Sample records for plastic zone size

  1. The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.

    2015-09-01

    The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.

  2. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  3. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  4. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanfei

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  5. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  6. Stress Intensity Factor Plasticity Correction for Flaws in Stress Concentration Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E.; Wilson, W.K.

    2000-02-01

    Plasticity corrections to elastically computed stress intensity factors are often included in brittle fracture evaluation procedures. These corrections are based on the existence of a plastic zone in the vicinity of the crack tip. Such a plastic zone correction is included in the flaw evaluation procedure of Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code. Plasticity effects from the results of elastic and elastic-plastic explicit flaw finite element analyses are examined for various size cracks emanating from the root of a notch in a panel and for cracks located at fillet fadii. The results ofmore » these caluclations provide conditions under which the crack-tip plastic zone correction based on the Irwin plastic zone size overestimates the plasticity effect for crack-like flaws embedded in stress concentration regions in which the elastically computed stress exceeds the yield strength of the material. A failure assessment diagram (FAD) curve is employed to graphically c haracterize the effect of plasticity on the crack driving force. The Option 1 FAD curve of the Level 3 advanced fracture assessment procedure of British Standard PD 6493:1991, adjusted for stress concentration effects by a term that is a function of the applied load and the ratio of the local radius of curvature at the flaw location to the flaw depth, provides a satisfactory bound to all the FAD curves derived from the explicit flaw finite element calculations. The adjusted FAD curve is a less restrictive plasticity correction than the plastic zone correction of Section XI for flaws embedded in plastic zones at geometric stress concentrators. This enables unnecessary conservatism to be removed from flaw evaluation procedures that utilize plasticity corrections.« less

  7. Rapid Grain Size Reduction in the Upper Mantle at a Plate Boundary

    NASA Astrophysics Data System (ADS)

    Kidder, S. B.; Scott, J.; Prior, D. J.; Lubicich, E. J.

    2017-12-01

    A few spinel peridotite xenoliths found near the Alpine Fault, New Zealand, exhibit a mylonitic texture and, locally, an extremely fine 30 micron grain size. The harzburgite xenoliths were emplaced in a 200 km-long elongate dike zone interpreted as a gigantic tension fracture or Reidel shear associated with Alpine Fault initiation 25 Ma. The presence of thin ( 1 mm) ultramylonite zones with px-ol phase mixing and fine grain sizes, minimal crustal-scale strain associated with the dike swarm, and the absence of mylonites at four of the five xenolith localities associated with the dike swarm indicate that upper mantle deformation was highly localized. Strings of small, recrystallized grains (planes in 3D) are found in the interiors of olivine porphyroclasts. In some cases, bands 1-2 grains thick are traced from the edges of olivine grains and terminate in their interiors. Thicker zones of recrystallized grains are also observed crossing olivine porphyroclasts without apparent offset of the unrecrystallized remnants of the porphyroclasts. We suggest a brittle-plastic origin for these features since the traditional recrystallization mechanisms associated with dislocation creep require much more strain than occurred within these porphyroclasts. Analogous microstructures in quartz and feldspar in mid-crust deformation zones are attributed to brittle-plastic processes. We hypothesize that such fine-grained zones were the precursors of the observed, higher-strain ultramylonite zones. Given the size of the new grains preserved in the porphyroclasts ( 100 micron) and a moho temperature > 650°C, grain growth calculations indicate that the observed brittle-plastic deformation occurred <10,000 yrs. prior to eruption. It is likely then that either brittle-plastic deformation was coeval with the ductile shearing occurring in the ultramylonite bands, or possibly, if deformation can be separated into brittle-plastic (early) and ductile (later) phases, that the entire localization process was very rapid (<10,000 yrs). In either case we interpret that semi-brittle deformation was a key process responsible for rapid localization in this initiating plate-scale mantle shear zone.

  8. Seismic cycle feedbacks in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  9. The Dugdale model for the compact specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Newman, J. C., Jr.

    1983-01-01

    Plastic zone size and crack tip opening displacement (CTOD) equations were developed. Boundary collocation analyses were used to analyze the compact specimen subjected to various loading conditions (pin loads, concentrated forces, and uniform pressure acting on the crack surface). Stress intensity factor and crack surface displacement equations for some of these loadings were developed and used to obtain the Dugdale model. The results from the equations for plastic zone size and CTOD agreed well with numerical values calculated by Terada for crack length to width ratios greater than 0.4.

  10. Kinetics of Accumulation of Damage in Surface Layers of Lithium-Containing Aluminum Alloys in Fatigue Tests with Rigid Loading Cycle and Corrosive Effect of Environment

    NASA Astrophysics Data System (ADS)

    Morozova, L. V.; Zhegina, I. P.; Grigorenko, V. B.; Fomina, M. A.

    2017-07-01

    High-resolution methods of metal physics research including electron, laser and optical microscopy are used to study the kinetics of the accumulation of slip lines and bands and the corrosion damage in the plastic zone of specimens of aluminum-lithium alloys 1441 and B-1469 in rigid-cycle fatigue tests under the joint action of applied stresses and corrosive environment. The strain parameters (the density of slip bands, the sizes of plastic zones near fracture, the surface roughness in singled-out zones) and the damage parameters (the sizes of pits and the pitting area) are evaluated.

  11. Elastic-Plastic Fracture Mechanics Analysis of Small Cracks

    DTIC Science & Technology

    1982-09-01

    by the plastic zone size (Eq. (6)), LEM and the elastic-plastic fracture mechanics ( EPFM ) results in Figure 4 can be displayed as in Figure 5. The...8d). Figure 8a shows the growth of a crack for LEFM conditions while Figures 8b, c, and d include EPFM considerations as illustrated in Figure 7. The

  12. Plastic debris in the open ocean

    PubMed Central

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  13. Plastic debris in the open ocean.

    PubMed

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  14. Incidence of plastic debris in Sooty Tern nests: A preliminary study on Trindade Island, a remote area of Brazil.

    PubMed

    de Souza Petersen, Elisa; Krüger, Lucas; Dezevieski, Alexandre; Petry, MariaVirginia; Montone, Rosalinda Carmela

    2016-04-15

    Plastic is abundant in the oceans, reaching pelagic zones away from continents. Here we present the first recordings of plastic used as nest material in Sooty Tern nests, on a remote oceanic island. We describe our findings in terms of quantity, size and color of plastic debris. A total of 78 plastics were noted in 54 nests. Four color categories were found: Blue, White, Green and Red. Blue fragments were the most frequent color, present three times as much as white debris. This pattern was present despite blue fragments being smaller and lighter. The plastic debris of lowest frequency were the larger and heavier pieces (red). To our knowledge this is the first record of plastic in Sooty Tern nests. Trindade Island is on an oceanic zone expected to accumulate garbage due to the dynamic ocean currents. Such findings call for a closer inspection of pollution in the Atlantic Ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Factors affecting tumor ablation during high intensity focused ultrasound treatment.

    PubMed

    Hassanuddin, Aizan; Choi, Jun-Ho; Seo, Dong-Wan; Ryu, Choong Heon; Kim, Su-Hui; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2014-07-01

    High intensity focused ultrasound (HIFU) utilizes a targeted extracorporeal focused ultrasound beam to ablate neoplastic pancreatic tissue. We used an in vitro model to examine the effects of bone, metallic stents, plastic stents, metal plates, and cyst-like lesions on HIFU treatment. HIFU was delivered to the phantom models implanted with foreign bodies, and the location, shape, and size of the ablated zones were evaluated. Bone and metallic plates reflected the ultrasound beam, shifting the ablation zone from the focal zone to the prefocal area. In the phantoms containing metal stent, plastic stent, and cyst, most of the ablative energy was reflected to the prefocal area by the surface, with the remainder penetrating through the phantom. The area of the ablated margins was significantly larger in size and volume than the intended focal ablation zone. During HIFU therapy, artificial or anatomical barriers could affect the direction of the ultrasound beams, shifting the ablation zone from the focal area to a prefocal site with a larger than expected ablation zone. These factors should be considered prior to HIFU treatment for pancreatic tumors because they could limit ablation success, in addition to causing complications.

  16. Viscoelasticity and plasticity mechanisms of human dentin

    NASA Astrophysics Data System (ADS)

    Borodin, E. N.; Seyedkavoosi, S.; Zaitsev, D.; Drach, B.; Mikaelyan, K. N.; Panfilov, P. E.; Gutkin, M. Yu.; Sevostianov, I.

    2018-01-01

    Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young's moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.

  17. Determining Crack Tip Field Parameters for Elastic-Plastic Materials via an Estimation Scheme

    DTIC Science & Technology

    1981-07-01

    of the Materials Laboratory was the Project Monitor for this study of the application of the Nonlinear Fracture Mechanics (NLFM) parameters to the...fracture mechanics (LEFM) is applicable . If the plastic zone size is large, compared to the case of small scale yielding, LEFM is not applicable . The...above HRR field equations are applicable only for the case of stationary cracks. 2.2 PARAMETER DETERMINATION For elastic-plastic materials, the

  18. Assessment of Cracks in Stress Concentration Regions with Localized Plastic Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E.

    1998-11-25

    Marty brittle fracture evaluation procedures include plasticity corrections to elastically computed stress intensity factors. These corrections, which are based on the existence of a plastic zone in the vicinity of the crack tip, can overestimate the plasticity effect for a crack embedded in a stress concentration region in which the elastically computed stress exceeds the yield strength of the material in a localized zone. The interactions between the crack, which acts to relieve the high stresses driving the crack, plasticity effects in the stress concentration region, and the nature and source of the loading are examined by formulating explicit flawmore » finite element models for a crack emanating from the root of a notch located in a panel subject to an applied tensile stress. The results of these calculations provide conditions under which a crack-tip plasticity correction based on the Irwin plastic zone size overestimates the plasticity effect. A failure assessment diagram (FAD) curve is used to characterize the effect of plasticity on the crack driving force and to define a less restrictive plasticity correction for cracks at notch roots when load-controlled boundary conditions are imposed. The explicit flaw finite element results also demonstrate that stress intensity factors associated with load-controlled boundary conditions, such as those inherent in the ASME Boiler and Pressure Vessel Code as well as in most handbooks of stress intensity factors, can be much higher than those associated with displacement-controlled conditions, such as those that produce residual or thermal stresses. Under certain conditions, the inclusion of plasticity effects for cracks loaded by displacement-controlled boundary conditions reduces the crack driving force thus justifying the elimination of a plasticity correction for such loadings. The results of this study form the basis for removing unnecessary conservatism from flaw evaluation procedures that utilize plasticity corrections.« less

  19. Environmental fatigue of an Al-Li-Cu alloy. Part 2: Microscopic hydrogen cracking processes

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Based on a fractographic analysis of fatigue crack propagation (FCP) in Al-Li-Cu alloy 2090 stressed in a variety of inert and embrittling environments, microscopic crack paths are identified and correlated with intrinsic da/dN-delta K kinetics. FCP rates in 2090 are accelerated by hydrogen producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. For these cases, subgrain boundary fatigue cracking (SGC) dominates for delta K values where the crack tip process zone, a significant fraction of the cyclic plastic zone, is sufficiently large to envelop 5 micron subgrains in the unrecrystallized microstructure. SGC may be due to strong hydrogen trapping at T1 precipitates concentrated at sub-boundaries. At low delta K, the plastic zone diameter is smaller than the subgrain size and FCP progresses along (100) planes due to either local lattice decohesion or aluminum-lithium hydride cracking. For inert environments (vacuum, helium, and oxygen), or at high delta K where the hydrogen effect on da/dN is small, FCP is along (111) slip planes; this mode does not transition with increasing delta K and plastic zone size. The SGC and (100) crystallographic cracking modes, and the governing influence of the crack tip process zone volume (delta K), support hydrogen embrittlement rather than a surface film rupture and anodic dissolution mechanism for environmental FCP. Multi-sloped log da/dN-log delta K behavior is produced by changes in process zone hydrogen-microstructure interactions, and not by purely micromechanical-microstructure interactions, in contradiction to microstructural distance-based fatigue models.

  20. Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2008-08-01

    For a Cu single crystal, we find that indentation hardness increases with decreasing indentation depth, a phenomenon widely observed before and called the indentation size effect (ISE). To understand the underlying mechanism, we measure the lattice rotations in indentations of different sizes using white beam x-ray microdiffraction (μXRD); the indentation-induced lattice rotations are directly measured by the streaking of x-ray Laue spots associated with the indentations. The magnitude of the lattice rotations is found to be independent of indentation size, which is consistent with the basic tenets of the ISE model. Using the μXRD data together with an ISE model, we can estimate the effective radius of the indentation plastic zone, and the estimate is consistent with the value predicted by a finite element analysis. Using these results, an estimate of the average dislocation densities within the plastic zones has been made; the findings are consistent with the ISE arising from a dependence of the dislocation density on the depth of indentation.

  1. Assessment of mild steel damage characteristics by physical methods

    NASA Astrophysics Data System (ADS)

    Botvina, L. R.; Soldatenkov, A. P.; Levin, V. P.; Tyutin, M. R.; Demina, Yu. A.; Petersen, T. B.; Dubov, A. A.; Semashko, N. A.

    2016-01-01

    The deformation and fracture localization characteristics are estimated by the methods of replicas, acoustic emission, metal magnetic memory, ultrasonic attenuation, microhardness, and electrical resistance. The relation between the estimated physical parameters on the one hand and the plastic zone size and the microcrack concentration in this zone, on the other, is considered.

  2. Providing plastic zone extrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  3. Discrete shear-transformation-zone plasticity modeling of notched bars

    NASA Astrophysics Data System (ADS)

    Kondori, Babak; Amine Benzerga, A.; Needleman, Alan

    2018-02-01

    Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress-strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.

  4. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  5. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  6. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  7. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  8. Local yield stress statistics in model amorphous solids

    NASA Astrophysics Data System (ADS)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  9. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-04-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  10. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    PubMed

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  11. Plastic accumulation in the Mediterranean sea.

    PubMed

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  12. Pollutants in Plastics within the North Pacific Subtropical Gyre.

    PubMed

    Chen, Qiqing; Reisser, Julia; Cunsolo, Serena; Kwadijk, Christiaan; Kotterman, Michiel; Proietti, Maira; Slat, Boyan; Ferrari, Francesco F; Schwarz, Anna; Levivier, Aurore; Yin, Daqiang; Hollert, Henner; Koelmans, Albert A

    2018-01-16

    Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.

  13. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Sun, Yinan; An, Ke

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less

  14. A New Paradigm For Modeling Fault Zone Inelasticity: A Multiscale Continuum Framework Incorporating Spontaneous Localization and Grain Fragmentation.

    NASA Astrophysics Data System (ADS)

    Elbanna, A. E.

    2015-12-01

    The brittle portion of the crust contains structural features such as faults, jogs, joints, bends and cataclastic zones that span a wide range of length scales. These features may have a profound effect on earthquake nucleation, propagation and arrest. Incorporating these existing features in modeling and the ability to spontaneously generate new one in response to earthquake loading is crucial for predicting seismicity patterns, distribution of aftershocks and nucleation sites, earthquakes arrest mechanisms, and topological changes in the seismogenic zone structure. Here, we report on our efforts in modeling two important mechanisms contributing to the evolution of fault zone topology: (1) Grain comminution at the submeter scale, and (2) Secondary faulting/plasticity at the scale of few to hundreds of meters. We use the finite element software Abaqus to model the dynamic rupture. The constitutive response of the fault zone is modeled using the Shear Transformation Zone theory, a non-equilibrium statistical thermodynamic framework for modeling plastic deformation and localization in amorphous materials such as fault gouge. The gouge layer is modeled as 2D plane strain region with a finite thickness and heterogeenous distribution of porosity. By coupling the amorphous gouge with the surrounding elastic bulk, the model introduces a set of novel features that go beyond the state of the art. These include: (1) self-consistent rate dependent plasticity with a physically-motivated set of internal variables, (2) non-locality that alleviates mesh dependence of shear band formation, (3) spontaneous evolution of fault roughness and its strike which affects ground motion generation and the local stress fields, and (4) spontaneous evolution of grain size and fault zone fabric.

  15. Microplastic distribution in global marine surface waters: results of an extensive citizen science study

    NASA Astrophysics Data System (ADS)

    Barrows, A.; Petersen, C.

    2017-12-01

    Plastic is a major pollutant throughout the world. The majority of the 322 million tons produced annually is used for single-use packaging. What makes plastic an attractive packaging material: cheap, light-weight and durable are also the features that help make it a common and persistent pollutant. There is a growing body of research on microplastic, particles less than 5 mm in size. Microfibers are the most common microplastic in the marine environment. Global estimates of marine microplastic surface concentrations are based on relatively small sample sizes when compared to the vast geographic scale of the ocean. Microplastic residence time and movement along the coast and sea surface outside of the gyres is still not well researched. This five-year project utilized global citizen scientists to collect 1,628 1-liter surface grab samples in every major ocean. The Artic and Southern oceans contained highest average of particles per liter of surface water. Open ocean samples (further than 12 nm from land, n = 686) contained a higher particle average (17 pieces L-1) than coastal samples (n = 723) 6 pieces L-1. Particles were predominantly 100 µm- 1.5 mm in length (77%), smaller than what has been captured in the majority of surface studies. Utilization of citizen scientists to collect data both in fairly accessible regions of the world as well as from areas hard to reach and therefore under sampled, provides us with a wider perspective of global microplastics occurrence. Our findings confirm global microplastic accumulation zone model predictions. The open ocean and poles have sequestered and trapped plastic for over half a century, and show that not only plastics, but anthropogenic fibers are polluting the environment. Continuing to fill knowledge gaps on microplastic shape, size and color in remote ocean areas will drive more accurate oceanographic models of plastic accumulation zones. Incorporation of smaller-sized particles in these models, which has previously been lacking, will help to better understand potential fate and transformation microplastic and anthropogenic particles in the marine environment.

  16. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives.

    PubMed

    Yang, Kun; Wu, Yanqing; Huang, Fenglei

    2018-08-15

    A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Numerical analysis of the effect of surface roughness on mechanical fields in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges

    2018-06-01

    This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.

  18. Fractography of a bis-GMA resin.

    PubMed

    Davis, D M; Waters, N E

    1989-07-01

    The fracture behavior of a bis-GMA resin was studied by means of the double-torsion test. The fracture parameter measured was the stress-intensity factor. Fracture occurred in either a stick-slip (unstable) or continuous (stable) manner, depending upon the test conditions. When stick-slip propagation occurred, the fracture surfaces showed characteristic crack-arrest lines. The fracture surfaces were examined by use of a reflected-light optical microscope. The stress-intensity factor for crack initiation was found to be related to the size of the crack-arrest line which, in turn, could be related to the Dugdale model for plastic zone size. The evidence supported the concept that the behavior of the crack during propagation was controlled by the amount of plastic deformation occurring at the crack tip.

  19. Study of the plastic zone around the ligament of thin sheet D.E.N.T specimen subjected to tensile

    NASA Astrophysics Data System (ADS)

    Djebali, S.; Larbi, S.; Bilek, A.

    2015-03-01

    One of the assumptions of Cotterell and Reddel's method of the essential work of fracture determination is the existence of a fracture process zone surrounded by an outer plastic zone extending to the whole ligament before crack initiation. To verify this hypothesis we developed a method based on micro hardness. The hardness values measured in the domain surrounding the tensile fracture area of ST-37-2 steel sheet D.E.N.T specimens confirm the existence of the two plastic zones. The extension of the plastic deformations to the whole ligament before the crack initiation and the circular shape of the outer plastic zone are revealed by the brittle coating method.

  20. Plastic Accumulation in the Mediterranean Sea

    PubMed Central

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  1. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  2. Global Crustal Dynamics of Magnetars in Relation to Their Bright X-Ray Outbursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Christopher; Yang, Huan; Ortiz, Néstor

    2017-05-20

    This paper considers the yielding response of a neutron star crust to smooth, unbalanced Maxwell stresses imposed at the core–crust boundary, and the coupling of the dynamic crust to the external magnetic field. Stress buildup and yielding in a magnetar crust are global phenomena: an elastic distortion radiating from one plastically deforming zone is shown to dramatically increase the creep rate in distant zones. Runaway creep to dynamical rates is shown to be possible, being enhanced by in situ heating and suppressed by thermal conduction and shearing of an embedded magnetic field. A global and time-dependent model of elastic, plastic,more » magnetic, and thermal evolution is developed. Fault-like structures develop naturally, and a range of outburst timescales is observed. Transient events with time profiles similar to giant magnetar flares (millisecond rise, ∼0.1 s duration, and decaying power-law tails) result from runaway creep that starts in localized sub-kilometer-sized patches and spreads across the crust. A one-dimensional model of stress relaxation in the vertically stratified crust shows that a modest increase in applied stress allows embedded magnetic shear to escape the star over ∼3–10 ms, dissipating greater energy if the exterior field is already sheared. Several such zones coupled to each other naturally yield a burst of duration ∼0.1 s, as is observed over a wide range of burst energies. The collective interaction of many plastic zones forces an overstability of global elastic modes of the crust, consistent with quasi-periodic oscillation (QPO) activity extending over ∼100 s. Giant flares probably involve sudden meltdown in localized zones, with high-frequency (≫100 Hz) QPOs corresponding to standing Alfvén waves within these zones.« less

  3. Presynaptic Active Zone Density during Development and Synaptic Plasticity.

    PubMed

    Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  4. Presynaptic Active Zone Density during Development and Synaptic Plasticity

    PubMed Central

    Clarke, Gwenaëlle L.; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated. PMID:22438837

  5. Cyclic Stable-Unstable Slip Preserved along an Appalachian Fault

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Newman, J.; Holyoke, C. W., III; Wojtal, S. F.

    2017-12-01

    The inactive Copper Creek thrust, southern Appalachians, TN, preserves evidence suggesting cyclic aseismic and unstable slip. The Copper Creek thrust is a low-temperature (4-6 km burial depth) foreland thrust with an estimated net slip of 15-20 km. Immediately below the 2 cm thick calcite-shale fault zone, the footwall is composed of shale with cross-cutting calcite veins and is separated from the fault zone by a 300 µm thick layered calcite vein. Optical and electron microscopy indicates that this complex vein layer experienced grain size reduction by plasticity-induced fracturing followed by aseismic diffusion creep. The fault zone calcite exhibits interpenetrating grain boundaries and four-grain junctions suggesting diffusion creep, but also contains nanoscale grains (7 nm), vesicular calcite, and partially-coated clasts indicating unstable, possibly seismic, slip. Well-preserved clasts of deformed calcite vein layer material within the fault zone indicate repeated cycle(s) of aseismic diffusion creep. In addition, nanoscale calcite grains, 30 nm, with straight grain boundaries that form triple junctions, may represent earlier nanoscale grains formed during unstable slip that have experienced grain growth during periods of aseismic creep. Based on the spatial and temporal relations of these preserved microstructures, we propose a sequence of deformation processes consistent with cyclic episodes of unstable slip separated by intervals of aseismic creep. Formation of calcite-filled veins is followed by grain size reduction in vein calcite by plasticity-induced fracturing and aseismic grain-size sensitive diffusion creep deformation in fine-grained calcite. During aseismic creep, the combination of grain growth, resulting in fault strengthening, and an increase in pore fluid pressure, reducing the effective fault strength, leads to new fractures and/or an unstable slip event. During unstable slip, nanograins and vesicular calcite form as a result of thermal decomposition and coated clasts form as a result of fluidization of the fault zone, and are then incorporated within ductilely deforming calcite during a new interval of aseismic creep.

  6. Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki

    2018-01-01

    Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.

  7. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    NASA Astrophysics Data System (ADS)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  8. The distribution of microplastics in soil aggregate fractions in southwestern China.

    PubMed

    Zhang, G S; Liu, Y F

    2018-06-09

    Plastic particle accumulation in arable soils is a growing contaminant of concern with unknown consequences for soil productivity and quality. This study aimed to investigate abundance and distribution of plastic particles among soil aggregate fractions in four cropped areas and an established riparian forest buffer zone at Dian Lake, southwestern China. Plastic particles (10-0.05 mm) from fifty soil samples were extracted and then sorted by size, counted, and categorized. Plastic particles were found in all soil samples. The concentration of plastic particles ranges from 7100 to 42,960 particles kg -1 (mean 18,760 particles kg -1 ). 95% of the sampled plastic particles are in the microplastic size (1-0.05 mm) range. The predominant form is plastic fibers, making up on average 92% of each sample followed by fragments and films that contributed with to 8%. Results of this study also show that 72% of plastic particles are associated with soil aggregates, and 28% of plastic particles are dispersed. The abundance of aggregate-associated plastic fibers is significantly greater in the micro-aggregate than that in the macro-aggregate, whereas the less concentrations of plastic films and fragments are found in the micro-aggregate. Compared to the adjacent vegetable soil, the less concentration of plastic particles in the buffer soil implicates that application of soil amendments and irrigation with wastewater must be controlled to reduce accumulation of microplastics in agricultural soils. While the implications of microplastic on ecological and human health are poorly understood, the staggering number of microplastic in agricultural soils should be continually concerned in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine

    PubMed Central

    Kumamoto, Kathryn M.; Thom, Christopher A.; Wallis, David; Hansen, Lars N.; Armstrong, David E. J.; Warren, Jessica M.; Goldsby, David L.; Wilkinson, Angus J.

    2017-01-01

    The strength of olivine at low temperatures and high stresses in Earth’s lithospheric mantle exerts a critical control on many geodynamic processes, including lithospheric flexure and the formation of plate boundaries. Unfortunately, laboratory-derived values of the strength of olivine at lithospheric conditions are highly variable and significantly disagree with those inferred from geophysical observations. We demonstrate via nanoindentation that the strength of olivine depends on the length scale of deformation, with experiments on smaller volumes of material exhibiting larger yield stresses. This “size effect” resolves discrepancies among previous measurements of olivine strength using other techniques. It also corroborates the most recent flow law for olivine, which proposes a much weaker lithospheric mantle than previously estimated, thus bringing experimental measurements into closer alignment with geophysical constraints. Further implications include an increased difficulty of activating plasticity in cold, fine-grained shear zones and an impact on the evolution of fault surface roughness due to the size-dependent deformation of nanometer- to micrometer-sized asperities. PMID:28924611

  10. Microstructural record of pressure solution and crystal plastic deformation in carbonate fault rocks from a shallow crustal strike-slip fault, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Rogowitz, Anna; Grasemann, Benhard; Decker, Kurt

    2017-04-01

    This study presents microstructural investigations of natural carbonate fault rocks that formed by a suite of different deformation processes, involving hydro-fracturing, dissolution-precipitation creep and cataclasis. Some fault rocks show also clear indications of crystal plastic deformation, which is quite unexpected, as the fault rocks were formed in an upper crustal setting, raising the question of possible strongly localised, low temperature ductile deformation in carbonate rocks. The investigated carbonate fault rocks are from an exhumed, sinistral strike-slip fault at the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system in the Northern Calcareous Alps (Austria). The SEMP fault system formed during eastward lateral extrusion of the Eastern Alps in the Oligocene to Lower Miocene. Based on vitrinite reflectance data form intramontane Teritary basins within the Northern Calcareous Alps, a maximum burial depth of 4 km for the investigated fault segment is estimated. The investigated fault accommodated sinistral slip of several hundreds of meters. Microstructural analysis of fault rocks includes scanning electron microscopy, optical microscopy and electron backscattered diffraction mapping. The data show that fault rocks underwent various stages of evolution including early intense veining (hydro-fracturing) and stylolite formation reworked by localised shear zones. Cross cutting relationship reveals that veins never cross cut clay seams accumulated along stylolites. We conclude that pressure solution processes occured after hydro-fracturing. Clay enriched zones localized further deformation, producing a network of small-scale clay-rich shear zones of up to 1 mm thickness anastomosing around carbonate microlithons, varying from several mm down to some µm in size. Clay seams consist of kaolinit, chlorite and illite matrix and form (sub) parallel zones in which calcite was dissolved. Beside pressure solution, calcite microlithons show also ductile deformation microstructures, including deformation twinning, undulose extinction, subgrain rotation recrystallization and even grain boundary migration. Especially coarse grained calcites from veins localized ductile deformation and record dislocation glide. The investigated fault rocks are excellent examples of frictional, pressure solution and crystal plastic deformation processes. We speculated that crystal plastic deformation typical for higher metamorphic shear zones in marbles, can be either produced under much lower temperature conditions or the temperature necessary for crystal plastic deformation was generated by frictional slip or strain heating within the fault zone.

  11. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  12. Analysis of stress-strain state of support ring of vertical steel tank RVS-20000

    NASA Astrophysics Data System (ADS)

    Chepur, P. V.; Tarasenko, A. A.; Gruchenkova, A. A.

    2018-05-01

    The refined finite element model of the joint of a fixed roof with a support ring for a large-size vertical steel tank RVS-20000 is executed. It considers the real geometry of metal shell plates - in accordance with the TP-704-1-60 design, geometric and physical nonlinearity, and features of the non-axisymmetric design loading scheme of the structure. Dependences of the SSS parameters of the support joint design on the size of the subsidence zone of the outer contour of the RVS-20000 bottom are obtained. It is established that at the value of subsidence zone coefficient n ≤ 1, a region of critical values occurs, exceeding which leads to the appearance of unacceptable plastic deformations of metal structures. The authors performed interpretation of the postprocessing of the finite element analysis, as a result of which the dependences of the parameters of the stress-strain state on the value of the zone of warping were obtained. The graphs of the dependence of the values of strains and stresses of the metal structure of the support ring on the size of the subsidence zone along the arc of the outer contour of the bottom are presented.

  13. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    NASA Astrophysics Data System (ADS)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor displacement, in 2D. Finally, we use the same rheology in a large-scale 3D scenario of the 2004 Sumatra earthquake to shed light to the source process that caused the subsequent devastating tsunami.

  14. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  15. 78 FR 65963 - Foreign-Trade Zone 277-Western Maricopa County, Arizona; Schoeller Arca Systems, Inc. (Plastic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-64-2013] Foreign-Trade Zone 277--Western Maricopa County, Arizona; Schoeller Arca Systems, Inc. (Plastic Containers Production); Goodyear, Arizona On June 13, 2013, the Greater Maricopa Foreign Trade Zone, Inc., grantee of FTZ 277, submitted a...

  16. Viscous shear heating instabilities in a 1-D viscoelastic shear zone

    NASA Astrophysics Data System (ADS)

    Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.

    2010-12-01

    Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic instabilities can occur. The instability is enhanced by the development of a self-localizing thermal perturbation in the fine grained zone that is narrower than the original width of the fine-grained zone. To examine the effect of melting, we include a parameterization of partially molten rock viscosity as a function of temperature assuming a simple relationship between melt fraction and temperature. At T > ~1400°C, all other deformation mechanisms are deactivated but shear heating continues, allowing for continued temperature evolution. In addition a strain rate cap proportional to the shear wave velocity in olivine has been imposed, reflecting the maximum rate that changes in stress can be communicated through the system. While Kelemen and Hirth (2007) allowed for grain size evolution, this has not yet been implemented in our model. Adding grain size evolution as an additional strain softening mechanism would probably allow instabilities to develop at more geologically reasonable applied strain rates. In addition to discussing the stability of the olivine only system, we will explore grain size evolution during system evolution and evaluate the consequences that the grain size evolution and lithology have on the stability of the system.

  17. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures

    PubMed Central

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-01-01

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T-matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring. PMID:28772949

  18. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures.

    PubMed

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-05-27

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T -matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring.

  19. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  20. Mechanical evolution of transpression zones affected by fault interactions: Insights from 3D elasto-plastic finite element models

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza

    2018-01-01

    The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.

  1. Macroscopic Source Properties from Dynamic Rupture Styles in Plastic Media

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Ampuero, J. P.; Dalguer, L. A.; Mai, P. M.

    2011-12-01

    High stress concentrations at earthquake rupture fronts may generate an inelastic off-fault response at the rupture tip, leading to increased energy absorption in the damage zone. Furthermore, the induced asymmetric plastic strain field in in-plane rupture modes may produce bimaterial interfaces that can increase radiation efficiency and reduce frictional dissipation. Off-fault inelasticity thus plays an important role for realistic predictions of near-fault ground motion. Guided by our previous studies in the 2D elastic case, we perform rupture dynamics simulations including rate-and-state friction and off-fault plasticity to investigate the effects on the rupture properties. We quantitatively analyze macroscopic source properties for different rupture styles, ranging from cracks to pulses and subshear to supershear ruptures, and their transitional mechanisms. The energy dissipation due to off-fault inelasticity modifies the conditions to obtain each rupture style and alters macroscopic source properties. We examine apparent fracture energy, rupture and healing front speed, peak slip and peak slip velocity, dynamic stress drop and size of the process and plastic zones, slip and plastic seismic moment, and their connection to ground motion. This presentation focuses on the effects of rupture style and off-fault plasticity on the resulting ground motion patterns, especially on characteristic slip velocity function signatures and resulting seismic moments. We aim at developing scaling rules for equivalent elastic models, as function of background stress and frictional parameters, that may lead to improved "pseudo-dynamic" source parameterizations for ground-motion calculation. Moreover, our simulations provide quantitative relations between off-fault energy dissipation and macroscopic source properties. These relations might provide a self-consistent theoretical framework for the study of the earthquake energy balance based on observable earthquake source parameters.

  2. 78 FR 39707 - Foreign-Trade Zone (FTZ) 277-Western Maricopa County, Arizona; Notification of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ....; (Plastic Containers) Goodyear, Arizona The Greater Maricopa Foreign Trade Zone, Inc. (GMFTZ), grantee of... plastic containers for industrial/commercial materials handling applications. Pursuant to 15 CFR 400.14(b... would be able to choose the duty rate during customs entry procedures that applies to the plastic...

  3. Effects of crack tip plastic zone on corrosion fatigue cracking of alloy 690(TT) in pressurized water reactor environments

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Qiu, S. Y.; Chen, Y.; Fu, Z. H.; Lin, Z. X.; Xu, Q.

    2015-01-01

    Alloy 690(TT) is widely used for steam generator tubes in pressurized water reactor (PWR), where it is susceptible to corrosion fatigue. In this study, the corrosion fatigue behavior of Alloy 690(TT) in simulated PWR environments was investigated. The microstructure of the plastic zone near the crack tip was investigated and labyrinth structures were observed. The relationship between the crack tip plastic zone and fatigue crack growth rates and the environment factor Fen was illuminated.

  4. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  5. Strain rate dependent calcite microfabric evolution - An experiment carried out by nature

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde

    2014-12-01

    A flanking structure developed along a secondary shear zone in calcite marbles, on Syros (Cyclades, Greece), provides a natural laboratory for directly studying the effects of strain rate variations on calcite deformation at identical pressure and temperature conditions. The presence and rotation of a fracture during progressive deformation caused extreme variations in finite strain and strain rate, forming a localized ductile shear zone that shows different microstructures and textures. Textures and the degree of intracrystalline deformation were measured by electron backscattered diffraction. Marbles from the host rocks and the shear zone, which deformed at various strain rates, display crystal-preferred orientation, suggesting that the calcite preferentially deformed by intracrystalline-plastic deformation. Increasing strain rate results in a switch from subgrain rotation to bulging recrystallization in the dislocation-creep regime. With increasing strain rate, we observe in fine-grained (3 μm) ultramylonitic zones a change in deformation regime from grain-size insensitive to grain-size sensitive. Paleowattmeter and the paleopiezometer suggest strain rates for the localized shear zone around 10-10 s-1 and for the marble host rock around 10-12 s-1. We conclude that varying natural strain rates can have a first-order effect on the microstructures and textures that developed under the same metamorphic conditions.

  6. A numerical investigation of grain shape and crystallographic texture effects on the plastic strain localization in friction stir weld zones

    NASA Astrophysics Data System (ADS)

    Romanova, V.; Balokhonov, R.; Batukhtina, E.; Shakhidjanov, V.

    2015-10-01

    Crystal plasticity approaches were adopted to build models accounting for the microstructure and texture observed in different friction stir weld zones. To this end, a numerical investigation of crystallographic texture and grain shape effects on the plastic strain localization in a friction stir weld of an aluminum-base alloy was performed. The presence of texture was found to give rise to pronounced mesoscale plastic strain localization.

  7. Equilibrium stability of a cylindrical body subject to the internal structure of the material and inelastic behaviour of the completely compressed matrix

    NASA Astrophysics Data System (ADS)

    Gotsev, D. V.; Perunov, N. S.; Sviridova, E. N.

    2018-03-01

    The mathematical model describing the stress-strain state of a cylindrical body under the uniform radial compression effect is constructed. The model of the material is the porous medium model. The compressed skeleton of the porous medium possesses hardening elastic-plastic properties. Deforming of the porous medium under the specified compressive loads is divided into two stages: elastic deforming of the porous medium and further elastic-plastic deforming of the material with completely compressed matrix. The analytical relations that define the fields of stress and displacement at each stage of the deforming are obtained. The influence of the porosity and other physical, mechanical and geometric parameters of the construction on the size of the plastic zone is evaluated. The question of the ground state equilibrium instability is investigated within the framework of the three-dimensional linearized relationships of the stability theory of deformed bodies.

  8. Impacts of macro - and microplastic on macrozoobenthos abundance in intertidal zone

    NASA Astrophysics Data System (ADS)

    Bangun, A. P.; Wahyuningsih, H.; Muhtadi, A.

    2018-02-01

    Plastics pollution in coastal areas is one of the topics that have received more attention over the past few years. The intertidal zone is a waters area that is directly affected by contamination of plastic waste from land and sea. The purpose of this study was to analyze the types and abundance of plastic waste in the intertidal zone and its impact on macrozoobenthos abundance. This research was conducted at Pesisir Desa Jaring Halus in February-April 2017. Macrozoobenthos and macro - micro plastic were collected by using quadratic transect. Sediments were collected with a core, to a depth of 30 cm. Microplastic and macroplastic abundances were analyzed using separation of sediment density and hand sorting. The dominant micro plastic types were film (52.30%), fiber (24.88%), fragments (22.74%), followed by pellets (0.1%). The total number of microplastics were 326,33 items and macro plastic were 308 items. Macroplastic abundance is positively correlated with microplastic (0.765). The abundance of macrozoobenthos is negatively correlated with microplastic abundance (-0.368) and with macro plastic abundance (-0.633). The management strategies were suggested clean up marine debris, decrease plastic using and built up the station of debris processing.

  9. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    DTIC Science & Technology

    2016-12-01

    sharpening of the crack tip and deformation of a portion of the newly formed surface (the surface created during loading portion of the cycle) during...cracking process is that the size of the final plastic zone formed by pre-cracking can affect the crack growth rate in subsequent testing. To...similar. In other structural materials, such as aluminium , striations are often well-defined. Typically, fatigue striations on an aluminium fracture

  10. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization

    PubMed Central

    Teichtmeister, S.; Aldakheel, F.

    2016-01-01

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic–plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069

  11. Modeling the Temperature Rise at the Tip of a Fast Crack

    DTIC Science & Technology

    1989-08-01

    plastic deformation in the plastic zone, the strain rate and the temperature dependence of the flow stress have been incorporated in the determination ...of dislocation generation in the plastic zone. The stress field 1 associated with a moving elastic crack tip is used to determine the increment of...yield stress and the crack tip stress field for a given mode of the applied stress. The fracture toughness of several materials, determined

  12. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    PubMed

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  13. Determination of post-shakedown quantities of a pipe bend via the simplified theory of plastic zones compared with load history dependent incremental analysis

    NASA Astrophysics Data System (ADS)

    Vollrath, Bastian; Hübel, Hartwig

    2018-01-01

    The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and accumulated strains at plastic or elastic shakedown. The principles of the method are summarized. Its practical applicability is shown by the example of a pipe bend subjected to constant internal pressure along with cyclic in-plane bending or/and cyclic radial temperature gradient. The results are compared with incremental analyses performed step-by-step throughout the entire load history until the state of plastic shakedown is achieved.

  14. Heterogeneous material distribution, an important reason for generation of strain-localized mylonite and frictional slip zones in the Hidaka metamorphic belt, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Shimada, Koji; Toyoshima, Tsuyoshi; Obara, Tomohiro; Niizato, Tadafumi

    2004-12-01

    Lithological heterogeneity of low P/T metamorphic rocks in southern area of Hidaka metamorphic belt (HMB) was formed through historical development of HMB while these rocks had been laid in ductile lower crust. Many strain-localized mylonite zones (<100 m in thickness) are preferentially developed within S-type tonalite and pelitic gneiss, which are characterized by a large modal amount of phyllosilicates (biotite+muscovite+chlorite) and quartz, compared to other lithofacies in HMB. Mylonitic foliations are more conspicuous with close to the center of the shear zone associated with increase in amounts of phyllosilicate minerals, indicating fluidenhanced weakening mechanisms were operated in plastic shear zones. Pseudotachylyte veins are observed exclusively in these mylonite zones, which were generated during exhumation stage of HMB. We conclude the seismic slip zones in southern HMB had been initiated in the ductile lower crust by concentration of localized plastic shear zones within the phyllosilicate- and quartz-rich lithofacies, which were heterogeneously formed by old metamorphic and magmatic events. Then these zones were further weakened by fluid-enhanced plastic deformation, and finally seismic slips occurred at the bottom of seismogenic upper crust, during exhumation of HMB.

  15. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  16. Soil quality as a factor of the distribution of damages at the meizoseismal area of the Kozani-Grevena 1995 earthquake, in Greece ( Ms = 6.6)

    NASA Astrophysics Data System (ADS)

    Christaras, B.; Dimitriou, An; Lemoni, Hel

    The physical and mechanical properties of the soil formations were related to the damages observed in Kozani and Grevena area, in Northern Greece, after the earth-quake of 13th May 1995 ( Ms = 6.6). Properties such as grain size distribution, plasticity, shear strength, compression index, permeability and ultrasonic velocity were measured in order to classify the suitability of the soil formations, for urban planning, and correlate their mechanical behaviour with the damages observed in the construction. According to our observations, a great number of recent buildings were damaged also in areas far away from the seismotectonic zones, where silty and clayey soils dominate, presenting very low permeability, low ultrasonic velocity together with high plasticity and compressibility.

