu with the increase of fly ash content is mainly due to the pozzolanic reaction of fly ash, although the reduction in water content results from the addition of dry fly ash solid. Moreover, Type I fly ash contributes a higher value of qu compared to Type II fly ash. This is attributed to the characteristics of fly ash including CaO and CaO/SiO2 ratio. PMID:29085881

  4. Towards the effective plastic waste management in Bangladesh: a review.

    PubMed

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  5. Drought tolerance in cacao is mediated by root phenotypic plasticity

    USDA-ARS?s Scientific Manuscript database

    This study aimed to evaluate phenotypic relationships and their direct and indirect effects through path analysis, and evaluate the use of the phenotypic plasticity index as criteria for the estimation of the basic and explanatory variables used to analysis several cacao progenies subjected to soil ...

  6. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of Arabidopsis thaliana.

    PubMed

    Cousins, Elsa A; Murren, Courtney J

    2017-12-01

    Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.

  7. Rapid field detection of sulfate and organic content in soils : technical report.

    DOT National Transportation Integrated Search

    2011-06-01

    In recent years, the Texas Department of Transportation (TxDOT) has experienced problems chemically : stabilizing moderate to high plasticity clay soils with calcium-based additives. Many of the problems are the : result of soluble sulfate minerals i...

  8. Co-pyrolyzing plastic mulch waste with animal manures

    USDA-ARS?s Scientific Manuscript database

    Pyrolyzing various livestock and agricultural wastes produces power and value-added byproducts. It also substantially reduces ultimate waste volume to be disposed of and improves soil fertility and promotes carbon sequestration via soil application of biochar. Researchers found that manure-derived ...

  9. Finite element analysis of elasto-plastic soils. Report no. 4: Finite element analysis of elasto-plastic frictional materials for application to lunar earth sciences

    NASA Technical Reports Server (NTRS)

    Marr, W. A., Jr.

    1972-01-01

    The behavior of finite element models employing different constitutive relations to describe the stress-strain behavior of soils is investigated. Three models, which assume small strain theory is applicable, include a nondilatant, a dilatant and a strain hardening constitutive relation. Two models are formulated using large strain theory and include a hyperbolic and a Tresca elastic perfectly plastic constitutive relation. These finite element models are used to analyze retaining walls and footings. Methods of improving the finite element solutions are investigated. For nonlinear problems better solutions can be obtained by using smaller load increment sizes and more iterations per load increment than by increasing the number of elements. Suitable methods of treating tension stresses and stresses which exceed the yield criteria are discussed.

  10. Analysis and Modeling of Process of Residual Deformations Accumulation in Soils and Granular Materials

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. S.; Dolgih, G. V.; Kalinin, A. L.

    2017-11-01

    It is established that under the influence of repeated loads the process of plastic deformation in soils and discrete materials is hereditary. To perform the mathematical modeling of plastic deformation, the authors applied the integral equation by solution of which they manage to obtain the power and logarithmic dependencies connecting plastic deformation with the number of repeated loads, the parameters of the material and components of the stress tensor in the principal axes. It is shown that these dependences generalize a number of models proposed earlier in Russia and abroad. Based on the analysis of the experimental data obtained during material testing in the dynamic devices of triaxial compression at different values of the stress deviator, the coefficients in the proposed models of deformation are determined. The authors determined the application domain for logarithmic and degree dependences.

  11. Geological and engineering analysis of residual soil for forewarning landslide from highland area in northern Thailand

    NASA Astrophysics Data System (ADS)

    Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya

    2015-11-01

    One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.

  12. 7 CFR Appendix to Subpart - Imported Fire Ant

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or plastic containers with drain holes prior to immersion Immerse soil balls and containers, singly... determine the probable source of the problem and to ensure that the problem is resolved. If the problem is... fiberglass, glass, or plastic in such a way that IFA is physically excluded and cannot become established...

  13. Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade

    PubMed Central

    You, Jiangfeng; Liu, Xing; Zhang, Bo; Xie, Zhongkai; Hou, Zhiguang; Yang, Zhenming

    2014-01-01

    Background In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. Methods The mixed-bed soils were seasonally collected at intervals of 0–5 cm, 5–10 cm, and 10–15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with NH4Cl (exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. Results A remarkable decrease in the pH, concentrations of exchangeable calcium, NH4+, total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the NH4+ (r = 0.463, p < 0.01), exchangeable calcium (r = 0.325, p < 0.01) and TOC (r = 0.292, p < 0.05) concentrations. The NO3− showed remarkable surface accumulation (0–5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from 0.10 mg g−1 to 0.50 mg g−1 for dry soils, which was positively correlated with the NO3− (r = 0.401, p < 0.01) and negatively correlated with the TOC (r = −0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0–5 cm and 5–10 cm layers. Conclusion Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade. PMID:25535481

  14. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field.

    PubMed

    Liu, Tao; Liang, Yongchao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6-21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (P<0.001). Compared with urea alone, urea plus nitrapyrin reduced the seasonal N2O emission factor (EF) by 32.4% while increasing nitrogen use efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition.

  15. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field

    PubMed Central

    Liu, Tao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6–21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (P<0.001). Compared with urea alone, urea plus nitrapyrin reduced the seasonal N2O emission factor (EF) by 32.4% while increasing nitrogen use efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. PMID:28481923

  16. Changes in soil parameters under continuous plastic mulching in strawberry cultivation

    NASA Astrophysics Data System (ADS)

    Muñoz, Katherine; Diehl, Dörte; Scopchanova, Sirma; Schaumann, Gabriele E.

    2016-04-01

    Plastic mulching (PM) is a widely used practice in modern agriculture because they generate conditions for optimal yield rates and quality. However, information about long-term effects of PC on soil quality parameters is scarce. The aim of this study is to compare the effect of three different mulching managements on soil quality parameters. Sampling and methodology: Three different managements were studied: Organic mulching (OM), 2-years PM and 4-years PM. Soil samples were collected from irrigated fields in 0-5, 5-10 and 10-30 cm depths and analyzed for water content (WC), pH, dissolved organic carbon (DOC), total soil carbon (Ctot) and cation exchange capacity (CECeff). Results and discussion: Mulching management has an influence on soil parameters. The magnitude of the effects is influenced by the type (organic agriculture practice vs. plastic mulching practice) and duration of the mulching. PM modified the water distribution through the soil column. WC values at the root zone were in average 10% higher compared to those measured at the topsoil. Under OM, the WC was lower than under PM. The pH was mainly influenced by the duration of the managements with slightly higher values after 4 than after 2-years PM. Under PM, aqueous extracts of the topsoil (0-5 cm depth) contained in average with 8.5±1.8 mg/L higher DOC than in 10-30 cm depth with 5.6±0.5 mg/L, which may indicate a mobilization of organic components in the upper layers. After 4-years PM, Ctot values were slightly higher than after 2-years PM and after OM. Surprisingly, after 4-years PM, CECeff values were with 138 - 157 mmolc/kg almost 2-fold higher than after 2-years PM and OM which had with 74 - 102 mmolc/kg comparable CECeff values. Long-term PM resulted in changes of soil pH and slightly increased Ctot which probably enhanced the CECeff of the soil. However, further investigations of the effect of PM on stability of soil organic matter and microbial community structure are needed.

  17. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ 13C), and WUE plasticity to drought in Arabidopsis thaliana

    PubMed Central

    Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E

    2014-01-01

    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought. PMID:25512847

  18. Fumigant distribution in forest nursery soil under water seal and plastic film after application of dazomet, metam-sodium and chloropicrin

    Treesearch

    Dong Wang; Stephen W. Fraedrich; Jennifer Juzwik; Kurt Spokas; Yi Zhang; William C. Koskinen

    2006-01-01

    Adequate concentration, exposure time and distribution uniformity of activated fumigant gases are prerequisites for successful soil fumigation. Field experiments were conducted to evaluate gas phase distributions of methyl isothiocyanate (MITC) and chloropicrin (CP) in two forest-tree nurseries. Concentrations of MITC and CP in soil air were measured from replicated...

  19. Compressibility characteristics of Sabak Bernam Marine Clay

    NASA Astrophysics Data System (ADS)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  20. Ecological plasticity of Trichoderma fungi in leached chernozem

    NASA Astrophysics Data System (ADS)

    Svistova, I. D.; Senchakova, T. Yu.

    2010-03-01

    The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.

  1. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter.

    PubMed

    Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; McHugh, Theresa A; Dijkstra, Paul; Koch, Benjamin J; Marks, Jane C; Hungate, Bruce A

    2017-08-01

    Microorganisms perform most decomposition on Earth, mediating carbon (C) loss from ecosystems, and thereby influencing climate. Yet, how variation in the identity and composition of microbial communities influences ecosystem C balance is far from clear. Using quantitative stable isotope probing of DNA, we show how individual bacterial taxa influence soil C cycling following the addition of labile C (glucose). Specifically, we show that increased decomposition of soil C in response to added glucose (positive priming) occurs as a phylogenetically diverse group of taxa, accounting for a large proportion of the bacterial community, shift toward additional soil C use for growth. Our findings suggest that many microbial taxa exhibit C use plasticity, as most taxa altered their use of glucose and soil organic matter depending upon environmental conditions. In contrast, bacteria that exhibit other responses to glucose (reduced growth or reliance on glucose for additional growth) clustered strongly by phylogeny. These results suggest that positive priming is likely the prototypical response of bacteria to sustained labile C addition, consistent with the widespread occurrence of the positive priming effect in nature.

  2. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China.

    PubMed

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5-25 cm) was significantly ( p < 0.05) higher in field plots with plastic film mulch than the control (CK), and resulted in greater soil water storage (0-200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly ( p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% ( p < 0.05) greater and 28% ( p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% ( p < 0.05) with consecutive film-mulched ridges and 21.1% ( p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased by 1559, 528, and 350 Chinese Yuan (CNY) ha -1 with the consecutive film-mulched ridges, furrow-flat planting and alternating film-mulched ridges, respectively, compared with the control (CK). We conclude that the consecutive film-mulched ridge method was the most productive and profitable for maize in this semi-arid area with limited and erratic precipitation.

  3. Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Onda, Yuichi; Kato, Hiroaki; Hoshi, Masaharu; Takahashi, Yoshio; Nguyen, Minh-Long

    2015-01-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident resulted in extensive radioactive contamination of the environment via deposited radionuclides such as radiocesium and (131)I. Evaluating the extent and level of environmental contamination is critical to protecting citizens in affected areas and to planning decontamination efforts. However, a standardized soil sampling protocol is needed in such emergencies to facilitate the collection of large, tractable samples for measuring gamma-emitting radionuclides. In this study, we developed an emergency soil sampling protocol based on preliminary sampling from the FDNPP accident-affected area. We also present the results of a preliminary experiment aimed to evaluate the influence of various procedures (e.g., mixing, number of samples) on measured radioactivity. Results show that sample mixing strongly affects measured radioactivity in soil samples. Furthermore, for homogenization, shaking the plastic sample container at least 150 times or disaggregating soil by hand-rolling in a disposable plastic bag is required. Finally, we determined that five soil samples within a 3 m × 3-m area are the minimum number required for reducing measurement uncertainty in the emergency soil sampling protocol proposed here. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    NASA Astrophysics Data System (ADS)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  5. K0-Behavior of Normally Consolidated Fine-Grained Soils during One-Dimensional Secondary Compression Aging and the Quantitative Prediction of the Quasi-Preconsolidation Effect.

    DTIC Science & Technology

    1986-01-01

    Plastic Kaolinite and three Agsco novaculite, were allowed to age a minimum of 14 days under 2 tsf vertical stress while the Ko-condition was maintained and...16 3.1 Introduction ................................ 16 3.2 Edgar Plastic Kaolinite ....................... 17 3.3 Novaculite...system are provided. "’Six normally consolidated fine-grained specimens, three Edjar Plastic Kaolinite and three Agsco novaculite, were allowed to

  6. In Place Soil Treatments for Prevention of Explosives Contamination

    DTIC Science & Technology

    2010-01-01

    gallon plastic drums. Treatment Layer Preparation The PMSO mixture was prepared in a ratio of peat moss and crude soybean oil of 1:1 (w:w). The...PMSO was prepared in batches using a small tow-behind plastic drum gas cement mixer (9 cu. ft capacity). Peat moss bags were weighed, and then emptied...wrap (or other applicable shipping materials) and shipped in plastic coolers by a commercial carrier priority overnight in ice. Holding Times

  7. Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan

    NASA Astrophysics Data System (ADS)

    Munir, E.; Harefa, R. S. M.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is a naturally recalcitrant polymer, once it enters the environment, it will remain there for many years. Accumulation of plastic as wastes in the environment poses a serious problem and causes an ecological threat. Alternative strategies to reduce accumulation of plastic wastes have been initiated and implemented from a different aspect including from microbiological view point. The study to obtain potential fungi in degrading plastic molecule has been initiated in our laboratory. Low density polyethylene (LDPE) plastic was used as a tested material. Candidate fungi were isolated from local landfill soil. The fungi were cultured in mineral salt medium broth containing LDPE powder. Two of nine isolates showed best growth response in broth media containing LDPE. These isolates (RH03 and RH06) were used in degradation test. Results showed that isolate RH03 and RH06 reduced the weight of LDPE film by 5.13% and 6.63%, respectively after 45 days of cultivation. The tensile strength of treated film even reduced significantly by 58% and 40% of each isolate. Analyses of electron micrograph exhibited grove ands rough were formed on the surface of LDPE film. These were not found in the untreated film. Furthermore, molecular analysis through polymerase chain reaction and DNA sequencing indicated that RH03 is Trichoderma viride and RH06 is Aspergillus nomius with 97% and 96% similarities, respectively.

  8. [Soil moisture variation under different water and fertilization managements in apple orchard of Weibei dryland, China].

    PubMed

    Zhao, Zhi Yuan; Zheng, Wei; Liu, Jie; Ma, Peng Yi; Li, Zi Yan; Zhai, Bing Nian; Wang, Zhao Hui

    2018-04-01

    To evaluate the variations of soil moisture under different water and fertilizer treatments in apple orchard in the Weibei dryland, a field experiment was carried out in 2013-2016 at Tianjiawa Village, Baishui County, Shaanxi Province. There were three treatments, i.e., farmers traditional model (only addition of NPK chemical fertilizer, FM), extension model (swine manure and NPK chemical fertilizer combined with black plastic film in tree row space, EM), and optimized model (swine manure and NPK chemical fertilizer combined with black plastic film in tree row space and planting rape in the inter-row of apple trees, OM). The results showed that OM treatment significantly increased soil water storage capacity in 0-200 cm soil layer. Water content of 0-100 cm soil layer was increased by 5.6% and 15.3% in the dry season compared with FM and EM treatment, respectively. Moreover, the soil water relative deficit index of OM was lower than that of EM in 200-300 cm soil layer. The rainfall infiltration in the dry year could reach 300 cm depth under OM. Meanwhile, OM stabilized soil water content and efficiently alleviated the desiccation in deep soil layer. Compared with FM and EM, the 4-year average yield of OM was increased by 36.6% and 22.5%, respectively. In summary, OM could increase water use efficiency through increasing the contents of available soil water and improving the soil water condition in shallow and deep layers, which help alleviate the soil deficit in deep layer and increase yield.

  9. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    USDA-ARS?s Scientific Manuscript database

    Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...

  10. The effect of biobased plastic resins containing chichen feather fibers on the growth and flowering of Begonia boliviensis

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate growth and flowering of Begoniaboliviensis A. DC. 'Bonfire' when grown in medium mixed with pellets made from biobased plastic resins containing chicken feather fibers. We also analyzed macro- and macro-elements in soil and leaf tissues during different develope...

  11. Achromobactor denitrificans SP1 produces pharmaceutically active 25C prodigiosin upon utilizing hazardous di(2-ethylhexyl)phthalate

    USDA-ARS?s Scientific Manuscript database

    Achromobacter denitrificans SP1 isolated from soil sludge heavily contaminated with plastic waste produced a novel pharmaceutically-active 25C prodigiosin analog during growth in a simple mineral salt medium supplemented with hazardous di(2-ethylhexyl)phthalate (DEHP) blended PVC plastics (in situ) ...

  12. 7 CFR 301.81-10 - Costs and charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... not remove burlap wrap or plastic containers with drain holes prior to immersion Immerse soil balls... determine the probable source of the problem and to ensure that the problem is resolved. If the problem is... fiberglass, glass, or plastic in such a way that IFA is physically excluded and cannot become established...

  13. Fines classification based on sensitivity to pore-fluid chemistry

    USGS Publications Warehouse

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  14. Development of kenaf mat for slope stabilization

    NASA Astrophysics Data System (ADS)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  15. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    NASA Astrophysics Data System (ADS)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  16. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.

    PubMed

    Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H

    2003-01-01

    Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.

  17. Responses of seminal wheat seedling roots to soil water deficits.

    PubMed

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Dilation and breakage dissipation of granular soils subjected to monotonic loading

    NASA Astrophysics Data System (ADS)

    Sun, Yifei; Xiao, Yang; Ji, Hua

    2016-12-01

    Dilation and breakage energy dissipation of four different granular soils are investigated by using an energy balance equation. Due to particle breakage, the dilation curve does not necessarily pass through the origin of coordinates. Breakage energy dissipation is found to increase significantly at the initial loading stage and then gradually become stabilised. The incremental dissipation ratio between breakage energy and plastic work exhibits almost independence of the confining pressure. Accordingly, a plastic flow rule considering the effect of particle breakage is suggested. The critical state friction angle is found to be a combination of the basic friction between particles and the friction contributed by particle breakage.

  19. Effects of Freezing and Thawing on Consolidation Behavior of Clayey Soils

    NASA Astrophysics Data System (ADS)

    Binal, Adil; Adeli, Parisa

    2015-04-01

    An apprehending of freezing and thawing effects on cohesive soil is considerable for many construction and environmental subjects. This paper relates the effects of freezing and thawing on consolidation behaviour of clayey soils. The Capital of Ankara settled on a sequence of lacustrine sediments. These sediments include fine grain soils, locally. Collected samples were undisturbed grey clay and clayey sand that were obtained from the bottom of a construction zone at about 1m depth below the ground surface. Total of 32 moulded samples were prepared with constant water content to reflect the moisture condition in the active surface layer. Gray clay and clayey sand were analysed in the laboratory, and found to have the plastic limits (PL) of 33.01% and 22.56%, the liquid limits (LL) of 75.05% and 36.97%, and the plasticity indexes (PI) of 42.04% and 14.41%. The soil samples were classified as "CH" and "SC" in accordance with the unified soil classification system. Soil samples for all tests were placed in a freezer that has -18°C temperature. Samples have been waited in it for twenty-four hours. Then, they have been removed from the freezer and allowed to stand for twenty-four hours at a constant room temperature (21°C) and humidity (80% RH). As a result, one freezing and thawing cycle was achieved between -18°C (24 hours) and 21°C (24 hours), and it took two days. Freezing and thawing (FT) sequences were selected as 1, 3, 7, 14 and 21. After each FT sequence, Atterberg limits and consolidation tests were carried out in accordance with ASTM standards. Liquid and plastic limits of soil samples, suddenly, were decreased after first FT cycle. That state is a sign of the clay mineral orientation due to freezing and thawing process. The soil classification of clayey sand was changed from "SC" to "SM" after first FT cycle. Furthermore, the coefficient of consolidation and permeability of grey clay had been increased by rising in FT cycles up to 7 and then continue to decline as well as these values of clayey sand start to decrease after 14 FT cycles.

  20. EFFECTS OF REPEATED DROUGHTS ON SOIL MICROARTHROPOD COMMUNITIES IN THE NORTHERN CHIHUHUAN DESERT

    EPA Science Inventory

    Soil microarthropods were sampled in plots centered on creosotebushes(Larrea tridentata) and in plots centered on mesquite(Prosopis glandulosa) coppice dunes. Nine plots in each area were covered by rain-out shelters with greenhouse plastic roofs which excluded natural rainfall a...

  1. Incorporation of microplastics from litter into burrows of Lumbricus terrestris.

    PubMed

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2017-01-01

    Pollution caused by plastic debris is an urgent environmental problem. Here, we assessed the effects of microplastics in the soil surface litter on the formation and characterization of burrows built by the anecic earthworm Lumbricus terrestris in soil and quantified the amount of microplastics that was transported and deposited in L. terrestris burrows. Worms were exposed to soil surface litter treatments containing microplastics (Low Density Polyethylene) for 2 weeks at concentrations of 0%, 7%, 28%, 45% and 60%. The latter representing environmentally realistic concentrations found in hot spot soil locations. There were significantly more burrows found when soil was exposed to the surface treatment composed of 7% microplastics than in all other treatments. The highest amount of organic matter in the walls of the burrows was observed after using the treatments containing 28 and 45% microplastics. The highest microplastic bioturbation efficiency ratio (total microplastics (mg) in burrow walls/initial total surface litter microplastics (mg)) was found using the concentration of 7% microplastics, where L. terrestris introduced 73.5% of the surface microplastics into the burrow walls. The highest burrow wall microplastic content per unit weight of soil (11.8 ± 4.8 g kg- 1 ) was found using a concentration of 60% microplastics. L. terrestris was responsible for size-selective downward transport when exposed to concentrations of 7, 28 and 45% microplastics in the surface litter, as the fraction ≤50 μm microplastics in burrow walls increased by 65% compared to this fraction in the original surface litter plastic. We conclude that the high biogenic incorporation rate of the small-fraction microplastics from surface litter into burrow walls causes a risk of leaching through preferential flow into groundwater bodies. Furthermore, this leaching may have implications for the subsequent availability of microplastics to terrestrial organisms or for the transport of plastic-associated organic contaminants in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Variation in flooding-induced morphological traits in natural populations of white clover (Trifolium repens) and their effects on plant performance during soil flooding

    PubMed Central

    Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.

    2009-01-01

    Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824

  3. The Soil-Water Characteristic Curve of Unsaturated Tropical Residual Soil

    NASA Astrophysics Data System (ADS)

    Yusof, M. F.; Setapa, A. S.; Tajudin, S. A. A.; Madun, A.; Abidin, M. H. Z.; Marto, A.

    2016-07-01

    This study was conducted to determine the SWCC of unsaturated tropical residual soil in Kuala Lumpur, Malaysia. Undisturbed soil samples at five locations of high-risk slopes area were taken at a depth of 0.5 m using block sampler. In the determination of the SWCC, the pressure plate extractor with the capacity of 1500 kN/m2 has been used. The index properties of the soil such as natural moisture content, Atterberg limits, specific gravity, and soil classification are performed according to BS 1377: Part 2: 1990. The results of index properties show that the natural moisture content of the soil is between 36% to 46%, the plasticity index is between 10% - 26%, the specific gravity is between 2.51 - 2.61 and the soils is classified as silty organic clay of low plasticity. The SWCC data from the pressure plate extractor have been fitted with the Fredlund and Xing equation. The results show that the air entry value and residual matric suction for residual soils are in the range of 17 kN/m2 to 24 kN/m2 and 145 kN/m2 to 225 kN/m2 respectively. From the fitting curve, it is found that the average value of the Fredlund and Xing parameters such as a, n and m are in the range of 0.24-0.299, 1.7-4.8 and 0.142-0.440 respectively.

  4. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment.

    PubMed

    Li, Cheng; Chen, Jiayi; Wang, Jihua; Han, Ping; Luan, Yunxia; Ma, Xupu; Lu, Anxiang

    2016-10-15

    The increased use of plastic film in greenhouse vegetable production (GVP) could result in phthalate ester (PAE) contamination in vegetables. However, limited information is currently available on their occurrence and associated potential risks in GVP systems. The present study documents the occurrence and composition of 15 PAEs in soil, plastic film, and vegetable samples from eight large-scale GVP bases in Beijing, China. Results showed that PAEs are ubiquitous contaminants in these GVP bases. Total PAE concentrations ranged from 0.14 to 2.13mg/kg (mean 0.99mg/kg) in soils and from 0.15 to 6.94mg/kg (mean 1.49mg/kg) in vegetables. Di (2-ethylhexyl) phthalate, di-n-butyl phthalate, and diisobutyl phthalate were the most abundant components, which accounted for >90% of the total PAEs. This investigation also indicated that the widespread application of plastic film in GVP systems may be the primary source of these PAEs. The non-cancer and carcinogenic risks of target PAEs were estimated based on the exposures of vegetable intake. The hazard quotients of PAE in all vegetable samples were lower than 1 and the carcinogenic risks were also at acceptable levels for consumers. The data in this study can provide valuable information to understand the status of potential pollutants, specifically PAEs, in GVP systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hussein, Amal A.; Alzuhairi, Mohammed; Aljanabi, Noor H.

    2018-05-01

    Accumulation of plastics, especially Polyethylene terephthalate (PET), is an ever increasing ecological threat due to its excessive usage in everyday human life. Nowadays, there are many methods to get rid of plastic wastes including burning, recycling and burying. However, these methods are not very active since their long period, anaerobic conditions that increase the rate of toxic materials released into the environment. This work aims to study the biological degradation of PET microorganism isolated from soil sample. Thirty eight (38) bacterial isolates were isolated from ten soil and plastic waste sample collected from four different waste disposal sites in Baghdad city during different periods between December 2016 and March 2017. Isolation was performed using enrichment culture method (flasks method) by culturing the soil samples in flasks with MSM medium where there is no carbon source only PET. Results showed that Al-Za'farania sample gave a higher number of isolates (13 isolates), while other samples gave less number of isolates. Screening was performed depending on their ability to grow in liquid MSM which contains PET powder and pieces and change the color of the PET-emulsified liquid medium as well as their ability to form the clear zone on PET-MSM agar. The results showed that NH-D-1 isolate has the higher ability to degrade DPET and PET pieces. According to morphological, biochemical characterization and Vitek-2 technique, the most active isolate was identified as Acinetobacter baumannii.

  6. Managing cover crops on strawberry furrow bottoms

    USDA-ARS?s Scientific Manuscript database

    Bare furrows in strawberry fields with plastic mulch covered beds can lead to lots of soil erosion and runoff during winter rainy periods. This article describes how growers can plant and manage cover crops in these furrows to minimize runoff and soil erosion. This is based on on-going research at...

  7. Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study

    USDA-ARS?s Scientific Manuscript database

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does no...

  8. Chemical changes in agricultural soils of Korea: data review and suggested countermeasures.

    PubMed

    Jo, I S; Koh, M H

    2004-01-01

    The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise, 4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, available phosphate and extractable calcium, magnesium and potassium contents, and heavy metal contents such as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The study showed that the average contents of organic matter, available phosphate, and extractable potassium rapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, and only 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils (0-15 cm depth) were 0.11 mg kg(-1) (ranged from 0 to 1.01), 4.70 mg kg(-1) (0-41.59), 4.84 mg kg(-1) (0-66.44), and 4.47 mg kg(-1) (0-96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn, and As in surface soils (0-15 cm depth) were 0.135 mg kg(-1) (ranged from 0 to 0.660), 2.77 mg kg(-1) (0.07-78.24), 3.47 mg kg(-1) (0-43.00), 10.70 mg kg(-1) (0.30-65.10), and 0.57 mg kg(-1) (0.21-2.90), respectively. In plastic film houses, the average contents of Cd, Cu, Pb, Zn, and As in surface soil were 0.12 mg kg(-1) (ranging from 0 to 1.28), 4.82 mg kg(-1) (0-46.50), 2.68 mg kg(-1) (0-46.50), 31.19 mg kg(-1) (0.19-252.0), and 0.36 mg kg(-1) (0-4.98), respectively. In orchard fields, the average contents of Cd, Cu, Pb, Zn, As, and Hg in surface soils (0-20 cm depth) were 0.11 mg kg(-1) (ranged from 0-0.49), 3.62 mg kg(-1) (0.03-45.30), 2.30 mg kg(-1) (0-27.80), 16.60 mg kg(-1) (0.33-105.50), 0.44 mg kg(-1) (0-4.14), and 0.05 mg kg(-1) (0.01-0.54), respectively. For polluted soils with over the warning content levels of heavy metals, fine red earth application, land reconsolidation and soil amelioration such as lime, phosphate, organic manure, and submerging were recommended. For the countermeasure areas, cultivation of non-edible crops such as garden trees, flowers, and fiber crops; land reformation; and heavy application of fine red earth (up to 30 cm) were strongly recommended. Land use techniques should be changed to be harmonious with the environment to increase yield and income. Soil function characteristics should be taken into account.

  9. The Bat Groundwater Monitoring System in Contaminant Studies

    DTIC Science & Technology

    1992-01-01

    make helpful suggestions. From his soil chemistry class, he has stimulated my interest in the sorption capacities of soils and the partitioning of...decrease the chemical interaction ( sorption or leaching) that could occur between the contaminants and either the metal drum or regular plastic garbage...water remains in the tank, the greater the chance of sorption of the contaminants onto the soil and loss of VOCs. The concentrations of contaminants

  10. Phthalate esters contamination in soils and vegetables of plastic film greenhouses of suburb Nanjing, China and the potential human health risk.

    PubMed

    Ma, Ting Ting; Wu, Long Hua; Chen, Like; Zhang, Hai Bo; Teng, Ying; Luo, Yong Ming

    2015-08-01

    The contamination of phthalate esters (PAEs) has become a potential threat to the environment and human health because they could be easily released as plasticizers from the daily supply products, especially in polyethylene films. Concentration levels of total six PAEs, nominated as priority pollutants by the US Environmental Protection Agency (USEPA), were investigated in soils and vegetables from four greenhouse areas in suburbs of Nanjing, East China. Total PAEs concentration ranged from 930 ± 840 to 2,450 ± 710 μg kg(-1) (dry weight (DW)) in soil and from 790 ± 630 to 3,010 ± 2,130 μg kg(-1) in vegetables. Higher concentrations of PAEs were found in soils except in Suo Shi (SS) area and in vegetables, especially in potherb mustard and purple tsai-tai samples. Risk assessment mainly based on the exposures of soil ingestion and daily vegetable intake indicated that bis(2-ethylhexyl) phthalate (DEHP) in the samples from Gu Li (GL) and Hu Shu (HS) exhibited the highest hazard to children less than 6-year old. Therefore, the human health risk of the PAEs contamination in soils and vegetables should greatly be of a concern, especially for their environmental estrogen analog effects.

