Multimaterial lamination as a means of retarding penetration and spallation failures in plates
NASA Technical Reports Server (NTRS)
Dibattista, J. D.; Humes, D. H.
1972-01-01
Experimental data are presented which show that hypervelocity impact spallation and penetration failures of a single solid aluminum plate and of a solid aluminum plate spaced a distance behind a Whipple meteor bumper may be retarded by replacing the solid aluminum plate with a laminated plate. Four sets of experiments were conducted. The first set of experiments was conducted with projectile mass and velocity held constant and with polycarbonate cylinders impacted into single plates of different construction. The second set of experiments was done with single plates of various construction and aluminum spherical projectiles of similar mass but different velocities. These two experiments showed that a laminated plate of aluminum and polycarbonate or aluminum and methyl methacrylate could prevent spallation and penetration failures with a lower areal density than either an all-aluminum laminated plate or a solid aluminum plate. The aluminum laminated plate was in turn superior to the solid aluminum plate in resisting spallation and penetration failures. In addition, through an example of 6061-T6 aluminum and methyl methacrylate, it is shown that a laminated structure ballistically superior to its parent materials may be built. The last two sets of experiments were conducted using bumper-protected main walls of solid aluminum and of laminated aluminum and polycarbonate. Again, under hypervelocity impact conditions, the laminated main walls were superior to the solid aluminum main walls in retarding spallation and penetration failures.
Signal processing of bedload transport impact amplitudes on accelerometer instrumented plates
USDA-ARS?s Scientific Manuscript database
This work was performed to help establish a data processing methodology for relating accelerometer signals caused by impacts of gravel on steel plates to the mass and size of the transported material. Signal processing was performed on impact plate data collected in flume experiments at the Nationa...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marr-Lyon, Mark; Sandoval, Thomas D.; Herrera, Dennis H.
2014-04-11
Two impact experiments in the Specific Munitions Impact Scenario (SMIS) configuration [1{3] were performed on September 3 and 4, 2013 at Lower Slobbovia ring site. Targets of the high explosive PBX-9502 were impacted with 1/2-inch diameter low-carbon steel spheres red from a 30-mm powder gun at velocities of approximately 2.5 km/s. In one experiment the target was cased in a steel cylinder with steel end plates, and in the second the target was cased in a plastic cylinder with a thin steel front cover plate and a thick steel rear plate. In neither experiment did the PBX-9502 detonate, though somemore » material reacted in the impact« less
A novel method for characterizing the impact response of functionally graded plates
NASA Astrophysics Data System (ADS)
Larson, Reid A.
Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM plates were collected during impact events. These strain histories were used to validate a finite element simulation of the test. A parameter estimation technique was developed to estimate local material properties in the anisotropic, non-homogenous FGM plates to optimize the finite element simulations. The optimized simulations captured the physics of the impact events. The method allows research & design engineers to make informed decisions necessary to implement FGM plates in aerospace platforms.
NASA Astrophysics Data System (ADS)
Gustavsen, R. L.; Aslam, T. D.; Bartram, B. D.; Hollowell, B. C.
2014-05-01
A series of two-stage gus-gun driven plate impact experiments on PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 plastic binder) was completed in the 28-34 GPa pressure range. This is just above the Chapman-Jouguet state of ≈ 28 GPa. The experiments consisted of a thick oxygen free high conductivity copper (OFHC Cu) flyer plate impacting a PBX 9502 sample backed by a Lithium Fluoride (LiF) window. Photonic Doppler Velocimetry (PDV) was used to measure velocity histories (wave profiles) at the PBX 9502/LiF interface. Shock transit times and sample thicknesses were converted to shock velocities, Us. Particle velocities, up, were calculated by way of impedance matching. Lastly, the measured wave profiles were compared with numerical simulations of the experiments using the Wescott-Stewart-Davis reactive-burn model.
Impact extractive fracture of jointed steel plates of a bolted joint
NASA Astrophysics Data System (ADS)
Daimaruya, M.; Fujiki, H.; Ambarita, H.
2012-08-01
This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.
Effect of high strain rates on peak stress in a Zr-based bulk metallic glass
NASA Astrophysics Data System (ADS)
Sunny, George; Yuan, Fuping; Prakash, Vikas; Lewandowski, John
2008-11-01
The mechanical behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 102-105/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 105/s.
Note: Heated flyer-plate impact system
NASA Astrophysics Data System (ADS)
Dolan, D. H.; Seagle, C. T.; Ao, T.; Hacking, R. G.
2014-07-01
A technique for launching heated flyer plates was developed on a single-stage gas gun. This type of impact creates a well-posed mechanical state and a tunable thermal state, which is useful for calibrating dynamic temperature measurements. Proof-of-principle thermoreflectance measurements were performed using this technique. Since the target remains at room temperature until the moment of impact, heated flyers avoid differential expansion and annealing issues, allowing novel impact experiments to be performed.
Note: Heated flyer-plate impact system.
Dolan, D H; Seagle, C T; Ao, T; Hacking, R G
2014-07-01
A technique for launching heated flyer plates was developed on a single-stage gas gun. This type of impact creates a well-posed mechanical state and a tunable thermal state, which is useful for calibrating dynamic temperature measurements. Proof-of-principle thermoreflectance measurements were performed using this technique. Since the target remains at room temperature until the moment of impact, heated flyers avoid differential expansion and annealing issues, allowing novel impact experiments to be performed.
Investigation of Ejecta Production in Tin Using Plate Impact Experiments
NASA Astrophysics Data System (ADS)
Rigg, P. A.; Anderson, W. W.; Olson, R. T.; Buttler, W. T.; Hixson, R. S.
2006-07-01
Experiments to investigate ejecta production in shocked tin have been performed using plate impact facilities at Los Alamos National Laboratory. Three primary diagnostics — piezoelectric pins, Asay foils, and low energy X-ray radiography — were fielded simultaneously in an attempt to quantify the amount of ejecta produced in tin as the shock wave breaks out of the free surface. Results will be presented comparing and contrasting all three diagnostics methods. Advantages and disadvantages of each method will be discussed.
NASA Astrophysics Data System (ADS)
Geng, Lin; Zhang, Xiao-Zheng; Bi, Chuan-Xing
2015-05-01
Time domain plane wave superposition method is extended to reconstruct the transient pressure field radiated by an impacted plate and the normal acceleration of the plate. In the extended method, the pressure measured on the hologram plane is expressed as a superposition of time convolutions between the time-wavenumber normal acceleration spectrum on a virtual source plane and the time domain propagation kernel relating the pressure on the hologram plane to the normal acceleration spectrum on the virtual source plane. By performing an inverse operation, the normal acceleration spectrum on the virtual source plane can be obtained by an iterative solving process, and then taken as the input to reconstruct the whole pressure field and the normal acceleration of the plate. An experiment of a clamped rectangular steel plate impacted by a steel ball is presented. The experimental results demonstrate that the extended method is effective in visualizing the transient vibration and sound radiation of an impacted plate in both time and space domains, thus providing the important information for overall understanding the vibration and sound radiation of the plate.
Large-scale 3D modeling of projectile impact damage in brittle plates
NASA Astrophysics Data System (ADS)
Seagraves, A.; Radovitzky, R.
2015-10-01
The damage and failure of brittle plates subjected to projectile impact is investigated through large-scale three-dimensional simulation using the DG/CZM approach introduced by Radovitzky et al. [Comput. Methods Appl. Mech. Eng. 2011; 200(1-4), 326-344]. Two standard experimental setups are considered: first, we simulate edge-on impact experiments on Al2O3 tiles by Strassburger and Senf [Technical Report ARL-CR-214, Army Research Laboratory, 1995]. Qualitative and quantitative validation of the simulation results is pursued by direct comparison of simulations with experiments at different loading rates and good agreement is obtained. In the second example considered, we investigate the fracture patterns in normal impact of spheres on thin, unconfined ceramic plates over a wide range of loading rates. For both the edge-on and normal impact configurations, the full field description provided by the simulations is used to interpret the mechanisms underlying the crack propagation patterns and their strong dependence on loading rate.
Study of hypervelocity projectile impact on thick metal plates
Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; ...
2016-01-01
Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less
Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces
NASA Astrophysics Data System (ADS)
Tsai, Scott; Bird, James C.; Stone, Howard A.
2008-11-01
Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.
Impact face influence on low velocity impact performance of interply laminated plates
NASA Astrophysics Data System (ADS)
Manikandan, Periyasamy; Chai, Gin Boay
2015-03-01
Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.
Star-Shaped Crack Pattern of Broken Windows
NASA Astrophysics Data System (ADS)
Vandenberghe, Nicolas; Vermorel, Romain; Villermaux, Emmanuel
2013-04-01
Broken thin brittle plates like windows and windshields are ubiquitous in our environment. When impacted locally, they typically present a pattern of cracks extending radially outward from the impact point. We study the variation of the pattern of cracks by performing controlled transverse impacts on brittle plates over a broad range of impact speed, plate thickness, and material properties, and we establish from experiments a global scaling law for the number of radial cracks incorporating all these parameters. A model based on Griffith’s theory of fracture combining bending elastic energy and fracture energy accounts for our observations. These findings indicate how the postmortem shape of broken samples are related to material properties and impact parameters, a procedure relevant to forensic science, archaeology, or astrophysics.
Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression
NASA Astrophysics Data System (ADS)
Yuan, Fuping; Tsai, Liren; Prakash, Vikas; Dandekar, Dattatraya P.; Rajendran, A. M.
2008-05-01
In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417-431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.
Large craters on the meteoroid and space debris impact experiment
NASA Technical Reports Server (NTRS)
Humes, Donald H.
1991-01-01
The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.
Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates
NASA Technical Reports Server (NTRS)
Griffis, D. P.; Wortman, J. J.
1992-01-01
The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.
Enhanced hypervelocity launcher: Capabilities to 16 km/s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabildas, L.C.; Kmetyk, L.N.; Reinhart, W.D.
1993-12-31
A systematic study is described which has led to the successful launch of thin flier plates to velocities of 16 km/s. The energy required to launch a flier plant to 16 km/s is approximately 10 to 15 times the energy required to melt and vaporize the plate. The energy must, therefore, be deposited in a well-controlled manner to prevent melt or vaporation. This is achieved by using a graded-density assembly to impact a stationary flier-plate upon impact time dependent, structure, high pressure pulses are generated and used to propel the plantes plates to hypervelocities without melt or fracture. In previousmore » studies, a graded density impact of 7.3 km/s was used to launch a 0.5 mm thick plate to a velocity of over 12 km/s. If impact techniques alone were to be used to achieve flier-plate velocities approaching 16 km/s, this would require that the graded-density impact occur at {approximately} 10 km/s. In this paper, we describe a new technique that has been implemented to enhance the performance of the Sandia hypervelocity launcher. This technique of creating an impact-generated acceleration reservoir, has allowed the launch of 0.5 mm to 1.0 mm thick plates to record velocities up to 15.8 km/s. In these experiments, both titanium (Ti-6A1-4V) and aluminum (6061-T6) alloy were used for the flier-plate material. These are the highest metallic projectile plate velocities ever achieved for masses in the range of 0.1 g to 1 g.« less
Polyurethane Foam Impact Experiments and Simulations
NASA Astrophysics Data System (ADS)
Kipp, M. E.; Chhabildas, L. C.; Reinhart, W. D.; Wong, M. K.
1999-06-01
Uniaxial strain impact experiments with a rigid polyurethane foam of nominal density 0.22g/cc are reported. A 6 mm thick foam impactor is mounted on the face of a projectile and impacts a thin (1 mm) target plate of aluminum or copper, on which the rear free surface velocity history is acquired with a VISAR. Impact velocities ranged from 300 to 1500 m/s. The velocity record monitors the initial shock from the foam transmitted through the target, followed by a reverberation within the target plate as the wave interacts with the compressed foam at the impact interface and the free recording surface. These one-dimensional uniaxial strain impact experiments were modeled using a traditional p-alpha porous material model for the distended polyurethane, which generally captured the motion imparted to the target by the foam. Some of the high frequency aspects of the data, reflecting the heterogeneous nature of the foam, can be recovered with computations of fully 3-dimensional explicit representations of this porous material.
Simulation of Impact on a Ductile Polymer Plate
NASA Technical Reports Server (NTRS)
Cremona, Rebecca L.; Hinkley, Jeffrey A.
2005-01-01
Explicit finite element calculations were used to visualize the deformation and temperature rise in an elastic-plastic plate impacted by a rigid projectile. Results were compared to results of experiments involving ballistic penetration of a "self-healing" thermoplastic. The calculated temperature rise agreed well with the experimental observation, but the total energy absorbed in the penetration event was underestimated in the calculation, which neglected friction.
Ballistic Experiments with Titanium and Aluminum Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogolewski, R.; Morgan, B.R.
1999-11-23
During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballisticmore » limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.« less
On the Impact Between a Water Free Surface and a Rigid Structure
NASA Astrophysics Data System (ADS)
Wang, An
In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3 cm below the mean water level, a ''flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.
Spray Formation during the Impact of a Flat Plate on Water Surface
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2015-11-01
Spray formation during the impact of a flat plate on a water surface is studied experimentally. The plate is mounted on a two-axis carriage that can slam the plate vertically into the water surface as the carriage moves horizontally along a towing tank. The plate is 122 cm by 38 cm and oriented with adjustable pitch and roll angle. The port (lower) edge of the plate is positioned with a 3-mm gap from one of the tank walls. A laser sheet is created in a plane oriented perpendicular to the axis of the horizontal motion of the carriage. The temporal evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique at a frame rate of 800 Hz. Experiments are performed with a fixed plate trajectory in a vertical plane, undertaken at various speeds. Two types of spray are found when the plate has nonzero pitch and roll angles. The first type is composed of a cloud of high-speed droplets and ligaments generated as the port edge of the plate hits the water surface during the initial impact. The second type is a thin sheet of water that grows from the starboard edge of the plate as it moves below the local water level. The geometrical features of the spray are found to be dramatically affected by the impact velocity. The support of the Office of Naval Research under grant N000141310587 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Boutelier, D.; Cruden, A. R.
2005-12-01
New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch from compression to extension. The density contrast between the downgoing plate and asthenosphere is varied from 0% to ~2% in order to investigate the relative contributions of mantle flow and slab pull force on the geometry of the slab and tectonic regime (compressional or extensional).
Spall fracture in aluminium alloy at high strain rates
NASA Astrophysics Data System (ADS)
Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.
Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.
1991-04-23
The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.
Shockwave compression of Ar gas at several initial densities
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.
2017-01-01
Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.
NASA Astrophysics Data System (ADS)
Myagkov, N. N.; Shumikhin, T. A.; Bezrukov, L. N.
2013-08-01
The series of impact experiments were performed to study the properties of ejecta generated at high-velocity perforation of thin bumpers. The bumpers were aluminum plates, fiber-glass plastic plates, and meshes weaved of steel wire. The projectiles were 6.35 mm diameter aluminum spheres. The impact velocities ranged from 1.95 to 3.52 km/s. In the experiments the ejecta particles were captured with low-density foam collectors or registered with the use of aluminum foils. The processing of the experimental results allowed us to estimate the total masses, spatial and size distributions, and perforating abilities of the ejecta produced from these different bumpers. As applied to the problem of reducing the near-Earth space pollution caused by the ejecta, the results obtained argue against the use of aluminum plates as first (outer) bumper in spacecraft shield protection.
Shock induced spall fracture in aluminium alloy "Al2014-T4"
NASA Astrophysics Data System (ADS)
Joshi, K. D.; Rav, Amit; Sur, Amit; Das, P. C.; Gupta, Satish C.
2015-06-01
The plate impact experiments have been carried out on 8mm thick target plates of aluminium alloy Al2014-T4 at impact velocities of 180 m/s, 290 m/s and 500m/s, respectively, using single stage gas gun facility. In each experiment, the of free surface velocity history of the sample plate is measured using VISAR instrument and utilized to determine the spall strength and dynamic yield strength of this material. The spall strength of 0.87 GPa, 0.97 GPa and 1.11 GPa, respectively, measured for impact velocities of 180 m/s, 290 m/s and 500 m/s with corresponding average strain rates varying from 1.36×104/s to 2.41×14/s has been found to display nearly linear dependence upon the strain rates. The dynamic yield strength with its value ranging from 0.395 GPa to 0.400 GPa, though, is higher than the quasi static value of 0.355GPa, appears to be relatively independent of impact velocities up to at least 500 m/s or equivalently strain rates up to ˜ 9.4×104/s.
1998-01-01
nonideal penetrator on a thin plate at high obliquities. These computations simulated two series of experiments at velocities of 1.5 km/ s and 4.1 km/ s ...3 2. Combined Effects of Obliquity, 0, and Rotation, 4, on Debris Cloud Evolution at 4.1 km/ s and 26 p s ; Impact Velocity Vector Lies in x-z Plane...7 3. Time History of the Penetrator Mass Fraction Exiting the Bottom of the Target at 4.1 km / s
Micrometeoroids and debris on LDEF
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude
1992-01-01
Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.
Sezek, Sinan; Aksakal, Bunyamin; Gürger, Murat; Malkoc, Melih; Say, Y
2016-08-12
Total deformation and stability of straight and helical compression plates were studied by means of the finite element method (FEM) and in vitro biomechanical experiments. Fixations of transverse (TF) and oblique (45°) bone (OF) fractures have been analyzed on sheep tibias by designing the straight compression (SP) and Helical Compression Plate (HP) models. The effects of axial compression, bending and torsion loads on both plating systems were analyzed in terms of total displacements. Numerical models and experimental models suggested that under compression loadings, bone fracture gap closures for both fracture types were found to be in the favor of helical plate designs. The helical plate (HP) fixations provided maximum torsional resistance compared to the (SP) fixations. The fracture gap closure and stability of helical plate fixation for transverse fractures was determined to be higher than that found for the oblique fractures. The comparison of average compression stress, bending and torsion moments showed that the FEM and experimental results are in good agreement and such designs are likely to have a positive impact in future bone fracture fixation designs.