  17. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  18. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean.

    PubMed

    Doyle, Miriam J; Watson, William; Bowlin, Noelle M; Sheavly, Seba B

    2011-02-01

    The purpose of this study was to examine the distribution, abundance and characteristics of plastic particles in plankton samples collected routinely in Northeast Pacific ecosystems, and to contribute to the development of ideas for future research into the occurrence and impact of small plastic debris in marine pelagic ecosystems. Plastic debris particles were assessed from zooplankton samples collected as part of the National Oceanic and Atmospheric Administration's (NOAA) ongoing ecosystem surveys during two research cruises in the Southeast Bering Sea in the spring and fall of 2006 and four research cruises off the U.S. west coast (primarily off southern California) in spring, summer and fall of 2006, and in January of 2007. Nets with 0.505 mm mesh were used to collect surface samples during all cruises, and sub-surface samples during the four cruises off the west coast. The 595 plankton samples processed indicate that plastic particles are widely distributed in surface waters. The proportion of surface samples from each cruise that contained particles of plastic ranged from 8.75 to 84.0%, whereas particles were recorded in sub-surface samples from only one cruise (in 28.2% of the January 2007 samples). Spatial and temporal variability was apparent in the abundance and distribution of the plastic particles and mean standardized quantities varied among cruises with ranges of 0.004-0.19 particles/m³, and 0.014-0.209 mg dry mass/m³. Off southern California, quantities for the winter cruise were significantly higher, and for the spring cruise significantly lower than for the summer and fall surveys (surface data). Differences between surface particle concentrations and mass for the Bering Sea and California coast surveys were significant for pair-wise comparisons of the spring but not the fall cruises. The particles were assigned to three plastic product types: product fragments, fishing net and line fibers, and industrial pellets; and five size categories: <1 mm, 1-2.5 mm, >2.5-5 mm, >5-10 mm, and >10 mm. Product fragments accounted for the majority of the particles, and most were less than 2.5 mm in size. The ubiquity of such particles in the survey areas and predominance of sizes <2.5 mm implies persistence in these pelagic ecosystems as a result of continuous breakdown from larger plastic debris fragments, and widespread distribution by ocean currents. Detailed investigations of the trophic ecology of individual zooplankton species, and their encounter rates with various size ranges of plastic particles in the marine pelagic environment, are required in order to understand the potential for ingestion of such debris particles by these organisms. Ongoing plankton sampling programs by marine research institutes in large marine ecosystems are good potential sources of data for continued assessment of the abundance, distribution and potential impact of small plastic debris in productive coastal pelagic zones. © 2010 Elsevier Ltd. All rights reserved.

  19. Structural control of the upper plate on the down-dip segmentation of subduction dynamics

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Barbot, S.; Karato, S. I.; Shibazaki, B.; Matsuzawa, T.; Tapponnier, P.

    2017-12-01

    The geodetic and seismic discoveries of slow earthquakes in subduction zones have provided the observational evidence for the existence of the transition between megathrust earthquakes and the creeping behaviors. However, the mechanics behind slow earthquakes, and the period differential motion between the subducting slab and the overlying plate below the seismogenic zone, remain controversial. In Nankai subduction zone, the very-low-frequency earthquakes (VLFE), megathrust earthquakes, long-term slow earthquakes (duration of months or years) and the episodic tremor and slip zone (ETS) are located within the accretionary prism, the continental upper crust, the continental lower crust and the upmost mantle of the overriding plate, respectively. We use the rate-and-state friction law to simulate the periodic occurrence of VLFEs, megathrust earthquakes and the tremors in the ETS zone because of relatively high rock strength within these depth ranges. However, it is not feasible to use frictional instabilities to explain the long-term slow earthquakes in the lower crust where the ductile rock physics plays a significant role in the large-scale deformation. Here, our numerical simulations show that slow earthquakes at the depth of the lower crust may be the results of plastic instabilities in a finite volume of ductile material accompanying by the grain-size evolution. As the thickness of the fault zone increases with depth, deformation becomes distributed and the dynamic equilibrium of grain size, as a competition between thermally activated grain growth and damage-related grain size reduction, results in cycles of strain acceleration and strain deficit. In addition, we took into account the elevated pore pressure in the accretinary prism which is associated with small stress drop and low-frequency content of VLFEs and may contribute to the occurrence of tsunamigenic earthquakes. Hence, in our numerical simulations for the plate boundary system in Nankai, the down-sip segmentation of the subduction dynamic is attributed to the upper plate structure that vary with depth. The high pore pressure, grain-size evolution and alternation of the rock physics may explain the existence and the periodicity of different slow earthquakes from shallow to deep regions in the subduction zone.

  20. Strain softening along the MCT zone from the Sikkim Himalaya: Relative roles of Quartz and Micas

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali; Mitra, Gautam

    2011-06-01

    In the Darjeeling - Sikkim Himalaya, two distinct faults form the Main Central thrust (MCT), the structurally higher MCT1 and the lower MCT2; each has accommodated translation greater than 100 km. The lower MCT2 places Greater Himalayan amphibolite grade Paro-Lingtse gneiss over Lesser Himalayan greenschist grade Daling metapelites. The MCT2 is folded by the underlying Lesser Himalayan duplex and is exposed at different structural positions of the fold. At Pelling, the MCT2 zone is exposed as a ˜373 m thick NW dipping fault zone that exposes ˜19 m of hanging wall mylonitized Lingtse gneiss. The Lingtse protolith shows evidence of amphibolite grade plastic deformation features in quartz and feldspar. Within the hanging wall mylonite zone (HWMZ), quartz and feldspar have undergone grain-size reduction by different deformation mechanisms and feldspars are sericitized suggesting the presence of fluids during deformation. We estimate a temperature of ˜300 °C within the fault zone during fluid-assisted retrogression and deformation. Reaction softening of feldspars produced a large proportion of intrinsically weak matrix. This, in combination with development of a strong foliation defined by parallel mica grains, resulted in strain softening along the MCT2 zone, and concentrated the deformation along a thin zone or zones.

  1. 76 FR 4283 - Foreign-Trade Zone 153-San Diego, CA; Application for Manufacturing Authority; Abbott...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ..., Murrieta. The facilities are used for the production of cardiovascular devices including stents, catheters... finished product) include: resins, plastic tubing, stent components, plastic packaging, plastic clips...

  2. Inclined indentation of smooth wedge in rock mass

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  3. Protected areas in the Atlantic facing the hazards of micro-plastic pollution: first diagnosis of three islands in the Canary Current.

    PubMed

    Baztan, Juan; Carrasco, Ana; Chouinard, Omer; Cleaud, Muriel; Gabaldon, Jesús E; Huck, Thierry; Jaffrès, Lionel; Jorgensen, Bethany; Miguelez, Aquilino; Paillard, Christine; Vanderlinden, Jean-Paul

    2014-03-15

    Coastal zones and the biosphere as a whole show signs of cumulative degradation due to the use and disposal of plastics. To better understand the manifestation of plastic pollution in the Atlantic Ocean, we partnered with local communities to determine the concentrations of micro-plastics in 125 beaches on three islands in the Canary Current: Lanzarote, La Graciosa, and Fuerteventura. We found that, in spite of being located in highly-protected natural areas, all beaches in our study area are exceedingly vulnerable to micro-plastic pollution, with pollution levels reaching concentrations greater than 100 g of plastic in 1l of sediment. This paper contributes to ongoing efforts to develop solutions to plastic pollution by addressing the questions: (i) Where does this pollution come from?; (ii) How much plastic pollution is in the world's oceans and coastal zones?; (iii) What are the consequences for the biosphere?; and (iv) What are possible solutions? Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    NASA Astrophysics Data System (ADS)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  5. Microstructure and Plastic Deformation of the As-Welded Invar Fusion Zones

    NASA Astrophysics Data System (ADS)

    Yao, D. J.; Zhou, D. R.; Xu, P. Q.; Lu, F. G.

    2017-05-01

    The as-welded Invar fusion zones were fabricated between cemented carbides and carbon steel using a Fe-Ni Invar interlayer and laser welding method. Three regions in the as-welded Invar fusion zones were defined to compare microstructures, and these were characterized and confirmed by scanning electron microscopy and X-ray diffractometry. The structure and plastic deformation mechanism for initial Invar Fe-Ni alloys and the as-welded Invar fusion zones are discussed. (1) After undergoing high-temperature thermal cycles, the microstructure of the as-welded Invar fusion zones contains γ-(Fe, Ni) solid solution (nickel dissolving in γ-Fe) with a face-centered cubic (fcc) crystal structure and mixed carbides (eutectic colonies, mixed carbides between two adjacent grains). The mixed carbides exhibited larger, coarser eutectic microstructures with a decrease in welding speed and an increase in heat input. (2) The structure of the initial Invar and the as-welded Invar is face-centered cubic γ-(Fe, Ni). (3) The as-welded Invar has a larger plastic deformation than initial Invar with an increase in local strain field and dislocation density. Slip deformation is propagated along the (111) plane. This finding helps us to understand microstructure and the formation of dislocation and plastic deformation when the Invar Fe-Ni alloy undergoes a high-temperature process.

  6. Phenotypic plasticity in clutch size regulation among populations of a potential invasive fruit fly from environments that vary in host heterogeneity and isolation.

    PubMed

    Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J

    2018-05-21

    Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.

  7. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary.

    PubMed

    Jiang, Peilin; Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2018-05-15

    Plastic trash is common in oceans. Terrestrial and marine ecosystem interactions occur in the intertidal zone where accumulation of plastic frequently occurs. However, knowledge of the plastic-associated microbial community (the plastisphere) in the intertidal zone is scanty. We used high-throughput sequencing to profile the bacterial communities attached to microplastic samples from intertidal locations around the Yangtze estuary in China. The structure and composition of plastisphere communities varied significantly among the locations. We found the taxonomic composition on microplastic samples was related to their sedimentary and aquatic origins. Correlation network analysis was used to identify keystone bacterial genera (e.g. Rhodobacterales, Sphingomonadales and Rhizobiales), which represented important microbial associations within the plastisphere community. Other species (i.e. potential pathogens) were considered as hitchhikers in the plastic attached microbial communities. Metabolic pathway analysis suggested adaptations of these bacterial assemblages to the plastic surface-colonization lifestyle. These adaptations included reduced "cell motility" and greater "xenobiotics biodegradation and metabolism." The findings illustrate the diverse microbial assemblages that occur on microplastic and increase our understanding of plastisphere ecology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; McDowell, David L.

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  9. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE PAGES

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  10. Hybrid friction stir welding for dissimilar materials through electro-plastic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xun; Lan, Shuhuai; Ni, Jun

    A hybrid Friction Stir Welding approach and device for dissimilar materials joining employing Electro-Plastic Effect. The approach and device include an introduction of high density, short period current pulses into traditional friction stir welding process, which therefore can generate a localized softened zone in the workpiece during plastic stirring without significant additional temperature increase. This material softened zone is created by high density current pulses based on Electro-Plastic Effect and will move along with the friction stir welding tool. Smaller downward force, larger processing window and better joint quality for dissimilar materials are expected to be achieved through this hybridmore » welding technique.« less

  11. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  12. Detailed physico-chemical characterization of microplastics from North Atlantic Gyre

    NASA Astrophysics Data System (ADS)

    ter Halle, A.; Ladirat, L.; Gendre, X.; Goudouneche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E.

    2016-02-01

    More than 260 million tonnes of plastic are used each year. Based on population density and economic status of costal countries the mass of land based plastic waste entering the ocean was recently estimated between 4.8 to 12.7 million metric tons per year1. Most striking is the estimation for 2025 that this amount will increase by an order of magnitude if waste management infrastructures are not improved. Plastic debris is abundant and widespread in the marine habitat. Marine plastic pollution has been recently recognized as a global environmental threat2. There is still a need for detailed research in terms of estimating the global scale of plastic inputs, their fate in the environment as well as the biological responses to plastic exposure in a variety of marine organisms. In this context, the present study aimed at giving a detailed physico-chemical characterization of the microplastics collected at the surface of the North Atlantic accumulation zone. A detailed description of the plastics is given in terms of size, width, density and weight together with a microscopic and infrared spectroscopy characterization. In this study, also we introduce a new fragmentation mechanism of the microplastics based on the physico-chemical data collected. This approach will be helpful for oceanographic modelling. The results will be also very useful to better understand the biological response to the plastic in terms of transfer of chemical in case of ingestion or to better understand the formation and development of the plastisphere. 1 Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Lavender Law, K., Plastic waste inputs from land into the ocean 2 Moore, C. J., Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 2008, 108, (2), 131-139.

  13. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed Central

    Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat. PMID:26394047

  14. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed

    Eich, Andreas; Mildenberger, Tobias; Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.

  15. Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Chen, Jing; Tan, Hua; Lin, Xin; Huang, Weidong

    2017-07-01

    In this paper, laser additive manufacturing (LAM) technology with powder feeding has been employed to fabricate 50%LAMed specimens (i.e. the volume fraction of the laser deposited zone was set to 50%). With aid of the 3D-DIC technique, the tensile deformation behavior of 50%LAMed Ti64ELI titanium alloy was investigated. The 50%LAMed specimen exhibits a significant characteristic of strength mismatch due to the heterogeneous microstructure. The tensile fracture of 50%LAMed specimen occurs in WSZ (wrought substrate zone), but the tensile strength is slightly higher and the plastic elongation is significantly lower than that of the wrought specimen. The 3D-DIC results shows that the 50%LAMed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and the maximal strain is invariably concentrated in WSZ. The ABAQUS simulation indicates that, the LDZ (laser deposited zone) can constrain the plastic deformation of the WSZ and biaxial stresses develop at the interface after yielding.

  16. Mapping and analysis of microplasticity in tensile-deformed double-notched silicon crystals by computer-aided X-ray rocking curve analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.Y.; Mayo, W.E.; Weissmann, S.

    A computer-aided X-ray rocking curve analyzer (CARCA) was developed to map and analyze rapidly the distribution of plastic and elastic strains in deformed single crystals. Double-notched silicon crystal, tensile deformed at 800 C, was selected as a model material. For small stresses the interaction effects of the strained plastic zones were negligible. With increased deformation interaction of microplasticity caused modifications of the characteristics of the plastic zones at the notch tips. The microplastic trajectory of the internotch zone outlined the future fracture path at an early stage of deformation. The observed decrease of micrplasticity with depth from the surface ismore » explained both from the micro and macromechanics viewpoint.« less

  17. The relation of sediment texture to macro- and microplastic abundance in intertidal zone

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, H.; Bangun, A. P.; Muhtadi, A.

    2018-02-01

    The intertidal zone is a waters area directly affected by the contamination of plastic debris from land and sea. The aim of this research were to analyze the relation of sediment texture to macro- and micro plastic abundance and also to determine appropriate management strategy. This research was conducted in intertidal zone Jaring Halus Village Langkat Regency North Sumatera Province on February-April 2017. Plastic debris was collected using quadrat transect. Sediment was collected with correct, up to a depth of least 30 cm. Abundance of micro plastic in Station 1 were positively tolerated with clay (0.509), and silt (0.787) and negatively correlations with sand (0.709) Station 2 were positively correlations with sand (0.645) and negatively correlations with clay (0.575), and silt (0.626) Station 3 were positively correlations with clay (0.435), and silt (0.466) and negatively correlations with sand (0.599). The abundance of microplastic was positively correlations with the abundance of microplastic (0.765). Microplastic density is directly proportional to the content of clay and dust. The higher the clay and dust content the higher the micro plastic density.

  18. A numerical study of crack tip constraint in ductile single crystals

    NASA Astrophysics Data System (ADS)

    Patil, Swapnil D.; Narasimhan, R.; Mishra, R. K.

    In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.

  19. Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse

    PubMed Central

    Mendoza Schulz, Alejandro; Jing, Zhizi; María Sánchez Caro, Juan; Wetzel, Friederike; Dresbach, Thomas; Strenzke, Nicola; Wichmann, Carolin; Moser, Tobias

    2014-01-01

    Endbulb of Held terminals of auditory nerve fibers (ANF) transmit auditory information at hundreds per second to bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). Here, we studied the structure and function of endbulb synapses in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the AVCN. Endbulb terminals and active zones were normal in number and vesicle complement. Postsynaptic densities, quantal size and vesicular release probability were increased while vesicle replenishment and the standing pool of readily releasable vesicles were reduced. These opposing effects canceled each other out for the first evoked EPSC, which showed unaltered amplitude. We propose that ANF activity deprivation drives homeostatic plasticity in the AVCN involving synaptic upscaling and increased intrinsic BC excitability. In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound onset compared to ANF, likely reflecting the combined effects of ANF convergence and homeostatic plasticity. Further, we conclude that bassoon promotes vesicular replenishment and, consequently, a large standing pool of readily releasable synaptic vesicles at the endbulb synapse. PMID:24442636

  20. Elementary model of severe plastic deformation by KoBo process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusak, A.; Storozhuk, N.; Danielewski, M., E-mail: daniel@agh.edu.pl

    2014-01-21

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In thismore » very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.« less

  1. Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the brittle-plastic transition

    NASA Astrophysics Data System (ADS)

    Melosh, Ben L.; Rowe, Christie D.; Smit, Louis; Groenewald, Conrad; Lambert, Christopher W.; Macey, Paul

    2014-10-01

    Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70-90° from a slip surface, as well as fractures that branch at angles of ∼ 30 ° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle-ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure ;implosion breccias;. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47 ± 0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8-5.8 and associated rupture lengths of 0.023-3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip.

  2. Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration

    PubMed Central

    2017-01-01

    Home range size is a fundamental concept for understanding animal dispersion and ecological needs, and it is one of the most commonly reported ecological attributes of free-ranging mammals. Previous studies indicate that red foxes Vulpes vulpes display great variability in home range size. Yet, there has been little consensus regarding the reasons why home range sizes of red foxes vary so extensively. In this study, we examine possible causes of variation in red fox home range sizes using data from 52 GPS collared red foxes from four study areas representing a gradient of landscape productivity and human landscape alteration in Norway and Sweden. Using 90% Local Convex Hull home range estimates, we examined how red fox home range size varied in relation to latitude, elevation, vegetation zone, proportion of agricultural land and human settlement within a home range, and sex and age. We found considerable variation in red fox home range sizes, ranging between 0.95 km2 to 44 km2 (LoCoH 90%) and 2.4 km2 to 358 km2 (MCP 100%). Elevation, proportion of agricultural land and sex accounted for 50% of the variation in home range size found amongst foxes, with elevation having the strongest effect. Red foxes residing in more productive landscapes (those in more southern vegetation zones), had home ranges approximately four times smaller than the home ranges of foxes in the northern boreal vegetation zone. Our results indicate that home range size was influenced by a productivity gradient at both the landscape (latitude) and the local (elevation) scale. The influence of the proportion of agriculture land on home range size of foxes illustrates how human landscape alteration can affect the space use and distribution of red foxes. Further, the variation in home range size found in this study demonstrates the plasticity of red foxes to respond to changing human landscape alteration as well as changes in landscape productivity, which may be contributing to red fox population increases and northern range expansions. PMID:28384313

  3. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.

    PubMed

    Yu, Hailiang; Tieu, A Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-04-08

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

  4. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    PubMed Central

    Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-01-01

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation. PMID:25851228

  5. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-04-01

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

  6. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release

    PubMed Central

    Gupta, Varun K.; Pech, Ulrike; Fulterer, Andreas; Ender, Anatoli; Mauermann, Stephan F.; Andlauer, Till F. M.; Beuschel, Christine; Thriene, Kerstin; Quentin, Christine; Schwärzel, Martin; Mielke, Thorsten; Madeo, Frank; Dengjel, Joern; Fiala, André; Sigrist, Stephan J.

    2016-01-01

    Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse. PMID:27684064

  7. Microplastic-associated Bacterial Assemblages in the Intertidal Zone

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Zhao, S.; Zhu, L.; Li, D.

    2017-12-01

    Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.

  8. Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes

    NASA Astrophysics Data System (ADS)

    Szabó, Péter; Ispánovity, Péter Dusán; Groma, István

    2015-02-01

    The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.

  9. Fabric transition with dislocation creep of a carbonate fault zone in the brittle regime

    NASA Astrophysics Data System (ADS)

    Kim, Sungshil; Ree, Jin-Han; Han, Raehee; Kim, Nahyeon; Jung, Haemyeong

    2018-01-01

    Fabric transition by a switch in the dominant slip system of minerals in the plastic regime can be induced by changes in temperature, strain rate, or water content. We propose here this fabric transition by frictional heating in seismogenic fault zones in the brittle regime. The Garam Thrust in the Taebaeksan Basin of South Korea has a hanging wall of Cambrian dolostone juxtaposed against a footwall of Ordovician limestone and records a minimum displacement of 120 m. In a 10 cm thick plastically deformed layer adjacent to the principal slip layer of the fault zone, the lattice preferred orientation of calcite grains suggests that the dominant slip system changes, approaching the principal slip layer, from r 〈02-21〉 and e-twinning, through r 〈02-21〉 and basal 〈a〉, to basal 〈a〉. This fabric transition requires a high temperature-gradient of 40 °C/cm, which we infer to result from frictional heating of the seismic fault zone. We suggest that fabric transition within a thin plastically deformed layer adjacent to the principal slip layer of a fault zone indicates an unusually steep temperature gradient and provides strong evidence of seismic slip.

  10. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.

  11. Separation of plastics by froth flotation. The role of size, shape and density of the particles.

    PubMed

    Pita, Fernando; Castilho, Ana

    2017-02-01

    Over the last few years, new methods for plastic separation in mining have been developed. Froth flotation is one of these techniques, which is based on hydrophobicity differences between particles. Unlike minerals, most of the plastics are naturally hydrophobic, thus requiring the addition of chemicals that promote the selective wettability of one of its components, for a flotation separation. The floatability of six granulated post-consumer plastic - Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D) - in the presence of tannic acid (wetting agent), and the performance of the flotation separation of five bi-component plastic mixtures - PS/PMMA, PS/PET-S, PS/PET-D, PS/PVC-M and PS/PVC-D - were evaluated. Moreover, the effect of the contact angle, density, size and shape of the particles was also analysed. Results showed that all plastics were naturally hydrophobic, with PS exhibiting the highest floatability. The contact angle and the flotation recovery of six plastics decreased with increasing tannic acid concentration, occurring depression of plastics at very low concentrations. Floatability differed also with the size and shape of plastic particles. For regular-shaped plastics (PS, PMMA and PVC-D) floatability decreased with the increase of particle size, while for lamellar-shaped particles (PET-D) floatability was slightly greater for coarser particles. Thus, plastic particles with small size, lamellar shape and low density present a greater floatability. The quality of separation varied with the mixture type, depending not only on the plastics hydrophobicity, but also on the size, density and shape of the particles, i.e. the particle weight. Flotation separation of plastics can be enhanced by differences in hydrophobicity. In addition, flotation separation improves if the most hydrophobic plastic, that floats, has a lamellar shape and lower density and if the most hydrophilic plastic, that sinks, has a regular shape and higher density. The results obtained show that froth flotation is a potential method for plastics separation, in particular for plastics with particle size greater than 2.0mm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Elastic-plastic deformation of a metal-matrix composite coupon with a center slot

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Joh, D.; Jo, J.; Guo, Y.

    1985-01-01

    A comprehensive experimental analysis of deformations of the surface of a metal-matrix specimen is reported. The specimen is a 6-ply 0 + or - 45 sub s boron-aluminum tensile coupon with a central slot. Moire interferometry is used for high-sensitivity whole-field measurements of in-plane displacements. Normal and shear strains are calculated from displacement gradients. Displacement fields are analyzed at various load levels from 15% to 95% of the failure load. Deformations of the boron fibers could be distinguished from those of the matrix. Highly localized plastic slip zones occur tangent to the ends of the slot. Shear strains and concurrent transverse compressive strains in the slip zones reach approximately 10% and 1%, respectively. Upon unloading, elastic recovery in surrounding regions causes a reverse plastic shear strain in the slip zone of about 4%. Longitudinal normal strains on the unslotted ligament peak at the slot boundary at about 1% strain. The strain concentration factor at the end of the slot decreases with load level and the advance of plasticity.

  13. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project (http://www.ascete.de/). Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.

  14. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  15. Overload effect and fatigue crack propagation in amorphous metallic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaki, T.K.; Li, J.C.M.

    1984-07-01

    Fatigue crack propagation in amorphous metals has an overload effect which usually increases with the number of overload cycles. The variation of overload effect with delta K is explained by the size of the plastic zone which depends on delta K. A comparison of the spacing between striations and da/dN shows that the crack jumps a step about every hundred cycles. The featureless region is probably due to shear fracture along a shear band during overload. Both crack tip blunting and branching occur during the application of overload. Work hardening is not a necessary factor for the overloading effect.

  16. Multi `omics reveals role of phenotypic plasticity in governing biogeochemical hotspots within the groundwater-surface water (hyporheic) mixing zone

    NASA Astrophysics Data System (ADS)

    Graham, E.; Tfaily, M. M.; Crump, A.; Arntzen, E.; Romero, E. B.; Goldman, A. E.; Resch, T.; Kennedy, D.; Nelson, W. C.; Stegen, J.

    2017-12-01

    Subsurface groundwater-surface water mixing zones (hyporheic zones) contain spatially heterogeneous hotspots of enhanced biogeochemical activity that contribute disproportionately to river corridor function. We have a poor understanding of the processes governing hotspots, but recent advances have enabled greater mechanistic understanding. We employ a suite of ultra-high resolution measurements to investigate the mechanisms underlying biogeochemical cycles in hyporheic zone hotspots. We use Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), metagenomic shotgun sequencing, and mass spectrometry of metaproteomes to characterize metabolite structure and metabolic transformations, microbiome structure and functional potential, and expressed microbiome functions in hyporheic sediments from the Columbia River in central Washington State. Surprisingly, microbiome structure and function in biogeochemical hotspots were indistinguishable from low-activity sediments. Metabolites were uncorrelated to protein expression but strongly related to aerobic respiration. Hotspot metabolites were distinguished by high molecular weight compounds and protein-, lignin-, and lipid-like molecules. Although the most common metabolic transformations were similar between hotspots and low-activity samples, hotspots contained a greater proportion of rare pathways, which in turn were correlated to metabolism. Our results contradicted our expectations that hotspots would be characterized by a unique microbiome with distinct physiology. Instead, our results indicate that microbial phenotypic plasticity underlies elevated hyporheic zone function, whereby the activity of rare pathways is stimulated by substrate availability. We therefore hypothesize that microbiome plasticity couples meso- (e.g., local root distribution) and macro-scale (e.g., landscape vegetation) resource heterogeneity to ecosystem-scale function. This indicates a need to mechanistically understand and represent microbiome physiological plasticity in predictive hydrobiogeochemical models that include the hyporheic zone.

  17. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Finite element analysis of stresses in Berkovich, Vickers and Knoop indentation for densifying and non-densifying glasses

    NASA Astrophysics Data System (ADS)

    Chen, Kanghua

    2002-08-01

    A constitutive law for fused silica accounting for its permanent densification under large compressive stresses is presented. The implementation of the constitutive equations in the general-purpose finite element code ABAQUS via user subroutine is proposed and carefully verified. The three-dimensional indentation mechanics under Berkovich, Vickers and Knoop indenters is extensively investigated based on the proposed constitutive relation. The results of stress distribution and plastic zone for both densifying and non-densifying optical glasses are systematically compared. These numerical results are in good agreement with the experimental observations of optical manufacturing. That is, fused silica shows lower material removal rate, smaller surface roughness and subsurface damage in contrast to non-densifying optical glasses under the same grinding condition. Material densification of fused silica is thoroughly studied through numerical simulations of indentation mechanics. The exact amount of densification and shear strain of fused silica under Berkovich indentation is calculated to show the deformation mechanism of glass materials under three-dimensional indentations. The surface profiles show the material "pile-up" around the indenter tip for non-densifying glasses and "sink-in" for fused silica after the indentation load is removed. An important inverse problem is studied: estimation of abrasive size and indentation load through the examination of residual indentation footprints. A series of 2D axisymmetric spherical indentation simulations generate a wide range of relationships among the indentation load, indenter size, residual indentation depth and size of residual indentation zone for the five selected brittle materials: glass fused silica (FS), BK7, semiconductor Si, laser glass LHG8, and optical crystal CaF2.. The application of the inverse problem is verified by the good agreement between the estimated abrasive size and the actual abrasive size found during a material removal experiment of magnetorheological finishing (MRF) of fused silica. The explanation of indentation size effect (ISE) is attempted using numerical indentation simulations. Vickers indentation simulations on the five selected brittle materials (FS, BK7, Si, LHG8 and CaF2.) show no size dependence of Vickers hardness when the material is modeled as elastic-perfectly plastic (with or without densification). The simulation results on axisymmetric conical indentation also indicate that the bluntness of the indenter tip is not the reason for the indentation size effect. A new constitutive model accounting for the material length scale is needed in order to explain the well-observed indentation size effect during indentation tests.

  19. Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats.

    PubMed

    Rochman, Chelsea M; Lewison, Rebecca L; Eriksen, Marcus; Allen, Harry; Cook, Anna-Marie; Teh, Swee J

    2014-04-01

    The accumulation of plastic debris in pelagic habitats of the subtropical gyres is a global phenomenon of growing concern, particularly with regard to wildlife. When animals ingest plastic debris that is associated with chemical contaminants, they are at risk of bioaccumulating hazardous pollutants. We examined the relationship between the bioaccumulation of hazardous chemicals in myctophid fish associated with plastic debris and plastic contamination in remote and previously unmonitored pelagic habitats in the South Atlantic Ocean. Using a published model, we defined three sampling zones where accumulated densities of plastic debris were predicted to differ. Contrary to model predictions, we found variable levels of plastic debris density across all stations within the sampling zones. Mesopelagic lanternfishes, sampled from each station and analyzed for bisphenol A (BPA), alkylphenols, alkylphenol ethoxylates, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), exhibited variability in contaminant levels, but this variability was not related to plastic debris density for most of the targeted compounds with the exception of PBDEs. We found that myctophid sampled at stations with greater plastic densities did have significantly larger concentrations of BDE#s 183 -209 in their tissues suggesting that higher brominated congeners of PBDEs, added to plastics as flame-retardants, are indicative of plastic contamination in the marine environment. Our results provide data on a previously unsampled pelagic gyre and highlight the challenges associated with characterizing plastic debris accumulation and associated risks to wildlife. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Materiel Testing in the Tropics (6th Ed)

    DTIC Science & Technology

    1979-04-01

    ceramics Test methodology Panama Canal Zone Textiles Plastics Tropic Test Center Protective coatings Tropical animals 20. (cont) of Materiel Testing in...Canal Zone . .. 1-3 D Materiel Testing in the Panama Canal Zone . . . . . . . ... . 1-5 E Canal Zone Environment--Brief Overview .. .. .... ...... 1-6...trapped there, and by the heavy biomass of the canopy itself. E. CANAL ZONE ENVIRONMENT--BRIEF OVERVIEW The Canal Zone (see frontispiece) bisects the

  1. Evidence for Seismic and Aseismic Slip along a Foreland Thrust Fault, Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Newman, J.; Wells, R. K.; Holyoke, C. W.; Wojtal, S. F.

    2013-12-01

    Studies of deformation along ancient thrust faults form the basis for much of our fundamental understanding of fault and shear zone processes. These classic studies interpreted meso- and microstructures as formed during aseismic creep. Recent experimental studies, and studies of naturally deformed rocks in seismically active regions, reveal similar microstructures to those observed locally in a carbonate foreland thrust from the southern Appalachians, suggesting that this thrust fault preserves evidence of both seismic and aseismic deformation. The Copper Creek thrust, TN, accommodated 15-20 km displacement, at depths of 4-6 km, as estimated from balanced cross-sections. At the Diggs Gap exposure of the Copper Creek thrust, an approximately 2 cm thick, vein-like shear zone separates shale layers in the hanging wall and footwall. The shear zone is composed of anastomosing layers of ultrafine-grained calcite and/or shale as well as aggregate clasts of ultrafine-grained calcite or shale. The boundary between the shear zone and the hanging wall is sharp, with slickensides along the boundary, parallel to the shear zone movement direction. A 350 μm-thick layer of ultrafine-grained calcite separates the shear zone and the footwall. Fault parallel and perpendicular calcite veins are common in the footwall and increase in density towards the shear zone. Microstructures within the vein-like shear zone that are similar to those observed in experimental studies of unstable slip include: ultrafine-grained calcite (~0.34 μm), nano-aggregate clasts (100-300 nm), injection structures, and vein-wrapped and matrix-wrapped clasts. Not all structures within the shear zone and ultrafine-grained calcite layer suggest seismic slip. Within the footwall veins and calcite aggregate clasts within the shear zone, pores at twin-twin intersections suggest plasticity-induced fracturing as the main mechanism for grain size reduction. Interpenetrating grain boundaries in ultrafine-grained calcite and a lack of a lattice preferred orientation suggest ultrafine-grained calcite deformed by diffusion creep accommodated grain boundary sliding. These structures suggest a strain-rate between 10-15 - 10-11 s-1, using calcite flow laws at temperatures 150-250 °C. Microstructures suggest both seismic and aseismic slip along this ancient fault zone. During periods of aseismic slip, deformation is accommodated by plasticity-induced fracturing and diffusion creep. Calcite veins suggest an increase in pore-fluid pressure, contributing to fluidized and unstable flow, but also providing the calcite that deformed by diffusion creep during aseismic creep.

  2. Discrete dislocation plasticity analysis of loading rate-dependent static friction.

    PubMed

    Song, H; Deshpande, V S; Van der Giessen, E

    2016-08-01

    From a microscopic point of view, the frictional force associated with the relative sliding of rough surfaces originates from deformation of the material in contact, by adhesion in the contact interface or both. We know that plastic deformation at the size scale of micrometres is not only dependent on the size of the contact, but also on the rate of deformation. Moreover, depending on its physical origin, adhesion can also be size and rate dependent, albeit different from plasticity. We present a two-dimensional model that incorporates both discrete dislocation plasticity inside a face-centred cubic crystal and adhesion in the interface to understand the rate dependence of friction caused by micrometre-size asperities. The friction strength is the outcome of the competition between adhesion and discrete dislocation plasticity. As a function of contact size, the friction strength contains two plateaus: at small contact length [Formula: see text], the onset of sliding is fully controlled by adhesion while for large contact length [Formula: see text], the friction strength approaches the size-independent plastic shear yield strength. The transition regime at intermediate contact size is a result of partial de-cohesion and size-dependent dislocation plasticity, and is determined by dislocation properties, interfacial properties as well as by the loading rate.

  3. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation?

    NASA Astrophysics Data System (ADS)

    De Paola, Nicola; Holdsworth, Robert E.; Viti, Cecilia; Collettini, Cristiano; Bullock, Rachael

    2015-12-01

    Recent friction experiments carried out under upper crustal P-T conditions have shown that microstructures typical of high temperature creep develop in the slip zone of experimental faults. These mechanisms are more commonly thought to control aseismic viscous flow and shear zone strength in the lower crust/upper mantle. In this study, displacement-controlled experiments have been performed on carbonate gouges at seismic slip rates (1 m s-1), to investigate whether they may also control the frictional strength of seismic faults at the higher strain rates attained in the brittle crust. At relatively low displacements (<1 cm) and temperatures (≤100 °C), brittle fracturing and cataclasis produce shear localisation and grain size reduction in a thin slip zone (150 μm). With increasing displacement (up to 15 cm) and temperatures (T up to 600 °C), due to frictional heating, intracrystalline plasticity mechanisms start to accommodate intragranular strain in the slip zone, and play a key role in producing nanoscale subgrains (≤100 nm). With further displacement and temperature rise, the onset of weakening coincides with the formation in the slip zone of equiaxial, nanograin aggregates exhibiting polygonal grain boundaries, no shape or crystal preferred orientation and low dislocation densities, possibly due to high temperature (>900 °C) grain boundary sliding (GBS) deformation mechanisms. The observed micro-textures are strikingly similar to those predicted by theoretical studies, and those observed during experiments on metals and fine-grained carbonates, where superplastic behaviour has been inferred. To a first approximation, the measured drop in strength is in agreement with our flow stress calculations, suggesting that strain could be accommodated more efficiently by these mechanisms within the weaker bulk slip zone, rather than by frictional sliding along the main slip surfaces in the slip zone. Frictionally induced, grainsize-sensitive GBS deformation mechanisms can thus account for the self-lubrication and dynamic weakening of carbonate faults during earthquake propagation in nature.

  4. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    PubMed Central

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment. PMID:22737147

  5. Laboratory test methods to determine the degradation of plastics in marine environmental conditions.

    PubMed

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  6. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites.

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2015-02-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male-male competition in P. persimilis than N. californicus . Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis ; medium level in N. californicus ). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus , consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male-male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive ('Napoleon complex') in male-male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour.

  7. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2015-01-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male–male competition in P. persimilis than N. californicus. Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis; medium level in N. californicus). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus, consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male–male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive (‘Napoleon complex’) in male–male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour. PMID:25673881

  8. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.

    PubMed

    Bashey, Farrah

    2006-02-01

    The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort.

  9. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  10. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change.

    PubMed

    Mitchell, Duncan; Snelling, Edward P; Hetem, Robyn S; Maloney, Shane K; Strauss, Willem Maartin; Fuller, Andrea

    2018-02-26

    The accuracy of predictive models (also known as mechanistic or causal models) of animal responses to climate change depends on properly incorporating the principles of heat transfer and thermoregulation into those models. Regrettably, proper incorporation of these principles is not always evident. We have revisited the relevant principles of thermal physiology and analysed how they have been applied in predictive models of large mammals, which are particularly vulnerable, to climate change. We considered dry heat exchange, evaporative heat transfer, the thermoneutral zone and homeothermy, and we examined the roles of size and shape in the thermal physiology of large mammals. We report on the following misconceptions in influential predictive models: underestimation of the role of radiant heat transfer, misassignment of the role and misunderstanding of the sustainability of evaporative cooling, misinterpretation of the thermoneutral zone as a zone of thermal tolerance or as a zone of sustainable energetics, confusion of upper critical temperature and critical thermal maximum, overestimation of the metabolic energy cost of evaporative cooling, failure to appreciate that the current advantages of size and shape will become disadvantageous as climate change advances, misassumptions about skin temperature and, lastly, misconceptions about the relationship between body core temperature and its variability with body mass in large mammals. Not all misconceptions invalidate the models, but we believe that preventing inappropriate assumptions from propagating will improve model accuracy, especially as models progress beyond their current typically static format to include genetic and epigenetic adaptation that can result in phenotypic plasticity. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  11. Emergent Spatial Patterns of Excitatory and Inhibitory Synaptic Strengths Drive Somatotopic Representational Discontinuities and their Plasticity in a Computational Model of Primary Sensory Cortical Area 3b

    PubMed Central

    Grajski, Kamil A.

    2016-01-01

    Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers), boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties. PMID:27504086

  12. Evidence of selection on phenotypic plasticity and cost of plasticity in response to host-feeding sources in the major Chagas disease vector Triatoma infestans.

    PubMed

    Nattero, Julieta; Leonhard, Gustavo; Gürtler, Ricardo E; Crocco, Liliana B

    2015-12-01

    Phenotypic plasticity is the ability of a genotype to display alternative phenotypes in different environments. Understanding how plasticity evolves and the factors that favor and constrain its evolution have attracted great interest. We investigated whether selection on phenotypic plasticity and costs of plasticity affect head and wing morphology in response to host-feeding sources in the major Chagas disease vector Triatoma infestans. Full-sib families were assigned to blood-feeding on either live pigeons or guinea pigs throughout their lives. We measured diet-induced phenotypic plasticity on wing and head size and shape; characterized selection on phenotypic plasticity for female and male fecundity rates, and evaluated costs of plasticity. Wing size and shape variables exhibited significant differences in phenotypic plasticity associated with host-feeding source in female and male bugs. Evidence of selection on phenotypic plasticity was detected in head size and shape for guinea pig-fed females. A lower female fecundity rate was detected in more plastic families for traits that showed selection on plasticity. These results provide insights into the morphological phenotypic plasticity of T. infestans, documenting fitness advantages of head size and shape for females fed on guinea pigs. This vector species showed measurable benefits of responding plastically to environmental variation rather than adopting a fixed development plan. The presence of cost of plasticity suggests constraints on the evolution of plasticity. Our study indicates that females fed on guinea pigs (and perhaps on other suitable mammalian hosts) have greater chances of evolving under selection on phenotypic plasticity subject to some constraints. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evaluation of a local exhaust system used in the manufacture of small parts made of reinforced plastic.

    PubMed

    Lazure, L P

    2000-09-01

    Fiber-reinforced plastics are used to manufacture a large variety of products, particularly for the transportation sector. Hand lay-up molding and projection molding are the main methods of manufacture. The users of these processes are exposed to appreciable emissions of styrene; in Quebec, more than 3000 workers work in this industry. A statistical analysis of styrene concentrations measured over a five-year period by the Institut de recherche en santé et en sécurité du travail (IRSST, Occupational Health and Safety Research Institute) reveals that for all of the main manufacturing sectors involved, between 40 percent and 78 percent of the results exceed the exposure standard of 50 ppm. This study evaluated the effectiveness of a ventilated table in controlling worker exposure to styrene and acetone in a shop that manufactures fiber-reinforced plastics parts. The evaluated local extraction system consists of a ventilated table with a surface area of 1.2 m x 1.2 m. During molding, the styrene emissions are exhausted through the ventilated table as well as through the slots in a lateral hood. Replacement air, introduced vertically through a supply air shower located above the worker, limits the diffusion of contaminants toward the worker's breathing zone. The reduction in worker exposure to styrene and acetone during hand lay-up molding was measured in the breathing zone for two sizes of molds. The results show that exhaust ventilation reduced the styrene concentrations by 91 percent and that the introduction of replacement air increased the efficiency of the ventilated table to 96 percent. The evaluation performed indicates that the ventilated table adequately controls worker exposure to styrene and acetone during the molding of small components.