  11. Recent studies of measures to improve basamid soil disinfestation.

    PubMed

    Van Wambeke, E

    2011-01-01

    Basamid micro-granule is used worldwide as a broad spectrum soil fumigant generator and has replaced methyl bromide for many applications. A lot is known for decades regarding the factors determining the success of the application from soil preparation and conditions to the application and soil sealing or soil tarping, as well as the operations and hygienic measures after the fumigant contact time. This paper explains last 6 years studies regarding the improvement of application methods, both from the viewpoint of homogenous incorporation of the granule over the soil profile to become treated as well as from possible premature loss of the gaseous active methyl isothiocyanate (MITC) by using improved tarping materials. Both result in lower environmental exposure and better biological performance of the application. In that respect, product incorporation in soil was studied in France and in Italy with more recent commercially available Basamid application machinery, and 29 plastic films have been compared for their MITC barrier properties with an 'in house' developed method. Film testing allowed clear categorizing in standard (monolayer) films, V.I.F. (Virtually Impermeable Film) and T.I.F. (Totally Impermeable Film). The paper presents the methodology for granule incorporation study and results from trials with two specific Basamid application machines compared with a classic rotovator, the methodology and comparison of plastic film barrier properties testing, and directives to minimize exposure and to maximize performance.

  12. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  13. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China

    PubMed Central

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5–25 cm) was significantly (p < 0.05) higher in field plots with plastic film mulch than the control (CK), and resulted in greater soil water storage (0–200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly (p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% (p < 0.05) greater and 28% (p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% (p < 0.05) with consecutive film-mulched ridges and 21.1% (p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased by 1559, 528, and 350 Chinese Yuan (CNY) ha−1 with the consecutive film-mulched ridges, furrow-flat planting and alternating film-mulched ridges, respectively, compared with the control (CK). We conclude that the consecutive film-mulched ridge method was the most productive and profitable for maize in this semi-arid area with limited and erratic precipitation. PMID:28428798

  14. Soil fate of agricultural fumigants in raised-bed, plasticulture systems in the southeastern United States.

    PubMed

    Chellemi, Dan O; Ajwa, Husein A; Sullivan, David A; Alessandro, Rocco; Gilreath, James P; Yates, Scott R

    2011-01-01

    Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Influence of Fines Content on Consolidation and Compressibility Characteristics of Granular Materials

    NASA Astrophysics Data System (ADS)

    Lipiński, Mirosław J.; Wdowska, Małgorzata K.; Jaroń, Łukasz

    2017-10-01

    Various behaviour of soil under loading results to large extent from kind of soil considered. There is a lot of literature concerning pure sand or plastic clays, while little is known about materials, which are from classification point of view, between those soils. These materials can be considered as cohesionless soils with various fines content. The paper present results of tests carried out in large consolidometer on three kinds of soil, containing 10, 36 and 97% of fines content. Consolidation, permeability and compressibility characteristics were determined. Analysis of the test results allowed to formulate conclusion concerning change in soil behaviour resulting from fines content.

  16. [Effects of different mulching materials on nitrate metabolism in soil of apple root-zone in summer and autumn.

    PubMed

    Zhang, Rui Xue; Yang, Hong Qiang; Xu, Ying; Lyu, Ting Wen; Cao, Hui; Ning, Liu Fang; Zhou, Chun Ran; Fan, Wei Guo

    2016-08-01

    This study explored the effects of mulching straw mat, agricultural carpet, transparent-plastic film and horticultural fabric on nitrification-denitrification, nitrate reductase (NR), nitrite reductase (NiR), ammonium, nitrate and nitrite nitrogen in root-zone soil grown with three-year old apple trees (Malus domestica cv. Starkrimson) during summer and autumn. Results showed that the four treatments decreased nitrification intensity in summer soil, NiR activity in summer-autumn soil and the variation coefficient of nitrification-denitrification intensity and NR in both summer and autumn soil. The treatments increased the denitrification intensity, NR activity, ammonium nitrogen contents in summer-autumn soil and ammonium nitrogen contents in autumn soil. Straw mat treatment increased denitrification intensity and nitrate nitrogen contents in both summer and autumn soil and decreased the activity of NR and NiR in summer soil. The coefficient of variation of nitrification-denitrification intensity and NR activity treated by mulching straw mat was lower than those in the other treatments in both summer and autumn soil. Agricultural carpet increased the NR and NiR activity in summer soil, the nitrate nitrogen contents in summer-autumn soil and the denitrification intensity in autumn soil and decreased denitrification intensity in summer soil. Transparent-plastic film increased the nitrite nitrogen contents in summer soil, the contents of nitrate nitrogen in summer-autumn soil, the nitrification intensity and NiR activity in autumn soil, and decreased nitrate nitrogen contents in summer soil. Horticultural fabric increased denitrification intensity in summer soil, nitrification intensity in summer-autumn and autumn soil and the nitrate nitrogen contents in autumn soil. The four mulching treatments all promoted plant growth. In the four mulching treatments, the new shoot and trunk thickening growth were more under straw mat and horticultural fabric treatments. The four mulching treatments had different effects on nitrate metabolism in summer and autumn soil, but they were able to stabilize the soil nitrate metabolism and transformation. Among the treatments, straw mat had the best stable effect.

  17. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.

    PubMed

    Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C

    2009-12-01

    Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.

  18. Nonassociative plasticity model for cohesionless materials and its implementation in soil-structure interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashmi, Q.S.E.

    A constitutive model based on rate-independent elastoplasticity concepts is developed and used to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths. The model accounts for various factors such as friction, stress path, and stress history that influence the behavior of geologic materials. A hierarchical approach is adopted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associate model. Nonassociativeness is introduced as correction or perturbation to the basic model. Deviation of normality of the plastic-strain increments to the yield surface F is captured through nonassociativeness. The plastic potential Q is obtained by applying amore » correction to F. This simplified approach restricts the number of extra parameters required to define the plastic potential Q. The material constants associated with the model are identified, and they are evaluated for three different sands (Leighton Buzzard, Munich and McCormick Ranch). The model is then verified by comparing predictions with laboratory tests from which the constants were found, and typical tests not used for finding the constants. Based on the above findings, a soil-footing system is analyzed using finite-element techniques.« less

  19. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India.

    PubMed

    Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran

    2015-01-01

    Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The computational docking studies suggested that polyethylene glycol and polystyrene present in the plastics might have good interaction towards the microbial lipase with stable binding and interacting forces which probably could be one of the reasons for the degradative mechanisms.

  20. The Response of Small Scale Rigid Targets to Shallow Buried Explosive Detonations

    DTIC Science & Technology

    2011-09-01

    properties as applied in this work was based on some of the standard defini- tions of soil constitutive properties as found in, e.g., Chen and Baladi [18...Technology Corporation; 2007. [18] Chen WF, Baladi GY. Soil plasticity: theory and implementation. New York: Elsevier Science; 1985. [19] Zimmerman

  1. 7 CFR 319.37-8 - Growing media.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...

  2. 7 CFR 319.37-8 - Growing media.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...

  3. 7 CFR 319.37-8 - Growing media.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...

  4. Environmental Assessment Addressing the Privatization of Military Family Housing at Cavalier Air Force Station, North Dakota

    DTIC Science & Technology

    2011-04-01

    limitations to construction were determined based on data available in the NRCS Web Soil Survey (NRCS 2010). Soil limitations were rated for... paper , glass, certain plastics, ferrous scrap, copper scrap, nonferrous segregated scrap metals, tires, spent Final EA Addressing the Privatization...www.nrcs.usda.gov/technical/NRI/maps/meta/m5116.html>. Accessed 15 March 2010. NRCS 2010 NRCS. 2010. Web Soil Survey. Available online: <http

  5. About the possibility of obtaining cementitious soil composites of high strength on the basis of belozems of carbonate composition

    NASA Astrophysics Data System (ADS)

    Karapetyan, K. A.; Hayroyan, S. G.; Manukyan, E. S.

    2018-04-01

    The problem of manufacturing high strength cementitious soils based on belozems of carbonate composition, which experience compression (no less than 10 MPa), without application of surface active substances is considered. The portland cement of type 400 was used as a binding agent to develop compositions of cementitious soil composites, and the ordinary pipe water was used to obtain solutions of cementitious soils. The chemical and mineralogical composition of the initial ingredients and the granulometric composition of belozems were determined. The measurements showed that the upper and lower plasticity limits, the optimum moisture content, and the maximal density of the skeleton of belozems, as well as the considered compositions of cementitious soils, are insignificant, while the plasticity index of cementitious soils is less than one for belozems. It is experimentally proved that an increase in the portland cement amount lead to an increase in the compressive strength of cementitious soils with a decreasing speed. But for the same amount of portland cement used in the cementitious soil compositions, the values of the strength ratio of the pieces tested at the age of 60 and 28 days remain the same and are approximately equal to 1.2. A comparison of experimental data showed that it seems to be real to manufacture a cementitious soil on the basis of belozems of carbonate composition, which contain 10% of cement of the weight of dry mixture and have strength more than 10 MPa, without adding any surfactants to the material composition.

  6. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities.

    PubMed

    Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S

    2003-01-01

    To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.

  7. Field evidence for transfer of plastic debris along a terrestrial food chain.

    PubMed

    Huerta Lwanga, Esperanza; Mendoza Vega, Jorge; Ku Quej, Victor; Chi, Jesus de Los Angeles; Sanchez Del Cid, Lucero; Chi, Cesar; Escalona Segura, Griselda; Gertsen, Henny; Salánki, Tamás; van der Ploeg, Martine; Koelmans, Albert A; Geissen, Violette

    2017-10-26

    Although plastic pollution happens globally, the micro- (<5 mm) and macroplastic (5-150 mm) transfer of plastic to terrestrial species relevant to human consumption has not been examined. We provide first-time evidence for micro- and macroplastic transfer from soil to chickens in traditional Mayan home gardens in Southeast Mexico where waste mismanagement is common. We assessed micro- and macroplastic in soil, earthworm casts, chicken feces, crops and gizzards (used for human consumption). Microplastic concentrations increased from soil (0.87 ± 1.9 particles g -1 ), to earthworm casts (14.8 ± 28.8 particles g -1 ), to chicken feces (129.8 ± 82.3 particles g -1 ). Chicken gizzards contained 10.2 ± 13.8 microplastic particles, while no microplastic was found in crops. An average of 45.82 ± 42.6 macroplastic particles were found per gizzard and 11 ± 15.3 macroplastic particles per crop, with 1-10 mm particles being significantly more abundant per gizzard (31.8 ± 27.27 particles) compared to the crop (1 ± 2.2 particles). The data show that micro- and macroplastic are capable of entering terrestrial food webs.

  8. Identification of soil associations in western South Dakota on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Westin, F. C.; Myers, V. I.

    1973-01-01

    Soil association maps show the spatial relationships of land units having characteristic soil depths and textures, available water capacities, permeabilities, pH characteristics, plasticity indices, liquid limits, and the like, from which broad interpretations can be made such as how the soil is suited as a source for top soil, and as a source for sand and gravel, and how corrosive the soil is for steel and concrete, and what crop and grass yields can be expected. Film color composites of bands 4, 5 and 7 viewed over a light table with magnification show the soil associations of western South Dakota that are now recognized, and, in addition, several new soil association areas have been brought to light.

  9. Dispersal of Salmonella Typhimurium by rain splash onto tomato plants.

    PubMed

    Cevallos-Cevallos, Juan M; Danyluk, Michelle D; Gu, Ganyu; Vallad, Gary E; van Bruggen, Ariena H C

    2012-03-01

    Outbreaks of Salmonella enterica have increasingly been associated with tomatoes and traced back to production areas, but the spread of Salmonella from a point source onto plants has not been described. Splash dispersal by rain could be one means of dissemination. Green fluorescent protein-labeled, kanamycin-resistant Salmonella enterica sv. Typhimurium dispensed on the surface of plastic mulch, organic mulch, or soil at 10⁸ CFU/cm² was used as the point source in the center of a rain simulator. Tomato plants in soil with and without plastic or organic mulch were placed around the point source, and rain intensities of 60 and 110 mm/h were applied for 5, 10, 20, and 30 min. Dispersal of Salmonella followed a negative exponential model with a half distance of 3 cm at 110 mm/h. Dispersed Salmonella survived for 3 days on tomato leaflets, with a total decline of 5 log and an initial decimal reduction time of 10 h. Recovery of dispersed Salmonella from plants at the maximum observed distance ranged from 3 CFU/g of leaflet after a rain episode of 110 mm/h for 10 min on soil to 117 CFU/g of leaflet on plastic mulch. Dispersal of Salmonella on plants with and without mulch was significantly enhanced by increasing rain duration from 0 to 10 min, but dispersal was reduced when rainfall duration increased from 10 to 30 min. Salmonella may be dispersed by rain to contaminate tomato plants in the field, especially during rain events of 10 min and when plastic mulch is used.

  10. Stress-Strain State of a Combinational Soil Half-Space During Reconstruction

    NASA Astrophysics Data System (ADS)

    Prusov, D. E.

    2014-03-01

    A method for studying the stress-strain state of soil-retaining structures is proposed. It is based on the nonlinear theory of elasticity and plasticity of soils and allows for geometrical and physical nonlinearities. Numerical and analytical results on the stability of a retaining wall are compared. The influence of an inhomogeneous soil half-space on the stress-strain state of a deep-ditch wall is analyzed numerically. A scientific rationale for the redevelopment of densely built-up residential areas under adverse geological engineering conditions is recommended.

  11. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R

    2014-02-01

    Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. © 2013 John Wiley & Sons Ltd.

  12. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    NASA Astrophysics Data System (ADS)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco

    2017-04-01

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.

  13. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Treesearch

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  14. A Computer Code for Dynamic Stress Analysis of Media-Structure Problems with Nonlinearities (SAMSON). Volume III. User’s Manual.

    DTIC Science & Technology

    NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS

  15. Application of an Arbitrary Lagrangian Eulerian Method to Describe High Velocity Gas-Particle Flow Behavior

    DTIC Science & Technology

    2011-09-01

    applied in this work was based on some of the standard definitions of soil constitutive properties as found in, e.g., Chen and Baladi [20], and...Livermore, CA. [20] Chen, W. F., and Baladi , G. Y., 1985. Soil Plasticity: Theory and Implementation. Elsevier Science, New York. [21] Zimmerman, H.D

  16. 1,3-dichloropropene and chloropicrin emissions following simulated drip irrigation to raised beds under plastic films

    USDA-ARS?s Scientific Manuscript database

    Using laboratory soil chambers a non-scaled representation of an agricultural raised bed was constructed. For a sandy loam soil, a drip application of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) under both high density polyethylene (HDPE) and virtually impermeable film (VIF) was performed at 5...

  17. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation.

    PubMed

    Guney, Ali; Poyraz, M Ibrahim; Kangal, Olgac; Burat, Firat

    2013-09-01

    Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Soil moisture ground truth, Lafayette, Indiana, site; St. Charles Missouri, site; Centralia, Missouri, site

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1975-01-01

    The soil moisture ground-truth measurements and ground-cover descriptions taken at three soil moisture survey sites located near Lafayette, Indiana; St. Charles, Missouri; and Centralia, Missouri are given. The data were taken on November 10, 1975, in connection with airborne remote sensing missions being flown by the Environmental Research Institute of Michigan under the auspices of the National Aeronautics and Space Administration. Emphasis was placed on the soil moisture in bare fields. Soil moisture was sampled in the top 0 to 1 in. and 0 to 6 in. by means of a soil sampling push tube. These samples were then placed in plastic bags and awaited gravimetric analysis.

  19. Demonstration of nonlinear effects in acoustic landmine experiments using a clamped-plate soil oscillator

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Bond, Emilia

    2005-09-01

    Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.

  20. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    PubMed Central

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-01-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage. PMID:27976710

  1. Seismic displacement of gently-sloping coastal and marine sediment under multidirectional earthquake loading

    USGS Publications Warehouse

    Kayen, Robert E.

    2017-01-01

    Gentle sediment-laden slopes are typical of the onshore coastal zone and offshore continental shelf and slope. Coastal sediment are commonly young weakly consolidated materials that are well stratified, have low strength, and can mobilize shear displacements at low levels of stress. Seismically-driven plastic displacements of these sediment pose a hazard to coastal cities, buried onshore utilities, and offshore infrastructure like harbor protection and outfalls. One-dimensional rigid downslope-directed Newmark sliding block analyses have been used to predict earthquake deformations generally on steeper slopes that are modeled as frictional materials. This study probes the effect of multidirectional earthquake motions on inertial displacements of gently sloping ground of the coastal and offshore condition where soft-compliant soil is expected. Toward that objective, this investigation seeks to understand the effect on Newmark-type displacements of [1] multidirectional earthquake shaking and [2] soil compliance. In order to model multidirectional effects, the earthquake motions are rotated into the local slope strike- and dip-components. On gently sloping ground, including the strike component of motion always results in a larger and more accurate shear stress vector. Strike motions are found to contribute to downslope deformations on any declivity. Compliant response of the soil mass also influences the plastic displacements. The magnitude of seismic displacements can be estimated with a simplified model using only the estimated soil yield-acceleration (ky) and the peak ground velocity (Vmax) of the earthquake motions. Compliance effects can be effectively mapped using the concept of Plastic Displacement Response Spectra (PDRS).

  2. Increase in surface albedo caused by agricultural plastic film

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, H.; Xia, X.

    2016-12-01

    The area of agricultural greenhouses and cropland covered by plastic film has increased inChina over the past three decades. Construction of large-area plastic greenhouse potentiallychanges the physical and radiative properties of the surface and its albedo, thereby potentiallyaffecting the surface energy budget and climate change. This study aims to investigate theeffect of the plastic-film cover on surface albedo based on computationswith a simplified modeland several field observation experiments. The results showed that surface albedo increasedby ˜23.5 and ˜33.9% on clear and overcast days, respectively, if grassland was covered byplastic film. Surface albedo of bare soil covered by plastic film increased by ˜16.6% underclear sky conditions. A larger increase in surface albedo was derived for surface types withsmaller surface albedo. Model calculations were in good agreement with field observations.

  3. Environment and host as large-scale controls of ectomycorrhizal fungi.

    PubMed

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  4. Capillary-Effect Root-Environment System

    NASA Technical Reports Server (NTRS)

    Wright, Bruce D.

    1991-01-01

    Capillary-effect root-environment system (CERES) is experimental apparatus for growing plants in nutrient solutions. Solution circulated at slight tension in cavity filled with plastic screen and covered by porous plastic membrane. By adsorptive attraction, root draws solution through membrane. Conceived for use in microgravity of space, also finds terrestrial application in germinating seedlings, because it protects them from extremes of temperature, moisture, and soil pH and from overexposure to fertilizers and herbicides.

  5. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    NASA Astrophysics Data System (ADS)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  6. Ecological Risk Assessment of Chemicals Migrated from a Recycled Plastic Product

    PubMed Central

    Roh, Ji-Yeon; Kim, Min-Hyuck; Kim, Woo Il; Kang, Young-Yeul; Shin, Sun Kyoung; Kim, Jong-Guk

    2013-01-01

    Objectives Potential environmental risks caused by chemicals that could be released from a recycled plastic product were assessed using a screening risk assessment procedure for chemicals in recycled products. Methods Plastic slope protection blocks manufactured from recycled plastics were chosen as model recycled products. Ecological risks caused by four model chemicals -di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), cadmium (Cd), and lead (Pb)- were assessed. Two exposure models were built for soil below the block and a hypothetic stream receiving runoff water. Based on the predicted no-effect concentrations for the selected chemicals and exposure scenarios, the allowable leaching rates from and the allowable contents in the recycled plastic blocks were also derived. Results Environmental risks posed by slope protection blocks were much higher in the soil compartment than in the hypothetic stream. The allowable concentrations in leachate were 1.0×10-4, 1.2×10-5, 9.5×10-3, and 5.3×10-3 mg/L for DEHP, DINP, Cd, and Pb, respectively. The allowable contents in the recycled products were 5.2×10-3, 6.0×10-4, 5.0×10-1, and 2.7×10-1 mg/kg for DEHP, DINP, Cd, and Pb, respectively. Conclusions A systematic ecological risk assessment approach for slope protection blocks would be useful for regulatory decisions for setting the allowable emission rates of chemical contaminants, although the method needs refinement. PMID:24303349

  7. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.

  8. Environmental Assessment: Disposition of Chiefs’ Circle Residential Structures

    DTIC Science & Technology

    2012-04-27

    the restrooms and kitchen when being used by the CFC and Scouts, respectively. Final - Environmental Assessment...Solid waste (not hazardous waste) associated with the Proposed Action Site includes waste such as kitchen waste, paper, plastics, metal and glass...specific soil groups (hydraquents and udor- thents), and four urban land complexes. The acreage covered by each soil type and its percentage of the

  9. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.

  10. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which means PM can increase the yield potential of spring maize in water limited condition. From the result the field experiment, the grain yield under PM ranged from 6556 to 12615 kg/ha, being 803 to 3616 kg/hm-2 higher than no mulching (CK); and the WUE under plastic mulch ranged from 18.3 to 33.5 kghm-2mm-1, significantly higher than the CK in most of the experiment years (17.5-23.6 kghm-2mm-1). The ET for PM was higher than that of the CK (significance in 2009 and 2011), while it also increased the root biomass in soil, over consumed soil water and improved soil structure increased rainfall infiltration in fallow period. The result shows that the stored water by PM was 12 to 56 mm higher than the CK in the seven experiment years. So after seven years of cultivation, no significant difference was observed between treatments for the soil water storage in 0-6 m soil profile, which means that plastic film mulch can not only increase maize yield, but also is sustainable in the respect of soil water.

  11. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Soil biota effects on clonal growth and flowering in the forest herb Stachys sylvatica

    NASA Astrophysics Data System (ADS)

    de la Peña, Eduardo; Bonte, Dries

    2011-03-01

    The composition of a soil community can vary drastically at extremely short distances. Therefore, plants from any given population can be expected to experience strong differences in belowground biotic interactions. Although it is well recognized that the soil biota plays a significant role in the structure and dynamics of plant communities, plastic responses in growth strategies as a function of soil biotic interactions have received little attention. In this study, we question whether the biotic soil context from two forest associated contrasting environments (the forest understory and the hedgerows) determines the balance between clonal growth and flowering of the perennial Stachys sylvatica. Using artificial soils, we compared the growth responses of this species following inoculation with the mycorrhizal and microbial community extracted either from rhizospheric soil of the forest understory or from the hedgerows. The microbial context had a strong effect on plant functional traits, determining the production of runners and inflorescences. Plants inoculated with the hedgerow community had a greater biomass, larger number of runners, and lower resource investment in flower production than was seen in plants inoculated with the understory microbial community. The obtained results illustrate that belowground biotic interactions are essential to understand basic plastic growth responses determinant for plant establishment and survival. The interactions with microbial communities from two contrasting habitats resulted in two different, and presumably adaptive, growth strategies that were optimal for the conditions prevalent in the environments compared; and they are as such an essential factor to understand plant-plant, plant-animal interactions and the dispersal capacities of clonal plants.

  13. Use of pepper crop residues for the control of root-knot nematodes.

    PubMed

    Piedra Buena, A; García-Alvarez, A; Díez-Rojo, M A; Ros, C; Fernández, P; Lacasa, A; Bello, A

    2007-11-01

    The biofumigant effect of pepper crop residues (PCR) for controlling Meloidogyne incognita populations was evaluated. Under laboratory conditions, 0, 5, 10 and 20 g PCR were applied to 500 g nematode infested soil, with four replicates per treatment. After 20 days at 25 degrees C, PCR reduced significantly M. incognita populations and root galling indices in susceptible tomato cv. Marmande, and increased K, N and organic C in soil. In the field, biofumigation with PCR combined with fresh animal manures (with and without plastic cover), methyl bromide, and a control were evaluated through root galling indices on a pepper crop. Each treatment, except for the control, had a grafted and non-grafted susceptible pepper sub-treatment, with three replicates. Root galling indices were lower, and yields higher, on grafted plants, biofumigation with PCR and plastic cover, with similar values as MB treatment, suggesting that biofumigation with PCR is an efficient non-chemical alternative to control M. incognita populations, especially when applied with plastic cover, nitrogen-rich organic matter and followed by grafting on resistant pepper.

  14. [Concentration and risk assessment of DEHP in vegetables around plastic industrial area].

    PubMed

    Wang, Jia-Wen; Du, Qi-Zhen; Song, Ying-Qi

    2010-10-01

    Concentration of di-(2-ethylhexyl) phthalate (DEHP)in the inner tissue of various vegetable species and their growing environment (soil and atmosphere) around plastic industrial area were investigated and determined by gas chromatography-mass spectrum (GC/MS). The results showed that concentrations of DEHP in 5 kinds of vegetable were 0.23-9.11 mg/kg, 3.82 mg/kg in average (fresh weight). Of the various vegetable species determined, the highest burden was observed in the leafy vegetables, followed by melon and root vegetables. Statistical analysis of variance showed that environment and species are the factors that significantly affect DEHP concentrations in inner vegetable tissue and soil, respectively. Atmosphere deposition is the principal pathway for the accumulation of DEHP. The ability of the plant accumulating DEHP was mainly influenced by the lipid content of the plant. Leaf with pubescence or rough surface was found to have higher DEHP than the other, when the lipid contents were similar. Evaluation of the vegetable around plastic industrial area with the acceptable daily intake (ADI) by OEHHA, concentrations of DEHP has exceeded the safety standard.

  15. The Potential of Five Winter-grown Crops to Reduce Root-knot Nematode Damage and Increase Yield of Tomato

    PubMed Central

    López-Pérez, Jose Antonio; Roubtsova, Tatiana; de Cara García, Miguel

    2010-01-01

    Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C). PMID:22736848

  16. Nonlinear acoustic landmine detection: Comparison of ``off target'' soil background and ``on target'' soil-mine nonlinear effects

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.

    2005-09-01

    When airborne sound at two primary tones, f1, f2 (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the ``target.'' Profiles at f1, f2, and f1-(f2-f1), f2+(f2-f1), 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) (among others) are measured for a VS 1.6 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil. It is observed that the ``on target'' to ``off target'' contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments along with two-tone tests are performed both on and off the mine in an effort to understand the nonlinearities in each case. [Work supported by U.S. Army RDECOM CERDEC, NVESD.

  17. Axisymmetric Strain Path Tests on Nellis Baseline Sand

    DTIC Science & Technology

    1986-09-01

    tested to determine their grain-size distributions, specific gravities , and Atterberg limits. The results of these tests are su-Arized in Table 2.1...plastic limits, plasticity index, and specific gravity . All four batches of NB sand were classified by the Unified Soil Classi- fication System...those contaminated by oil due to membrane leakage. Based on these data and a specific gravity of 2.62, values of dry density, void ratio, degree of

  18. 40 CFR 232.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management practices to prevent or reduce the pollution of waters of the United States from discharges of... include, but are not limited to: rock, sand, soil, clay, plastics, construction debris, wood chips...

  19. Theoretical and numerical aspects of fluid-saturated elasto-plastic soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlers, W.

    1995-12-31

    The theoretical and numerical treatment of fluid-saturated porous solid materials generally falls into the category of porous media models, which are described within the framework of the classical theory of mixtures extended by the concept of volume fractions (porous media theories). In particular, this concept allows for the description of saturated, unsaturated and empty porous matrix materials, thus offering a well-founded theoretical background for a lot of engineering problems occurring, for instance, in the fields of geomechanics (soil and rock mechanics as well as glacier and rock ice mechanics), oil producing industries, sintering technologies, biomechanics, etc. In the present contribution,more » theoretical and numerical studies are outlined to describe a two-phase material composed of an incompressible elasto-plastic soil matrix saturated by an incompressible viscous pore fluid. In this context, the phenomenon of phase incompressibility is well known as a microscopic effect not implying bulk incompressibility in the macro regime. This is seen from the fact that even if the material density functions of the individual constituents are constant during deformation, the corresponding bulk densities can still change through changes in the volume fractions. Within the framework of a pure mechanical theory, constitutive equations are given for both the solid and the fluid partial stress tensors and for the interaction force acting between the two materials. Concerning the porous soil matrix, the elastic properties are described by an elasticity law of Hookean type, while the plastic range is governed by a {open_quote}single surface{close_quote} yield function exhibiting a smooth and closed shape in the principal stress space together with a non-associated flow rule. The viscosity effects of the pore fluid are included in the fluid stress tensor and in the drag force.« less

  20. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    PubMed

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  1. Phylogenetic Affiliation of Soil Bacteria That Degrade Aliphatic Polyesters Available Commercially as Biodegradable Plastics

    PubMed Central

    Suyama, Tetsushi; Tokiwa, Yutaka; Ouichanpagdee, Pornpimol; Kanagawa, Takahiro; Kamagata, Yoichi

    1998-01-01

    Thirty-nine morphologically different soil bacteria capable of degrading poly(β-hydroxyalkanoate), poly(ɛ-caprolactone), poly(hexamethylene carbonate), or poly(tetramethylene succinate) were isolated. Their phylogenetic positions were determined by 16S ribosomal DNA sequencing, and all of them fell into the classes Firmicutes and Proteobacteria. Determinations of substrate utilization revealed characteristic patterns of substrate specificities. PMID:9835597

  2. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative.