The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models
2011-09-01
state having two equal eigenvalues. For TXC, the axial stress (single eigenvalue) is more compressive than the lateral stresses (dual eigenvalues). For...parameters. These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and...These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and plate impact, which
Plastic flow modeling in glassy polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Brad
2010-12-13
Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression,more » a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our recently developed glassy polymer model. While polymers are well known for their non-equilibrium deviatoric behavior we have found the need for incorporating both equilibrium and non-equilibrium volumetric behavior into our theory. Experimental evidence supporting the notion of non-equilibrium volumetric behavior will be summarized. Our polymer yield model accurately captures the stress plateau, softening and hardening and its yield stress predictions agree well with measured values for several glassy polymers including PMMA, PC, and an epoxy resin. We then apply our theory to plate impact experiments in an attempt to address the questions associated with high rate polymer yield in uniaxial strain configurations.« less
Mode I Failure of Armor Ceramics: Experiments and Modeling
NASA Astrophysics Data System (ADS)
Meredith, Christopher; Leavy, Brian
2017-06-01
The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.
Effect of Curvature on the Impact Damage Characteristics and Residual Strength of Composite Plates
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.
1998-01-01
The results of a study of the response and failure characteristics of thin, cylindrically curved, composite plates subjected to low-speed impact damage are presented. The results indicate that the plate radius and the plate thickness are important structural parameters that influence the nonlinear response of a plate for a given amount of impact energy. Analytical and experimental contact-force results are compared for several plates and the results correlate well. The impact-energy levels required to cause damage initiation and barely visible impact damage are a function of the plate radius for a given plate thickness. The impact-energy levels required to initiate impact damage for plates with a certain range of radii are greater than plates with other radii. The contact-force results corresponding to these impact-energy levels follow a similar trend. Residual strength results for plates with barely visible impact damage suggest that the compression-after-impact residual strength is also a function of plate radius. The residual strength of impact-damaged flat plates appears to be lower than the residual strength of the corresponding cylindrically curved plates.
Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135
NASA Astrophysics Data System (ADS)
Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.
2002-11-01
Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Shenoy, Rajiv R.; Passe, Bradley J.; Baurle, Robert A.; Drummond, J. Philip
2017-01-01
In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations.
NASA Astrophysics Data System (ADS)
Sibrant, A.; Davaille, A.
2015-12-01
Over the last 130 Ma, the India plate migration varied in velocity and direction. The oceanic magnetic anomalies indicates that the India-Asia convergence rate increase at ~ 90 Ma and at ~ 67 Ma. These episodes of acceleration correspond to the emplacement of Morondava and Deccan large igneous provinces, respectively. They therefore may be generated by the arrival of a mantle plume in the vicinity of India. We carried out laboratory experiments to examine and quantify the possible links between plume head impact and the acceleration of a continental plate. The latter is modelled by a buoyant raft, floating on the surface of a plexiglas tank containing Sugar Syrup, a temperature-dependent viscosity fluid. Plumes are generated by heating from below. The initial distance between the plume impact and the raft, as well as the raft size and density were systematically varied. The latter allows to evaluate the influence of a cratonic keel on the plate migration. Experimental results suggest that: (1) a continent can migrate under the influence of a plume head only if the thickness ratio between the keel and the plume head impact is greater than a critical value; (2) the maximum velocity achieved by the raft depends on the distance between the raft and the plume centre and (3) the direction taken by the raft is directly related to the position of the plume impact compared to the keel's. Given the Deccan Traps plume characteristics, the scaling laws derived from the experiments suggest that India could migrate after the plume impact with a velocity ranging between 61 and 125 mm/yr. This estimated range is fully coherent with the India plate velocity calculated from the oceanic magnetic anomalies, but it put strong constraints on the existence and position of cratonic keels under India. Moreover, India migration during the last 130 Ma can be quantitavely related to the successive impacts of three mantle plumes.
Earthquake Knowledge and Experiences of Introductory Geology Students.
ERIC Educational Resources Information Center
Barrow, Lloyd; Haskins, Sandra
1996-01-01
Explores introductory geology students' (n=186) understanding of earthquakes. Results indicate that the mass media seem to provide students greater details about the cause and impact than the actual experience itself, students lack a broad understanding about the theory of plate tectonics, and introductory geology students have extensive…
Experimental study of the penetrating of plates by projectile at low initial speeds
NASA Astrophysics Data System (ADS)
Orlov, M. Yu; Orlova, Yu N.; Smakotin, Ig L.; Glazyrin, V. P.; Orlov, Yu N.
2017-11-01
The research of the penetration process of lightweight plates by a projectile in the range of initial velocities up to 325 m/s was attempted. The projectile was a shell bullet and the barriers were of ice, MDF-panels and plexiglas barriers. The response of barriers to impact loading is studied. High-speed shooting of each experiment is obtained, including photos of the front and rear sides of the barriers. An attempt was made to reproduce the scenario of the destruction of barriers. The results of experiments can be interpreted only as qualitative tests. Projectile was not destroyed.
Mpindi, John-Patrick; Swapnil, Potdar; Dmitrii, Bychkov; Jani, Saarela; Saeed, Khalid; Wennerberg, Krister; Aittokallio, Tero; Östling, Päivi; Kallioniemi, Olli
2015-12-01
Most data analysis tools for high-throughput screening (HTS) seek to uncover interesting hits for further analysis. They typically assume a low hit rate per plate. Hit rates can be dramatically higher in secondary screening, RNAi screening and in drug sensitivity testing using biologically active drugs. In particular, drug sensitivity testing on primary cells is often based on dose-response experiments, which pose a more stringent requirement for data quality and for intra- and inter-plate variation. Here, we compared common plate normalization and noise-reduction methods, including the B-score and the Loess a local polynomial fit method under high hit-rate scenarios of drug sensitivity testing. We generated simulated 384-well plate HTS datasets, each with 71 plates having a range of 20 (5%) to 160 (42%) hits per plate, with controls placed either at the edge of the plates or in a scattered configuration. We identified 20% (77/384) as the critical hit-rate after which the normalizations started to perform poorly. Results from real drug testing experiments supported this estimation. In particular, the B-score resulted in incorrect normalization of high hit-rate plates, leading to poor data quality, which could be attributed to its dependency on the median polish algorithm. We conclude that a combination of a scattered layout of controls per plate and normalization using a polynomial least squares fit method, such as Loess helps to reduce column, row and edge effects in HTS experiments with high hit-rates and is optimal for generating accurate dose-response curves. john.mpindi@helsinki.fi. Supplementary information: R code and Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates
NASA Astrophysics Data System (ADS)
Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.
2015-06-01
The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.
Hugoniot-based equations of state for two filled EPDM rubbers
NASA Astrophysics Data System (ADS)
Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.
2014-05-01
Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.
Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections
NASA Technical Reports Server (NTRS)
Mckay, David S.
1989-01-01
The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.
NASA Astrophysics Data System (ADS)
Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.
2018-04-01
The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.
Shock compression experiments on Lithium Deuteride (LiD) single crystals
Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.
2016-12-21
Shock compression experiments in the few hundred GPa (multi-Mabr) regime were performed on Lithium Deuteride (LiD) single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ~200-600 GPa along the Principal Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – as well as pressure and density of re - shock states up to ~900 GPa. Lastly, the experimental measurements are compared with recent density functional theorymore » calculations as well as a new tabular equation of state developed at Los Alamos National Labs.« less
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.
Watson, Erkai; Steinhauser, Martin O
2017-04-02
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms -1 . We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena
Watson, Erkai; Steinhauser, Martin O.
2017-01-01
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms−1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength. PMID:28772739
Sarron, Jean-Claude; Dannawi, Marwan; Faure, Alexis; Caillou, Jean-Paul; Da Cunha, Joseph; Robert, Roger
2004-08-01
Most military helmets are designed to prevent penetration by small firearms using composite materials in their construction. However, the transient deformation of the composite helmet during a non penetrating impact may result in severe head injury. Two experimental designs were undertaken to characterize the extend of injuries imparted by composite panels using in protective helmets. In the first series, 21 dry skulls were protected by polyethylene plates, with gaps between the protective plate and skull ranging from 12 to 15 mm. In another design, using 9 cadavers, heads were protected by aluminum, aramid, or polyethylene plates. Specimens were instrumented with pressure gauges to record the impact response. The ammunition used in these experiments was 9 mm caliber and had a velocity of 400 m/s. A macroscopic analysis of the specimens quantified fractures and injuries, which were then related to the measured pressures. Protective plates influenced both the levels of injury and the intracranial pressure. Injuries were accentuated as the plates was changed from aluminum to composite materials and ranged from skin laceration to extensive skull fractures and brain contusion. Fractures were associated with brain parenchymal pressures in excess of 560 kPa and cerebrospinal fluid pressure of 150 kPa. An air gap of a few millimeters between the plate and the head was sufficient to decrease these internal pressures by half, significantly reducing the level of injury. Ballistic helmets made of composite materials could be optimized to avoid extensive transient deformation and thus reduce the impact and blunt trauma to the head. However, this deformation cannot be completely removed, which is why the gap between the helmet and the head must be maintained at more than 12 mm.
Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.
1995-01-01
The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology
Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing
2014-01-01
In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684
Indirect ignition of energetic materials with laser-driven flyer plates.
Dean, Steven W; De Lucia, Frank C; Gottfried, Jennifer L
2017-01-20
The impact of laser-driven flyer plates on energetic materials CL-20, PETN, and TATB has been investigated. Flyer plates composed of 25 μm thick Al were impacted into the energetic materials at velocities up to 1.3 km/s. The flyer plates were accelerated by means of an Nd:YAG laser pulse. The laser pulse generates rapidly expanding plasma between the flyer plate foil and the substrate to which it is adhered. As the plasma grows, a section of the metal foil is ejected at high speed, forming the flyer plate. The velocity of the flyer plate was determined using VISAR, time of flight, and high-speed video. The response of the energetic material to impact was determined by light emission recorded by an infrared-sensitive photodiode. Following post-impact analysis of the impacted energetic material, it was hypothesized that the light emitted by the material after impact is not due to the impact of the flyer itself but rather is caused by the decomposition of energetic material ejected (via the shock of flyer plate impact) into a cloud of hot products generated during the launch of the flyer plate. This hypothesis was confirmed through schlieren imaging of a flyer plate launch, clearly showing the ejection of hot gases and particles from the region surrounding the flyer plate launch and the burning of the ejected energetic material particles.
Shock induced spall fracture in polycrystalline copper
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Rav, Amit; Sur, Amit; Joshi, K. D.; Gupta, Satish C.
2014-04-01
The plate impact experiments have been conducted on commercially available 99.99% pure polycrystalline samples of copper using single stage gas gun facility. The free surface velocity history of the sample plate measured using VISAR instrument is utilized to determine the dynamic yield strength and spall strength of copper. The dynamic yield strength and spall strength of polycrystalline copper sample has been determined to be 0.14 GPa and 1.32 GPa, respectively with corresponding strain rates of the order of 104/s.
NASA Technical Reports Server (NTRS)
McElroy, Mark; Jackson, Wade; Pankow, Mark
2016-01-01
It is not easy to isolate the damage mechanisms associated with low-velocity impact in composites using traditional experiments. In this work, a new experiment is presented with the goal of generating data representative of progressive damage processes caused by low-velocity impact in composite materials. Carbon fiber reinforced polymer test specimens were indented quasi-statically such that a biaxial-bending state of deformation was achieved. As a result, a three-dimensional damage process, involving delamination and delamination-migration, was observed and documented using ultrasonic and x-ray computed tomography. Results from two different layups are presented in this paper. Delaminations occurred at up to three different interfaces and interacted with one another via transverse matrix cracks. Although this damage pattern is much less complex than that of low-velocity impact on a plate, it is more complex than that of a standard delamination coupon test and provides a way to generate delamination, matrix cracking, and delamination-migration in a controlled manner. By limiting the damage process in the experiment to three delaminations, the same damage mechanisms seen during impact could be observed but in a simplified manner. This type of data is useful in stages of model development and validation when the model is capable of simulating simple tests, but not yet capable of simulating more complex and realistic damage scenarios.
Dynamic Shock Compression of Copper to Multi-Megabar Pressure
NASA Astrophysics Data System (ADS)
Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.
2015-11-01
Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
NASA Astrophysics Data System (ADS)
Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.
2016-03-01
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; Cintala, Mark; See, Thomas; Bernhard, Ronald; Cardenas, Frank; Davidson, William; Haynes, Jerry
1992-01-01
An experimental inquiry into the utility of discontinuous bumpers was conducted to investigate the collisional outcomes of impacts into single grid-like targets and to compare the results with more traditional bumper designs that employ continuous sheet stock. We performed some 35 experiments using 6.3 and 3.2 mm diameter spherical soda-lime glass projectiles at low velocities (less than 2.5 km/s) and 13 at velocities between 5 and 6 km/s, using 3.2 mm spheres only. The thrust of the experiments related to the characterization of collisional fragments as a function of target thickness or areal shield mass of both bumper designs. The primary product of these experiments was witness plates that record the resulting population of collisional fragments. Substantial interpretive and predictive insights into bumper performance were obtained. All qualitative observations (on the witness plates) and detailed measurements of displaced masses seem simply and consistently related only to bumper mass available for interaction with the impactor. This renders the grid bumper into the superior shield design. These findings present evidence that discontinuous bumpers are a viable concept for collisional shields, possibly superior to continuous geometries.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.
1992-01-01
Hypervelocity impact features from very small particles (less than 3 microns in diameter) on several of the electro-active dust sensors used in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microscope. The same analytical techniques were applied to impact and containment features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on tray B12. Very little unambiguously identifiable impactor debris was found in the central craters or shatter zones of small impacts in this crystalline surface. The surface contamination, ubiquitous on the surface of the Long Duration Exposure Facility, has greatly complicated data collection and interpretation from microparticle impacts on all surfaces.
A novel graded density impactor
NASA Astrophysics Data System (ADS)
Winter, Ron; Cotton, Matthew; Harris, Ernest; Eakins, Daniel; Chapman, David
2013-06-01
Ramp loading using graded-density-impactors as flyers in plate impact experiments can yield useful information about the dynamic properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to fabricate a graded-density flyer, termed the ``bed of nails'' (BON). A 2 mm thick x 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. Two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at The Institute of Shock Physics, Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in free surface velocity over a period of about 2.5 microseconds. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Brian James
There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less
Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.
2000-01-01
Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Buiter, S. J. H.
2012-08-01
Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.
An experimental study of an explosively driven flat plate launcher
NASA Astrophysics Data System (ADS)
Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team
2017-06-01
For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.
Influence of Material Distribution on Impact Resistance of Hybrid Composites
NASA Technical Reports Server (NTRS)
Abatan, Ayu; Hu, Hurang
1998-01-01
Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.
Shock compression response of cold-rolled Ni/Al multilayer composites
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-06
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. Finally, these simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
Impacting load control of floating supported friction plate and its experimental verification
NASA Astrophysics Data System (ADS)
Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei
2017-05-01
Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.
NASA Technical Reports Server (NTRS)
Carollo, S. F.; Davis, J. M.; Dance, W. E.
1973-01-01
Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.
NASA Astrophysics Data System (ADS)
Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.
2000-10-01
We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.
A new technique for ground simulation of hypervelocity debris
NASA Astrophysics Data System (ADS)
Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.
1995-02-01
A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.
Shear fracture of jointed steel plates of bolted joints under impact load
NASA Astrophysics Data System (ADS)
Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.
2013-07-01
The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.
A fundamental study of the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Eiss, N. S., Jr.; Wightman, J. P.; Gilliam, D. R.; Siochi, E. J.
1985-01-01
The aircraft industry has long been concerned with the increase of drag on airplanes due to fouling of the wings by insects. The present research studied the effects of surface energy and surface roughness on the phenomenon of insect sticking. Aluminum plates of different roughnesses were coated with thin films of polymers with varying surface energies. The coated plates were attached to a custom jig and mounted on top of an automobile for insect collection. Contact angle measurements, X-ray photoelectron spectroscopy and specular reflectance infrared spectroscopy were used to characterize the surface before and after the insect impact experiments. Scanning electron microscopy showed the topography of insect residues on the exposed plates. Moments were calculated in order to find a correlation between the parameters studied and the amount of bugs collected on the plates. An effect of surface energy on the sticking of insect residues was demonstrated.
Prediction of impact force and duration during low velocity impact on circular composite laminates
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Two simple and improved models--energy-balance and spring-mass--were developed to calculate impact force and duration during low velocity impact of circular composite plates. Both models include the contact deformation of the plate and the impactor as well as bending, transverse shear, and membrane deformations of the plate. The plate was transversely isotropic graphite/epoxy composite laminate and the impactor was a steel sphere. Calculated impact forces from the two analyses agreed with each other. The analyses were verified by comparing the results with reported test data.
Theoretical analysis of impact in composite plates
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
The calculated stresses and displacements induced anisotropic plates by short duration impact forces are presented. The theoretical model attempts to model the response of fiber composite turbine fan blades to impact by foreign objects such as stones and hailstones. In this model the determination of the impact force uses the Hertz impact theory. The plate response treats the laminated blade as an equivalent anisotropic material using a form of Mindlin's theory for crystal plates. The analysis makes use of a computational tool called the fast Fourier transform. Results are presented in the form of stress contour plots in the plane of the plate for various times after impact. Examination of the maximum stresses due to impact versus ply layup angle reveals that the + or - 15 deg layup angle gives lower flexural stresses than 0 deg, + or - 30 deg and + or - 45 deg. cases.