  14. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By varying block lengths and the polarity of the epoxy-miscible blocks, a variety of morphologies were generated (such as spherical micelles, layer particles and worm-like micelles). It was found that in some cases, the epoxy-miscible block did not yield domains substantial enough to facilitate increases in toughness. Overall, the thermal and mechanical properties of the acrylate-based triblock- and diblock-modified epoxies were found to be similar to CTBN-modified epoxy, which was used as a control. However, there were properties that were improved with the acrylate-based diblock-modified epoxies when compared to the acrylate-based triblock modified epoxies. Specifically, the viscosity penalty of the diblock-modified epoxies was shown to be a marked improvement over the triblock-modified epoxies, especially given that the fracture toughness values are similar. This reduction in the viscosity penalty becomes an important criterion when considering processing procedures and applications. Additionally, comparing the morphology of the resulting modified-epoxies utilizing atomic force microscopy (AFM) and scanning electron microscopy (SEM) led to a better understanding of the relationship between the particle morphology obtained and the physical properties of the acrylate-based rubber-modified epoxy systems in this research.

  15. Low level of polyandry constrains phenotypic plasticity of male body size in mites.

    PubMed

    Schausberger, Peter; Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size.

  16. Low level of polyandry constrains phenotypic plasticity of male body size in mites

    PubMed Central

    Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size. PMID:29190832

  17. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  18. Biases and best approaches for assessing debris ingestion in sea turtles, with a case study in the Mediterranean.

    PubMed

    Casale, Paolo; Freggi, Daniela; Paduano, Valentina; Oliverio, Marco

    2016-09-15

    In a sample of 567 loggerhead turtles (Caretta caretta) from the central Mediterranean, debris occurrence varied according to methods and turtle source, and was up to 80% in pelagic turtles. Frequencies of plastic types, size and color are also reported. These results and a critical review of 49 studies worldwide indicate that: (i) the detected occurrence of plastic (% turtles) is affected by several factors (e.g., necropsy/feces, ecological zone, type and date of finding, captivity period for feces collection), (ii) mixed dataset and opportunistic approaches provide results which are biased , not comparable, and ultimately of questionable value, (iii) only turtles assumed to have had a normal feeding behaviour at the time of capture or death should be considered, (iv) turtle foraging ecology and possible selectivity may undermine the use of turtles as indicator species for monitoring marine litter, as recently proposed for the Mediterranean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  20. Influence of Grain Size on Mechanical Responses in Beta Ti-12Mo Alloy Demonstrating Concurrent Twinning-Induced Plasticity/Transformation-induced Plasticity Effects

    NASA Astrophysics Data System (ADS)

    Zhang, D. C.; Xue, Q.; Lei, J. F.; Ma, Y. J.; Yang, R.; Wang, C.

    2018-06-01

    Metastable β Ti-12Mo wt pct alloys with controllable grain sizes are successfully produced, and the effect of grain size on mechanical responses has been thoroughly investigated. It is found that target alloys possess concurrent twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) features. Mechanisms governing mechanical properties through well-manipulated tensile experiments, detailed microstructure analysis, as well as strong correlations between triggering stress and twinning/phase transformation are offered.

  1. Molecular diversity patterns among various phytoplankton size-fractions in West Greenland in late summer

    NASA Astrophysics Data System (ADS)

    Elferink, Stephanie; Neuhaus, Stefan; Wohlrab, Sylke; Toebe, Kerstin; Voß, Daniela; Gottschling, Marc; Lundholm, Nina; Krock, Bernd; Koch, Boris P.; Zielinski, Oliver; Cembella, Allan; John, Uwe

    2017-03-01

    Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano- and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such as Alexandrium fundyense and A. ostenfeldii) in the area points out the potential risk for this vulnerable ecosystem in a changing world.

  2. Simulating spontaneous aseismic and seismic slip events on evolving faults

    NASA Astrophysics Data System (ADS)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare the slip spectrum in our simulations to conventional RSF simulations (Liu and Rice, JGR, 2007). We further demonstrate the capability of simulating the evolution of a fault zone and simultaneous occurrence of slip transients. From small random initial distributions of the state variable in an otherwise homogeneous medium, deformation localizes and forms curved zones of reduced states. These spontaneously formed fault zones host slip transients, which in turn contribute to the growth of the fault zone.

  3. 40Ar/39Ar mica ages from marble mylonites: a cautionary tale

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Huet, Benjamin; Schneider, David; Grasemann, Bernhard

    2014-05-01

    40Ar/39Ar geochronology on white mica is a popular method to date deformation under moderate (brittle-ductile) temperatures. In particular, deformation events preserved in greenschist facies shear zones have been successfully dated with this method. A consequence of strain localization in many tectonic settings that bear calcitic marbles is the formation of marble mylonites and ultramylonites. Little is known, however, about the behaviour of the K/Ar systems and the influence of deformation on the ages in such rocks. We studied an extremely localized shear zone (2 cm thick) in marble from Syros (Cyclades, Greece) and performed microstructural, chemical and isotopic analysis on samples from the host rock and the shear zone. The host rock is composed of coarse-grained (300 µm) calcite with only minor undulatory extinction and slightly curved grain boundaries. This initial large grain size is likely to have formed during the Eocene high-pressure - low-temperature event that is well documented in the Cyclades. In contrast, the marble within the shear zone shows evidence of strong intracrystalline deformation and recrystallization resulting in grain size reduction and the formation of an ultramylonite. Both microstructures and kinematics are consistent with the low grade evolution described on Syros. White mica (100's microns in size) are preferentially orientated parallel to the foliation. In both samples there is no clear evidence for crystal plastic deformation of the mica grains. Bigger grains behave brittle resulting in grain size reduction. A deformation mechanism map for calcite at 300 °C indicates that the host rock deformed at strain rates of around 10-12.5 s-1 whereas within the shear zone strain rates of up to 10-9.5 s-1 are attained. We performed laser-heating 40Ar/39Ar analysis on white mica located in the host rock and the shear zone. The low-strain host rock yielded a ca. 40 Ma age, and the shear zone recorded a ca. 37 Ma age; both ages are statistically indistinguishable when errors are considered. These dates correspond to the regional Eocene high-pressure - low-temperature event and not the later low grade deformation event that is responsible for the formation of the studied shear zone. Although the marble within the shear zone was deformed at extremely fast strain rates, we observe no resetting in the isotopic system. Moreover, mineral chemistry demonstrates that (1) white mica is homogeneous and (2) there is no compositional difference between the host rock and the shear zone. This is in agreement with thermodynamical modelling, which indicates that the observed assemblage (calcite + dolomite + quartz + white mica) is stable without any composition change along the pressure-temperature path followed by the metamorphic rocks of Syros. Our case study emphasizes it is not the amount of strain the rock suffered but the degree of mica recrystallization that is important for resetting of the K/Ar system at low temperatures.

  4. Paper microzone plates.

    PubMed

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  5. Metamorphic reactions, grain size reduction and deformation of mafic lower crustal rocks

    NASA Astrophysics Data System (ADS)

    Degli Alessandrini, Giulia; Menegon, Luca; Beltrando, Marco; Dijkstra, Arjan; Anderson, Mark

    2016-04-01

    This study investigates grain-scale deformation mechanisms associated with strain localization in the mafic continental lower crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction and phase mixing. The investigated shear zone is hosted in the Finero mafic-ultramafic complex in the Italian Southern Alps. Shearing occurred at T ≥ 650° C and P ≥ 0.4-0.6 GPa. The shear zone reworks both mafic and ultramafic lithologies and displays anastomosing patterns of (ultra)mylonitic high strain zones wrapping less foliated, weakly deformed low strain domains. Field and microstructural observations indicate that different compositional layers of the shear zone responded differently to deformation, resulting in strain partitioning. Four distinct microstructural domains have been identified: (1) an ultramylonitic domain characterized by an amph + pl matrix (grain size < 30μm) with large amphibole porphyroclasts (grain size between 200μm and 5000μm) and rare garnets; (2) a domain rich in garnet porphyroclasts embedded in a matrix of monomineralic plagioclase displaying a core and mantle structure (average grain size 45μm) (3) a metagabbroic domain with porphyroclasts of clinopyroxene, orthopyroxene and garnets (200μm average grain size) wrapped by monomineralic ribbons of recrystallized plagioclase and (4) a garnet-free ultramylonitic domain composed of an intermixed amph + cpx + opx + pl matrix (6μm average grain size). In these domains, each porphyroclastic mineral responds differently to deformation: amphibole readily breaks down to symplectitic intergrowths of amph + pl or opx + pl. Garnet undergoes fracturing (in domain 2) or reacts to give symplectites of pl + opx (in domain 3). Plagioclase dynamically recrystallizes in mono-phase aggregates, whereas clinopyroxene undergoes fracturing and orthopyroxene undergoes plastic deformation. The behaviour of the different phases and their relative abundance in the layers are believed to influence the deformation of the layers themselves. In symplectite-rich layers (domains 1, 4) deformation is localised, grain-size is below 30μm and phases are well mixed. On the other hand, in pyroxene or plagioclase-rich layers, deformation is less localised, the phases are less mixed and the grain size is larger (domain 2, 3). These preliminary results suggest that syn-kinematic metamorphic reactions forming symplectites played an essential role in grain size reduction, phase mixing and strain localization. We speculate that the compositional domains with symplectites localized deformation more efficiently, by activation of grain size sensitive creep, most likely because those domains were originally more hydrated than the others. On the contrary, domains without symplectites accommodated deformation less efficiently, either through fracturing (clinopyroxene, garnet) or dislocation creep + recrystallization (orthopyroxene, plagioclase).

  6. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?

    PubMed

    Ortega-Mayagoitia, Elizabeth; Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge

    2018-01-01

    According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the response is more intense compared to temperate populations.

  7. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?

    PubMed Central

    Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge

    2018-01-01

    According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the response is more intense compared to temperate populations. PMID:29708999

  8. 3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah

    NASA Astrophysics Data System (ADS)

    Withers, K.; Moschetti, M. P.

    2017-12-01

    We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.

  9. On the feedback between forearc morphotectonics and megathrust earthquakes in subduction zones

    NASA Astrophysics Data System (ADS)

    Rosenau, M.; Oncken, O.

    2008-12-01

    An increasing number of observations suggest an intrinsic relationship between short- and long-term deformation processes in subduction zones. These include the global correlation between megathrust earthquake slip patterns with morphotectonic forearc features, the historical predominance of giant earthquakes (M > 9) along accretionary margins and the occurrence of (slow and shallow) tsunami earthquakes along erosive margins. To gain insight into the interplay between seismogenesis and tectonics in subduction settings we have developed a new modeling technique which joins analog and elastic dislocation approaches. Using elastoplastic wedges overlying a rate- and state-dependent interface, we demonstrate how analog earthquakes drive permanent wedge deformation consistent with the dynamic Coulomb wedge theory and how wedge deformation in turn controls basal "seismicity". During an experimental run, elastoplastic wedges evolve from those comparable to accretionary margins, characterized by plastic wedge shortening, to those mimicking erosive margins, characterized by minor plastic deformation. Permanent shortening localizes at the periphery of the "seismogenic" zone leading to a "morphotectonic" segmentation of the upper plate. Along with the evolving segmentation of the wedge, the magnitude- frequency relationship and recurrence distribution of analog earthquakes develop towards more periodic events of similar size (i.e. characteristic earthquakes). From the experiments we infer a positive feedback between short- and long-term deformation processes which tends to stabilize the spatiotemporal patterns of elastoplastic deformation in subduction settings. We suggest (1) that forearc anatomy reflects the distribution of seismic and aseismic slip at depth, (2) that morphotectonic segmentation assists the occurrence of more characteristic earthquakes, (3) that postseismic near-trench shortening relaxes coseismic compression by megathrust earthquakes and thus reduces tsunami earthquake risk in accretionary settings and (4) that permanent coastal shortening allows adjacent segments to fail more synchronized thus triggering much greater earthquakes in accretionary settings.

  10. Resource Partitioning in Food, Space and Time between Arctic Charr (Salvelinus alpinus), Brown Trout (Salmo trutta) and European Whitefish (Coregonus lavaretus) at the Southern Edge of Their Continuous Coexistence.

    PubMed

    Jensen, Hallvard; Kiljunen, Mikko; Knudsen, Rune; Amundsen, Per-Arne

    2017-01-01

    Arctic charr and European whitefish are considered to be strong competitors in lakes, with the latter usually being the superior species. However, high niche plasticity and lake morphometry may suggestively facilitate resource partitioning and coexistence between charr and whitefish. Here, we explore the trophic niche utilization (diet and habitat use) of charr and whitefish co-occurring with brown trout in the deep and oligotrophic Lake Fyresvatnet, southern Norway (59°05'N, 8°10'E). Using CPUE, stomach contents and stable isotope analyses, a distinct resource partitioning was revealed between brown trout and the other two species. Brown trout typically occupied the littoral zone, feeding on benthic invertebrates, surface insects and small-sized whitefish. In contrast, charr and whitefish were predominantly zooplanktivorous, but diverged somewhat in habitat utilization as charr shifted seasonally between the profundal and the littoral zone, whereas whitefish were found in the upper water layers (littoral and pelagic habitats). Accordingly, the stable isotope values of carbon (δ13C) reflected a pelagic orientated prey resource use for both charr and whitefish, whereas brown trout had elevated carbon and nitrogen (δ15N) signatures that reflected their benthivore and piscivore diet, respectively. The findings suggest that charr may not rely upon the profundal zone as a feeding habitat but as a refuge area, and may coexist with whitefish if a third competitive and predatory species like brown trout co-occur in the lake. The study indicates that a general high habitat plasticity of Arctic charr may be essential in the presently observed coexistence with a competitively superior fish species like whitefish, and that a third fish species like brown trout may facilitate this particular fish community structure.

  11. Local zone-wise elastic-plastic constitutive parameters of Laser-welded aluminium alloy 6061 using digital image correlation

    NASA Astrophysics Data System (ADS)

    Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei

    2018-02-01

    The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.

  12. Critical weight mediates sex-specific body size plasticity and sexual dimorphism in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae).

    PubMed

    Rohner, Patrick T; Blanckenhorn, Wolf U; Schäfer, Martin A

    2017-05-01

    Ultimate factors driving insect body size are rather well understood, while-apart from a few model species-the underlying physiological and developmental mechanisms received less attention. We investigate the physiological basis of adaptive size variation in the yellow dung fly Scathophaga stercoraria, which shows pronounced male-biased sexual size dimorphism and strong body size plasticity. We estimate variation of a major physiological threshold, the critical weight, which is the mass at which a larva initiates pupariation. Critical weight was associated with sexual size dimorphism and sex-specific plasticity, and is thus a likely target of selection on adult size. Detailed larval growth trajectories derived from individuals raised at two food and temperature treatments further reveal that sex-specific size plasticity is mediated by faster initial growth of males that later becomes reduced by higher male weight loss during the wandering stage. We further demonstrate that integral growth rates, which are typically calculated as simple ratios of egg-to-adult development time and adult weight, do not necessarily well reflect variation in instantaneous growth rates. We illustrate the importance of detailed assessments of ontogenetic growth trajectories for the understanding of adaptive size variation and discuss the mechanistic basis of size determination in shaping sex-specific phenotypic plasticity. © 2017 Wiley Periodicals, Inc.

  13. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  14. Size effects in olivine control strength in low-temperature plasticity regime

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  15. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Frankel, G. S.; Huang, I. Wen; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ' phases redissolved into the HAZ matrix, while the rest of the θ' phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ' phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ', and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

  16. Size distribution of stranded small plastic debris on the coast of Guangdong, South China.

    PubMed

    Fok, Lincoln; Cheung, Pui Kwan; Tang, Guangda; Li, Wai Chin

    2017-01-01

    Beach environments are known to be conducive to fragmentation of plastic debris, and highly fragmented plastic particles can interact with smaller organisms. Even through stranded plastic debris may not interact directly with marine organisms, backwash processes may transport this debris back to coastal waters, where it may affect a wide range of marine life at different trophic levels. This study analysed the size distribution of stranded plastic debris (<10 mm) collected from eight coastal beaches in Guangdong Province, China. Polystyrene (PS) foams and fragments smaller than 7 mm were increasingly abundant in the smaller size classes, whereas resin pellets remained in their production sizes (∼3 mm). Microplastics (<5 mm) accounted for over 98% of the total plastic debris by abundance and 71% by weight, indicating that the plastic debris on these coastal beaches was highly fragmented and the majority of the plastic masses belonged to the microplastic size range. The observed size distributions of PS foams and fragments are believed to result from continued fragmentation. Previous studies found that the residence time of beached debris was less than one year on average, and no sign of plastic accumulation with depth in beach sediment was observed. Therefore, coastal beaches may represent a reservoir of highly fragmented and degraded microplastics that may be mobilised and returned to the sea during storm events. Further research on the dynamics and longevity of microplastics on beaches will help reveal the mass balance of microplastics on the shoreline and determine whether shorelines are sinks or sources of microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Plastic pollution in the South Pacific subtropical gyre.

    PubMed

    Eriksen, Marcus; Maximenko, Nikolai; Thiel, Martin; Cummins, Anna; Lattin, Gwen; Wilson, Stiv; Hafner, Jan; Zellers, Ann; Rifman, Samuel

    2013-03-15

    Plastic marine pollution in the open ocean of the southern hemisphere is largely undocumented. Here, we report the result of a (4489 km) 2424 nautical mile transect through the South Pacific subtropical gyre, carried out in March-April 2011. Neuston samples were collected at 48 sites, averaging 50 nautical miles apart, using a manta trawl lined with a 333 μm mesh. The transect bisected a predicted accumulation zone associated with the convergence of surface currents, driven by local winds. The results show an increase in surface abundance of plastic pollution as we neared the center and decrease as we moved away, verifying the presence of a garbage patch. The average abundance and mass was 26,898 particles km(-2) and 70.96 g km(-2), respectively. 88.8% of the plastic pollution was found in the middle third of the samples with the highest value of 396,342 particles km(-2) occurring near the center of the predicted accumulation zone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys

    NASA Astrophysics Data System (ADS)

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-03-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  19. Small-scale plasticity critically needs a new mechanics description

    NASA Astrophysics Data System (ADS)

    Ngan, Alfonso H. W.

    2013-06-01

    Continuum constitutive laws describe the plastic deformation of materials as a smooth, continuously differentiable process. However, provided that the measurement is done with a fine enough resolution, the plastic deformation of real materials is often found to comprise discrete events usually nanometric in size. For bulk-sized specimens, such nanoscale events are minute compared with the specimen size, and so their associated strain changes are negligibly small, and this is why the continuum laws work well. However, when the specimen size is in the micrometer scale or smaller, the strain changes due to the discrete events could be significant, and the continuum description would be highly unsatisfactory. Yet, because of the advent of microtechnology and nanotechnolgy, small-sized materials will be increasingly used, and so there is a strong need to develop suitable replacement descriptions for plasticity of small materials. As the occurrence of the discrete plastic events is also strongly stochastic, their satisfactory description should also be one of a probabilistic, rather than deterministic, nature.

  20. EXPERIMENTAL EVALUATION OF DEFORMATION AND CONSTRAINT CHARACTERISTICS IN PRECRACKED CHARPY AND OTHER THREE-POINT BEND SPECIMENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K; Sokolov, Mikhail A; Merkle, John Graham

    2007-01-01

    To enable determination of the fracture toughness reference temperature, T0, with reactor pressure vessel surveillance specimens, the precracked Charpy (PCVN) three-point bend, SE(B), specimen is of interest. Compared with the 25-mm (1 in.) thick compact, 1TC(T), specimen, tests with the PCVN specimen (10x10x55 mm) have resulted in T0 temperatures as much as 40 XC lower (a so-called specimen bias effect). The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory developed a two-part project to evaluate the C(T) versus PCVN differences, (1) calibration experiments concentrating on test practices, and (2) a matrix of transition range tests with various specimenmore » geometries and sizes, including 1T SE(B) and 1TC(T). The test material selected was a plate of A533 grade B class 1 steel. The calibration experiments included assessment of the computational validity of J-integral determinations, while the constraint characteristics of various specimen types and sizes were evaluated using key curves and notch strength determinations. The results indicate that J-integral solutions for the small PCVN specimen are comparable in terms of J-integral validity with 1T bend specimens. Regarding constraint evaluations, Phase I deformation is defined where plastic deformation is confined to crack tip plastic zone development, whereas Phase II deformation is defined where plastic hinging deformation develops. In Phase II deformation, the 0.5T SE(B) B B specimen (slightly larger than the PCVN specimen) consistently showed the highest constraint of all SE(B) specimens evaluated for constraint comparisons. The PCVN specimen begins the Phase II type of deformation at relatively low KR levels, with the result that KJc values above about 70 MPa m from precracked Charpy specimens are under extensive plastic hinging deformation.« less

  1. Microplastics in sea coastal zone: Lessons learned from the Baltic amber.

    PubMed

    Chubarenko, Irina; Stepanova, Natalia

    2017-05-01

    Baltic amber, adored for its beauty already in Homer's Odyssey (ca. 800 B.C.E), has its material density close to that of wide-spread plastics like polyamide, polystyrene, or acrylic. Migrations of amber stones in the sea and their massive washing ashore have been monitored by Baltic citizens for ages. Based on the collected information, we present the hypothesis on the behaviour of microplastic particles in sea coastal zone. Fresh-to-strong winds generate surface waves, currents and roll-structures, whose joint effect washes ashore from the underwater slope both amber stones and plastics - and carries them back to the sea in a few days. Analysis of underlying hydrophysical processes suggests that sea coastal zone under stormy winds plays a role of a mill for plastics, and negatively buoyant pieces seem to repeatedly migrate between beaches and underwater slopes until they are broken into small enough fragments that can be transported by currents to deeper areas and deposited out of reach of stormy waves. Direct observations on microplastics migrations are urged to prove the hypothesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microstructural examination of

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.

  3. Influence of shape and size of the particles on jigging separation of plastics mixture.

    PubMed

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Features of plastic strain localization at the yield plateau in Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Zuev, L. B.

    2008-07-01

    Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.

  5. Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus)

    PubMed Central

    Hoogenboom, Mia O.

    2018-01-01

    The effect of a pollutant on the base of the food web can have knock-on effects for trophic structure and ecosystem functioning. In this study we assess the effect of microplastic exposure on juveniles of a planktivorous fish (Acanthochromis polyacanthus), a species that is widespread and abundant on Indo-Pacific coral reefs. Under five different plastic concentration treatments, with plastics the same size as the natural food particles (mean 2mm diameter), there was no significant effect of plastic exposure on fish growth, body condition or behaviour. The amount of plastics found in the gastro-intestinal (GI) tract was low, with a range of one to eight particles remaining in the gut of individual fish at the end of a 6-week plastic-exposure period, suggesting that these fish are able to detect and avoid ingesting microplastics in this size range. However, in a second experiment the number of plastics in the GI tract vastly increased when plastic particle size was reduced to approximately one quarter the size of the food particles, with a maximum of 2102 small (< 300μm diameter) particles present in the gut of individual fish after a 1-week plastic exposure period. Under conditions where food was replaced by plastic, there was a negative effect on the growth and body condition of the fish. These results suggest plastics could become more of a problem as they break up into smaller size classes, and that environmental changes that lead to a decrease in plankton concentrations combined with microplastic presence is likely have a greater influence on fish populations than microplastic presence alone. PMID:29494635

  6. Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus).

    PubMed

    Critchell, Kay; Hoogenboom, Mia O

    2018-01-01

    The effect of a pollutant on the base of the food web can have knock-on effects for trophic structure and ecosystem functioning. In this study we assess the effect of microplastic exposure on juveniles of a planktivorous fish (Acanthochromis polyacanthus), a species that is widespread and abundant on Indo-Pacific coral reefs. Under five different plastic concentration treatments, with plastics the same size as the natural food particles (mean 2mm diameter), there was no significant effect of plastic exposure on fish growth, body condition or behaviour. The amount of plastics found in the gastro-intestinal (GI) tract was low, with a range of one to eight particles remaining in the gut of individual fish at the end of a 6-week plastic-exposure period, suggesting that these fish are able to detect and avoid ingesting microplastics in this size range. However, in a second experiment the number of plastics in the GI tract vastly increased when plastic particle size was reduced to approximately one quarter the size of the food particles, with a maximum of 2102 small (< 300μm diameter) particles present in the gut of individual fish after a 1-week plastic exposure period. Under conditions where food was replaced by plastic, there was a negative effect on the growth and body condition of the fish. These results suggest plastics could become more of a problem as they break up into smaller size classes, and that environmental changes that lead to a decrease in plankton concentrations combined with microplastic presence is likely have a greater influence on fish populations than microplastic presence alone.

  7. Single-Molecule Discrimination within Dendritic Spines of Discrete Perisynaptic Sites of Actin Filament Assembly Driving Postsynaptic Reorganization

    NASA Astrophysics Data System (ADS)

    Blanpied, Thomas A.

    2013-03-01

    In the brain, the strength of synaptic transmission between neurons is principally set by the organization of proteins within the receptive, postsynaptic cell. Synaptic strength at an individual site of contact can remain remarkably stable for months or years. However, it also can undergo diverse forms of plasticity which change the strength at that contact independent of changes to neighboring synapses. Such activity-triggered neural plasticity underlies memory storage and cognitive development, and is disrupted in pathological physiology such as addiction and schizophrenia. Much of the short-term regulation of synaptic plasticity occurs within the postsynaptic cell, in small subcompartments surrounding the synaptic contact. Biochemical subcompartmentalization necessary for synapse-specific plasticity is achieved in part by segregation of synapses to micron-sized protrusions from the cell called dendritic spines. Dendritic spines are heavily enriched in the actin cytoskeleton, and regulation of actin polymerization within dendritic spines controls both basal synaptic strength and many forms of synaptic plasticity. However, understanding the mechanism of this control has been difficult because the submicron dimensions of spines limit examination of actin dynamics in the spine interior by conventional confocal microscopy. To overcome this, we developed single-molecule tracking photoactivated localization microscopy (smtPALM) to measure the movement of individual actin molecules within living spines. This revealed inward actin flow from broad areas of the spine plasma membrane, as well as a dense central core of heterogeneous filament orientation. The velocity of single actin molecules along filaments was elevated in discrete regions within the spine, notably near the postsynaptic density but surprisingly not at the endocytic zone which is involved in some forms of plasticity. We conclude that actin polymerization is initiated at many well-separated foci within spines, an organization that may be necessary for the finely tuned adjustment of synaptic molecular content that underlies functional plasticity. Indeed, further single-molecule mapping studies confirm that actin polymerization drives reorganization of molecular organization at the synapse itself.

  8. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.

  9. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing.

    PubMed

    Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang

    2018-05-16

    Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.

  10. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing

    PubMed Central

    Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang

    2018-01-01

    Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced. PMID:29772661

  11. A calorimetric study of precipitation in aluminum alloy 2219

    NASA Astrophysics Data System (ADS)

    Papazian, John M.

    1981-02-01

    Precipitate microstructures in aluminum alloy 2219 were characterized using transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC signatures of individual precipitate phases were established by comparing the DSC and TEM results from samples that had been aged such that only one precipitate phase was present. These signatures were then used to analyze the commercial tempers. It was found that DSC could readily distinguish between the T3, T4, T6, T8 and O tempers but could not distinguish amongst T81, T851 and T87. Small amounts of plastic deformation between solution treatment and aging had a significant effect on the thermograms. Aging experiments at 130 and 190 °C showed that the aging sequence and DSC response of this alloy were similar to those of pure Al-Cu when the increased copper content is taken into account. Further aging experiments at temperatures between room temperature and 130 °C showed pronounced changes of the GP zone dissolution peak as a function of aging conditions. These changes were found to be related to the effect of GP zone size on the metastable phase boundary and on the GP zone dissolution kinetics.

  12. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.

    PubMed

    Shu, Xinyu; Kong, Deli; Lu, Yan; Long, Haibo; Sun, Shiduo; Sha, Xuechao; Zhou, Hao; Chen, Yanhui; Mao, Shengcheng; Liu, Yinong

    2017-10-16

    This paper reports a study of time-resolved deformation process at the atomic scale of a nanocrystalline Pt thin film captured in situ under a transmission electron microscope. The main mechanism of plastic deformation was found to evolve from full dislocation activity-enabled plasticity in large grains (with grain size d > 10 nm), to partial dislocation plasticity in smaller grains (with grain size 10 nm < d < 6 nm), and grain boundary-mediated plasticity in the matrix with grain sizes d < 6 nm. The critical grain size for the transition from full dislocation activity to partial dislocation activity was estimated based on consideration of stacking fault energy. For grain boundary-mediated plasticity, the possible contributions to strain rate of grain creep, grain sliding and grain rotation to plastic deformation were estimated using established models. The contribution of grain creep is found to be negligible, the contribution of grain rotation is effective but limited in magnitude, and grain sliding is suggested to be the dominant deformation mechanism in nanocrystalline Pt thin films. This study provided the direct evidence of these deformation processes at the atomic scale.

  13. Mapping the cyclic plastic zone to elucidate the mechanisms of crack tip deformation in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Scudino, S.; Shahid, R. N.; Escher, B.; Stoica, M.; Li, B. S.; Kruzic, J. J.

    2017-02-01

    Developing damage-tolerant bulk metallic glasses (BMGs) requires knowledge of the physical mechanisms governing crack propagation. While fractography suggests that fatigue crack propagation occurs in an incremental manner, conclusive evidence of alternating crack tip blunting and resharpening is lacking. By mapping the strain fields in both the monotonic and cyclic plastic zones, it is shown that the characteristic compressive stresses required to resharpen the crack tip are developed in a BMG upon unloading. This result confirms the mechanism of fatigue crack propagation in BMGs. Broader implications of these findings are that the effect of shear banding is rather diffuse and plastic deformation ahead of a stress concentration, such as a crack tip, appears to extend well beyond the extent of visible shear bands on the sample surface.

  14. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  15. 78 FR 34335 - Foreign-Trade Zone (FTZ) 141-Monroe County, New York; Notification of Proposed Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... steel, fire and water resistant storage chests, gun safes, security safes, portable security safes, cash..., touchpads, plastic gun racks, keypad assemblies, panel lock assemblies, door backs, plastic trays, drawers..., wood gun shelf racks, cable assemblies, communication cables, gasket kits, door springs, metal handles...

  16. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  17. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica).

    PubMed

    Collignon, Amandine; Hecq, Jean-Henri; Galgani, François; Collard, France; Goffart, Anne

    2014-02-15

    The annual variation in neustonic plastic particles and zooplankton was studied in the Bay of Calvi (Corsica) between 30 August 2011 and 7 August 2012. Plastic particles were classified into three size classes, small microplastics (0.2-2mm), large microplastics (2-5mm) and mesoplastics (5-10mm). 74% of the 38 samples contained plastic particles of varying composition: e.g. filaments, polystyrene, thin plastic films. An average concentration of 6.2 particles/100 m(2) was observed. The highest abundance values (69 particles/100 m(2)) observed occurred during periods of low offshore wind conditions. These values rose in the same order of magnitude as in previous studies in the North Western Mediterranean. The relationships between the abundance values of the size classes between zooplankton and plastic particles were then examined. The ratio for the intermediate size class (2-5mm) reached 2.73. This would suggest a potential confusion for predators regarding planktonic prey of this size class. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Optimization of Gate, Runner and Sprue in Two-Plate Family Plastic Injection Mould

    NASA Astrophysics Data System (ADS)

    Amran, M. A.; Hadzley, M.; Amri, S.; Izamshah, R.; Hassan, A.; Samsi, S.; Shahir, K.

    2010-03-01

    This paper describes the optimization size of gate, runner and sprue in two-plate family plastic injection mould. An Electronic Cash Register (ECR) plastic product was used in this study, which there are three components in electronic cast register plastic product consist of top casing, bottom casing and paper holder. The objectives of this paper are to find out the optimum size of gate, runner and sprue, to locate the optimum layout of cavities and to recognize the defect problems due to the wrong size of gate, runner and sprue. Three types of software were used in this study, which Unigraphics software as CAD tool was used to design 3D modeling, Rhinoceros software as post processing tool was used to design gate, runner and sprue and Moldex software as simulation tool was used to analyze the plastic flow. As result, some modifications were made on size of feeding system and location of cavity to eliminate the short- shot, over filling and welding line problems in two-plate family plastic injection mould.

  19. The expression of Helicobacter pylori tfs plasticity zone cluster is regulated by pH and adherence, and its composition is associated with differential gastric IL-8 secretion.

    PubMed

    Silva, Bruno; Nunes, Alexandra; Vale, Filipa F; Rocha, Raquel; Gomes, João Paulo; Dias, Ricardo; Oleastro, Mónica

    2017-08-01

    Helicobacter pylori virulence is associated with different clinical outcomes. The existence of an intact dupA gene from tfs4b cluster has been suggested as a predictor for duodenal ulcer development. However, the role of tfs plasticity zone clusters in the development of ulcers remains unclear. We studied several H. pylori strains to characterize the gene arrangement of tfs3 and tfs4 clusters and their impact in the inflammatory response by infected gastric cells. The genome of 14 H. pylori strains isolated from Western patients, pediatric (n=10) and adult (n=4), was fully sequenced using the Illumina platform MiSeq, in addition to eight pediatric strains previously sequenced. These strains were used to infect human gastric cells, and the secreted interleukin-8 (IL-8) was quantified by ELISA. The expression of virB2, dupA, virB8, virB10, and virB6 was assessed by quantitative PCR in adherent and nonadherent fractions of H. pylori during in vitro co-infection, at different pH values. We have found that cagA-positive H. pylori strains harboring a complete tfs plasticity zone cluster significantly induce increased production of IL-8 from gastric cells. We have also found that the region spanning from virB2 to virB10 genes constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions. A complete tfs plasticity zone cluster is a virulence factor that may be important for the colonization of H. pylori and to the development of severe outcomes of the infection with cagA-positive strains. © 2017 John Wiley & Sons Ltd.

  20. Investigation of primary static recrystallization in a NiTiFe shape memory alloy subjected to cold canning compression using the coupling crystal plasticity finite element method with cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong

    2017-10-01

    The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.

  1. Cryo-comminution of plastic waste.

    PubMed

    Gente, Vincenzo; La Marca, Floriana; Lucci, Federica; Massacci, Paolo; Pani, Eleonora

    2004-01-01

    Recycling of plastics is a big issue in terms of environmental sustainability and of waste management. The development of proper technologies for plastic recycling is recognised as a priority. To achieve this aim, the technologies applied in mineral processing can be adapted to recycling systems. In particular, the improvement of comminution technologies is one of the main actions to improve the quality of recycled plastics. The aim of this work is to point out suitable comminution processes for different types of plastic waste. Laboratory comminution tests have been carried out under different conditions of temperature and sample pre-conditioning adopting as refrigerant agents CO2 and liquid nitrogen. The temperature has been monitored by thermocouples placed in the milling chamber. Also different internal mill screens have been adopted. A proper procedure has been set up in order to obtain a selective comminution and a size reduction suitable for further separation treatment. Tests have been performed on plastics coming from medical plastic waste and from a plant for spent lead batteries recycling. Results coming from different mill devices have been compared taking into consideration different indexes for representative size distributions. The results of the performed tests show as cryo-comminution improves the effectiveness of size reduction of plastics, promotes liberation of constituents and increases specific surface size of comminuted particles in comparison to a comminution process carried out at room temperature. Copyright 2004 Elsevier Ltd.

  2. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.

    PubMed

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-12-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  3. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  4. Canalization of body size matters for lifetime reproductive success of male predatory mites (Acari: Phytoseiidae).

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2014-04-01

    The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus . Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus .

  5. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    NASA Astrophysics Data System (ADS)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of eclogitization and determine if this can sufficiently decrease the integrated strength of the lithosphere to allow a measurable increase in strain rate.

  6. Patterns of residual stresses due to welding

    NASA Technical Reports Server (NTRS)

    Botros, B. M.

    1983-01-01

    Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.

  7. Microstructural examination of fatigue crack tip in high strength steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less

  8. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates.

    PubMed

    Reisser, Julia; Shaw, Jeremy; Hallegraeff, Gustaaf; Proietti, Maira; Barnes, David K A; Thums, Michele; Wilcox, Chris; Hardesty, Britta Denise; Pattiaratchi, Charitha

    2014-01-01

    Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7-24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded 'epiplastic' coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated.

  9. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates

    PubMed Central

    Reisser, Julia; Shaw, Jeremy; Hallegraeff, Gustaaf; Proietti, Maira; Barnes, David K. A.; Thums, Michele; Wilcox, Chris; Hardesty, Britta Denise; Pattiaratchi, Charitha

    2014-01-01

    Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7–24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded ‘epiplastic’ coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated. PMID:24941218

  10. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.

  11. The size, mass, and composition of plastic debris in the western North Atlantic Ocean.

    PubMed

    Morét-Ferguson, Skye; Law, Kara Lavender; Proskurowski, Giora; Murphy, Ellen K; Peacock, Emily E; Reddy, Christopher M

    2010-10-01

    This study reports the first inventory of physical properties of individual plastic debris in the North Atlantic. We analyzed 748 samples for size, mass, and material composition collected from surface net tows on 11 expeditions from Cape Cod, Massachusetts to the Caribbean Sea between 1991 and 2007. Particles were mostly fragments less than 10mm in size with nearly all lighter than 0.05 g. Material densities ranged from 0.808 to 1.24 g ml(-1), with about half between 0.97 and 1.04 g ml(-1), a range not typically found in virgin plastics. Elemental analysis suggests that samples in this density range are consistent with polypropylene and polyethylene whose densities have increased, likely due to biofouling. Pelagic densities varied considerably from that of beach plastic debris, suggesting that plastic particles are modified during their residence at sea. These analyses provide clues in understanding particle fate and potential debris sources, and address ecological implications of pelagic plastic debris. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Evaluation of Movement Restriction Zone Sizes in Controlling Classical Swine Fever Outbreaks

    PubMed Central

    Yadav, Shankar; Olynk Widmar, Nicole; Lay, Donald C.; Croney, Candace; Weng, Hsin-Yi

    2017-01-01

    The objective of this study was to compare the impacts of movement restriction zone sizes of 3, 5, 9, and 11 km with that of 7 km (the recommended zone size in the United States) in controlling a classical swine fever (CSF) outbreak. In addition to zone size, different compliance assumptions and outbreak types (single site and multiple site) were incorporated in the study. Three assumptions of compliance level were simulated: baseline, baseline ± 10%, and baseline ± 15%. The compliance level was held constant across all zone sizes in the baseline simulation. In the baseline ± 10% and baseline ± 15% simulations, the compliance level was increased for 3 and 5 km and decreased for 9 and 11 km from the baseline by the indicated percentages. The compliance level remained constant in all simulations for the 7-km zone size. Four single-site (i.e., with one index premises at the onset of outbreak) and four multiple-site (i.e., with more than one index premises at the onset of outbreak) CSF outbreak scenarios in Indiana were simulated incorporating various zone sizes and compliance assumptions using a stochastic between-premises disease spread model to estimate epidemic duration, percentage of infected, and preemptively culled swine premises. Furthermore, a risk assessment model that incorporated the results from the disease spread model was developed to estimate the number of swine premises under movement restrictions that would experience animal welfare outcomes of overcrowding or feed interruption during a CSF outbreak in Indiana. Compared with the 7-km zone size, the 3-km zone size resulted in a longer median epidemic duration, larger percentages of infected premises, and preemptively culled premises (P’s < 0.001) across all compliance assumptions and outbreak types. With the assumption of a higher compliance level, the 5-km zone size significantly (P < 0.001) reduced the epidemic duration and percentage of swine premises that would experience animal welfare outcomes in both outbreak types, whereas assumption of a lower compliance level for 9- and 11-km zone sizes significantly (P < 0.001) increased the epidemic duration and percentage of swine premises with animal welfare outcomes compared with the 7-km zone size. The magnitude of impact due to a zone size varied across the outbreak types (single site and multiple site). Overall, the 7-km zone size was found to be most effective in controlling CSF outbreaks, whereas the 5-km zone size was comparable to the 7-km zone size in some circumstances. PMID:28119920

  13. Island colonisation and the evolutionary rates of body size in insular neonate snakes

    PubMed Central

    Aubret, F

    2015-01-01

    Island colonisation by animal populations is often associated with dramatic shifts in body size. However, little is known about the rates at which these evolutionary shifts occur, under what precise selective pressures and the putative role played by adaptive plasticity on driving such changes. Isolation time played a significant role in the evolution of body size in island Tiger snake populations, where adaptive phenotypic plasticity followed by genetic assimilation fine-tuned neonate body and head size (hence swallowing performance) to prey size. Here I show that in long isolated islands (>6000 years old) and mainland populations, neonate body mass and snout-vent length are tightly correlated with the average prey body mass available at each site. Regression line equations were used to calculate body size values to match prey size in four recently isolated populations of Tiger snakes. Rates of evolution in body mass and snout-vent length, calculated for seven island snake populations, were significantly correlated with isolation time. Finally, rates of evolution in body mass per generation were significantly correlated with levels of plasticity in head growth rates. This study shows that body size evolution occurs at a faster pace in recently isolated populations and suggests that the level of adaptive plasticity for swallowing abilities may correlate with rates of body mass evolution. I hypothesise that, in the early stages of colonisation, adaptive plasticity and directional selection may combine and generate accelerated evolution towards an ‘optimal' phenotype. PMID:25074570

  14. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  15. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  16. The Silurian Hoedongri Formation in the Taebaeksan Basin of Korea Revisited: its Significance in the Tectonic Reconstruction of East Asia

    NASA Astrophysics Data System (ADS)

    Chae, S.; Hong, J.; Jung, S.; Ree, J.