    PubMed

    Accinelli, Cesare; Saccà, Maria Ludovica; Mencarelli, Mariangela; Vicari, Alberto

    2012-09-01

    Increasing environmental concerns and the introduction of technologies based on renewable resources have stimulated the replacement of persistent petroleum-derived plastics with biodegradable plastics from biopolymers. As a consequence, a variety of products are currently manufactured from bioplastic, including carrier bags. This series of studies investigated the deterioration of carrier bags made with Mater-Bi (MB), a starch-based bioplastic, in soil, compost and two aquatic ecosystems, a littoral marsh and seawater. Results from the laboratory study indicated that bioplastic carrier bags were rapidly deteriorated in soil and compost. After three months of incubation, weight loss of specimens was of 37% and 43% in soil and compost, respectively. Conversely, little deterioration was observed in specimens buried in soil under field conditions or exposed to water of a littoral marsh and of the Adriatic Sea. These findings were consistent with the greater number of bacteria and especially fungi capable of degrading MB that were recovered from soil and compost with respect to the two aquatic ecosystems. Considering that a variety of microbial isolates are capable of using MB as a source of carbon, a new alternative to recycle these MB-based carrier bags was explored. More specifically, starchy residues from bags were fermented by the fungus Rhizopus oryzae to produce up to 35 mg of lactic acid per g of bag residues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Reducing Methyl Halide Emissions from Soils

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Xuan, R.; Ashworth, D.; Luo, L.

    2011-12-01

    Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Methyl bromide (MeBr) emissions from agricultural fumigation can lead to depletion of the stratospheric ozone layer. This has led to a gradual phase-out of MeBr and replacement by other halogenated chemicals. However, MeBr continues to be widely used under Critical Use Exemptions and development of emission-reduction strategies remains important. Several methods to reduce emissions of MeBr, and other halogenated soil fumigants, have been developed and are currently being tested under field conditions. In this paper, several approaches for reducing fumigant emissions to the atmosphere are described and include the use of virtually impermeable films, the creation of reactive soil barriers and a recently developed reactive film which was designed to limit loss of MeBr from soil without adding any material to the soil surface. Ammonium thiosulfate (ATS) was used to create a reactive layer. For a reactive soil layer, ATS was sprayed on the soil surface or incorporated to a depth of 1-2 cm. For the reactive film, ATS was placed between two layers of plastic film. The lower plastic layer was a high-density polyethylene film (HDPE), which is readily permeable to MeBr. The upper layer was a virtually impermeable film (VIF) and limits MeBr diffusion. MeBr diffusion and transformation through VIFs and reactive layers were tested in laboratory and field experiments. Although ineffective when dry, when sufficient water was present, reactive barriers substantially depleted halogenated fumigants, including MeBr. When ATS was activated in laboratory experiments, MeBr half-life was about 9.0 h (20C) in a reactive film barrier, and half life decreased with increasing temperature. When the soil was covered with VIF, less than 10% of the added MeBr diffused through the film and the remainder was transformed within the soil. This compares with 60 to 90% emission losses, respectively, for a soil covered with HDPE or for a bare soil surface. These findings demonstrate that several methods are available to reduce atmospheric emissions of MeBr and other halogenated fumigants.

  4. Analysis of the Feasibility of Using Soil from the Municipality of Goytacazes/RJ for Production of Soil-Cement Brick

    NASA Astrophysics Data System (ADS)

    Alexandre, J.; Azevedo, A. R. G.; Theophilo, M. M. D.; Xavier, C. G.; Paes, A. L. C.; Monteiro, S. N.; Margem, F. M.; Azeredo, N. G.

    The use of bricks of soil-cement is proving to be an important constructive methodology due to low environmental impact in the production process of these blocks comparing with conventional bricks are burnt, besides being easy to produce. However during the process of production of bricks, which are compressed, knowledge of the properties of the soil used is critical to the quality and durability of the blocks. The objective of this work is to evaluate the feasibility of using soil from the municipality of Goytacazes for the production of soil-cement bricks. Assays were performed the compaction, liquid limit, plastic limit, particle size analysis, EDX and X-Ray diffraction for later pressed blocks and analyze their compressive strength and water absorption.

  5. Microplastics as an emerging threat to terrestrial ecosystems.

    PubMed

    de Souza Machado, Anderson Abel; Kloas, Werner; Zarfl, Christiane; Hempel, Stefan; Rillig, Matthias C

    2018-04-01

    Microplastics (plastics <5 mm, including nanoplastics which are <0.1 μm) originate from the fragmentation of large plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.

  6. Stress-Dilatancy of Cambria Sand for Triaxial Tests at High Pressures

    NASA Astrophysics Data System (ADS)

    Szypcio, Zenon

    2017-12-01

    In this paper, the stress-dilatancy relationship of Cambria sand for drained triaxial compression and extension tests at high stress level is investigated. The stress dilatancy relationship is obtained by use of frictional state theory and experimental tests data published in literature. It is shown that stress-dilatancy relationship is bilinear, described by three parameters of frictional state theory: critical frictional angle and two other parameters. It is accepted that critical friction angle is independent of confining pressure. The two additional parameters are strongly dependent on confining pressure and different for initial and advanced stages. The point at which the values of these parameters change is termed as Transformation Shear Point. This point is not simply visible either in stress ratio-strain or the volume strain-shear strain relationship which are traditionally shown in soil mechanics papers. Transformation Shear Point is very characteristic in stress ratio-plastic dilatancy plane. Thus, stress ratio- plastic dilatancy is very important for describing stress-strain behaviour of soils. The relationship shown in the paper can be used in soil modelling in the future.

  7. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil.

    PubMed

    Gajendiran, Anudurga; Krishnamoorthy, Sharmila; Abraham, Jayanthi

    2016-06-01

    Polythene and plastic waste are found to accumulate in the environment, posing a major ecological threat. They are found to be considered non-degradable, once it enters the environment it has been found to remain there indefinitely. However, significant attention has been placed on biodegradable polymer, identification of microbes with degradative potential on plastic material. The aim of the present investigation was to biodegrade low-density polyethylene (LDPE) using potential fungi isolated from landfill soil. Based on 18S rRNA analyses the isolated strain was identified as Aspergillus clavatus. LDPE degradation by A. clavatus was monitored for 90 days of incubation in aqueous medium. The degradation was confirmed by changes in polyethylene weight, CO 2 evolution by Strum test, infrared spectra and morphological changes by SEM and AFM analysis.

  8. [Effects of mulching patterns on soil water, broomcorn millet growth, photosynthetic charac- teristics and yield in the dryland of Loess Plateau in China].

    PubMed

    Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li

    2014-11-01

    The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.

  9. Kinetics of monomer biodegradation in soil.

    PubMed

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Physics Based Vehicle Terrain Interaction Model for Soft Soil off-Road Vehicle Simulations

    DTIC Science & Technology

    2012-01-01

    assumed terrain deformation, use of empirical relationships for the deformation, or finite/discrete element approaches for the terrain. A real-time...vertical columns of soil, and the deformation of each is modeled using visco-elasto-plastic compressibility relationships that relate subsoil pressures to...produced by tractive and turning forces will also be incorporated into the model. Both the vertical and horizontal force/displacement relationships

  11. Mobility Research at TARDEC (Briefing Charts)

    DTIC Science & Technology

    2015-03-10

    UWM UIC UWM UWM Gap Collaboration 4 ARC & RIF Fund: $255k+$250K New ANCF shell element Fiber -reinforced composite rubber Validation and benchmark 2013...U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Mobility Research at TARDEC Dr. P. Jayakumar, S. Arepally Analytics 1...t s 5 9 - - - -3 t s 7 98 - - - . . . .t s Drucker-Prager Elasto- Plastic Soil Elastic Soil 6 A Physics-Based High Performance

  12. Using Frozen Barriers for Containment of Contaminants

    DTIC Science & Technology

    2017-09-21

    barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based

  13. Characterizing Optical Properties of Disturbed Surface Signatures

    DTIC Science & Technology

    2013-01-01

    location, also had significant clasts of schist and other metamorphic rocks , which added mica grains to the soil. There was little organic plant...of the surface to include the number and shape of rock shards and soil aggregates. Sometimes there are changes in the larger scale topography, the...plastic pails filled with ammonium nitrate prills emplaced according to TTPs used by enemy forces in current combat theaters. The goals of the

  14. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    PubMed

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  15. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

    PubMed Central

    Carminati, Andrea; Vetterlein, Doris

    2013-01-01

    Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance. PMID:23235697

  16. A non-coaxial critical state soil model and its application to simple shear simulations

    NASA Astrophysics Data System (ADS)

    Yang, Yunming; Yu, H. S.

    2006-11-01

    The yield vertex non-coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22:621-653) to investigate the non-coaxial influences on the stress-strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non-coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non-coaxial influences. All the predictions indicate that the use of the non-coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non-coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non-coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright

  17. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the soil and its sustainability in the rainfall-limited semiarid region. PMID:27414400

  18. Explicit 2-D Hydrodynamic FEM Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  19. Neurotoxicity of brominated flame retardants

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guney, Ali; Poyraz, M. Ibrahim; Kangal, Olgac, E-mail: kangal@itu.edu.tr

    Highlights: • Both PET and PVC have nearly the same densities. • The best pH value will be 4 for optimizing pH values. • Malic acid gave the best results for selective separation of PET and PVC. - Abstract: Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each othermore » by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.« less

  1. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  2. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    NASA Astrophysics Data System (ADS)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.

  3. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport.

    PubMed

    Alimi, Olubukola S; Farner Budarz, Jeffrey; Hernandez, Laura M; Tufenkji, Nathalie

    2018-02-20

    Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.

  4. Response of potted northern red oak and hay-scented fern to additions of calcium, magnesium, potassium, and phosphorus

    Treesearch

    David H. Hart; William E. Sharpe

    1997-01-01

    The objective of this study was to determine if addition of Ca, Mg, K, and P to an extremely acidic forest soil would increase early northern red oak (Quercus rubra L.) seedling growth. The O through B2 horizon of a Dekalb soil from Pennsylvania's Bald Eagle State Forest was placed in plastic cores and utilized as a growth medium for northern...

  5. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage.

    PubMed

    Gong, Daozhi; Hao, Weiping; Mei, Xurong; Gao, Xiang; Liu, Qi; Caylor, Kelly

    2015-01-01

    Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L.) fields under the traditional non-mulching with flat tillage (CK) and partial plastic film mulching with furrow-ridge tillage (MFR) on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE) of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI) and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3%) top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass), there is a slight higher carbon sink (or a stronger carbon source) in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions.

  6. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage

    PubMed Central

    Gong, Daozhi; Hao, Weiping; Mei, Xurong; Gao, Xiang; Liu, Qi; Caylor, Kelly

    2015-01-01

    Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L.) fields under the traditional non-mulching with flat tillage (CK) and partial plastic film mulching with furrow-ridge tillage (MFR) on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE) of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI) and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3%) top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass), there is a slight higher carbon sink (or a stronger carbon source) in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions. PMID:26305354

  7. Stenotrophomonas sp. RZS 7, a novel PHB degrader isolated from plastic contaminated soil in Shahada, Maharashtra, Western India.

    PubMed

    Wani, S J; Shaikh, S S; Tabassum, B; Thakur, R; Gulati, A; Sayyed, R Z

    2016-12-01

    This paper reports an isolation and identification of novel poly-β-hydroxybutyrate (PHB) degrading bacterium Stenotrophomonas sp. RZS 7 and studies on its extracellular PHB degrading depolymerase enzyme. The bacterium isolated from soil samples of plastic contaminated sites of municipal area in Shahada, Maharashtra, Western India. It was identified as Stenotrophomonas sp. RZS 7 based on polyphasic approach. The bacterium grew well in minimal salt medium (MSM) and produced a zone (4.2 mm) of PHB hydrolysis on MSM containing PHB as the only source of nutrient. An optimum yield of enzyme was obtained on the fifth day of incubation at 37 °C and at pH 6.0. Further increase in enzyme production was recorded with Ca 2+ ions, while other metal ions like Fe 2+ (1 mM) and chemical viz. mercaptoethanol severally affected the production of enzyme.

  8. Modelling of deformation process for the layer of elastoviscoplastic media under surface action of periodic force of arbitrary type

    NASA Astrophysics Data System (ADS)

    Mikheyev, V. V.; Saveliev, S. V.

    2018-01-01

    Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.

  9. Clay Stabilization Using the Ash of Mount Sinabung in Terms of the Value of California Bearing Ratio (CBR)

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto, R.; Napitupulu, S. M. A.

    2018-02-01

    Most areas in Indonesia consist of clay soils with high plasticity so that to meet technical requirements the soil needs improvement, which is known as soil stabilization.There are three ways of soil stabilization process, i.e. mechanical, physical and chemical. In this study, chemical stabilization was performed, that was by adding stabilizing agents to the soil. The stabilizing agent used was the ash of Mount Sinabung. Since 2010 until now, Sinabung Mountain is still experiencing eruption that produces a lot of volcanic ash and it inconveniences the environment. So, it is expected that this research will be able to optimize the utilization of Sinabung ash. The purpose of this study was to investigate the effect of the addition of Mount Sinabung ash to CBR (California Bearing Ratio) value, to determine the effect of the curing time of one day and fourteen days mixture on the CBR value, and to find the mixed content with effective curing time to produce the largest CBR value. Based on this study, the soil type CL (Clay - Low Plasticity) was obtained, based on the classification of USCS (Unified Soil Classification System) and categorized as A-6 (6) based on the classification of AASHTO (American Association of State Highway and Transportation officials) with the most effective mixed stabilizer material which was the variation of 10% Mount Sinabung ash with fourteen days of curing time. The CBR value resulted from the mixture of 10% Sinabung ash that was cured within fourteen days was 8.95%. By the increase of the content of the Sinabung ash, the CBR value always improved to the level of 10%, Sinabung ash then decreased and became constant at the mixture of higher volcanic ash mixture but remained above the CBR value of the original soil.

  10. [Effects of enhanced-efficiency nitrogen fertilizers on nitrous oxide emissions from cotton field under plastic mulched drip irrigation in Xinjiang,China].

    PubMed

    Ma, Zhi Wen; Gao, Xiao Peng; Gui, Dong Wei; Kuang, Wen Nong; Wang, Xi He; Liu, Hua

    2016-12-01

    The effect of enhanced-efficiency nitrogen (N) fertilizers on emissions of nitrous oxide (N 2 O) from the grey desert agricultural soils of Xinjiang is uncertain. In this study, the enhanced-efficiency fertilizers, polymer-coated urea (ESN), and stabilized urea with urease and nitrification inhibitors (U+I) were compared to conventional urea (U) for N 2 O emissions from cotton under plastic mulch drip irrigation near Urumqi, Xinjiang. ESN was added once at planting but the other treatments were added multiple times with drip irrigation during the growing season. Gas samples were collected and analyzed twice per week during the growing season, using the static chamber-chromatography methodology. The results showed that generally, ESN significantly increased soil cumulative N 2 O emissions during the growing season by 47%-73% compared to other treatments. In the first four months after fertilization, soil ammonium (NH 4 + -N) and nitrate (NO 3 - -N) concentrations under ESN treatment were generally higher than under other treatments. Thereafter, NH 4 + -N and NO 3 - -N concentrations under all treatments gradually decreased to similar levels. ESN all added at planting was likely responsible for high NH 4 + -N and NO 3 - -N concentrations and highest N 2 O emissions. The U+I treatment reduced soil N 2 O emission by 9.9% in comparison with U, whereas the difference was not statistically significant. In addition, soil NO 3 - -N contents of the U+I treatments were generally lower than those of the ESN and the U treatments. The cumulative N 2 O emissionsover the growing season ranged from 300 to 500 g N 2 O-N·hm -2 , generally lower than emissions reported for other agricultural ecosystems. Drip irrigation successfully kept moisture conditions below levels for appreciable N 2 O emissions. Multiple applications of N via drip irrigation seemed to be effective to lower emissions than all N applied at planting. Therefore, for cotton field under plastic mulch drip irrigation in arid land of Northwest China, the benefit of enhanced efficiency N ferti-lizers on N 2 O mitigation is limited.

  11. Atmospheric volatilization and distribution of (Z)- and (E)-1,3-dichloropropene in field beds with and without plastic covers.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-01-01

    The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.

  12. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    PubMed

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  13. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  14. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse

    PubMed Central

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J.

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2–6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non-suppressive soils, but the former showed a higher degree of similarity between both suppressive soils than the later. PMID:26925080

  15. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse.

    PubMed

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2-6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non-suppressive soils, but the former showed a higher degree of similarity between both suppressive soils than the later.

  16. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula

    PubMed Central

    Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments. PMID:26943813

  17. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.

    PubMed

    Veluz, G A; Pitchiah, S; Alvarado, C Z

    2012-08-01

    In poultry industry, cross-contamination due to processing equipment and contact surfaces is very common. This study examined the extent of bacterial attachment to 6 different types and design of conveyor belts: stainless steel-single loop, stainless steel-balance weave, polyurethane with mono-polyester fabric, acetal, polypropylene mesh top, and polypropylene. Clean conveyor belts were immersed separately in either a cocktail of Salmonella serovars (Salmonella Typhimurium and Salmonella Enteritidis) or Listeria monocytogenes strains (Scott A, Brie 1, ATCC 6744) for 1 h at room temperature. Soiled conveyor chips were dipped in poultry rinses contaminated with Salmonella or Listeria cocktail and incubated at 10°C for 48 h. The polyurethane with mono-polyester fabric conveyor belt and chip exhibited a higher (P<0.05) mean number of attached Salmonella serovars (clean: 1.6 to 3.6 cfu/cm2; soiled: 0.8 to 2.4 cfu/cm2) and L. monocytogenes (clean: 4.0 to 4.3 cfu/cm2; soiled: 0.3 to 2.1 cfu/cm2) in both clean and soiled conditions. The stainless steel conveyor belt attached a lower (P<0.05) number of Salmonella serovars (clean: 0 to 2.6 cfu/cm2; soiled: 0.4 to 1.3 cfu/cm2) and L. monocytogenes (clean: 0.4 to 2.9 cfu/cm2; soiled: 0 to 0.7 cfu/cm2) than the polymeric materials, indicating weaker adhesion properties. Plastic conveyor belts exhibited stronger bacterial adhesion compared with stainless steel. The result suggests the importance of selecting the design and finishes of conveyor belt materials that are most resistant to bacterial attachment.

  18. Cadmium

    Cancer.gov

    Learn about cadmium, which may raise your risk of lung cancer. Cadmium is a natural element: all soils and rocks contain some cadmium. Exposure occurs mostly where cadmium products (such as batteries, pigments, metal coatings, and plastics) are made or recycled. Tobacco smoke also contains cadmium.

  19. Swelling soils in the road structures

    NASA Astrophysics Data System (ADS)

    Pruška, Jan; Šedivý, Miroslav

    2017-09-01

    There are frequent problems with the soil swelling in the road construction in the past time. This phenomenon is known for decades. This situation is notably given by insufficient knowledge of this problem and difficulties with input parameters describing the swelling process. The paper in the first part proposed regression relations to predict swelling pressure, time of swelling and swelling strain for different initial water contents for soils and improvement soils. The relations were developed by using artificial neural network and QCExpert Professional software (on the data from site investigations by GeoTec-GS, a.s. and experimental data from CTU in Prague). The advantage of the relations is based on using the results of the basic soil tests (plasticity index, consistency index and colloidal activity) as input parameters. The authors inform the technical public with their current knowledge of the problems with the soil swelling on the motorway in the second part of the paper.

  20. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  1. Proceedings of the International Conference on The Performance of Off-Road Vehicles and Machines (8th). Volume 1. Held at Cambridge England, on August 5-11, 1984.

    DTIC Science & Technology

    1984-08-01

    is to " Nowo _ - . . .. ..... . , , . , . i’*.t’ "’" 36 determine the motion resistance, drawbar pull, torque, efficiency, and side force for a...Elastic-plastic soil deformation and normal load for hard soil 20 4 6-0 0Sikan I i I I I" 347 Literature (1) Wong, J.Y.:"An improved method for predicting

  2. Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge

    NASA Astrophysics Data System (ADS)

    Sobótka, Maciej

    2014-03-01

    The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.

  3. Development of road soil cement compositions modified with complex additive based on polycarboxylic ether

    NASA Astrophysics Data System (ADS)

    Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.

    2018-03-01

    The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.

  4. Chemical compositions and sources of organic matter in fine particles of soils and sands from the vicinity of Kuwait city.

    PubMed

    Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T

    2006-09-01

    Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.

  5. Properties of the Loess Sediments in Ostrava Region (Czech Republic) and Comparison with Some Other Loess Sediments

    PubMed Central

    Marschalko, Marian; Yilmaz, Işık; Fojtova, Lucie; Lamich, David; Bednarik, Martin

    2013-01-01

    This study deals with a methodical identification and evaluation of physical-mechanical properties of one genetic type of geological structure. This is represented by an engineering-geological zone of eolian sediments, which is regionally rather abundant. The paper contributes to a need to identify typical soil properties for widespread geological environments in a particular region and thus add to good engineering geologists and geotechnical engineers' awareness in the region. Such information is much required as it permits comparing results of newly conducted engineering-geological investigations and research with the results characteristic for the region in question. It is vital for engineering geologists and geotechnical engineers to be sufficiently informed on the foundation soil properties of widespread geological environments because of professionalism and higher quality of their work results. Comparing other loess sediment studies worldwide it was discovered that the physical properties of the most abundant clays of low to medium plasticity, sandy clays, and sands as foundation soils vary as for the plasticity index, porosity, natural water content, and bulk density to a certain extent but not as significantly as once expected. PMID:24391464

  6. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  7. Physiological, morphological and allocation plasticity of a semi-deciduous shrub

    NASA Astrophysics Data System (ADS)

    Zunzunegui, M.; Ain-Lhout, F.; Barradas, M. C. Díaz; Álvarez-Cansino, L.; Esquivias, M. P.; García Novo, F.

    2009-05-01

    The main objective of this study was to look into the phenotypic plasticity of the semi-deciduous Mediterranean shrub, Halimium halimifolium. We studied morphological, allocation and physiological traits to determine which characters were more plastic and contribute in a greater extent to the acclimation ability of the species. We present a phenotypic plasticity index for morphological, physiological and allocation traits, which we have applied in the most contrasted plant communities where the species grows naturally. Data published by Díaz Barradas, M.C., García Novo, F. [1987. The vertical structure of Mediterranean scrub in Doñana National Park (SW Spain). Folia Geobotanica Phytotaxonomica 22, 415-433; 1988. Modificación y extinción de la luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monografias Instituto Pirenaico de Ecologia 4, 503-516; 1990. Seasonal changes in canopy structure in two mediterranean dune shrubs. Journal of Vegetation Science 1, 31-40.], Díaz Barradas, M.C., Zunzunegui, M., García Novo, F. [1999a. Autoecological traits of Halimium halimifolium in contrasted habitats under Mediterranean type climate. Folia Geobotanica 34, 189-208.] and Zunzunegui et al. [Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 1997. Autoecological notes of Halimium halimifolium. Lagascalia 19, 725-736. Sevilla, Spain; Zunzunegui, M., Díaz Barradas, M.C., Fernández Baco, L., García Novo, F. 1999. Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36, 17-31; Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 2000. Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecology 148, 165-174; Zunzunegui, M., Díaz Barradas, M.C., Aguilar, F., Ain-Lhout, F., Clavijo, A., García Novo, F. 2002. Growth response of Halimium halimifolium at four sites with different soil water availability regimes in two contrasted hydrological cycles. Plant and Soil 247, 271-28.] have been re-appraised and combined with original data. Phenotypic plasticity index showed that the highest plasticity of the species was physiological, and especially for the traits related with water control. This high physiological plasticity appears mainly between seasons (September-November) rather than between sites. Plasticity in allocation traits showed intermediate values between physiological and morphological traits.

  8. Improvement of Expansive Soils Using Chemical Stabilizers

    NASA Astrophysics Data System (ADS)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  9. [Time-evolution study on the cation exchange in the process of reinforcing slip soil by laser-induced breakdown spectroscopy].

    PubMed

    Liu, Lu-Wen; Zeng, Wei-Li; Zhu, Xiang-Fei; Wu, Jin-Quan; Lin, Zhao-Xiang

    2014-03-01

    In the present paper, the time evolution study on slip soils treated by different proportions of ionic soil stabilizer (ISS) water solution was conducted by the LIBS system and the relationship between the cation exchange and such engineering properties of reinforcing soil as plasticity index, cohesive force and coefficient of compressibility were analyzed. The results showed that the cation exchange velocity of the proportion of 1:200 ISS reinforcing soil is the fastest among the three proportions (1:100, 1:200 and 1:300) and the modification effect of engineering performance index is quite obvious. These studies provide an experimental basis for the ISS applied to curing project, and monitoring geotechnical engineering performance by LIBS technology also provides a new way of thinking for the curing project monitoring.

  10. Finite element modeling of a shaking table test to evaluate the dynamic behaviour of a soil-foundation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abate, G.; Massimino, M. R.; Maugeri, M.

    The deep investigation of soil-foundation interaction behaviour during earthquakes represent one of the key-point for a right seismic design of structures, which can really behave well during earthquake, avoiding dangerous boundary conditions, such as weak foundations supporting the superstructures. The paper presents the results of the FEM modeling of a shaking table test involving a concrete shallow foundation resting on a Leighton Buzzard sand deposit. The numerical simulation is performed using a cap-hardening elasto-plastic constitutive model for the soil and specific soil-foundation contacts to allow slipping and up-lifting phenomena. Thanks to the comparison between experimental and numerical results, the powermore » and the limits of the proposed numerical model are focused. Some aspects of the dynamic soil-foundation interaction are also pointed out.« less

  11. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates.

    PubMed

    López-López, Rutilo; Inzunza-Ibarra, Marco Antonio; Sánchez-Cohen, Ignacio; Fierro-Álvarez, Andrés; Sifuentes-Ibarra, Ernesto

    2015-01-01

    Habanero pepper production was assessed with drip irrigation and plastic mulch, based on two transplanting dates. The objectives of the study were: (i) to evaluate the effect of two transplanting dates and the use of plastic mulch on water productivity and habanero pepper fruit yield under drip irrigation conditions; and (ii) to determine the profitability and economic viability of the product in the regional market. The work was conducted in the municipality of Huimanguillo, state of Tabasco, Mexico, in loam soils classified as Eutric Fluvisol. The Jaguar variety of habanero pepper, developed by INIFAP and possessing better genetic and productive characteristics, was used. Two transplanting dates were studied, (i) 30 January 2013 and (ii) 15 February 2013, with and without plastic mulch. The conclusions were: (i) application of irrigation depths based on crop evapotranspiration (ETc) and plastic mulch transplanted on 30 January increased the fruit yield of the crop and improved the benefit-cost ratio of the production system; and (ii) water use efficiency based on the 30 January transplanting date was 8.68 kg m⁻³ of water applied with plastic mulch, 6.51 kg m⁻³ without plastic mulch, and 3.65 kg m⁻³ for the 15 February transplanting date with plastic mulch.

  12. Fertilization and Colors of Plastic Mulch Affect Biomass and Essential Oil of Sweet-Scented Geranium

    PubMed Central

    Silva, Anderson de Carvalho; dos Santos, Wallace Melo; Prata, Paloma Santana; Alves, Péricles Barreto

    2014-01-01

    Sweet-scented geranium (Pelargonium graveolens L'Hér), a plant belonging to the Geraniaceae family, has medicinal and aromatic properties and is widely used in the cosmetic, soap, perfume, aromatherapy, and food industries. The aim of this study was to evaluate the influence of fertilization and the use of different colors of plastic mulch on sweet-scented geranium biomass and essential oil. Three colors of plastic mulch (black, white, and silver-colored) and a control without plastic mulch were assessed along with three fertilizers (20,000 L·ha−1 of cattle manure; 1,000 kg·ha−1 of NPK 3-12-6; and 20,000 L·ha−1 of cattle manure + 1,000 kg·ha−1 of NPK 3-12-6 fertilizer) and a control without fertilizer. The absence of a soil cover negatively influenced the agronomical variables, while coverage with plastic mulch was associated with increased biomass. The use of fertilizer had no effect on the evaluated agronomic variables. When cattle manure and NPK 3-12-6 were used together, combined with white or black plastic mulch, the highest yields of essential oil were obtained. For the silver-colored plastic mulch, higher amounts of essential oil (6,9-guaiadien) were obtained with mineral fertilizer. PMID:24757440

  13. 40 CFR 232.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limitations or prohibitions under section 307(a), and applicable water quality standards. Discharge of dredged..., infrastructure, or impoundment requiring rock, sand, dirt, or other material for its construction; site... include, but are not limited to: rock, sand, soil, clay, plastics, construction debris, wood chips...

  14. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice.

    PubMed

    Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan

    2012-01-01

    Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.

  15. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert.

    PubMed

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-07-20

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants' competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change.

  16. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert

    PubMed Central

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-01-01

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745

  17. Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution

    NASA Astrophysics Data System (ADS)

    Yang, S. S.; Brandon, A. M.; Xing, D. F.; Yang, J.; Pang, J. W.; Criddle, C. S.; Ren, N. Q.; Wu, W. M.

    2018-05-01

    Petroleum-based plastic pollution has been a global environmental concern for decades. The obvious contrast between the remarkable durability of the plastics and their short service time leads to the increasing accumulation of plastic wastes in the environment. A cost-effective, sustainable strategy to solve the problem should focus on source control and clean up. Polystyrene (PS) wastes, a recalcitrant plastic polymer, are among the wide spread man-made plastic pollutants. Destruction of PS wastes can be achieved using various abiotic methods such as incineration but such methods release potential air pollution and generation of hazardous by-products. Biodegradation and bioremediation has been proposed for years. Since the 1970’s, the microbial biodegradation of plastics, including PS, has been evaluated with mixed and isolated cultures from different sources such as activated sludge, trash, soil, and manure. To date, PS biodegradation by these microbial cultures is still quite slow. Recently, the larvae of yellow mealworms (Tenebrio molitor Linnaeus) have demonstrated promising PS biodegradation performance. Mealworms have demonstrated the ability to chew and ingest PS foam as food and are capable of degrading and mineralizing PS into CO2 via microbe-dependent activities within the gut in less than the 12-15 hrs gut retention time. These research results have revealed a potential for microbial biodegradation and bioremediation of plastic pollutants.