Wang, Dongmiao; He, Xiaotong; Wang, Yanling; Zhou, Guangchao; Sun, Chao; Yang, Lianfeng; Bai, Jianling; Gao, Jun; Wu, Yunong; Cheng, Jie
2016-01-01
The present study was aimed to determine the topographic relationship between root apex of the mesially and horizontally impacted mandibular third molar and lingual plate of mandible. The original cone beam computed tomography (CBCT) data of 364 teeth from 223 patients were retrospectively collected and analyzed. The topographic relationship between root apex and lingual plate on cross-sectional CBCT images was classified as non-contact (99), contact (145) and perforation (120). The cross-sectional morphology of lingual plate at the level of root apex was defined as parallel (28), undercut (38), slanted (29) and round (4). The distribution of topographic relationship between root apex and lingual plate significantly associated with gender, impaction depth, root number and lingual plate morphology. Moreover, the average bone thickness of lingual cortex and distance between root apex and the outer surface of lingual plate were 1.02 and 1.39 mm, respectively. Furthermore, multivariate regression analyses identified impaction depth and lingual plate morphology as the risk factors for the contact and perforation subtypes between root apex and lingual plate. Collectively, our findings reveal the topographic proximity of root apex of impacted mandibular third molar to the lingual plate, which might be associated with intraoperative and postoperative complications during tooth extraction. PMID:27991572
Impact-induced tensional failure in rock
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Rubin, Allan M.
1993-01-01
Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock disks were impacted with aluminum and polymethyl methacralate flyer plates at velocities of 10 to 25 m/s. This resulted in tensile stresses in the range of 11 to 160 MPa. Tensile stress durations of 0.5 and 1.3 microsec induced microcrack growth which in many experiments were insufficient to cause complete spalling of the samples. Velocity reduction, and by inference microcrack production, occurred in samples subjected to stresses above 35 MPa in the 1.3-microsec PMMA experiments and 60 MPa in the 0.5-microsec aluminum experiments. Apparent fracture toughnesses of 2.4 and 2.5 MPa m exp 1/2 are computed for the 1.3- and 0.5-microsec experiments. Three-dimensional impact experiments were conducted on 20 cm-sized blocks of Bedford limestone and San Marcos gabbro. Compressional wave velocity deficits up to 50-60 percent were observed in the vicinity of the crater. The damage decreases as about r exp -1.5 from the crater, indicating a dependence on the magnitude and duration of the tensile pulse.
Many Point Optical Velocimetry for Gas Gun Applications
NASA Astrophysics Data System (ADS)
Pena, Michael; Becker, Steven; Garza, Anselmo; Hanache, Michael; Hixson, Robert; Jennings, Richard; Matthes, Melissa; O'Toole, Brendan; Roy, Shawoon; Trabia, Mohamed
2015-06-01
With the emergence of the multiplexed photonic Doppler velocimeter (MPDV), it is now practical to record many velocity traces simultaneously on shock physics experiments. Optical measurements of plastic deformation during high velocity impact have historically been constrained to a few measurement points. We have applied a 32-channel MPDV system to gas gun experiments in order to measure plastic deformation of a steel plate. A two dimensional array of measurement points allowed for diagnostic coverage over a large surface area of the target plate. This provided experimental flexibility to accommodate platform uncertainties as well as provide for a wealth of data from a given experiment. The two dimensional array of measurement points was imaged from an MT fiber-optic connector using off-the-shelf optical components to allow for an economical and easy-to-assemble, many-fiber probe. A two-stage, light gas gun was used to launch a Lexan projectile at velocities ranging from 4 to 6 km/s at a 12.7 mm thick A36 steel plate. Plastic deformation of the back surface was measured and compared with simulations from two different models: LS-DYNA and CTH. Comparison of results indicates that the computational analysis using both codes can reasonably simulate experiments of this type.
Acoustic Emission Signals in Thin Plates Produced by Impact Damage
NASA Technical Reports Server (NTRS)
Prosser, William H.; Gorman, Michael R.; Humes, Donald H.
1999-01-01
Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.
Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results
NASA Astrophysics Data System (ADS)
Boutelier, D.; Oncken, O.
2008-12-01
We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.
Damage imaging in a laminated composite plate using an air-coupled time reversal mirror
Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; ...
2015-11-03
We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowingmore » localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.« less
Coefficient of restitution of sports balls: A normal drop test
NASA Astrophysics Data System (ADS)
Haron, Adli; Ismail, K. A.
2012-09-01
Dynamic behaviour of bodies during impact is investigated through impact experiment, the simplest being a normal drop test. Normally, a drop test impact experiment involves measurement of kinematic data; this includes measurement of incident and rebound velocity in order to calculate a coefficient of restitution (COR). A high speed video camera is employed for measuring the kinematic data where speed is calculated from displacement of the bodies. Alternatively, sensors can be employed to measure speeds, especially for a normal impact where there is no spin of the bodies. This paper compares experimental coefficients of restitution (COR) for various sports balls, namely golf, table tennis, hockey and cricket. The energy loss in term of measured COR and effects of target plate are discussed in relation to the material and construction of these sports balls.
Shock compression response of cold-rolled Ni/Al multilayer composites
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-01
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
Anisotropic effects on constitutive model parameters of aluminum alloys
NASA Astrophysics Data System (ADS)
Brar, Nachhatter S.; Joshi, Vasant S.
2012-03-01
Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.
NASA Astrophysics Data System (ADS)
Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei
2018-05-01
The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.
Hypervelocity impact on shielded plates
NASA Technical Reports Server (NTRS)
Smith, James P.
1993-01-01
A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.
Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities
NASA Technical Reports Server (NTRS)
Medina, David F.; Allahdadi, Firooz A.
1992-01-01
A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.
Dynamic loading and release in Johnson Space Center Lunar regolith simulant
NASA Astrophysics Data System (ADS)
Plesko, C. S.; Jensen, B. J.; Wescott, B. L.; Skinner McKee, T. E.
2011-10-01
The behavior of regolith under dynamic loading is important for the study of planetary evolution, impact cratering, and other topics. Here we present the initial results of explosively driven flier plate experiments and numerical models of compaction and release in samples of the JSC-1A Lunar regolith simulant.
Plate impact experiments on DC745U cooled to ~ -60 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L.; Dattelbaum, Dana M.; Bartram, Brian Douglas
2016-08-11
Using gas-gun driven plate impact experiments, we have measured the U S - u p Hugoniot of the silicone elastomer DC745U cooled to -60 °C. In summary, the initial density changes from p 0 (23°C) = 1.312 ± 0.010 g/cm 3 to p 0 (-60°C) = 1.447 ± 0.011 g/cm 3. The linear U S - u p Hugoniot changes from U S = 1.62 + 1.74u p km/s at +23°C, to U S = 2.03 ± 0.06 + (2.03 ± 0.06) u p km/s at -60°C. DC745U, therefore is much stiffer at -60°C than at +23°C, probably due tomore » the crystallization that occurs at ~ -50°C. Caveats/deficiencies: 1) This report does not provide an adequate pedigree of the DC745U used. 2) References to unpublished room temperature shock compression data on the elastomer are inadequate. 3) The report has not been fact checked by a DC745 subject matter expert.« less
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...
2016-03-11
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less
Impact damage of composite plates
NASA Technical Reports Server (NTRS)
Lal, K. M.; Goglia, G. L.
1983-01-01
A simple model to study low velocity transverse impact of thin plates made of fiber-reinforced composite material, in particular T300/5208 graphite-epoxy was discussed. This model predicts the coefficient of restitution, which is a measure of the energy absorbed by the target during an impact event. The model is constructed on the assumption that the plate is inextensible in the fiber direction and that the material is incompressible in the z-direction. Such a plate essentially deforms by shear, hence this model neglects bending deformations of the plate. The coefficient of restitution is predicted to increase with large interlaminar shear strength and low transverse shear modulus of the laminate. Predictions are compared with the test results of impacted circular and rectangular clamped plates. Experimentally measured values of the coefficient of restitution are found to agree with the predicted values within a reasonable error.
Additional results on space environmental effects on polymer matrix composites: Experiment A0180
NASA Technical Reports Server (NTRS)
Tennyson, R. C.
1992-01-01
Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P.E.
We are compiling a list of anticipated target spot sizes that are specified by the NIF users groups. This data will be used to anticipate demands for phase plates. The spot size also has an impact on the laser operation. Presently the phase plates are designed to sit in the leo section of the FOA (before the conversion crystals). Intensity modulations produced by the phase plates are nonlinearly proportional to the laser spot size. For spot sizes above 3 mm diameter, the intensity modulations are large enough that the damage threshold for the remainder of the FOA is exceeded. Formore » experiments requiring spot diameters larger than 3 ram, it is suggested that the phase plates sit in the 3{omega} section of the FOA. For planning purposes, the cost of the 3{omega} phase plates is presently projected to be more than that of a le0 phase plate due to the use of inclusion-free fused silica as the substrate material, This report is a summary of a meeting that we had on February 16, 2000 in order to catalogue the possible range of requested NIF spot sizes. Copies of the viewgraphs which were presented are also included.« less
Laboratory calibration of impact plates for measuring gravel size and mass
USDA-ARS?s Scientific Manuscript database
Continuous monitoring of gravel transport in rivers is necessary for understanding the impact of dam removal on river systems. Impact plates, such as those deployed on the Elwha River in the state of Washington, USA, are a promising technique; however, relating the data generated by the plates to s...
Visualizing Perturbation Decay in Shocked Granular Materials
NASA Astrophysics Data System (ADS)
Cooper, Marcia; Vogler, Tracy
2017-06-01
A new experiment continuously visualizing shock wave perturbation decay through an increasing thickness of granular material has been tested with a gas gun. The experiment confines powders of either tungsten carbide or cerium oxide into a wedge geometry formed by tilting the downstream observation window, plated with a reflective aluminum film, at a shallow angle from the driver plate. The driver is machined with a sinusoidal wavy pattern for incident shock wave perturbation. After projectile impact, the perturbed shock wave passes through the granular material, first emerging at the wedge toe. Image sequences collected at 5 MHz of reflectivity loss at the plated window-granular material interface capture the spatial variation in wave propagation with increasing sample thickness. Extracting the evolving wavy pattern from the images determines the temporal perturbation amplitude. The data are compared to continuum and mesoscale simulations in normalized terms of perturbation amplitude and wavelength. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.
2017-01-01
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.
Low velocity impact of 6082-T6 aluminum plates
NASA Astrophysics Data System (ADS)
Mocian, Oana Alexandra; Constantinescu, Dan Mihai; Sandu, Marin; Sorohan, Ştefan
2018-02-01
The low velocity domain covers vehicle impacts, ship collisions and even accidentally tool drops. Even though more and more research is needed into these fields, most of the papers concerning impact problems focus on impact at medium and high velocities. Understanding the behavior of structures subjected to low velocity impact is of major importance when referring to impact resistance and damage tolerance. The paper presents an experimental and numerical investigation on the low velocity behavior of 6082-T6 aluminum plates. Impact tests were performed using an Instron Ceast 9340 drop-weight testing machine. In the experimental procedure, square plates were mounted on a circular support, fixed with a pneumatic clamping system and impacted with a hemispherical steel projectile. Specimens were impacted at constant weight and different impact velocities. The effect of different impact energies was investigated. The impact event was then simulated using the nonlinear finite element code LS_DYNA in order to determine the effect of strain rate upon the mechanical behavior of the aluminum plates. Moreover, in order to capture the exact behavior of the material, a special attention has been given to the selection of the correct material model and its parameters, which, in large extent, depend on the observed behavior of the aluminum plate during the test and the actual response of the plate under simulation. The numerical predictions are compared with the experimental observations and the applicability of the numerical model for further researches is analyzed.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.
2003-01-01
A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.
Wave propagation in a plate after impact by a projectile
NASA Technical Reports Server (NTRS)
El-Raheb, M.; Wagner, P.
1987-01-01
The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.
A novel graded density impactor
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2014-05-01
Ramp loading using graded-density-impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to manufacture a graded density flyer, termed the "bed of nails" (BON). A 2 mm thick × 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at the Institute of Shock Physics at Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ~2.5 us, with no indication of a shock jump. The measured profiles have been analysed to generate a stress strain curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Dixit, S N; Genin, F Y
2004-01-05
Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must bemore » done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.« less
Ice Particle Impacts on a Flat Plate
NASA Technical Reports Server (NTRS)
Vargas, Mario; Ruggeri, Charles; Struk, Peter M.; Pereira, Mike; Revilock, Duane; Kreeger, Richard E.
2015-01-01
An experimental study was conducted at the Ballistic Laboratory of NASA Glenn Research Center to study the impact of ice particles on a stationary flat surface target set at 45 degrees with respect to the direction of motion of the impinging particle (Figure 1). The experiment is part of NASA efforts to study the physics involved in engine power-loss events due to ice-crystal ingestion and ice accretion formation inside engines. These events can occur when aircraft encounter high-altitude convective weather.
Double Shock Experiments on PBX Explosive JOB-9003
NASA Astrophysics Data System (ADS)
Zhang, Xu
2017-06-01
One-dimensional plate impact experiments have been performed to study the double shock to detonation transition and Hugoniot state in the HMX-based explosive JOB-9003. The flyer was a combination with sapphire and Kel-F which could pass two different pressure waves into PBX Explosive JOB-9003 sample after impact. The particle velocities at interface and different depths in the PBX JOB-9003 sample were measured with Al-based electromagnetic particle velocity gauge technique, thus obtaining particle velocity - time diagram. According to the diagram, the corresponding Hugoniot state can be determined based on the particle velocity and shock wave velocity in the sample. Comparing with the single shock experiments, PBX Explosive JOB-9003 shows desensitization features due to the pre-pressed shock wave, the shock to detonation transition distance is longer than those single shock experiments.
Impact of composite plates: Analysis of stresses and forces
NASA Technical Reports Server (NTRS)
Moon, F. C.; Kim, B. S.; Fang-Landau, S. R.
1976-01-01
The foreign object damage resistance of composite fan blades was studied. Edge impact stresses in an anisotropic plate were first calculated incorporating a constrained layer damping model. It is shown that a very thin damping layer can dramatically decrease the maximum normal impact stresses. A multilayer model of a composite plate is then presented which allows computation of the interlaminar normal and shear stresses. Results are presented for the stresses due to a line impact load normal to the plane of a composite plate. It is shown that significant interlaminar tensile stresses can develop during impact. A computer code was developed for this problem using the fast Fourier transform. A marker and cell computer code were also used to investigate the hydrodynamic impact of a fluid slug against a wall or turbine blade. Application of fluid modeling of bird impact is reviewed.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Technical Reports Server (NTRS)
Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.
1992-01-01
The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed above, is also discussed. Wherever possible, these results are compared to those obtained by LDEF investigators and future experiments suggested which could help to explain unique features associated with LDEF impacts.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Astrophysics Data System (ADS)
Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.
1992-06-01
The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed above, is also discussed. Wherever possible, these results are compared to those obtained by LDEF investigators and future experiments suggested which could help to explain unique features associated with LDEF impacts.
Thomas, P; Sekhar, A C; Mujawar, M M
2014-11-01
To examine whether bacterial spores are vulnerable to impaction injury during standard spread-plating or to other modes of physical impaction. Employing heat-challenged spores of Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Lysinibacillus, Paenibacillus and Brevibacillus spp. from day-4 to day-10 nutrient agar (NA) plates in 50% ethanol, plating the spore suspension to the extent of just drying the agar surface on fresh NA (50-60 s; SP-B) was tested in comparison with the spreader-independent approach of spotting-and-tilt-spreading (SATS), or a brief plating (<10 s; SP-A). Spore CFU was significantly reduced with SP-B in different organisms (23-40%) over SATS independent of the spore size. Comparing 4-, 7- and 10-day-old B. pumilus spores, the former two displayed significant CFU reduction in SP-B indicating a spore age-related effect. Continuous plating for 2-5 min showed a reduction in spore CFU in all organisms depending on plating duration. CFU reduction effect with SP-B was less manifest on refrigerated plates where no friction was experienced but acute on prewarmed and surface-dried plates. Spreader movement over agar surface subsequent to the exhaustion of free moisture proved highly detrimental to spores. A simulated plating study by plating the spores over a plastic film till drying showed a significant reduction in spore CFU. DAPI staining and glass bead-vortexing studies confirmed spore disruption through physical impaction. Bacterial spores are vulnerable to injury during spread-plating or with other forms of physical impaction with variable effects on different genotypes independent of the spore size but altered by spore age. Implications during spore CFU estimations employing spread-plating and during spore surveillance, and the recommendation of SATS as an easier and safer alternative for spore CFU enumeration. © 2014 The Society for Applied Microbiology.
Europa: Initial Galileo Geological Observations
Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.
1998-01-01
Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.
McClain, A D; van den Bos, W; Matheson, D; Desai, M; McClure, S M; Robinson, T N
2014-05-01
The Delboeuf Illusion affects perceptions of the relative sizes of concentric shapes. This study was designed to extend research on the application of the Delboeuf illusion to food on a plate by testing whether a plate's rim width and coloring influence perceptual bias to affect perceived food portion size. Within-subjects experimental design. Experiment 1 tested the effect of rim width on perceived food portion size. Experiment 2 tested the effect of rim coloring on perceived food portion size. In both experiments, participants observed a series of photographic images of paired, side-by-side plates varying in designs and amounts of food. From each pair, participants were asked to select the plate that contained more food. Multilevel logistic regression examined the effects of rim width and coloring on perceived food portion size. Experiment 1: participants overestimated the diameter of food portions by 5% and the visual area of food portions by 10% on plates with wider rims compared with plates with very thin rims (P<0.0001). The effect of rim width was greater with larger food portion sizes. Experiment 2: participants overestimated the diameter of food portions by 1.5% and the visual area of food portions by 3% on plates with rim coloring compared with plates with no coloring (P=0.01). The effect of rim coloring was greater with smaller food portion sizes. The Delboeuf illusion applies to food on a plate. Participants overestimated food portion size on plates with wider and colored rims. These findings may help design plates to influence perceptions of food portion sizes.
Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, L.T.; Hertel, E.; Schwalbe, L.
1998-02-01
The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less
Dynamic Properties of Polyurea
NASA Astrophysics Data System (ADS)
Youssef, George H.