    2011-12-01

    The Silurian Hoedongri Formation of the Taebaeksan Basin of South Korea has been used as a key unit to the correlation of tectonic provinces of East Asia since the South China craton (or Yangtz block) contains Silurian-Devonian sequences as well as Cambrian-Ordovician ones in the Paleozoic basins while the North China craton (or Sino-Korea block) is devoid of Silurian-Devonian sequences. In the Biryongdong area near the type locality of the Hoedongri Formation, it has been reported that the gray limestone of the Hoedongri Formation unconformably overlies brownish gray limestone of the Ordovician Haengmae Formation. However, our detailed examination on the Biryongdong section reveals that both of the brownish gray and gray limestones are mylonitic marbles with the boundary between the two units being a healed fault breccia zone (~ 12 m thick). The main difference of the two units is that repeated cycles of plastic deformation and fracturing occurred in the underlying brownish gray marble ('Haengmae') while the gray marble ('Hoedongri') deformed mainly by intracrystalline plasticity. The mylonitic foliation strikes NW with a low to moderate dip angle (20-60°) to NE. The ridge-in-groove type lineation on foliation surface trends NNW. The shape-preferred foliation of elongated calcite grains are oblique to the mylonitic foliation defined by layers with a grain-size variation, indicating a top-to-the-SSE shear sense. The mylonitic marble consists of elongated remnant grains (80-120 μm) with deformation twins and dynamically recrystallized matrix grains (10-40 μm). Grain boundaries and twin boundaries are lobate or wavy, indicating dynamic boundary migration. Some layers of the gray mylonitic marble are composed entirely of larger (80-120 μm) elongated calcite grains. In the brownish gray mylonitic marble unit, layers of brittle fracturing overprinting mylonitic foliation occur. In some of these layers, fragments (several cm - tens of cm) of the mylonitic marble are angular to subangular with coarse calcite fillings between the fragments. In other layers, mylonitic marble fragments are elongated with matrix foliation wrapping around them. These features suggest repeated cycles of plastic deformation and fracturing. Tectonic significance of this shear zone (at least 90 m thick) is not clear at present, and the regional extent and absolute age constraint of the shear zone should be clarified.

  17. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    NASA Astrophysics Data System (ADS)

    Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.

    2011-01-01

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  18. Systems and methods for detecting neutrons

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-08-09

    Systems and methods for detecting neutrons. One or more neutron-sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material, such as polystyrene. The nano-sized particles can be compounded into the extruded plastic material with at least one dopant that permits the plastic material to scintillate. One or more plastic light collectors can be associated with a neutron-sensitive scintillator, such that the plastic light collector includes a central hole thereof. A wavelength-shifting fiber can then be located within the hole. The wavelength shifting (WLS) fiber absorbs scintillation light having a wavelength thereof and re-emits the light at a longer wavelength.

  19. Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land.

    PubMed

    Pedrotti, Maria Luiza; Petit, Stéphanie; Elineau, Amanda; Bruzaud, Stéphane; Crebassa, Jean-Claude; Dumontet, Bruno; Martí, Elisa; Gorsky, Gabriel; Cózar, Andrés

    2016-01-01

    The composition, size distribution, and abundance of floating plastic debris in surface waters of the Mediterranean Sea were analyzed in relation to distance to land. We combined data from previously published reports with an intensive sampling in inshore waters of the Northwestern Mediterranean. The highest plastic concentrations were found in regions distant from from land as well as in the first kilometer adjacent to the coastline. In this nearshore water strip, plastic concentrations were significantly correlated with the nearness to a coastal human population, with local areas close to large human settlements showing hundreds of thousands of plastic pieces per km2. The ratio of plastic to plankton abundance reached particularly high values for the coastal surface waters. Polyethylene, polypropylene and polyamides were the predominant plastic polymers at all distances from coast (86 to 97% of total items), although the diversity of polymers was higher in the 1-km coastal water strip due to a higher frequency of polystyrene or polyacrylic fibers. The plastic size distributions showed a gradual increase in abundance toward small sizes indicating an efficient removal of small plastics from the surface. Nevertheless, the relative abundance of small fragments (< 2 mm) was higher within the 1-km coastal water strip, suggesting a rapid fragmentation down along the shoreline, likely related with the washing ashore on the beaches. This study constitutes a first attempt to determine the impact of plastic debris in areas closest to Mediterranean coast. The presence of a high concentration of plastic including tiny plastic items could have significant environmental, health and economic impacts.

  20. Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land

    PubMed Central

    Petit, Stéphanie; Elineau, Amanda; Bruzaud, Stéphane; Crebassa, Jean-Claude; Dumontet, Bruno; Martí, Elisa; Gorsky, Gabriel; Cózar, Andrés

    2016-01-01

    The composition, size distribution, and abundance of floating plastic debris in surface waters of the Mediterranean Sea were analyzed in relation to distance to land. We combined data from previously published reports with an intensive sampling in inshore waters of the Northwestern Mediterranean. The highest plastic concentrations were found in regions distant from from land as well as in the first kilometer adjacent to the coastline. In this nearshore water strip, plastic concentrations were significantly correlated with the nearness to a coastal human population, with local areas close to large human settlements showing hundreds of thousands of plastic pieces per km2. The ratio of plastic to plankton abundance reached particularly high values for the coastal surface waters. Polyethylene, polypropylene and polyamides were the predominant plastic polymers at all distances from coast (86 to 97% of total items), although the diversity of polymers was higher in the 1-km coastal water strip due to a higher frequency of polystyrene or polyacrylic fibers. The plastic size distributions showed a gradual increase in abundance toward small sizes indicating an efficient removal of small plastics from the surface. Nevertheless, the relative abundance of small fragments (< 2 mm) was higher within the 1-km coastal water strip, suggesting a rapid fragmentation down along the shoreline, likely related with the washing ashore on the beaches. This study constitutes a first attempt to determine the impact of plastic debris in areas closest to Mediterranean coast. The presence of a high concentration of plastic including tiny plastic items could have significant environmental, health and economic impacts. PMID:27556233

  1. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean.

    PubMed

    Imhof, Hannes K; Sigl, Robert; Brauer, Emilia; Feyl, Sabine; Giesemann, Philipp; Klink, Saskia; Leupolz, Kathrin; Löder, Martin G J; Löschel, Lena A; Missun, Jan; Muszynski, Sarah; Ramsperger, Anja F R M; Schrank, Isabella; Speck, Susan; Steibl, Sebastian; Trotter, Benjamin; Winter, Isabel; Laforsch, Christian

    2017-03-15

    Plastic debris is ubiquitous in the marine environment and the world's shores represent a major sink. However, knowledge about plastic abundance in remote areas is scarce. Therefore, plastic abundance was investigated on a small island of the Maldives. Plastic debris (>1mm) was sampled once in natural long-term accumulation zones at the north shore and at the high tide drift line of the south shore on seven consecutive days to quantify daily plastic accumulation. Reliable identification of plastic debris was ensured by FTIR spectroscopy. Despite the remoteness of the island a considerable amount of plastic debris was present. At both sites a high variability in plastic abundance on a spatial and temporal scale was observed, which may be best explained by environmental factors. In addition, our results show that snapshot sampling may deliver biased results and indicate that future monitoring programs should consider spatial and temporal variation of plastic deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Can plastic mulching replace irrigation in dryland agriculture?

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  3. Coseismic microstructures of experimental fault zones in Carrara marble

    NASA Astrophysics Data System (ADS)

    Ree, Jin-Han; Ando, Jun-ichi; Han, Raehee; Shimamoto, Toshihiko

    2014-09-01

    Experimental fault zones developed in Carrara marble that were deformed at seismic slip rates (1.18-1.30 m s-1) using a high-velocity-rotary-shear apparatus exhibit very low friction (friction coefficient as low as 0.06) at steady state due to nanoparticle lubrication of the decomposition product (lime). The fault zones show a layered structure; a central slip-localization layer (5-60 μm thick) of lime nanograins mantled by gouge layers (5-150 μm thick) and a plastically deformed layer (45-500 μm thick) between the wall rock and gouge layer in the marginal portion of cylindrical specimens. Calcite grains of the wall rock adjacent to the slip zone deform by dislocation glide when subjected to frictional heating and a lower strain rate than that of the principal slip zone. The very fine (2-5 μm) calcite grains in the gouge layer show a foam structure with relatively straight grain boundaries and 120° triple junctions. This foam structure is presumed to develop by welding at high temperature and low strain once slip is localized along the central layer. We suggest that a seismic event can be inferred from deformed marbles, given: (i) the presence of welded gouge with foam structure in a fault zone where wall rocks show no evidence of thermal metamorphism and (ii) a thin plastically deformed layer immediately adjacent to the principal slip zone of a cataclastic fault zone.

  4. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale

    NASA Astrophysics Data System (ADS)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2018-05-01

    Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.

  5. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  6. Resource Partitioning in Food, Space and Time between Arctic Charr (Salvelinus alpinus), Brown Trout (Salmo trutta) and European Whitefish (Coregonus lavaretus) at the Southern Edge of Their Continuous Coexistence

    PubMed Central

    Kiljunen, Mikko; Knudsen, Rune; Amundsen, Per-Arne

    2017-01-01

    Arctic charr and European whitefish are considered to be strong competitors in lakes, with the latter usually being the superior species. However, high niche plasticity and lake morphometry may suggestively facilitate resource partitioning and coexistence between charr and whitefish. Here, we explore the trophic niche utilization (diet and habitat use) of charr and whitefish co-occurring with brown trout in the deep and oligotrophic Lake Fyresvatnet, southern Norway (59°05’N, 8°10’E). Using CPUE, stomach contents and stable isotope analyses, a distinct resource partitioning was revealed between brown trout and the other two species. Brown trout typically occupied the littoral zone, feeding on benthic invertebrates, surface insects and small-sized whitefish. In contrast, charr and whitefish were predominantly zooplanktivorous, but diverged somewhat in habitat utilization as charr shifted seasonally between the profundal and the littoral zone, whereas whitefish were found in the upper water layers (littoral and pelagic habitats). Accordingly, the stable isotope values of carbon (δ13C) reflected a pelagic orientated prey resource use for both charr and whitefish, whereas brown trout had elevated carbon and nitrogen (δ15N) signatures that reflected their benthivore and piscivore diet, respectively. The findings suggest that charr may not rely upon the profundal zone as a feeding habitat but as a refuge area, and may coexist with whitefish if a third competitive and predatory species like brown trout co-occur in the lake. The study indicates that a general high habitat plasticity of Arctic charr may be essential in the presently observed coexistence with a competitively superior fish species like whitefish, and that a third fish species like brown trout may facilitate this particular fish community structure. PMID:28122061

  7. The impact law of confining pressure and plastic parameter on Dilatancy of rock

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing

    2017-08-01

    Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.

  8. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    PubMed Central

    Vasileva, Mariya; Renden, Robert; Horstmann, Heinz; Gitler, Daniel; Kuner, Thomas

    2013-01-01

    Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa—known to sustain repetitive transmission in glutamatergic terminals—was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs. PMID:24391547

  9. New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil

    2010-05-01

    New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.

  10. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  11. Superplastic flow lubricates carbonate faults during earthquake slip

    NASA Astrophysics Data System (ADS)

    De Paola, Nicola; Holdsworth, Robert; Viti, Cecilia; Collettini, Cristiano; Faoro, Igor; Bullock, Rachael

    2014-05-01

    Tectonic earthquakes are hosted in the shallower portion of crustal fault zones, where fracturing and cataclasis are thought to be the dominant processes during frictional sliding. Aseismic shear in lower crust and lithospheric mantle shear zones is accomplished by crystal plasticity, including superplastic flow acting at low strain rates on ultrafine-grained rocks. Superplasticity has also been observed at high strain rates for a range of nano-phase alloys and ceramics, and could potentially occur in fine-grained geological materials, if deformed at high strain rates and temperatures. We performed a set of displacement-controlled experiments to explore whether superplastic flow can effectively weaken faults, and facilitate earthquake propagation. The experiments were performed on fine-grained synthetic gouges (63 < f < 93 μm) of undeformed, protolith carbonate rocks using a rotary shear apparatus, at target speed v = 1 ms-1, normal stresses σn = 12-18 MPa, displacements d from 0.009 to 1.46 m, room temperature and humidity conditions. Samples were recovered after each experiment to study the slip zone microstructures. The integration of experimental data and microstructural observations shows that during sliding at seismic velocity, brittle fracturing and cataclasis control shear localization and grain size reduction in the slip zone at relatively low temperatures (T ≤ 100 °C). Stress levels predicted by such behaviours match those measured during the experiments. As temperatures rise due to frictional heating (T ≥ 500 °C), dislocation creep mechanisms start to accommodate intragranular strain, and play a key role in producing nanoscale subgrains (< 200 nm) in the slip zone. At this stage, despite of the presence of nanoparticles in the slip zone and the attainment of seismic slip rates, the measured frictional strength of experimental faults still lies within Byerlee's range of values μ = 0.8. This suggests that the slip zone bulk strength at this stage is controlled by cataclastic frictional sliding rather than by dislocation creep or nanopowder lubrication mechanisms. When T ≥ 800 °C are attained, micro-textures diagnostic of diffusion-dominated grain boundary sliding are widespread within the slip zone, and suggest bulk superplastic flow. Flow stresses predicted by superplasticity constitutive laws at the slip zone temperatures, grain sizes and strain rates attained during the experiments match those we measured in the laboratory (μ = 0.16). We propose therefore that the activation of diffusion creep at high temperatures (T ≥ 800 °C) leads to slip zone-localised superplastic flow and that this causes the dynamic weakening of carbonate faults at seismic slip rates. Note, however, that both cataclasis and dislocation creep operating at lower temperatures, during the earlier stages of slip, are critical, precursory processes needed to produce the nanoscale grain sizes required to activate grainsize sensitive mechanisms during superplastic flow. Finally, the re-strengthening observed during the decelerating phase of deformation can be explained by the falling temperature "switching off" slip zone-localized superplasticity, leading to a return to frictional sliding. These results indicate that superplastic flow can effectively weaken faults, and facilitate earthquake propagation in the upper crust.

  12. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Amirthalingam, M.; Hermans, M. J. M.; Zhao, L.; Richardson, I. M.

    2010-02-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)-welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel with different base metal austenite fractions has been measured by magnetic saturation measurements, to study the effect of weld thermal cycles on the stabilization of austenite. It is found that for base metals containing 3 to 14 pct of austenite, 4 to 13 pct of austenite is found in the heat-affected zones and 6 to 10 pct in the fusion zones. The decomposition kinetics of retained austenite in the base metal and welded samples was also studied by thermomagnetic measurements. The decomposition kinetics of the austenite in the fusion zone is found to be slower compared to that in the base metal. Thermomagnetic measurements indicated the formation of ferromagnetic ɛ carbides above 290 °C and paramagnetic η( ɛ') transient iron carbides at approximately 400 °C due to the decomposition of austenite during heating.

  13. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis–Endocytosis Coupling

    PubMed Central

    Lou, Xuelin

    2018-01-01

    The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs. PMID:29593500

  14. Evaluation of TBM tunnels with respect to stability against spalling

    NASA Astrophysics Data System (ADS)

    Shaalan, Heyam; Ismail, Mohd Ashraf Mohd; Azit, Romziah

    2017-10-01

    As the depth of tunnels and underground construction increases, instability occurs in the form of rock bursting or spalling because of the induced stresses. Spalling may appear as a strong compressive stress causing crack growth behind the excavated surface and buckling of the thin rock slabs. In this paper, we describe how to reduce the rock spalling failure to increase the underground safety and the tunnel stability. Thus, a parametric study is implemented using 2-D Elasto-plastic finite elements stress analysis software to investigate the parameters that can minimize the extent and depth of the failure zone. The critical section of Pahang Selangor Raw Water Transfer Tunnel under high overburden is analyzed. The effect of the shotcrete lining thickness, tunnel size and the removal of fallouts or scaled v-notch on the failure zone depth is investigated. The results demonstrate that the shotcrete lining thickness has less influence on the failure depth, while a small tunnel diameter minimizes the failure depth. In addition, the stability of the tunnel improves by removing the loose rock mass.

  15. Interaction of rate- and size-effect using a dislocation density based strain gradient viscoplasticity model

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.

    2017-12-01

    Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.

  16. Using sieving and pretreatment to separate plastics during end-of-life vehicle recycling.

    PubMed

    Stagner, Jacqueline A; Sagan, Barsha; Tam, Edwin Kl

    2013-09-01

    Plastics continue to be a challenge for recovering materials at the end-of-life for vehicles. However, it may be possible to improve the recovery of plastics by exploiting material characteristics, such as shape, or by altering their behavior, such as through temperature changes, in relation to recovery processes and handling. Samples of a 2009 Dodge Challenger front fascia were shredded in a laboratory-scale hammer mill shredder. A 2 × 2 factorial design study was performed to determine the effect of sample shape (flat versus curved) and sample temperature (room temperature versus cryogenic temperature) on the size of the particles exiting from the shredder. It was determined that sample shape does not affect the particle size; however, sample temperature does affect the particle size. At cryogenic temperatures, the distribution of particle sizes is much narrower than at room temperature. Having a more uniform particle size could make recovery of plastic particles, such as these more efficient during the recycling of end-of-life vehicles. Samples of Chrysler minivan headlights were also shredded at room temperature and at cryogenic temperatures. The size of the particles of the two different plastics in the headlights is statistically different both at room temperature and at cryogenic temperature, and the particles are distributed narrowly. The research suggests that incremental changes in end-of-life vehicle processing could be effective in aiding materials recovery.

  17. How quickly do albatrosses and petrels digest plastic particles?

    PubMed

    Ryan, Peter G

    2015-12-01

    Understanding how rapidly seabirds excrete or regurgitate ingested plastic items is important for their use as monitors of marine debris. van Franeker and Law (2015) inferred that fulmarine petrels excrete ∼75% of plastic particles within a month of ingestion based on decreases in the amounts of plastic in the stomachs of adult petrels moving to relatively clean environments to breed. However, similar decreases occur among resident species due to adults passing plastic loads to their chicks. The few direct measures of wear rates and retention times of persistent stomach contents suggest longer plastic residence times in most albatrosses and petrels. Residence time presumably varies with item size, type of plastic, the amount and composition of other persistent stomach contents, and the size at which items are excreted, which may vary among taxa. Accurate measures of ingested plastic retention times are needed to better understand temporal and spatial patterns in ingested plastic loads within marine organisms, especially if they are to be used as indicators of plastic pollution trends. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Slip Zone versus Damage Zone Micromechanics, Arima-Takasuki Tectonic Line, Japan

    NASA Astrophysics Data System (ADS)

    White, J. C.; Lin, A.

    2017-12-01

    The Arima-Takasuki Tectonic Line (ATTL) of southern Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage zone of the ATTL comprises a broad zone of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip zones and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip zone, as well as secondary slip zones. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core zones. Damage zone material exhibits generally random textures3 whereas slip zones are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip zones are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge zones, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge zones comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip zones develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.

  19. Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.; Fan, Haidong; Hussein, Ahmed M.

    In dislocation-mediated plasticity of crystalline materials, discrete dislocation dynamics (DDD) methods have been widely used to predict the plastic deformation in a number of technologically important problems. These simulations have led to significant improvement in the understanding of the different mechanism that controls the mechanical properties of crystalline materials, which can greatly accelerate the future development of materials with superior properties. This chapter provides an overview of different practical applications of both two-dimensional and three-dimensional DDD simulations in the field of size-affected dislocation-mediated plasticity. The chapter is divided into two major tracks. First, DDD simulations focusing on aspects of modeling size-dependent plasticity in single crystals in uniaxial micro-compression/tension, microtorsion, microbending, and nanoindentation are discussed. Special attention is directed towards the role of cross-slip and dislocation nucleation on the overall response. Second, DDD simulations focusing on the role of interfaces, including grain and twin boundaries, on dislocation-mediated plasticity are discussed. Finally, a number of challenges that are withholding DDD simulations from reaching their full potential are discussed.

  20. Cooler butterflies lay larger eggs: developmental plasticity versus acclimation.

    PubMed Central

    Fischer, Klaus; Eenhoorn, Evelien; Bot, Adriane N M; Brakefield, Paul M; Zwaan, Bas J

    2003-01-01

    We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints. PMID:14561294

  1. What is the earthquake fracture energy?

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Passelegue, F. X.; Spagnuolo, E.; Bistacchi, A.; Fondriest, M.; Murphy, S.; Aretusini, S.; Demurtas, M.

    2016-12-01

    The energy budget of an earthquake is one of the main open questions in earthquake physics. During seismic rupture propagation, the elastic strain energy stored in the rock volume that bounds the fault is converted into (1) gravitational work (relative movement of the wall rocks bounding the fault), (2) in- and off-fault damage of the fault zone rocks (due to rupture propagation and frictional sliding), (3) frictional heating and, of course, (4) seismic radiated energy. The difficulty in the budget determination arises from the measurement of some parameters (e.g., the temperature increase in the slipping zone which constraints the frictional heat), from the not well constrained size of the energy sinks (e.g., how large is the rock volume involved in off-fault damage?) and from the continuous exchange of energy from different sinks (for instance, fragmentation and grain size reduction may result from both the passage of the rupture front and frictional heating). Field geology studies, microstructural investigations, experiments and modelling may yield some hints. Here we discuss (1) the discrepancies arising from the comparison of the fracture energy measured in experiments reproducing seismic slip with the one estimated from seismic inversion for natural earthquakes and (2) the off-fault damage induced by the diffusion of frictional heat during simulated seismic slip in the laboratory. Our analysis suggests, for instance, that the so called earthquake fracture energy (1) is mainly frictional heat for small slips and (2), with increasing slip, is controlled by the geometrical complexity and other plastic processes occurring in the damage zone. As a consequence, because faults are rapidly and efficiently lubricated upon fast slip initiation, the dominant dissipation mechanism in large earthquakes may not be friction but be the off-fault damage due to fault segmentation and stress concentrations in a growing region around the fracture tip.

  2. The influence of plasticizers on the release of theophylline from microporous-controlled tablets.

    PubMed

    Lin, W J; Lee, H K; Wang, D M

    2004-10-19

    The aim of present work was to investigate the influence of plasticizer on the release of theophylline from microporous-controlled tablets. Three plasticizers, acetyltributyl citrate (ATBC), castor oil, and triacetin, were included in this study. These plasticizers reduced the crystallinity of poly(epsilon-caprolactone) (PCL)/poly(ethylene glycol) (PEG)-blended films, and the most prominent change of enthalpy of fusion was the film plasticized by triacetin. This might be due to triacetin penetrating into both PCL and PEG domains. However, the lipophilic property of castor oil only allowed it to alter the crystallization of hydrophobic PCL domain. The Young's modulus and the tensile strength of films showed a decreased tendency while increasing the amount of plasticizer. The change of elongation of plasticized blended films was irregular and was dependent of the type of plasticizer. The size of micropores formed in the presence of plasticizer was larger than those micropores formed in its absence. The fatty plasticizer, castor oil, altered the thermal and mechanical performance and pore size of films via soluble in PCL domain, which resulted in the release of theophylline from castor oil plasticized-coated tablets, which in turn enhanced and closed to a constant release pattern.

  3. Thermomechanical coupling and dynamic strain ageing in ductile fracture

    NASA Astrophysics Data System (ADS)

    Delafosse, David

    1995-01-01

    This work is concerned with plastic deformation at the tip of a ductile tearing crack during propagation. Two kinds of effects are investigated: the thermomechanical coupling at the tip of a mobile ductile crack, and the influence of Dynamic Strain Aging (DSA) on ductile fracture. Three alloys are studied: a nickel based superalloy (N18), a soft carbon steel, and an Al-Li light alloy (2091). The experimental study of the thermo mechanical coupling effects by means of infrared thermography stresses the importance of plastic dissipation in the energy balance of ductile fracture. Numerical simulations involving plastic deformation as the only dissipation mechanism account for the main part of the measured heating. The effects of DSA on ductile tearing are investigated in the 2091 Al-Li alloy. Based on the strain rate/temperature dependence predicted by the standard model of DSA, an experimental procedure is set up for this purpose. Three main effects are evidenced. A maximum in tearing resistance is shown to be associated with the minimum of strain rate sensitivity. Through a simple model, this peak in tearing resistance is attributed to an increase in plastic dissipation as the strain rate sensitivity is decreased. Heterogenous plastic deformation is observed in the crack tip plastic zone. Comparison with uniaxial testing allows us to identify the observed strain heterogeneities as Portevin-Le Chatelier instabilities in the crack tip plastic zone. We perform a simplified numerical analysis of the effect of strain localization on crack tip screening. Finally, small crack propagation instabilities appear at temperatures slightly above that of the tearing resistance peak. These are interpreted as resulting from a positive feed-back between the local heating at the tip of a moving crack and the decrease in tearing resistance with increasing temperature.

  4. Structures and microfabrics of the Franciscan Complex (California): Inferences on the rheology and kinematics of a subduction channel

    NASA Astrophysics Data System (ADS)

    Krohe, A.; Wassmann, S.; Trepmann, C.; Stoeckhert, B.

    2009-12-01

    The characteristic feature of the Franciscan Subduction Complex (FSC) is a chaotic mélange structure with centimeter- to about one kilometer-sized tectonic blocks composed of metabasalts, floating in a matrix of oceanic meta-sediments or, locally, serpentinites. Investigating map scale structures, microfabrics, and P-T-histories of the FSC, we try to gain information on the mechanical properties of rocks and their influence on the kinematics of material transport in a subduction channel. Structures and microfabrics indicate that metabasalts from the oceanic crust as well as mantle-derived ultramafic rocks (i) underwent fragmentation and sealing under high pore fluid pressure, (ii) remaining internally undeformed, or (iii) deform by dissolution precipitation creep. Importantly, microfabrics which would indicate crystal plastic deformation or dislocation creep are systematically absent. This means that, during the entire P-T history, differential stresses generally remained too low to activate crystal plastic deformation or dislocation creep. Hence the material in the subduction channel is characterized by a low strength, being either limited by brittle failure at high pore fluid pressure, or a Newton viscosity, which is expected for dissolution precipitation creep. We interpret the characteristic mélange structure as to reflect this mechanical state of the system: Brittle failure at quasi-lithostatic fluid pressures down to great depths is recorded in the tectonic blocks by the widespread occurrence of aragonite-bearing veins. This leads to fragmentation into the blocks of variable size and moderate aspect ratios, which behave as rigid inclusions in a flowing matrix with distributed deformation by dissolution precipitation creep. In contrast, a power law rheology characteristic for dislocation creep, would favor strain localization into shear zones at sites of stress concentration. However, such shear zones formed at high-P metamorphic conditions are not identified. Mechanical contrasts within the mélange are presumably governed by variations in grain sizes and the nature of interphase boundaries, which both control viscous deformation by dissolution precipitation creep. As such, huge viscosity contrasts between matrix and rigid blocks can persist during burial to HP metamorphic conditions and decompression, while the mélange is deformed to very high bulk strain. These findings pose constraints on the large scale properties of a subduction channel presently active at depth, to be identified by geophysical methods.

  5. Strong Matrix & Weak Blocks: Evolutionary Inversion of Mélange Rheological Relationships During Subduction and Its Implications for Seismogenesis

    NASA Astrophysics Data System (ADS)

    Clarke, A. P.; Vannucchi, P.; Ougier-Simonin, A.; Morgan, J. P.

    2017-12-01

    Subduction zone interface layers are often conceived to be heterogeneous, polyrheological zones analogous to exhumed mélanges. Mélanges typically contain mechanically strong blocks within a weaker matrix. However, our geomechanical study of the Osa Mélange, SW Costa Rica shows that this mélange contains blocks of altered basalt which are now weaker in friction than their surrounding indurated volcanoclastic matrix. Triaxial deformation experiments were conducted on samples of both the altered basalt blocks and the indurated volcanoclastic matrix at confining pressures of 60 and 120 MPa. These revealed that the volcanoclastic matrix has a strength 7.5 times that of the altered basalt at 60 MPa and 4 times at 120 MPa, with the altered basalt experiencing multi-stage failure. The inverted strength relationship between weaker blocks and stronger matrix evolved during subduction and diagenesis of the melange unit by dewatering, compaction and diagenesis of the matrix and cataclastic brecciation and hydrothermal alteration of the basalt blocks. During the evolution of this material, the matrix progressively indurated until its plastic yield stress became greater than the brittle yield stress of the blocks. At this point, the typical rheological relationship found within melanges inverts and melange blocks can fail seismically as the weakest links along the subduction plate interface. The Osa Melange is currently in the forearc of the erosive Middle America Trench and is being incorporated into the subduction zone interface at the updip limit of seismogenesis. The presence of altered basalt blocks acting as weak inclusions within this rock unit weakens the mélange as a whole rock mass. Seismic fractures can nucleate at or within these weak inclusions and the size of the block may limit the size of initial microseismic rock failure. However, when fractures are able to bridge across the matrix between blocks, significantly larger rupture areas may be possible. While this mechanism is a promising candidate for the updip limit of the unusually shallow seismogenic zone beneath Osa, it remains to be seen whether analogous evolutionary strength-inversions control the updip limit of other subduction seismogenic zones.

  6. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    PubMed

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  7. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  8. Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique

    PubMed Central

    Bonollo, Franco; Bassan, Fabio; Berto, Filippo

    2017-01-01

    Electron BackScatter Diffraction (EBSD) in conjunction with Field-Emission Environmental Scanning Electron Microscopy (FEG-ESEM) has been used to evaluate the microstructural and local plastic strain evolution in different alloys (AISI 1005, AISI 304L and Duplex 2205) deformed by a single-stage cold and warm forging process. The present work is aimed to describe the different behavior of the austenite and ferrite during plastic deformation as a function of different forging temperatures. Several topological EBSD maps have been measured on the deformed and undeformed states. Then, image quality factor, distributions of the grain size and misorientation have been analyzed in detail. In the austenitic stainless steel, the γ-phase has been found to harden more easily, then α-phase and γ-phase in AISI 1005 and in duplex stainless steel, sequentially. Compared to the high fraction of continuous dynamic recrystallized austenitic zones observed in stainless steels samples forged at low temperatures, the austenitic microstructure of samples forged at higher temperatures, 600–700 °C, has been found to be mainly characterized by large and elongated grains with some colonies of fine nearly-equiaxed grains attributed to discontinuous dynamic recrystallization. PMID:29258249

  9. Development of scanning holographic display using MEMS SLM

    NASA Astrophysics Data System (ADS)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  10. Methods, Computational Platform, Verification, and Application of Earthquake-Soil-Structure-Interaction Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Tafazzoli, Nima

    Seismic response of soil-structure systems has attracted significant attention for a long time. This is quite understandable with the size and the complexity of soil-structure systems. The focus of three important aspects of ESSI modeling could be on consistent following of input seismic energy and a number of energy dissipation mechanisms within the system, numerical techniques used to simulate dynamics of ESSI, and influence of uncertainty of ESSI simulations. This dissertation is a contribution to development of one such tool called ESSI Simulator. The work is being done on extensive verified and validated suite for ESSI Simulator. Verification and validation are important for high fidelity numerical predictions of behavior of complex systems. This simulator uses finite element method as a numerical tool to obtain solutions for large class of engineering problems such as liquefaction, earthquake-soil-structure-interaction, site effect, piles, pile group, probabilistic plasticity, stochastic elastic-plastic FEM, and detailed large scale parallel models. Response of full three-dimensional soil-structure-interaction simulation of complex structures is evaluated under the 3D wave propagation. Domain-Reduction-Method is used for applying the forces as a two-step procedure for dynamic analysis with the goal of reducing the large size computational domain. The issue of damping of the waves at the boundary of the finite element models is studied using different damping patterns. This is used at the layer of elements outside of the Domain-Reduction-Method zone in order to absorb the residual waves coming out of the boundary layer due to structural excitation. Extensive parametric study is done on dynamic soil-structure-interaction of a complex system and results of different cases in terms of soil strength and foundation embedment are compared. High efficiency set of constitutive models in terms of computational time are developed and implemented in ESSI Simulator. Efficiency is done based on simplifying the elastic-plastic stiffness tensor of the constitutive models. Almost in all the soil-structure systems, there are interface zones in contact with each other. These zones can get detached during the loading or can slip on each other. In this dissertation the frictional contact element is implemented in ESSI Simulator. Extended verification has been done on the implemented element. The interest here is the effect of slipping and gap opening at the interface of soil and concrete foundation on the soil-structure system behavior. In fact transferring the loads to structure is defined based on the contact areas which will affect the response of the system. The effect of gap openings and sliding at the interfaces are shown through application examples. In addition, dissipation of the seismic energy due to frictional sliding of the interface zones are studied. Application Programming Interface (API) and Domain Specific Language (DSL) are being developed to increase developer's and user's modeling and simulation capabilities. API describes software services developed by developers that are used by users. A domain-specific language (DSL) is a small language which usually focuses on a particular problem domain in software. In general DSL programs are translated to a common function or library which can be viewed as a tool to hide the details of the programming, and make it easier for the user to deal with the commands.

  11. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  12. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass

    PubMed Central

    Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua

    2016-01-01

    The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264

  13. Plastic pollution in the Labrador Sea: An assessment using the seabird northern fulmar Fulmarus glacialis as a biological monitoring species.

    PubMed

    Avery-Gomm, Stephanie; Provencher, Jennifer F; Liboiron, Max; Poon, Florence E; Smith, Paul A

    2018-02-01

    Plastic is now one among one of the most pervasive pollutants on the planet, and ocean circulation models predict that the Arctic will become another accumulation zone. As solutions to address marine plastic emerge, is essential that baselines are available to monitor progress towards targets. The northern fulmar (Fulmarus glacialis), a widely-distributed seabird species, has been used as a biological monitor for plastic pollution in the North Sea, and could be a useful monitoring species elsewhere. We quantified plastic ingested by northern fulmars from the southeastern Canadian waters of the Labrador Sea with the objective of establishing a standardized baseline for future comparisons. Over two years we sampled 70 fulmars and found that 79% had ingested plastic, with an average of 11.6 pieces or 0.151g per bird. Overall, 34% of all fulmars exceeded the Ecological Quality Objective for marine litter, having ingested >0.1g of plastic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Plasticity in probabilistic reaction norms for maturation in a salmonid fish.

    PubMed

    Morita, Kentaro; Tsuboi, Jun-ichi; Nagasawa, Toru

    2009-10-23

    The relationship between body size and the probability of maturing, often referred to as the probabilistic maturation reaction norm (PMRN), has been increasingly used to infer genetic variation in maturation schedule. Despite this trend, few studies have directly evaluated plasticity in the PMRN. A transplant experiment using white-spotted charr demonstrated that the PMRN for precocious males exhibited plasticity. A smaller threshold size at maturity occurred in charr inhabiting narrow streams where more refuges are probably available for small charr, which in turn might enhance the reproductive success of sneaker precocious males. Our findings suggested that plastic effects should clearly be included in investigations of variation in PMRNs.

  15. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters.

    PubMed

    Tanaka, Kosuke; Takada, Hideshige

    2016-09-30

    We investigated microplastics in the digestive tracts of 64 Japanese anchovy (Engraulis japonicus) sampled in Tokyo Bay. Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual. All of the plastics were identified by Fourier transform infrared spectroscopy. Most were polyethylene (52.0%) or polypropylene (43.3%). Most of the plastics were fragments (86.0%), but 7.3% were beads, some of which were microbeads, similar to those found in facial cleansers. Eighty percent of the plastics ranged in size from 150 μm to 1000 μm, smaller than the reported size range of floating microplastics on the sea surface, possibly because the subsurface foraging behavior of the anchovy reflected the different size distribution of plastics between surface waters and subsurface waters. Engraulis spp. are important food for many humans and other organisms around the world. Our observations further confirm that microplastics have infiltrated the marine ecosystem, and that humans may be exposed to them. Because microplastics retain hazardous chemicals, increase in fish chemical exposure by the ingested plastics is of concern. Such exposure should be studied and compared with that in the natural diet.

  16. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters

    NASA Astrophysics Data System (ADS)

    Tanaka, Kosuke; Takada, Hideshige

    2016-09-01

    We investigated microplastics in the digestive tracts of 64 Japanese anchovy (Engraulis japonicus) sampled in Tokyo Bay. Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual. All of the plastics were identified by Fourier transform infrared spectroscopy. Most were polyethylene (52.0%) or polypropylene (43.3%). Most of the plastics were fragments (86.0%), but 7.3% were beads, some of which were microbeads, similar to those found in facial cleansers. Eighty percent of the plastics ranged in size from 150 μm to 1000 μm, smaller than the reported size range of floating microplastics on the sea surface, possibly because the subsurface foraging behavior of the anchovy reflected the different size distribution of plastics between surface waters and subsurface waters. Engraulis spp. are important food for many humans and other organisms around the world. Our observations further confirm that microplastics have infiltrated the marine ecosystem, and that humans may be exposed to them. Because microplastics retain hazardous chemicals, increase in fish chemical exposure by the ingested plastics is of concern. Such exposure should be studied and compared with that in the natural diet.

  17. Disentangling plasticity of serotiny, a key adaptive trait in a Mediterranean conifer.

    PubMed

    Martín-Sanz, Ruth C; Santos-Del-Blanco, Luis; Notivol, Eduardo; Chambel, M Regina; San-Martín, Roberto; Climent, José

    2016-09-01

    Serotiny, the maintenance of ripe seeds in closed fruits or cones until fire causes dehiscence, is a key adaptive trait of plants in fire-prone ecosystems, but knowledge of phenotypic plasticity for cone retention in woody plants is extremely scarce. On the basis of published literature and our field observations, we hypothesized that increased aridity might decrease the aerial seed bank as a plastic response, not necessarily adaptive. We used a Pinus halepensis common garden replicated in three contrasted sites (mild, cold, and dry) to separate population differentiation from phenotypic plasticity of cone serotiny and canopy cone bank (CCB). Differences in growth among trees of the same provenance allowed us to include size effect as a proxy of ontogenetic age for the same chronological age of the trees. Tree size had a strong negative effect on serotiny, but serotiny degree differed among trial sites even after accounting for size effects. As hypothesized, serotiny was lower at the harsh (dry and cold) sites compared with the mild site. Genetic variation for size-dependent cone serotiny and significant population × site interaction were confirmed, the latter implying different plasticity of serotiny among populations. Population differentiation for CCB showed an ecotypic trend, with positive correlation with temperature oscillation (continentality) and negative correlation with summer rainfall. Growth-limiting environments exacerbated the precocious release of seeds, contrary to the ecotypic trend found for the aerial cone bank, suggesting a counter-gradient plasticity. This plastic response is potentially maladaptive under a scenario of frequent wildfires. © 2016 Botanical Society of America.

  18. Modelling global distribution, risk and mitigation strategies of floating plastic pollution

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Wilcox, Chris; Sherman, Peter; Hardesty, Britta Denise; Lavender Law, Kara

    2016-04-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardise a global dataset of plastic marine debris measured using surface-trawling plankton nets and couple this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons. A large fraction of the uncertainty in these estimates comes from sparse sampling in coastal and Southern Hemisphere regions. We then use this global distribution of small floating plastic debris to map out where in the ocean the risk to marine life (in particular seabirds and plankton growth) is greatest, using a quantitative risk framework. We show that the largest risk occurs not necessarily in regions of high plastic concentration, but rather in regions of extensive foraging with medium-high plastic concentrations such as coastal upwelling regions and the Southern Ocean. Finally, we use the estimates of distribution to investigate where in the ocean plastic can most optimally be removed, assuming hypothetical clean-up booms following the ideas from The Ocean Cleanup project. We show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres. Based on these results, we propose more focus on the coastal zones when considering future efforts in sampling, risk management and mitigation.

  19. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552

  20. Canalization of body size matters for lifetime reproductive success of male predatory mites (Acari: Phytoseiidae)

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2014-01-01

    The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus. Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 889–899. PMID:25132689

  1. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  2. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  3. Export of Plastic Debris by Rivers into the Sea.

    PubMed

    Schmidt, Christian; Krauth, Tobias; Wagner, Stephan

    2017-11-07

    A substantial fraction of marine plastic debris originates from land-based sources and rivers potentially act as a major transport pathway for all sizes of plastic debris. We analyzed a global compilation of data on plastic debris in the water column across a wide range of river sizes. Plastic debris loads, both microplastic (particles <5 mm) and macroplastic (particles >5 mm) are positively related to the mismanaged plastic waste (MMPW) generated in the river catchments. This relationship is nonlinear where large rivers with  population-rich catchments delivering a disproportionately higher fraction of MMPW into the sea. The 10 top-ranked rivers transport 88-95% of the global load into the sea. Using MMPW as a predictor we calculate the global plastic debris inputs form rivers into the sea to range between 0.41 and 4 × 10 6 t/y. Due to the limited amount of data high uncertainties were expected and ultimately confirmed. The empirical analysis to quantify plastic loads in rivers can be extended easily by additional potential predictors other than MMPW, for example, hydrological conditions.

  4. FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    PubMed Central

    Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.

    2011-01-01

    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes. PMID:22102829

  5. Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.

    2016-10-01

    Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.