  18. KSC-07pd2098

    NASA Image and Video Library

    2007-07-23

    KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers removed the plastic covering from NASA's Phoenix Mars Lander. Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton

  19. Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Dooling, Dave (Editor)

    2002-01-01

    Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.

  20. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  1. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis.

    PubMed

    Ma, Dedi; Chen, Lei; Qu, Hongchao; Wang, Yilin; Misselbrook, Tom; Jiang, Rui

    2018-04-01

    In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0-20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0-10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200-300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200-300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is required to quantify and mitigate these impacts.

  2. [Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows].

    PubMed

    Shangguan, Yu-Xian; Shi, Ri-Peng; Li, Na; Han, Kun; Li, Hui-Ke; Wang, Lin-Quan

    2012-06-01

    The objective of this experiment was to quantify ammonia volatilization from a winter wheat field with plastic film mulched-ridges and unmulched-furrows (PMRF). The trial was conducted during the 2010-2011 winter wheat growing season at Yangling, Shaanxi Province. Ammonia volatilization from the soil was measured using the closed-chamber method. The results indicated that NH3 emission losses ranged between (1.66 +/- 0.3) and (3.28 +/- 0.51) kg x hm(-2) in the PMRF treatment. In comparison, the NH3 emission loss was (4.68 +/- 0.35) kg x ha(-1) in the conventional tillage treatment (i. e., smooth soil surface). The PMRF treatment reduced NH3 emissions by 29.8 to 63.8% compared with the conventional treatment. The NH3 emission losses were equivalent to 1.9% of the applied N in the conventional practice treatment. In contrast, the losses were equivalent to only 0.3% to 0.8% of the applied N in the PMRF treatment. Ammonia emissions were greatest during the first two weeks after sowing. Emissions before winter accounted for 82% of total NH3 emission in the conventional practice treatment, but only 49% to 61% of the total NH3 emission in the PMRF treatment. The soil NH4+ -N content and the soil moisture content had direct effects on NH3 emission before winter in the conventional treatment. In thePMRF treatment, the soil NH4+ -N content had a direct effect on NH3 emission before winter, whereas soil surface temperature and soil moisture had indirect effects. Ammonia emissions after the greening stage were mainly influenced by the soil NH4+ -N content. Simulation results indicated that logarithmic functions best described cumulative NH3 emission in the PMRF + high N rate treatment and the conventional treatment. A linear function best described cumulative NH3 emission in the PMRF + low N rate treatment and the unfertilized treatment. In conclusion, the PMRF treatment can significantly reduce N losses from winter wheat fields by changing the spatial-temporal dynamics of soil NH3 volatilization.

  3. Global analysis of plasticity in turgor loss point, a key drought tolerance trait.

    PubMed

    Bartlett, Megan K; Zhang, Ya; Kreidler, Nissa; Sun, Shanwen; Ardy, Rico; Cao, Kunfang; Sack, Lawren

    2014-12-01

    Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or 'wilting' point (πtlp ). As soil dries, plants shift πtlp by accumulating solutes (i.e. 'osmotic adjustment'). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (-0.44 MPa), accounting for 16% of post-drought πtlp. Thus, pre-drought πtlp was a considerably stronger predictor of post-drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post-drought πtlp. Climate was correlated with pre- and post-drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply. © 2014 John Wiley & Sons Ltd/CNRS.

  4. Environmental fate of methyl bromide as a soil fumigant.

    PubMed

    Yates, Scott R; Gan, Jay; Papiernik, Sharon K

    2003-01-01

    The great variation among results of recent experiments measuring the total emission of MeBr from fields implies that many factors influence MeBr transport and transformation in the soil-water-air system and its ultimate loss from the soil surface. It has been demonstrated that variables related to application methods (e.g., injection depth, use and type of surface tarp), soil properties (e.g., water content, bulk density, soil organic matter), and climatic conditions (e.g.. air temperature, wind speed, barometric pressure) have pronounced effects on MeBr volatilization following soil injection. The following conclusions can be drawn from this experimental information. Tarping consistently, increased the residence time and concentration of MeBr residing in the soil. Prolonged retention of MeBr in the soil resulted in more extensive degradation and reduced cumulative emissions. Research indicates that the polyethylene film typically used for the surface cover is relatively permeable to MeBr and allows significant emissions compared to virtually impermeable plastic films. This effect is more pronounced during periods of high temperature. Soil type, soil water content, and bulk density are important factors affecting MeBr transport and transformation in soil, which ultimately affect volatilization. The total volatilization from a soil with high organic matter content may be drastically reduced relative to that from a low organic matter soil. Amendment of the surface soil with organic matter or nucleophilic compounds that promote increased degradation may offer another method for reducing volatilization. MeBr volatilization may also be decreased by increasing soil water content and bulk density, mainly because of the reduced gas-phase diffusion resulting from reduced soil air-filled porosity. To minimize volatilization, MeBr should be applied during periods of cool temperature, injected relatively deep in organic-rich, moist soil, and the soil surface packed and tarped immediately after the application. Depending on site-specific conditions, a new high-barrier plastic should be used. Injecting MeBr during periods of warm temperature, at a shallow depth in dry, loose soil without the use of low-permeability plastic barriers, will likely result in maximum volatilization rates and therefore should be discouraged. Before adopting any new emission reduction technology, the pest control characteristics of the new methodology should be assessed under soil and environmental conditions typical of the region to optimize efficacy while minimizing environmental contamination. There is considerable current scientific evidence indicating that eliminating MeBr use for soil fumigation may not have a significant impact on stratospheric ozone depletion. Management practices can and have been developed that essentially eliminate atmospheric emissions of MeBr and other fumigant compounds following soil application. Some scientists have suggested that there are natural buffers and various unknown sources of MeBr that make it impossible to ascertain that eliminating soil fumigation with MeBr will significantly improve stratospheric ozone levels. It is quite certain, however, that the phase-out will make it much more difficult for growers to economically provide an adequate and healthful food supply in the U.S. and elsewhere in the world. As the phase-out date approaches, there remains a great need for information about MeBr and stratospheric ozone depletion. Stratospheric ozone must be protected, but recent experiments suggest that it can be protected while still allowing MeBr to be used for soil fumigation. A new approach may be warranted in which state and federal regulations recognize that every chemical is a potential environmental contaminant, depending on the properties of the chemical and the environmental conditions prevailing following its application. Ideally, regulations should incorporate incentives to develop technology that minimizes the likelihood that a chemical becomes an environmental and/or public health problem. Rather than instituting an irrevocable ban, allowing for a suspension of chemical use until the appropriate technology is developed to control the undesirable characteristic(s) of the chemical use would provide much more flexibility to growers and may enhance environmental protection by adopting a proactive approach in which growers, chemical manufacturers, regulators, and the public can have confidence.

  5. Erosion prevention during highway construction by the use of sprayed on chemicals.

    DOT National Transportation Integrated Search

    1972-01-01

    The purpose of this study was to evaluate the erosion inhibiting potential of nine commercial spray on plastic chemicals. All chemicals were also compared with the conventional method of straw tacked with an asphalt emulsion, and with untreated soil....

  6. Investigations into the Contamination of Lunar Return Material. Part 1; Surface Analysis and Imaging Investigations

    NASA Technical Reports Server (NTRS)

    Steele, A.; Toporski, J. K. W.; Avci, R.; Agee, C. B.; McKay, D. S.

    2001-01-01

    A suite of lunar soils has been investigated by imaging and in-situ spectroscopy techniques. A suite of contaminant plastics and potential microbes has been found. Additional information is contained in the original extended abstract.

  7. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  8. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  9. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  10. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  11. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  12. Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils.

    PubMed

    Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S

    2015-01-01

    The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.

  13. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments.

    PubMed

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an effective farming model in alleviating water shortage issues experiencing in water shortage areas.

  14. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    PubMed

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  15. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  16. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers.

    PubMed

    Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E

    1998-01-01

    A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.

  17. Do plants modulate biomass allocation in response to petroleum pollution?

    PubMed Central

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  18. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  19. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  20. Micromechanical Behavior and Modelling of Granular Soil

    DTIC Science & Technology

    1989-07-01

    DiMaggio and Sandier 1971, Baladi and Rohani 1979). The problem of inherent (structural) anisotropy - especially important for 3 anisotropically...Republic of Germany. Baladi ,G.Y. and Rohani, B. (1979), "Elastic-Plastic Model for Saturated Sand," Journal of the Geotechnical Engineering Division, ASCE

  1. Fact Sheet in English and Spanish: What Residents in Agricultural Communities Should Know About Soil Fumigants

    EPA Pesticide Factsheets

    Learn about fumigant gas from treated fields (often covered with plastic tarps), some chemical and trade names of these agricultural products, signs and symptoms of pesticide exposure, and how to avoid or report or treat pesticide illness.

  2. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management

    NASA Astrophysics Data System (ADS)

    Jin, X.; Filley, T. R.

    2017-12-01

    Management of crop residues using plastic film mulching (PFM) has the potential to improve soil health by accelerating nutrient cycling and facilitating stable C pool production; however, a key aspect of this process—microbial immobilization of residue C—is poorly understood, especially under PFM when combined with different fertilization treatments. A 360-day in situ 13C-tracing technique was used to analyze the contribution and dynamics of microbial biomass C (MBC) to soil organic C (SOC) after 13C-labelled maize straw residue was applied to micro-plot topsoil in a cultivated maize (Zea mays L.) field under 27-year PFM and four fertilization treatments. Over the course of the experiment, MBC content was significantly (P<0.05) higher in treatments of manure (M) and manure plus nitrogen (MN) compared to the no-fertilization (CK) and nitrogen (N) treatments, regardless of PFM. Compared to no PFM controls, PFM enhanced the decomposition of maize straw during summer (Day 60) in the M and MN treatments, exhibiting increases of 93.0% and 28.6% in straw-derived 13C-MBC and 80.4% and 82.9% in 13C-MBC/13C-SOC, respectively. Overall, both PFM and organic manure treatments improved soil fertility through microbe-mediated incorporation of C derived from newly-added maize straw. Our results indicate that microbial growth and activity are affected by the utilization of different C sources and most dramatically during early seasonal transition.

  3. The role of geological forensic methods for disaster assessment in Cigintung, West Java

    NASA Astrophysics Data System (ADS)

    Zakaria, Zufialdi; Mulyo, Agung; Muslim, Dicky; Jihadi, Luthfan H.

    2017-07-01

    Geological forensic is a branch of geology which study focused on deciphering facts by using geological science method mainly for legal purposes. The use of geological forensic may be applied to fulfill legal purposes of insurance agency, compensation decisions, and also criminal cases. In this study case, geotechnical and geological engineering are used beforehand in order to identify the cause of geological phenomenon by using quantitative assessment. Soil movement disaster can be caused by several aspects. The assessment of the disaster which is rapid creeping movement of soil is conducted in a disaster case of Cigintung, West Java. The impact of disaster is significant enough to affect up to 700 families, which have to be evacuated from the disaster site, due to massive infrastructural damage. The soil of the area is categorized into clay with high plasticity and silt with high plasticity, which liquid limit (LL) is vary between 77.77% - 98.41%. Activity number (A) of each soils are is vary between 0.964 - 2.192. Based on Skempton Chart is indicating montmorillonitic and illitic soils, and also the cause of their characteristic which is swelling if it is wet and shrinking if it is dry. Therefore, by using Seed method and William & Donovan Chart, we can conclude that soil in the area is categorized into expansive soil due to its high tendency of swelling-shrinking characteristic. Chronologically, the soil movement in Cigintung is initiated with first landslide which caused surface water to infiltrate easier into porous soil and reach the expansive soil below it. The second soil movement occurred rapidly and affected almost all infrastructures in the area in 12 hours timespan, due to the change of soil bearing capacity which caused by water infiltration. The accepted soil bearing capacity (qa) with factor of stability (FS) = 3 for square-shaped shallow foundation is between 3.66 T/m2 - 9.52 T/m2, while for circle-shaped foundation is between 3.67 T/m2 - 7.53 T/m2, and for column-shaped foundation is between 2.50 T/m2 - 4.27 T/m2. Based on that, if infrastructure development did not properly conducted, each person who allegedly who did it may have to pay compensation for the damage as the disaster might not force majeure (Article 87 verse (1) Regulation No. 32 Year 2009). And if not, government may have to compensate the damage as a part of disaster mitigation policy or evacuate the affected communities (Government Regulation No. 21 Year 2008).

  4. Direct Simple Shear Test Data Analysis using Jupyter Notebooks on DesignSafe-CI

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Esteva, M.; Brandenberg, S. J.

    2017-12-01

    Due to the large number of files and their complex structure, managing data generated during natural hazards experiments requires scalable and specialized tools. DesignSafe-CI (https://www.designsafe-ci.org/) is a web-based research platform that provides computational tools to analyze, curate, and publish critical data for natural hazards research making it understandable and reusable. We present a use case from a series of Direct Simple Shear (DSS) experiments in which we used DS-CI to post-process, visualize, publish, and enable further analysis of the data. Current practice in geotechnical design against earthquakes relies on the soil's plasticity index (PI) to assess liquefaction susceptibility, and cyclic softening triggering procedures, although, quite divergent recommendations on recommended levels of plasticity can be found in the literature for these purposes. A series of cyclic and monotonic direct simple shear experiments was conducted on three low-plasticity fine-grained mixtures at the same plasticity index to examine the effectiveness of the PI in characterization of these types of materials. Results revealed that plasticity index is an insufficient indicator of the cyclic behavior of low-plasticity fine-grained soils, and corrections for pore fluid chemistry and clay minerology may be necessary for future liquefaction susceptibility and cyclic softening assessment procedures. Each monotonic, or cyclic experiment contains two stages; consolidation and shear, which include time series of load, displacement, and corresponding stresses and strains, as well as equivalent excess pore-water pressure. Using the DS-CI curation pipeline we categorized the data to display and describe the experiment's structure and files corresponding to each stage of the experiments. Two separate notebooks in Python 3 were created using the Jupyter application available in DS-CI. A data plotter aids visualizing the experimental data in relation to the sensor from which it was generated. The analysis notebook allows combining outcomes of multiple tests, conducting diverse analyses to find critical parameters, and developing plots at arbitrary strain levels. Using the platform aids both researchers work with the data and those reusing it.

  5. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling.

    PubMed

    Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil

    2018-02-15

    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems.

  7. Seasonal variability of soil-gas radon concentration in central California

    USGS Publications Warehouse

    King, C.-Y.; Minissale, A.

    1994-01-01

    Radon concentrations in soil gas were measured by the track-etch method in 60 shallow holes, each 70 cm deep and supported by a capped plastic tube, along several major faults in central California during 1975-1985. This set of data was analyzed to investigate the seasonal variability of soil-gas radon concentration in an area which has various geological conditions but similar climate. The results show several different patterns of seasonal variations, but all of which can be largely attributed to the water-saturation and moisture-retention characteristics of the shallow part of the soil. During the rainy winter and spring seasons, radon tended to be confined underground by the water-saturated surface soil which had much reduced gas permeability, while during the sunny summer and autumn seasons, it exhaled more readily as the soil became drier and more permeable. At several sites located on creeping faults, the radon-variation patterns changed with time, possibly because of disturbance of site condition by fault movement. ?? 1994.

  8. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Proceedings of REMR Workshop on New Remedial Seepage Control Methods for Embankment-Dams and Soil Foundations Held in Vicksburg, Mississippi on 21-22 October 1986.

    DTIC Science & Technology

    1988-01-01

    otten us f or O ,,,¢0 pirprt-. CMerT s, lnrltdln the new microfine products, and acrvlites ,I1 W- -M -mrs a W- Wv - are the materials most suitable...availability - Ground freezing require a relatively Ismall amount of materials, principal!y steel (or aluminum), pipe, rubber hose and plastic tubing ...external confining pressure, or stresses imposed during installation. Plastic pipe should be avoided, except for inner tubing or surface piping, because

  9. State Paths of Clay Dominated Soils of Coastal Marshland: Scale Effect and Hydrodynamic Behaviour

    NASA Astrophysics Data System (ADS)

    Tojo Radimy, Raymond; Dudoignon, Patrick

    2017-12-01

    The paper is focused on clayey dominated sediments of coastal marshes of the West Atlantic coast of France because of their homogeneity in texture and mineralogy, and their vertical structure evolution from dried and solid state in surface down to saturated plastic-to-liquid state in depth. It proposes a “review” of the complementary petrographic and hydromechanical data obtained on theses clay dominated soils and a method of calculation for the relationships prevailing between the hydro-mechanical properties and microstructure behaviour of the clay matrices. This tool, based on the shrinkage curve of the clay matrix is applied as aid to the hydraulic management of marshlands regarding the soil-plant interactions.

  10. Micro-structure and Swelling Behaviour of Compacted Clayey Soils: A Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Ferber, Valéry; Auriol, Jean-Claude; David, Jean-Pierre

    In this paper, the clay aggregate volume and inter-aggregate volume in compacted clayey soils are quantified, on the basis of simple hypothesis, using only their water content and dry density. Swelling tests on a highly plastic clay are then interpreted by describing the influence of the inter-aggregate volume before swelling on the total volume of samples after swelling. This approach leads to a linear relation between these latter parameters. Based on these results, a description of the evolution of the microstructure due to imbibition can be proposed. Moreover, this approach enables a general quantification of the influence of initial water content and dry density on the swelling behaviour of compacted clayey soils.

  11. KSC-07pd2096

    NASA Image and Video Library

    2007-07-23

    KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers begin to remove the plastic covering from NASA's Phoenix Mars Lander. Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton

  12. Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    PubMed Central

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-01-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259–7898 kg ha−1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic. PMID:26192158

  13. Environmental effects of solar-thermal power systems. Environmental effects of heat transfer and storage fluids: plant toxicity and movement in soils. [Comparison of Therminol 66, Caloria HT43, and Dow 200

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishita, H.; Haug, R.M.

    1981-07-01

    Field experiments on the movement of several heat transfer and storage oils (Therminol 66, Caloria HT43, and Dow 200) in soil and on the plant toxicity of these materials were conducted at Nevada Test Site. These studies were conducted in an area where the soil is nonsaline and calcareous, and the vegetation is mostly Larrea tridentata with Oryzopsis hymenoides, Ambrosia dumosa, and Lycium andersonii. The abiotic factors (air and soil temperatures, rainfall, and soil moisture tension) were monitored during the experimental period and are discussed. The movement of the oils in the soil was determined in two ways - soilmore » columns in plastic boxes and bare-soil plots. In plastic boxes, Therminol 66 moved downward about 6.3 cm in 281 days. Dow 200 moved about 3.8 cm in 281 days and showed virtually no further downward movement to the end of experimental period (555 days). In the bare-soil plots, the limit of downward movement of the oils during the experimental period was 20.6 cm, 18.7, and 14.9 cm for Therminol 66, Caloria HT43, and Dow 200, respectively. The rate of movement was roughly 0.047 cm/day to 16.8-cm depth in 336 days, 0.067 cm/day to 18.7-cm depth in 281 days, and 0.044 cm/day to 14.9-cm depth in 336 days for Therminol 66, Caloria HT43, and Dow 200, respectively. In general, Caloria HT43 showed the greatest movement, while Dow 200 showed the least movement. Of the oils studied, Therminol 66 was the least toxic to native plants, whereas Dow 200 was the most toxic. The toxic effect on plants depended on the growth stage at which the plants were contaminated. Ambrosia dumosa contaminated in its dormant stage was more resistant to the toxic effect of Therminol 66 than when it was contaminated in its green, leafed stage.« less

  14. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    PubMed

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    NASA Astrophysics Data System (ADS)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  16. Increased urinary 8-hydroxy-2'-deoxyguanosine levels in workers exposed to di-(2-ethylhexyl) phthalate in a waste plastic recycling site in China.

    PubMed

    Wang, Qian; Wang, Li; Chen, Xi; Rao, Kai Min; Lu, Shao You; Ma, Sheng Tao; Jiang, Pu; Zheng, Dan; Xu, Shun Qing; Zheng, Hong Yan; Wang, Jian Shu; Yu, Zhi Qiang; Zhang, Rong; Tao, Yong; Yuan, Jing

    2011-07-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer used in industrial and diverse consumer products. Animal studies indicate DEHP caused developmental, reproductive, and hepatic toxicities. However, human studies of the potential effects of DEHP are limited. The exposed site with a history of over 20 years of waste plastic recycling was located in Hunan Province, China. The reference site without known DEHP pollution source was about 50 km far away from the exposed site. In this study, 181 workers working in plastic waste recycling and 160 gender-age matched farmers were recruited. DEHP concentrations in water and cultivated soil samples, serum thyroid-stimulating hormone, malondialdehyde (MDA), superoxide dismutase (SOD), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and micronuclei frequency in human capillary blood lymphocytes were analyzed. Mean levels of DEHP were greater in environment at the recycling site than at reference site (industry wastewater for the exposed: 42.43 μg/l; well water: 14.20 vs. 0.79 μg/l, pond water: 135.68 vs. 0.37 μg/l, cultivated soil: 13.07 vs. 0.81 mg/kg, p < 0.05 for all). The workers had higher median levels of MDA (3.80 vs. 3.14 nmol/ml) and urinary 8-OHdG (340.37 vs. 268.18 μmol/mol creatinine) and decreased SOD activities (112.15 vs. 123.82 U/ml) than the reference group (p < 0.01 for all). Multivariate analysis revealed that the history of working in waste plastic recycling was an independent risk factor for the increased urinary 8-OHdG levels in the male workers (p < 0.01). The occupational DEHP exposure might contribute to oxidative deoxyribonucleic acid damage in the male workers.

  17. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    PubMed

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated that deep water sources did not maintain E which sharply declined in September, but played an important role in the recovery of tree Psi. Differences in sources of water uptake among these species and their ecological implications on tree-grass dynamics and soil water in semiarid environments are discussed.

  18. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air. In an open hole, the VOC readings seem to be strongly dependent on the degree of diffusion and advection of soil gas VOCs into the open hole from the surrounding soil, a process that may vary with soil and wind conditions. Making measurements with the sealed hole does take some additional time (4-7 minutes after the hole is augered) compared to the open-hole technique (1-2 minutes). We used the rigid-plastic tube technique to survey for soil gas VOCs across the entire site, less than ? acre. Condensate has impacted at least 0.28 acres. The impacted area may extend northwest of the surveyed area.

  19. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  20. Soil reinforcement with recycled carpet wastes.

    PubMed

    Ghiassian, Hossein; Poorebrahim, Gholamreza; Gray, Donald H

    2004-04-01

    A root or fibre-reinforced soil behaves as a composite material in which fibres of relatively high tensile strength are embedded in a matrix of relatively plastic soil. Shear stresses in the soil mobilize tensile resistance in the fibres, which in turn impart greater strength to the soil. A research project has been undertaken to study the influence of synthetic fibrous materials for improving the strength characteristics of a fine sandy soil. One of the main objectives of the project is to explore the conversion of fibrous carpet waste into a value-added product for soil reinforcement. Drained triaxial tests were conducted on specimens, which were prepared in a cylindrical mould and compacted at their optimum water contents. The main test variables included the aspect ratio and the weight percentage of the fibrous strips. The results clearly show that fibrous inclusions derived from carpet wastes improve the shear strength of silty sands. A model developed to simulate the effect of the fibrous inclusions accurately predicts the influence of strip content, aspect ratio and confining pressure on the shear strength of reinforced sand.

  1. Study on stability of rake teeth inserting soil of chain rake type mulching film recovery machine based on Adams

    NASA Astrophysics Data System (ADS)

    Guo, Wensong; Jian, Jianming; San, Yunlong; Lui, Rui; Li, Gang; Hou, Shulin

    2017-08-01

    Traditional rake type mulching film recycling machine has the problem of difficulty in unloading and packing film, poor continuity of the work. In order to solve such problems, this paper designs a kind of chain rake type mulching film recycling machine which can realize continuous raking film, collecting film, transporting film, shaking off soil, unloading film. Rake teeth is the basic part of chain rake mulching recycling machine. The stability of rake teeth's inserting soil is an important factor to ensure recovery efficiency of the plastic film recovery. By virtual prototype simulation, this paper study the influence of different factors on the stability of rake teeth inserting soil. The results are as follows: The speed of chain rake has no significant effect on the stability of rake teeth inserting soil; Reducing resistance of rake teeth in the process of working, is conducive to improve the stability of rake teeth inserting soil; Appropriate increasing elastic modulus of chain rake, is helpful to enhance the stability of rake teeth inserting soil.

  2. Detection of Landmines by Neutron Backscattering: Effects of Soil Moisture on the Detection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baysoy, D. Y.; Subasi, M.

    2010-01-21

    Detection of buried land mines by using neutron backscattering technique (NBS) is a well established method. It depends on detecting a hydrogen anomaly in dry soil. Since a landmine and its plastic casing contain much more hydrogen atoms than the dry soil, this anomaly can be detected by observing a rise in the number of neutrons moderated to thermal or epithermal energy. But, the presence of moisture in the soil limits the effectiveness of the measurements. In this work, a landmine detection system using the NBS technique was designed. A series of Monte Carlo calculations was carried out to determinemore » the limits of the system due to the moisture content of the soil. In the simulations, an isotropic fast neutron source ({sup 252}Cf, 100 mug) and a neutron detection system which consists of five {sup 3}He detectors were used in a practicable geometry. In order to see the effects of soil moisture on the efficiency of the detection system, soils with different water contents were tested.« less

  3. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    NASA Astrophysics Data System (ADS)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  4. Comparison of three approaches to model grapevine organogenesis in conditions of fluctuating temperature, solar radiation and soil water content.

    PubMed

    Pallas, B; Loi, C; Christophe, A; Cournède, P H; Lecoeur, J

    2011-04-01

    There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Furthermore, the decrease in meristem activity when soil water is depleted does not result from source/sink imbalances.

  5. Household scale of greenhouse design in Merauke

    NASA Astrophysics Data System (ADS)

    Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni

    2018-05-01

    Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.

  6. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Definition of parameters characterising agricultural plastic waste (APW) quality. Black-Right-Pointing-Pointer Analysis of samples to determine APW quality for recycling or energy recovery. Black-Right-Pointing-Pointer Majority of APW samples from various countries have very good quality for recycling. Black-Right-Pointing-Pointer Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. Black-Right-Pointing-Pointer Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European researchmore » project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a 'very good quality' for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.« less

  7. The interaction of genotype and environment determines variation in the maize kernal ionome

    USDA-ARS?s Scientific Manuscript database

    Plants obtain soil-resident elements that support growth and metabolism via water-mediated flow due to transpiration and active transport processes. The availability of elements in the environment can interact with the genetic capacity of the organism to modulate element uptake through plastic adapt...

  8. Plastic tarping increased efficacy of MITC fumigants

    Treesearch

    Thomas D. Landis

    2006-01-01

    Soil fumigants is one of those topics that just won't seem to go away. When I first left college and started working in a nursery, I was idealistic and strongly anti=pesticide. However, it only took me one growing season of fighting weeds and diseases to call the fumigator.

  9. Combustible gas and biochar production from co-pyrolysis of agricultural plastic wastes and animal manures

    USDA-ARS?s Scientific Manuscript database

    Researchers report that manure-derived biochar has considerable potential both for improving soil quality and reducing water pollution. One of obstacles in obtaining manure biochar is its high energy requirement for pyrolyzing wet and low-energy-density animal manures. The combustible gas produced f...

  10. Hands-On Whole Science. What Rots?

    ERIC Educational Resources Information Center

    Markle, Sandra

    1991-01-01

    Presents activities on the science of garbage to help elementary students learn to save the earth. A rotting experiment teaches students what happens to apple slices sealed in plastic or buried in damp soil. Other activities include reading stories on the subject and conducting classroom composting or toxic materials projects. (SM)

  11. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the conventional treatment with coal fly ash. One of the most important parameters to evaluate the swelling potential, swelling pressure, dramatically decreased in samples treated with olive mill wastewater, from 220kPa in the original sample of bentonite to values under 60kPa after 30 days. Regarding the mineralogy of the treated soil, X-ray Diffraction tests suggested a noticeable reduction in the amount of smectite within the crystalline structure of treated soils. Moreover, the smectite 001 peak shifted to right indicating a smaller d-spacing and hence a more stable mineral structure. To sum up, the improvements achieved by adding olive mill wastewater were, to some extent, similar to those produced by lower dosages of conventional additives (Portland cement or coal fly ash). The first results obtained in this work therefore indicate promising properties of biomass for its use in stabilization of expansive soils. A further research is still necessary. Finally, it must be pointed out that the use of raw biomass proceeding from olive grove might considerably improve the waste management in olive oil industry while offering new opportunities to civil works.

  12. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-11-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.

  13. Integrated field lysimetry and porewater sampling for evaluation of chemical mobility in soils and established vegetation.

    PubMed

    Matteson, Audrey R; Mahoney, Denis J; Gannon, Travis W; Polizzotto, Matthew L

    2014-07-04

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment.

  14. Integrated Field Lysimetry and Porewater Sampling for Evaluation of Chemical Mobility in Soils and Established Vegetation

    PubMed Central

    Gannon, Travis W.; Polizzotto, Matthew L.