The aim of this thesis was to understand the dynamic behavior of polyurea at rates of loading that is outside the reach of plate impact and split-Hopkinson bar experiments. This was motivated by the desire to design polyurea-based armors against hypervelocity impacts such as those arising from shaped charges and explosively formed projectiles with speeds in the range of 9,000 to 30,000 ft/s. By employing the laser-induced stress waves, the tensile strength and fracture energy of polyurea were measured at peak strain rate of 10 7s-1. Tensile strength of 93.1 ±5 MPa and fracture energy values of 6.75 (± 0.5) J/m2 were measured. It was also shown that the Time Temperature Superposition Principle holds for polyurea even at strain rates as high as 105s-1. This strain rate is two orders of magnitude higher than those reported recently by the Caltech group (Zhao, et al.). This important finding suggests that blast simulations of large-scale structures and those of armors involving polyurea can be based on constitutive data gathered under quasi-static conditions. This is quite powerful. With a view towards future reach, preliminary experiments were performed to inquire how polyurca behaves in the presence of other armor materials when subjected to impacts in the nanoseconds timeframe. That is, does it synergistically add its intrinsic impact-mitigating properties to other known defeat mechanisms? To this end, sections in which I to 2 mm thick polyurea layers were sandwiched between glass, acrylic, polyurethane, Al, Steel, and PMMA plates were subjected to laser-generated stress waves. The sections were evaluated based on the amplitude and time profile of the stress wave that exited the sections. Both metal plates resulted in a significant reduction in the transmitted stress wave amplitude. This was due to the large impedance mismatch between the polyurea and the metal which essentially resulted in trapping of the stress wave within the incident substrate. An unexpected resonance phenomenon was uncovered when the polyurea layer was sandwiched between the acrylic and polycarbonate plates. An elastodynamics simulation tied this effect to the thickness of the polyurca layer. Finally the ability of a microwave interferometer to record shockwave —induced free surface displacements from rough surfaces was demonstrated. This should allow dynamic characterization of several engineering solids using laser-generated stress waves.
Early Experience with Biodegradable Fixation of Pediatric Mandibular Fractures.
Mazeed, Ahmed Salah; Shoeib, Mohammed Abdel-Raheem; Saied, Samia Mohammed Ahmed; Elsherbiny, Ahmed
2015-09-01
This clinical study aims to evaluate the stability and efficiency of biodegradable self-reinforced poly-l/dl-lactide (SR-PLDLA) plates and screws for fixation of pediatric mandibular fractures. The study included 12 patients (3-12 years old) with 14 mandibular fractures. They were treated by open reduction and internal fixation by SR-PLDLA plates and screws. Maxillomandibular fixation was maintained for 1 week postoperatively. Clinical follow-up was performed at 1 week, 6 weeks, 3 months, and 12 months postoperatively. Radiographs were done at 1 week, 3 months, and 12 months postoperatively to observe any displacement and fracture healing. All fractures healed both clinically and radiologically. No serious complications were reported in the patients. Normal occlusion was achieved in all cases. Biodegradable osteofixation of mandibular fractures offers a valuable clinical solution for pediatric patients getting the benefit of avoiding secondary surgery to remove plates, decreasing the hospital stay, further painful procedures, and psychological impact.
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-07-01
Flat subduction near Peru occurs only where the thickened crust of the Nazca Ridge subducts. Furthermore, the South-America continent shows a westward absolute plate motion. Both the overriding motion of South-America and the subduction of the Nazca Ridge have been proposed to explain the flat slab segment below South Peru. We have conducted a series of numerical model experiments to investigate the relative importance of both mechanisms. Results suggest that the average upper mantle viscosity should be about 3.5 × 1020 Pa s or less and basaltic crust should be able to survive 600 to 800°C ambient temperature before transforming into eclogite to explain the slab geometry below Peru. The effect of the overriding plate is estimated to be as large or twice as large as that of the plateau subduction.
NASA Astrophysics Data System (ADS)
Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.
2016-11-01
Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.
Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...
2017-01-01
Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less
Generation of ramp waves using variable areal density flyers
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2016-07-01
Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
NASA Astrophysics Data System (ADS)
Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.
2015-09-01
This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.
NASA Astrophysics Data System (ADS)
Giambastiani, Yamuna; Preti, Federico; Errico, Alessandro; Penna, Daniele
2017-04-01
There is growing interest in developing models for predicting how root anchorage and tree bracing could influence tree stability. This work presents the results of different experiments aimed at evaluating the mechanical response of plate roots to pulling tests. Pulling tests have been executed with increasing soil water content and soil of different texture. Different types of tree bracing have been examined for evaluating its impact on plant stiffness. Root plate was anchored with different systems for evaluating the change in overturning resistance. The first results indicate that soil water content contributed to modify both the soil cohesion and the stabilizing forces. Wind effect, slope stability and root reinforcement could be better quantified by means of such a results.
Bryan, Sean A; Montroy, Thomas E; Ruhl, John E
2010-11-10
We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.
NASA Astrophysics Data System (ADS)
Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.
2016-11-01
Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.
A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.
Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas
2017-03-01
While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.
Application of composite materials to impact-insensitive munitions
NASA Technical Reports Server (NTRS)
Neradka, Vincent F.; Chang, Yale; Grady, Joseph E.; Trowbridge, Daniel A.
1992-01-01
An approach is outlined for developing bullet-impact-insensitive munitions based on composite materials that provide rapid venting of the rocket-motor case. Impact experiments are conducted with test specimens of hybrid laminates of graphite/epoxy and epoxy reinforcing with woven glass fibers. The dynamic strain response and initial impact force are measured with strain gauges, and perforation damage is examined in the plates. The results show that impact damage can be designed by means of parametric variations of the fiber, matrix, and ply orientations. It is suggested that rocket-motor cases can be designed with composite materials to provide rapid venting during the failure mode. The experimental ballistic testing performed provides data that can be used comparatively with analytical data on composite materials.
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
NASA Astrophysics Data System (ADS)
Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping
2016-08-01
Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm’s shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.
Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping
2016-07-19
Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm's shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.
Spray formation during the vertical impact of a flat plate on a quiescent water surface
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2017-11-01
Spay formation during the impact of a rigid flat plate (122 cm by 38 cm) on a quiescent water surface is studied experimentally. The plate is mounted on a carriage that is driven by an electric servo motor that can slam the plate vertically into the water surface under feedback-controlled motions at various speeds. The long edges of the plate are kept horizontal and the short edges are set at various angles (roll angles) with respect to the quiescent water surface. A laser light sheet is created in a vertical plane at the middle of the long edges of the plate. The evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique. Two types of spray are found with nonzero roll angles. The first type is a cloud of high-speed droplets and ligaments that are generated when the plate's leading edge impacts the free surface. The second type is a thin water sheet that is connected to the trailing edge of the plate via a crater and is formed after the trailing edge moves below the local water level. In a reference frame moving with the plate, the profiles of the crater collapse when scaled with a power law function of time. The characteristics of the two types of spray are found to be affected by both the roll angle and the impact velocity. The support of the Office of Naval Research is gratefully acknowledged.
McClain, Arianna; van den Bos, Wouter; Matheson, Donna; Desai, Manisha; McClure, Samuel M.; Robinson, Thomas N.
2013-01-01
OBJECTIVE The Delboeuf Illusion affects perceptions of the relative sizes of concentric shapes. This study was designed to extend research on the application of the Delboeuf illusion to food on a plate by testing whether a plate’s rim width and coloring influence perceptual bias to affect perceived food portion size. DESIGN AND METHODS Within-subjects experimental design. Experiment 1 tested the effect of rim width on perceived food portion size. Experiment 2 tested the effect of rim coloring on perceived food portion size. In both experiments, participants observed a series of photographic images of paired, side-by-side plates varying in designs and amounts of food. From each pair, participants were asked to select the plate that contained more food. Multi-level logistic regression examined the effects of rim width and coloring on perceived food portion size. RESULTS Experiment 1: Participants overestimated the diameter of food portions by 5% and the visual area of food portions by 10% on plates with wider rims compared to plates with very thin rims (P<0.0001). The effect of rim width was greater with larger food portion sizes. Experiment 2: Participants overestimated the diameter of food portions by 1.5% and the visual area of food portions by 3% on plates with rim coloring compared to plates with no coloring (P=0.01). The effect of rim coloring was greater with smaller food portion sizes. CONCLUSION The Delboeuf illusion applies to food on a plate. Participants overestimated food portion size on plates with wider and colored rims. These findings may help design plates to influence perceptions of food portion sizes. PMID:24005858
NASA Technical Reports Server (NTRS)
Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.;
2014-01-01
Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.
NASA Astrophysics Data System (ADS)
Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.
2012-04-01
The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group, TOTAL S.A., Paris.
Multi-parametric studies of electrically-driven flyer plates
NASA Astrophysics Data System (ADS)
Neal, William; Bowden, Michael; Explosive Trains; Devices Collaboration
2015-06-01
Exploding foil initiator (EFI) detonators function by the acceleration of a flyer plate, by the electrical explosion of a metallic bridge, into an explosive pellet. The length, and therefore time, scales of this shock initation process is dominated by the magnitude and duration of the imparted shock pulse. To predict the dynamics of this initiation, it is critical to further understand the velocity, shape and thickness of this flyer plate. This study uses multi-parametric diagnostics to investigate the geometry and velocity of the flyer plate upon impact including the imparted electrical energy: photon Doppler velocimetry (PDV), dual axis imaging, time-resolved impact imaging, voltage and current. The investigation challenges the validity of traditional assumptions about the state of the flyer plate at impact and discusses the improved understanding of the process.
NASA Astrophysics Data System (ADS)
Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.
2018-02-01
The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, K.; Fujii, N.; Kageyama, H.
Durability of selected hard materials as information preserving media has been studied, leading to some promising results. Several engraving experiments on the selected materials confirmed that characters and patterns can be expressed along with shading and gradation. Engraving experiments on durable artificial materials were carried out by applying laser technologies. By selecting appropriate materials and engraving methods, characters and patterns can be expressed along with shading and gradation. These technologies can be applied to not only documentary records but also to markers and monuments. Among the materials, silicon carbide, which has strong resistance against heat wear and chemical impacts, corrosionmore » resistance and wear resistance, showed satisfactory results in terms of accuracy. Thus, it is expected to be a promising material for the long-term record preservation. With respect to the density of characters in written records in the case of dot printing, it was estimated that, with 2-point characters, information totaling 6 to 8 pages of A-4 size can be engraved on a 10 cm x 10 cm plate. When a document that has 500 pages of A4 size paper is engraved on sintered silicon carbide plates, the total volume of recording media is evaluated as follows: - Size of plate: 10 cm x 10 cm; - Size of character to be engraved: 2-points ({approx} 0.7 mm; of readable size by naked eye or using a magnifying glass); - Number of pages of original document to be engraved on a plate: 8; - Number of pages of original document to be engraved on both sides of a plate: 16; - Number of plates needed for a series of document package: 500 / 16 = 32; - The thickness of a plate: 1 mm; - The total thickness of recording media: 32 mm; - Bulk of recording media preserving 500 pages of document: 10 cm x 10 cm x 32 cm. The examination has shown the possibility of long-term preservation of documentation records as a permanent system. A further examination is suggested concerning the assessment of the durability of the sintered silicon carbide plate against wear and chemical impacts. Preserving color pictures and photographs for a long-term duration is also proposed. In conclusion: We have proposed that the concept of a record preservation system is the combination of several different methods in order to impart redundancy to the communication function. The system should be robust that its overall function would not be influenced by partial damage, and also be flexible enough to adapt to the changes of background conditions in the future. Records and information should be preserved by way of both Relay System and Permanent System. The former would maintain record preservation and communication functions in the framework of social systems whereas the latter would consist of durable storehouse facilities, recording media and markers/monuments and be independent of any social systems and human control. Silicon carbide is one of the most promising materials for the Permanent System of Records Preservation. It is expected to be the potential candidate for long-term recording media with its superior characteristics of resistance against heat, wear and chemical impacts, and of engraving accuracy. (authors)« less
Plate-Impact Measurements of a Select Model Poly(urethane urea) Elastomer
2013-06-01
experiments, and data for polyurea (dashed line) are also included for comparison. .....................................8 List of Tables Table 1...6 1 1. Introduction High-performance polyurea elastomers have recently gained considerable interest throughout the U.S. Department of...studies on high-strain-rate mechanical deformation and modeling (3, 6–11), wherein most are focused on a commercial polyurea . The commercial polyureas
NASA Astrophysics Data System (ADS)
Yu, Y.; Hopkins, C.
2018-05-01
Time-dependent forces applied by 2 and 4.5 mm diameter drops of water (with velocities up to terminal velocity) impacting upon a glass plate with or without a water layer (up to 10 mm depth) have been measured using two different approaches, force transduction and wavelet deconvolution. Both approaches are in close agreement for drops falling on dry glass. However, only the wavelet approach is able to measure natural features of the splash on shallow water layers that impart forces to the plate after the initial impact. At relatively high velocities (including terminal velocity) the measured peak force from the initial impact is significantly higher than that predicted by idealised drop shape models and models from Roisman et al. and Marengo et al. Hence empirical formulae are developed for the initial time-dependent impact force from drops falling at (a) different velocities up to and including terminal velocity onto a dry glass surface, (b) terminal velocity onto dry glass or glass with a water layer and (c) different velocities below terminal velocity onto dry glass or glass with a water layer. For drops on dry glass, the empirical formulae are applicable to a glass plate or a composite layered plate with a glass surface, although they apply to other plate thicknesses and are applicable to any plate material with a similar surface roughness and wettability. The measurements also indicate that after the initial impact there can be high level forces when bubbles are entrained in the water layer.
Dynamic tensile-failure-induced velocity deficits in rock
NASA Technical Reports Server (NTRS)
Rubin, Allan M.; Ahrens, Thomas J.
1991-01-01
Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock disks were impacted with aluminum and polymethyl methacralate (PMMA) flyer plates at velocities of 10 to 25 m/s. Tensile stress magnitudes and duration were chosen so as to induce a range of microcrack growth insufficient to cause complete spalling of the samples. Ultrasonic P- and S-wave velocities of recovered targets were compared to the velocities prior to impact. Velocity reduction, and by inference microcrack production, occurred in samples subjected to stresses above 35 MPa in the 1.3 microsec PMMA experiments and 60 MPa in the 0.5 microsec aluminum experiments. Using a simple model for the time-dependent stress-intensity factor at the tips of existing flaws, apparent fracture toughnesses of 2.4 and 2.5 MPa sq rt m are computed for the 1.3 and 0.5 microsec experiments. These are a factor of about 2 to 3 greater than quasi-static values. The greater dynamic fracture toughness observed may result from microcrack interaction during tensile failure. Data for water-saturated and dry targets are indistinguishable.
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.
1993-01-01
An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.
2009-11-01
Characterization Data and Flyer-Plate Impact Data 7.1 Introduction Borosilicate and soda - lime glass have been the object of extensive plate impact...2 GPa as the strength of damaged soda - lime glass at pressures of 4 to 6 GPa. Bourne, et al. [9, 35], showed tests with strength values of 1.8 GPa...equation of state data for borosilicate and soda - lime glass . The flyer-plate impact data greatly extends the confining pressures that can be achieved with
Dynamic impact force and association with structural damage to the knee joint: an ex-vivo study.
Brill, Richard; Wohlgemuth, Walther A; Hempfling, Harald; Bohndorf, Klaus; Becker, Ursula; Welsch, Ulrich; Kamp, Alexander; Roemer, Frank W
2014-12-01
No systematic, histologically confirmed data are available concerning the association between magnitude of direct dynamic impact caused by vertical impact trauma and the resulting injury to cartilage and subchondral bone. The aim of this study was to investigate the association between dynamic impact and the resulting patterns of osteochondral injury in an ex-vivo model. A mechanical apparatus was employed to perform ex-vivo controlled dynamic vertical impact experiments in 110 pig knees with the femur positioned in a holding fixture. A falling body with a thrust plate and photo sensor was applied. The direct impact to the trochlear articular surface was registered and the resulting osteochondral injuries macroscopically and histologically correlated and categorized. The relationship between magnitude of direct impact and injury severity could be classified as stage I injuries (impact <7.3MPa): elastic deformation, no histological injury; stage II injuries (impact 7.3-9.6MPa): viscoelastic imprint of the cartilaginous surface, subchondral microfractures; stage III injuries (impact 9.6-12.7MPa): disrupted cartilage surface, chondral fissures and subchondral microfractures; stage IV injuries (impact >12.7MPa): osteochondral impression, histologically imprint and osteochondral macrofractures. The impact ranges and histologic injury stages determined from this vertical dynamic impact experiment allowed for a biomechanical classification of direct, acute osteochondral injury. In contrast to static load commonly applied in ex-vivo experiments, dynamic impact more realistically represents actual trauma to the knee joint.
Development of a flyer design to perform plate impact shock-release-shock experiments on explosives
NASA Astrophysics Data System (ADS)
Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael
2017-06-01
A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.
Aperture-based antihydrogen gravity experiment: Parallel plate geometry
NASA Astrophysics Data System (ADS)
Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.
2013-10-01
An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.
NASA Technical Reports Server (NTRS)
Bjorkman, M. D.; Geiger, J. D.; Wilhelm, E. E.
1987-01-01
The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given.
NASA Technical Reports Server (NTRS)
Kelkar, A. D.
1984-01-01
In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.
A new measurement method of profile tolerance for the LAMOST focal plane
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng
2008-07-01
There were a few methods taken in the profile tolerance measurement of the LAMOST Focal Plane Plate. One of the methods was to use CMM (Coordinate Measurement Machine) to measure the points on the small Focal Plane Plate and calculate the points whether or not in the tolerance zone. In this process there are some small shortcomings. The measuring point positions on the Focal Plane Plate are not the actual installation location of the optical fiber positioning system. In order to eliminate these principle errors, a measuring mandrel is inserted into the unit-holes, and the precision for the mandrel with the hole is controlled in the high level. Then measure the center of the precise target ball which is placed on the measuring mandrel by CMM. At last, fit a sphere surface with the measuring center points of the target ball and analyze the profile tolerance of the Focal Plane Plate. This process will be more in line with the actual installation location of the optical fiber positioning system. When use this method to judge the profile tolerance can provide the reference date for maintaining the ultra error unit-holes on the Focal Plane Plate. But when insert the measuring mandrel into the unit hole, there are manufacturing errors in the measuring mandrel, target ball and assembly errors. All these errors will bring the influence in the measurement. In the paper, an impact evaluation assesses the intermediate process with all these errors through experiments. And the experiment results show that there are little influence when use the target ball and the measuring mandrel in the measurement of the profile tolerance. Instead, there are more advantages than many past use of measuring methods.