  6. BDNF Polymorphism–Dependent OFC and DLPFC Plasticity Differentially Moderates Implicit and Explicit Bias

    PubMed Central

    Poore, Joshua C.; Barbey, Aron K.; Krueger, Frank; Solomon, Jeffrey; Lipsky, Robert H.; Hodgkinson, Colin A.; Goldman, David; Grafman, Jordan

    2012-01-01

    This study examined the role of orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) plasticity in controlling implicit and explicit social biases. Normal controls and patients with varied OFC and DLPFC lesion size and single nucleotide polymorphisms (SNPs) in the brain-derived neurotrophic factor (BDNF) gene, which promotes (methionine–valine [Met/Val] SNP) or stifles (valine–valine [Val/Val] SNP) plasticity in damaged PFC regions, completed measures of implicit and explicit social bias. Patients and controls demonstrated comparable levels of implicit bias, but patients with Met/Val SNPs exhibited less implicit bias when they had smaller OFC lesions compared with Val/Val patients with similar size lesions and those with large OFC lesions. Both patients and controls demonstrated patterns of explicit bias consistent with hypotheses. Patients with Met/Val SNPs exhibited less explicit bias when they had smaller DLPFC lesions sizes compared with Val/Val patients with similar size lesions and those with large DLPFC lesions. OFC lesion size and BDNF SNP type did not moderate explicit bias; DLPFC lesion size and BDNF SNP type did not moderate implicit bias (nor did other medial or lateral regions). Findings suggest that plasticity within specific PFC regions modulates the type and degree of social bias that individuals’ exhibit. PMID:22123938

  7. Does size and buoyancy affect the long-distance transport of floating debris?

    NASA Astrophysics Data System (ADS)

    Ryan, Peter G.

    2015-08-01

    Floating persistent debris, primarily made from plastic, disperses long distances from source areas and accumulates in oceanic gyres. However, biofouling can increase the density of debris items to the point where they sink. Buoyancy is related to item volume, whereas fouling is related to surface area, so small items (which have high surface area to volume ratios) should start to sink sooner than large items. Empirical observations off South Africa support this prediction: moving offshore from coastal source areas there is an increase in the size of floating debris, an increase in the proportion of highly buoyant items (e.g. sealed bottles, floats and foamed plastics), and a decrease in the proportion of thin items such as plastic bags and flexible packaging which have high surface area to volume ratios. Size-specific sedimentation rates may be one reason for the apparent paucity of small plastic items floating in the world’s oceans.

  8. Influence of CNTs decomposition during reactive friction-stir processing of an Al-Mg alloy on the correlation between microstructural characteristics and microtextural components.

    PubMed

    Khodabakhshi, F; Nosko, M; Gerlich, A P

    2018-05-03

    Multipass friction-stir processing was employed to uniformly disperse multiwalled carbon nanotubes (MW-CNTs) within an Al-Mg alloy metal matrix. Decomposition of MW-CNTs occurs in situ as a result of solid-state chemical reactions, forming fullerene (C60) and aluminium carbide (Al 4 C 3 ) phases during reactive high temperature severe plastic processing. The effects of this decomposition on the microstructural features, dynamic restoration mechanisms and crystallographic microtextural developments are studied for the first time by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis. The formation of an equiaxed grain structure with an average size of ∼1.5 μm occurs within the stirred zone (SZ) under the influence of inclusions which hinder grain boundary migration via Zener-Smith pinning mechanisms during the discontinuous dynamic recrystallisation (DDRX). Formation of two strong Cubic and Brass microtextural components in the heat affected zone (HAZ) and thermomechanical affected zone (TMAZ) was noted as compared to the completely random and Cube components found in the base and SZ regions, respectively. The microstructural modification led to hardening and tensile strength improvement for the processed nanocomposite by ∼55% and 110%, respectively with respect to the annealed Al-Mg base alloy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  9. Context-Dependent Plastic Response during Egg-Laying in a Widespread Newt Species

    PubMed Central

    Tóth, Zoltán

    2015-01-01

    Previous research on predator-induced phenotypic plasticity mostly focused on responses in morphology, developmental time and/or behaviour during early life stages, but the potential significance of anticipatory parental responses has been investigated less often. In this study I examined behavioural and maternal responses of gravid female smooth newts, Lissotriton vulgaris, in the presence of chemical cues originating from invertebrate predators, Acilius sulcatus water beetles and Aeshna cyanea dragonfly larvae. More specifically, I tested the extent of oviposition preference, plasticity in egg-wrapping behaviour and plasticity in egg size when females had the possibility to lay eggs at oviposition sites with and without predator cues during overnight trials. I found that individuals did not avoid laying eggs in the environment with predator cues; however, individuals that deposited eggs into both environments adjusted the size of the laid eggs to the perceived environment. Females deposited larger eggs earlier in the season but egg size decreased with time in the absence of predator cues, whereas individuals laid eggs of average size throughout the investigated reproductive period when such cues were present. Also, egg size was found to be positively related to hatching success. Individuals did not adjust their wrapping behaviour to the presence of predator cues, but females differed in the extent of egg-wrapping between ponds. Females’ body mass and tail depth were also different between ponds, whereas their body size was positively associated with egg size. According to these results, female smooth newts have the potential to exhibit activational plasticity and invest differently into eggs depending on temporal and environmental factors. Such an anticipatory response may contribute to the success of this caudate species under a wide range of predator regimes at its natural breeding habitats. PMID:26291328

  10. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone, crosscutting the first generations of fine-grained quartz mass and the wall rocks, in connection to intense fracturing and brecciation. The complex geometry of the vein sets points to multiple fluid injections and brecciation, as additionally indicated by coarse quartz with different inclusion and CL intensity. Temporal changes of strain rate are indicated by crystal plastic deformation structures in quartz, which overprint brittle structures. (iv) The fourth quartz generation occurs in mm- to dm-thick quartz veins, partly open as geodes, filling N-S oriented cm- to dm-spaced fractures that crosscut the earlier quartz masses and veins and extend at least several meters into the wall rock. They indicate the last activity of the shear-zone in a constant kinematic framework. Summarizing, the Pfahl shear zone shows brittle-ductile deformation during the long-term activity of a large-scale hydrothermal system. Consequently, it represents an excellent example where different generations of quartz precipitation can be connected to fluctuations of fluid flow and strain rate.

  11. Density variations of plastic carriers in metallic glasses during aging

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    Thermally induced deformation in metallic glasses was investigated by sampling the potential energy landscape (PEL) and probing the changes in the atomic properties (e.g. energy, displacement, stress). We demonstrate that there exists a universal plastic carrier in amorphous materials, which corresponds to the hopping between local minima on PEL. However very interestingly, the density of plastic carrier is largely affected by the aging history of the glasses. The higher fictive temperature (i . e . fast cooling rate), the larger density of plastic carrier is contained in the system. In particular, we observe a scaling of ρ~exp(- α/Tfic) , which is consistent with the prediction of shear transformation zone theory. The work is supported by U.S. Department of Energy.

  12. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm thick), implying that the plastic portion of the fault consists of a broad zone of thin, anastomosing shear zones. Concentrations of Ti-rich magmatic hornblende and interstitial Fe-Ti oxides in the high strain horizons are consistent with the lowermost part of the fault(s) localizing in the margins of the mush zone of a shallow magma chamber.

  13. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity.

    PubMed

    Fazey, Francesca M C; Ryan, Peter G

    2016-03-01

    Recent estimates suggest that roughly 100 times more plastic litter enters the sea than is found floating at the sea surface, despite the buoyancy and durability of many plastic polymers. Biofouling by marine biota is one possible mechanism responsible for this discrepancy. Microplastics (<5 mm in diameter) are more scarce than larger size classes, which makes sense because fouling is a function of surface area whereas buoyancy is a function of volume; the smaller an object, the greater its relative surface area. We tested whether plastic items with high surface area to volume ratios sank more rapidly by submerging 15 different sizes of polyethylene samples in False Bay, South Africa, for 12 weeks to determine the time required for samples to sink. All samples became sufficiently fouled to sink within the study period, but small samples lost buoyancy much faster than larger ones. There was a direct relationship between sample volume (buoyancy) and the time to attain a 50% probability of sinking, which ranged from 17 to 66 days of exposure. Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. Further research is required to determine how fouling rates differ on free floating debris in different regions and in different types of marine environments. Such estimates could be used to improve model predictions of the distribution and abundance of floating plastic debris globally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Research on the use of particles coming from almond husk as fillers for vinyl plastisols to manufacture hollow pieces with similar surface finishing than wood by using a rotational moulding process

    NASA Astrophysics Data System (ADS)

    Crespo Amoros, Jose Enrique

    PVC pastes or plasticized PVC offer great possibilities in the industrial field in which this research work has been developed since they show great relevance in plastic processing. On one hand, it is important to study these materials from different points of view: quality improvement, wide range of performance, high versatility, low costs,.... On the other hand, most of the industrial fields that usually employ these polymeric materials are characterized by developing products on which aesthetic considerations and surface finishing acquire special relevance. These industrial fields include all those on which new designs require complex shapes and new and novelty surface finishing such as interior design (furniture, wood products,...) toys industry, houseware, shoe industry,.... The main aim of this work is to improve the use of PVC plastisols in these industrial fields by optimizing formulations with new additives (low toxicity plasticizers) and fillers (lignocellulosic wastes) to obtain new materials that minimize damages to environment. In this work, we have developed new plastisol formulations based on the use of low toxicity plasticizers to obtain more ecological plastisols. We have used a biodegradable plasticizer DINCH which is a derivative of a dicarboxilate as substitute of traditional plasticizers based on phthalates. As we are working with relatively new plasticizers (specially at industrial level) we have performed a whole study of its properties by using different experimental analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamical-mechanical analysis (DMA) and espectrofotometric techniques (visible and infrared). Furthermore a complete mechanical characterization has been carried out to analyze the most important parameters that influence on materials properties such as processing parameters (temperature and time) and plastisol formulations (mainly plasticizer content). We have also performed a comparative study regarding the results obtained with the most used plasticizer at industrial level, di-octyl phthalate (DOP). After this characterization, a study on the addition of cellulosic fillers was carried out to obtain materials with similar surface finishing than wood products. We used three different lignocellulosic fillers coming from wastes: almond husk residues since these wastes are quite abundant in our influence zone, rice husk and sawdust residues since they are produced everywhere in high amounts. It was studied the influence of the morphology and particle size on the final properties of the prepared mixtures to optimize formulations. These new plastisol formulations allow obtaining new materials in a wide range of mechanical properties, easy processing, interesting surface finishing and partially biodegradable, more careful with environment.

  15. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.

    2013-04-01

    We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but the strength cannot drop since the shear zone has a finite thickness.

  16. Co- and post-seismic shallow fault physics from near-field geodesy, seismic tomography, and mechanical modeling

    NASA Astrophysics Data System (ADS)

    Nevitt, J.; Brooks, B. A.; Catchings, R.; Goldman, M.; Criley, C.; Chan, J. H.; Glennie, C. L.; Ericksen, T. L.; Madugo, C. M.

    2017-12-01

    The physics governing near-surface fault slip and deformation are largely unknown, introducing significant uncertainty into seismic hazard models. Here we combine near-field measurements of surface deformation from the 2014 M6.0 South Napa earthquake with high-resolution seismic imaging and finite element models to investigate the effects of rupture speed, elastic heterogeneities, and plasticity on shallow faulting. We focus on two sites that experienced either predominantly co-seismic or post-seismic slip. We measured surface deformation with mobile laser scanning of deformed vine rows within 300 m of the fault at 1 week and 1 month after the event. Shear strain profiles for the co- and post-seismic sites are similar, with maxima of 0.012 and 0.013 and values exceeding 0.002 occurring within 26 m- and 18 m-wide zones, respectively. That the rupture remained buried at the two sites and produced similar deformation fields suggests that permanent deformation due to dynamic stresses did not differ significantly from the quasi-static case, which might be expected if the rupture decelerated as it approached the surface. Active-source seismic surveys, 120 m in length with 1 m geophone/shot spacing, reveal shallow compliant zones of reduced shear modulus. For the co- and post-seismic sites, the tomographic anomaly (Vp/Vs > 5) at 20 m depth has a width of 80 m and 50 m, respectively, much wider than the observed surface displacement fields. We investigate this discrepancy with a suite of finite element models in which a planar fault is buried 5 m below the surface. The model continuum is defined by either homogeneous or heterogeneous elastic properties, with or without Drucker-Prager plastic yielding, with properties derived from lab testing of similar near-surface materials. We find that plastic yielding can greatly narrow the surface displacement zone, but that the width of this zone is largely insensitive to changes in the elastic structure (i.e., the presence of a compliant zone).

  17. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana.

    PubMed

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia; Fei-Baffoe, Bernard; Mensah, Moses Y

    2015-12-01

    Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Plasticity in probabilistic reaction norms for maturation in a salmonid fish

    PubMed Central

    Morita, Kentaro; Tsuboi, Jun-ichi; Nagasawa, Toru

    2009-01-01

    The relationship between body size and the probability of maturing, often referred to as the probabilistic maturation reaction norm (PMRN), has been increasingly used to infer genetic variation in maturation schedule. Despite this trend, few studies have directly evaluated plasticity in the PMRN. A transplant experiment using white-spotted charr demonstrated that the PMRN for precocious males exhibited plasticity. A smaller threshold size at maturity occurred in charr inhabiting narrow streams where more refuges are probably available for small charr, which in turn might enhance the reproductive success of sneaker precocious males. Our findings suggested that plastic effects should clearly be included in investigations of variation in PMRNs. PMID:19493875

  19. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Oh, H. S.; Park, E. S.

    2017-10-01

    Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  20. Why get big in the cold? Size-fecundity relationships explain the temperature-size rule in a pulmonate snail (Physa).

    PubMed

    Arendt, J

    2015-01-01

    Most ectotherms follow a pattern of size plasticity known as the temperature-size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size-dependent mortality or size-dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size-fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night-time temperature of 22 °C, under a 12L:12D light cycle). Eight of the nine families followed the temperature-size rule indicating genetic variation for this plasticity. As predicted, the size-fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature-size rule is adaptive for this species. Although rarely measured under multiple conditions, size-fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life-history theory. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change

    PubMed Central

    Scriber, J. Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-01

    Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the “converse of Bergmann’s size Rule”, with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3–4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general “voltinism/size/D-day” model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local “climatic cold pockets” in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these “cold pockets” are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus and P. canadensis in general, highlighting the importance of scale in adaptations to climate change. Furthermore, we also show that rapid size increases in cold pocket P. canadensis females with recent summer warming are more likely to result from phenotypic plasticity than genotypic introgression from P. glaucus, which does increase size in late-flight hybrids and P. appalachiensis. PMID:26462585

  2. Adaptations to "Thermal Time" Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change.

    PubMed

    Scriber, J Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-21

    Adaptations to "thermal time" (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the "converse of Bergmann's size Rule", with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3-4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general "voltinism/size/D-day" model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local "climatic cold pockets" in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these "cold pockets" are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus and P. canadensis in general, highlighting the importance of scale in adaptations to climate change. Furthermore, we also show that rapid size increases in cold pocket P. canadensis females with recent summer warming are more likely to result from phenotypic plasticity than genotypic introgression from P. glaucus, which does increase size in late-flight hybrids and P. appalachiensis.

  3. Heavy section fracture toughness screening specimen

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Donald, J. K.; Brown, W. F., Jr.

    1976-01-01

    Size requirements for a pin loaded double edge notch + crack tension specimen proposed for fracture toughness screening heavy section alloys were studied. Ranking of eight selected alloys based on the specimen's net strength was compared with that based on the valid plane strain fracture toughness separately determined. Performance of the specimen was judged on the basis of that comparison. The specimen's net strength was influenced by three critical specimen dimensions: distance between the crack plane and the loading hole, specimen width, and specimen thickness. Interaction between the stress fields of the crack and the loading holes reduced the net strength, but this effect disappeared as the separation reached a dimension equal to the specimen width. The effects of specimen width and thickness are interrelated and affect the net strength through their influence on the development of the crack tip plastic zone.

  4. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters

    PubMed Central

    Tanaka, Kosuke; Takada, Hideshige

    2016-01-01

    We investigated microplastics in the digestive tracts of 64 Japanese anchovy (Engraulis japonicus) sampled in Tokyo Bay. Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual. All of the plastics were identified by Fourier transform infrared spectroscopy. Most were polyethylene (52.0%) or polypropylene (43.3%). Most of the plastics were fragments (86.0%), but 7.3% were beads, some of which were microbeads, similar to those found in facial cleansers. Eighty percent of the plastics ranged in size from 150 μm to 1000 μm, smaller than the reported size range of floating microplastics on the sea surface, possibly because the subsurface foraging behavior of the anchovy reflected the different size distribution of plastics between surface waters and subsurface waters. Engraulis spp. are important food for many humans and other organisms around the world. Our observations further confirm that microplastics have infiltrated the marine ecosystem, and that humans may be exposed to them. Because microplastics retain hazardous chemicals, increase in fish chemical exposure by the ingested plastics is of concern. Such exposure should be studied and compared with that in the natural diet. PMID:27686984

  5. Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Ishak, M.; Shah, L. H.

    2017-09-01

    This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.

  6. Effect of Long-Term Thermal Exposures on Microstructure and Impression Creep in 304HCu Grade Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.

    2017-10-01

    This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.

  7. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  8. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Plastic ingestion by Black-footed Albatross Phoebastria nigripes from Kure Atoll, Hawai'i: Linking chick diet remains and parental at-sea foraging distributions

    USGS Publications Warehouse

    Hyrenbach, K. David; Hester, Michelle M.; Adams, Josh; Titmus, Andrew J.; Michael, Pam; Wahl, Travis; Chang, Chih-Wei; Marie, Amarisa; Vanderlip, Cynthia

    2017-01-01

    We quantified the incidence (percentage of samples with plastic) and loads (mass, volume) of four plastic types (fragments, line, sheet, foam) ingested by Black-footed Albatross Phoebastria nigripes chicks raised on Kure Atoll, the westernmost Hawaiian colony. All 25 samples contained plastic, mostly in the form of foam and line. On average (± SD), boluses and stomachs contained 28.2 ± 14.3 g and 40.3 ± 29.0 g of plastic, respectively. Plastic was the dominant indigestible material in the boluses and the stomach samples, accounting for 48.8%-89.7% of the bolus mass (mean 67.4 ± 12.1%, median 67.5%, n = 20), and for 18.2%-94.1% of the stomach content mass (mean 70.0 ± 30.3%, median 75.6%, n = 5). Although the ingested plastic fragments ranged widely in size, most (92% in boluses, 91% in stomachs) were mesoplastics (5-25 mm), followed by macroplastics (>25 mm; 7% in boluses, 6% in stomachs), and microplastics (1-5 mm; 1% in boluses, 4% in stomachs). Yet the two fragment size distributions were significantly different, with more small-sized items (3-8 mm) in stomachs and with more large-sized items (46-72 mm) in boluses. To investigate where albatross parents collect this material, we tracked seven provisioning adults during 14 foraging trips using satellite-linked transmitters. The tracked birds foraged west of Kure Atoll (180–150°E, 30-40°N) and spent most of their time over pelagic waters (>2000 m deep; averaging 89 ± 9%), with substantial time over seamounts (averaging 11 ± 7%). Together, these results indicate that Black-footed Albatross chicks at Kure Atoll ingest plastics sourced by their parents foraging in waters of the western North Pacific. Provisioning adults forage within an area of surface convergence, downstream from the Kuroshio Current, and frequently visit seamounts northwest of the Hawaiian archipelago.

  10. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  11. Suspended Microplastics in the Surface Water of the Yangtze Estuary System, China: First Observations on Occurrence, Distribution

    NASA Astrophysics Data System (ADS)

    Zhao, S.

    2014-12-01

    Levels of microplastics (MPs) in China are completely unknown. Here suspended MPs were characterized quantitatively and qualitatively for the Yangtze Estuary and East China Sea. MPs were extracted via a floatation method. MPs were then counted and categorized according to shape and size under a dissecting microscope. The MP densities were 4137.3±2461.5 and 0.167±0.138 n/m3 in the estuarine and the sea waters, respectively. Plastic abundances varied strongly in the estuary. Higher density in the C transect corroborated that rivers were the important sources of MP to the marine environment. MPs (0.5-5mm) constituted more than 90% of total plastics. Plastic particles (> 5 mm) were observed with a maximum size of 12.46 mm. The most frequent plastics were fibres, followed by granules and films. Plastic spherules occurred sparsely. Transparent and coloured plastics comprised the majority of the particle colours. This study provides clues in understanding MPs fate and potential source.

  12. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  13. Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids).

    PubMed

    Pietrelli, Loris; Di Gennaro, Alessia; Menegoni, Patrizia; Lecce, Francesca; Poeta, Gianluca; Acosta, Alicia T R; Battisti, Corrado; Iannilli, Valentina

    2017-10-01

    The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1-1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    PubMed Central

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M.; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J.; Eguíluz, Victor M.; González-Gordillo, J. Ignacio; Pedrotti, Maria L.; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    2017-01-01

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris. PMID:28439534

  15. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation.

    PubMed

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    2017-04-01

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

  16. Non-linear programming in shakedown analysis with plasticity and friction

    NASA Astrophysics Data System (ADS)

    Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.

    2017-07-01

    Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.

  17. Economic Effects of Increased Control Zone Sizes in Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Datta, Koushik

    1998-01-01

    A methodology for estimating the economic effects of different control zone sizes used in conflict resolutions between aircraft is presented in this paper. The methodology is based on estimating the difference in flight times of aircraft with and without the control zone, and converting the difference into a direct operating cost. Using this methodology the effects of increased lateral and vertical control zone sizes are evaluated.

  18. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.

    PubMed

    Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F

    2016-01-01

    Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m -3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa , Cyanobacteria , Alphaproteobacteria , and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video : An author video summary of this article is available.

  19. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species

    PubMed Central

    Kinnison, Michael T.

    2017-01-01

    Abstract Phenotypic plasticity is often an adaptation of organisms to cope with temporally or spatially heterogenous landscapes. Like other adaptations, one would predict that different species, populations, or sexes might thus show some degree of parallel evolution of plasticity, in the form of parallel reaction norms, when exposed to analogous environmental gradients. Indeed, one might even expect parallelism of plasticity to repeatedly evolve in multiple traits responding to the same gradient, resulting in integrated parallelism of plasticity. In this study, we experimentally tested for parallel patterns of predator-mediated plasticity of size, shape, and behavior of 2 species and sexes of mosquitofish. Examination of behavioral trials indicated that the 2 species showed unique patterns of behavioral plasticity, whereas the 2 sexes in each species showed parallel responses. Fish shape showed parallel patterns of plasticity for both sexes and species, albeit males showed evidence of unique plasticity related to reproductive anatomy. Moreover, patterns of shape plasticity due to predator exposure were broadly parallel to what has been depicted for predator-mediated population divergence in other studies (slender bodies, expanded caudal regions, ventrally located eyes, and reduced male gonopodia). We did not find evidence of phenotypic plasticity in fish size for either species or sex. Hence, our findings support broadly integrated parallelism of plasticity for sexes within species and less integrated parallelism for species. We interpret these findings with respect to their potential broader implications for the interacting roles of adaptation and constraint in the evolutionary origins of parallelism of plasticity in general. PMID:29491997

  1. Floating plastic debris in the Central and Western Mediterranean Sea.

    PubMed

    Ruiz-Orejón, Luis F; Sardá, Rafael; Ramis-Pujol, Juan

    2016-09-01

    In two sea voyages throughout the Mediterranean (2011 and 2013) that repeated the historical travels of Archduke Ludwig Salvator of Austria (1847-1915), 71 samples of floating plastic debris were obtained with a Manta trawl. Floating plastic was observed in all the sampled sites, with an average weight concentration of 579.3 g dw km(-2) (maximum value of 9298.2 g dw km(-2)) and an average particle concentration of 147,500 items km(-2) (the maximum concentration was 1,164,403 items km(-2)). The plastic size distribution showed microplastics (<5 mm) in all the samples. The most abundant particles had a surface area of approximately 1 mm(2) (the mesh size was 333 μm). The general estimate obtained was a total value of 1455 tons dw of floating plastic in the entire Mediterranean region, with various potential spatial accumulation areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  3. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.

    PubMed

    Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei

    2006-11-08

    Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.

  4. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    DTIC Science & Technology

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  5. Fatigue crack closure behavior at high stress ratios

    NASA Technical Reports Server (NTRS)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  6. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    NASA Astrophysics Data System (ADS)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  7. Switching deformation mode and mechanisms during subduction of continental crust: a case study from Alpine Corsica

    NASA Astrophysics Data System (ADS)

    Molli, Giancarlo; Menegon, Luca; Malasoma, Alessandro

    2017-04-01

    The switching in deformation mode (from distributed to localized) and mechanism (viscous versus frictional) represent a relevant issue in the frame of processes of crustal deformation in turn connected with the concept of the brittle-"ductile" transition and seismogenesis. On the other hand the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as having a fundamental role in the localization of deformation and shear zone development, thus representing a case in which switching deformation mode and mechanisms interact and relate to each other. This contribution analyses an example of a crystal plastic shear zone localized by brittle precursor formed within a host granitic-mylonite during deformation in subduction-related environment. The studied sample come from the external Corsican continental crust units involved in alpine age subduction and characterized by a low grade blueschist facies peak assemblages. The blueschist facies host rock is cut by a thin (< 1 cm thick) brittle-viscous shear zone that preserves domains with a cataclastic microstructure overprinted by mylonitic deformation. Blue amphibole is stable in the shear zone foliation, which therefore formed under HP/LT metamorphic conditions in a subduction environment. Quartz microstructure in the damage zone flanking the brittle-viscous shear zone shows evidence of both microcracking and dislocation glide, with limited recrystallization localized in intracrystalline bands. In the mylonite portion of the shear zone, quartz forms polycrystalline ribbons of dynamically recrystallized grains with a crossed-girdle c-axis CPO. Extrapolation of laboratory-derived flow laws indicates strain rate of ca. 3.5 * 10-12 s-1 during viscous flow in the shear zone. The studied structures, possibly formed by transient instability related to episodic stress/strain rate variations, may be considered as a small scale example of fault behaviour associated with a cycle of interseismic creep with coseismic rupture and then a fossil example of stick-slip strain accommodation in subduction environment of continental crust.

  8. Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage

    PubMed Central

    Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.

    2014-01-01

    Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865

  9. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  10. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure

    NASA Astrophysics Data System (ADS)

    Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng

    2018-02-01

    Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.

  11. 75 FR 68394 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U. S. Small Business... Flat Dipped Rubber/Plastic Gloves, under North American Industry Classification System (NAICS) code... Rule for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves under PSC 9999...

  12. 75 FR 52789 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U.S. Small... for woven and knit impregnated with flat dipped rubber/plastic gloves, under the North American... Dipped Rubber/Plastic Gloves manufacturers. If granted, the waiver would allow otherwise qualified small...

  13. Which is the Ideal Breast Size?: Some Social Clues for Plastic Surgeons.

    PubMed

    Raposio, Edoardo; Belgrano, Valerio; Santi, PierLuigi; Chiorri, Carlo

    2016-03-01

    To provide plastic surgeons with more detailed information as to factors affecting the perception of female attractiveness, the present study was aimed to investigate whether the interaction effect of breast and body size on ratings of female attractiveness is moderated by sociodemographic variables and whether ratings of shapeliness diverge from those of attractiveness.A community sample of 958 Italian participants rated the attractiveness and the shapeliness of 15 stimuli (5 breast sizes × 3 body sizes) in which frontal, 3/4, and profile views of the head and torso of a faceless woman were jointly shown.Bigger breast sizes obtained the highest attractiveness ratings, but the breast-by-body size interaction was also significant. Evidence was found of a moderator role of sex, marital status, and age. When the effects of breast and body size and their interaction had been ruled out, sex differences were at best very slight and limited to very specific combinations of breast and body sizes. Ratings of attractiveness and shapeliness were highly correlated and did not significantly differ.Results suggest that to address women's psychological needs, concerns, and expectations about their appearance, plastic surgeons should not simply focus on breast size but should carefully consider the 'big picture': the body in its entirety.

  14. Maternal body condition influences magnitude of anti-predator response in offspring.

    PubMed

    Bennett, Amanda M; Murray, Dennis L

    2014-11-07

    Organisms exhibit plasticity in response to their environment, but there is large variation even within populations in the expression and magnitude of response. Maternal influence alters offspring survival through size advantages in growth and development. However, the relationship between maternal influence and variation in plasticity in response to predation risk is unknown. We hypothesized that variation in the magnitude of plastic responses between families is at least partly due to maternal provisioning and examined the relationship between maternal condition, egg provisioning and magnitude of plastic response to perceived predation risk (by dragonfly larvae: Aeshna spp.) in northern leopard frogs (Lithobates pipiens). Females in better body condition tended to lay more (clutch size) larger (egg diameter) eggs. Tadpoles responded to predation risk by increasing relative tail depth (morphology) and decreasing activity (behaviour). We found a positive relationship between morphological effect size and maternal condition, but no relationship between behavioural effect size and maternal condition. These novel findings suggest that limitations imposed by maternal condition can constrain phenotypic variation, ultimately influencing the capacity of populations to respond to environmental change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld zone and thermo-mechanically affected zones exhibited shear texture components; however, there were many textures that deviated from ideal simple shear. Factors affecting the microstructure which are characteristic of the friction stir welding process, such as post-recrystallization deformation and complex deformation induced by tool geometry were discussed as causes for deviation from simple shear textures.

  16. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior

    DOE PAGES

    Argibay, N.; Furnish, T. A.; Boyce, B. L.; ...

    2016-06-07

    The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. Lastly, this interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.

  17. Response of explosive HMX to low-velocity impact: modeling by the crystal plasticity finite element method

    NASA Astrophysics Data System (ADS)

    Ilnitsky, Denis; Inogamov, Nail; Zhakhovsky, Vasily

    2017-12-01

    Crystal plasticity finite element method (CPFEM) is a powerful tool for modeling the various deformation problems, which takes into account the different plasticity mechanisms at microscale of grain sizes and contribution of anisotropic behavior of each grain to macroscopic deformation pattern. Using this method we simulated deformation and plasticity of high explosive HMX produced by relatively low velocity impact. It was found that such plastic deformations of grains cause local heating which is sufficient to induce chemical reactions.

  18. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  19. Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Gu, Guo-Hua; Lin, Qing-Quan; Zhang, Ling-Ling; Huang, Luo-Luo; Zhao, Jun-Yao

    2016-05-01

    A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT-IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation.

    PubMed

    Garelli, Andres; Gontijo, Alisson M; Miguela, Veronica; Caparros, Esther; Dominguez, Maria

    2012-05-04

    Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.

  1. Lost but can't be neglected: Huge quantities of small microplastics hide in the South China Sea.

    PubMed

    Cai, Minggang; He, Haixia; Liu, Mengyang; Li, Siwei; Tang, Guowen; Wang, Weimin; Huang, Peng; Wei, Ge; Lin, Yan; Chen, Bin; Hu, Jiahui; Cen, Zhengnan

    2018-08-15

    Large quantities of microplastics with small particle sizes were found in the South China Sea (SCS). The abundances of microplastics in seawater were 0.045±0.093and 2569±1770particles/m 3 according to the bongo net and pumping sampling methods, respectively. Smaller-size fractions (size<0.3mm) contributed 92% of the number of microplastics to the total load. Continental slope is the largest reservoir of microplastics with an inventory of 295tons. 21 polymer types were found in the samples using the micro Fourier Transform Infrared Spectroscopy (FTIR), among which alkyds (22.5%) and polycaprolactone (PCL) (20.9%) accounted for almost half of the total polymer content. Lighter plastics would not only concentrate upon the coastal area, being more likely to drift further into open seas with ocean currents. The distribution characteristics showed that it was mainly controlled by terrestrial input of the Pearl River. This study, as the first report from SCS on microplastics in water for its distribution and influence factors, provided impetus for further research on the transportation fate and the behavior of this emerging pollutant from coastal zone to the open oceans. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Viewing-zone scanning holographic display using a MEMS spatial light modulator.

    PubMed

    Takaki, Yasuhiro; Fujii, Keisuke

    2014-10-06

    Horizontally scanning holography using a spatial light modulator based on microelectromechanical system, which we previously proposed for enlarging both the screen size and the viewing zone, utilized a screen scanning system with elementary holograms being scanned horizontally on the screen. In this study, to enlarge the screen size and the viewing zone, we propose a viewing-zone scanning system with enlarged hologram screen and horizontally scanned reduced viewing zone. The reduced viewing zone is localized using converging light emitted from the screen, and the entire screen can be viewed from the localized viewing zone. An experimental system was constructed, and we demonstrated the generation of reconstructed images with a screen size of 2.0 in, a viewing zone width of 437 mm at a distance of 600 mm from the screen, and a frame rate of 60 Hz.

  3. Comparing the strength of behavioural plasticity and consistency across situations: animal personalities in the hermit crab Pagurus bernhardus.

    PubMed

    Briffa, Mark; Rundle, Simon D; Fryer, Adam

    2008-06-07

    Many phenotypic traits show plasticity but behaviour is often considered the 'most plastic' aspect of phenotype as it is likely to show the quickest response to temporal changes in conditions or 'situation'. However, it has also been noted that constraints on sensory acuity, cognitive structure and physiological capacities place limits on behavioural plasticity. Such limits to plasticity may generate consistent differences in behaviour between individuals from the same population. It has recently been suggested that these consistent differences in individual behaviour may be adaptive and the term 'animal personalities' has been used to describe them. In many cases, however, a degree of both behavioural plasticity and relative consistency is probable. To understand the possible functions of animal personalities, it is necessary to determine the relative strength of each tendency and this may be achieved by comparison of statistical effect sizes for tests of difference and concordance. Here, we describe a new statistical framework for making such comparisons and investigate cross-situational plasticity and consistency in the duration of startle responses in the European hermit crab Pagurus bernhardus, in the field and the laboratory. The effect sizes of tests for behavioural consistency were greater than for tests of behavioural plasticity, indicating for the first time the presence of animal personalities in a crustacean model.

  4. Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films

    NASA Astrophysics Data System (ADS)

    Liu, Jinxing; Kah Soh, Ai

    2016-08-01

    The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.

  5. Techniques used by United Kingdom consultant plastic surgeons to select implant size for primary breast augmentation.

    PubMed

    Holmes, W J M; Timmons, M J; Kauser, S

    2015-10-01

    Techniques used to estimate implant size for primary breast augmentation have evolved since the 1970s. Currently no consensus exists on the optimal method to select implant size for primary breast augmentation. In 2013 we asked United Kingdom consultant plastic surgeons who were full members of BAPRAS or BAAPS what was their technique for implant size selection for primary aesthetic breast augmentation. We also asked what was the range of implant sizes they commonly used. The answers to question one were grouped into four categories: experience, measurements, pre-operative external sizers and intra-operative sizers. The response rate was 46% (164/358). Overall, 95% (153/159) of all respondents performed some form of pre-operative assessment, the others relied on "experience" only. The most common technique for pre-operative assessment was by external sizers (74%). Measurements were used by 57% of respondents and 3% used intra-operative sizers only. A combination of measurements and sizers was used by 34% of respondents. The most common measurements were breast base (68%), breast tissue compliance (19%), breast height (15%), and chest diameter (9%). The median implant size commonly used in primary breast augmentation was 300cc. Pre-operative external sizers are the most common technique used by UK consultant plastic surgeons to select implant size for primary breast augmentation. We discuss the above findings in relation to the evolution of pre-operative planning techniques for breast augmentation. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Olivine friction at the base of oceanic seismogenic zones

    USGS Publications Warehouse

    Boettcher, M.S.; Hirth, G.; Evans, B. M.

    2007-01-01

    We investigate the strength and frictional behavior of olivine aggregates at temperatures and effective confining pressures similar to those at the base of the seismogenic zone on a typical ridge transform fault. Triaxial compression tests were conducted on dry olivine powder (grain size ???60 ??m) at effective confining pressures between 50 and 300 MPa (using Argon as a pore fluid), temperatures between 600??C and 1000??C, and axial displacement rates from 0.06 to 60 ??m/s (axial strain rates from 3 ?? 10-6 to 3 ?? 10-3 s-1). Yielding shows a negative pressure dependence, consistent with predictions for shear enhanced compaction and with the observation that samples exhibit compaction during the initial stages of the experiments. A combination of mechanical data and microstructural observations demonstrate that deformation was accommodated by frictional processes. Sample strengths were pressure-dependent and nearly independent of temperature. Localized shear zones formed in initially homogeneous aggregates early in the experiments. The frictional response to changes in loading rate is well described by rate and state constitutive laws, with a transition from velocity-weakening to velocity-strengthening at 1000??C. Microstructural observations and physical models indicate that plastic yielding of asperities at high temperatures and low axial strain rates stabilizes frictional sliding. Extrapolation of our experimental data to geologic strain rates indicates that a transition from velocity weakening to velocity strengthening occurs at approximately 600??C, consistent with the focal depths of earthquakes in the oceanic lithosphere. Copyright 2007 by the American Geophysical Union.

  7. Most microbeads in a preliminary survey of personal care products are smaller than the typical 330µm trawl mesh size used in surface water surveys

    NASA Astrophysics Data System (ADS)

    Conkle, J. L.; Baez-Del Valle, C.; Turner, J.

    2016-02-01

    Research on plastic debris in aquatic environments, particularly the ocean, has recently exploded due to our emerging understanding of their ubiquitous presence and organismal effects. One study estimated that hundreds of thousands of tons of plastic float at our ocean surface, while another estimated that up to 12.7 million metric tons enter the ocean in a year. These studies produced reasonable estimates of oceanic loads, but research is needed to understand the sources and properties of plastics, particularly microplastics, entering the environment. In this preliminary study, polyethylene (PE) microbeads from 6 facial scrubs, 4 body washes and 3 toothpaste products were extracted and quantified by mass and particle count for the following size classes: 50, 100, 200, 300, 400, 500 and 1000µm. Within the product classes, roughly half (face scrub, 55% and body wash, 48%) to nearly all (toothpaste, 97%) of PE microbeads on a mass basis were smaller than 300µm in diameter. When examining the size distribution by particle count, the results were even more astounding. Nearly all PE microbeads were smaller than 300µm for face scrub (95%), body wash (97%) and toothpaste (100%). The 300µm particle diameter is significant, as major surveys in the published literature (Eriksen et al., 2014; Law et al, 2014) used 330µm or greater mesh size to sample plastic debris and estimate oceanic plastic loads. Therefore, these published surveys, which are some of our best estimates of plastic debris at the ocean surface, likely underestimate total environmental loads because they may exclude half of the mass and nearly all of the individual PE microbead particles that enter our waste stream and potentially surface waters after the use of personal care products.

  8. Temperature-Dependent Growth and Fission Rate Plasticity Drive Seasonal and Geographic Changes in Body Size in a Clonal Sea Anemone.

    PubMed

    Ryan, Will H

    2018-02-01

    The temperature-size rule is a commonly observed pattern where adult body size is negatively correlated with developmental temperature. In part, this may occur as a consequence of allometric scaling, where changes in the ratio of surface area to mass limit oxygen diffusion as body size increases. As oxygen demand increases with temperature, a smaller body should be favored as temperature increases. For clonal animals, small changes in growth and/or fission rate can rapidly alter the average body size of clonal descendants. Here I test the hypothesis that the clonal sea anemone Diadumene lineata is able to track an optimal body size through seasonal temperature changes using fission rate plasticity. Individuals from three regions (Florida, Georgia, and Massachusetts) across the species' latitudinal range were grown in a year-long reciprocal common garden experiment mimicking seasonal temperature changes at three sites. Average body size was found to be smaller and fission rates higher in warmer conditions, consistent with the temperature-size rule pattern. However, seasonal size and fission patterns reflect a complex interaction between region-specific thermal reaction norms and the local temperature regime. These details provide insight into both the range of conditions required for oxygen limitation to contribute to a negative correlation between body size and temperature and the role that fission rate plasticity can play in tracking a rapidly changing optimal phenotype.

  9. A brief history of plastic surgery in Iran.

    PubMed

    Kalantar-Hormozi, Abdoljalil

    2013-03-01

     Although the exact time of performing plastic surgery is not addressed in the medical and historical literature, it can be supposed that these surgical procedures have a long and fascinating history.  Recent excavations provided many documents regarding the application of medical instruments, surgical and even reconstructive procedures during the pre-historic and ancient periods. Actually, there is no historical definite time-zone separating general and cosmetic operations in the pre-modern time; however, historically there have been many surgeons who tried to perform reconstructive procedures during their usual medical practice. This article presents a brief look at the history of plastic surgery form the ancient to the contemporary era, with a special focus on Iran.

  10. 24 CFR 3280.605 - Joints and connections.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... assembled for tightness. Pipe threads shall be fully engaged with the threads of the fitting. Plastic pipe... standard. Pipe ends shall be reamed out to size of bore. All burrs, chips, cutting oil and foreign matter..., made with solder having not more than 0.2 percent lead. (4) Plastic pipe, fittings and joints. Plastic...

  11. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    NASA Astrophysics Data System (ADS)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  12. Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects.

    PubMed

    Amarillo-Suárez, Angela R; Fox, Charles W

    2006-11-01

    For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus' diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in mediating diet evolution requires the consideration of evolutionary history.