    2014-01-01

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment. PMID:25045915

  15. Interaction of the Bored Sand and Gravel Drain Pile with the Surrounding Compacted Loam Soil and Foundation Raft Taking into Account Rheological Properties of the Loam Soil and Non-Linear Properties of the Drain Pile

    NASA Astrophysics Data System (ADS)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Anzhelo, G. O.; Buslov, A. S.

    2018-01-01

    The task of the interaction of the sand and gravel drain pile with the surrounding loam soil after its preliminary deep compaction and formation of the composite ground cylinder from the drain pile and surrounding compacted loam soil (cells) is considered in the article. It is seen that the subsidence and carrying capacity of such cell considerably depends on physical and mechanical properties of the compacted drain piles and surrounding loam soil as well as their diameter and intercellular distance. The strain-stress state of the cell is considered not taking into account its component elements, but taking into account linear and elastic-plastic properties of the drain pile and creep flow of the surrounding loam soil. It is stated that depending on these properties the distribution and redistribution of the load on a cell takes place from the foundation raft between the drain pile and surrounding soil. Based on the results of task solving the formulas and charts are given demonstrating the ratio of the load between the drain pile and surrounding loam soil in time.

  16. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil.

    PubMed

    Paul, Andrea; Wander, Lukas; Becker, Roland; Goedecke, Caroline; Braun, Ulrike

    2018-05-12

    The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination, analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, we tested a macroscopic dimensioned near-infrared (NIR) process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/ soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 μm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber-optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils, and real-world samples, e.g., fermenter residue, suggests a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pretreatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method.

  17. Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption

    NASA Astrophysics Data System (ADS)

    Van Stempvoort, D. R.; Reardon, E. J.; Fritz, P.

    1990-10-01

    Both field and laboratory data indicate that there is no significant isotope fractionation of sulfate during sorption in upland forest Podzols. The dominant sulfate sorption process in these soils is adsorption onto mineral surfaces. In the Plastic Lake watershed, Dorset, Ontario, Canada, fractions of sulfate from Podzol B-horizons have the following mean isotope (%.) compositions: water soluble sulfate, δ34S = +6.4; δ18O = -5.3; bicarbonate-exchanged sulfate by two methods, δ34S = + 4.5 and + 3.4; δ18O =-6.2 and -5.6; dissolved sulfate in B-horizon soilwater seepage, δ34S = + 4.8; δ18O = -5.4. These data indicate that soil sorption enriches dissolved sulfate in 34S by approximately 1 ± 1%. and in 18O by 0 +- 1 %. relative to sorbed sulfate. Similar results were obtained by laboratory sorption of sulfate by prepared goethite, which is a mineral representative of soil sorption sites in acidic Podzols like the one at Plastic Lake. The mean fractionation between sorbed and dissolved sulfate was found to be - 0.3%. for 34S and 0.1 %. for 18O. Earlier literature has confused the term adsorption; in many cases the more general term sorption, or retention, should be used. Pronounced fractionation of S and O isotopes in sulfate by lake and ocean sediments has been attributed to "adsorption" or "retention" but is more likely the result of sulfate reduction. Apparently, at Earth-surface conditions the only substantial isotope shifts in sulfate occur during microbial processes.

  18. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    PubMed

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains.

  19. Methods, Computational Platform, Verification, and Application of Earthquake-Soil-Structure-Interaction Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Tafazzoli, Nima

    Seismic response of soil-structure systems has attracted significant attention for a long time. This is quite understandable with the size and the complexity of soil-structure systems. The focus of three important aspects of ESSI modeling could be on consistent following of input seismic energy and a number of energy dissipation mechanisms within the system, numerical techniques used to simulate dynamics of ESSI, and influence of uncertainty of ESSI simulations. This dissertation is a contribution to development of one such tool called ESSI Simulator. The work is being done on extensive verified and validated suite for ESSI Simulator. Verification and validation are important for high fidelity numerical predictions of behavior of complex systems. This simulator uses finite element method as a numerical tool to obtain solutions for large class of engineering problems such as liquefaction, earthquake-soil-structure-interaction, site effect, piles, pile group, probabilistic plasticity, stochastic elastic-plastic FEM, and detailed large scale parallel models. Response of full three-dimensional soil-structure-interaction simulation of complex structures is evaluated under the 3D wave propagation. Domain-Reduction-Method is used for applying the forces as a two-step procedure for dynamic analysis with the goal of reducing the large size computational domain. The issue of damping of the waves at the boundary of the finite element models is studied using different damping patterns. This is used at the layer of elements outside of the Domain-Reduction-Method zone in order to absorb the residual waves coming out of the boundary layer due to structural excitation. Extensive parametric study is done on dynamic soil-structure-interaction of a complex system and results of different cases in terms of soil strength and foundation embedment are compared. High efficiency set of constitutive models in terms of computational time are developed and implemented in ESSI Simulator. Efficiency is done based on simplifying the elastic-plastic stiffness tensor of the constitutive models. Almost in all the soil-structure systems, there are interface zones in contact with each other. These zones can get detached during the loading or can slip on each other. In this dissertation the frictional contact element is implemented in ESSI Simulator. Extended verification has been done on the implemented element. The interest here is the effect of slipping and gap opening at the interface of soil and concrete foundation on the soil-structure system behavior. In fact transferring the loads to structure is defined based on the contact areas which will affect the response of the system. The effect of gap openings and sliding at the interfaces are shown through application examples. In addition, dissipation of the seismic energy due to frictional sliding of the interface zones are studied. Application Programming Interface (API) and Domain Specific Language (DSL) are being developed to increase developer's and user's modeling and simulation capabilities. API describes software services developed by developers that are used by users. A domain-specific language (DSL) is a small language which usually focuses on a particular problem domain in software. In general DSL programs are translated to a common function or library which can be viewed as a tool to hide the details of the programming, and make it easier for the user to deal with the commands.

  20. Effects of leachate on geotechnical characteristics of sandy clay soil

    NASA Astrophysics Data System (ADS)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  1. Influences of composted hazelnut husk on some physical properties of soils.

    PubMed

    Zeytin, Serhat; Baran, Abdullah

    2003-07-01

    Some physical properties of clay loam and sandy loam soils amended with hazelnut husk (HH) were investigated. HH collected from hazelnut trees were dried, ground and composted for four months. Before use the composted material obtained was separated to three different aggregate sizes, smaller than 0.84 mm, 0.84-2.38 mm and bigger than 2.38 mm. Then these fractions were mixed with soil samples, at 0%, 1%, 2%, 4% and 8% by weight. Huzelnut husk compost-soil mixtures were placed to plastic pots and kept in an incubator at 25+/-5 degrees C for 45 and 90 days. At the end of incubation periods, water stable aggregate (WSA), hydraulic conductivity, total porosity, aeration porosity and macro- and micro-pore percentages of the mixtures were determined. Results obtained showed that composted HH increased the WSA, hydraulic conductivity, total porosity and macro-pore percentage in both clay loam and sandy loam soils depending on the incubation time and aggregate sizes.

  2. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN

    PubMed Central

    Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.

    2016-01-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237

  3. Soil development along a glacial chronosequence (Pré de Bar glacier, NW Italy)

    NASA Astrophysics Data System (ADS)

    Letey, Stéphanie; Freppaz, Michele; Filippa, Gianluca; Stanchi, Silvia; Cerli, Chiara; Pogliotti, Paolo; Zanini, Ermanno

    2010-05-01

    After the maximum expansion phase of the Little Ice Age, soils located in proglacial areas in the Italian Alps evolved over a time span of about 190 years. In the future, as a consequence of climate change, additional areas will become ice-free and therefore subject to pedogenesis. In such conditions, ice retreat time and topography are expected to play a major role among soil formation factors. Due to extreme environmental characteristics, soil evolution will be rather slow, and heavily influenced by severe soil loss phenomena (e.g. water erosion due to extreme rainfall event and snowmelt, avalanche erosion). We investigated the soil formation along a glacial chronosequence of an Alpine glacier foreland. The Pré de Bar glacier is located in North West Italy (Aosta Valley Region), in the Mont Blanc massif, between 3750 and 2150 m a.s.l. and it covers an area of 340 ha. The glacier was chosen because of the availability of old photographs documenting the glacier retreat phases starting from 1820. At the present time, the cumulative retreat length of the Pré de Bar glacier has reached 1600 m. Along this length, sampling sites were established at 6 successional stages from 6 to 189 years since deglaciation, from 2100 to 1880 m a.s.l.. Soil profiles were opened and sampled according to diagnostic horizons, then they were characterized by means of standard chemical and physical methods. Moreover, as recently deglaciated soils, characterized by incipient pedogenesis, may be particularly vulnerable from the physical point of view, the Atterberg Limits (LL, Liquid Limit; and PL, Plastic Limit) and the WAS (Water Aggregate Stability) index were determined, as indicators of soil physical quality. Soil samples were also subjected to organic matter density fractionation to assess the role of organic C in structure development. All the analyzed soils were classified as Lythic Cryorthents (higher elevation) or Typic Cryorthents (lower elevation) (USDA - Soil Taxonomy), with depth ranging between 25 and 40 cm, regularly increasing with years since deglaciation. A similar trend was observed for the organic C content. A true organo-mineral horizon (A) was first identified approximately 65 years after deglaciation. We observed a general increase of soil physical quality along the chronosequence. Recently deglaciated soils displayed higher vulnerability to aggregate and consistence losses, i.e. lower LL and scarce or no plasticity, while the profiles at lower altitudes, on the oldest surfaces, displayed better properties, i.e. more developed structure and consistence, even for relatively young soils. Therefore in this area the stabilization of the material after the deglaciation resulted relatively fast, with a reduction of its vulnerability to mass and erosive processes, through soil development. This research is carried out as part of "PERMANET - Permafrost Long-Term Monitoring Network", a EU co-funded Interreg Project under the Alpine Space Programme 2007-2013.

  4. Modeling Soil Moisture in Support of the Revegetation of Military Lands in Arid Regions.

    NASA Astrophysics Data System (ADS)

    Caldwell, T. G.; McDonald, E. V.; Young, M. H.

    2003-12-01

    The National Training Center (NTC), the Army's primary mechanized maneuver training facility, covers approximately 2600 km2 within the Mojave Desert in southern California, and is the subject of ongoing studies to support the sustainability of military lands in desert environments. Revegetation of these lands by the Integrated Training Areas Management (ITAM) Program requires the identification of optimum growing conditions to reestablish desert vegetation from seed and seedling, especially with regard to the timing and abundance of plant-available water. Water content, soil water potential, and soil temperature were continuously monitored and used to calibrate the Simultaneous Heat And Water (SHAW) model at 3 re-seeded sites. Modeled irrigation scenarios were used to further evaluate the most effective volume, frequency, and timing of irrigation required to maximize revegetation success and minimize water use. Surface treatments including straw mulch, gravel mulch, soil tackifier and plastic sheet

  5. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films.

    PubMed

    Medina Jaramillo, Carolina; Gutiérrez, Tomy J; Goyanes, Silvia; Bernal, Celina; Famá, Lucía

    2016-10-20

    Biodegradable and edible cassava starch-glycerol based films with different concentrations of yerba mate extract (0, 5 and 20wt.%) were prepared by casting. The plasticizing effect of yerba mate extract when it was incorporated into the matrix as an antioxidant was investigated. Thermal degradation and biodegradability of the obtained biofilms were also studied. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR), X-ray diffraction analysis (XRD), water absorbance, stability in different solutions and biodegradability studies were performed. The clear correlation among the results obtained from the different analysis confirmed the plasticizing effect of yerba mate extract on the starch-glycerol matrix. Also, the extract led to a decrease in the degradation time of the films in soil ensuring their complete biodegradability before two weeks and to films stability in acidic and alkaline media. The plasticizing effect of yerba mate extract makes it an attractive additive for starch films which will be used as packaging or coating; and its contribution to an earlier biodegradability will contribute to waste reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Superfund Record of Decision (EPA Region 5): New Brighton/Arden Hills (TCAAP), Twin Cities Army Ammunition Plant, MN. (Seventh remedial action), August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-11

    The New Brighton/Arden Hills site, also known as the Twin Cities Army Ammunition Plant (TCAAP) site, is in New Brighton, Minnesota. Past disposal of ammunition manufacturing wastes onsite resulted in contamination of ground water beneath and downgradient of the site. A total of 14 waste-disposal locations have been identified and assigned as Sites A through K. During remedial investigations at Site D, soil was discovered to be contaminated with PCBs and other organic and metal contaminants. A soil-gas extraction system was implemented to remove the source of volatile organic contamination and reduce the potential of migration to ground water. Inmore » implementing the soil gas extraction system, PCB-contaminated soil was removed, stockpiled near Site D, and sealed with a plastic-liner material. The interim remedy addresses the treatment and disposal of contaminated soil that is stockpiled near Site D. The primary contaminants of concern affecting the soil are VOCs including TCE and PCE, other organics including PCBs, and metals including arsenic and lead.« less

  7. Effects of Palm Kernel Shell Ash on Lime-Stabilized Lateritic Soil

    NASA Astrophysics Data System (ADS)

    Nnochiri, Emeka Segun; Ogundipe, Olumide M.; Oluwatuyi, Opeyemi E.

    2017-09-01

    The research investigated the effects of palm kernel shell ash (PKSA) on lime-stabilized lateritic soil. Preliminary tests were performed on three soil samples, i.e., L1, L2 and L3 for identification; the results showed that L1 was A-7-6, L2 was A-7-6, and L3 was A-7-6. The optimum amount of lime for each of the soil samples was achieved. The optimum amount for L1 was 10%, for L2, 8% and for L3, 10%; at these values they recorded the lowest plasticity indexes. The further addition of PKSA was performed by varying the amount of PKSA and lime added to each of the soil samples. The addition of 4% PKSA+ 6% lime, the addition of 4% PKSA + 4% lime, and the addition of 4% PKSA + 6% lime increased the California Bearing Ratio (CBR) to the highest values for L1, L2 and L3 from 8.20%. It was concluded that PKSA can be a suitable complement for lime stabilization in lateritic soil.

  8. Nonlinear Acoustic Experiments Involving Landmine Detection: Connections with Mesoscopic Elasticity and Slow Dynamics in Geomaterials

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Sabatier, James M.

    2006-05-01

    The vibration interaction between the top-plate of a buried VS 2.2 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. When airborne sound at two primary frequencies f1 and f2 (closely spaced near resonance) undergo acoustic-to-seismic coupling, (A/S), interactions with the mine and soil generate combination frequencies | n f1 ± m f2 | which affect the surface vibration velocity. Profiles at f1, f2, f1 -(f2 - f1) and f2 +(f2 - f1) exhibit single peaks whereas other combination frequencies may involve higher order modes. A family of increasing amplitude tuning curves, involving the surface vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding resonant frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. New experiments for a buried VS 1.6 anti-tank landmine and a "plastic drum head" mine simulant behave similarly. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Support by U.S. Army RDECOM CERDEC, NVESD, Fort Belvoir, VA.

  9. Clonal foraging in perennial wheatgrasses: A strategy for exploiting patchy soil nutrients

    USGS Publications Warehouse

    Humphrey, L. David; Pyke, David A.

    1997-01-01

    1. Foraging by means of plasticity in placement of tillers in response to low- and high-nutrient patches was examined in the rhizomatous wheatgrass Elymus lanceolatus ssp. lanceolatus. Its ability to exploit soil nutrient patches was compared to that of the closely related but caespitose E. lanceolatus ssp. wawawaiensis.2. Clones of 14 genets of each taxon were planted in boxes consisting of two 30 × 30 cm cells: the `origin cell' where clones were planted, and the adjacent `destination cell', with each cell containing soil with either low or high levels of nutrients.3. The rhizomatous taxon, which can produce intravaginal, short-rhizome and long-rhizome tillers, preferentially produced short-rhizome and intravaginal tillers in high-nutrient destination cells. Effects of nutrient status of the origin cell as well as of the destination cell on total tiller numbers indicated clonal integration, yet tiller placement responded to local conditions.4. Roots of both taxa accessed nutrients in destination cells (the caespitose subspecies by root growth only), and above-ground biomass of both taxa increased to a similar extent with high-nutrient destination cells. With the patch sizes used in this experiment, root growth was as important as ramet placement in exploiting nutrients in destination cells. 5 There was no relationship between degree of plasticity in ramet placement and biomass of the clone when high-nutrient destination cells were present.

  10. Final Environmental Assessment for Beddown of 24th Air Force

    DTIC Science & Technology

    2009-08-01

    mulch, straw , plastic netting, or a combination of these protective coverings • Implementation of site grading procedures to limit the time soils are...applied paint. This change was made under the Consumer Safety Act of 1977, P.L. 101-608, as implemented by 16 CFR Part 1303. DOD implemented a ban of

  11. Application of laboratory fungal resistance tests to solid wood and wood-plastic composite

    Treesearch

    Craig Merrill Clemons; Rebecca E. Ibach

    2003-01-01

    The fungal resistance of high density polyethylene filled with 50% wood flour was investigated using laboratory soil block tests. Modifications to standard test methods were made to increase initial moisture content, increase exposure surface area, and track moisture content, mechanical properties, and weight loss over the exposure period. Mechanical properties...

  12. Improved Properties of Medium-Density Particleboard Manufactured from Saline Creeping Wild Rye and HDPE Plastic

    USDA-ARS?s Scientific Manuscript database

    Creeping Wild Rye (CWR), Leymus triticoides, is a salt-tolerant perennial grass used for mitigating the problems of saltilization and alkalization in drainage irrigation water and soil to minimize potential pollution of water streams. In this study, CWR was used as a raw material to manufacture med...

  13. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P. B.

    1984-01-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  14. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem.

    PubMed

    Kong, Xiao; Jin, Decai; Jin, Shulan; Wang, Zhigang; Yin, Huaqun; Xu, Meiying; Deng, Ye

    2018-04-10

    Phthalate esters (PAEs) are a type of plasticizer that has aroused great concern due to their mutagenic, teratogenic, and carcinogenic effects, wherefore dibutyl phthalate (DBP) and other PAEs have been listed as priority pollutants. In this study, the impacts of DBP on a soil-vegetable ecosystem were investigated. The results showed that DBP could accumulate within vegetable tissues, and the accumulative effect was enhanced with higher levels of DBP contamination in soils. DBP accumulation also decreased vegetable quality in various ways, including decreased soluble protein content and increased nitrate content. The diversity of bacteria in soils gradually decreased with increasing DBP concentration, while no clear association with endophytic bacteria was observed. Also, the relative abundance, structure, and composition of soil bacterial communities underwent successional change during the DBP degradation period. The variation of bulk soil bacterial community was significantly associated with DBP concentration, while changes in the rhizosphere soil bacteria community were significantly associated with the properties of both soil and vegetables. The results indicated that DBP pollution could increase the health risk from vegetables and alter the biodiversity of indigenous bacteria in soil-vegetable ecosystems, which might further alter ecosystem functions in agricultural fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. To determine the slow shearing rate for consolidation drained shear box tests

    NASA Astrophysics Data System (ADS)

    Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah

    2017-08-01

    Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.

  16. An analysis of the mechanism of a reactivated basaltic landslide site under varying rate of displacement in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Dabycharun, Bhoopendra; Kuwano, Takeshi; Ichikawa, Kensuke; Fukuoka, Hiroshi

    2017-04-01

    During the past 20 years, the continuous weathering of the soil on sloping areas has greatly contributed to landslide-prone geo-environment in Mauritius. Consequently, the landslide areas became a matter of interest for the government of Mauritius. This research has been focused on an existing landslide area namely Chitrakoot in Mauritius which is 1.8 km2 and was monitored by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius from 2012 to 2015. In 2005, 54 houses and infrastructures were affected with the activation of the landslide and which further reactivated in 2006 damaging another 14 houses. During the investigation conducted by JICA's Experts, a landslide block of 300 m by 150 m in a highly populated zone was found to be unstable. To monitor the behaviour of the landslide, two extensometers were installed together with piezometers. The extensometers revealed that the unstable block kept moving after the event with accelerating movement during and after a heavy rainfall and cyclonic conditions. Moreover, the piezometers concluded that the groundwater rises above the ground surface in the rainy season. To examine the mechanism of the reactivated landslide, disturbed samples were taken from the shear zone and were tested in the laboratories of Niigata University, Japan. The borehole core logging data obtained from 6 boreholes showed that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. Atterberg limits test for the soil showed that the soil had a liquid limit of 67.0%, plastic limit of 27.4 % and plasticity index of 39.26. The soil being of low plasticity possesses few inter-particle contact points and hence low shear stresses. Ring shear test was conducted under dry condition, fully saturated drained and undrained condition to examine the shear behaviour of the soil. Under the dry condition, the residual friction angle (φ) and the cohesion (c) were found to be 18.8o and 8.0 kPa respectively whereas, under the fully saturated condition, the residual friction angle (φ) and the cohesion (c) were found to be 12.0o and 5.0 kPa respectively. Ring shear test was conducted under increasing shear speed from 0.01mm/min to 0.3 mm/min to determine the mechanism of the accelerating movement of the soil. The rate effect test concluded that the soils showed positive rate effect as the stress ratio under faster shear rate was higher than the one under slower rate. Thus, under a high degree of saturation, the landslide will continue to accelerate with the generation of excess pore water pressure while shear resistance will be recovered at high speeds. Intermittent movement will be repeated with this type of mechanism.

  17. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri.

    PubMed

    Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc

    2013-01-01

    Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations.

  18. Soil Calcium Availability Influences Shell Ecophenotype Formation in the Sub-Antarctic Land Snail, Notodiscus hookeri

    PubMed Central

    Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc

    2013-01-01

    Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS- ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations. PMID:24376821

  19. The mechanics and energetics of soil bioturbation by earthworms and plant roots - Impacts on soil structure generation and maintenance

    NASA Astrophysics Data System (ADS)

    Or, Dani; Ruiz, Siul; Schymanski, Stanlislaus

    2015-04-01

    Soil structure is the delicate arrangement of solids and voids that facilitate numerous hydrological and ecological soil functions ranging from water infiltration and retention to gaseous exchange and mechanical anchoring of plant roots. Many anthropogenic activities affect soil structure, e.g. via tillage and compaction, and by promotion or suppression of biological activity and soil carbon pools. Soil biological activity is critical to the generation and maintenance of favorable soil structure, primarily through bioturbation by earthworms and root proliferation. The study aims to quantify the mechanisms, rates, and energetics associated with soil bioturbation, using a new biomechanical model to estimate stresses required to penetrate and expand a cylindrical cavity in a soil under different hydration and mechanical conditions. The stresses and soil displacement involved are placed in their ecological context (typical sizes, population densities, burrowing rates and behavior) enabling estimation of mechanical energy requirements and impacts on soil organic carbon pool (in the case of earthworms). We consider steady state plastic cavity expansion to determine burrowing pressures of earthworms and plant roots, akin to models of cone penetration representing initial burrowing into soil volumes. Results show that with increasing water content the strain energy decreases and suggest trade-offs between cavity expansion pressures and energy investment for different root and earthworm geometries and soil hydration. The study provides a quantitative framework for estimating energy costs of bioturbation in terms of soil organic carbon or the mechanical costs of soil exploration by plant roots as well as mechanical and hydration limits to such activities.

  20. Closed system of coupling effects in generalized thermo-elastoplasticity

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2016-05-01

    In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.

  1. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    PubMed

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-02

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (p<0.01). Persistence of E. coli in spring was correlated with higher maximum and minimum temperatures in this season, and more regular rainfall. The survival model gave very good fits for the progression of E. coli concentrations in the phyllosphere over time (R(2)=0.88 ± 0.12). In the spring season, decline rates of E. coli counts were faster (2013 p=0.18; 2014 p<0.005) for the bare ground-cultivated lettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (p<0.005). Bacteria fluctuated more, and persisted longer, in soil compared to lettuce phyllosphere, and mulch type was a factor for fecal coliform levels (p<0.05), with higher counts retrieved under plastic mulches in all trials, and higher enterococci levels under straw in fall 2014 (p<0.05). This study demonstrates that mulches used in lettuce production may impact the fate of enteric bacteria in soil or on lettuce, most likely in relation to soil moisture retention, and other weather-related factors, such as temperature and rainfall. The data suggest that the time between exposure to a source of enteric bacteria and harvesting of the crop is season dependent, which has implications for determining best harvest times. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Simulating root-induced rhizosphere deformation and its effect on water flow

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  3. Designing greener plasticizers: Effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers.

    PubMed

    Erythropel, Hanno C; Brown, Tobin; Maric, Milan; Nicell, Jim A; Cooper, David G; Leask, Richard L

    2015-09-01

    The ubiquitous presence of the plasticizer di (2-ethylhexyl) phthalate (DEHP) in the environment is of concern due to negative biological effects associated with it and its metabolites. In particular, the metabolite mono (2-ethylhexyl) phthalate (MEHP) is a potential endocrine disruptor. Earlier work had identified the diester di (2-ethylhexyl) maleate (DEHM) as a potential greener candidate plasticizer to replace DEHP, yet its biodegradation rate was reported to be slow. In this study, we modified the side chains of maleate diesters to be linear (i.e., unbranched) alkyl chains that varied in length from ethyl to n-octyl. The plasticization efficiency of these compounds blended into PVC at 29 wt.% increased with the overall length of the molecule, but all compounds performed as well as or better than comparable samples with DEHP. Tests conducted with the equally long DEHM and dihexyl maleate (DHM) showed that branching has no effect on glass transition temperature (Tg) reduction efficiency. Biodegradation experiments with the common soil bacterium Rhodococcus rhodocrous in the presence of the plasticizer showed acceptable hydrolysis rates of maleates with unbranched side chains, while the branched DEHM showed almost no degradation. The addition of hexadecane as auxiliary carbon source improved hydrolysis rates. Temporary buildup of the respective monoester of the compounds were observed, but only in the case of the longest molecule, dioctyl maleate (DOM), did this buildup lead to growth inhibition of the bacteria. Maleates with linear side chains, if designed and tested properly, show promise as potential candidate plasticizers as replacements for DEHP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt

    NASA Astrophysics Data System (ADS)

    El Shinawi, A.

    2017-06-01

    Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.

  5. Peat soils stabilization using Effective Microorganisms (EM)

    NASA Astrophysics Data System (ADS)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  6. Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research

    PubMed Central

    Cazzola, Pietro; Cena, Agostino; Ghignone, Stefano; Abete, Maria C; Andruetto, Sergio

    2004-01-01

    Background Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. Methods The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO3-, NH4+, PO4--- and K+). Results Contaminated soils treated with an acid solution of ions NO3-, PO4--- and K+, undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. Conclusion The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum. PMID:15132749

  7. Genetic by environment interactions affect plant–soil linkages

    PubMed Central

    Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

  8. The variation of the unitary stresses occurring in the working part in relation to the type of soil, using the finite element method

    NASA Astrophysics Data System (ADS)

    Chiorescu, E.; Chiorescu, D.

    2017-08-01

    Agriculture brings a major contribution to the sustainable development of the economy, providing food to people. Because of the continuous growth of the population, there is an ever increasing need of food worldwide. For this reason, it is necessary to study the contact between the soil and the active tool of the cultivators, in relation to the type of soil and its parameters. The physical-mechanical characteristics of the soils are influenced by the moving velocity of the working part, as well as by the humidity of the soil. The humidity triggers the change of the friction coefficient at the soil-steel contact, being of significant importance for the decrease of the working resistance of the working tools and responsible for increasing exploitation costs. The model used for the soil has a non-linear plastic behavior of the Drucker Prager type, being different from the Mises model. The programming software Ansys was used for the simulation with the finite element method, allowing the study of the behavior of the active working part, the normal stress being analyzed in real conditions, at various depths and velocities for a soil with a clay-sandy texture.

  9. Novel potentiometric sensors for the determination of the dinotefuran insecticide residue levels in cucumber and soil samples.

    PubMed

    Abdel-Ghany, Maha F; Hussein, Lobna A; El Azab, Noha F

    2017-03-01

    Five new potentiometric membrane sensors for the determination of the dinotefuran levels in cucumber and soil samples have been developed. Four of these sensors were based on a newly designed molecularly imprinted polymer (MIP) material consisting of acrylamide or methacrylic acid as a functional monomer in a plasticized PVC (polyvinyl chloride) membrane before and after elution of the template. A fifth sensor, a carboxylated PVC-based sensor plasticized with dioctyl phthalate, was also prepared and tested. Sensor 1 (acrylamide washed) and sensor 3 (methacrylic acid washed) exhibited significantly enhanced responses towards dinotefuran over the concentration range of 10 -7 -10 -2 molL -1 . The limit of detection (LOD) for both sensors was 0.35µgL -1 . The response was near-Nernstian, with average slopes of 66.3 and 50.8mV/decade for sensors 1 and 3 respectively. Sensors 2 (acrylamide non-washed), 4 (methacrylic acid non-washed) and 5 (carboxylated-PVC) exhibited non-Nernstian responses over the concentration range of 10 -7 -10 -3 molL -1 , with LODs of 10.07, 6.90, and 4.30µgL -1 , respectively, as well as average slopes of 39.1, 27.2 and 33mV/decade, respectively. The application of the proposed sensors to the determination of the dinotefuran levels in spiked soil and cucumber samples was demonstrated. The average recoveries from the cucumber samples were from 7.93% to 106.43%, with a standard deviation of less than 13.73%, and recoveries from soil samples were from 97.46% to 108.71%, with a standard deviation of less than 10.66%. The sensors were applied successfully to the determination of the dinotefuran residue, its rate of disappearance and its half-life in cucumbers in soil in which a safety pre-harvest interval for dinotefuran was suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest.

    PubMed

    Barbeta, Adrià; Mejía-Chang, Monica; Ogaya, Romà; Voltas, Jordi; Dawson, Todd E; Peñuelas, Josep

    2015-03-01

    Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. © 2014 John Wiley & Sons Ltd.