The Explorer's Guide to Impact Craters
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Osinski, G.; Chuang, F.
2004-12-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
On the CO2 Wettability of Reservoir Rocks: Addressing Conflicting Information
NASA Astrophysics Data System (ADS)
Garing, C.; Wang, S.; Tokunaga, T. K.; Wan, J.; Benson, S. M.
2017-12-01
Conventional wisdom is that siliclastic rocks are strongly water wet for the CO2-brine system, leading to high irreducible water saturation, moderate residual gas trapping and implying that tight rocks provide efficient seals for buoyant CO2. If the wetting properties become intermediate or CO2 wet, the conclusions regarding CO2 flow and trapping could be very different. Addressing the CO2 wettability of seal and reservoir rocks is therefore essential to predict CO2 storage in geologic formation. Although a substantial amount of work has been dedicated to the topic, contact angle data show a large variability and experiments on plates, micromodels and cores report conflicting results regarding the influence of supercritical CO2 (scCO2) exposure on wetting properties: whereas some experimental studies suggest dewetting upon reaction with scCO2, some others observe no wettability alteration under reservoir scCO2 conditions. After reviewing evidences for and against wettability changes associated with scCO2, we discuss potential causes for differences in experimental results. They include the presence of organic matter and impact of sample treatment, the type of media (non consolidated versus real rock), experimental time and exposure to scCO2, and difference in measurement system (porous plate versus stationary fluid method). In order to address these points, new scCO2/brine drainage-imbibition experiments were conducted on a same Berea sandstone rock core, first untreated, then fired and finally exposed to scCO2 for three weeks, using the stationary fluid method. The results are compared to similar experiments performed on quartz sands, untreated and then baked, using the porous plate method. In addition, a comparative experiment using the same Idaho gray sandstone rock core was performed with both the porous plate and the stationary fluid methods to investigate possible method-dependent results.
2014-05-01
Royal Society of London Series A, 465, 307–334. Clayton, J. (2010a). Modeling nonlinear electromechanical behavior of shocked silicon carbide . Journal...and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. Journal of the Acoustical...Vogler, T., & Clayton, J. (2008). Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity
A study of ignition by rifle bullets
Mark A. Finney; Trevor B. Maynard; Sara S. McAllister; Ian J. Grob
2013-01-01
Experiments were conducted to examine the potential for rifle bullets to ignite organic matter after impacting a hard surface. The tests were performed using a variety of common cartridges (7.62x51, 7.62x39, 7.62x54R, and 5.56x45) and bullet materials (steel core, lead core, solid copper, steel jacket, and copper jacket). Bullets were fired at a steel plate that...
NASA Astrophysics Data System (ADS)
Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.
2014-08-01
The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.
NASA Astrophysics Data System (ADS)
Rangin, C.; Crespy, A.; Martinez-Reyes, J.
2013-05-01
The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.
Ballistic Impact of Braided Composites With a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike
2004-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites indicate that composites of this type can reasonably be considered as a lightweight alternative to metals for fan cases in commercial jet engines.
Deviatoric response of the aluminium alloy, 5083
NASA Astrophysics Data System (ADS)
Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil
2009-06-01
Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.
Deviatoric Response of AN Armour-Grade Aluminium Alloy
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.
2009-12-01
Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.
X-ray diffraction studies of shocked lunar analogs
NASA Technical Reports Server (NTRS)
Hanss, R. E.
1979-01-01
The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.
Failure Waves in Cylindrical Glass Bars
NASA Astrophysics Data System (ADS)
Cazamias, James U.; Bless, Stephan J.; Marder, Michael P.
1997-07-01
Failure waves, a propagating front separating virgin and comminuted material, have been receiving a fair amount of attention the last couple of years. While most scientists have been looking at failure waves in plate impact geometries, we have conducted a series of experiments on Pyrex bars. In this paper, we present two types of photographic data from a series of tests. A streak camera was used to determine velocities of the failure front as a function of impact stress. A polaroid camera and a flash lamp provide detailed pictures of the actual event. Attempts were made to observe failure waves in amorphous quartz and acrylic.
Early Experience with Biodegradable Fixation of Pediatric Mandibular Fractures
Mazeed, Ahmed Salah; Shoeib, Mohammed Abdel-Raheem; Saied, Samia Mohammed Ahmed; Elsherbiny, Ahmed
2014-01-01
This clinical study aims to evaluate the stability and efficiency of biodegradable self-reinforced poly-l/dl-lactide (SR-PLDLA) plates and screws for fixation of pediatric mandibular fractures. The study included 12 patients (3–12 years old) with 14 mandibular fractures. They were treated by open reduction and internal fixation by SR-PLDLA plates and screws. Maxillomandibular fixation was maintained for 1 week postoperatively. Clinical follow-up was performed at 1 week, 6 weeks, 3 months, and 12 months postoperatively. Radiographs were done at 1 week, 3 months, and 12 months postoperatively to observe any displacement and fracture healing. All fractures healed both clinically and radiologically. No serious complications were reported in the patients. Normal occlusion was achieved in all cases. Biodegradable osteofixation of mandibular fractures offers a valuable clinical solution for pediatric patients getting the benefit of avoiding secondary surgery to remove plates, decreasing the hospital stay, further painful procedures, and psychological impact. PMID:26269728
Simulation Study on the Deflection Response of the 921A Steel thin plate under Explosive Impact Load
NASA Astrophysics Data System (ADS)
Zhang, Yu-Xiang; Chen, Fang; Han, Yan
2018-03-01
The Ship cabin would be subject to high-intensity shock wave load when it is attacked by anti-ship weapons, causing its side board damaged. The time course of the deflection of the thin plate made of 921A steel in different initial conditions under the impact load is researched by theoretical analysis and numerical simulation. According to the theory of elastic-plastic deformation of the thin plate, the dynamic response equation of the thin plate under the explosion impact load is established with the method of energy, and the theoretical calculation value is compared with the result from the simulation method. It proved that the theoretical calculation method has better reliability and accuracy in different boundary size.
Hypervelocity impact survivability experiments for carbonaceous impactors, part 2
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef
1995-01-01
Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.
Hugoniot-based equations of state for two filled EPDM rubbers
NASA Astrophysics Data System (ADS)
Pacheco, Adam; Dattelbaum, Dana; Orler, E.; Gustavsen, R.
2013-06-01
The shock response of silica filled and Kevlar filled ethylene-propylene-diene (EPDM) rubbers was studied using gas gun-driven plate impact experiments. Both materials are proprietary formulations made by Kirkhill-TA, Brea CA USA, and are used for ablative internal rocket motor insulation. Two types of experiments were performed. In the first, the filled-EPDM sample was mounted on the front of the projectile and impacted a Lithium Fluoride (LiF) window. The Hugoniot state was determined from the measured projectile velocity, the EPDM/LiF interface velocity (measured using VISAR) and impedance matching to LiF. In the second type of experiment, electromagnetic particle velocity gauges were embedded between layers of filled-EPDM. These provided in situ particle velocity and shock velocity measurements. Experiments covered a pressure range of 0.34 - 14 GPa. Hugoniot-based equations of state were obtained for both materials, and will be compared to those of other filled elastomers such as silica-filled polydimethylsiloxane and adiprene. Work performed while at Los Alamos National Laboratory.
Field and laboratory calibration of impact plates for measuring coarse bed load transport
USDA-ARS?s Scientific Manuscript database
During 2008-2009, an array of impact plates instrumented with either accelerometers or geophones was installed over a channel spanning weir in the Elwha River in Washington, USA. The impact system is the first permanent installation of its kind in North America. The system was deployed to measure th...
Failure mechanics in low-velocity impacts on thin composite plates
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.
Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant
2011-06-01
Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.
NASA Astrophysics Data System (ADS)
Foley, Bradford J.
2015-10-01
The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.
Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.
1979-08-01
The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less
High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry
Banishev, Alexandr A.; Shaw, William L.; Bassett, Will P.; ...
2016-02-16
Pulsed lasers can launch thin metal foils at km s -1, but for precision measurements in shock compression science and shock wave spectroscopy, where one-dimensional shock compression is vital, flyer plate impacts with targets must have a high degree of flatness and minimal tilt, and the flyer speeds and impact times at the target must be highly reproducible. We have developed an apparatus that combines ultrafast stroboscopic optical microscopy with photon Doppler velocimetry to study impacts of laser-launched Al and Cu flyer plates with flat, transparent glass targets. The flyer plates were 0.5 mm in diameter, and ranged from 12-100more » μm thick, with flyer speeds up to 6.25 km s -1. The velocity variations over 30-60 launches from the same flyer plate optic can be as low as 0.6%, and the impact time variations can be as low as 0.8 ns. Stroboscopic image streams (reconstructed movies) show uniform, flat impacts with a glass target. As a result, these stroboscopic images can be used to estimate the tilt in the flyer-target impact to be <1mrad.« less
Qualification process of CR system and quantification of digital image quality
NASA Astrophysics Data System (ADS)
Garnier, P.; Hun, L.; Klein, J.; Lemerle, C.
2013-01-01
CEA Valduc uses several X-Ray generators to carry out many inspections: void search, welding expertise, gap measurements, etc. Most of these inspections are carried out on silver based plates. For several years, the CEA/Valduc has decided to qualify new devices such as digital plates or CCD/flat panel plates. On one hand, the choice of this technological orientation is to forecast the assumed and eventual disappearance of silver based plates; on the other hand, it is also to keep our skills mastering up-to-date. The main improvement brought by numerical plates is the continuous progress of the measurement accuracy, especially with image data processing. It is now common to measure defects thickness or depth position within a part. In such applications, data image processing is used to obtain complementary information compared to scanned silver based plates. This scanning procedure is harmful for measurements which imply a data corruption of the resolution, the adding of numerical noise and is time expensive. Digital plates enable to suppress the scanning procedure and to increase resolution. It is nonetheless difficult to define, for digital images, single criteria for the image quality. A procedure has to be defined in order to estimate quality of the digital data itself; the impact of the scanning device and the configuration parameters are also to be taken into account. This presentation deals with the qualification process developed by CEA/Valduc for digital plates (DUR-NDT) based on the study of quantitative criteria chosen to define a direct numerical image quality that could be compared with scanned silver based pictures and the classical optical density. The versatility of the X-Ray parameters is also discussed (X-ray tension, intensity, time exposure). The aim is to be able to transfer the year long experience of CEA/Valduc with silver-based plates inspection to these new digital plates supports. This is an industrial stake.
NASA Astrophysics Data System (ADS)
Olds, S. E.; Schiffman, C. R.; Butler, R. F.; Farley, M.; Frankel, S.; Hunter, N.; Lillie, R. J.
2013-12-01
Over the past ten years, UNAVCO has developed a suite of learning materials for formal undergraduate and grades 6-12 classroom environments, integrating GPS data from the EarthScope Plate Boundary Observatory (PBO) to explore Earth science processes. To make complex Earth processes accessible to general audiences, UNAVCO has designed a multi-component visiting museum exhibit that explores the tectonic setting of the United States Pacific Northwest, hazards of living on a plate boundary, and the technologies being used to study the plate motion and in the future, help communities become more resilient to the impacts of earthquakes. This exhibit was installed in Fall 2013 at the Oregon State University (OSU) Hatfield Marine Science Center (HMSC) in Newport, Oregon. Through multiple hands-on elements, visitors to the HMSC exhibit explore and experience the build up and release of strain in the region, along with some of the technologies used to measure these changes. In one component, visitors compress a model of the Pacific Northwest to feel the build up of strain in the landscape and observe the movement of land over time. Supporting panels connect this movement to the measurements currently being observed by the network of PBO and other GPS stations in the Pacific Northwest. In another component, visitors learn about the recurrence interval for earthquakes at the Juan De Fuca - North America plate boundary by turning a handle to slowly move and compress plates until a simulated earthquake occurs. A related component explores how an earthquake early warning system (EEWS) of the future might combine seismic data collected by both seismometers and real time GPS to allow people and communities time to prepare for oncoming ground shaking and tsunami after an earthquake. Several technologies are also highlighted throughout the exhibit, including information panels that compare the accuracy of high precision GPS with smartphone technologies. Additionally, models of a full-sized PBO GPS monument and power and communication systems demonstrate the technology supporting real-time GPS data acquisition and rapid data transfer required for current research and future EEWS centers. An accompanying interactive kiosk provides additional content. The presentation will provide more details about the exhibit components and preliminary visitor feedback.
The dynamic behavior of mortar under impact-loading
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner
2007-06-01
Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.
NASA Astrophysics Data System (ADS)
Murray, Natalie; Bourne, Neil; Field, John
1997-07-01
Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.
Characterisation of structure-borne sound source using reception plate method.
Putra, A; Saari, N F; Bakri, H; Ramlan, R; Dan, R M
2013-01-01
A laboratory-based experiment procedure of reception plate method for structure-borne sound source characterisation is reported in this paper. The method uses the assumption that the input power from the source installed on the plate is equal to the power dissipated by the plate. In this experiment, rectangular plates having high and low mobility relative to that of the source were used as the reception plates and a small electric fan motor was acting as the structure-borne source. The data representing the source characteristics, namely, the free velocity and the source mobility, were obtained and compared with those from direct measurement. Assumptions and constraints employing this method are discussed.
Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.
Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara
2017-09-01
Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.
Using a Photon Beam for Thermal Nociceptive Threshold Experiments
NASA Astrophysics Data System (ADS)
Walker, Azida; Anderson, Jeffery; Sherwood, Spencer
In humans, risk of diabetes and diabetic complications increases with age and duration of prediabetic state. In an effort to understand the progression of this disease scientists have evaluated the deterioration of the nervous system. One of the current methods used in the evaluation of the deterioration of the nervous system is through thermal threshold experiments. An incremental Hot / Cold Plate Analgesia Meter (IITC Life Science,CA is used to linearly increase the plate temperature at a rate of 10 ºC min-1 with a cutoff temperature of 55 ºC. Hind limb heat pain threshold (HPT) will be defined as a plate temperature at which the animal abruptly withdraws either one of its hind feet from the plate surface in a sharp move, typically followed by licking of the lifted paw. One of the disadvantages of using this hot plate method is in determining the true temperature at which the paw was withdrawn. While the temperature of the plate is known the position of the paw on the surface may vary; occasionally being cupped resulting in a temperature differentiation between the plate and the paw. During experiments the rats may urine onto the plate changing the temperature of the surface again resulting in reduced accuracy as to the withdrawal threshold. We propose here a new method for nociceptive somatic experiments involving the heat pain threshold experiments. This design employs the use of a photon beam to detect thermal response from an animal model. The details of this design is presented. Funded by the Undergraduate Research Council at the University of Central Arkansas.
Forquin, Pascal; Zinszner, Jean-Luc
2017-01-28
Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the 'wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, 'wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Forquin, Pascal; Zinszner, Jean-Luc
2017-01-01
Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade
The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated inmore » the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.« less
General-Purpose Heat Source Safety Verification Test Program: Edge-on flyer plate tests
NASA Astrophysics Data System (ADS)
George, T. G.
1987-03-01
The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of Pu-238 alpha-decay to an array of thermoelectric elements. Each module contains four Pu-238O2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-TO) plate is approximately 140 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tentner, A.; Bojanowski, C.; Feldman, E.
An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the othermore » represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.« less
The Influence of impact on Composite Armour System Kevlar-29/polyester-Al2O3
NASA Astrophysics Data System (ADS)
Ramadhan, A. A.; Abu Talib, A. R.; Mohd Rafie, A. S.; Zahari, R.
2012-09-01
An experimental investigation of high velocity impact responses of composite laminated plates using a helium gas gun has been presented in this paper. The aim of this study was to develop the novel composite structure that meets the specific requirements of ballistic resistance which used for body protections, vehicles and other applications. Thus the high velocity impact tests were performed on composite Kevlar-29 fiber/polyester resin with alumina powder (Al2O3). The impact test was conducted by using a cylindrical steel projectile of 7.62mm diameter at a velocity range of 160-400 m/s. The results (shown in this work) are in terms of varying plate thickness and the amount of energy absorbed by the laminated plates meanwhile we obtained that the 12mm thickness of composite plate suitable for impact loading up to 200m/s impact velocity. Therefore this composite structure (it is used to reduce the amount of Kevlar) considered most economical armoure products. We used the ANSYS AUTODYN 3D- v.12 software for our simulations. The results have been obtained a4.1% maximum errors with experimental work of energy absorption.
Some Correlations between Plate Shatter and Fracture Toughness.
1987-02-01
temperatures. In this manner, any test for plate cracking should be akin to a Charpy test, where a series of notched test bars are broken over a...cracking under ballistic impact. The PSTT test is analogous to the transition temperature in a Charpy impact test, or to the nil ductility transition (NDT...210 C to -730 C. Standard Charpy specimens were machined from the plates and subsequently precracked in fatigue to about 2.5 mm and dynamically tested
Symmetrical Taylor impact of glass bars
NASA Astrophysics Data System (ADS)
Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.
1998-07-01
Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Jaunky, Navin
1999-01-01
The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.
Hypervelocity impacts into graphite
NASA Astrophysics Data System (ADS)
Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.
2011-03-01
Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.
NASA Technical Reports Server (NTRS)
Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.
1980-01-01
Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A. J.; Percher, C. M.; Zywiec, W. J.