  13. All plastic ultra-small size imaging lens unit fabrication and evaluation for endoscope

    NASA Astrophysics Data System (ADS)

    Ishii, Kenta; Okamoto, Dai; Ushio, Makoto; Tai, Hidetoshi; Nishihara, Atsuhiko; Tokuda, Kimio; Kawai, Shinsuke; Kitagawa, Seiichiro

    2017-02-01

    There is demand for small-size lens units for endoscope and industrial applications. Polished glass lenses with a diameter of 1 - 2mm exist, however plastic lenses similar in size are not commonplace. For low-cost, light-weight, and mass production, plastic lens fabrication is extremely beneficial. Especially, in the medical field, there is strong demand for disposable lens unit for endoscopes which prevent contamination due to reuse of the lens. Therefore, high mass producible and low cost becomes increasingly important. This paper reports our findings on injection-molded ultra-small size plastic lens units with a diameter of 1.3mm and total thickness of 1.4mm. We performed optical design, injection molding, and lens unit assembly for injection moldable, high imaging performance ultra-small sized lens units. We prioritize a robust product design, considering injection molding properties and lens unit assembly, with feedback from molding simulations reflected into the optical design. A mold capable of high precision lens positioning is used to fabricate the lenses and decrease the variability of the assembly. The geometric dimensions of the resulting lenses, are measured and used in the optical simulation to validate the optical performance, and a high agreement is reported. The injection molding of the lens and the assembly of the lens unit is performed with high precision, and results in high optical performance.

  14. Grain-size-yield stress relationship: Analysis and computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.A.; Benson, D.J.; Fu, H.H.

    1999-07-01

    The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB},more » and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the first plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less

  15. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Chao; Gao, Yanfei; Wang, Yanli

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less

  16. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre

    PubMed Central

    Bryant, Jessica A.; Clemente, Tara M.; Viviani, Donn A.; Fong, Allison A.; Thomas, Kimberley A.; Kemp, Paul; Karl, David M.; White, Angelicque E.

    2016-01-01

    ABSTRACT Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the “great Pacific garbage patch.” The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m−3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production − community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public’s attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available. PMID:27822538

  17. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  18. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems <100>{010} and < 1 bar 10>{110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system <100>{001} and rotation axis [010]. The slip system < 1 bar 10>{110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of deformation, if the isotopic systems of deformed zircon were reset.

  19. Monitoring the abundance of plastic debris in the marine environment.

    PubMed

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  20. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  1. Self-disinfecting plastics for intravenous catheters and prosthetic inserts.

    PubMed Central

    Kingston, D.; Seal, D. V.; Hill, I. D.

    1986-01-01

    A disinfectant (2,4,4'-trichloro-2'-hydroxydiphenyl ether: Irgasan, Ciba-Geigy) was incorporated into plastic washers fabricated from ethylvinyl acetate (EVA), polyethylene, polypropylene or TPX. Plastics containing 0.2 and 2% Irgasan gave zones of inhibition on nutrient and blood agar plates seeded with micro-organisms (Staphylococcus aureus, Staph. epidermidis, Escherichia coli, Proteus mirabilis or Candida albicans) even after thorough washing. Exceptionally, C. albicans was inhibited only by 2% Irgasan, and EVA gave good inhibition only against the staphylococci. Similar washers of each plastic were implanted subcutaneously into the flanks of rabbits; before insertion each was washed, had thread woven into it and was surrounded by a plasma clot containing 2 X 10(8) Staph. aureus. All the plastics without Irgasan gave rise to abscesses, none of the plastics impregnated with 2% Irgasan did, though from 2 out of 12 sites small numbers of Staph. aureus were isolated at post mortem. Using either clinical or bacteriological criteria, the results were highly significant (P less than 0.00001 and P less than 0.001 respectively), demonstrating the effectiveness of this technique in preventing plastic-associated infection. Images Fig. 2 Fig. 2(Contd.) PMID:3517154

  2. L-form plastics in the treatment of post-burn trophic ulcers and cicatrices of the foot calcaneal area.

    PubMed

    Shakirov, Babur M; Tagaev, Komil R; Tursunov, Bachron S; Achtamov, Dgamshed A

    2009-03-01

    The burn trauma of the posterior surface of calcaneus region and ankle joint followed by cicatrix formation in the Achilles tendon zone is often complicated by unhealing trophic ulcers. Eleven patients (seven men and four women, aged 9-54 years) have been operated on under our observation for prolonged unhealing ulcers and cicatrices located in the Achilles tendon zone. After cicatrices dissection, L-form plastic surgery was performed. The postoperative period was smooth; a skin graft was appropriately fixed to the proper tissues and the wound margins. Good results were achieved in 10 cases, and no complications were noted. However, in only one patient a marginal necrosis of the external talus part adjoining the ulcer due to tissue changes has been noted, but that had no influence on the good results of the operation.

  3. Practical use of a plastic scintillator for quality assurance of electron beam therapy.

    PubMed

    Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige

    2017-06-07

    Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within  ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).

  4. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  5. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: weee@sjtu.edu.cn; Wu, Guiqing; Xu, Zhenming

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recyclingmore » plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.« less

  6. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  7. Plastic Accumulation in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A.; Proskurowski, Giora; Peacock, Emily E.; Hafner, Jan; Reddy, Christopher M.

    2010-09-01

    Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

  8. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field,more » non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.« less

  9. Energy Dissipation in Earthquake Soil Structure Interaction: The September 3rd, 2016 M5.8 Pawnee Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sinha, S. K.; Feng, Y.; Jeremic, B.

    2016-12-01

    The M5.8 earthquake occurred in Pawnee, Oklahoma on September 3rd 2016 is the strongest seismic event recorded in Oklahoma. Soil structure interaction (SSI) played an important role in this tragic event. As a major aspect of SSI analysis, the propagation and dissipation of seismic energy will be studied in depth, with particular focus on the ground motion recorded in this earthquake. Seismic energy propagates from seismic source to the SSI system and is dissipated within and around the SSI system. Energy dissipation with the SSI system is related to inelastic behavior of soil, rock, contact zone (foundation-soil/rock), structural components and energy dissipators. Accurate evaluation of seismic energy can be used to optimize SSI system for safety and economy. The SSI system can be designed so that majority of seismic energy is dissipated within soil and soil-foundation contact zone, away from the structure.Accurate and theoretically sound modeling of propagation and dissipation is essential to use of seismic energy for design and assessment. The rate of plastic work is defined as the product of stress and the rate of plastic strain. On the other hand, plastic dissipation is defined as a form of heat transfer. The difference between these two quantities, which has been neglected in many studies, is a plastic part of the free energy. By considering energy storage and dissipation at both micro (particle) scale and macro (continuum) scale, it can be shown that the plastic free energy is an intrinsic attribute at the continuum scale due to particle rearrangement. Proper application of thermodynamics to finite element simulations, plastic dissipation can be correctly modeled. Examples will be used to illustrate above point on both constitutive, single element and SSI model scales. In addition, propagation of seismic energy, its dissipation (timing and location) will be used to illustrate use in design and assessment.

  10. Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin

    PubMed Central

    Ebert, Thomas A.; Hernández, José Carlos; Clemente, Sabrina

    2014-01-01

    A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived relative to the frequency of changes in the stressor and morphological changes are rapid. Many sea urchin species show differences in the sizes of jaws (demi-pyramids) of the feeding apparatus, Aristotle's lantern, relative to overall body size, and these differences have been correlated with available food. The question addressed here is whether reversible changes of relative jaw size occur in the field as available food changes with season. Monthly samples of the North American Pacific coast sea urchin Strongylocentrotus purpuratus were collected from Gregory Point on the Oregon (USA) coast and showed an annual cycle of relative jaw size together with a linear trend from 2007 to 2009. Strongylocentrotus purpuratus is a long-lived species and under field conditions individuals experience multiple episodes of changes in food resources both seasonally and from year to year. Their rapid and reversible jaw plasticity fits well with theoretical expectations. PMID:24500161

  11. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress.

    PubMed

    Walzer, Andreas; Schausberger, Peter

    2011-03-01

    We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.

  12. The Glenn A. Fry Award Lecture 2012: Plasticity of the visual system following central vision loss.

    PubMed

    Chung, Susana T L

    2013-06-01

    Following the onset of central vision loss, most patients develop an eccentric retinal location outside the affected macular region, the preferred retinal locus (PRL), as their new reference for visual tasks. The first goal of this article is to present behavioral evidence showing the presence of experience-dependent plasticity in people with central vision loss. The evidence includes the presence of oculomotor re-referencing of fixational saccades to the PRL; the characteristics of the shape of the crowding zone (spatial region within which the presence of other objects affects the recognition of a target) at the PRL are more "foveal-like" instead of resembling those of the normal periphery; and the change in the shape of the crowding zone at a para-PRL location that includes a component referenced to the PRL. These findings suggest that there is a shift in the referencing locus of the oculomotor and the sensory visual system from the fovea to the PRL for people with central vision loss, implying that the visual system for these individuals is still plastic and can be modified through experiences. The second goal of the article is to demonstrate the feasibility of applying perceptual learning, which capitalizes on the presence of plasticity, as a tool to improve functional vision for people with central vision loss. Our finding that visual function could improve with perceptual learning presents an exciting possibility for the development of an alternative rehabilitative strategy for people with central vision loss.

  13. Local elasticity map and plasticity in a model Lennard-Jones glass.

    PubMed

    Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis

    2009-08-01

    In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.

  14. Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

    PubMed Central

    2014-01-01

    Background Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the “Chebyshev Center Concept” could be used for a more objective acute treatment control. PMID:24410997

  15. Hindgut plasticity in wallabies fed hay either unchopped or ground and pelleted: fiber is not the only factor.

    PubMed

    Munn, Adam J; Clissold, Fiona; Tarszisz, Esther; Kimpton, Kathleen; Dickman, Christopher R; Hume, Ian D

    2009-01-01

    Phenotypic plasticity of the gastrointestinal tract is crucial for optimal food processing and nutrient balance in many vertebrate species. For mammalian herbivores, gut plasticity is typically correlated with the fiber content of forage; however, we show here that other factors such as ingesta particle size may effect profound phenotypic plasticity of the fermentative hindgut in a medium-sized (10-kg body mass) marsupial herbivore, the red-necked wallaby (Macropus rufogriseus). When dietary fiber contents were comparable, red-necked wallabies that were fed a finely ground, pelleted hay for 60-72 d had hindguts that were some 28% heavier (empty wet mass) than those fed unchopped hay. The hindguts of pellet-fed wallabies contained more wet ingesta, which was also of a finer particle size, than those fed hay, indicating some separation of large- and small-particle fermentation between the foregut and the hindgut, respectively. Such a digestive strategy would benefit animals by allowing fermentation of a range of ingesta particle sizes that are expected for free-ranging animals faced with a spectrum of diet types and qualities. The heavier hindgut of pellet-fed wallabies was correlated with increased concentrations of short-chain fatty acids (SCFAs) in the fermentative hindgut (cecum and proximal colon) and particularly with increases in the molar proportions of n-butyric acid. The mechanisms facilitating gut plasticity in herbivorous mammals are uncertain, but we suggest that manipulating ingesta particle size rather than dietary fiber could provide a useful tool for evaluating causal explanations. In particular, altering ingesta particle size could help to distinguish possible direct processes (e.g., the favoring of smaller intestinal microbes and production of specific SCFAs) from indirect affects of feed structure (e.g., muscular hypertrophy to compensate for increased intakes and digesta bulk or the fermentation of mucus secreted to promote the flow of viscous, fine-particle material).

  16. 77 FR 20356 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Manufacturing Authority...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... facility is used for the manufacture of 275 and 290 watt solar panels for industrial use. Components and... boxes, silicone sealant, putty/caulking compounds, plastic sheets, glass, tin-coated copper strips...

  17. 75 FR 15679 - Foreign-Trade Zone 272-Lehigh Valley, Pennsylvania Application for Subzone Grundfos Pumps...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... from abroad (representing 65% of the value of the finished pumps) include: Pump parts, electric motors, plastic closures and o- rings, rubber o-rings and gaskets, labels, pipe fittings, fasteners, motor...

  18. 78 FR 45911 - Foreign-Trade Zone (FTZ) 38-Spartanburg County, South Carolina, Notification of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... chargers; magnets; magnetic chucks; lead-acid, power pack, NiMH and lithium ion batteries; SA battery packs...-bags; battery caps; blister packs; shrink-heat tubing; plastic handles and knobs; O- rings; seals...

  19. Evaluation of factors that influence estimated zones of transport for six municipal wells in Clark County, Washington

    USGS Publications Warehouse

    Orzol, L.L.; Truini, Margot

    1999-01-01

    Sensitivity of the zones of transport to change in the discharge rate of the selected well, porosity, and hydraulic conductivity, as well as to the presence or absence of interfering wells, was evaluated at six well sites to evaluate the effect of uncertainties in these factors on the size and shape of zones of transport. Uncertainty in porosity contributed the most to the uncertainty in delineating the zones of transport. Uncertainty in other factors, such as well discharge rate and horizontal hydraulic conductivity, had measurable effects on the zones of transport, but errors introduced through these factors were less significant. Insight into the causes of the changes in the size and shape of the zones of transport to varying conditions was gained by evaluating the simulated water budget and ground-water levels in the vicinity of the well. Changes in the simulated water budget and ground-water levels provided information to better understand the effects of uncertainties in the data on simulation results.The results of this study suggest that ground-water velocity is the underlying control on the size of the zones of transport. The regional hydraulic gradient is the most significant factor controlling the shape and orientation of the zones of transport. Spatial variation in recharge, discharge, and hydraulic properties can also affect the shape of the zones of transport, however. Underestimation of porosity or overestimation of horizontal hydraulic conductivity leads to overestimation of ground-water velocity and overestimation of the size of zones of transport. Overestimation of porosity or underestimation of horizontal hydraulic conductivity leads to underestimation of ground-water velocity and underestimation of the size of zones of transport. Well discharge rate affects ground-water velocities near the well. Underestimation of discharge (and therefore velocities) will result in underestimation of the size of the zones of transport. The sensitivity of estimated zones of transport to uncertainty in parameters such as porosity and horizontal hydraulic conductivity is a function of the well discharge rate and the proximity of the well to boundaries, such as streams and rivers.

  20. Odours from marine plastic debris induce food search behaviours in a forage fish.

    PubMed

    Savoca, Matthew S; Tyson, Chris W; McGill, Michael; Slager, Christina J

    2017-08-16

    Plastic pollution is an anthropogenic stressor in marine ecosystems globally. Many species of marine fish (more than 50) ingest plastic debris. Ingested plastic has a variety of lethal and sublethal impacts and can be a route for bioaccumulation of toxic compounds throughout the food web. Despite its pervasiveness and severity, our mechanistic understanding of this maladaptive foraging behaviour is incomplete. Recent evidence suggests that the chemical signature of plastic debris may explain why certain species are predisposed to mistaking plastic for food. Anchovy ( Engraulis sp.) are abundant forage fish in coastal upwelling systems and a critical prey resource for top predators. Anchovy ingest plastic in natural conditions, though the mechanism they use to misidentify plastic as prey is unknown. Here, we presented wild-caught schools of northern anchovy ( Engraulis mordax ) with odour solutions made of plastic debris and clean plastic to compare school-wide aggregation and rheotactic responses relative to food and food odour presentations. Anchovy schools responded to plastic debris odour with increased aggregation and reduced rheotaxis. These results were similar to the effects food and food odour presentations had on schools. Conversely, these behavioural responses were absent in clean plastic and control treatments. To our knowledge, this is the first experimental evidence that adult anchovy use odours to forage. We conclude that the chemical signature plastic debris acquires in the photic zone can induce foraging behaviours in anchovy schools. These findings provide further support for a chemosensory mechanism underlying plastic consumption by marine wildlife. Given the trophic position of forage fish, these findings have considerable implications for aquatic food webs and possibly human health. © 2017 The Author(s).

  1. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  2. Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.

    PubMed

    van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W

    2014-09-01

    Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches

    PubMed Central

    2017-01-01

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5–10 W) and variable heating time (5–60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20–200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60–100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported. PMID:28983527

  4. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone in the Parry Sound domain, Ontario, formed at upper amphibolite facies conditions. The deformation process of the shear zone involves fully plastic deformation and high-temperature dynamic recrystallization and annealing recovery of both quartz and plagioclase. Geochemical evidence indicates that the chemical changes in the deformed rocks resulted from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. A geochemical model that incorporates closed-system two-component mixing with open-system mass transfer can well explain the observed major and trace element data.

  5. Method for producing ceramic particles and agglomerates

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  6. Coseismic flow of frictional melts: insights from mini-AMS measurements on pseudotachylyte

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Leibovitz, N.; Meado, A.; Campbell, L.; Ferre, E. C.

    2017-12-01

    Fault pseudotachylytes, widely regarded as earthquake fossils, are fascinating rocks that may hold important clues on the physics of seismic rupture and the lubrication of fault planes. Forceful injection of rapidly produced melts along a friction zone typically forms a complex network of veins along the slip zone and at a high angle to the generation plane. The flow patterns of these pseudotachylyte melts remain, however, poorly constrained except in rare cases when billow-like folds or other flow structures are preserved. Recent modifications to the anisotropy of magnetic susceptibility (AMS) method allow new directions of investigations of melt kinematics in pseudotachylyte veins, regardless of whether they are generation or injection veins. Here we present new mini-AMS results based on series of 3.5 mm cubes (≈200 times smaller than classic sample size) of pseudotachylyte veins from the Val Gilba (Italian Alps), the Cima di Gratera (Corsica) and Santa Rosa (California) classic localities. These preliminary analyses demonstrate the potential of this new mini-AMS method in tracking the complex coseismic movement of a low viscosity magma through dynamically deformed conduits. The lack of plastic deformation in pseudotachylyte clasts and along the pseudotachylyte margins supports the hypothesis that the coseismic melt flow pattern is frozen in situ without significant subsolidus deformation.

  7. Microstructures and rheology of a calcite-shale thrust fault

    NASA Astrophysics Data System (ADS)

    Wells, Rachel K.; Newman, Julie; Wojtal, Steven

    2014-08-01

    A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.

  8. Microstructural Evolution and Local Mechanical Properties of Friction Stir Processed Mg-3Gd-1Zn Cast Alloy

    NASA Astrophysics Data System (ADS)

    Sabbaghian, M.; Mahmudi, R.

    2016-05-01

    Microstructural evolution, hardness, and shear strength of the cast plates of GZ31 magnesium alloy were investigated after friction stir processing (FSP). Due to severe plastic deformation and dynamic recrystallization, FSP breaks the dendrites and results in a fine homogenous structure in the stirred zone (SZ) having average grain sizes of about 4.0 and 2.5 μm in the one and two-pass FSPed plates, respectively. As a novel approach, strength of the processed plates was examined by shear punch testing in three regions of the SZ on the surface layer, namely, center line (CL), retreating side (RS), and advancing side (AS). FSP showed great potential in the enhancement of SZ ultimate shear strength from 114 to about 152 and 155 MPa in the one and two-pass FSPed materials, respectively. The same trend was observed in hardness values of the SZ, where the average hardness of the base material increased from 41 to 60 and 68 Vickers after one and two passes of FSP, respectively. The variations in the shear strength of the CL, RS, and AS zones of the SZ were about 5% for the first pass of FSP, the effect which was decreased to less than 2% after two passes of FSP.

  9. Calorimetric Studies of Precipitation and Dissolution Kinetics in Aluminum Alloys 2219 and 7075

    NASA Astrophysics Data System (ADS)

    Papazian, John M.

    1982-05-01

    Differential scanning calorimetry (DSC) was used to study the kinetics of precipitation and dissolution of metastable and stable phases in aluminum alloys 2219 and 7075. A comparison of DSC scans obtained at heating rates of 1, 5, 10, and 20 K per minute showed that, during a DSC scan, the rates of precipitation of θ' and θ in 2219 and η' and η in 7075 were limited by their reaction kinetics. Likewise, the rates of dissolution of GP zones, θ' and η', were found to be dominated by kinetics. In contrast, the dissolution of θ and η was dominated by the thermodynamic equilibrium between these phases and the matrix. Analysis of the kinetically dominated reaction peaks and their dependence on heating rate and particle size showed that the GP zone dissolution reaction could best be described by a three-dimensional volume diffusion limited rate expression with an activation energy equal to that for diffusion. The rate of formation of θ' was best described by an Avrami expression with n = 1.1, indicating that nucleation was not the rate controlling step. A pronounced dependence of the θ' formation rate on prior plastic deformation was observed and ascribed to the influence of the matrix dislocation density on diffusivity.

  10. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage are considered to be elastic and are defined using a Langmuir-like curve, which is directly related to the reservoir pressure. The models are used to evaluate the stress distribution and the induced change in permeability within a reservoir. Results show that development of a plastic zone near the wellbore can significantly impact fracture permeability and gas production. The capabilities and limitations of the models are discussed and potential future developments related to modelling of permeability in brittle shales under elastoplastic deformations are identified.

  11. Plastic material investment in load-bearing silk attachments in spiders.

    PubMed

    Wolff, Jonas O; Jones, Braxton; Herberstein, Marie E

    2018-05-17

    The nature and size of attachments is a fundamental element of animal constructions. Presumably, these adhesive structures are plastically deployed to balance material investment and attachment strength. Here we studied plasticity in dragline anchorages of the golden orb web spider, Nephila plumipes. Specifically, we predict that spiders adjust the size and structure of dragline anchorages with load, i.e. spider mass. Mass was manipulated by attaching lead pieces to the spider's abdomen resulting in a 50 percent increase in mass. Loaded spiders spun larger but structurally similar thread anchorages than unloaded spiders. Thus, the spinning program that determines the overall anchor structure is highly stereotypic, and flexibility is introduced through varying the anchor size by increasing material investment. Our study showcases substrate attachments as suitable models to investigate the interplay between innate and changeable elements in the economy of building behaviours. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  13. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

    DOE PAGES

    Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...

    2014-11-25

    Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less

  14. Comments on the origin of acoustic emission in fatigue testing of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.

    The size of acoustic emission (AE) signals expected from inclusion fracture during fatigue testing of 7075 aluminum has been estimated on the basis of previous measurements of AE produced by the fracture of boron particles incorporated into 2219 aluminum. The AF signal size expected from deformation in the plastic zone ahead of the fatigue crack was estimated from the results of tensile tests on 7075 aluminum. The signals predicted from both processes are near or below the noise level in the fatigue experiments and are therefore far too small to account for the signals actually observed. Nearly simultaneous fracture of multiple inclusions could produce signals as large as those observed in fatigue tests of 7075 aluminum, however, fatigue tests of 7050 aluminum produced signals as large or larger than in 7075. Since 7050 has substantially fewer inclusions than 7075, the simultaneous failure of multiple inclusions is unlikely to be a major AE source in fatigue testing of either aluminum alloy. Thus, the most probable source of acoustic emission during fatigue testing of 7075 and 7050 aluminum is the crack advance itself. The measured crack advance per cycle is large enough to release sufficient elastic energy to account for the AE signals observed.

  15. Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis

    NASA Astrophysics Data System (ADS)

    Cardoso, Ricardo S.; Defeo, Omar

    2004-11-01

    Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.

  16. Separation of mixed waste plastics via magnetic levitation.

    PubMed

    Zhao, Peng; Xie, Jun; Gu, Fu; Sharmin, Nusrat; Hall, Philip; Fu, Jianzhong

    2018-06-01

    Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of milling on the plastic and the elastic stiffness of lactose particles.

    PubMed

    Pazesh, Samaneh; Persson, Ann-Sofie; Berggren, Jonas; Alderborn, Göran

    2018-03-01

    The purpose of this study was to investigate the effect of degree of disorder of a series of α-lactose monohydrate powders, prepared by milling for different time periods, on the plastic and the elastic stiffness of the particles. As references, a series of physical mixtures consisting of original crystalline particles and amorphous particles obtained by spray-drying was used. In addition, the effect of powder pre-storage humidity on the mechanical properties was investigated. For milled particles of a low degree of disorder, a decreased particle size increased the particle plastic stiffness. For milled particles of constant particle size, the plastic stiffness decreased with an increased degree of disorder while the elastic stiffness seemed nearly independent of the degree of disorder. The presence of moisture caused a recrystallisation of milled particles with low degree of disorder which increased their plastic stiffness. For the physical mixtures of crystalline and amorphous particles, similar relationships between plastic stiffness and amorphous content as for the milled powders were obtained. A reasonable explanation is that the nature of the milled particles is represented by a two-state system with crystalline and amorphous domains. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. 76 FR 66685 - Foreign-Trade Zone 37-Orange County, NY, Application for Subzone, ITT Water Technology, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... (representing 39% of the value of the finished pumps) include: electric motors, pump parts, mechanical seals, plastic o-rings, rubber o-rings, shafts, flanges, motor and shaft couplings, and fasteners (duty rates...

  19. Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans.

    PubMed

    Zhang, Yichun; Payne, Jonathan L

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275-260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade.

  20. Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans

    PubMed Central

    Zhang, Yichun; Payne, Jonathan L.

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade. PMID:22685590

  1. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.

    2010-09-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  2. Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2003-03-01

    Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.

  3. Cave Buttes Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    DTIC Science & Technology

    1983-08-01

    bedrock. Reservoir deposits are rich in silt and clay as shown by the plastic nature of material behind Cave Creek Dam. Recent alluvium is directly...formation and the zone I, impervious material. Then rolling with the rubber tired equipment would fill voids and small cracks with the clayey, plastic ...Assoclates US " 2 t 64urvey air J.1y 1969. ___OSOWRS g.Aorizatnfa( conirol ji 45 on G1A - EEA fSI Alaon~ral ieodtc Survey Dafum. Yerftci 4 1 -5 AtE

  4. Indentation studies on Y[sub 2]O[sub 3]-stabilized ZrO[sub 2]; 1: Development of indentation-induced cracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaliszewski, M.S.; Behrens, G.; Heuer, A.H.

    1994-05-01

    The development of Vickers indent-induced cracks with increasing indent load has been studied in two Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] ceramics. Such cracks form as radial or Palmqvist cracks at low loads, assume kidney'' shapes at intermediate loads, and finally form median (half-penny) cracks at high loads. The plastic zone directly beneath the indent is uncracked; a significant portion of the plasticity induced by indentation occurs by martensitic transformation.

  5. Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Heiden, Michael J.

    2013-07-08

    In recent years magnesium alloys have attracted significant attention as potential candidates to replace many of the heavier metals used in some automotive applications. However, the limited formability of magnesium and its alloys at room temperature has driven interest in the superplastic forming magnesium as an alternative shaping method. Severe plastic deformation techniques have become a well studied method of refining the grain size and modifying the microstructural characteristics of many magnesium alloys to achieve greater superplastic properties. In this study twin roll cast (TRC) AZ31 magnesium alloy was subjected to equal channel angular pressing (ECAP) and friction stir weldingmore » (FSW). The influence of these severe plastic deformation processes on the grain size, texture and grain boundary character distribution was investigated to identify the optimum severe plastic deformation process for the superplastic forming of AZ31.« less

  6. Changes in the physical and mechanical properties of Al-Mg alloy processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.; Moskvichev, E. N.; Borodulin, D. A.

    2017-12-01

    This paper presents the results of studies into the effect of severe plastic deformation on the microstructure, physical and mechanical properties of coarse-grained Al-Mg alloy 1560 in the as-received state with an average grain size of 50 µm. Severe plastic deformation is performed by four-pass equal channel angular pressing (ECAP), which results in the formation of an ultrafine-grained structure with an average grain size of 3 µm in the alloy. Analysis of experimental data revealed that the physical and mechanical properties change significantly after severe plastic deformation. The microhardness of the ECAPed alloy increases by 50%, tensile yield strength by 80%, and ultimate strength by 44% in comparison with these parameters in the as-received state. The constants of approximating functions have been determined for the experimental stress-strain curves of the alloy specimens in the as-received and ECAPed states.

  7. Aesthetic breast shape preferences among plastic surgeons.

    PubMed

    Broer, Peter Niclas; Juran, Sabrina; Walker, Marc E; Ng, Reuben; Weichman, Katie; Tanna, Neil; Liu, Yuen-Jong; Shah, Ajul; Patel, Anup; Persing, John A; Thomson, James Grant

    2015-06-01

    There has been little discussion in the plastic surgery literature regarding breast shape preferences among plastic surgeons, despite strong evidence that such aesthetic preferences are influenced by multiple factors. Much effort has been focused on delineating the objective criteria by which an "attractive" breast might be defined. This study aimed at providing a better understanding of the presence and significance of differences in personal aesthetic perception, and how these relate to a plastic surgeon's demographic, ethnic, and cultural background, as well as practice type (academic vs private). An interactive online survey was designed. Modifiable ranges of upper pole fullness and areola size were achieved via digital alteration, enabling participants to interactively change the shape of a model's breasts. The questionnaire was translated into multiple languages and sent to plastic surgeons worldwide. Demographic data were also collected. Analysis of variance was used to elucidate plastic surgeon's breast shape preferences in respect to sex and age, geographic and ethnic background, as well as practice type. The authors gathered 614 responses from 29 different countries. Significant differences regarding preferences for upper pole fullness, areola size in the natural breast, and areola size in the augmented breast were identified across surgeons from the different countries. Further, significant relationships regarding breast shape preferences were distilled between the age and sex of the surgeon, as well as the practice type. No differences were found in respect to the surgeons' self-reported ethnic background. Country of residence, age, and practice type significantly impact breast shape preferences of plastic surgeons. These findings have implications for both patients seeking and surgeons performing cosmetic and reconstructive breast surgery. In an increasingly global environment, cultural differences and international variability must be considered when defining and publishing new techniques and aesthetic outcomes. When both the plastic surgeon and the patient are able to adequately and effectively communicate their preferences regarding the shape and relations of the breast, they will be more successful at achieving satisfying results.

  8. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    NASA Astrophysics Data System (ADS)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (T<350°C) metamorphic conditions were studied in detail in the Dent de Morcles and Doldenhorn nappes of the Helvetic Alps in order to accurately simulate their deformation styles by numerical models. In these samples, monomineralic calcite (Cc) veins were repeatedly boudinaged on cm- to µm-scale. Remnants of incompletely recrystallized original vein Cc grains in the swells indicate a sequence of deformation twinning, followed by progressive dynamic recrystallization along former twin planes up to complete recrystallization in the pinches (Schmalholz and Maeder, 2012). This sequence suggests dislocation creep to be active as important deformation mechanism. In contrast to the pinch-and-swell structures, the grain size of the Cc in the surrounding matrix is much finer-grained due to pinning by secondary particles, forcing the matrix to deform under viscous granular creep, i.e. by diffusion accommodated grain boundary sliding. The deformation processes observed in the natural samples were incorporated into a numerical model in order to evaluate the rheology of both layer and matrix, using an extension to a user material subroutine (Karrech et al., 2011a) for the finite element solver ABAQUS. We implemented thermo-mechanical coupling allowing elastic, viscous and plastic deformation of Cc (Herwegh et al., in press). We simulate a pure-shear box using finite elements, each representing a grain size distribution, which undergo layer-parallel extension. The box is built up by 3 layers, consisting of a central layer of coarse-grained populations, surrounded by finer-grained populations on bottom and top. The rheology evolves from transient stages (elasticity and strain hardening) to composite viscous flow (GSI & GSS) with increasing shear strain. The small grain sizes in top and bottom layers are strain-invariant and limited in their growth (comparable to Zener pinning) forcing the matrix to deform by exclusively by GSS creep. In contrast, the initially coarse grain sizes of the central layer are allowed to adapt to the physical deformation conditions by either grain growth or grain size reduction following the Paleowattmeter of Austin and Evans (2007) combined with the thermodynamic approach of Regenauer-Lieb and Yuen (2004). Depending on the dissipated energy, grain sizes in these domains vary substantially in space and time. While low strain rates (low stresses) in the swells favor grain growth and GSI dominated deformation, high strain rates in the pinches provoke dramatic grain size reduction with an increasing contribution of GSS as a function of decreasing grain size. The development of symmetric necks observed in nature thus seems to coincide with the transition from dislocation to diffusion creep dominated flow with continuous grain size reduction and growth from swell to neck at relatively high extensional strains. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Goscombe, B.D., Passchier, C.W. and Hand, M. (2004). Boudinage classification: End-member boudin types and modified boudin structures, Journal of Structural Geology, 26. Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for pressure and temperature sensitive geomaterials. Journal of Engineering Science 49. Regenauer-Lieb, K. and Yuen, D. (2004). Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics. Physics of the Earth and Planetary Interiors, 142. Schmalholz, S.M. and Maeder, X. (2012). Pinch-and-swell structure and shear zones in viscoplastic layers. Journal of Structural Geology, 34.

  9. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  10. Microplastics in sediments from the littoral zone of the north Tunisian coast (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Abidli, Sami; Antunes, Joana C.; Ferreira, Joana L.; Lahbib, Youssef; Sobral, Paula; Trigui El Menif, Najoua

    2018-05-01

    The distribution of microplastics (MPs) was investigated in the sediments of five sampling sites from the northern Tunisian coast during June 2017. MPs were categorized according to type, colour and size. Representative MPs from the five sites were isolated for polymer identification using Fourier Transformed Infrared Spectroscopy in attenuated total reflectance mode (FTIR-ATR). Results showed that MPs were recovered, from all sediment samples, indicating for the first time, their extensive distribution in Tunisian coast. Concentrations varied from 141.20 ± 25.98 to 461.25 ± 29.74 items kg-1 dry weight. Fibres, fragments, Styrofoam®, pellets and films were the types registered in this study. With the exception of Menzel Bourguiba (MB), fibres significantly outnumbered plastic particles followed by fragments, Styrofoam®, films and pellets. The predominant colours are as follows: black > clear > white > red > blue > green for fibres, blue > white > clear > red > green > yellow > black for fragments, blue > white > black > clear for films while only white pellets and Styrofoam® were found. MPs particles ranged from 0.1 to 5 mm in length. A total of three polymer types were identified, polyethylene (PE), polypropylene (PP) and polystyrene (PS). Except for industrial pellets, the presence of MPs is likely due to the degradation of marine plastic debris accumulating in each site. This work provides original data of the presence of MPs in coastal sediments from Northern Tunisian coast.

  11. Marine Plastic Pollution in Waters around Australia: Characteristics, Concentrations, and Pathways

    PubMed Central

    Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments (“microplastics”, median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km−2, and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km−2. These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton. PMID:24312224

  12. Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways.

    PubMed

    Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km(-2), and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km(-2). These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton.

  13. Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal

    PubMed Central

    2012-01-01

    Background Animals often display phenotypic plasticity in morphologies and behaviors that result in distinct adaptations to fluctuating seasonal environments. The butterfly Bicyclus anynana has two seasonal forms, wet and dry, that vary in wing ornament brightness and in the identity of the sex that performs the most courting and choosing. Rearing temperature is the cue for producing these alternative seasonal forms. We hypothesized that, barring any developmental constraints, vision should be enhanced in the choosy individuals but diminished in the non-choosy individuals due to physiological costs. As a proxy of visual performance we measured eye size, facet lens size, and sensitivity to light, e.g., the expression levels of all opsins, in males and females of both seasonal forms. Results We found that B. anynana eyes displayed significant sexual dimorphism and phenotypic plasticity for both morphology and opsin expression levels, but not all results conformed to our prediction. Males had larger eyes than females across rearing temperatures, and increases in temperature produced larger eyes in both sexes, mostly via increases in facet number. Ommatidia were larger in the choosy dry season (DS) males and transcript levels for all three opsins were significantly lower in the less choosy DS females. Conclusions Opsin level plasticity in females, and ommatidia size plasticity in males supported our visual plasticity hypothesis but males appear to maintain high visual function across both seasons. We discuss our results in the context of distinct sexual and natural selection pressures that may be facing each sex in the wild in each season. PMID:23194112

  14. Plasticity of Arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis.

    PubMed

    Brooks, Tessa L Durham; Miller, Nathan D; Spalding, Edgar P

    2010-01-01

    Plant development is genetically determined but it is also plastic, a fundamental duality that can be investigated provided large number of measurements can be made in various conditions. Plasticity of gravitropism in wild-type Arabidopsis (Arabidopsis thaliana) seedling roots was investigated using automated image acquisition and analysis. A bank of computer-controlled charge-coupled device cameras acquired images with high spatiotemporal resolution. Custom image analysis algorithms extracted time course measurements of tip angle and growth rate. Twenty-two discrete conditions defined by seedling age (2, 3, or 4 d), seed size (extra small, small, medium, or large), and growth medium composition (simple or rich) formed the condition space sampled with 1,216 trials. Computational analyses including dimension reduction by principal components analysis, classification by k-means clustering, and differentiation by wavelet convolution showed distinct response patterns within the condition space, i.e. response plasticity. For example, 2-d-old roots (regardless of seed size) displayed a response time course similar to those of roots from large seeds (regardless of age). Enriching the growth medium with nutrients suppressed response plasticity along the seed size and age axes, possibly by ameliorating a mineral deficiency, although analysis of seeds did not identify any elements with low levels on a per weight basis. Characterizing relationships between growth rate and tip swing rate as a function of condition cast gravitropism in a multidimensional response space that provides new mechanistic insights as well as conceptually setting the stage for mutational analysis of plasticity in general and root gravitropism in particular.

  15. Plasticity of Arabidopsis Root Gravitropism throughout a Multidimensional Condition Space Quantified by Automated Image Analysis1[W][OA

    PubMed Central

    Durham Brooks, Tessa L.; Miller, Nathan D.; Spalding, Edgar P.

    2010-01-01

    Plant development is genetically determined but it is also plastic, a fundamental duality that can be investigated provided large number of measurements can be made in various conditions. Plasticity of gravitropism in wild-type Arabidopsis (Arabidopsis thaliana) seedling roots was investigated using automated image acquisition and analysis. A bank of computer-controlled charge-coupled device cameras acquired images with high spatiotemporal resolution. Custom image analysis algorithms extracted time course measurements of tip angle and growth rate. Twenty-two discrete conditions defined by seedling age (2, 3, or 4 d), seed size (extra small, small, medium, or large), and growth medium composition (simple or rich) formed the condition space sampled with 1,216 trials. Computational analyses including dimension reduction by principal components analysis, classification by k-means clustering, and differentiation by wavelet convolution showed distinct response patterns within the condition space, i.e. response plasticity. For example, 2-d-old roots (regardless of seed size) displayed a response time course similar to those of roots from large seeds (regardless of age). Enriching the growth medium with nutrients suppressed response plasticity along the seed size and age axes, possibly by ameliorating a mineral deficiency, although analysis of seeds did not identify any elements with low levels on a per weight basis. Characterizing relationships between growth rate and tip swing rate as a function of condition cast gravitropism in a multidimensional response space that provides new mechanistic insights as well as conceptually setting the stage for mutational analysis of plasticity in general and root gravitropism in particular. PMID:19923240

  16. Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: adaptive responses to environmental stress.

    PubMed

    Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J

    2013-09-01

    A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  17. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.

  18. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Xue, Z.; Gao, H.

    2000-08-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less

  19. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Division 6.1, Packing Group I, Hazard Zone A or B material; and (iv) [Reserved] (v) Thirty (30) mL water... of plastic having a minimum thickness of no less than 0.2 mm (0.008 inch), or earthenware, glass, or...

  20. A Review of the Proposed KIsi Offset-Secant Method for Size-Insensitive Linear-Elastic Fracture Toughness Evaluation

    NASA Technical Reports Server (NTRS)

    James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim

    2017-01-01

    Recently proposed modifications to ASTM E399 would provide a new size-insensitive approach to analyzing the force-displacement test record. The proposed size-insensitive linear-elastic fracture toughness, KIsi, targets a consistent 0.5mm crack extension for all specimen sizes by using an offset secant that is a function of the specimen ligament length. The KIsi evaluation also removes the Pmax/PQ criterion and increases the allowable specimen deformation. These latter two changes allow more plasticity at the crack tip, prompting the review undertaken in this work to ensure the validity of this new interpretation of the force-displacement curve. This paper provides a brief review of the proposed KIsi methodology and summarizes a finite element study into the effects of increased crack tip plasticity on the method given the allowance for additional specimen deformation. The study has two primary points of investigation: the effect of crack tip plasticity on compliance change in the force-displacement record and the continued validity of linear-elastic fracture mechanics to describe the crack front conditions. The analytical study illustrates that linear-elastic fracture mechanics assumptions remain valid at the increased deformation limit; however, the influence of plasticity on the compliance change in the test record is problematic. A proposed revision to the validity criteria for the KIsi test method is briefly discussed.

  1. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 650–660. PMID:22003259

  2. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  3. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?

    NASA Astrophysics Data System (ADS)

    Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël

    2017-06-01

    Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.

  4. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation.

    PubMed

    Bagherifard, Sara; Ghelichi, Ramin; Khademhosseini, Ali; Guagliano, Mario

    2014-06-11

    Cell-substrate interface is known to control the cell response and subsequent cell functions. Among the various biophysical signals, grain structure, which indicates the repeating arrangement of atoms in the material, has also proved to play a role of significant importance in mediating the cell activities. Moreover, refining the grain size through severe plastic deformation is known to provide the processed material with novel mechanical properties. The potential application of such advanced materials as biomedical implants has recently been evaluated by investigating the effect of different substrate grain sizes on a wide variety of cell activities. In this review, recent advances in biomedical applications of severe plastic deformation techniques are highlighted with special attention to the effect of the obtained nano/ultra-fine-grain size on cell-substrate interactions. Various severe plastic deformation techniques used for this purpose are discussed presenting a brief description of the mechanism for each process. The results obtained for each treatment on cell morphology, adhesion, proliferation, and differentiation, as well as the in vivo studies, are discussed. Finally, the advantages and challenges regarding the application of these techniques to produce multifunctional bio-implant materials are addressed.

  5. The Influence of Grain Boundary Fluids on the Recrystallization Behavior in Calcite: A Comparison of "dry" and "wet" Marble Mylonites

    NASA Astrophysics Data System (ADS)

    Schenk, O.; Urai, J.; Evans, B.