  11. Evaluation of the environmental plasticity in the xerohalophyte Zygophyllum fabago L. for the phytomanagement of mine tailings in semiarid areas.

    PubMed

    Párraga-Aguado, I; González-Alcaraz, M N; López-Orenes, A; Ferrer-Ayala, M A; Conesa, H M

    2016-10-01

    Phytomanagement by phytostabilisation of metal(loid)-enriched mine tailings in semiarid areas has been proposed as a suitable technique to promote a self-sustainable vegetal cover for decreasing the spread of polluted particles by erosion. The goal of this work was to evaluate the contribution of a pioneer plant species (Zygophyllum fabago) in ameliorating the soil conditions at two mine tailings piles located in a semiarid area in Southeast Spain. The ecophysiological performance of this plant species compared to a control population was assessed by analysing the nutritional and ecophysiological status. The presence of Z. fabago in mine tailings enhanced the soil microbial activity and increased the content of soil organic carbon within the rhizosphere (approx. 50% increasing). Metal(loid) concentrations in the tailings may play a minor role in the establishment of Z. fabago plants due to the low metal(loid) availability in the tailings (low CaCl2-extractable concentrations) and low uptake in the plants (e.g. up to 300 mg kg(-1) Zn in leaves). The lower δ13C and δ18O in the plants sampled at both tailings compared to the control ones may indicate softer stomatal regulation in relation to the control site plants and therefore lower WUE [corrected]. The Z. fabago plants may skip some energy-demanding mechanisms such as stomatal control and/or proline synthesis to overcome the environmental stresses posed at the tailings. The Z. fabago plants revealed high plasticity of the species for adapting to the low fertility soil conditions of the tailings and to overcome constraints associated to the dry season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Foliage response of young central European oaks to air warming, drought and soil type.

    PubMed

    Günthardt-Goerg, M S; Kuster, T M; Arend, M; Vollenweider, P

    2013-01-01

    Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. The overwintering biology of the acorn weevil, Curculio glandium in southwestern Ontario.

    PubMed

    Udaka, Hiroko; Sinclair, Brent J

    2014-08-01

    The acorn weevil, Curculio glandium, is a widespread predator of acorns in eastern North America that overwinters in the soil as a larva. It is possible that low temperatures limit its northern geographic range, so we determined the cold tolerance strategy, seasonal variation in cold tolerance, and explored the physiological plasticity of overwintering larvae. Weevil larvae were collected from acorns of red and bur oak from Pelee Island, southwestern Ontario in fall 2010 and 2011. C. glandium larvae are freeze avoidant and larvae collected from bur oak acorns had lower supercooling points (SCPs: -7.6±0.36°C, LT50: -7.2°C) than those collected from red oak acorns (SCPs: -6.1±0.40°C, LT50: -6.1°C). In the winter of 2010-2011, SCPs and water content decreased, however these changes did not occur in 2011-2012, when winter soil temperatures fluctuated greatly in the absence of the buffering effect of snow. To examine whether larvae utilize cryoprotective dehydration, larvae from red oak acorns were exposed to -5°C in the presence of ice for seven days. These conditions decreased the SCP without affecting water content, suggesting that SCP and water content are not directly coupled. Finally, long-term acclimation at 0°C for six weeks slightly increased cold tolerance but also did not affect water content. Thus, although larval diet affects cold tolerance, there is limited plasticity after other treatments. The soil temperatures we observed were not close to lethal limits, although we speculate that soil temperatures in northerly habitats, or in years of reduced snow cover, has the potential to cause mortality in the field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Architectural plasticity in young Eucalyptus marginata on restored bauxite mines and adjacent natural forest in south-western Australia.

    PubMed

    Bleby, Timothy M; Colquhoun, Ian J; Adams, Mark A

    2009-08-01

    The aboveground architecture of Eucalyptus marginata (Jarrah) was investigated in chronosequences of young trees (2.5, 5 and 10 m height) growing in a seasonally dry climate in a natural forest environment with intact soils, and on adjacent restored bauxite mine sites on soils with highly modified A and B horizons above an intact C horizon. Compared to forest trees, trees on restored sites were much younger and faster growing, with straighter, more clearly defined main stems and deeper, narrower crowns containing a greater number of branches that were longer, thinner and more vertically angled. Trees on restored sites also had a higher fraction of biomass in leaves than forest trees, as indicated by 20-25% thicker leaves, 30-70% greater leaf area, 10-30% greater leaf area to sapwood area ratios and 5-30% lesser branch Huber values. Differences in crown architecture and biomass distribution were consistent with putatively greater soil-water, nutrient and light availability on restored sites. Our results demonstrate that under the same climatic conditions, E. marginata displays a high degree of plasticity of aboveground architecture in response to the net effects of resource availability and soil environment. These differences in architecture are likely to have functional consequences in relation to tree hydraulics and growth that, on larger scales, is likely to affect the water and carbon balances of restored forest ecosystems. This study highlights substrate as a significant determinant of tree architecture in water-limited environments. It further suggests that the architecture of young trees on restored sites may need to change again if they are to survive likely longer-term changes in resource availability.

  15. Evaluation of subsoil competence for foundation studies at site III of the Delta State University, Nigeria

    NASA Astrophysics Data System (ADS)

    Ofomola, M. O.; Iserhien-Emekeme, R. E.; Okocha, F. O.; Adeoye, T. O.

    2018-06-01

    An integrated geophysical and geotechnical investigation has been carried out at site III of the Delta State University, Abraka, Nigeria. This took place in a bid to generate information on the competence of the soil in withstanding stress and strain emanating from overburden or pore pressure, swelling, cracking and other anthropogenic activity in relation to civil engineering and building structures. An electromagnetic method employing the very low frequency (VLF) technique, and electrical resistivity employing the Wenner and the vertical electrical sounding techniques were used for this study. Soil samples were also collected at depth for geotechnical analysis. Isoresistivity slices generated from the data of 33 VES stations at 1 m showed generally low resistivity values of subsurface earth materials, classified as clayey sand, sandy clay or clay, and ranging from 60-300 Ωm. However, at depths of 3 and 5 m, the result showed a generally high resistivity distribution with values ranging from 500-6000 Ωm, which is an indication of competent Earth materials of fine to coarse grain sand. The results of the liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction and clay content of the soil samples vary from 10%-17%, 18%-29%, 3%-15%, 45-95 KN m-2, 31°-35° and 14%-22% respectively. The low cohesion, low clay content and high angle of internal friction of the soil at the encountered depth makes it competent for engineering foundation. It is concluded that the subsoil in the area, starting at a depth of 3 m, is a competent material for hosting engineering structures.

  16. Estimation of Stresses in a Dry Sand Layer Tested on Shaking Table

    NASA Astrophysics Data System (ADS)

    Sawicki, Andrzej; Kulczykowski, Marek; Jankowski, Robert

    2012-12-01

    Theoretical analysis of shaking table experiments, simulating earthquake response of a dry sand layer, is presented. The aim of such experiments is to study seismic-induced compaction of soil and resulting settlements. In order to determine the soil compaction, the cyclic stresses and strains should be calculated first. These stresses are caused by the cyclic horizontal acceleration at the base of soil layer, so it is important to determine the stress field as function of the base acceleration. It is particularly important for a proper interpretation of shaking table tests, where the base acceleration is controlled but the stresses are hard to measure, and they can only be deduced. Preliminary experiments have shown that small accelerations do not lead to essential settlements, whilst large accelerations cause some phenomena typical for limit states, including a visible appearance of slip lines. All these problems should be well understood for rational planning of experiments. The analysis of these problems is presented in this paper. First, some heuristic considerations about the dynamics of experimental system are presented. Then, the analysis of boundary conditions, expressed as resultants of respective stresses is shown. A particular form of boundary conditions has been chosen, which satisfies the macroscopic boundary conditions and the equilibrium equations. Then, some considerations are presented in order to obtain statically admissible stress field, which does not exceed the Coulomb-Mohr yield conditions. Such an approach leads to determination of the limit base accelerations, which do not cause the plastic state in soil. It was shown that larger accelerations lead to increase of the lateral stresses, and the respective method, which may replace complex plasticity analyses, is proposed. It is shown that it is the lateral stress coefficient K0 that controls the statically admissible stress field during the shaking table experiments.

  17. ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.

    PubMed

    Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G

    2014-01-01

    In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.

  18. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China.

    PubMed

    Tian, Kang; Hu, Wenyou; Xing, Zhe; Huang, Biao; Jia, Mengmeng; Wan, Mengxue

    2016-12-01

    The evaluation of heavy metals (HMs) in greenhouse soils is crucial for both environmental monitoring and human health; thus, it is imperative to determine their concentrations, identify their sources and assess their potential risks. In this study, eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 167 surface soils were investigated in two representative greenhouse vegetable systems of China: perennial solar greenhouse (SG) and seasonal plastic greenhouse (PG). The results indicated accumulations of Cd, Cu, Hg and Zn in the SG soils and Cd, Pb, Hg and Zn in the PG soils, with higher concentrations than the background values. In particular, Cd and Hg exhibited high levels of pollution under both GVP systems due to their positive Igeo values. Principle component analysis (PCA) and correlation analysis suggested that Cd, Cu, Hg and Zn in the SG soils and Cd, Hg and Zn in the PG soils were mainly related to intensive farming practices; Pb in the PG soils was significantly affected by atmospheric deposition. The results showed that soil characteristics, in particular soil organic matter, total nitrogen and total phosphorus, exerted significant influence on Hg, Cu, Cd, and Zn under the SG system. However, the HMs in the PG soils were weakly affected by soil properties. Overall, this study provides comparative research on the accumulation, potential risks and sources of HMs in two typical greenhouse soils in China, and our findings suggest that, Cd and Hg in both greenhouse soils could potentially represent environmental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards

    NASA Astrophysics Data System (ADS)

    Novelli, Antonio; Tarantino, Eufemia

    2015-06-01

    Plastic covering is a common practice in agricultural fields. From an agronomic point of view, plastic coverings offer many advantages against unfavourable growing conditions. This explains their widespread utilization with consequent positive impact on local economy. On the other hand, plasticulture raises both environmental and landscape issues. In the Apulia Region (Italy) the wide implementation of such practice generally relates to vineyard cultivation. Continuous vineyard protection has resulted in negative effects on the hydrogeological balance of soils, causing a deep modification of the traditional rural landscape and therefore affecting its quality. To guarantee both the protection of local economy as well as the preservation of local environment and landscape features, a detailed site mapping of the areas involved is necessary. Indeed, the quantification of this phenomenon is essential in the periodic updating of the existing land use database and in the development of local policies. In this study we evaluate the potential of the novel Thermal Infrared Sensor bands (TIRS) provided by the LANDSAT 8 mission in plasticulture discrimination. Using the evident anomaly retrieved in the study area on the Quality Assessment (QA) band, a fast procedure involving TIRS data was developed, proposing a new index (Plastic Surface Index- PSI) able to emphasize plasticulture. For the aim of this study, two different acquisition dates on a test area in the Apulia region (Italy) were analyzed, one in the growing season with high plastic covering density and one in the post-harvest period with low plastic cover density.

  20. In-situ liquid storage capacity measurement of subsurface wastewater absorption system products.

    PubMed

    Quisenberry, Virgil; Brown, Philip; Smith, Bill; Hallahan, Dennis F

    2006-11-01

    A method is presented for measuring the in-situ liquid storage capacity of subsurface wastewater infiltration system (SWIS) products. While these products vary in composition, geometry, and porosity, they all have the same function: to provide a conduit for the flow of effluent from a septic tank to and through a trench so that infiltration into the soil can occur. A functional SWIS must also provide temporary liquid storage. Storage is necessary for periods when discharge from the septic tank exceeds the infiltration rate of the soil. Storage is also important during times when the soil in and around the trench is saturated. Many states now have regulatory requirements pertaining to storage volume, and these requirements commonly establish the traditional gravel-pipe system as the standard for minimally acceptable volume. Raliable comparisons between various alternative products and gravel have been difficult or impossible, because there has been no standard method for measuring storage volume. Some products have been evaluated under realistic field conditions; others have been evaluated under theoretical or ideal conditions. The protocol developed by the study reported here can serve as a common, accurate basis for comparisons. A 3-foot-deep trench was excavated, and the bottom was leveled. Markers (nails or rods) were attached to the products to indicate the invert and full-volume heights. The products were then enclosed in plastic, placed in a trench, and covered with soil. A 4-inch-diameter pipe extended from the product to the surface to allow metered additions of water into the products and precise determinations when the systems had been filled to capacity. Four plastic chambers, three expanded polystyrene (ESP) products, two multipipe arrangements, and a standard gravel-pipe system were evaluated. The standard gravel-pipe system held 10.2 gal/ft Three of the four plastic chambers stored from 100 to 130 percent of what the standard system held. The multipipe systems held 80 and 90 percent of the standard. The ESP bundles held less than 75 percent of the standard, with the most commonly used configuration storing about 60 percent. The rigid products were found to store amounts that agreed with their companies' reported values. The ESP products retained less than company reported values. These differences illustrate the need for a standard protocol for measuring storage volume.

  1. Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Olayanju, G. M.; Mogaji, K. A.; Lim, H. S.; Ojo, T. S.

    2017-06-01

    The determination of parameters comprising exact depth to bedrock and its lithological type, lateral changes in lithology, and detection of fractures, cracks, or faults are essential to designing formidable foundations and assessing the integrity of civil engineering structures. In this study, soil and site characterization in a typical hard rock geologic terrain in southwestern Nigeria were carried out employing integrated geophysical and geotechnical techniques to address tragedies in civil engineering infrastructural development. The deployed geophysical measurements involved running both very low frequency electromagnetic (VLF-EM) and electrical resistivity methods (dipole-dipole imaging and vertical electrical sounding (VES) techniques) along the established traverses, while the latter technique entailed conducting geological laboratory sieve analysis and Atterberg limit-index tests upon the collected soil samples in the area. The results of the geophysical measurement, based on the interpreted VLF-EM and dipole-dipole data, revealed conductive zones and linear features interpreted as fractures/faults which endanger the foundations of public infrastructures. The delineation of four distinct geoelectric layers in the area—comprised of topsoil, lateritic/clayey substratum, weathered layer, and bedrock—were based on the VES results. Strong evidence, including high degree of decomposition and fracturing of underlying bedrock revealed by the VES results, confirmed the VLF-EM and dipole-dipole results. Furthermore, values in the range of 74.2%-77.8%, 55%-62.5%, 23.4%-24.5%, 7.7%-8.2%, 19.5%-22.4%, and 31.65%-38.25% were obtained for these geotechnical parameters viz soil percentage passing 0.075 mm sieve size, liquid limit, plasticity index, linear shrinkage, natural moisture content, and plastic limit, respectively, resulting from the geotechnical analysis of the soil samples. The comparatively analyzed geophysical and geotechnical results revealed a high weathering of charnockitic rocks resulting in plastic clay material mapped with a mean resistivity value of 73 Ohm-m, in conformity with the obtained geotechnical parameters, which failed to agree with the standard specification of subsoil foundation materials and which, in turn, can impact negatively on the foundational integrity of infrastructures. Based on these results, the area subsoils’ competence for foundation has been rated poor to low. This study has more widely demonstrated the effective application of integrative geophysical and geotechnical methods in the assessment of subsoil competence.

  2. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms.

    PubMed

    Prieto, Iván; Martínez-Tillería, Karina; Martínez-Manchego, Luis; Montecinos, Sonia; Pugnaire, Francisco I; Squeo, Francisco A

    2010-08-01

    Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.

  3. Burn Severity and Its Impact on Soil Properties: 2016 Erskine Fire in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Haake, S.; Guo, J.; Krugh, W. C.

    2017-12-01

    Wildfire frequency in the southern Sierra Nevada has increased over the past decades. The effects of wildfires on soils can increase the frequency of slope failure and debris flow events, which pose a greater risk to people, as human populations expand into foothill and mountainous communities of the Sierra Nevada. Alterations in the physical properties of burned soils are one such effect that can catalyze slope failure and debris flow events. Moreover, the degree of a soil's physical alteration resulting from wildfire is linked to fire intensity. The 2016 Erskine fire occurred in the southern Sierra Nevada, burning 48,019 acres, resulting in soils of unburned, low, moderate, and high burn severities. In this study, the physical properties of soils with varying degrees of burn severity are explored within the 2016 Erskine fire perimeter. The results constrain the effects of burn severity on soil's physical properties. Unburned, low, moderate, and high burn severity soil samples were collected within the Erskine fire perimeter. Alterations in soils' physical properties resulting from burn severity are explored using X-ray diffractometry analysis, liquid limit, plastic limit, and shear strength tests. Preliminary results from this study will be used to assess debris flow and slope failure hazard models within burned areas of the Kern River watershed in the southern Sierra Nevada.

  4. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    NASA Astrophysics Data System (ADS)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  5. Air-soil exchange of organochlorine pesticides in a sealed chamber.

    PubMed

    Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed. Copyright © 2014. Published by Elsevier B.V.

  6. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.

    PubMed

    Rogers, Eric D; Monaenkova, Daria; Mijar, Medhavinee; Nori, Apoorva; Goldman, Daniel I; Benfey, Philip N

    2016-07-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico.

    PubMed

    López-Lozano, Nguyen E; Heidelberg, Karla B; Nelson, William C; García-Oliva, Felipe; Eguiarte, Luis E; Souza, Valeria

    2013-01-01

    Ecological succession is one of the most important concepts in ecology. However for microbial community succession, there is a lack of a solid theoretical framework regarding succession in microorganisms. This is in part due to microbial community complexity and plasticity but also because little is known about temporal patterns of microbial community shifts in different kinds of ecosystems, including arid soils. The Cuatro Cienegas Basin (CCB) in Coahuila, Mexico, is an arid zone with high diversity and endemisms that has recently been threatened by aquifer overexploitation. The gypsum-based soil system of the CCB is one of the most oligotrophic places in the world. We undertook a comparative 16S rRNA 454 pyrosequencing study to evaluate microbial community succession and recovery over a year after disturbance at two sites. Results were related to concurrent measurements of humidity, organic matter and total C and N content. While each site differed in both biogeochemistry and biodiversity, both present similar pattern of change at the beginning of the succession that diverged in later stages. After one year, experimentally disturbed soil was not similar to established and undisturbed adjacent soil communities indicating recovery and succession in disturbed soils is a long process.

  8. Theoretical and experimental analysis of an equivalent circuit model for the investigation of shallow landmines with acoustic methods

    NASA Astrophysics Data System (ADS)

    Borgioli, G.; Bulletti, A.; Calzolai, M.; Capineri, L.; Falorni, P.; Masotti, L.; Valentini, S.; Windsor, C.

    2007-10-01

    Acoustic methods have been recently investigated for the detection of shallow landmines. Some plastic landmines have a flexible case which can made to vibrate by an airborne excitation like a loudspeaker. The soil-mine system shows a resonant behavior which is used as a signature to discriminate from other rigid objects. The mechanical resonance can be detected at the soil surface by a remote sensing systems like a laser interferometer. An equivalent physical model of the mine-soil system has been investigated having the known physical characteristics of mine simulants. The authors designed and built a test-object with known mechanical characteristics (mass, elasticity, damping factor). The model has been characterized in laboratory and the results compared with the classic mass-spring loss oscillator described by Voigt. The vibrations at the soil surface have been measured in various positions with a micro machined accelerometer. The results of the simulations for the acceleration of the soil-mine system agree well with the experiment. The calibrated mine model is useful to investigate the variation of the resonance frequency for various buried depths and to compare the results for different soils in different environmental conditions.

  9. The influence of using quicklime and volcanic ash as stabilizing materials in clay viewed from CBR value

    NASA Astrophysics Data System (ADS)

    Hastuty, Ika Puji; Sofyan, Tri Alby; Roesyanto

    2017-11-01

    The condition of the soil in Indonesia in varied, viewed from its bearing capacity. The soil is one of the materials which plays a very important role in a construction or foundation so that it is very necessary to have soil with its adequate technical properties. In reality, often founding inadequate soil properties such as in its compressibility, permeability, and plasticity. The objective of the research was to find out the physical properties, technical properties, CBR value, and stabilization of clay by adding quicklime and volcanic ash as stabilizing materials. The mixing combination is 2%, 4% quicklime, and 2%-24% volcanic ash. The value of Water Content for original soil was 34.33% and Specific Gravity original soil was 2.65. The result of the research showed that the stabilizing materials from quicklime and volcanic ash could improve the physical and mechanical properties of clay. The value of Atterberg Limits decreased from 29.88% to 11.33% in the variation of 4% Q+24% VA, while the most maximal value of CBR was found in the variation of 4% Q+8% VA at 9.01%.

  10. Valorisation of Sugarcane Bagasse Ash in the Manufacture of Lime-Stabilized Blocks

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, Pitchai Kasinatha

    2016-06-01

    The study investigated the potential of lime in the manufacture of stabilized soil blocks and the valorisation of a solid waste, Bagasse Ash (BA), in its manufacture. A locally available soil was collected from a field and characterized in the soil laboratory as a clay of intermediate plasticity. This soil was stabilized using lime, the quantity of which was determined from the Eades and Grim pH test. The soil was stabilized using this lime content, amended with various BA contents during mixing, and moulded into blocks of 19 cm x 9 cm x 9 cm. The blocks were then moist cured for a period of 28 days, following which they were subjected to compressive strength, water absorption and efflorescence tests. The results of the tests revealed that the addition of BA resulted in enhanced compressive strength of the blocks, increased the water absorption marginally, and resulted in no efflorescence in any of the combinations, although the limited combinations in the study could not produce enough strength to meet the specifications of the Bureau of Indian Standards. The study revealed that BA can be effectively valorised in the manufacture of stabilized soil blocks.

  11. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests

    NASA Astrophysics Data System (ADS)

    Collins, Ian F.; Hilder, Tamsyn

    2002-11-01

    Modern ideas of thermomechanics are used to develop families of models describing the elastic/plastic behaviour of cohesionless soils deforming under triaxial conditions. Once the form of the free energy and dissipation potential functions have been specified, the corresponding yield loci, flow rules, isotropic and kinematic hardening rules as well as the elasticity law are deduced in a systematic manner. The families contain the classical linear frictional (Coulomb type) models and the classical critical state models as special cases. The generalized models discussed here include non-associated flow rules, shear as well as volumetric hardening, anisotropic responses and rotational yield loci. The various parameters needed to describe the models can be interpreted in terms of ratio of the plastic work, which is dissipated, to that which is stored. Non-associated behaviour is found to occur whenever this division between dissipated and stored work is not equal. Micro-level interpretations of stored plastic work are discussed. The models automatically satisfy the laws of thermodynamics, and there is no need to invoke any stability postulates. Some classical forms of the peak-strength/dilatancy relationship are established theoretically. Some representative drained and undrained paths are computed.

  12. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  13. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which is significantly higher in most samples. The suggested method was very effective for tracing the man-made substances, we could find concrete and asphalt, plastic and synthetic polymers after they were assimilated, broken down and decomposed into soil particles. By the top-down un-mixing method we did not limit the substances we characterize and so we could detect unexpected materials and contaminants. In five location we have traces of cyanide cadmium Cd(CN)2 probably residues of old television scenes, traces of schwertmannite Fe8O8(OH)6(SO4)·nH2O or Fe3+16O16(OH,SO4)12-13·10-12H2O acid drainage were found in four sites and the most alarmingly the detecting of actinolite Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)2 and tremolite Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH), asbestos minerals, originate from the construction debris in almost all of the sites.

  14. Extraneous dissolved organic matter enhanced adsorption of dibutyl phthalate in soils: Insights from kinetics and isotherms.

    PubMed

    Wu, Wei; Sheng, Hongjie; Gu, Chenggang; Song, Yang; Willbold, Sabine; Qiao, Yan; Liu, Guangxia; Zhao, Wei; Wang, Yu; Jiang, Xin; Wang, Fang

    2018-08-01

    The widespread use of plastic film, especially in agricultural practices, has resulted in phthalic acid esters (PAEs) pollution, which poses risks for greenhouse soils. Application of composted manure is a common agricultural practice that adds extraneous dissolved organic matter (DOM) to the soil, however, the effect of extraneous DOM on the behavior of PAEs in agricultural soil is not clear. Dibutyl phthalate (DBP) was used as a model compound to investigate the effect and mechanism of extraneous DOM on the adsorption kinetics and isotherms of PAEs in two types of soils, through batch experiments and characterization of extraneous DOM and soils using fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The equilibrium adsorption amount of DBP in black soil was higher than in red soil regardless of the presence of extraneous DOM, due to the higher organic matter content of black soil. Hydrophobic partition played a dominant role in the DBP adsorption process of soils with and without extraneous DOM. The addition of DOM enhanced the adsorption capacity of DBP through partition in the two soils, especially at high DBP concentrations. Additions of a lower concentration of DOM better enhanced the adsorption effect than the higher concentrated DOM, due to an increase in water solubility of DBP resulted from excessive extraneous DOM in aqueous phase. Differences in mineral composition of soils led to diverse adsorption mechanisms of DBP as affected by additions of extraneous DOM. The FTIR spectra indicated that the intra-molecular and intermolecular hydrogen bond interactions of carboxylic acids, aromatic CC and CO in amides were involved in DBP adsorption in soils. Therefore, addition of DOM may increase adsorption of DBP in soils and thus influence its bioavailability and transformation in soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A study of the effectiveness of the use of gypsum and volcanic ash against the stability of clay soil in terms of UCT and CBR values

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Hastuty, IP; Lubis, AIU

    2018-02-01

    Soil stabilization is an effort to improve engineering properties of soil. The conventional soil stabilization is by adding additives to the soil such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and volcanic ash. The research purposes were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% volcanic ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT values of original soil and original soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2 respectively. The CBR soaked and unsoaked values of original soil were 4.44% and 6.28% correspondingly. Meanwhile, CBR soaked and CBR unsoaked values of original soil plus 2% gypsum were 6.74% and 8.02% respectively. The research results showed that the additives materials of gypsum and volcanic ash improved the engineering properties of clay. The UCT result from the stabilized soil by 2% gypsum and 10% volcanic ash gave value of 2.79 kg/cm2 (increased 99.28% from original soil). For CBR test, the most effective mixture were in variation of 2% gypsum and 9% volcanic ash which gave value of 9.07% (104.27% increase from original soil) for CBR soaked and 10.29% (63.85% increase from original soil) for CBR unsoaked. The stabilized soil with 2% gypsum and 9% volcanic ash was classified as CL based on USCS and was classified as A-6 (4) based on AASHTO classification system.

  16. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  17. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  18. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  19. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  20. Statistical correlations of shear wave velocity and penetration resistance for soils

    NASA Astrophysics Data System (ADS)

    Dikmen, Ünal

    2009-03-01

    In this paper, the correlation between shear wave velocity and standard penetration test blow counts (SPT-N) is investigated. The study focused primarily on the correlation of SPT-N and shear wave velocity (Vs) for several soil categories: all soils, sand, silt and clay-type soils. New empirical formulae are suggested to correlate SPT-N and Vs, based on a dataset collected in a part of Eskişehir settlement in the western central Anatolia region of Turkey. The formulae are based on geotechnical soundings and active and passive seismic experiments. The new and previously suggested formulae showing correlations between uncorrected SPT-N and Vs have been compared and evaluated by using the same dataset. The results suggest that better correlations in estimation of Vs are acquired when the uncorrected blow counts are used. The blow count is a major parameter and the soil type has no significant influence on the results. In cohesive soils, the plasticity contents and, in non-cohesive soils except for gravels, the graded contents have no significant effect on the estimation of Vs. The results support most of the conclusions of earlier studies. These practical relationships developed between SPT-N and Vs should be used with caution in geotechnical engineering and should be checked against measured Vs.

  1. Effect of suction-dependent soil deformability on landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Lizarraga, Jose J.; Buscarnera, Giuseppe; Frattini, Paolo; Crosta, Giovanni B.

    2016-04-01

    This contribution presents a physically-based, spatially-distributed model for shallow landslides promoted by rainfall infiltration. The model features a set of Factor of Safety values aimed to capture different failure mechanisms, namely frictional slips with limited mobility and flowslide events associated with the liquefaction of the considered soils. Indices of failure associated with these two modes of instability have been derived from unsaturated soil stability principles. In particular, the propensity to wetting-induced collapse of unsaturated soils is quantified through the introduction of a rigid-plastic model with suction-dependent yielding and strength properties. The model is combined with an analytical approach (TRIGRS) to track the spatio-temporal evolution of soil suction in slopes subjected to transient infiltration. The model has been tested to reply the triggering of shallow landslides in pyroclastic deposits in Sarno (1998, Campania Region, Southern Italy). It is shown that suction-dependent mechanical properties, such as soil deformability, have important effects on the predicted landslide susceptibility scenarios, resulting on computed unstable zones that may encompass a wide range of slope inclinations, saturation levels, and depths. Such preliminary results suggest that the proposed methodology offers an alternative mechanistic interpretation to the variability in behavior of rainfall-induced landslides. Differently to standard methods the explanation to this variability is based on suction-dependent soil behavior characteristics.

  2. Killing of Campylobacter on contaminated plastic and wooden cutting boards by glycerol monocaprate (monocaprin).

    PubMed

    Thormar, H; Hilmarsson, H

    2010-09-01

    Contamination in the kitchen with foodborne bacteria is a risk factor in human exposure to these pathogens, an important route being transfer of bacteria from contaminated cutting boards and other surfaces to humans. The aim of this study was to test microbicidal emulsions of glycerol monocaprate (monocaprin) against Campylobacter on contaminated cutting boards. Plastic and wooden cutting boards, soiled with meat juice heavily contaminated with Campylobacter, were treated for 2 min with emulsions of monocaprin (MC) made in water or in buffer at low pH. Viable Campylobacter counts were reduced below the detectable level on plastic board surfaces after treatment with MC emulsions with or without 1.25% washing-up liquids (WUL). The counts were also greatly reduced on wooden boards (P < 0.05). Monocaprin emulsions and mixtures of MC emulsions and WUL may be useful as sanitizers/disinfectants in kitchens and in other food preparing and processing facilities. Cleaning with MC emulsions with or without WUL may reduce the risk of human exposure to Campylobacter.