This report presents the final design (CED-2) for IER-297, and focuses on 15 critical configurations using highly enriched uranium (HEU) Jemima plates moderated by polyethylene with and without hafnium diluent. The goal of the U.S. Nuclear Criticality Safety Program’s Thermal/Epithermal eXperiments (TEX) is to design and conduct new critical experiments to address high priority nuclear data needs from the nuclear criticality safety and nuclear data communities, with special emphasis on intermediate energy (0.625 eV – 100 keV) assemblies that can be easily modified to include various high priority diluent materials. The TEX (IER 184) CED-1 Report [1], completed in 2012,more » demonstrated the feasibility of meeting the TEX goals with two existing NCSP fissile assets, plutonium Zero Power Physics Reactor (ZPPR) plates and highly enriched uranium (HEU) Jemima plates. The first set of TEX experiments will focus on using the plutonium ZPPR plates with polyethylene moderator and tantalum diluents.« less
JPRS Report, Science & Technology, USSR: Engineering & Equipment.
1988-11-04
correspondent: "We will conduct an experiment with a welded joint of a pipe in your presence. First we will photograph it in the normal state and then...following heating and an impact, or under pressure in which the product changes shape by fractions of a micron and vibrates. The two images lie in a single...light spot. It consists of feeder optics including a photocathode, a pair of microchannel plates in a herringbone configuration, and four other elec
The dynamic response and shock-recovery of porcine skeletal muscle tissue
NASA Astrophysics Data System (ADS)
Wilgeroth, James Michael; Hazell, Paul; Appleby-Thomas, Gareth James
2012-03-01
A soft-capture system allowing for one-dimensional shock loading and release of soft tissues via the plate-impact technique has been developed. In addition, we present the numerical simulation of a shock-recovery experiment involving porcine skeletal muscle and further investigate the effects of the transient wave on the structure of the tissue via transmission electron microscope (TEM). This paper forms part of an ongoing research programme on the dynamic behaviour of skeletal muscle tissue.
Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun
NASA Astrophysics Data System (ADS)
Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.
1999-06-01
In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuz, M.
1999-05-01
In the 1970s at the Battelle Pacific Northwest Laboratory (PNL), a series of critical experiments using a remotely operated Split-Table Machine was performed with homogeneous mixtures of (Pu-U)O{sub 2}-polystyrene fuels in the form of square compacts having different heights. The experiments determined the critical geometric configurations of MOX fuel assemblies with and without neutron poison plates. With respect to PuO{sub 2} content and moderation [H/(Pu+U)atomic] ratio (MR), two different homogeneous (Pu-U) O{sub 2}-polystyrene mixtures were considered: Mixture (1) 14.62 wt% PuO{sub 2} with 30.6 MR, and Mixture (2) 30.3 wt% PuO{sub 2} with 2.8 MR. In all mixtures, the uraniummore » was depleted to about O.151 wt% U{sup 235}. Assemblies contained copper, copper-cadmium or aluminum neutron poison plates having thicknesses up to {approximately}2.5 cm. This evaluation contains 22 experiments for Mixture 1, and 10 for Mixture 2 compacts. For Mixture 1, there are 10 configurations with copper plates, 6 with aluminum, and 5 with copper-cadmium. One experiment contained no poison plate. For Mixture 2 compacts, there are 3 configurations with copper, 3 with aluminum, and 3 with copper-cadmium poison plates. One experiment contained no poison plate.« less
Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A
2017-04-01
The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.
NASA Technical Reports Server (NTRS)
Humphreys, E. A.
1981-01-01
A computerized, analytical methodology was developed to study damage accumulation during low velocity lateral impact of layered composite plates. The impact event was modeled as perfectly plastic with complete momentum transfer to the plate structure. A transient dynamic finite element approach was selected to predict the displacement time response of the plate structure. Composite ply and interlaminar stresses were computed at selected time intervals and subsequently evaluated to predict layer and interlaminar damage. The effects of damage on elemental stiffness were then incorporated back into the analysis for subsequent time steps. Damage predicted included fiber failure, matrix ply failure and interlaminar delamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakan Ozaltun; Pavel Medvedev
The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less
NASA Astrophysics Data System (ADS)
Ryan, Shannon; Christiansen, Eric L.
2013-02-01
A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.
2018-01-23
aluminum plate; and the time history of the aluminum back surface displacement located directly under the sphere. Figures 2-4 present the computed results... displacements as a function of time. It is clear that the computed results using no bond produce more damage in the ceramic plate and much more... displacement of the aluminum back plate. Figures 5-7 present the computed results for boron carbide (using the TR model), for impact velocities of V
Influence of end plates on aerodynamic characteristics of bluff bodies
NASA Astrophysics Data System (ADS)
Shmigirilov, Rodion; Ryabinin, Anatoly
2018-05-01
Aerodynamic characteristics of flat plate oriented normally to the flow are studied in the wind tunnel. The experiments are carried out without end plates and with round end plates of different diameter. We obtain that end plates increase the base pressure, the drag coefficient and decrease the length of recirculation region.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests is scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low velocity impacts where the mass of the impacter is large and the size of the specimen is small. For large mass impacts of moderately thick (0.35 to 0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large mass test results can be applied directly to other plates of the same size.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests are scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low-velocity impacts where the mass of the impacter is large, and the size of the specimen is small. For large-mass impacts of moderately thick (0.35-0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large-mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large-mass test results can be applied directly to other plates of the same thickness.
The principal Hugoniot of Mg2SiO4 to 950 GPa
NASA Astrophysics Data System (ADS)
Townsend, J. P.; Root, S.; Shulenburger, L.; Lemke, R. W.; Kraus, R. G.; Jacobsen, S. B.; Spaulding, D.; Davies, E.; Stewart, S. T.
2017-12-01
We present new measurements and ab-initio calculations of the principal Hugoniot states of forsterite Mg2SiO4 in the liquid regime between 200-950 GPa.Forsterite samples were shock compressed along the principal Hugoniot using plate-impact shock compression experiments on the Sandia National Laboratories Z machine facility.In order to gain insight into the physical state of the liquid, we performed quantum molecular dynamics calculations of the Hugoniot and compare the results to experiment.We show that the principal Hugoniot is consistent with that of a single molecular fluid phase of Mg2SiO4, and compare our results to previous dynamic compression experiments and QMD calculations.Finally, we discuss how the results inform planetary accretion and impact models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Z.; Dekel, E.; Hohler, V.
1998-07-10
A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.
Measurement of gravel bed load using impact plates
USDA-ARS?s Scientific Manuscript database
Accurate determinations of the rate of bed load transport are difficult to make but important for determining the fate of sediment released after the removal of a dam. Two dams were removed from the Elwha River in the state of Washington beginning in 2011, and 72 impact plates were installed downst...
Millsap, K; Reid, G; van der Mei, H C; Busscher, H J
1994-01-01
The displacement of Enterococcus faecalis 1131 from hydrophobic and hydrophilic substrata by isolates of Lactobacillus casei 36 and Streptococcus hyointestinalis KM1 was studied in a parallel plate flow chamber. The experiments were conducted with either 10 mM potassium phosphate buffer or human urine as the suspending fluid, and adhesion and displacement were measured by real-time in situ image analysis. The results showed that E. faecalis 1131 was displaced by lactobacilli (31%) and streptococci (74%) from fluorinated ethylene propylene in buffer and that displacement by lactobacilli was even more effective on a glass substratum in urine (54%). The passage of an air-liquid interface significantly impacted on adhesion, especially when the surface had been challenged with lactobacilli (up to 100% displacement) or streptococci (up to 94% displacement). These results showed that the parallel plate flow system with real-time in situ image analysis was effective for studying bacterial adhesion and that uropathogenic enterococci can be displaced by indigenous bacteria. Images PMID:8031082
Nonaerodynamic sabot stripper for research gas gun
NASA Astrophysics Data System (ADS)
Mock, W., Jr.; Holt, W. H.
1994-07-01
A nonaerodynamic sabot stripper has been designed and implemented for use with a 40.00-mm smooth bore research gas gun. The stripper consists of several metal parts to stop and contain the sabot while allowing the carried object to pass unhindered through it. The single-piece sabot is stopped by impacting replaceable layers of 19-mm-thick aluminum and steel plates and 3.2-mm-thick rubber sheets. The metal plates and rubber sheets have 25.4- and 31.8-mm diam holes, respectively, for passage of the carried object. The sabot stripper is located 230 mm from the muzzle of the gas gun and is aligned before each shot using a special metal fixture that is inserted into the gun muzzle. Cubes measuring 12.7 mm have been launched in a flat-faced orientation. Targets consisting of 76.2 mm×76.2 mm plates of various thicknesses are positioned in an assembly that attaches to the sabot stripper and is located 57 mm behind it. The velocity range for the experiments was from 0.61 to 0.94 km/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun
2013-11-21
We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipationmore » performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.« less
Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube
NASA Technical Reports Server (NTRS)
Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.
2012-01-01
Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.
Experimental and numerical study of water-filled vessel impacted by flat projectiles
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yu Bo
2014-05-01
To understand the failure modes and impact resistance of double-layer plates separated by water, a flat-nosed projectile was accelerated by a two-stage light gas gun against a water-filled vessel which was placed in an air-filled tank. Targets consisted of a tank made of two flat 5A06 aluminum alloy plates held by a high strength steel frame. The penetration process was recorded by a digital high-speed camera. The same projectile-target system was also used to fire the targets placed directly in air for comparison. Parallel numerical tests were also carried out. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were able to capture the main physical behavior. It was also found that the impact resistance of double layer plates separated by water was lager than that of the target plates in air. Tearing was the main failure models of the water-filled vessel targets which was different from that of the target plates in air where the shear plugging was in dominate.
Time-domain simulation of damped impacted plates. II. Numerical model and results.
Lambourg, C; Chaigne, A; Matignon, D
2001-04-01
A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.
Investigations on the performance of chevron type plate heat exchangers
NASA Astrophysics Data System (ADS)
Dutta, Oruganti Yaga; Nageswara Rao, B.
2018-01-01
This paper presents empirical relations for the chevron type plate heat exchangers (PHEs) and demonstrated their validity through comparison of test data of PHEs. In order to examine the performance of PHEs, the pressure drop(Δ P), the overall heat transfer coefficient ( U m ) and the effectiveness ( ɛ) are estimated by considering the properties of plate material and working fluid, number of plates ( N t ) and chevron angle( β). It is a known fact that, large surface area of the plate provides more rate of heat transfer ( \\dot{Q} ) thereby more effectiveness ( ɛ). However, there is a possibility to achieve the required performance by increasing the number of plates without altering the plate dimensions, which avoids the new design of the system. Application of the Taguchi's design of experiments is examined with less number of experiments and demonstrated by setting the levels for the parameters and compared the test data with the estimated output responses.
NASA Technical Reports Server (NTRS)
Meertens, Charles M.; Rocken, Christian; Perin, Barbara; Walcott, Richard
1993-01-01
The NASA/DOSE 'Kinematics of the New Zealand Plate Boundary' experiment is a four-year cooperative Global Positioning System (GPS) experiment involving 6 universities and institutions in New Zealand and the United States. The investigation covers two scales, the first on the scale of plates (approximately 1000 km) and the second is on the scale of the plate boundary zone (approximately 50 km). In the first portion of the experiment, phase A, the objective is to make direct measurements of tectonic plate motion between the Australian and Pacific plates using GPS in order to determine the Euler vector of this plate pair. The phase A portion of this experiment was initiated in December 1992 with the first-epoch baseline measurements on the large scale network. The network will be resurveyed two years later to obtain velocities. The stations which were observed for phase A are shown and listed. Additional regional stations which will be used for this study are listed and are part of either CIGNET or other global tracking networks. The phase A portion of the experiment is primarily the responsibility of the UNAVCO investigators. Therefore, this report concentrates on phase A. The first year of NASA funding for phase A included only support for the field work. Processing and analysis will take place with the second year of funding. The second part of the experiemnt measured relative motion between the Australian and Pacific plates across the pate boundary zone between Hokitika and Christchurch on the South Island of New Zealand. The extent and rate of deformation will be determined by comparisons with historical, conventional surveys and by repeated GPS measurements to be made in two years. This activity was the emphasis of the LDGO portion of the study. An ancillary experiment, phase C, concentrated on plate boundary deformation in the vicinity of Wellington and was done as part of training during the early portion of the field campaign. Details of the objectives of the field investigations are given in the appendix. An overview of the 1992 GPS field program is also given in the appendix.
Using laser-driven flyer plates to study the shock initiation of nanoenergetic materials
NASA Astrophysics Data System (ADS)
Shaw, William; Dlott, Dana
2013-06-01
A tabletop system has been developed to launch aluminum laser-driven flyer plates at speeds up to 4 km/s. The flyer plates are used to initiate a variety of nanoenergetic materials including aluminum/iron oxide particles produced by arrested ball milling, and multi-layer nano-thermites produced by sputtering. The initiation process is probed by a variety of high-speed diagnostics including time-resolved emission spectroscopy. Impact velocity initiation thresholds for different thickness flyer plates, producing different duration shocks, were determined. The durations of the emission bursts and the effects of nanostructure and microstructure on these bursts were used to investigate the fundamental mechanisms of impact initiation.
Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek
2017-05-01
We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Material strength measured by flyer-impact perturbation method
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Asimow, Paul; Fatyanov, Oleg; Liu, Fusheng
2017-06-01
Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-plate impacts experiments on targets with machined grooves on the impact surface to shock aluminum to between 32 and 71 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins and fibers. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of aluminum to be 1.3-3.1 GPa. These results are in agreement with values obtained from reshock and release wave profiles as well as the result deduced from the SCG model. We conclude that the flyer-impact perturbation method is indeed a reliable means to measure material strength. This work was supported by the National Natural Science Foundation of China (Grant No. 41674088) and the State Scholarship Fund of China Scholarship Council.
False positives in Biolog EcoPlates™ and MT2 MicroPlates™ caused by calcium.
Pierce, Melissa L; Ward, J Evan; Dobbs, Fred C
2014-02-01
Biolog MicroPlates(TM) (e.g. EcoPlate(TM), MT2 MicroPlate(TM), GN MicroPlate(TM)) are useful tools for characterizing microbial communities, providing community-level physiological profiles to terrestrial and aquatic ecologists. The more recently designed Biolog EcoPlates have been used frequently in aquatic ecology with success. This study, however, reveals one major problem when using EcoPlates to evaluate samples within an estuarine or seawater matrix. At concentrations greater than 100 parts per million, the cation calcium begins to interfere with the microplate chemistry, causing false positive readings. Experiments, in which multiple treatments of natural and artificial seawater were tested, as well as calcium-addition experiments, demonstrate that calcium inhibits complete dissolution of the minimal growth medium in wells. Future studies involving Biolog EcoPlates and MicroPlates should take this effect into account, and the dilution of samples is strongly recommended to diminish the "calcium effect." Copyright © 2013 Elsevier B.V. All rights reserved.
Optimum structure of Whipple shield against hypervelocity impact
NASA Astrophysics Data System (ADS)
Lee, M.
2014-05-01
Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.
Hypervelocity impact of mm-size plastic projectile on thin aluminum plate
NASA Astrophysics Data System (ADS)
Poniaev, S. A.; Kurakin, R. O.; Sedov, A. I.; Bobashev, S. V.; Zhukov, B. G.; Nechunaev, A. F.
2017-06-01
The experimental studies of the process of hypervelocity (up to 6 km/s) impact of a mm-size projectile on a thin aluminum plate is described. The numerical simulation of this process is presented. The data on the evolution, structure, and composition of the debris cloud formed as a result of the impact are reported. Basic specific features of the debris cloud formation are revealed.
Modeling of orthotropic plate fracture under impact load using various strength criteria
NASA Astrophysics Data System (ADS)
Radchenko, Andrey; Krivosheina, Marina; Kobenko, Sergei; Radchenko, Pavel; Grebenyuk, Grigory
2017-01-01
The paper presents the comparative analysis of various tensor multinomial criteria of strength for modeling of orthotropic organic plastic plate fracture under impact load. Ashkenazi, Hoffman and Wu strength criteria were used. They allowed fracture modeling of orthotropic materials with various compressive and tensile strength properties. The modeling of organic plastic fracture was performed numerically within the impact velocity range of 700-1500 m/s.
Carbonaceous Survivability on Impact
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Becker, Luann; Morrison, David (Technical Monitor)
1994-01-01
In order to gain knowledge about the potential contributions of comets and cosmic dust to the origin of life on Earth, we need to explore the survivability of their potential organic compounds on impact and the formation of secondary products that may have arisen from the chaotic events sustained by the carriers as they fell to Earth. We have performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, kerogens, PAH crystals, and Murchison and Nogoya meteorites) into Al plate targets at velocities - 6 km/s. Estimated peak shock pressures probably did not exceed 120 GPa and peak shock temperatures were probably less than 4000 K for times of nano- to microsecs. Nominal crater dia. are less than one mm. The most significant results of these experiments are the preservation of the higher mass PAHs (e. g., pyrene relative to napthalene) and the formation of additional alkylated PAHs. We have also examined the residues of polystyrene projectiles impacted by a microparticle accelerator into targets at velocities up to 15 km/s. This talk will discuss the results of these experiments and their implications with respect to the survival of carbonaceous deliverables to early Earth. The prospects of survivability of organic molecules on "intact" capture of cosmic dust in space via soft: and hard cosmic dust collectors will also be discussed.
Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence
NASA Technical Reports Server (NTRS)
Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.