    2003-12-01

    Carbonate rocks are able to accumulate large amounts of strain and deform crystal-plastically even at low p-T conditions and thus, marble sequences are often the site of strain localization in the upper crust during late-stage deformation in mountain building processes. In this study we sought to identify the effect of fluids on grain boundary morphology and recrystallization processes in marble mylonites during shear zone evolution, as fluids play a major role in the flow behavior of many rock materials during deformation (e.g. quartz, olivine, halite, feldspar). We compared calcite marble mylonites from two geological settings: (a) Schneeberg Complex, Southern Tyrole, Italy and (b) Naxos Metamorphic Core Complex, Greece. The shear zones of the selected areas are suitable for comparison, because they consist of similar lithology and the marble mylonites resemble each other in chemical composition. In addition, calcite-dolomite solvus geothermometry and TEM observations indicate similar p-T conditions for the shear zones formation. However, the two settings are different in the availability of fluids during the shear zone evolution: In the Schneeberg mylonites, both the alteration of minerals during retrograde metamorphism of neighboring micaschists and the existence of veins suggest that fluids were present during mylonitization. The absence of these features in the Naxos samples indicates that fluids were not present during deformation of these mylonites. This difference is also supported by the signature of stable isotopes. Microstructural investigations using optical and scanning electron microscopes on broken and planar surfaces did not indicate major differences between wet and dry mylonites: Grain boundaries of both types of samples display pores with shapes controlled by crystallography, and pore morphologies that are similar to observations from crack and grain-boundary healing experiments. Grain size reduction was predominantly the result of subgrain rotation recrystallization. However, the coarse grains inside the wet protomylonites (Schneeberg) are characterized by intracrystalline shear zones. With the exception of the intracrystalline shear zones, there were no obvious microstructural signatures that were obvious indicators of the presence of fluids, at least for these two field examples.

  6. Deformation Microstructures of the Yugu Peridotites in the Gyeonggi Massif, Korea: Implications for Olivine Fabric Transition in Mantle Shear Zones

    NASA Astrophysics Data System (ADS)

    Jung, H.; Park, M.

    2017-12-01

    Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), DisGBS (D-type), and combination of dislocation and diffusion creep (E-type), respectively.

  7. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat.

    PubMed

    Avio, Carlo Giacomo; Gorbi, Stefania; Regoli, Francesco

    2017-07-01

    Plastic production has increased dramatically worldwide over the last 60 years and it is nowadays recognized as a serious threat to the marine environment. Plastic pollution is ubiquitous, but quantitative estimates on the global abundance and weight of floating plastics are still limited, particularly for the Southern Hemisphere and the more remote regions. Some large-scale convergence zones of plastic debris have been identified, but there is the urgency to standardize common methodologies to measure and quantify plastics in seawater and sediments. Investigations on temporal trends, geographical distribution and global cycle of plastics have management implications when defining the origin, possible drifting tracks and ecological consequences of such pollution. An elevated number of marine species is known to be affected by plastic contamination, and a more integrated ecological risk assessment of these materials has become a research priority. Beside entanglement and ingestion of macro debris by large vertebrates, microplastics are accumulated by planktonic and invertebrate organisms, being transferred along food chains. Negative consequences include loss of nutritional value of diet, physical damages, exposure to pathogens and transport of alien species. In addition, plastics contain chemical additives and efficiently adsorb several environmental contaminants, thus representing a potential source of exposure to such compounds after ingestion. Complex ecotoxicological effects are increasingly reported, but the fate and impact of microplastics in the marine environment are still far to be fully clarified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Transmission, Development, and Plasticity of Synapses

    PubMed Central

    Harris, Kathryn P.

    2015-01-01

    Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity. PMID:26447126

  9. Marine debris ingestion by Magellanic penguins, Spheniscus magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone.

    PubMed

    Brandão, Martha L; Braga, Karina M; Luque, José L

    2011-10-01

    Magellanic penguins (Spheniscus magellanicus) are non-breeding winter visitors to the Brazilian coast. In 2008 and 2010, plastic items and other marine debris were found in the stomachs and intestines of 15% of 175 dead penguins collected in the Lagos Region of the state of Rio de Janeiro. One bird had its stomach perforated by a plastic straw, which may have caused its death. There are few records of penguins ingesting plastic litter, but previous studies have found similar levels of debris ingestion among Magellanic penguins stranded on the Brazilian coast (35.8% of 397 birds). The high incidence of marine debris in this species in Brazil may result at least in part from the predominance of juveniles reaching these waters, as juvenile penguins may have a broader diet than adults. It is unclear to what extent plastic ingestion affects the mortality rate in this species and whether the incidence in stranded birds reflects that in the entire population. The present study addresses the increasing impact of plastic debris on marine life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Unified Constitutive Model for Subglacial Till, Part I: The Disturbed State Concept

    NASA Astrophysics Data System (ADS)

    Jenson, J. W.; Desai, C. S.; Clark, P. U.; Contractor, D. N.; Sane, S. M.; Carlson, A. E.

    2006-12-01

    Classical plasticity models such as Mohr-Coulomb may not adequately represent the full range of possible motion and failure in tills underlying ice sheets. Such models assume that deformations are initially elastic, and that when a peak or failure stress level is reached the system experiences sudden failure, after which the stress remains constant and the deformations can tend to infinite magnitudes. However, theory suggests that the actual behavior of deforming materials, including granular materials such as glacial till, can involve plastic or irreversible strains almost from the beginning, in which localized zones of microcracking and "failure" can be distributed over the material element. As the loading increases, and with associated plastic and creep deformations, the distributed failure zones coalesce. When the extent of such coalesced zones reaches critical values of stresses and strains, the critical condition (failure) can occur in the till, which would cause associated movements of the ice sheet. Failure or collapse then may occur at much larger strain levels. Classical models (e.g., Mohr-Coulomb) may therefore not be able to fully and realistically characterize deformation behavior and the gradual developments of localized failures tending to the global failure and movements. We present and propose the application of the Disturbed State Concept (DSC), a unified model that incorporates the actual pre- and post-failure behavior, for characterizing the behavior of subglacial tills. In this presentation (Part I), we describe the DSC and propose its application to subglacial till. Part II (Desai et al.) describes our application of the DSC with laboratory testing, model calibration, and validations to evaluate the mechanical properties of two regionally significant Pleistocene tills.

  11. A Naturally-Calibrated Flow Law for Quartz

    NASA Astrophysics Data System (ADS)

    Lusk, A. D.; Platt, J. P.

    2017-12-01

    Flow laws for power-law behavior of quartz deforming by crystal-plastic processes with grain size sensitive creep included take the general form: ė = A σn f(H2O) exp(-Q/RT) dmWhere A - prefactor; σ - differential stress; n - stress exponent; f(H2O) - water fugacity; Q - activation energy; R - gas constant; T - temperature (K); d - grain size sensitivity raised to power m. Assuming the dynamically recrystallized grain size for quartz follows the peizometric relationship, substitute dm = (K σ-p)m, where K - piezometric constant; σ - differential stress; p - piezometric exponent. Rearranging the above flow law: ė = A K σ(n-pm) f(H2O) exp(-Q/RT)We use deformation temperatures, paleo-stresses, and strain rates calculated from rocks deformed in the Caledonian Orogeny, NW Scotland, along with existing experimental data, to compare naturally-calibrated values of stress exponent (n-pm) and activation energy (Q) to those determined experimentally. Microstructures preserved in the naturally-strained rocks closely resemble those produced by experimental work, indicating that quartz was deformed by the same mechanism(s). These observations validate the use of predetermined values for A as well as the addition of experimental data to calculate Q. Values for f(H2O) are based on calculated pressure and temperature conditions. Using the abovementioned constraints, we compare results, discuss challenges, and explore implications of naturally- vs. experimentally-derived flow laws for dislocation creep in quartz. Rocks used for this study include quartzite and quartz-rich psammite of the Cambrian-Ordovician shelf sequence and tectonically overlying Moine Supergroup. In both cases, quartz is likely the primary phase that controlled rheological behavior. We use the empirically derived piezometer for the dynamically recrystallized grain size of quartz to calculate the magnitude of differential stress, along with the Ti-in-quartz thermobarometer and the c-axis opening angle thermometer to determine temperatures of deformation. Tensor strain rates are calculated from plate convergence rate, based on total displacement and duration of thrusting within the Moine thrust zone, and shear zone thickness calculated from four detailed structural and microstructural transects taken parallel to the direction of displacement.

  12. The Glenn A. Fry Award Lecture 2012: Plasticity of the Visual System Following Central Vision Loss

    PubMed Central

    Chung, Susana T. L.

    2013-01-01

    Following the onset of central vision loss, most patients develop an eccentric retinal location outside the affected macular region, the preferred retinal locus (PRL), as their new reference for visual tasks. The first goal of this paper is to present behavioral evidence showing the presence of experience-dependent plasticity in people with central vision loss. The evidence includes (1) the presence of oculomotor re-referencing of fixational saccades to the PRL; (2) the characteristics of the shape of the crowding zone (spatial region within which the presence of other objects affects the recognition of a target) at the PRL are more “foveal-like” instead of resembling those of the normal periphery; and (3) the change in the shape of the crowding zone at a para-PRL location that includes a component referenced to the PRL. These findings suggest that there is a shift in the referencing locus of the oculomotor and the sensory visual system from the fovea to the PRL for people with central vision loss, implying that the visual system for these individuals is still plastic and can be modified through experiences. The second goal of the paper is to demonstrate the feasibility of applying perceptual learning, which capitalizes on the presence of plasticity, as a tool to improve functional vision for people with central vision loss. Our finding that visual function could improve with perceptual learning presents an exciting possibility for the development of an alternative rehabilitative strategy for people with central vision loss. PMID:23670125

  13. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  14. Comparing the strength of behavioural plasticity and consistency across situations: animal personalities in the hermit crab Pagurus bernhardus

    PubMed Central

    Briffa, Mark; Rundle, Simon D; Fryer, Adam

    2008-01-01

    Many phenotypic traits show plasticity but behaviour is often considered the ‘most plastic’ aspect of phenotype as it is likely to show the quickest response to temporal changes in conditions or ‘situation’. However, it has also been noted that constraints on sensory acuity, cognitive structure and physiological capacities place limits on behavioural plasticity. Such limits to plasticity may generate consistent differences in behaviour between individuals from the same population. It has recently been suggested that these consistent differences in individual behaviour may be adaptive and the term ‘animal personalities’ has been used to describe them. In many cases, however, a degree of both behavioural plasticity and relative consistency is probable. To understand the possible functions of animal personalities, it is necessary to determine the relative strength of each tendency and this may be achieved by comparison of statistical effect sizes for tests of difference and concordance. Here, we describe a new statistical framework for making such comparisons and investigate cross-situational plasticity and consistency in the duration of startle responses in the European hermit crab Pagurus bernhardus, in the field and the laboratory. The effect sizes of tests for behavioural consistency were greater than for tests of behavioural plasticity, indicating for the first time the presence of animal personalities in a crustacean model. PMID:18331983

  15. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    PubMed

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  16. A Home-Made Trap Baited With Sex Pheromone for Monitoring Spodoptera Frugiperda Males (Lepidoptera: Noctuidae) in Corn crops in Mexico.

    PubMed

    Malo, Edi A; Cruz-Esteban, Samuel; González, Francisco J; Rojas, Julio C

    2018-05-15

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), populations are monitored with a variety of commercial sex pheromone-baited traps. However, a number of trap-related variables may affect the number of FAW males captured. In this study, we tested the effect of trap design, trap size, and trap color for monitoring FAW males in corn crops in Mexico. We found that plastic jug trap (a home-made trap), captured significantly more FAW males than a commercial trap (Scentry Heliothis) and water bottle trap (another home-made trap). We also found that size of plastic jug traps (3.78, 10, or 20 liters) did not affect the captures of FAW males. Our results indicated that plastic yellow jug traps captured significantly more males than blue and black traps. Plastic jug white, red, and green traps captured a similar number of FAW males than plastic jug yellow, blue, and black traps. Plastic jug blue, white, and yellow traps captured more nontarget insects compared to black traps. The number of nontarget insects captured by green and red traps was similar and not significantly different to that caught by blue, white, yellow, and black traps. Traps captured more individuals from Diptera than Coleoptera and Hymenoptera. Overall, the results suggest that yellow plastic jug may be used for monitoring FAW males in corn and sorghum crops in Mexico.

  17. Low-Temperature Friction-Stir Welding of 2024 Aluminum

    NASA Technical Reports Server (NTRS)

    Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.

    1998-01-01

    Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).

  18. Cohesive stress heterogeneities and the transition from intrinsic ductility to brittleness

    NASA Astrophysics Data System (ADS)

    Tanguy, D.

    2017-11-01

    The influence of nanoscale cavities on the fracture of the Σ 33 {554 }[110 ] symmetrical tilt grain boundary is studied by atomistic simulations. The crack crystallography is chosen such that dislocation emission is easy. A transition from a ductile behavior of the tip to a brittle one is obtained for a dense (coverage beyond 15% and intercavity spacing smaller than 4 nm) distribution of small cavities (sizes in-between 1 and 2 nm). The results are in good agreement with recent experiments from the literature. Even at the highest coverage, the character of the crack is highly sensitive to the initial position of the tip and a mixture of ductile and brittle responses is found. This complexity is beyond the usual criterion based on the drop of the work of separation with the amount of damage in the structure. It is shown that a heterogeneous cohesive zone model, with parameters extracted from the simulations and enriched with a criterion for plasticity, can explain the simulations and reproduce the transition. Additional simulations show that outside this range of small sizes and dense packing, which gives essentially a two-dimensional response (either crack opening or infinite straight dislocation emission), dislocation half-loops appear for intercavity spacing starting at about 4 nm. They constitute, together with regions of low coverage/small cavities, efficient obstacles to brittle cracking. These results could be guidelines to designing interfaces more resistant to solute embrittlement, in general. The cohesive zone model is generic. Furthermore, the {554} single crystal was used to determine to which extent the results depend on the details of the core structure versus the cavity distribution. These elements show that the conclusions reached have a generic character.

  19. METHOD FOR SIMULTANEOUS 90SR AND 137CS IN-VIVO MEASUREMENTS OF SMALL ANIMALS AND OTHER ENVIRONMENTAL MEDIA DEVELOPED FOR THE CONDITIONS OF THE CHERNOBYL EXCLUSION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    To perform in vivo simultaneous measurements of the {sup 90}Sr and {sup 137}Cs content in the bodies of animals living in the Chernobyl Exclusion Zone (ChEZ), an appropriate method and equipment were developed and installed in a mobile gamma beta spectrometry laboratory. This technique was designed for animals of relatively small sizes (up to 50 g). The {sup 90}Sr content is measured by a beta spectrometer with a 0.1 mm thick scintillation plastic detector. The spectrum processing takes into account the fact that the measured object is 'thick-layered' and contains a comparable quantity of {sup 137}Cs, which is a characteristicmore » condition of the ChEZ. The {sup 137}Cs content is measured by a NaI scintillation detector that is part of the combined gamma beta spectrometry system. For environmental research performed in the ChEZ, the advantages of this method and equipment (rapid measurements, capability to measure live animals directly in their habitat, and the capability of simultaneous {sup 90}Sr and {sup 137}Cs measurements) far outweigh the existing limitations (considerations must be made for background radiation and the animal size, skeletal shape and body mass). The accuracy of these in vivo measurements is shown to be consistent with standard spectrometric and radiochemical methods. Apart from the in vivo measurements, the proposed methodology, after a very simple upgrade that is also described in the article, works even more accurately with samples of other media, such as soil and plants.« less

  20. A new efficient method for synaptic vesicle quantification reveals differences between medial prefrontal cortex perforated and nonperforated synapses.

    PubMed

    Nava, Nicoletta; Chen, Fenghua; Wegener, Gregers; Popoli, Maurizio; Nyengaard, Jens Randel

    2014-02-01

    Communication between neurons is mediated by the release of neurotransmitter-containing vesicles from presynaptic terminals. Quantitative characterization of synaptic vesicles can be highly valuable for understanding mechanisms underlying synaptic function and plasticity. We performed a quantitative ultrastructural analysis of cortical excitatory synapses by mean of a new, efficient method, as an alternative to three-dimensional (3D) reconstruction. Based on a hierarchical sampling strategy and unequivocal identification of the region of interest, serial sections from excitatory synapses of medial prefrontal cortex (mPFC) of six Sprague-Dawley rats were acquired with a transmission electron microscope. Unbiased estimates of total 3D volume of synaptic terminals were obtained through the Cavalieri estimator, and adequate correction factors for vesicle profile number estimation were applied for final vesicle quantification. Our analysis was based on 79 excitatory synapses, nonperforated (NPSs) and perforated (PSs) subtypes. We found that total number of docked and reserve-pool vesicles in PSs significantly exceeded that in NPSs (by, respectively, 77% and 78%). These differences were found to be related to changes in size between the two subtypes (active zone area by 86%; bouton volume by 105%) rather than to postsynaptic density shape. Positive significant correlations were found between number of docked and reserve-pool vesicles, active zone area and docked vesicles, and bouton volume and reserve pool vesicles. Our method confirmed the large size of mPFC PSs and a linear correlation between presynaptic features of typical hippocampal synapses. Moreover, a greater number of docked vesicles in PSs may promote a high synaptic strength of these synapses. Copyright © 2013 Wiley Periodicals, Inc.

  1. Laboratory evaluation of the particle size effect on the performance of an elastomeric half-mask respirator against ultrafine combustion particles.

    PubMed

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; Yermakov, Michael; McKay, Roy; Haruta, Hiroki; Kimura, Kazushi

    2013-08-01

    This study quantified the particle size effect on the performance of elastomeric half-mask respirators, which are widely used by firefighters and first responders exposed to combustion aerosols. One type of elastomeric half-mask respirator equipped with two P-100 filters was donned on a breathing manikin while challenged with three combustion aerosols (originated by burning wood, paper, and plastic). Testing was conducted with respirators that were fully sealed, partially sealed (nose area only), or unsealed to the face of a breathing manikin to simulate different faceseal leakages. Three cyclic flows with mean inspiratory flow (MIF) rates of 30, 85, and 135 L/min were tested for each combination of sealing condition and combustion material. Additional testing was performed with plastic combustion particles at other cyclic and constant flows. Particle penetration was determined by measuring particle number concentrations inside and outside the respirator with size ranges from 20 to 200 nm. Breathing flow rate, particle size, and combustion material all had significant effects on the performance of the respirator. For the partially sealed and unsealed respirators, the penetration through the faceseal leakage reached maximum at particle sizes >100 nm when challenged with plastic aerosol, whereas no clear peaks were observed for wood and paper aerosols. The particles aerosolized by burning plastic penetrated more readily into the unsealed half-mask than those aerosolized by the combustion of wood and paper. The difference may be attributed to the fact that plastic combustion particles differ from wood and paper particles by physical characteristics such as charge, shape, and density. For the partially sealed respirator, the highest penetration values were obtained at MIF = 85 L/min. The unsealed respirator had approximately 10-fold greater penetration than the one partially sealed around the bridge of the nose, which indicates that the nose area was the primary leak site.

  2. Root plasticity buffers competition among plants: theory meets experimental data.

    PubMed

    Schiffers, Katja; Tielbörger, Katja; Tietjen, Britta; Jeltsch, Florian

    2011-03-01

    Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.

  3. The evolution of rifting process in the tectonic history of the Earth

    NASA Technical Reports Server (NTRS)

    Milanovsky, E. E.; Nikishin, A. M.

    1985-01-01

    The continental rifting is the response of the lithosphere to the oriented tension. The distribution of viscosity in the lithosphere plays an essential role during all stages of the rifting. The viscosity is a function of the temperature, the lithostatic pressure, the rock composition, the deformation rate and other factors. The temperature is the most important factor. The vertical section of continental lithosphere of the rift zone may be divided into the following layers: the upper crust, in which brittle deformation prevails; the medialcrust, in which the role of plastic deformation increases; the lower crust, in which plastic deformation prevails; and the uppermost plastic part of the mantle overlapping asthenosphere. The depth of the boundaries in the crust layers are mainly controlled by the temperature.

  4. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David

    2015-02-01

    Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.

  5. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    NASA Astrophysics Data System (ADS)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  6. Fourwing saltbush (Atriplex canescens) seed transfer zones

    Treesearch

    Stewart C. Sanderson; Durant E. McArthur

    2004-01-01

    Atriplex canescens (Pursh.) Nutt. is the most widespread species of perennial Atriplex in North America. Throughout its distributional range, A. canescens shows considerable between-population variation. Some of this variation may be due to phenotypic plasticity but most of it appears to be genetic. Mutations,...

  7. Evaluation of warning lights on maintenance of traffic devices and development of possible alternatives : [summary].

    DOT National Transportation Integrated Search

    2013-01-01

    Orange plastic drums are common on Florida roadways, warning motorists and guiding them safely through work zones. The orange color is mandated by the Manual on Uniform Traffic Control Devices, which also requires that drums bear retroreflective whit...

  8. Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Rousset, Baptiste; Lasserre, Cécile; Cubas, Nadaya; Graham, Shannon; Radiguet, Mathilde; DeMets, Charles; Socquet, Anne; Campillo, Michel; Kostoglodov, Vladimir; Cabral-Cano, Enrique; Cotte, Nathalie; Walpersdorf, Andrea

    2016-10-01

    Although patterns of interseismic strain accumulation above subduction zones are now routinely characterised using geodetic measurements, their physical origin, persistency through time, and relationships to seismic hazard and long-term deformation are still debated. Here, we use GPS and morphological observations from southern Mexico to explore potential mechanical links between variations in inter-SSE (in between slow slip events) coupling along the Mexico subduction zone and the long-term topography of the coastal regions from Guerrero to Oaxaca. Inter-SSE coupling solutions for two different geometries of the subduction interface are derived from an inversion of continuous GPS time series corrected from slow slip events. They reveal strong along-strike variations in the shallow coupling (i.e. at depths down to 25 km), with high-coupling zones (coupling >0.7) alternating with low-coupling zones (coupling <0.3). Coupling below the continent is typically strong (>0.7) and transitions to uncoupled, steady slip at a relatively uniform ˜ 175-km inland from the trench. Along-strike variations in the coast-to-trench distances are strongly correlated with the GPS-derived forearc coupling variations. To explore a mechanical explanation for this correlation, we apply Coulomb wedge theory, constrained by local topographic, bathymetric, and subducting-slab slopes. Critical state areas, i.e. areas where the inner subduction wedge deforms, are spatially correlated with transitions at shallow depth between uncoupled and coupled areas of the subduction interface. Two end-member models are considered to explain the correlation between coast-to-trench distances and along-strike variations in the inter-SSE coupling. The first postulates that the inter-SSE elastic strain is partitioned between slip along the subduction interface and homogeneous plastic permanent deformation of the upper plate. In the second, permanent plastic deformation is postulated to depend on frictional transitions along the subduction plate interface. Based on the location and friction values of the critical state areas identified by our Coulomb wedge analysis, we parameterise frictional transitions in plastic-static models of deformation over several seismic cycles. This predicts strong shear dissipation above frictional transitions on the subduction interface. The comparison of modelled surface displacements over a critical zone at a frictional transition and over a stable area with no internal wedge deformation shows differences of long-term uplift consistent with the observed along-strike variations in the coast-to-trench distances. Our work favours a model in which frictional asperities partly control short-term inter-SSE coupling as measured by geodesy and in which those asperities persist through time.

  9. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  10. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.

    PubMed

    Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy

    2017-09-13

    The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

  11. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less

  12. Did the Basement-Involved Main Caucasus Thrust Form during the Cenozoic Arabia-Eurasia Collision?

    NASA Astrophysics Data System (ADS)

    Vasey, D. A.; Cowgill, E.; Niemi, N. A.; Godoladze, T.; Javakhishvili, Z.; Skhirtladze, I.; Boichenko, G.

    2017-12-01

    The Greater Caucasus Mountains lie between the Black and Caspian Seas at the northern margin of the active Arabia-Eurasia collision zone. The north-dipping Main Caucasus Thrust (MCT) is commonly assumed to be a first-order structure within the range that places Paleozoic crystalline basement to the north over metasedimentary cover of inferred Mesozoic age to the south. Although most workers assume this juxtaposition occurred during Cenozoic growth of the range, the timing of ductile (quartz-plastic) shearing along the MCT remains to be established. Here, we present data to discriminate between two competing models of quartz-plastic deformation along the proposed MCT location at the basement-cover contact. In the first model, quartz-plastic deformation occurred during the Cenozoic Arabia-Eurasia collision, whereas in the second, this deformation took place during an older orogenic event, such as the Paleozoic Variscan orogeny. To test these models, we are combining field observations, microstructural investigations, and thermochronologic analyses on two 10 km-long traverses in the Republic of Georgia, separated by 200 km along strike, across the MCT. Our fieldwork and microstructural analyses along the basement-cover contact document north-dipping zones of high strain that are 100 m thick and show quartz-plastic deformation, top-to-the-south shear sense, and greenschist-facies metamorphism. Zircon (U-Th)/He (ZHe) analyses along the eastern traverse near Stepantsminda yielded latest Miocene ( 7-8 Ma) ages in both the MCT shear zone and 150 m structurally above the MCT. In contrast, along the western traverse near Nakra, a sample 300 m structurally below the MCT yielded an early Oligocene ( 31 Ma) ZHe age. These data require Cenozoic exhumation from temperatures >180° and are compatible with recent ductile shear along the MCT. However, results from biotite and muscovite 40Ar/39Ar analyses in progress are needed to confirm this hypothesis. The MCT appears to have exhumed rocks from crustal depths of at least 6 km since the Oligocene and may be a key first-order structure in the Arabia-Eurasia collision.

  13. Correlation analysis of the optics of progressive addition lenses.

    PubMed

    Sheedy, James E

    2004-05-01

    To investigate the relations between selected key optical parameters and the sizes of the clear viewing areas of progressive addition lenses (PALs). The optics of 28 PALs (plano with +2.00 D add) currently on the market were measured with a Rotlex Class Plus lens analyzer. Horizontal cross sections were analyzed in 1 mm vertical steps with respect to the fitting cross. Distance, intermediate, and near viewing zone widths and areas were calculated from the measurements. The maximum amount of unwanted astigmatism, minimum zone width (0.50 DC limit), and maximum power rate in the corridor were also recorded for each lens. Correlation coefficients were determined for all relations. Each of the three viewing zone areas had a significant negative relation with the other (r of -0.4 to -0.8), indicating design tradeoff. Maximum power rate was significantly related to minimum zone width (r = -0.695), which was significantly related to maximum astigmatism (r = -0.616), but there was not a significant relation between maximum power rate and maximum astigmatism. Higher power rates and narrower minimum zones were significantly related to smaller intermediate and larger near zones (r = 0.4 to 0.9). Maximum astigmatism was related to distance zone width (r = 0.42) and to intermediate zone size (r = -0.4 to -0.56), but not significantly related to near viewing zone. Power rate and astigmatism each vary relatively uniformly across each lens. The fundamental relation appears to be between power rate and zone width, each of which is highly related to sizes of the intermediate and near viewing zones. The maximum amount of astigmatism is related to zone width, but not to maximum power rate. The amount of astigmatism is unrelated to the size of the near zone. The pattern of correlations between the optical and viewing zone parameters help identify the underlying optical relations of PALs.

  14. Morphological plasticity reduces the effect of poor developmental conditions on fledging age in mourning doves

    PubMed Central

    Miller, David A.

    2010-01-01

    Developmental plasticity can be integral in adapting organisms to the environment experienced during growth. Adaptive plastic responses may be especially important in prioritizing development in response to stress during ontogeny. To evaluate this, I examined how developmental conditions for mourning doves related to early growth and how this affected fledging age, an important life-history transition for birds. The life history of mourning doves is consistent with strong selective pressure to minimize fledging age. Therefore, I predicted that in the face of nutritional stress associated with experimental brood-size increases, young would prioritize growth to structures that promote early fledging to reduce the effect of slowed overall growth on fledging age. Increasing brood size slowed overall structural growth of nestlings and affected the relative allocation of growth among different body parts. Total wing area was the best predictor of fledging age and individuals from larger broods had larger wings relative to overall body size. Although nestlings from larger broods fledged at later ages owing to slower overall growth, prioritization of wing growth reduced this effect by an estimated 1.6 days relative to the delay if plasticity among body parts had not occurred. This was an 11 per cent reduction in the predicted developmental time it took to reach this important life-history transition. Results demonstrate that preferential allocation to wing growth can affect the timing of this life-history transition and that morphological plasticity during development can have adaptive near-term effects during avian development. PMID:20129984

  15. The costs and benefits of flexibility as an expression of behavioural plasticity: a primate perspective.

    PubMed

    van Schaik, Carel P

    2013-05-19

    Traditional neo-Darwinism ascribes geographical variation in morphology or in behaviour to varying selection on local genotypes. However, mobile and long-lived organisms cannot achieve local adaptation this way, leading to a renewed interest in plasticity. I examined geographical variation in orang-utan subsistence and social behaviour, and found this to be largely owing to behavioural plasticity, here called flexibility, both in the form of flexible individual decisions and of socially transmitted (cultural) innovations. Although comparison with other species is difficult, the extent of such flexibility is almost certainly limited by brain size. It is shown that brains can only increase relative to body size where the cognitive benefits they produce are reliably translated into improved survival rate. This means that organisms that are very small, face many predators, live in highly seasonal environments, or lack opportunities for social learning cannot evolve greater flexibility, and must achieve local adaptation through selection on specific genotypes. On the other hand, as body and brain size increase, local adaptation is increasingly achieved through selection on plasticity. The species involved are also generally those that most need it, being more mobile and longer-lived. Although high plasticity buffers against environmental change, the most flexible organisms face a clear limit because they respond slowly to selection. Thus, paradoxically, the largest-brained animals may actually be vulnerable to the more drastic forms of environmental change, such as those induced by human actions.

  16. Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs

    PubMed Central

    Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui

    2015-01-01

    Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828

  17. Numerical Simulation of Pipeline Deformation Caused by Rockfall Impact

    PubMed Central

    Liang, Zheng; Han, Chuanjun

    2014-01-01

    Rockfall impact is one of the fatal hazards in pipeline transportation of oil and gas. The deformation of oil and gas pipeline caused by rockfall impact was investigated using the finite element method in this paper. Pipeline deformations under radial impact, longitudinal inclined impact, transverse inclined impact, and lateral eccentric impact of spherical and cube rockfalls were discussed, respectively. The effects of impact angle and eccentricity on the plastic strain of pipeline were analyzed. The results show that the crater depth on pipeline caused by spherical rockfall impact is deeper than by cube rockfall impact with the same volume. In the inclined impact condition, the maximum plastic strain of crater caused by spherical rockfall impact appears when incidence angle α is 45°. The pipeline is prone to rupture under the cube rockfall impact when α is small. The plastic strain distribution of impact crater is more uneven with the increasing of impact angle. In the eccentric impact condition, plastic strain zone of pipeline decreases with the increasing of eccentricity k. PMID:24959599

  18. The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation

    DOE PAGES

    Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...

    2017-06-19

    Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less

  19. Plastics in the Marine Environment

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  20. Plastics in the Marine Environment.

    PubMed

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  1. Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea).

    PubMed

    Terepocki, Alicia K; Brush, Alex T; Kleine, Lydia U; Shugart, Gary W; Hodum, Peter

    2017-03-15

    We found microplastic in 89.5% of 143 Northern Fulmars from 2008 to 2013 and 64% of 25 Sooty Shearwaters in 2011-2012 that were found dead or stranded on Oregon and Washington beaches. Average plastic loads were 19.5 pieces and 0.461g for fulmars and 13.3 pieces and 0.335g for shearwaters. Pre-manufactured plastic pellets accounted for 8.5% of fulmar and 33% of shearwater plastic pieces. In both species, plastic in proventriculi averaged 2-3mm larger in greatest dimension than in ventriculi. Intestinal plastic in fulmars averaged 1mm less in greatest dimension than ventricular plastic. There was no significant reduction in pieces or mass of plastic in 33 fulmars held for a median of seven days in a plastic-free environment. Three fulmars that survived to be released from rehabilitation regurgitated plastic, which provided an alternative outlet for elimination of plastic and requires reassessment of the dynamics of plastic in seabird gastrointestinal tracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 40 CFR 147.305 - Requirements for all wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 147.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... (2) A Caliper log. (b) The owner or operator of a new injection well cased with plastic (PVC, ABS... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...

  3. 40 CFR 147.305 - Requirements for all wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 147.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... (2) A Caliper log. (b) The owner or operator of a new injection well cased with plastic (PVC, ABS... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...

  4. 40 CFR 147.305 - Requirements for all wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 147.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... (2) A Caliper log. (b) The owner or operator of a new injection well cased with plastic (PVC, ABS... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...

  5. Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula.

    PubMed

    Vu, Wendy T; Chang, Peter L; Moriuchi, Ken S; Friesen, Maren L

    2015-04-01

    Transgenerational plasticity provides phenotypic variation that contributes to adaptation. For plants, the timing of seed germination is critical for offspring survival in stressful environments, as germination timing can alter the environmental conditions a seedling experiences. Stored seed transcripts are important determinants of seed germination, but have not previously been linked with transgenerational plasticity of germination behavior. In this study we used RNAseq and growth chamber experiments of the model legume M. trucantula to test whether parental exposure to salinity stress influences the expression of stored seed transcripts and early offspring traits and test for genetic variation. We detected genotype-dependent parental environmental effects (transgenerational plasticity) on the expression levels of stored seed transcripts, seed size, and germination behavior of four M. truncatula genotypes. More than 50% of the transcripts detected in the mature, ungerminated seed transcriptome were annotated as regulating seed germination, some of which are involved in abiotic stress response and post-embryonic development. Some genotypes showed increased seed size in response to parental exposure to salinity stress, but no parental environmental influence on germination timing. In contrast, other genotypes showed no seed size differences across contrasting parental conditions but displayed transgenerational plasticity for germimation timing, with significantly delayed germination in saline conditions when parental plants were exposed to salinity. In genotypes that show significant transgenerational plastic germination response, we found significant coexpression networks derived from salt responsive transcripts involved in post-transcriptional regulation of the germination pathway. Consistent with the delayed germination response to saline conditions in these genotypes, we found genes associated with dormancy and up-regulation of abscisic acid (ABA). Our results demonstrate genetic variation in transgenerational plasticity within M. truncatula and show that parental exposure to salinity stress influences the expression of stored seed transcripts, seed weight, and germination behavior. Furthermore, we show that the parental environment influences gene expression to modulate biological pathways that are likely responsible for offspring germination responses to salinity stress.

  6. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    PubMed

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  7. Plastification of polymers in twin-screw-extruders: New visualization technic using high-speed imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knieper, A., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de; Beinert, C., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de

    The initial melting of the first granules through plastic energy dissipation (PED) at the beginning of the melting zone, in the co-rotating twin-screw extruder is visualized in this work. The visualization was created through the use of a high speed camera in the cross section of the melting zone. The parameters screw speed, granule-temperature, temperature-profile, type of polymer and back pressure were examined. It was shown that the screw speed and the temperature-profile have significant influence on the rate of initial melting.

  8. Ingestion of plastic marine debris by longnose lancetfish (Alepisaurus ferox) in the North Pacific Ocean.

    PubMed

    Jantz, Lesley A; Morishige, Carey L; Bruland, Gregory L; Lepczyk, Christopher A

    2013-04-15

    Plastic marine debris affects species on most trophic levels, including pelagic fish. While plastic debris ingestion has been investigated in planktivorous fish in the North Pacific Ocean, little knowledge exists on piscivorous fish. The objectives of this study were to determine the frequency of occurrence and the composition of ingested plastic marine debris in longnose lancetfish (Alepisaurus ferox), a piscivorous fish species captured in the Hawaii-based pelagic longline fishery. Nearly a quarter (47 of 192) of A. ferox sampled contained plastic marine debris, primarily in the form of plastic fragments (51.9%). No relationship existed between size (silhouette area) or amount of plastic marine debris ingested and morphometrics of A. ferox. Although A. ferox are not consumed by humans, they are common prey for fish commercially harvested for human consumption. Further research is needed to determine residence time of ingested plastic marine debris and behavior of toxins associated with plastic debris. Published by Elsevier Ltd.

  9. Plastic ingestion in marine-associated bird species from the eastern North Pacific.

    PubMed

    Avery-Gomm, S; Provencher, J F; Morgan, K H; Bertram, D F

    2013-07-15

    In addition to monitoring trends in plastic pollution, multi-species surveys are needed to fully understand the pervasiveness of plastic ingestion. We examined the stomach contents of 20 bird species collected from the coastal waters of the eastern North Pacific, a region known to have high levels of plastic pollution. We observed no evidence of plastic ingestion in Rhinoceros Auklet, Marbled Murrelet, Ancient Murrelet or Pigeon Guillemot, and low levels in Common Murre (2.7% incidence rate). Small sample sizes limit our ability to draw conclusions about population level trends for the remaining fifteen species, though evidence of plastic ingestion was found in Glaucous-Winged Gull and Sooty Shearwater. Documenting levels of plastic ingestion in a wide array of species is necessary to gain a comprehensive understanding about the impacts of plastic pollution. We propose that those working with bird carcasses follow standard protocols to assess the levels of plastic ingestion whenever possible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Use of indicator chemicals to characterize the plastic fragments ingested by Laysan albatross.

    PubMed

    Nilsen, Frances; David Hyrenbach, K; Fang, Jiasong; Jensen, Brenda

    2014-10-15

    Laysan albatross (Phoebastria immutabilis) ingest plastic marine debris of a wide range of shape, sizes and sources. To better characterize this plastic and provide insights regarding its provenance and persistence in the environment, we developed a simple method to classify plastic fragments of unknown origin according to the resin codes used by the Society of Plastics Industry. Known plastics were analyzed by gas chromatography-mass spectroscopy (GC-MS) to identify indicator chemicals characteristic of each plastic resin. Application of this method to fragments of ingested plastic debris from boluses of Laysan albatross from Kure Atoll, Hawai'i, yielded proportions of 0.8% High Density Polyethylene, 6.8% Polystyrene, 8.5% Polyethylene Terephthalate, 20.5% Polyvinyl Chloride and 68.4% Polypropylene. Some fragments were composed of multiple resin types. These results suggest that infrequently recycled plastics are the dominant fragments ingested by albatross, and that these are the most prevalent and persistent resin types in the marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  12. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.

  13. Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weizhong, Liang, E-mail: wzliang1966@126.com; Zhiliang, Ning; Zhenqian, Dang

    2013-12-15

    Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentationmore » sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.« less

  14. A Two-Tier Golgi-Based Control of Organelle Size Underpins the Functional Plasticity of Endothelial Cells

    PubMed Central

    Ferraro, Francesco; Kriston-Vizi, Janos; Metcalf, Daniel J.; Martin-Martin, Belen; Freeman, Jamie; Burden, Jemima J.; Westmoreland, David; Dyer, Clare E.; Knight, Alex E.; Ketteler, Robin; Cutler, Daniel F.

    2014-01-01

    Summary Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities. PMID:24794632

  15. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.

  16. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  17. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NASA Astrophysics Data System (ADS)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  18. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    PubMed Central

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460

  19. The effect of particle properties on the depth profile of buoyant plastics in the ocean.

    PubMed

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A

    2016-10-10

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  20. Distribution and Size Relationships of Plastic Marine Debris on Beaches in South Korea.

    PubMed

    Lee, Jongmyoung; Lee, Jong Su; Jang, Yong Chang; Hong, Su Yeon; Shim, Won Joon; Song, Young Kyung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Kang, Daeseok; Hong, Sunwook

    2015-10-01

    The characteristics of the distribution of plastic marine debris were determined on 12 beaches in South Korea in 2013 and 2014. The abundances of large micro- (1-5 mm), meso- (5-25 mm), and macroplastics (>25 mm) were 880.4, 37.7, and 1.0 particles/m(2), respectively. Styrofoam was the most abundant debris type for large microplastics and mesoplastics (99.1 and 90.9 %, respectively). Fiber (including fabric) was the most abundant of the macroplastics (54.7 %). There were no statistical differences in the mean numbers and weights of plastic debris among three beach groups from west, south, and east coasts. No significant differences were detected between the abundances of beached plastics in high strandline and backshore for all three size groups. Spearman's rank correlation was used to determine the relationships between the three debris size classes. The abundance of large microplastics was strongly correlated with that of mesoplastics for most material types, which suggests that the contamination level of large microplastics can be estimated from that of mesoplastics. As surveying of smaller particles is more labor intensive, the surveying of mesoplastics with a 5-mm sieve is an efficient and useful way to determine "hot-spots" on beaches contaminated with large microplastics.

  1. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?

    PubMed

    Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël

    2017-06-01

    Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.

  2. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic.

    PubMed

    Lebreton, L; Slat, B; Ferrari, F; Sainte-Rose, B; Aitken, J; Marthouse, R; Hajbane, S; Cunsolo, S; Schwarz, A; Levivier, A; Noble, K; Debeljak, P; Maral, H; Schoeneich-Argent, R; Brambini, R; Reisser, J

    2018-03-22

    Ocean plastic can persist in sea surface waters, eventually accumulating in remote areas of the world's oceans. Here we characterise and quantify a major ocean plastic accumulation zone formed in subtropical waters between California and Hawaii: The Great Pacific Garbage Patch (GPGP). Our model, calibrated with data from multi-vessel and aircraft surveys, predicted at least 79 (45-129) thousand tonnes of ocean plastic are floating inside an area of 1.6 million km 2 ; a figure four to sixteen times higher than previously reported. We explain this difference through the use of more robust methods to quantify larger debris. Over three-quarters of the GPGP mass was carried by debris larger than 5 cm and at least 46% was comprised of fishing nets. Microplastics accounted for 8% of the total mass but 94% of the estimated 1.8 (1.1-3.6) trillion pieces floating in the area. Plastic collected during our study has specific characteristics such as small surface-to-volume ratio, indicating that only certain types of debris have the capacity to persist and accumulate at the surface of the GPGP. Finally, our results suggest that ocean plastic pollution within the GPGP is increasing exponentially and at a faster rate than in surrounding waters.