  3. Effect of higher rate of quintec for the control of powdery mildew on summer squash, 2012

    USDA-ARS?s Scientific Manuscript database

    The experiment was conducted at the Ohio Agricultural Research and Development Center’s Snyder Farm located in Wooster, OH on Wooster-Riddles silty clay loam soil, pH 6.0. On 2 May, the field was cultivated. On 15 May raised beds on 5 ft centers were prepared, laid with drip tape and plastic. On...

  4. Effect of higher rate of quintec for the control of powdery mildew on cucumber, 2012

    USDA-ARS?s Scientific Manuscript database

    The experiment was conducted at the Ohio Agricultural Research and Development Center’s Snyder Farm located in Wooster, OH on Wooster-Riddles silty clay loam soil, pH 6.0. On 2 May, the field was cultivated. On 15 May raised beds on 5 ft centers were prepared, laid with drip tape and plastic. On...

  5. Development and plasticity of endangered shrub Lindera melissifolia (Lauraceae) seedlings under contrasting light regimes

    Treesearch

    Brian R Lockhart; Emile S Gardiner; Theran Stautz; Theodor D. Leininger

    2012-01-01

    Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf...

  6. Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China.

    PubMed

    Sun, Jianteng; Pan, Lili; Tsang, Daniel C W; Li, Zhiheng; Zhu, Lizhong; Li, Xiangdong

    2018-01-01

    The present study investigated phthalate esters (PAEs) and organochlorine pesticides (OCPs) in agricultural soils and vegetables from eastern China. The concentrations of PAEs ranged from 109 to 5560 ng/g in soils and 60.1 to 2390 ng/g in cabbages, with average concentrations of 946 and 601 ng/g, respectively. The concentrations of OCPs ranged from <0.1 to 662 ng/g in soils and <0.1 to 42.8 ng/g in cabbages, with average concentrations of 134 and 11.6 ng/g, respectively. OCPs were mainly in the 0-30 cm surface soil layers, while PAEs could infiltrate in deep soil profiles to 70-80 cm layer. Potential source analysis traced the occurrence of OCPs to both historical application and current usage, whereas building materials and agricultural plastic film were possible input sources of PAEs in the ambient environment. OCPs showed no apparent effect on soil microbial communities, whereas significant negative relationship was observed between PAEs and fungi in soils (R = -0.54, p < 0.01). Human health risk assessment data revealed marginal noncarcinogenic risks and low carcinogenic risks in these soils. Notably, PAEs posed a comparable or higher risk level compared with that of OCPs. This study suggests the need for better regulation on pollution control and management of PAE-elevated sites to protect soil quality and food safety.

  7. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes.

    PubMed

    Bonal, Niteesh Singh; Paramkusam, Bala Ramudu; Basudhar, Prabir Kumar

    2018-06-05

    The study aims to enhance the efficacy of surfactants using salt and multi-walled carbon nanotubes (MWCNT) for washing used engine oil (UEO) contaminated soil and compare the geotechnical properties of contaminated soil before and after washing (batch washing and soil washing). From batch washing of the contaminated soil the efficacy of the cleaning process is established. Contamination of soil with hydrocarbons present in UEO significantly affects its' engineering properties manifesting in no plasticity and low specific gravity; the corresponding optimum moisture content value is 6.42% while maximum dry density is 1.770 g/cc, which are considerably lower than those of the uncontaminated soil. The result also showed decrease in the values of cohesion intercept and increase in the friction angle values. The adopted soil washing technique resulted increase in specific gravity from 1.85 to 2.13 and cohesion from 0.443 to 1.04 kg/cm 2 and substantial decrease in the friction angle from 31.16° to 17.14° when washed with most efficient combination of SDS surfactant along with sodium meta-silicate (salt) and MWCNT. Effectiveness of the washing of contaminated soil by batch processing and soil washing techniques has been established qualitatively. The efficiency of surfactant treatment has been observed to be increased significantly by the addition of salt and MWCNT. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    PubMed Central

    Marchiori, Paulo E. R.; Machado, Eduardo C.; Sales, Cristina R. G.; Espinoza-Núñez, Erick; Magalhães Filho, José R.; Souza, Gustavo M.; Pires, Regina C. M.; Ribeiro, Rafael V.

    2017-01-01

    The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa); intermediate (Ψm reached -65 and -90 kPa at the end of experimental period) and low (Ψm reached values lower than -150 kPa). Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA) and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants. PMID:29326744

  9. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.

    PubMed

    Jing, Fanqi; Pan, Minjun; Chen, Jiawei

    2018-04-01

    Biochar has the potential to sequester biomass carbon efficiently into land, simultaneously while improving soil fertility and crop production. Biochar has also attracted attention as a potential sorbent for good performance on adsorption and immobilization of many organic pollutants such as phthalic acid esters (PAEs), a typical plasticizer in plastic and presenting a current environmental issue. Due to lack of investigation on the kinetic and thermodynamic adsorption-desorption of PAEs on biochar, we systematically assessed adsorption-desorption for two typical PAEs, dimethyl phthalate (DMP) and diethyl phthalate (DEP), using biochar derived from peanut hull and wheat straw at different pyrolysis temperatures (450, 550, and 650 °C). The aromaticity and specific surface area of biochars increased with the pyrolysis temperature, whereas the total amount of surface functional groups decreased. The quasi-second-order kinetic model could better describe the adsorption of DMP/DEP, and the adsorption capacity of wheat straw biochars was higher than that of peanut hull biochars, owing to the O-bearing functional groups of organic matter on exposed minerals within the biochars. The thermodynamic analysis showed that DMP/DEP adsorption on biochar is physically spontaneous and endothermic. The isothermal desorption and thermodynamic index of irreversibility indicated that DMP/DEP is stably adsorbed. Sorption of PAEs on biochar and the mechanism of desorption hysteresis provide insights relevant not only to the mitigation of plasticizer mobility but also to inform on the effect of biochar amendment on geochemical behavior of organic pollutants in the water and soil.

  10. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  11. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    PubMed

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  12. A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments.

    PubMed

    Hanselman, Travis A; Graetz, Donald A; Obreza, Thomas A

    2004-01-01

    In situ incubation methods may help provide site-specific estimates of N mineralization from land-applied wastes. However, there are concerns about the reliability of the data generated by the various methods due to containment artifacts. We amended a sandy soil with either poultry manure, biosolids, or yard-waste compost and incubated the mixtures using four in situ methods (buried bags, covered cylinders, standard resin traps, and "new" soil-resin traps) and a conventional laboratory technique in plastic bags. Each incubation device was destructively sampled at 45-d intervals for 180 d and net N mineralization was determined by measuring the amount of inorganic N that accumulated in the soil or soil plus resin traps. Containment effects were evaluated by comparing water content of the containerized soil to a field-reference soil column. In situ incubation methods provided reasonable estimates of short-term (< 45 d) N mineralization, but long-term (> 45 d) mineralization data were not accurate due to a variety of problems specific to each technique. Buried bags and covered cylinders did not retain mineralized N due to water movement into and out of the containers. Neither resin method captured all of the mineralized N that leached through the soil columns, but the new soil-resin trap method tracked field soil water content better than all other in situ methods evaluated. With further refinement and validation, the new soil-resin trap method may be a useful in situ incubation technique for measuring net N mineralization rates of organic soil amendments.

  13. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species

    PubMed Central

    Bowsher, Alan W.; Ali, Rifhat; Harding, Scott A.; Tsai, Chung-Jui; Donovan, Lisa A.

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments. PMID:26824236

  14. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.

    PubMed

    Bowsher, Alan W; Ali, Rifhat; Harding, Scott A; Tsai, Chung-Jui; Donovan, Lisa A

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.

  15. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly watered until field capacity and covered with clear plastic (160 gauges). Plastic remained until 28 October. There have been two soil sampling, July 24 and November 4. Garlic bulbs were planted in December 23. Selected "Morado" variety, obtained free virus by in vitro culture by the own Cooperative was used. The culture will run until July, following homogeneous organic practices for the 5 treatments. The microbiological activity of a soil directly influences the stability and fertility of a crop. The most common indices used to measure the metabolic activity of the soil are, apart from the net nitrogen mineralization, microbial respiration, soil enzyme activities and the energy involved in the processes (Brookes, 1995; Nanipieri, 1994). Soil samples taken in the different experimental conditions were cleaned, sieved and kept in the laboratory at 4° C for immediate analysis of respiration, biomass carbon and enzyme activities (β-glucosidase, phosphatase, urease and dehydrogenase). They were then dried for analysis of physico-chemical parameters, total carbon and nitrogen, phosphorus, conductivity, pH and carbonates. At the time of this summary, biosolarization shows to be effective in controlling weeds before crop planting. The results of soil analysis show a significant effect on the indicators studied.

  16. Mathematical characterization of mechanical behavior of porous frictional granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.

    1972-01-01

    A new definition of loading and unloading along the yield surface of Roscoe and Burland is introduced. This is achieved by noting that the strain-hardening parameter in the plastic potential function is deduced from the yield locus equation of Roscoe and Burland. The analytical results are compared with the experimental results for plate-bearing and cone-penetrometer problems and close agreements are demonstrated. The wheel-soil interaction is studied under dynamic loading. The rate-dependent plasticity or viscoelastoplastic behavior is considered. This is accomplished by the internal (hidden) variables associated with time-dependent viscous properties directly superimposed with inelastic behavior governed by the yield criteria of Roscoe and Burland. Effects of inertia and energy dissipation are properly accounted for. Example problems are presented.

  17. Comparative research on tillable properties of diatomite-improved soils in the Yangtze River Delta region, China.

    PubMed

    Qu, Ji-Li; Zhao, Dong-Xue

    2016-10-15

    To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (p<0.05) improved the consistency limits, with the most preferred effects in the silt soil. The liquid limits were increased by 53.9%, 27.3%, and 14.7%, in the silt, silt loam and silty-clay loam soils, respectively, when the volumetric ratio was 30%. While diatomite lowered the maximum dry bulk density (MBD) of the classified soils, the optimum moisture content (OMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    PubMed

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  19. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils.

    PubMed

    Gaylor, Michael O; Harvey, Ellen; Hale, Robert C

    2013-12-03

    Polybrominated diphenyl ether (PBDE) flame retardants have been used in consumer polymers at up to percent levels. While long viewed as biologically inaccessible therein, PBDEs may become bioaccessible following volatilization or polymer deterioration. PBDEs may then enter soils via polymer fragmentation or following land application of sewage sludge-derived biosolids. Studies of direct PBDE uptake from these materials by soil organisms are scarce. We thus exposed earthworms ( Eisenia fetida ) to artificial soil amended with a Class B anaerobically digested biosolid (ADB), an exceptional quality composted biosolid (CB), PBDE-containing polyurethane foam (PUF) microparticles, and Penta-BDE-spiked artificial soil (SAS). Worms accumulated mg/kg (lipid) ∑Penta-PBDE burdens from all substrates. Biota-soil accumulation factors (BSAFs) for worms exposed to ADB- and CB-amended soils were comparable after 28 d. BSAFs generally decreased with increasing congener KOW and substrate dosage. Biosolids-associated PBDE bioavailability was lower than spiked PBDEs. BSAFs for worms exposed to PUF microparticles ranged from 3.9 to 33.4, with ∑Penta-PBDE tissue burdens reaching 3740 mg/kg lipid. Congener accumulation patterns were similar in worms and polyethylene passive sampling devices immersed in ADB-amended soil coincident with exposed worms. However, passive sampler accumulation factors were lower than BSAFs. Our results demonstrate that PBDEs may accumulate in organisms ingesting soils containing biosolids or waste plastics. Such organisms may then transfer their burdens to predators or translocate them from the site of application/disposal.

  20. Forest - water dynamics in a Mediterranean mountain environment.

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L/d, indicating reverse flow. Soil moisture ranged between 10 to 37 % at all sensors. Soil moisture contents showed an increase over 100% after rainfall events, but decreased quickly. Also individual sensor peak values were recorded when rainfall was not occurring, indicating soil moisture increase as a result of reverse flow. Interception losses revealed values, ranging from 10% to 50 % of the total rainfall. Stem flow was recorded after intense rain fall events. To our knowledge, this is the first water use quantification study for Pinus brutia trees. The negative sap flow implies that these trees have the ability to harvest water from the air moisture and redistribute it in the ground. Perhaps part of the intercepted water is captured by the tree and thus contributing to the negative sap flow. All the variables will be monitored for two more years to quantify the role of the trees in the water balance of the area.

  1. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    NASA Astrophysics Data System (ADS)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S). Aside from the expected strong influence of RC, increasing fines content is found to generally decrease volume change for fines fractions consisting of silts and clayey silts with moderate to low plasticity. With truly non-plastic fines (rock flour), cyclic volume change increases with FC. Some materials also exhibit an effect of as-compacted saturation in which moderate saturation levels associated with high matric suction cause volume change to decrease. A preliminary empirical model to capture these effects is presented. The balance of the dissertation is related to a case history of strongly nonlinear site response and seismic compression associated with a free-field downhole array installed near the Service Hall at the Kashiwazaki-Kariwa nuclear power plant, which recorded strong ground motions from the Mw 6.6 2007 Niigata-ken Chuetsu-oki earthquake. Site conditions at the array consist of about 70 m of medium-dense sands overlying clayey bedrock, with ground water located at 45 m. Ground shaking at the bedrock level had geometric mean peak accelerations of 0.55 g which is reduced to 0.4 g at the ground surface, indicating nonlinear site response. Ground settlements of approximately 15+/-5 cm occurred at the site. A site investigation was performed to develop relevant soil properties for ground response and seismic compression analysis, including shear wave velocities, shear strength, relative density, and modulus reduction and damping curves. (Abstract shortened by UMI.)

  2. Effects of moisture limitation on tree growth in upland and floodplain forest ecosystems in interior Alaska

    Treesearch

    John. Yarie

    2008-01-01

    The objective of this study was to examine the impact of summer throughfall on the growth of trees, at upland and floodplain locations, in the vicinity of Fairbanks, Alaska. Corrugated clear plastic covers were installed under the canopy of floodplain balsam poplar/white spruce stands and upland hardwood/white spruce stands to control soil moisture recharge as a result...

  3. Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Asadollah

    2010-06-01

    The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.

  4. Change in Soil Porosity under Load

    NASA Astrophysics Data System (ADS)

    Dyba, V. P.; Skibin, E. G.

    2017-11-01

    The theoretical basis for the process of soil compaction under various loading paths is considered in the article, the theoretical assumptions are compared with the results of the tests of clay soil on a stabilometer. The variant of the critical state model of the sealing plastic-rigid environment is also considered the strength characteristics of which depend on the porosity coefficient. The loading surface is determined by the results of compression and stabilometrical tests. In order to clarify the results of this task, it is necessary to carry out stabilometric tests under conditions of simple loading, i.e. where the vertical pressure would be proportional to the compression pressure σ3 = kσ1. Within the study the attempts were made to confirm the model given in the beginning of the article by laboratory tests. After the analysis of the results, the provided theoretical assumptions were confirmed.

  5. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  6. Fate of four phthalate plasticizers under various wastewater treatment processes.

    PubMed

    Armstrong, Dana L; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2018-05-18

    The fate of four phthalate plasticizers during wastewater treatment processes at six different wastewater treatment plants (WWTPs) was investigated. Concentrations of benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) were determined prior to either aerobic or anaerobic (conventional and advanced) treatment, after treatment, and in final, dewatered solids. Despite their elevated use worldwide, the fate of DiNP and DiDP during wastewater treatment have not been well characterized. DEHP was readily degraded during aerobic treatments while anaerobic digestion resulted in either no significant change in concentrations or an increase in concentration, in the case of more advanced anaerobic processes (thermal hydrolysis pretreatment and a two-phase acid/gas process). Impacts of the various treatment systems on DiNP, DiDP, and BBP concentrations were more varied - anaerobic digestion led to significant decreases, increases, or no significant change for these compounds, depending on the treatment facility, while aerobic treatment was generally effective at degrading the compounds. Additionally, thermal hydrolysis pretreatment of sludge prior to anaerobic digestion resulted in increases in DiNP, DiDP, and BBP concentrations. The predicted environmental concentrations for all four compounds in soils after a single biosolids application were calculated and the risk quotients for DEHP in soils were determined. The estimated toxicity risk for DEHP in soils treated with a single application of sludge from any of the six studied WWTPs is lower than the level of concern for acute and chronic risk, as defined by the US EPA.

  7. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    PubMed Central

    Li, Qisong; Chen, Jun; Wu, Linkun; Luo, Xiaomian; Li, Na; Arafat, Yasir; Lin, Sheng; Lin, Wenxiong

    2018-01-01

    Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability. PMID:29470429

  8. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates.

    PubMed

    Hodson, Mark E; Duffus-Hodson, Calum A; Clark, Andy; Prendergast-Miller, Miranda T; Thorpe, Karen L

    2017-04-18

    Microplastics are widespread contaminants in terrestrial environments but comparatively little is known about interactions between microplastics and common terrestrial contaminants such as zinc (Zn). In adsorption experiments fragmented HDPE bags c. one mm 2 in size showed similar sorption characteristics to soil. However, when present in combination with soil, concentrations of adsorbed Zn on a per mass basis were over an order of magnitude lower on microplastics. Desorption of the Zn was minimal from both microplastics and soil in synthetic soil solution (0.01 M CaCl 2 ), but in synthetic earthworm guts desorption was higher from microplastics (40-60%) than soil (2-15%), suggesting microplastics could increase Zn bioavailability. Individual Lumbricus terrestris earthworms exposed for 28 days in mesocosms of 260 g moist soil containing 0.35 wt % of Zn-bearing microplastic (236-4505 mg kg -1 ) ingested the microplastics, but there was no evidence of Zn accumulation, mortality, or weight change. Digestion of the earthworms showed that they did not retain microplastics in their gut. These findings indicate that microplastics could act as vectors to increase metal exposure in earthworms, but that the associated risk is unlikely to be significant for essential metals such as Zn that are well regulated by metabolic processes.

  9. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Song, Mengya; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2016-09-01

    In the background of rapid expansion of plastic greenhouse vegetable production in China, many environmental risks have emerged in recent years. In this study, the soils with a chronosequence in greenhouse vegetable fields were collected and the soil humic acids (HAs) and fluvic acids (FAs) were extracted and purified. The soil HAs and FAs were found to show inhibition activities against phytopathogenic fungi for the first time. Fourier transform infrared spectroscopy was performed to investigate the chemical structures of HAs and FAs. The variation of relative peak areas indicated the chemical structure of HAs become more complex and stable under continuous cultivation. The PCA analysis showed HAs and FAs could be distinctly separated from each other and cultivation years mainly determined the variation. Mantel test and RDA analysis indicated the active components (aliphatic peaks for HAs and COOH, OH peaks for FAs) had positive correlation with the inhibition rates of HAs and FAs against phytopathogenic fungi. According to our research, the active fungicidal components in soil HAs and FAs decreased along with the extension of cultivation years, which made the soil suffer more risk to phytopathogenic fugi. So we believe continuous cultivation too many years in PGVP systems is inadvisable.

  10. Preliminary study of soil liquefaction hazard at Terengganu shoreline, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Suhatril, M.; Hashim, R.

    2017-06-01

    Terengganu is a shoreline state located in Peninsular Malaysia which is a growing hub for port industries and tourism centre. The northern part offers pristine settings of a relax beach areas whereas the southern part are observed to be a growing centre for development. The serious erosion on soil deposit along the beach line presents vulnerable soil condition to soil liquefaction consists of sandy with low plasticity and shallow ground water. Moreover, local earthquake from nearby fault have present significant tremors over the past few years which need to be considered in the land usage or future development in catering the seismic loading. Liquefaction analysis based on field standard penetration of soil is applied on 546 boreholes scattered along the shoreline areas ranging 244 km of shoreline stretch. Based on simplified approach, it is found that more than 70% of the studied areas pose high liquefaction potential since there are saturated loose sand and silt deposits layer ranges at depth 3 m and up to 20 m. The presence of clay deposits and hard stratum at the remaining 30% of the studied areas shows good resistance to soil liquefaction hence making the area less significant to liquefaction hazard. Result indicates that liquefaction improving technique is advisable in future development of shoreline areas of Terengganu state.

  11. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

    PubMed

    Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro

    2015-12-01

    The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico

    PubMed Central

    López-Lozano, Nguyen E.; Heidelberg, Karla B.; Nelson, William C.; García-Oliva, Felipe; Eguiarte, Luis E.

    2013-01-01

    Ecological succession is one of the most important concepts in ecology. However for microbial community succession, there is a lack of a solid theoretical framework regarding succession in microorganisms. This is in part due to microbial community complexity and plasticity but also because little is known about temporal patterns of microbial community shifts in different kinds of ecosystems, including arid soils. The Cuatro Cienegas Basin (CCB) in Coahuila, Mexico, is an arid zone with high diversity and endemisms that has recently been threatened by aquifer overexploitation. The gypsum-based soil system of the CCB is one of the most oligotrophic places in the world. We undertook a comparative 16S rRNA 454 pyrosequencing study to evaluate microbial community succession and recovery over a year after disturbance at two sites. Results were related to concurrent measurements of humidity, organic matter and total C and N content. While each site differed in both biogeochemistry and biodiversity, both present similar pattern of change at the beginning of the succession that diverged in later stages. After one year, experimentally disturbed soil was not similar to established and undisturbed adjacent soil communities indicating recovery and succession in disturbed soils is a long process. PMID:23638384

  13. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence

    PubMed Central

    Wu, Meng; Song, Mengya; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2016-01-01

    In the background of rapid expansion of plastic greenhouse vegetable production in China, many environmental risks have emerged in recent years. In this study, the soils with a chronosequence in greenhouse vegetable fields were collected and the soil humic acids (HAs) and fluvic acids (FAs) were extracted and purified. The soil HAs and FAs were found to show inhibition activities against phytopathogenic fungi for the first time. Fourier transform infrared spectroscopy was performed to investigate the chemical structures of HAs and FAs. The variation of relative peak areas indicated the chemical structure of HAs become more complex and stable under continuous cultivation. The PCA analysis showed HAs and FAs could be distinctly separated from each other and cultivation years mainly determined the variation. Mantel test and RDA analysis indicated the active components (aliphatic peaks for HAs and COOH, OH peaks for FAs) had positive correlation with the inhibition rates of HAs and FAs against phytopathogenic fungi. According to our research, the active fungicidal components in soil HAs and FAs decreased along with the extension of cultivation years, which made the soil suffer more risk to phytopathogenic fugi. So we believe continuous cultivation too many years in PGVP systems is inadvisable. PMID:27597259

  14. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  15. Status of phthalate esters contamination in agricultural soils across China and associated health risks.

    PubMed

    Niu, Lili; Xu, Yang; Xu, Chao; Yun, Lingxiang; Liu, Weiping

    2014-12-01

    The extensive utilization of phthalate-containing products has lead to ubiquitous contamination of phthalate esters (PAEs) in various matrices. However, comprehensive knowledge of their pollution in Chinese farmland and associated risks is still limited. In this study, 15 PAEs were determined in soils from agricultural fields throughout the Mainland China. The concentrations of Σ15PAEs were in the range of 75.0-6369 μg kg(-1). Three provinces (i.e., Fujian, Guangdong and Xinjiang, China) showed the highest loadings of PAEs. Bis(2-Ethylhexyl) phthalate (DEHP) was found as the most abundant component and contributed 71.5% to the ∑15PAEs. The major source of PAEs in arable soils was associated with the application of agricultural plastic films, followed by the activities for soil fertility. Furthermore, the non-cancer and carcinogenic risks of target PAEs were estimated. The hazard indexes (HIs) of PAEs in all samples were below 1 and the carcinogenic risk levels were all within 10(-4). Results from this study will provide valuable information for Chinese agricultural soil management and risk avoidance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Growth of tropical tree species and absorption of copper in soil artificially contaminated.

    PubMed

    Silva, R F; Andreazza, R; Da Ros, C; Dellai, A; Jacques, R J S; Scheid, D

    2015-11-01

    Reclamation of copper contaminated sites using forest species may be an efficient alternative to reduce the negative impact. The aim of this study was to quantify the growth and evaluate the quality of seedlings of native species at different doses of copper in the soil. The experimental design was completely randomized, with seven replications in a factorial arrangement (3×9), using three indigenous species of plants (Anadenanthera macrocarpa, Mimosa scabrella and Apuleia leiocarpa) and nine doses of copper in the soil (0, 60, 120, 180, 240, 300, 360, 420 and 480 mg kg-1).The experiment was carried out in a greenhouse which the seedlings were grown for 180 days. The experimental units were plastic pots of 125 cm3 filled with Oxisol. The results indicated that the levels of copper applied to the soil decreased the quality of seedlings and growth of Apuleia leiocarpato a lesser extent compared with Mimosa scabrella and Anadenanthera macrocarpa. Anadenanthera macrocarpa was the forest species that resulted in the lowest copper translocation from roots to shoots. In addition, the Apuleia leiocarpa exhibited high resistance and tolerance for copper in the soil and also, it is highlighted an ability for copper phytoremediation.

  17. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments

    PubMed Central

    Trojan, Daniela; Roux, Simon; Herbold, Craig; Rattei, Thomas; Woebken, Dagmar

    2018-01-01

    Summary Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large‐scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low‐ and high‐affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected – both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2, now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large‐scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment. PMID:29327410

  18. Some engineering aspects of homoionized mixed clay minerals.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2003-05-01

    Many studies have been conducted to investigate the physicochemical behavior of pure clay minerals and predict their engineering performance in the field. In this study, the physicochemical properties of an artificial mixture of different clay minerals namely, 40-50% montmorillonite, 20-30% illite and 10-15% kaolin were investigated. The mixture was homoionized with sodium, Na+; calcium, Ca2+; and aluminum, Al3+. The engineering properties studied were consistency limits, sediment volume, compressibility behavior, and hydraulic conductivity. The results revealed that the liquid, plastic and shrinkage limits of soil increased with increasing cation valence. The hydraulic conductivity of the soil also increased with an increase in the valence of the cation at any given void ratio. Aluminum and sodium treated clays had the highest and the lowest modified compression index values, respectively. Furthermore, trivalent cation saturated clayey soil consolidates three times faster than that of monovalent and two times faster than that of divalent. These properties of the soils determined were, in general, similar to those of kaolinite rather than those of montmorillonite. The comparison of the results obtained with the published data in the literature revealed that the physicochemical behavior of the tested clay soil was, in general, similar to that of kaolinite.

  19. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  20. Clay stabilization by using gypsum and paddy husk ash with reference to UCT and CBR value

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Hastuty, I. P.; Dianty, W. O.

    2018-02-01

    Clays that have low shear strength need to be stabilized in order to meet the technical requirements to serve as a subgrade material. One of the usual soil stabilization methods is by adding chemicals such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and paddy husk ash. The research goals were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% paddy husk ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT value of original soil was 1.41 kg/cm2. While the CBR soaked and unsoaked values of original soil were 4.41% and 6.23% respectively. The research results showed the addition of paddy husk ash decreased the value of unconfined compressive strength as well as CBR. The stabilized soil by 2% gypsum and 0% paddy husk ash gave maximum UCT value of 1.67 kg/cm2, while the maximum value of CBR were found 6.71% for CBR soaked and 8.00% for CBR unsoaked. The addition of paddy husk ash did not alter the soil classification according to AASHTO or USCS, even degrade the engineering properties of original soil.

  1. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  2. Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation.

    PubMed

    Gao, Suduan; Sosnoskie, Lynn M; Cabrera, Jose Alfonso; Qin, Ruijun; Hanson, Bradley D; Gerik, James S; Wang, Dong; Browne, Greg T; Thomas, John E

    2016-02-01

    Many orchards use fumigation to control soilborne pests prior to replanting. Controlling emissions is mandatory to reduce air pollution in California. This research evaluated the effects of plastic film type [polyethylene (PE) or totally impermeable film (TIF)], application rate of Telone C35 [full (610 kg ha(-1) ), 2/3 or 1/3 rates] and carbonation at 207 kPa on fumigant transport (emission and in soil) and efficacy. While increasing fumigant concentrations under the tarp, TIF reduced emissions >95% (∼2% and <1% of total applied 1,3-dichloropropene and chloropicrin respectively) relative to bare soil, compared with ∼30% reduction by PE. All fumigation treatments, regardless of film type, provided good nematode control above 100 cm soil depth; however, nematode survival was high at deeper depths. Weed emergence was mostly affected by tarping and fumigant rate, with no effects from the carbonation. TIF can effectively reduce fumigant emissions. Carbonation under the studied conditions did not improve fumigant dispersion and pest control. The 2/3 rate with TIF controlled nematodes as effectively as the full rate in bare soil or under the PE film to 100 cm soil depth. However, control of nematodes in deeper soil remains a challenge for perennial crops. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  3. Use of Biomass Ash as a stabilization agent for expansive marly soils (SE Spain)

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Caro, J. M.; Irigaray, C.; Corpas, F.; Ramirez, A.; Rivas, F.; Salazar, L. M.; Mochón, I.