2015-01-01
The U.S. Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) are actively involved in improving the predictive capabilities of transient finite element computational methods for application to safety issues involving unintended impacts on aircraft and aircraft engine structures. One aspect of this work involves the development of an improved deformation and failure model for metallic materials, known as the Tabulated Johnson-Cook model, or MAT224, which has been implemented in the LS-DYNA commercial transient finite element analysis code (LSTC Corp., Livermore, CA) (Ref. 1). In this model the yield stress is a function of strain, strain rate and temperature and the plastic failure strain is a function of the state of stress, temperature and strain rate. The failure criterion is based on the accumulation of plastic strain in an element. The model also incorporates a regularization scheme to account for the dependency of plastic failure strain on mesh size. For a given material the model requires a significant amount of testing to determine the yield stress and failure strain as a function of the three-dimensional state of stress, strain rate and temperature. In addition, experiments are required to validate the model. Currently the model has been developed for Aluminum 2024 and validated against a series of ballistic impact tests on flat plates of various thicknesses (Refs. 1 to 3). Full development of the model for Titanium 6Al-4V is being completed, and mechanical testing for Inconel 718 has begun. The validation testing for the models involves ballistic impact tests using cylindrical projectiles impacting flat plates at a normal incidence (Ref. 2). By varying the thickness of the plates, different stress states and resulting failure modes are induced, providing a range of conditions over which the model can be validated. The objective of the study reported here was to provide experimental data to evaluate the model under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
1991-11-07
proposed that a phase transformation to untempered martensite (via austenite) occurred within the shear band [9]. Wittman et al used TEM observations to...porous materials is used to simulate the plate impact experiment. 1. Introduction While second phase precipitates or particles greatly enhance the...34Dispersed Particle Hard- ening of Aluminum- Copper Alloy Single Crystals", Acta Metall., Vol. 8, March, pp. 147-155. [2] Meiklejohn, W. H. and Skoda
The effect of impact angle on craters formed by hypervelocity particles
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.
1995-01-01
The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.
NASA Technical Reports Server (NTRS)
Mckinnon, W. B.
1982-01-01
Impact processes and plate tectonics are invoked in an experimental study of craters larger than 100 km in diameter on the ocean floor. Although the results obtained from 22-caliber (383 m/sec) ammunition experiments using dense, saturated sand as a target medium cannot be directly scaled to large events, the phenomenology exhibited is that expected of actual craters on the ocean floor: steep, mixed ejecta plume, gravitational adjustment of the crater to form a shallow basin, and extensive reworking of the ejecta, rim, and floor materials by violent collapse of the transient water cavity. Excavation into the mantle is predicted, although asthenospheric influence on outer ring formation is not. The clearest geophysical signature of such a crater is not topography; detection should instead be based on gravity and geoid anomalies due to uplift of the Moho, magnetic anomalies, and seismic resolution of the Moho uplift and crater formation fault planes.
Shock response of 7068 aluminium alloy
NASA Astrophysics Data System (ADS)
Chapman, David; Eakins, Daniel; Proud, William
2013-06-01
Aluminium alloys are widely employed throughout the aerospace and defence industries due to their high specific strength. Aluminium alloy 7068, often described as the ultimate aluminium alloy was developed by Kasier Aluminium in the mid-1990s and is the strongest aluminium commercially produced. There remains little published data on the response of this micro-structurally anisotropic alloy to dynamic loading. As part of an investigation of the high-rate mechanical properties of Al 7068, a series of plate-impact experiments using a novel meso-scale planar impact facility and a more conventional large bore gas gun were undertaken. The evolution of the elastic-plastic shock wave and spall strength as a function of sample thickness and specimen orientation were investigated using optical velocimetry (line-VISAR, PDV) techniques. Planar shock wave experiments were conducted on specimens several 100 microns to several millimetres thick cut from either parallel or perpendicular to the extrusion direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Keiser, Jr.; A. B. Robinson; M. R. Finlay
2007-09-01
Evaluation of the PIE results of the monolithic plates that were irradiated as part of the RERTR-6 experiment has continued. Specifically, comparisons have been made between the microstructures of the fuel plates before and after irradiation. Using the results from the rigorous characterization that was performed on the as-fabricated plates using scanning electron microscopy, it is possible to improve understanding of how monolithic fuel plates perform when they are irradiated. This paper will discuss the changes that occur, if any, in the microstructure of a monolithic fuel plate that is fabricated using techniques like what were employed for fabricating RERTR-6more » fuel plates. In addition, the performance of fuel/cladding interaction layers that were present in the fuel plates due to the fabrication process will be discussed, particularly in the context of swelling of these layers and how these layers exhibit different behaviors depending on whether the fuel alloy in the fuel plate is U-7Mo or U-10Mo.« less
A study on ground truth data for impact damaged polymer matrix composites
NASA Astrophysics Data System (ADS)
Wallentine, Sarah M.; Uchic, Michael D.
2018-04-01
This study presents initial results toward correlative characterization of barely-visible impact damage (BVID) in unidirectional carbon fiber reinforced polymer matrix composite laminate plates using nondestructive ultrasonic testing (UT) and destructive serial sectioning microscopy. To produce damage consistent with BVID, plates were impacted using an instrumented drop-weight tower with pneumatic anti-rebound brake. High-resolution, normal-incidence, single-sided, pulse-echo, immersion UT scans were performed to verify and map internal damage after impact testing. UT C-scans were registered to optical images of the specimen via landmark registration and the use of an affine transformation, allowing location of internal damage in reference to the overall plate and enabling specimen preparation for subsequent serial sectioning. The impact-damaged region was extracted from each plate, prepared and mounted for materialographic sectioning. A modified RoboMet.3D version 2 was employed for serial sectioning and optical microscopy characterization of the impact damaged regions. Automated montage capture of sub-micron resolution, bright-field reflection, 12-bit monochrome optical images was performed over the entire specimen cross-section. These optical images were post- processed to produce 3D data sets, including segmentation to improve visualization of damage features. Impact-induced delaminations were analyzed and characterized using both serial sectioning and ultrasonic methods. Those results and conclusions are presented, as well as future direction of the current study.
Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid
2014-01-01
Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.
A verification and validation effort for high explosives at Los Alamos National Lab (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovel, Christina A; Menikoff, Ralph S
2009-01-01
We have started a project to verify and validate ASC codes used to simulate detonation waves in high explosives. Since there are no non-trivial analytic solutions, we are going to compare simulated results with experimental data that cover a wide range of explosive phenomena. The intent is to compare both different codes and different high explosives (HE) models. The first step is to test the products equation of state used for the HE models, For this purpose, the cylinder test, flyer plate and plate-push experiments are being used. These experiments sample different regimes in thermodynamic phase space: the CJ isentropemore » for the cylinder tests, the isentrope behind an overdriven detonation wave for the flyer plate experiment, and expansion following a reflected CJ detonation for the plate-push experiment, which is sensitive to the Gruneisen coefficient. The results of our findings for PBX 9501 are presented here.« less
Seo, K H; Mitchell, B W; Holt, P S; Gast, R K
2001-01-01
The bactericidal effect of high levels of negative ions was studied using a custom-built electrostatic space charge device. To investigate whether the ion-enriched air exerted a bactericidal effect, an aerosol containing Salmonella Enteritidis (SE) was pumped into a sealed plastic chamber. Plates of XLT4 agar were attached to the walls, top, and bottom of the chamber and exposed to the aerosol for 3 h with and without the ionizer treatment. The plates were then removed from the chamber, incubated at 37 degrees C for 24 h, and colonies were counted. An average of greater than 10(3) CFU/plate were observed on plates exposed to the aerosol without the ionizer treatment (control) compared with an average of less than 53 CFU/plate on the ionizer-treated plates. In another series of experiments, the SE aerosol was pumped for 3 h into an empty chamber containing only the ionizer and allowed to collect on the internal surfaces. The inside surfaces of the chamber were then rinsed with 100 ml phosphate-buffered saline that was then plated onto XLT4 plates. While the rinse from the control chamber contained colony counts greater than 400 CFU/ml of wash, no colonies were found in the rinse from the ionizer-treatment chamber. These results indicate that high levels of negative air ions can have a significant impact on the airborne microbial load, and that most of this effect is through direct killing of the organisms. This technology, which also causes significant reduction in airborne dust, has already been successfully applied for poultry hatching cabinets and caged layer rooms. Other potential applications include any enclosed space such as food processing areas, medical institutions, the workplace, and the home, where reduction of airborne and surface pathogens is desired.
1984-04-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
1984-01-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Delaminations in composite plates under transverse impact loads - Experimental results
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Ye-Fei; Springer, George S.
1993-01-01
Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.
Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang
2017-09-01
The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the variants in the compatible plates are compatible and demonstrate an edge-to-edge character. Thus, such plates should nucleate and grow simultaneously. On the other hand, the strains to form the variants in the incompatible plates are incompatible, so they nucleate and grow separately until they meet during the transformation. The results of the present work provide comprehensive information on the martensitic transformation of Ni-Mn-Sb intermetallic compounds and its impact on martensite variant organization.
Rubber Impact on 3D Textile Composites
NASA Astrophysics Data System (ADS)
Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit
2012-06-01
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.
Effects of spaceflight and simulated weightlessness on longitudinal bone growth
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Zhang, M.; Evans, G. L.; Westerlind, K. C.; Cavolina, J. M.; Morey-Holton, E.; Turner, R. T.
2000-01-01
Indirect measurements have suggested that spaceflight impairs bone elongation in rats. To test this possibility, our laboratory measured, by the fluorochrome labeling technique, bone elongation that occurred during a spaceflight experiment. The longitudinal growth rate (LGR) in the tibia of rats in spaceflight experiments (Physiological Space Experiments 1, 3, and 4 and Physiological-Anatomical Rodent Experiment 3) and in two models of skeletal unloading (hind-limb elevation and unilateral sciatic neurotomy) were calculated. The effects of an 11 day spaceflight on gene expression of cartilage matrix proteins in rat growth plates were also determined by northern analysis and are reported for the first time in this study. Measurements of longitudinal growth indicate that skeletal unloading generally did not affect LGR, regardless of age, strain, gender, duration of unloading, or method of unloading. There was, however, one exception with 34% suppression in LGR detected in slow-growing, ovariectomized rats skeletally unloaded for 8 days by hind-limb elevation. This detection of reduced LGR by hind-limb elevation is consistent with changes in steady-state mRNA levels for type II collagen (-33%) and for aggrecan (-53%) that were detected in rats unloaded by an 11 day spaceflight. The changes detected in gene expression raise concern that spaceflight may result in changes in the composition of extracellular matrix, which could have a negative impact on conversion of growth-plate cartilage into normal cancellous bone by endochondral ossification.
Development of Low-Carbon, Copper-Strengthened HSLA Steel Plate for Naval Ship Construction
1990-06-01
steel plate microstructures, 2% nital etch . ...................................................... 13 2. Charpy V-notch impact energy transition for...met a minimum yield strength requirement of 80 ksi yield strength through 3/4 inch gage, had high Charpy V-notch impact energy at low tempera- tures...tempered HSLA line-pipe steels, which typically could not meet the minimum Charpy V-notch impact toughness requirement of 35 ft-lb at -1 200 F. In 1984
Droplet Evaporator For High-Capacity Heat Transfer
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A.
1993-01-01
Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.
Equation of state, initiation, and detonation of pure ammonium nitrate
NASA Astrophysics Data System (ADS)
Robbins, D. L.; Sheffield, S. A.; Dattelbaum, D. M.; Velisavljevic, N.; Stahl, D. B.
2009-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive throughout the world. One of the more common explosives using AN is called ANFO, a mixture of AN prills and fuel oil in a 94:6 ratio by weight. The AN prills are specially made to absorb the fuel oil, forming a mixture that reacts under shock loading through a diffusion-controlled process, resulting in a non-ideal explosive with detonation velocities around 4 km/s. While there are a number of studies on ANFO, there are only a few studies relating to the equation of state (EOS) and detonation properties of pure AN - resulting mainly from studies of accidents that have occurred during transportation of large quantities of AN. We present the results of a series of gas gun-driven plate impact experiments on pressed AN ranging in density from 1.72 to 0.9 g/cm^3. Several of the high density experiments were performed in front surface impact geometry, in which pressed AN disks were built into the projectile front and impacted onto LiF windows. Additional experiments at low density have been done in ``half cell'' multiple magnetic gauge gun experiments. From this work a complete unreacted EOS has been developed, as well as some initiation and detonation information. Additional high pressure x-ray diffraction experiments in diamond anvil cells have provided a static isotherm for AN.
Shock compression of simulated adobe
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.
2017-01-01
A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.
Impact of boundaries on velocity profiles in bubble rafts.
Wang, Yuhong; Krishan, Kapilanjan; Dennin, Michael
2006-03-01
Under conditions of sufficiently slow flow, foams, colloids, granular matter, and various pastes have been observed to exhibit shear localization, i.e., regions of flow coexisting with regions of solidlike behavior. The details of such shear localization can vary depending on the system being studied. A number of the systems of interest are confined so as to be quasi two-dimensional, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems have been studied with very different boundary conditions: Hele-Shaw cells (bubbles confined between two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often, it is assumed that the impact of the boundaries is not significant in the "quasistatic limit," i.e., when externally imposed rates of strain are sufficiently smaller than internal kinematic relaxation times. In this paper, we directly test this assumption for rates of strain ranging from 10(-3) to 10(-2) s(-1). This corresponds to the quoted rate of strain that had been used in a number of previous experiments. It is found that the top plate dramatically alters both the velocity profile and the distribution of nonlinear rearrangements, even at these slow rates of strain. When a top is present, the flow is localized to a narrow band near the wall, and without a top, there is flow throughout the system.
Adaptation to high throughput batch chromatography enhances multivariate screening.
Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried
2015-09-01
High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zipper, Lauren E; Aristide, Xavier; Bishop, Dylan P; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B; Santiago, Brianna M; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M; Soares, Alexei S
2014-12-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63-82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.
NASA Astrophysics Data System (ADS)
Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.
2017-07-01
Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.
NASA Technical Reports Server (NTRS)
Graves, J. R.
1974-01-01
Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.
Fringe Capacitance of a Parallel-Plate Capacitor.
ERIC Educational Resources Information Center
Hale, D. P.
1978-01-01
Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)
Liquid film on a circular plate formed by a droplet train impingement
NASA Astrophysics Data System (ADS)
Sanada, Toshiyuki; Yamamoto, Shoya
2017-11-01
Droplet impingement phenomena are found in the wide variety of industrial processes, however the detail of liquid film structure formed by the continuous impact of droplets is not clarified. In this study, we experimentally investigated behavior of liquid film which was formed by a droplet train impact. Especially, we focus on the diameter of hydraulic jump formed on a circular plate. The effects of nozzle diameter, liquid surface tension and liquid flow rate on the jump diameter were investigated. In addition, we compared the liquid film by the droplet train impact with that by a liquid column impact. As a result, the hydraulic jump was observed under the smaller water flow rate condition compare to the liquid column impact. And the jump diameters for the case of droplet train impact were greater than that of liquid column impact. However, the jump diameters for the small surface tension liquid for the case of droplet train impact were smaller than that of liquid column impact. We consider that this phenomenon is related to both high speed lateral flow after droplet impact and splash formation. In addition, the liquid film heights after hydraulic jump on a small circular plate were sensitive to either the droplet train impact or liquid column impact.
Quasi-one-dimensional modes in strip plates: Theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arreola, A.; Báez, G.; Méndez-Sánchez, R. A.
2014-01-14
Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.
Impact initiation of reactive aluminized fluorinated acrylic nanocomposites
White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.; ...
2016-04-18
The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less
Impact initiation of reactive aluminized fluorinated acrylic nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.
The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less
Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.
Root, Seth; Shulenburger, Luke; Lemke, Raymond W; Dolan, Daniel H; Mattsson, Thomas R; Desjarlais, Michael P
2015-11-06
The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.
Shock response and phase transitions of MgO at planetary impact conditions
Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; ...
2015-11-04
The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth’s mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories’ Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solidmore » and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. Furthermore, the high pressure required for complete shock melting has implications for a broad range of planetary collision events.« less
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud
2016-04-01
The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazard monitoring. Indeed, as natural flows travel down the slope, they apply stresses on the ground, generating seismic waves in a wide frequency band. Our ultimate objective is to relate the granular flow properties to the generated signals that result from the different physical processes involved. We investigate here the more simple process: the impact of a single bead on a rough surface. Farin et al. [2015] have already shown theoretically and experimentally the existence of a link between the properties of an impacting bead (mass and velocity) on smooth surfaces, and the emitted signal (radiated elastic energy and mean frequency). This demonstrates that the single impactor properties can be deduced from the form of the emitted signal. We extend this work here by investigating the impact of single beads and gravels on rough and erodible surfaces. Experimentally, we drop glass and steel beads of diameters from 2 mm to 10 mm on a PMMA plate. The roughness of this last is obtained by gluing 3mm-diameter glass beads on one of its face. Free beads have been also added to get erodible beds. We track the dropped impactor motion, times between impacts and the generated acoustic waves using two fast cameras and 8 accelerometers. Cameras are used in addition to estimate the impactor rotation. We investigate the energy balance during the impact process, especially how the energy restitution varies as a function of the energy lost through acoustic waves. From these experiments, we clearly observe that even if more dissipative processes are involved (friction, grain reorganization, etc.), the single bead scaling laws obtained on smooth surfaces remain valid. A main result of this work is to quantify the fluctuations of the characteristic quantities such as the bounce angle, the seismic energy and frequency induced by the plate roughness.
Wenzel, A; Kornum, F; Knudsen, MR; Lau, E Frandsen
2013-01-01
Objectives: To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Methods: Suspensions of C. albicans and S. oralis were prepared in concentrations of 109 and 105 organisms per ml, and Digora (Digora® Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan® Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5–60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Results: Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Conclusions: Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora. PMID:23420856
Wenzel, A; Kornum, F; Knudsen, Mr; Lau, E Frandsen
2013-01-01
To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Suspensions of C. albicans and S. oralis were prepared in concentrations of 10(9) and 10(5) organisms per ml, and Digora (Digora(®) Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan(®) Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5-60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora.
Micromechanics of failure waves in glass. 2: Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa, H.D.; Xu, Y.; Brar, N.S.