  3. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    PubMed

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  4. Effect of Hierarchical Microstructures of Lath Martensite on the Transitional Behavior of Fatigue Crack Growth Rate

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhong, Yi; Liang, Yi-long

    2018-04-01

    In this study, the fatigue-crack growth (FCG) behavior of 20CrMTiH steel with different substructure sizes was investigated. The results showed that coarsen microstructures exhibit excellent growth resistance. Moreover, two transitional behaviors were observed in the FCG curves of all specimens. The first transition point occurs in the near-threshold regime, whereas the second transition point occurs in the Paris regime. A comparison of substructure size to cyclic plastic size showed that the block size is almost equal to cyclic plastic size at ΔKT1, indicating that block size is an effective grain size to control the first transitional behavior of fatigue-crack propagation, whereas the second transitional behavior is related to the packet width or grain size. According to the fracture morphology, the fracture mechanism above and below the transition point responsible for the above phenomenon were distinguished. In addition, two prediction models based on microstructure size were established for lath martensite to evaluate the threshold and stress intensity factor range at the transition point.

  5. Grain growth kinetics of ringwoodite and majorite garnet mixtures and implications for the rheology of the transition zone

    NASA Astrophysics Data System (ADS)

    Ezad, I.; Dobson, D. P.; Brodholt, J. P.; Thomson, A.; Hunt, S.

    2017-12-01

    The grain size of the transition zone is a poorly known but important geophysical parameter. Among others, the grain size may control the rheology, seismic attenuation and radiative thermal conductivity of the mantle. However, the grain size of the transition zone minerals ringwoodite (Mg,Fe)2SiO4 and majorite garnet MgSiO3 under appropriate zone conditions is currently unknown and there are very few experiments with which to constrain it. In order to determine the grain size of the transition zone, the grain growth kinetics must be determined for a range of mantle compositions. We have, therefore, experimentally determined the grain growth kinetics of the lowermost transition zone minerals through multi anvil experiments at University College London (UCL). This is achieved through a comprehensive set of time series experiments at pressures of 21 GPa and temperatures relevant to the transition zone. We have also determined the effect of varying water content, oxygen fugacity, iron content and aluminium content also discussed by Dobson and Mariani., (2014). Our initial grain growth experiments conducted at 1200°C and 1400°C at 18 GPa show extremely slow grain growth kinetics; time series experiments extended to 105.8 seconds are unable to produce grains larger than 100 nm. This suggests that fine-grained material at the base of the transition zone will persist on geological timescales. Such small grains size suggests that diffusion creep might be the dominant deformation mechanism in this region. Reference: Dobson, D.P., Mariani, E., 2014. The kinetics of the reaction of majorite plus ferropericlase to ringwoodite: Implications for mantle upwellings crossing the 660 km discontinuity. Earth Planet. Sci. Lett. 408, 110-118. doi:10.1016/j.epsl.2014.10.009

  6. Effect of severe plastic deformation on microstructure and mechanical properties of magnesium and aluminium alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.

  7. Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.

  8. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  9. 78 FR 23220 - Foreign-Trade Zone (FTZ) 230-Piedmont Triad Area, North Carolina; Notification of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ...-backed paperboard and to laminate plastic film (the laminating activity is not ``production'' activity...--Piedmont Triad Area, North Carolina; Notification of Proposed Production Activity; Oracle Flexible..., grantee of FTZ 230, submitted a notification of proposed production activity on behalf of Oracle Flexible...

  10. 40 CFR 147.2104 - Requirements for all wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 147.2104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... analysis log; or (2) A caliper log. (b) The owner or operator of a new injection well cased with plastic... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...

  11. 40 CFR 147.2104 - Requirements for all wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 147.2104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... analysis log; or (2) A caliper log. (b) The owner or operator of a new injection well cased with plastic... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...

  12. 40 CFR 147.2104 - Requirements for all wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 147.2104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... analysis log; or (2) A caliper log. (b) The owner or operator of a new injection well cased with plastic... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...

  13. Fault rocks as indicators of slip behavior

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.

    2017-12-01

    Forty years ago, Sibson ("Fault rocks and fault mechanisms", J. Geol. Soc. Lon., 1977) explored plastic flow mechanisms in the upper and lower crust which he attributed to deformation rates faster than tectonic ones, but slower than earthquakes. We can now combine observations of natural fault rocks with insights from experiments to interpret a broad range of length and time scales of fault slip in more detail. Fault rocks are generally weak, with predominantly frictionally stable materials in some fault segments, and more unstable materials in others. Both upper and lower crustal faults contain veins and mineralogical signatures of transiently elevated fluid pressure, and some contain relicts of pseudotachylite and bear other thermal-mechanical signatures of seismic slip. Varying strain rates and episodic-tremor-and-slip (ETS) have been attributed to fault zones with varying widths filled with irregular foliations, veins, and dismembered blocks of varying sizes. Particle-size distributions and orientations in gouge appear to differ between locked and creeping faults. These and other geologic observations can be framed in terms of constitutive behaviors derived from experiments and modeling. The experimental correlation of velocity-dependence with microstructure and the behavior of natural fault-rocks under shear suggest that friction laws may be applied liberally to fault-zone interpretation. Force-chains imaged in stress-sensitive granular aggregates or in numerical simulations show that stick-slip behavior with stress drops far below that of earthquakes can occur during quasi-periodic creep, yet localize shear in larger, aperiodic events; perhaps the systematic relationship between sub-mm shear bands and surrounding gouge and/or cataclasites causes such slip partitioning in nature. Fracture, frictional sliding, and viscous creep can experimentally produce a range of slip behavior, including ETS-like events. Perhaps a similar mechanism occurs to cause ETS at the up-dip limit of faults where water-saturated, highly porous sedimentary aggregates are incorporated into fault zones. Forty years on, fault-rock studies continue to refine a model for fault slip that continuously encompasses the full range of lithospheric depths and seismic to geologic time scales.

  14. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 °C

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Lee, Kyoungsoo; Kim, Jong Sung; Byun, Thak Sang

    2009-02-01

    The distributions of mechanical and microstructural properties were investigated for the dissimilar metal weld joints between SA508 Gr.1a ferritic steel and F316 austenitic stainless steel with Alloy 82/182 filler metal using small-size tensile specimens. The material properties varied significantly in different zones while those were relatively uniform within each material. In particular, significant gradient of the mechanical properties were observed near the both heat-affected zones (HAZs) of F316 SS and SA508 Gr.1a. Thus, the yield stress (YS) was under-matched with respect to the both HAZs, although, the YS of the weld metal was over-matched with respect to both base metals. The minimum ductility occurred in the HAZ of SA508 Gr.1a at both test temperatures. The plastic instability stress also varied considerably across the weld joints, with minimum values occurring in the SA508 Gr.1a base metal at RT and in the HAZ of F316 SS at 320 °C. The transmission electron micrographs showed that the strengthening in the HAZ of F316 SS was attributed to the strain hardening, induced by a strain mismatch between the weldment and the base metal, which was evidenced by high dislocation density in the HAZ of F316 SS.

  15. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.

    PubMed

    Anderson, Jill T; Eckhart, Vincent M; Geber, Monica A

    2015-09-01

    Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors "native phenotypes" in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies' exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator-scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator-rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen-supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  16. DynEarthSol3D: numerical studies of basal crevasses and calving blocks

    NASA Astrophysics Data System (ADS)

    Logan, E.; Lavier, L. L.; Choi, E.; Tan, E.; Catania, G. A.

    2014-12-01

    DynEarthSol3D (DES) is a thermomechanical model for the simulation of dynamic ice flow. We present the application of DES toward two case studies - basal crevasses and calving blocks - to illustrate the potential of the model to aid in understanding calving processes. Among the advantages of using DES are: its unstructured meshes which adaptively resolve zones of high interest; its use of multiple rheologies to simulate different types of dynamic behavior; and its explicit and parallel numerical core which both make the implementation of different boundary conditions easy and the model highly scalable. We examine the initiation and development of both basal crevasses and calving blocks through time using visco-elasto-plastic rheology. Employing a brittle-to-ductile transition zone (BDTZ) based on local strain rate shows that the style and development of brittle features like crevasses differs markedly on the rheological parameters. Brittle and ductile behavior are captured by Mohr-Coulomb elastoplasticity and Maxwell viscoelasticity, respectively. We explore the parameter spaces which define these rheologies (including temperature) as well as the BDTZ threshold (shown in the literature as 10-7 Pa s), using time-to-failure as a metric for accuracy within the model. As the time it takes for a block of ice to fail can determine an iceberg's size, this work has implications for calving laws.

  17. Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties

    NASA Astrophysics Data System (ADS)

    Adel Mehraban, F.; Karimzadeh, F.; Abbasi, M. H.

    2015-05-01

    In this study, an Al/Al2O3-Al3Ni hybrid nanocomposite was developed on the surface of Al6061-T6 plate with preplaced NiO powder on its surface using friction-stir processing (FSP). The x-ray diffraction results showed that NiO particles were reduced by Al during FSP and Al3Ni and Al2O3 were formed as in situ reaction products. A thermodynamic analysis indicated that the reaction is thermodynamically possible and exothermic. Thus, the reaction that is initiated by the severe plastic deformation and friction associated with FSP could continue by the heat that is generated by the exothermic reaction. During each FSP pass, the FSP products are detached quickly from the interface and the growth of the particles is limited and nanometer-sized reinforcements were produced. The presence of facet and hexagonal nanoparticles in transmission electron microscopy micrographs of the stir zone confirmed the formation of Al3Ni and Al2O3 nanoreinforcements, respectively. Mechanical test results showed that the microhardness and ultimate tensile strength in the stir zone of nanocomposite decreased due to the dissolution of precipitates in Al6061-T6 during FSP. The tribological properties of Al6061 at 350°C were significantly improved by developing surface Al/Al2O3-Al3Ni nanocomposite.

  18. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  19. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector

    PubMed Central

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A.; Kadam, Sudarshan S.; Deshpande, Deepak D.

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data. PMID:28405102

  20. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector.

    PubMed

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A; Kadam, Sudarshan S; Deshpande, Deepak D

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx ™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be -1.3%, 1.9%, -0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data.

  1. Modeling ductile metals under large strain, pressure and high strain rate incorporating damage and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone

    2012-03-01

    In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.

  2. Modeling ductile metals under large strain, pressure and high strain rates incorporating damage and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone

    2011-06-01

    In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behaviour of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.

  3. Ingestion of plastic marine debris by Common and Thick-billed Murres in the northwestern Atlantic from 1985 to 2012.

    PubMed

    Bond, Alexander L; Provencher, Jennifer F; Elliot, Richard D; Ryan, Pierre C; Rowe, Sherrylynn; Jones, Ian L; Robertson, Gregory J; Wilhelm, Sabina I

    2013-12-15

    Plastic ingestion by seabirds is a growing conservation issue, but there are few time series of plastic ingestion with large sample sizes for which one can assess temporal trends. Common and Thick-billed Murres (Uria aalge and U. lomvia) are pursuit-diving auks that are legally harvested in Newfoundland and Labrador, Canada. Here, we combined previously unpublished data on plastic ingestion (from the 1980s to the 1990s) with contemporary samples (2011-2012) to evaluate changes in murres' plastic ingestion. Approximately 7% of murres had ingested plastic, with no significant change in the frequency of ingestion among species or periods. The number of pieces of plastic/bird, and mass of plastic/bird were highest in the 1980s, lowest in the late 1990s, and intermediate in contemporary samples. Studying plastic ingestion in harvested seabird populations links harvesters to conservation and health-related issues and is a useful source of large samples for diet and plastic ingestion studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Microstructural and rheological evolution of calcite mylonites during shear zone thinning: Constraints from the Mount Irene shear zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.

    2018-01-01

    Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism and shear zone rheology.

  5. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change.

    PubMed

    Ensslin, Andreas; Fischer, Markus

    2015-08-01

    • Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.

  6. Thermography detection on the fatigue damage

    NASA Astrophysics Data System (ADS)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.

  7. Biodegradability of Plastics: Challenges and Misconceptions.

    PubMed

    Kubowicz, Stephan; Booth, Andy M

    2017-11-07

    Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.

  8. Marine pollution. Plastic waste inputs from land into the ocean.

    PubMed

    Jambeck, Jenna R; Geyer, Roland; Wilcox, Chris; Siegler, Theodore R; Perryman, Miriam; Andrady, Anthony; Narayan, Ramani; Law, Kara Lavender

    2015-02-13

    Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025. Copyright © 2015, American Association for the Advancement of Science.

  9. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  10. Preliminary investigation of the transport of small plastic litter along a vegetated riverbank

    NASA Astrophysics Data System (ADS)

    Liu, Da; Valyrakis, Manousos

    2017-04-01

    Plastics are widely used in consumer products, due to its low cost, low weight and high durability compared to other types of materials. Contamination of marine ecosystems due to plastics (including microplastics) is a challenge that has received a lot of attention due to the significant risks it poses for the environment and human health. Plastics find their way to the ocean from land via the river system. Studying and obtaining a better understanding of the mechanisms contributing to the fate of plastic litter is therefore important in proactively devising methods to reduce their quantity or produce designs to trap plastic pollutants and prevent them from entering the ocean through estuaries. In this context, it is a common observation of hydraulic practitioners and field geomorphologists, that plastic litter can be trapped within riparian vegetation patches along streams or canals, which can be washed away in periods of high flows. To this goal this study aims to use a series of purpose specific physical experiments to examine the mechanisms of dispersion of plastic litter along the water surface of a channel with simulated riparian vegetation. The set of experiments are conducted in a recirculating flume with rigid riverbank and riparian vegetation modeled by a large number of acrylic rods, placed on the top of the riverbank section. Six different sizes of pieces of Styrofoam are used to simulate plastic litter. These are released from different locations upstream and in the vicinity of the riparian vegetation for various configurations (linear, staggered and random) of characteristic solid density. The trajectory of the plastic litter is recorded with a camera offering a top view of the arrangement. From the analysis of this a variety of results are obtained including transport metrics (including transport velocity and time to trapping) and litter-trapping location. The relation between the size of the litter, the vegetation configuration and the traveling distance is summarized.

  11. Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird.

    PubMed

    Westneat, David F; Bókony, Veronika; Burke, Terry; Chastel, Olivier; Jensen, Henrik; Kvalnes, Thomas; Lendvai, Ádám Z; Liker, András; Mock, Douglas; Schroeder, Julia; Schwagmeyer, P L; Sorci, Gabriele; Stewart, Ian R K

    2014-07-01

    Plasticity in life-history characteristics can influence many ecological and evolutionary phenomena, including how invading organisms cope with novel conditions in new locations or how environmental change affects organisms in native locations. Variation in reaction norm attributes is a critical element to understanding plasticity in life history, yet we know relatively little about the ways in which reaction norms vary within and among populations. We amassed data on clutch size from marked females in eight populations of house sparrows (Passer domesticus) from North America and Europe. We exploited repeated measures of clutch size to assess both the extent of within-individual phenotypic plasticity and among-individual variation and to test alternative hypotheses about the underlying causes of reaction norm shape, particularly the decline in clutch size with date. Across all populations, females of this multibrooded species altered their clutch size with respect to date, attempt order, and the interaction of date and order, producing a reaction norm in multidimensional environmental space. The reaction norm fits that predicted by a model in which optimal clutch size is driven by a decline with date hatched in the ability of offspring to recruit. Our results do not fit those predicted for other proposed causes of a seasonal decline in clutch size. We also found significant differences between populations in response to date and the date by attempt order interaction. We tested the prediction that the relationship with date should be increasingly negative as breeding season becomes shorter but found steeper declines in clutch size with date in populations with longer seasons, contrary to the prediction. Populations also differed in the level of among-individual variation in reaction norm intercept, but we found no evidence of among-individual variation in reaction norm slope. We show that complex reaction norms in life-history characters exhibit within- and among-population variance. The nature of this variance is only partially consistent with current life-history theory and stimulates expansions of such theory to accommodate complexities in adaptive life history. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  12. Seed origin and size of ponderosa pine planting stock grown at several California nurseries

    Treesearch

    Frank J. Baron; Gilbert H. Schubert

    1963-01-01

    Ponderosa pine planting stock (1-0 and 2-0) grown from five different seed collection zones in the California pine region differed noticeably in size. On the west side of the Sierra Nevada, seeds from zones above 4,000 feet yielded smaller seedlings than those from lower zones, but larger seedlings than those from east-side sources. Average dimensions (seedling weight...

  13. Rheology and Deformation Mechanisms in a High Temperature Shear Zone from a Microstructural and Crystalographic Preferred Orientation Approach: AN Example from se Brazil

    NASA Astrophysics Data System (ADS)

    Cavalcante, G. C.; Egydio-Silva, M.; Vauchez, A. R.; Lagoeiro, L. E.

    2014-12-01

    The Ribeira belt, located in southeastern Brazil, was formed during the Brasiliano (Pan- African) orogeny by the collision between the proto South American and African continents resulting in the amalgamation of Western Gondwana at around 670-480 Ma. Its northern termination displays a transcurrent shear zone network, the 250 km long Além Paraíba-Pádua shear zone, which involves granulites, migmatites and granites facies mylonites deformed in transpression. A detailed microstructural and crystallographic preferred orientation (CPO) study of the rock-forming minerals is being undertaken to infer constraints on the rheology of continental crust during the nucleation and development of this shear zone. A variety of mylonites (from protomylonites to ultramylonites) have been analyzed by Electron Backscattering Diffraction (EBSD) in order to determine the CPO of minerals, especially quartz, feldspars, amphibole, pyroxene and biotite. High-grade mylonites often exhibit ribbon-shaped quartz, probably due to high temperature grain boundary migration. They frequently wrap around K-feldspar porphyroclast exhibiting undulose extinction and core-mantle structures that may be related to bulging and/or subgrain rotation recrystallisation. In these HT mylonites, plagioclase is dynamically recrystallized and form fine-grained layers alternating with quartz-ribbons. Hornblende porphyroclasts present strain shadows of opaque mineral. Medium to high-grade mylonites derived from each felsic and mafic granulite and migmatitic gneisses show plagioclase with undulose extinction and deformation twins, quartz grains with both ribbon and porphyroclast shapes (> 3mm in size), orthopyroxene and garnet as porhyroclast and porphyroblast, respectively, and strongly oriented biotite. CPO of quartz indicates that it was deformed through plastic deformation with the activation of prism {a}. Feldspar CPOs show concentrations of [001] close to the lineation, of [010] close to the pole of the foliation and of [100] close to the Y strain axis, suggesting activation of the [001] (010) slip system.

  14. Microplastic pollution, a threat to marine ecosystem and human health: a short review.

    PubMed

    Sharma, Shivika; Chatterjee, Subhankar

    2017-09-01

    Human populations are using oceans as their household dustbins, and microplastic is one of the components which are not only polluting shorelines but also freshwater bodies globally. Microplastics are generally referred to particles with a size lower than 5 mm. These microplastics are tiny plastic granules and used as scrubbers in cosmetics, hand cleansers, air-blasting. These contaminants are omnipresent within almost all marine environments at present. The durability of plastics makes it highly resistant to degradation and through indiscriminate disposal they enter in the aquatic environment. Today, it is an issue of increasing scientific concern because these microparticles due to their small size are easily accessible to a wide range of aquatic organisms and ultimately transferred along food web. The chronic biological effects in marine organisms results due to accumulation of microplastics in their cells and tissues. The potential hazardous effects on humans by alternate ingestion of microparticles can cause alteration in chromosomes which lead to infertility, obesity, and cancer. Because of the recent threat of microplastics to marine biota as well as on human health, it is important to control excessive use of plastic additives and to introduce certain legislations and policies to regulate the sources of plastic litter. By setup various plastic recycling process or promoting plastic awareness programmes through different social and information media, we will be able to clean our sea dustbin in future.

  15. Intrapopulation Genome Size Variation in D. melanogaster Reflects Life History Variation and Plasticity

    PubMed Central

    Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.

    2014-01-01

    We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905

  16. Size-selective mortality of steelhead during freshwater and marine life stages related to freshwater growth in the Skagit River, Washington

    USGS Publications Warehouse

    Thompson, Jamie N.; Beauchamp, David A.

    2014-01-01

    We evaluated freshwater growth and survival from juvenile (ages 0–3) to smolt (ages 1–5) and adult stages in wild steelhead Oncorhynchus mykiss sampled in different precipitation zones of the Skagit River basin, Washington. Our objectives were to determine whether significant size-selective mortality (SSM) in steelhead could be detected between early and later freshwater stages and between each of these freshwater stages and returning adults and, if so, how SSM varied between these life stages and mixed and snow precipitation zones. Scale-based size-at-annulus comparisons indicated that steelhead in the snow zone were significantly larger at annulus 1 than those in the mixed rain–snow zone. Size at annuli 2 and 3 did not differ between precipitation zones, and we found no precipitation zone × life stage interaction effect on size at annulus. Significant freshwater and marine SSM was evident between the juvenile and adult samples at annulus 1 and between each life stage at annuli 2 and 3. Rapid growth between the final freshwater annulus and the smolt migration did not improve survival to adulthood; rather, it appears that survival in the marine environment may be driven by an overall higher growth rate set earlier in life, which results in a larger size at smolt migration. Efforts for recovery of threatened Puget Sound steelhead could benefit by considering that SSM between freshwater and marine life stages can be partially attributed to growth attained in freshwater habitats and by identifying those factors that limit growth during early life stages.

  17. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  18. A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region

    PubMed Central

    Yao, Di; Deng, Lei; Zhang, Mao; Wang, Xinyun; Tang, Na; Li, Jianjun

    2015-01-01

    Size effect is of great importance in micro forming processes. In this paper, micro cylinder compression was conducted to investigate the deformation behavior of bulk metallic glasses (BMGs) in supercooled liquid region with different deformation variables including sample size, temperature and strain rate. It was found that the elastic and plastic behaviors of BMGs have a strong dependence on the sample size. The free volume and defect concentration were introduced to explain the size effect. In order to demonstrate the influence of deformation variables on steady stress, elastic modulus and overshoot phenomenon, four size-dependent factors were proposed to construct a size-dependent constitutive model based on the Maxwell-pulse type model previously presented by the authors according to viscosity theory and free volume model. The proposed constitutive model was then adopted in finite element method simulations, and validated by comparing the micro cylinder compression and micro double cup extrusion experimental data with the numerical results. Furthermore, the model provides a new approach to understanding the size-dependent plastic deformation behavior of BMGs. PMID:25626690

  19. Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae): physiological basis and effects of maternal family and environment.

    PubMed

    Zhao, Z-G; Meng, J-L; Fan, B-L; Du, G-Z

    2008-11-01

    Theory predicts size-dependent sex allocation (SDS): flowers on plants with a high-resource status should have larger investment in females than plants with a low-resource status. Through a pot experiment with Aconitum gymnandrum (Ranunculaceae) in the field, we examined the relationship between sex allocation of individual flowers and plant size for different maternal families under different environmental conditions. We also determined the physiological base of variations in plant size. Our results support the prediction of SDS, and show that female-biased allocation with plant size is consistent under different environmental conditions. Negative correlations within families showed a plastic response of sex allocation to plant size. Negative genetic correlations between sex allocation and plant size at the family level indicate a genetic cause of the SDS pattern, although genetic correlation was influenced by environmental factors. Hence, the size-dependency of sex allocation in this species had both plastic and genetic causes. Furthermore, genotypes that grew large also had higher assimilation ability, thus showing a physiological basis for SDS.

  20. Density effect on great tit (Parus major) clutch size intensifies in a polluted environment.

    PubMed

    Eeva, Tapio; Lehikoinen, Esa

    2013-12-01

    Long-term data on a great tit (Parus major) population breeding in a metal-polluted zone around a copper-nickel smelter indicate that, against expectations, the clutch size of this species is decreasing even though metal emissions in the area have decreased considerably over the past two decades. Here, we document long-term population-level changes in the clutch size of P. major and explore if changes in population density, population numbers of competing species, timing of breeding, breeding habitat, or female age distribution can explain decreasing clutch sizes. Clutch size of P. major decreased by one egg in the polluted zone during the past 21 years, while there was no significant change in clutch size in the unpolluted reference zone over this time period. Density of P. major nests was similar in both environments but increased threefold during the study period in both areas (from 0.8 to 2.4 nest/ha). In the polluted zone, clutch size has decreased as a response to a considerable increase in population density, while a corresponding density change in the unpolluted zone did not have such an effect. The other factors studied did not explain the clutch size trend. Fledgling numbers in the polluted environment have been relatively low since the beginning of the study period, and they do not show a corresponding decrease to that noted for the clutch size over the same time period. Our study shows that responses of commonly measured life-history parameters to anthropogenic pollution depend on the structure of the breeding population. Interactions between pollution and intrinsic population characters should therefore be taken into account in environmental studies.

  1. Particulates generated from combustion of polymers (plastics).

    PubMed

    Shemwell, B E; Levendis, Y A

    2000-01-01

    This is an experimental study on the characterization of particulate (soot) emissions from burning polymers. Emissions of polystyrene (PS), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC) plastics were studied. Combustion took place in a laboratory-scale, electrically heated, drop-tube furnace at temperatures of 1300 and 1500 K, in air. The nominal bulk (global) equivalence ratio, phi, was varied in the range of 0.5-1.5, and the gas residence time in the nearly isothermal radiation zone of the furnace was approximately 1 sec. The particulate emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Results showed that both the yields and the size distributions of the emitted soot were remarkably different for the five plastics burned. Soot yields increased with an increasing bulk equivalence ratio. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. More soot was emitted from PS at 1500 than at 1300 K. Substantial amounts of soot agglomerates were larger than 9 microns. At 1500 and 1300 K, 35 and 29% of the soot mass, respectively, was PM2 (2 microns or smaller). Emissions from PE and PP were remarkably similar to each other. These polymers produced very low emissions at phi < or = 0.5, but emissions increased drastically with phi, and most of the soot was very fine (70-97% of the mass was PM2, depending on phi). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk phi, and 79-95% of the emissions were PM2. Combustion of PVC yielded the lowest amounts of soot; moreover, only 13-34% of the mass was PM2. On a comparative basis, at 1500 K, the following ranges of particulate yields were PM2: 19-75 mg/g of PS, 8-36 mg/g of PE, 1.5-47 mg/g of PP, 11-20 mg/g of PMMA, and 2-8 mg/g of PVC, depending on phi. These comparative results demonstrate that PS produces the highest amounts of fine particulates, followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduces the particulate emissions of PE and PP, substantially reduces those of PS, and mildly reduces those of PMMA and PVC.

  2. Unravelling the physics of size-dependent dislocation-mediated plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.

    2015-01-01

    Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.

  3. Effect of addition of butyl benzyl phthalate plasticizer and zinc oxide nanoparticles on mechanical properties of cellulose acetate butyrate/organoclay biocomposite

    NASA Astrophysics Data System (ADS)

    Putra, B. A. P.; Juwono, A. L.; Rochman, N. T.

    2017-07-01

    Plastics as packaging materials and coatings undergo increasing demands globally each year. This pose a serious problem to the environment due to its difficulty to degrade. One solution to addressing the problem of plastic wastes is the use of bioplastics. According to the European Organization Bioplastic, one of the biodegradable plastics is derivative of cellulose. To improve mechanical properties of bioplastic, biocomposites are made with the addition of certain additives and fillers. The aim of this study is to investigate the effect of butyl benzyl phthalate plasticizer (BBP) and ZnO nanoparticles addition on mechanical properties of cellulose acetate butyrate (CAB) / organoclay biocomposite. ZnO nanoparticles synthesized from commercial ZnO precursor by using sol-gel size reduction method. ZnO was dissolved in a solution of citric acid in the ratio 1:1 to 1:5 to form zinc citrate. Zinc citrate then decomposed by calcination at temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm is obtained at a ratio of 1: 2. The addition of ZnO nanoparticles and BBP plasticizer was varied to determine the effect on the mechanical properties of biocomposite. The addition of 10 - 15 %wt ZnO nanoparticles and 30 - 40 %wt BBP plasticizer was studied to determine the effect on the tensile strength, elongation, and modulus elasticity of the biocomposites. Biocomposite films were made by using solution casting method with acetone as solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30% and 10% made biocomposite has a tensile strength of 2.223 MPa.

  4. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Tang, Haiyan; Zhang, Jiaquan

    2016-06-01

    A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

  5. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependentmore » and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy.« less

  6. Presence of plastic particles in waterbirds faeces collected in Spanish lakes.

    PubMed

    Gil-Delgado, J A; Guijarro, D; Gosálvez, R U; López-Iborra, G M; Ponz, A; Velasco, A

    2017-01-01

    Plastic intake by marine vertebrates has been widely reported, but information about its presence in continental waterfowl is scarce. Here we analyzed faeces of waterbirds species (European coot, Fulica atra, mallard, Anas platyrhynchos and shelduck, Tadorna tadorna) for plastic debris in five wetlands in Central Spain. We collected 89 faeces of shelduck distributed in four lakes, 43.8% of them presented plastic remnants. Sixty percent of 10 faeces of European coot and 45% of 40 faeces of mallard contained plastic debris. Plastic debris found was of two types, threads and fragments, and were identified as remnants of plastic objects used in agricultural fields surrounding the lakes. Differences in prevalence of plastic in faeces, number of plastic pieces per excrement and size of the plastic pieces were not statistically significant between waterfowl species. Thus, our results suggest that plastic may also be frequently ingested by waterfowl in continental waters, at least in our study area. Future studies should address this potential problem for waterbird conservation in other wetlands to evaluate the real impact of this pollutant on waterbirds living in inland water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation of the plastic fracture of high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Merchant, R. H.; Low, J. R., Jr.

    1974-01-01

    In a study of plastic fracture in five high-strength aluminum alloys (2014, 2024, 2124, 7075, and 7079), it has been shown that fracture toughness is affected primarily by the size and volume fraction of the larger (2 to 10 microms) second-phase particles. Certain of these particles crack at small plastic strains, nucleating voids which, with further plastic strain, coalesce to cause fracture. Not all second-phase particles crack at small plastic strains, and qualitative analysis of those which are primarily responsible for void nucleation shows that they contain iron or silicon or both. This result suggests that a reduction in the iron and silicon impurity content of the alloys should improve fracture toughness without loss of strength.

  8. High-resolution numerical modeling of tectonic underplating in circum-Pacific subduction zones: toward a better understanding of deformation in the episodic tremor and slip region?

    NASA Astrophysics Data System (ADS)

    Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.

    2017-12-01

    Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing thickness of the high-strained subduction channel and (2) an accumulation of fluid-rich materials that serve as an environment for episodic tremor and slip events assisted by tectonic shearing and fluid release and percolation.

  9. Widespread rapid reductions in body size of adult salamanders in response to climate change.

    PubMed

    Caruso, Nicholas M; Sears, Michael W; Adams, Dean C; Lips, Karen R

    2014-06-01

    Reduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years. Biophysical models, accounting for actual changes in moisture and air temperature over that period, showed a 7.1-7.9% increase in metabolic expenditure at three latitudes but showed no change in annual duration of activity. Reduced size was greatest at southern latitudes in regions experiencing the greatest drying and warming. Our results are consistent with a plastic response of body size to climate change through reductions in body size as mediated through increased metabolism. These rapid reductions in body size over the past few decades have significance for the susceptibility of amphibians to environmental change, and relevance for whether adaptation can keep pace with climate change in the future. © 2014 John Wiley & Sons Ltd.

  10. Influence of Mechanical Properties of Aerial Shells made from Biodegradable Plastics on Smaller Fragmentation

    NASA Astrophysics Data System (ADS)

    Kudo, Makoto; Murata, Kenji; Kamata, Satoru; Hamada, Fumio

    In this paper, a new aerial shell made of biodegradable plastics was developed and explosion tests were carried out using 2.5-10 gou-size firework aerial shells at a ground test site in order to observe the fragmentation. The dispersed fragments were then collected and their size and distribution measured. In order to monitor the fragmentation visually, a high-speed camera was used to film the ignition of the bursting charge and the scattering of the shell fragments. The shell fragments became much smaller, because mechanical properties of biodegradable plastics that were added improved polyvinyl alcohol (PVA) and chaff powder (CP). Fibrillation was seen in PBS/PVA/CP, and it seemed effective for mechanical properties. As a result, safer aerial shells which disperse into smaller fragments on explosion were successfully developed.

  11. Application of laser processing for disassembly of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Baranov, Gennady A.; Zinchenko, A. V.; Arutyunyan, R. B.

    1998-12-01

    Provision of safety and drop of ecological risk at salvaging of nuclear submarines (NSM) of Russia Navy Forces represents one of the most actual problems of nowadays. It is necessary to remove from services of Russian Navy Forces 170 - 180 nuclear submarines by 2000. At salvaging of Russian Navy Forces NSM it should be necessary to cut out reactor compartments with more than 150 thousand tons of gross weight and to fragment terminal carcasses of submarines with gross weight of 2 million tons. Taking into account overall dimensions of salvaging objects and Euro-standard requirement on the sizes of carcass fragments, for salvaging of one NSM it is necessary to execute more than 10 km of cuts. Using of conventional methods of gas and plasma cutting of ship constructions and equipment polluted with radioactive oxides and bedding of insulation and paint and varnish materials causes contamination of working zones and environment by a mix of radioactive substances and highly toxic combustion products, nomenclature of which includes up to 50 names. Calculations carried out in the Institute of industrial and Marine Medicine have shown that salvage of just one NSM with using of gas and plasma cutting are accompanied by discharge into an environment of up to 11.5 kg of chromium oxides, up to 22.5 kg of manganese oxides, up to 97 kg of carbon oxides and up to 650 kg of nitrogen oxides. Fragmentation of such equipment by a method of directional explosion or hydraulic jet is problematic because of complexity of treated constructions and necessity to create special protective facilities, which will accumulate a bulk of radioactive and toxic discharges, as a consequence of the explosion and spreaded by shock waves and water deluges. In a number of new technological processes the cutting with using of high-power industrial lasers radiation stands out. As compared with other technological processes, laser cutting has many advantages determined by such unique properties of laser radiation as large power, capability to concentrate power on the small area (up to 108 W/cm2), good spatial and temporal controllability. The laser cutting advantages are the following: (1) high efficiency; (2) capability to cut various materials (metals, alloys, plastics, rubber, ceramics) and their compositions (fiber glass plastics, rubber-plastics, cermets) by one installation; (3) minimum pollution in gas and condensed phases; (4) high degree of technological process automation; (5) remote character of cutting and personnel absence in a processing zone.

  12. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  13. Right Hemisphere Remapping of Naming Functions Depends on Lesion Size and Location in Poststroke Aphasia

    PubMed Central

    Skipper-Kallal, Laura M.; Lacey, Elizabeth H.; Xing, Shihui

    2017-01-01

    The study of language network plasticity following left hemisphere stroke is foundational to the understanding of aphasia recovery and neural plasticity in general. Damage in different language nodes may influence whether local plasticity is possible and whether right hemisphere recruitment is beneficial. However, the relationships of both lesion size and location to patterns of remapping are poorly understood. In the context of a picture naming fMRI task, we tested whether lesion size and location relate to activity in surviving left hemisphere language nodes, as well as homotopic activity in the right hemisphere during covert name retrieval and overt name production. We found that lesion size was positively associated with greater right hemisphere activity during both phases of naming, a pattern that has frequently been suggested but has not previously been clearly demonstrated. During overt naming, lesions in the inferior frontal gyrus led to deactivation of contralateral frontal areas, while lesions in motor cortex led to increased right motor cortex activity. Furthermore, increased right motor activity related to better naming performance only when left motor cortex was lesioned, suggesting compensatory takeover of speech or language function by the homotopic node. These findings demonstrate that reorganization of language function, and the degree to which reorganization facilitates aphasia recovery, is dependent on the size and site of the lesion. PMID:28168061

  14. Oil Palm Empty Fruit Bunch (OPEFB) Fiber as Lost Circulation Material (LCM) in Water Based Mud (WBM)

    NASA Astrophysics Data System (ADS)

    Ghazali, N. A.; Sauki, A.; Abu Bakar, N. F.; Mohamed, S.

    2018-05-01

    Lost Circulation Material (LCM) is an additive used to prevent lost of mud to the formation as a results from natural or induced fractured during drilling operation. Losses of mud could give great impact to the oil industry as it increases mud cost and rig time. The objective of this research was to investigate the effect of size and concentration of Oil Palm Empty Fruit Bunch (OPEFB) as LCM in water based mud (WBM). Several important properties of WBM rheology after adding the OPEFB namely plastic viscosity, apparent viscosity, yield point and gel strength were characterized. The sizes of OPEFB added into the WBM were 150μm, 250μm, 500μm and 1000μm while the concentration of OPEFB used were 5g, 10g, 15g and 20g in 350 mL of WBM. Results indicated that the plastic viscosity and apparent viscosity increased with increasing of the OPEFB concentrations. On the other hand, the plastic viscosity and apparent viscosity decreased with increasing sizes of OPEFB. Yield point increased as the concentration and size of OPEFB increases. This study indicated that OPEFB was effective to be used as LCM for size of 150μm and concentration of 15g whereby it produced least amount of filtrate volume as well as good control in mud rheology.

  15. Failure Mechanisms of Thermomechanically Loaded SnAgCu/Plastic Core Solder Ball Composite Joints in Low-Temperature Co-Fired Ceramic/Printed Wiring Board Assemblies

    NASA Astrophysics Data System (ADS)

    Nousiainen, O.; Putaala, J.; Kangasvieri, T.; Rautioaho, R.; Vähäkangas, J.

    2007-03-01

    The thermal fatigue endurance of completely lead-free 95.5Sn4Ag0.7Cu/plastic core solder ball (PCSB) composite joint structures in low-temperature Co-fired ceramic/printed wiring board (LTCC/PWB) assemblies was investigated using thermal cycling tests over the temperature ranges of -40°C 125°C and 0°C 100°C. Two separate creep/fatigue failures initiated and propagated in the joints during the tests: (1) a crack along the intermetallic compound (IMC)/solder interface on the LTCC side of the joint, which formed at the high-temperature extremes; and (2) a crack in the solder near the LTCC solder land, which formed at the low-temperature extremes. Moreover, localized recrystallization was detected at the outer edge of the joints that were tested in the harsh (-40°C 125°C) test conditions. The failure mechanism was creep/fatigue-induced mixed intergranular and transgranular cracking in the recrystallized zone, but it was dominated by transgranular thermal fatigue failure beyond the recrystallized zone. The change in the failure mechanism increased the rate of crack growth. When the lower temperature extreme was raised from -40°C to 0°C, no recrystallized zone was detected and the failure was due to intergranular cracks.

  16. Seasonal plasticity in telencephalon mass of a benthic fish.

    PubMed

    McCallum, E S; Capelle, P M; Balshine, S

    2014-11-01

    To gain a deeper understanding of how environmental conditions affect brain plasticity, brain size was explored across different seasons using the invasive round goby Neogobius melanostomus. The results show that N. melanostomus had heavier telencephalon in the spring compared to the autumn across the two years of study. Furthermore, fish in reproductive condition had heavier telencephala, indicating that tissue investment and brain plasticity may be related to reproductive needs in N. melanostomus. © 2014 The Fisheries Society of the British Isles.

  17. Installation Restoration Program. Phase 2. Confirmation/Quantification Stage 2, Moody Air Force Base, Georgia. Appendices. Volume 1

    DTIC Science & Technology

    1988-11-01

    Light gray NB, clayey (kaolin). Poetv al - quartz mad to fine sand, mod. (0 Locking Cap plastic , saturated. 3 COMPILED BY B. Painter (EWM) t DATE 11-21...Painter (EUM) -SAMPLE PNTAINSOIL DESCRIIPTION COMMENTS ZTEST NAME. GRADATION OR PLASTICITY ,. DEPTH Of CASING, W ~ 1NPARTICLE SIZE DISTRIBUTION. COLOR...L. Grayish orange 10 YR 7/4. quart. RNDEVAI: very tine Sandy clay, dense, DIAMETER: 2-inrh Srhe So PVC moderately plastics dry. DEPTH: 2 - fenot[ 1

  18. Plastic packaged microcircuits: Quality, reliability, and cost issues

    NASA Astrophysics Data System (ADS)

    Pecht, Michael G.; Agarwal, Rakesh; Quearry, Dan

    1993-12-01

    Plastic encapsulated microcircuits (PEMs) find their main application in commercial and telecommunication electronics. The advantages of PEMs in cost, size, weight, performance, and market lead-time, have attracted 97% of the market share of worldwide microcircuit sales. However, PEMs have always been resisted in US Government and military applications due to the perception that PEM reliability is low. This paper surveys plastic packaging with respect to the issues of reliability, market lead-time, performance, cost, and weight as a means to guide part-selection and system-design.

  19. 77 FR 39209 - Foreign-Trade Zone 74-Baltimore, MD, Notification of Proposed Production Activity, J.D. Neuhaus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... from abroad include: air and hydraulic powered hoist and trolley subassemblies and parts, cranes/ winches and related parts, hoist chain, lubricating oils, plastic air hoses, rubber gaskets and o-rings, fasteners, springs, air filters, air pressure regulators, valves and related parts, and bearings and bearing...

  20. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Plastic Pollution Research and Control Act of 1987, and the Ocean Dumping Act, address pollution within... related legislation in 2003-2005 to limit pollution from large passenger and large oceangoing vessels. In...; (3) to further regulate landside sources of pollution; (4) to improve inspection and testing...

Top