    2012-04-01

    In recent years, several biomass power plants have been installed in Southeastern Spain to reuse olive oil industry residues. This energy production tries to reduce the high costs associated with fossil fuels, but without entering into direct competition to traditional food crops. The waste management in these biomass energy plants is still an issue since there are non-flammable materials which remains after incineration in the form of ashes. In Southeastern Spain there is also a great amount of clayey and marly soils whose volume is very sensitive to changes in climate conditions, making them unsuitable for civil engineering. We propose the use of biomass ash (both fly ash and bottom ash) as a stabilization agent for expansive soils in order to improve the efficiency of construction processes by using locally available materials. In this work biomass ashes from a biomass power plant in Southeastern Spain have been used to stabilize 6 samples of local marly soil. Those 6 samples of expansive soil were mixed with different dosages of biomass ash (2%, 4% and 7%) to create 18 specimens of treated soil, which were submitted to Proctor, Atterberg Limits, pH and Free Swell Index tests, following Spanish Standards UNE by AENOR. X-Ray Diffraction (XRD) tests by powder method were also carried out, using a diffractometer Philips X'Pert-MPD. The results obtained for the original untreated marly soil were: PI = 34.6; Free Swell = 12.5; pH = 8. By adding biomass ash the value of the plasticity index (PI) became slightly lower although it was not low enough as to obtain a non-plastic soil (PI under 25). However, there were dramatical decreases of free swell index (FSI) after the stabilization treatment: FSI < 8.18 (2% biomass); FSI < 6.15 (4% biomass); FSI < 4.18 (7% biomass); These results suggest that treated soil is quite less susceptible than the original soil to moisture changes. The pH of the mixes after adding biomass ash rose from 8 to 11±1 leading to an alkaline environment which, as reviewed literature points out, helps to the development of pozzolanic reactions and stabilization process. Finally, XRD tests indicated a sharp decrease in the intensity of reflection of the Smectite peak, suggesting a reduction in the amount of this expansive mineral in treated soils. This positive and durable effect may be related to cation exchange from Na+ to smaller cations or even the formation of mixed-layered clay minerals. A further research must be conducted to determine the pozzolanic properties of biomass ash (i.e., its suitability for concrete composites), the optimum dosages, etc. The further research is also necessary to better understand the mineralogy changes occurred within the crystalline structure. Nevertheless, these first results let us infer that biomass ash from power plants has a high capacity to enhance mechanical properties of expansive soils. Given the widespread use of biomass in industry today, the secondary use of biomass ash might improve the sustainability and efficiency of the biomass generation, incineration and waste management process.

  4. Prevailing Negative Soil Biota Effect and No Evidence for Local Adaptation in a Widespread Eurasian Grass

    PubMed Central

    Wagner, Viktoria; Antunes, Pedro M.; Ristow, Michael; Lechner, Ute; Hensen, Isabell

    2011-01-01

    Background Soil biota effects are increasingly accepted as an important driver of the abundance and distribution of plants. While biogeographical studies on alien invasive plant species have indicated coevolution with soil biota in their native distribution range, it is unknown whether adaptation to soil biota varies among populations within the native distribution range. The question of local adaptation between plants and their soil biota has important implications for conservation of biodiversity and may justify the use of seed material from local provenances in restoration campaigns. Methodology/Principal Findings We studied soil biota effects in ten populations of the steppe grass Stipa capillata from two distinct regions, Europe and Asia. We tested for local adaptation at two different scales, both within (ca. 10–80 km) and between (ca. 3300 km) regions, using a reciprocal inoculation experiment in the greenhouse for nine months. Generally, negative soil biota effects were consistent. However, we did not find evidence for local adaptation: both within and between regions, growth of plants in their ‘home soil’ was not significantly larger relative to that in soil from other, more distant, populations. Conclusions/Significance Our study suggests that negative soil biota effects can prevail in different parts of a plant species' range. Absence of local adaptation points to the possibility of similar rhizosphere biota composition across populations and regions, sufficient gene flow to prevent coevolution, selection in favor of plasticity, or functional redundancy among different soil biota. From the point of view of plant - soil biota interactions, our findings indicate that the current practice of using seeds exclusively from local provenances in ecosystem restoration campaigns may not be justified. PMID:21479262

  5. Quantification of skeletal fraction volume of a soil pit by means of photogrammetry

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens

    2015-04-01

    The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.

  6. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.

    PubMed

    Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez

    2006-01-01

    The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.

  7. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi'an, Northwest China.

    PubMed

    Wang, Lijun; Liu, Mengmei; Tao, Wendong; Zhang, Wenjuan; Wang, Li; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping

    2018-01-01

    A total of 62 urban soil samples were collected in the city of Xi'an in Northwest China, and analyzed for six U.S. Environmental Protection Agency priority phthalate esters (PAEs). Unlike earlier studies on PAEs in agricultural soil as well as urban soil in humid climates, this paper for the first time comprehensively assessed pollution characteristics and health risks of human exposure to PAEs in urban soil in a typical semi-arid climate. The total concentrations of the six PAEs (Σ6PAEs) in the urban soil varied between 193.0 and 19146.4 μg kg -1 with a mean of 1369.3 μg kg -1 . The PAEs were dominated by di-n-butyl phthalate and di(2-ethylhexyl) phthalate. Magnetic susceptibility and soil texture were controlling factors influencing the concentrations of PAEs in the urban soil. The concentrations of benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and Σ6PAEs increased from the first to third ring roads, while the concentrations of di-n-octyl phthalate decreased. Relatively higher levels of PAEs were observed in industrial, traffic, and residential areas. The PAEs in the urban soil originated mainly from the application of plasticizers or additives, use of cosmetics and personal care products, emissions of construction materials and home furnishings, industrial processes, and atmospheric deposition. The concentrations of some PAEs in the urban soil exceeded soil allowable concentrations and environmental risk levels. The non-cancer and carcinogenic risks of human exposure to the PAEs were relatively low. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    2014-02-19

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  9. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    NASA Astrophysics Data System (ADS)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  10. Growth enhancement by soil derived carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grodzinski, B.; Wallis, M.; O'Sullivan, J.

    The objective of this study was to investigate the role which naturally evolved CO{sub 2} from the soil can play in the early growth and establishment of vegetable transplants in the field. Two planting dates were utilized to examine the effects of the time of tunnel placement on development of a crop of bell peppers, Capsicum annuum L. Ambient CO{sub 2} levels were 340 {plus minus} 4 ppm. In the first 3 weeks of spring (May) CO levels 2 to 3 cm above the soil surface were 420 to 480 ppm. Inside plastic tunnels the upward flux of CO{sub 2}more » evolved from the soil was restricted effectively raising the tunnel atmosphere to over 3000 ppm even at midday. Data from parallel field and controlled environment chamber experiments support the view that 25-40% of the increase in seedling growth in the field tunnels in the spring was due to enhanced photosynthesis and carbon partitioning into both sugars and starch not merely the elevated temperatures associated with protected structures.« less

  11. Inspection Method for Contact Condition of Soil on the Surface of Underground Pipe Utilizing Resonance of Transverse Lamb Wave

    NASA Astrophysics Data System (ADS)

    Tanigawa, Hiroshi; Seno, Hiroaki; Watanabe, Yoshiaki; Nakajima, Koshiro

    1998-05-01

    A nondestructive inspection method to estimate the contact condition of soil on the surface of an underground pipe, utilizing the resonance of a transverse Lamb wave circulating along the pipe wall is proposed.The Q factor of the resonance is considered and measured under some contact conditions by sweeping the vibrating frequency in a 150-mm-inner diameter Fiberglass Reinforced Plastic Mortar (FRPM) pipe. It is confirmed that the Q factor shows a clear response to the change in the contact conditions. For example, the Q factor is 8.4 when the pipe is in ideal contact with the soil plane and goes up to 19.2 when a 100-mm-diameter void is located at the contact surface of the soil.The spatial resolution of the proposed inspection method is also measured by moving the sensing point along the direction of laying the length of the pipe into a 85-mm-diameter void. The resolution of the proposed method is estimated at about 50 mm.

  12. A Study of the Behavior and Micromechanical Modelling of Granular Soil. Volume 3. A Numerical Investigation of the Behavior of Granular Media Using Nonlinear Discrete Element Simulation

    DTIC Science & Technology

    1991-05-22

    plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979

  13. Stability Thresholds and Performance Standards for Flexible Lining Materials in Channel and Slope Restoration Applications

    DTIC Science & Technology

    2012-07-01

    common industry term Bioengineering - Structural applications using vegetation- seed, plants, live cuttings and/or wood NRCS, common industry term...downstream, the use of non-biodegradable products (geosynthetics, plastics , rebar, metal anchors, etc.) in natural settings, and limited benefits to or...entanglement until vegetation establishment and adherence of the TRM to the soil surface (ECTC 2008). Stitch- bonded, geosynthetic extruded and fused TRMs

  14. Effect of di-n-butyl phthalate (DBP) on the fruit quality of cucumber and the health risk.

    PubMed

    Wang, Lei; Sun, Xin; Chang, Qin; Tao, Yue; Wang, Lihua; Dong, Junwei; Lin, Yulong; Zhang, Ying

    2016-12-01

    Di-n-butyl phthalate (DBP) widely used as plastic films' plasticizer, can cause agricultural pollution which is of increasing concern because of the food safety issues. Cucumber ( Cucumis sativus Linn.), commonly cultured in greenhouse, was exposed to DBP stress to gain more information about the ecological risk of DBP in this study. Changes of DBP residues and fruit quality of cucumber at different DBP concentrations (0, 5, 10, 20, 40 mg/kg of dry soil) were investigated in pot experiments using an agricultural soil under greenhouse condition, respectively. DBP residue in cucumber fruits ranged from 0.5326 to 1.8938 mg/kg, and the quality of cucumber fruits (organic acids, vitamin C, soluble protein, and soluble sugar) were influenced by DBP stress. Moreover, the health risk assessment was evaluated by estimate daily intakes (EDI) and the target hazard quotient (THQ) was analyzed. Under 40 mg/kg DBP condition, the highest value of EDI was 2.49 μg/kg bw/day and the THQ ranged from 0.000700 to 0.0249. Although the risk of DBP in cucumber fruits was lower than the threshold limit value of risk, the potential health risk was not a negligible issue.

  15. Overview of the recommended procedures dealing with the evaluation of liquefaction-induced deformation allong a pipeline corridor

    NASA Astrophysics Data System (ADS)

    Papathanassiou, George

    2016-04-01

    The last decade several pipeline corridors have been designed in order to transmit to Europe natural gas and oil from Asia. Although the fact that a pipeline is considered as an underground structure, an analysis of earthquake-induced structural failures should be conducted in prone to earthquake countries e.g. Greece, Italy in EU. The aim of these specific analyses is to assess and evaluate the hazard and the relevant risk induced by earthquake-induced slope failures and soil liquefaction. The latter is a phenomenon that is triggered under specific site conditions. In particular the basic ingredients for the occurrence of liquefaction is the surficial water table, the existence of non-plastic or low plasticity soil layer and the generation of strong ground motion. Regarding the liquefaction-induced deformation that should be assessed and evaluated in order to minimize the risk, it is concluded that the pervasive types of ground failures for level to gently sloping sites are the ground settlements and lateral spreads. The goal of this study is to overview the most widely approaches used for the computation of liquefaction-induced settlement and to present a more detailed description, step by step, of the methodology that is recommended to follow for the evaluation of lateral spreading.

  16. Field soil aggregate stability kit for soil quality and rangeland health evaluations

    USGS Publications Warehouse

    Herrick, J.E.; Whitford, W.G.; de Soyza, A. G.; Van Zee, J. W.; Havstad, K.M.; Seybold, C.A.; Walton, M.

    2001-01-01

    Soil aggregate stability is widely recognized as a key indicator of soil quality and rangeland health. However, few standard methods exist for quantifying soil stability in the field. A stability kit is described which can be inexpensively and easily assembled with minimal tools. It permits up to 18 samples to be evaluated in less than 10 min and eliminates the need for transportation, minimizing damage to soil structure. The kit consists of two 21??10.5??3.5 cm plastic boxes divided into eighteen 3.5??3.5 cm sections, eighteen 2.5-cm diameter sieves with 1.5-mm distance openings and a small spatula used for soil sampling. Soil samples are rated on a scale from one to six based on a combination of ocular observations of slaking during the first 5 min following immersion in distilled water, and the percent remaining on a 1.5-mm sieve after five dipping cycles at the end of the 5-min period. A laboratory comparison yielded a correlation between the stability class and percent aggregate stability based on oven dry weight remaining after treatment using a mechanical sieve. We have applied the method in a wide variety of agricultural and natural ecosystems throughout western North America, including northern Mexico, and have found that it is highly sensitive to differences in management and plant community composition. Although the field kit cannot replace the careful laboratory-based measurements of soil aggregate stability, it can clearly provide valuable information when these more intensive procedures are not possible.

  17. Evaluation of physico-mechanical properties of clayey soils using electrical resistivity imaging technique

    NASA Astrophysics Data System (ADS)

    Kibria, Golam

    Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of undisturbed soil samples, resistivity decreased as much as sixteen fold (49.4 to 3.2 Ohm-m) for an increase of saturation from 31 to 100%. Furthermore, the resistivity results were different for the specimens at a specific degree of saturation because of varied surface activity and isomorphous substitution of clayey soils. In addition to physical properties, compressibility of clays was correlated with electrical conductivity. Based on the investigation, it was determined that the electrical conductivity vs. pressure curves followed similar trends as e vs. logp curves. Multiple linear regression (MLR) models were developed for compacted and undisturbed samples using statistical analysis software SAS (2009). During model development, degree of saturation and CEC were selected as independent variables. The proposed models were validated using experimental results on a different set of samples. Moreover, the applicability of the models in the determination of degrees of saturation was evaluated using field RI tests.

  18. Controlled low strength materials (CLSM), reported by ACI Committee 229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, N.

    1997-07-01

    Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavementmore » bases, conduit bedding, erosion control, void filling, and radioactive waste management.« less

  19. Implication of zinc excess on soil health.

    PubMed

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  20. [Reducing nutrients loss by plastic film covering chemical fertilizers].

    PubMed

    Chen, Huo-jun; Wei, Ze-bin; Wu, Qi-tang; Zeng, Shu-cai

    2010-03-01

    With the low utilization rate of fertilizers by crop and the growing amount of fertilizer usage,the agricultural non-point source pollution in China is becoming more and more serious. The field experiments planting corns were conducted, in which the applied chemical fertilizers were recovered with plastic film to realize the separation of fertilizers from rain water. In the experiments, the influences of different fertilizing treatments on the growing and production of sweet corn were observed. The fertilizer utilization rate and the nutrient contents in surface run-off water with and without the film covering were also determined. Results showed that, with only 70% of the normal amount of fertilizers,the sweet corn could already get high yield under the experimental soil conditions. Soil analysis after corn crops showed that the amounts of available N, P and K in the soil increased obviously with the film-covering, and the decreasing order was: 100% fertilizers with film-covering > 70% fertilizers with film-covering > 100% fertilizers, 70% fertilizers > no fertilizer. The average utilization coefficients of fertilizers by the crop were 42%-87%, 0%-3%, 5%-15% respectively for N, P and K. It was higher with film-covering than that without covering, especially for the high fertilization treatment. Analysis of water samples collected for eight run-off events showed that, without film-covering, N, P and K average concentrations in the runoff waters with fertilizations were 27.72, 2.70 and 7.07 mg x L(-1), respectively. And they were reduced respectively by 39.54%, 28.05%, 43.74% with the film-covering. This can give significant benefits to the decrease of agricultural non-point source pollution and water eutrophication.

  1. Plant responses to soil heterogeneity and global environmental change

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Bardgett, Richard D.; de Kroon, Hans

    2015-01-01

    Summary Recent evidence suggests that soil nutrient heterogeneity, a ubiquitous feature of terrestrial ecosystems, modulates plant responses to ongoing global change (GC). However, we know little about the overall trends of such responses, the GC drivers involved, and the plant attributes affected. We synthesized literature to answer the question: Does soil heterogeneity significantly affect plant responses to main GC drivers, such as elevated atmospheric carbon dioxide concentration (CO2), nitrogen (N) enrichment and changes in rainfall regime? Overall, most studies have addressed short-term effects of N enrichment on the performance of model plant communities using experiments conducted under controlled conditions. The role of soil heterogeneity as a modulator of plant responses to elevated CO2 may depend on the plasticity in nutrient uptake patterns. Soil heterogeneity does interact with N enrichment to determine plant growth and nutrient status, but the outcome of this interaction has been found to be both synergistic and inhibitory. The very few studies published on interactive effects of soil heterogeneity and changes in rainfall regime prevented us from identifying any general pattern. We identify the long-term consequences of soil heterogeneity on plant community dynamics in the field, and the ecosystem level responses of the soil heterogeneity × GC driver interaction, as the main knowledge gaps in this area of research. In order to fill these gaps and take soil heterogeneity and GC research a step forward, we propose the following research guidelines: 1) combining morphological and physiological plant responses to soil heterogeneity with field observations of community composition and predictions from simulation models; and 2) incorporating soil heterogeneity into a trait-based response-effect framework, where plant resource-use traits are used as both response variables to this heterogeneity and GC, and predictors of ecosystem functioning. Synthesis. There is enough evidence to affirm that soil heterogeneity modulates plant responses to elevated atmospheric CO2 and N enrichment. Our synthesis indicates that we must explicitly consider soil heterogeneity to accurately predict plant responses to GC drivers. PMID:25914423

  2. Quantification of dynamic soil-vegetation feedbacks following an isotopically labelled precipitation pulse

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Dubbert, Maren; Siegwolf, Rolf; Cuntz, Matthias; Werner, Christiane

    2017-05-01

    The presence of vegetation alters hydrological cycles of ecosystems. Complex plant-soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and a pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil-vegetation-atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water use in a Mediterranean cork oak woodland during dry conditions. An irrigation experiment using δ18O labelled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on the infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water use, water uptake depth plasticity, and contribution to ecosystem soil evaporation and transpiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive evaporation for transpiration, but infiltration rates decreased. No adjustments of main root water uptake depth to changes in water availability could be observed during the experiment. This forces understorey plants to compete with adjacent trees for water in deeper soil layers at the onset of summer. Thus, understorey plants are subjected to chronic water deficits faster, leading to premature senescence at the onset of drought. Despite this water competition, the presence of cork oak trees fosters infiltration and reduces evapotranspirative water losses from the understorey and the soil, both due to altered microclimatic conditions under crown shading. This study highlights complex soil-plant-atmosphere and inter-species interactions controlling rain pulse transitions through a typical Mediterranean savannah ecosystem, disentangled by the use of stable water isotopes.

  3. Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements.

    PubMed

    Metali, Faizah; Abu Salim, Kamariah; Tennakoon, Kushan; Burslem, David F R P

    2015-01-01

    Foliar elemental concentrations are predictors of life-history variation and contribute to spatial patterns in biogeochemical cycling. We examined the contributions of habitat association, local soil environment, and elemental interactions to variation in foliar elemental concentrations in tropical trees using methods that account for phylogeny. We sampled top-soils and leaves of 58 tropical trees in heath forest (HF) on nutrient-poor sand and mixed dipterocarp forest (MDF) on nutrient-rich clay soils. A phylogenetic generalized least squares method was used to determine how foliar nutrient and aluminium (Al) concentrations varied in response to habitat distribution, soil chemistry and other elemental concentrations. Foliar nitrogen (N) and Al concentrations were greater for specialists of MDF than for specialists of HF, while foliar calcium (Ca) concentrations showed the opposite trend. Foliar magnesium (Mg) concentrations were lower for generalists than for MDF specialists. Foliar element concentrations were correlated with fine-scale variation in soil chemistry in phylogenetically controlled analyses across species, but there was limited within-species plasticity in foliar elemental concentrations. Among Al accumulators, foliar Al concentration was positively associated with foliar Ca and Mg concentrations, and negatively associated with foliar phosphorus (P) concentrations. The Al-accumulation trait and relationships between foliar elemental and Al concentrations may contribute to species habitat partitioning and ecosystem-level differences in biogeochemical cycles. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2018-01-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  5. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin

    PubMed Central

    Yang, Bin; Wen, Xuefa; Sun, Xiaomin

    2015-01-01

    Agricultural irrigation in the middle reaches of the Heihe River Basin consumes approximately 80% of the total river water. Whether the irrigation depth matches the water uptake depth of crops is one of the most important factors affecting the efficiency of irrigation water use. Our results indicated that the influence of plastic film on soil water δ18O was restricted to 0–30 cm soil depth. Based on a Bayesian model (MixSIR), we found that irrigated maize acquired water preferentially from 0–10 cm soil layer, with a median uptake proportion of 87 ± 15%. Additionally, maize utilised a mixture of irrigation and shallow soil water instead of absorbing the irrigation water directly. However, only 24.7 ± 5.5% of irrigation water remained in 0–10 cm soil layer, whereas 29.5 ± 2.8% and 38.4 ± 3.3% of the irrigation water infiltrated into 10–40 cm and 40–80 cm layers. During the 4 irrigation events, approximately 39% of the irrigation and rainwater infiltrated into soil layers below 80 cm. Reducing irrigation amount and developing water-saving irrigation methods will be important strategies for improving the efficiency of irrigation water use in this area. PMID:26463010

  6. Three dimensional, non-linear, finite element analysis of compactable soil interaction with a hyperelastic wheel

    NASA Astrophysics Data System (ADS)

    Chiroux, Robert Charles

    The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.

  7. Optimization of disintegration behavior of biodegradable poly (hydroxy butanoic acid) copolymer mulch films in soil environment

    NASA Astrophysics Data System (ADS)

    Mahajan, Viabhav

    Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.

  8. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil.

    PubMed

    Tribedi, Prosun; Dey, Samrat

    2017-11-09

    Polyethylene represents nearly 64% of all the synthetic plastics produced and are mainly used for domestic and industrial applications. Their extensive use poses a serious environmental threat because of their non-biodegradable nature. Among all the polyethylene remediation strategies, in situ bioremediation happens to be the safest and efficient one. In the current study, efforts had been given to compare the extent of LDPE degradation under UV-treated and UV-untreated conditions by soil microcosm. Landfill soil was collected and UV-treated and UV-untreated LDPE were added separately to the soil following incubation under similar conditions. Electron microscopic images as well as the weight loss and the tensile strength results clearly revealed that UV-treated LDPE showed better degradation than the non-treated ones in soil. To elucidate the mechanism of this enhanced biodegradation, the bond spectra of differentially treated LDPE were analyzed by FTIR. The results obtained from bond spectra studies revealed that UV treatment increases both carbonyl and terminal double-bond index of the LDPE, thereby making it highly susceptible for microbial degradation. Moreover, incubation of UV-treated LDPE with soil favors better adherence of metabolically active and significantly higher number of microorganisms on it. Taken together, all these results demonstrate the higher microbial association and their better metabolic potential to the UV-treated LDPE that lead to enhanced degradation of the LDPE by the soil microorganisms.

  9. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping

    PubMed Central

    Nagel, Kerstin A.; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle

    2015-01-01

    Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. PMID:26089535

  10. Composting of Explosives-Contaminated Soil Technology

    DTIC Science & Technology

    1989-10-01

    commercial or field-scale composting system for Type 2 wastes would require, in its early stages , experimental investigation in two broad areas...consists of the alfalfa, straw/ manure , and woodchips storage and/or handling. The alfalfa and straw/ manure are staged in the designated clean area of the...throughput of 300 yd3 per day. 0 No pad is necessary for all alfalfa and straw/ manure storage. These •aaterials will be staged on visqueen (plastic

  11. Cyclic Dinitroureas As Self-Remediating Munition Charges

    DTIC Science & Technology

    2009-02-26

    Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine NAWCWD Naval Air Warfare Center Weapons Division NMR Nuclear magnetic resonance PBXN Plastic Bonded...problems as UXO. A typical submunition fill, such as PBXN -107 in the BLU- 97/B, employs RDX as the main explosive charge. RDX is known to exhibit... 106 ; “maximum lambda” 1050; “lambda factor” 10. Results and Accomplishments As kinetic runs under the various conditions of humidity and soil

  12. FAQs Regarding PFASs Associated with AFFF Use at U.S. Military Sites

    DTIC Science & Technology

    2017-09-04

    of manufacturing include perfluorononanoic acid (PFNA) and PFOA- contaminated sites associated with the manufacture of plastics/polymers.2,3 Chromium...or sediment due to interaction with these media.  Ingestion of food contaminated with PFASs. This can occur due to the accumulation of PFASs in...plants (produce) grown on PFAS- contaminated soil or irrigated with PFAS- contaminated water. Some PFASs can also bioaccumulate in aquatic food webs and

  13. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    PubMed

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Allelopathic effects of the humus soils from Betula platyphylla and Quercus liaotungensis pure plantations on 9 kinds of common shrubs and herbs].

    PubMed

    Huang, Liang-Jia; Liu, Zeng-wen; Zhu, Bo-Chao; Bing, Yuan-Hao; Zhang, Xiao-Xi; Lü, Chen

    2014-06-01

    The humus soils were collected from Betula platyphylla and Quercus liaotungensis pure plantations and woodless land separately where the site conditions were basically the same, and taken as medium for potting culture test of 9 kinds of shrubs or herbs in plastic greenhouse to assess the allelopathic effects of humus soils of pure plantations on shrubs or herbs. Humus soils from B. platyphylla plantation significantly inhibited the seed germinations of Medicago sativa and Melilotus officinalis, decreased the catalase (CAT) activity of M. officinalis, Coronilla varia, M. sativa and Lespedeza davurica, and improved malondialdehyde (MDA) contents in seedlings of Caragana kor-shinskii, C. varia and Astragalus adsurgens. The biomass growths of C. varia, Amorpha fruticosa, M. sativa, M. officinalis and A. adsurgens in humus soils from B. platyphylla plantation were significantly decreased by 48.2%, 45.1%, 44.3%, 37.3% and 36.0%, respectively. In addition, humus soil of Q. liaotungensis plantation significantly decreased the germination rates of M. sativa and A. adsurgens, the chlorophyll contents of Vicia villosa, A. fruticosa and M. sativa, and improved malondialdehyde (MDA) contents in seedlings of Lespedeza davurica, Caragana korshinskii, M. officinalis and A. adsurgens. The biomass growths of A. adsurgens, M. sativa, M. officinalis and A. fruticosa were significantly decreased by 52.6% , 43.8%, 35.5% and 34.6%, respective- ly. B. platyphylla plantation humus soil had obvious inhibition effects on M. sativa, M. officinalis and A. fruticosa, while Q. liaotungensis plantation humus soil had obvious inhibition effects on M. sativa, A. adsurgens and A. fruticosa.

  15. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  16. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    PubMed

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  17. Transport of microplastics by two collembolan species.

    PubMed

    Maaß, Stefanie; Daphi, Daniel; Lehmann, Anika; Rillig, Matthias C

    2017-06-01

    Plastics, despite their great benefits, have become a ubiquitous environmental pollutant, with microplastic particles having come into focus most recently. Microplastic effects have been intensely studied in aquatic, especially marine systems; however, there is lack of studies focusing on effects on soil and its biota. A basic question is if and how surface-deposited microplastic particles are transported into the soil. We here wished to test if soil microarthropods, using Collembola, can transport these particles over distances of centimeters within days in a highly controlled experimental set-up. We conducted a fully factorial experiment with two collembolan species of differing body size, Folsomia candida and Proisotoma minuta, in combination with urea-formaldehyde particles of two different particle sizes. We observed significant differences between the species concerning the distance the particles were transported. F. candida was able to transport larger particles further and faster than P. minuta. Using video, we observed F. candida interacting with urea-formaldehyde particles and polyethylene terephthalate fibers, showing translocation of both material types. Our data clearly show that microplastic particles can be moved and distributed by soil microarthropods. Although we did not observe feeding, it is possible that microarthropods contribute to the accumulation of microplastics in the soil food web. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nonlinear acoustic experiments involving landmine detection: A connection between mesoscopic/nanoscale effects in geomaterials

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.

    2004-05-01

    The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like rocks (sandstone) or granular materials. Experiments are performed with an inert VS 1.6 anti-tank mine that is buried 3.6 cm deep in dry sifted loess soil. Airborne sound at two primary frequencies f1=120 Hz and f2=130 Hz undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can affect the vibration velocity at the surface. Profiles of the soil surface particle velocity at f1 and f2 and the nonlinearly generated f1-(f2-f1) component are characterized by a single peak. Doubly peaked profiles at 2f1+f2 and 2f2+f1 are attributed to the familiar mode shape of a timpani drum. Near resonance, the bending (a softening) of a family of tuning curves for the soil surface vibration over a landmine exhibits a linear relationship between the peak frequency and the corresponding peak particle velocity, which also exhibit hysteresis effects. [Work supported by U.S. Army Communications-Electronics Command RDEC, NVESD, Fort Belvoir, VA.

  19. Experiments on nonlinear acoustic landmine detection: Tuning curve studies of soil-mine and soil-mass oscillators

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Witten, Thomas R.; Fenneman, Douglas J.

    2004-10-01

    Donskoy [SPIE Proc. 3392, 211-217 (1998); 3710, 239-246 (1999)] has suggested a nonlinear technique that is insensitive to relatively noncompliant targets that can detect an acoustically compliant buried mine. Airborne sound at two primary frequencies eventually causes interactions with the soil and mine generating combination frequencies that can affect the vibration velocity at the surface. In current experiments, f1 and f2 are closely spaced near a mine resonance and a laser Doppler vibrometer profiles the surface. In profiling, certain combination frequencies have a much greater contrast ratio than the linear profiles at f1 and f2-but off the mine some nonlinearity exists. Near resonance, the bending (a softening) of a family of tuning curves (over the mine) exhibits a linear relationship between peak velocity and corresponding frequency, which is characteristic of nonlinear mesoscopic elasticity effects that are observed in geomaterials like rocks or granular media. Results are presented for inert plastic VS 1.6, VS 2.2 and M14 mines buried 3.6 cm in loose soil. Tuning curves for a rigid mass plate resting on a soil layer exhibit similar results, suggesting that nonresonant conditions off the mine are desirable. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.

  20. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

Top