1997-08-01
In an attempt to elucidate the failure mechanism responsible for the so-called failure waves in glass, numerical simulations of plate and rod impact experiments, with a multiple-plane model, have been performed. These simulations show that the failure wave phenomenon can be modeled by the nucleation and growth of penny-shaped shear defects from the specimen surface to its interior. Lateral stress increase, reduction of spall strength,and progressive attenuation of axial stress behind the failure front are properly predicted by the multiple-plane model. Numerical simulations of high-strain-rate pressure-shear experiments indicate that the model predicts reasonably well the shear resistance of the materialmore » at strain rates as high as 1 {times} 10{sup 6}/s. The agreement is believed to be the result of the model capability in simulating damage-induced anisotropy. By examining the kinetics of the failure process in plate experiments, the authors show that the progressive glass spallation in the vicinity of the failure front and the rate of increase in lateral stress are more consistent with a representation of inelasticity based on shear-activated flow surfaces, inhomogeneous flow, and microcracking, rather than pure microcracking. In the former mechanism, microcracks are likely formed at a later time at the intersection of flow surfaces, in the case of rod-on-rod impact, stress and radial velocity histories predicted by the microcracking model are in agreement with the experimental measurements. Stress attenuation, pulse duration, and release structure are properly simulated. It is shown that failure wave speeds in excess to 3,600 m/s are required for adequate prediction in rod radial expansion.« less
A gas-loading system for LANL two-stage gas guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw
A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design andmore » evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.« less
Phase Transitions of MgO Along the Hugoniot (Invited)
NASA Astrophysics Data System (ADS)
Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.
2013-12-01
The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
A gas-loading system for LANL two-stage gas guns
NASA Astrophysics Data System (ADS)
Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.
2017-01-01
A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.
The Shock and Vibration Digest. Volume 12, Number 8,
1980-08-01
half tme coefficient of 0.315 in the above lamina. Sequential delamination began when a strip equation because two surfaces are formed). of width D in...a striker plate. Each specimen study of the two-dimensional ( plane -strain) response was subjected to two separate impact loadings: an of an elastic...laminated plate; they used a finite ele- in- plane impact and a so-called shear-bending impact. ment/normal mode technique. The physical behavior The
Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205
NASA Astrophysics Data System (ADS)
Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.
Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.
An open-hardware platform for optogenetics and photobiology
Gerhardt, Karl P.; Olson, Evan J.; Castillo-Hair, Sebastian M.; Hartsough, Lucas A.; Landry, Brian P.; Ekness, Felix; Yokoo, Rayka; Gomez, Eric J.; Ramakrishnan, Prabha; Suh, Junghae; Savage, David F.; Tabor, Jeffrey J.
2016-01-01
In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibrated by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. The LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments. PMID:27805047
An open-hardware platform for optogenetics and photobiology
Gerhardt, Karl P.; Olson, Evan J.; Castillo-Hair, Sebastian M.; ...
2016-11-02
In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibratedmore » by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. Lastly, the LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.« less
An open-hardware platform for optogenetics and photobiology.
Gerhardt, Karl P; Olson, Evan J; Castillo-Hair, Sebastian M; Hartsough, Lucas A; Landry, Brian P; Ekness, Felix; Yokoo, Rayka; Gomez, Eric J; Ramakrishnan, Prabha; Suh, Junghae; Savage, David F; Tabor, Jeffrey J
2016-11-02
In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibrated by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. The LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.
NASA Astrophysics Data System (ADS)
Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James
2017-12-01
A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.
An open-hardware platform for optogenetics and photobiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhardt, Karl P.; Olson, Evan J.; Castillo-Hair, Sebastian M.
In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibratedmore » by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. Lastly, the LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.« less
Implementations Strategies for In-Space Macron Propulsion
2010-10-06
capability. Figure 8 shows the performance of various operational shielding methods: a single aluminum plate, a two-plate Whipple shield, and a...stuffed Whipple shield. A standard Whipple shield is composed of two or more layers of solid alloy plates with various separation distances between each...layers of redundancy which is often necessary for medium size debris particle impacts. A stuffed Whipple shield fills the voids between each plate with a
On the role of tip curvature on flapping plates.
Martin, Nathan; Gharib, Morteza
2018-01-09
During the flapping motion of a fish's tail, the caudal fin exhibits antero-posterior bending and dorso-ventral bending, the latter of which is referred to as chord-wise bending herein. The impact of chord-wise tip curvature on the hydrodynamic forces for flapping plates is investigated to explore potential mechanisms to improve the maneuverability or the performance of autonomous underwater vehicles. First, actuated chord-wise tip curvature is explored. Comparison of rigid curved geometries to a rigid flat plate as a baseline suggests that an increased curvature decreases the generated forces. An actuated plate with a dynamic tip curvature is created to illustrate a modulation of this decrease in forces. Second, the impact of curvature is isolated using curved plates with an identical planform area. Comparison of rigid curved geometries as a baseline corroborates the result that an increased curvature decreases the generated forces, with the exception that presenting a concave geometry into the flow increases the thrust and the efficiency. A passively-actuated plate is designed to capitalize on this effect by presenting a concave geometry into the flow throughout the cycle. The dynamically and passively actuated plates show potential to improve the maneuverability and the efficiency of autonomous underwater vehicles, respectively.
Why did Arabia separate from Africa? Insights from 3-D laboratory experiments
NASA Astrophysics Data System (ADS)
Bellahsen, N.; Faccenna, C.; Funiciello, F.; Daniel, J. M.; Jolivet, L.
2003-11-01
We have performed 3-D scaled lithospheric experiments to investigate the role of the gravitational force exerted by a subducting slab on the deformation of the subducting plate itself. Experiments have been constructed using a dense silicone putty plate, to simulate a thin viscous lithosphere, floating in the middle of a large box filled with glucose syrup, simulating the upper mantle. We examine three different plate configurations: (i) subduction of a uniform oceanic plate, (ii) subduction of an oceanic-continental plate system and, (iii) subduction of a more complex oceanic-continental system simulating the asymmetric Africa-Eurasia system. Each model has been performed with and without the presence of a circular weak zone inside the subducting plate to test the near-surface weakening effect of a plume activity. Our results show that a subducting plate can deform in its interior only if the force distribution varies laterally along the subduction zone, i.e. by the asymmetrical entrance of continental material along the trench. In particular, extensional deformation of the plate occurs when a portion of the subduction zone is locked by the collisional process. The results of this study can be used to analyze the formation of the Arabian plate. We found that intraplate stresses, similar to those that generated the Africa-Arabia break-up, can be related to the Neogene evolution of the northern convergent margin of the African plate, where a lateral change from collision (Mediterranean and Bitlis) to active subduction (Makran) has been described. Second, intraplate stress and strain localization are favored by the presence of a weakness zone, such as the one generated by the Afar plume, producing a pattern of extensional deformation belts resembling the Red Sea-Gulf of Aden rift system.
Effect of fission rate on the microstructure of coated UMo dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leenaers, A.; Parthoens, Y.; Cornelis, G.
Compared to previous irradiation experiments containing UMo/Al dispersion fuel plates, the SELENIUM irradiation experiment performed at the SCK.CEN BR2 reactor in 2012 showed an improved plate swelling behavior. However, in the high burn-up area of the plates a significant increase in meat thickness was still measured. The origin of this increase is currently not firmly established, but it is clear from the observed microstructure that the swelling rate still is too high for practical purposes and needs to be reduced. It was stipulated that the swelling occurred at the high burnup areas which are also the high power zones atmore » beginning of life. For that reason, an experiment was proposed to investigate the influence of fission rate (i.e. power) on some of the observed phenomena. For this purpose, a sibling plate to a high power (BOL>470 W/cm(2)) SELENIUM plate was irradiated during four BR2 cycles. The SELENIUM 1a fuel plate was submitted to a local maximum heat flux below 350 W/cm(2), throughout the full irradiation. At the end of the last cycle, the SELENIUM 1a fuel plate reached a maximum local burnup value of close to 75%U-235 compared to 70%U-235 for the SELENIUM high power plates. When comparing to the results on the SELENIUM plates, the non-destructive tests clearly show a continued linear swelling behavior of the low power irradiated fuel plate SELENIUM 1a in the high burn-up region. The influence of the fission rate is also evidenced in the microstructural examination of the fuel showing that there is no formation of interaction layer at the high burn-up region.« less
Effect of fission rate on the microstructure of coated UMo dispersion fuel
NASA Astrophysics Data System (ADS)
Leenaers, A.; Parthoens, Y.; Cornelis, G.; Kuzminov, V.; Koonen, E.; Van den Berghe, S.; Ye, B.; Hofman, G. L.; Schulthess, Jason
2017-10-01
Compared to previous irradiation experiments containing UMo/Al dispersion fuel plates, the SELENIUM irradiation experiment performed at the SCK·CEN BR2 reactor in 2012 showed an improved plate swelling behavior. However, in the high burn-up area of the plates a significant increase in meat thickness was still measured. The origin of this increase is currently not firmly established, but it is clear from the observed microstructure that the swelling rate still is too high for practical purposes and needs to be reduced. It was stipulated that the swelling occurred at the high burnup areas which are also the high power zones at beginning of life. For that reason, an experiment was proposed to investigate the influence of fission rate (i.e. power) on some of the observed phenomena. For this purpose, a sibling plate to a high power (BOL>470 W/cm2) SELENIUM plate was irradiated during four BR2 cycles. The SELENIUM 1a fuel plate was submitted to a local maximum heat flux below 350 W/cm2, throughout the full irradiation. At the end of the last cycle, the SELENIUM 1a fuel plate reached a maximum local burnup value of close to 75%235U compared to 70%235U for the SELENIUM high power plates. When comparing to the results on the SELENIUM plates, the non-destructive tests clearly show a continued linear swelling behavior of the low power irradiated fuel plate SELENIUM 1a in the high burn-up region. The influence of the fission rate is also evidenced in the microstructural examination of the fuel showing that there is no formation of interaction layer at the high burn-up region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Instrumented figure skating blade for measuring on-ice skating forces
NASA Astrophysics Data System (ADS)
Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.
2014-12-01
Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.
Tectonic predictions with mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.
A Novel Method for Characterizing the Impact Response of Functionally Graded Plates
2008-09-01
Dennis [88], Ugural [125], Soedel [119], and Reddy [100] for complete 35 development of the theory from first principles. Only the equations and...Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill Book Co., New York, NY, second edition, 1959. 125. Ugural , A. C. Stresses in Plates and
Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.
2008-04-01
The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations. PMID:25484231
Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; ...
2014-11-28
A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
NASA Astrophysics Data System (ADS)
Downs, Peter; Soar, Philip
2015-04-01
Accurate characterisation of bedload transport rates is critical for a better understanding of geomorphological process dynamics, aquatic habitats, sediment budgets and strategies for catchment-scale initiatives in sediment management under conditions of climate change. However, rate estimation is challenging in practice: direct measurements are costly and logistically difficult to achieve with acceptable accuracy over geomorphologically-relevant time periods, and the uncertainty in transport rates predicted from empirical formulae and numerical simulation is rarely below 50 per cent. Partly reflecting these issues, passive technologies for continuous bedload monitoring are becoming increasingly popular. Sensors such as seismic impact plates offer the opportunity to characterise bedload activity at exceptionally high resolution - monitoring from the River Avon, (Devon, UK) indicated that despite significant intra-event and between-plate differences in apparent bedload transport aggregated over 5-minute periods, the magnitude-frequency product of discharge and impact frequency result in a highly plausible effective discharge, supporting the potential value of impact plates as indicators of relative sediment transport loads over annual timescales. Whereas the focus in bedload rate estimation to date has been on developing satisfactory sediment rating curves from detection signals, we instead develop a method for directly estimating bedload transport rates from impact plate data as a function of intensity of transport (count, n, per second), bed material mass (kg) and cross-stream transport variability. Bulk sediment samples are converted to a mass in transit for each instantaneous discharge according to the intensity of transport and a Monte Carlo simulation of the load in transit determined at random from the bed material particle size distribution. The lower detection threshold is determined using experimental calibration and the upper size limit is determined from incipient motion estimates thereby establishing the fraction of transported material sensed by the plates. The lateral variability in transport rates across the cross-section is estimated empirically using multiple plates or by interpolation. This procedure provides a potentially affordable and robust method of achieving uncertainty-bound indicative measures of bedload transport with the potential for wide-ranging practical applications.
NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges
NASA Astrophysics Data System (ADS)
Crawford, Kenneth C.
2016-06-01
The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
Splash flow from a metal plate hit by an electron beam pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, M., LLNL
1997-09-01
When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less
Nasr, M M; Ross, D L; Miller, N C
1997-10-01
The purpose of this study is to investigate the effect of drug load, the coating of impactor stages, and the design of cascade impactors on albuterol MDIs particle size distribution measurements. The results of the investigation will be used to explain the "loading effect" recently reported. Particle size distribution parameters of a commercial albuterol MDI were measured using both Andersen (AI) and Marple-Miller (MMI) Cascade Impactors, where plates were either left uncoated or coated with silicone or glycerin. A previously validated HPLC-EC method was used for the assay of albuterol collected by the impactor and in single spray content determinations. Coating impactor collection plates had an impact on measured MMAD and GSD values for single puff measurements but very little or no effect for the multi puff measurements. Due to particle bounce, the percent of albuterol fine particles deposited in the filter and impactor finer stages (< 1.10 microns in AI and < 1.25 microns in MMI) in uncoated single puff experiments was much higher in comparison to either coated single puff or multi-puff (coated and uncoated) measurements. Evaluation of drug load and plate coating are necessary to determine whether observed particle size distributions are representative of the generated aerosol or are the result of particle bounce and reentrainment. In order to minimize particle bounce, especially for single puff determinations, it may be useful to apply a thin layer of a sticky coating agent to the surfaces of impactor plates.
The dynamical control of subduction parameters on surface topography
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.
2017-04-01
The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.
Thermodynamics of MgO shocked to 250 GPa and 9000 K
NASA Astrophysics Data System (ADS)
Fat'yanov, O. V.; Asimow, P. D.; Ahrens, T. J.
2011-06-01
Plate impact experiments in the 200-250 GPa pressure range were done on <100 > single-crystal MgO preheated before compression to 1850 K. Hot Mo(driver)-MgO targets were impacted with Ta flyers launched by the Caltech two-stage light-gas gun up to 7.5 km/s. Radiative temperatures and shock velocities were measured with 3-5% and 1-2% respective uncertainty by a 6-channel pyrometer with 3 ns time resolution, over 500-900 nm spectral range. MgO shock front reflectivity was determined in additional experiments at 220 and 250 GPa using 50/50 high-temperature sapphire beamsplitters. Shock temperatures and preheated MgO Hugoniot data reported here are in good agreement with the corresponding values calculated using Mie-Grüneisen equation of state with γ0 = 1.4 and constant γ / V . Our experiments showed no evidence of MgO melting up to 250 GPa and 9.2 kK. The highest shock temperatures exceed the extrapolated melting curve of Zerr & Boehler by >3000 K at 250 GPa, which seems too much for any realistic superheating.
X-ray microtomography study of the spallation response in Ta-W
NASA Astrophysics Data System (ADS)
McDonald, Samuel; Cotton, Matthew; Millett, Jeremy; Bourne, Neil; Withers, Philip
2013-06-01
The response of metallic materials to high strain-rate (impact) loading is of interest to a number of communities. Traditionally, the largest driver has been the military, in its need to understand armour and resistance to ballistic attack. More recently, industries such as aerospace (foreign object damage, bird strike, etc.), automotive (crash-worthiness) and satellite protection (orbital debris) have all appreciated the necessity of such information. It is therefore important to understand the dynamic tensile or spallation response, and in particular to be able to observe in three-dimensions, and in a non-invasive manner, the physical damage present in the spalled region post-impact. The current study presents plate impact experiments investigating the spallation damage response of recovered targets of the tantalum alloy Ta-2.5%W. Using X-ray microtomography the damage resulting from differing impact conditions (impact velocity/stress, pulse duration) is compared and characterised in 3-D. Combined with free surface velocity measurements, the tensile failure mechanisms during dynamic loading have been identified.
CALUTRON ASSEMBLING AND DISASSEMBLING APPARATUS
Andrews, R.E.
1959-01-27
The construction of a calutron tank is described, whcre the face plate of the tank carrying the ion separating mechanism may be inserted or withdrawn with a minimum of difficulty, even though the plate has considerable mass and the center of gravity of the plate assembly lies within the tank. In general, the plate is pivoted at its lower end by a specially designed hinge, whereby the weight of ths plate rests on the hinge when the plato is inserted in the tank opening. A pistoncylinder arrangement is mounted on the tank and attached at the top of the plate to produce sufficient force to pivot the plate out to a point where it withdraws by its own weight and to retard the natural tendency of the plate to close with heavy impact due to the unbalanced center of gravity of the plate assembly.
NASA Astrophysics Data System (ADS)
Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.
2001-02-01
A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.
Blank, J G; Miller, G H; Ahrens, M J; Winans, R E
2001-01-01
A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.
Ao, T.; Harding, E. C.; Bailey, J. E.; ...
2016-01-13
Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH 2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm 3, andmore » temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less
Analysis of progressive damage in thin circular laminates due to static-equivalent impact loads
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Clamped circular graphite/epoxy plates (25.4, 38.1, and 50.8 mm radii) with an 8-ply quasi-isotropic layup were analyzed for static-equivalent impact loads using the minimum-total-potential-energy method and the von Karman strain-displacement equations. A step-by-step incremental transverse displacement procedure was used to calculate plate load and ply stresses. The ply failure region was calculated using the Tsai-Wu criterion. The corresponding failure modes (splitting and fiber failure) were determined using the maximum stress criteria. The first-failure mode was splitting and initiated first in the bottom ply. The splitting-failure thresholds were relatively low and tended to be lower for larger plates than for small plates. The splitting-damage region in each ply was elongated in its fiber direction; the bottom ply had the largest damage region. The calculated damage region for the 25.4-mm-radius plate agreed with limited static test results from the literature.
Dynamic test results for the CASES ground experiment
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Patterson, Alan F.; Jones, Victoria L.
1993-01-01
The Controls, Astrophysics, and Structures Experiment in Space (CASES) Ground Test Facility (GTF) has been developed at Marshall Space Flight Center (MSFC) to provide a facility for the investigation of Controls/Structures Interaction (CSI) phenomena, to support ground testing of a potential shuttle-based CASES flight experiment, and to perform limited boom deployment and retraction dynamics studies. The primary objectives of the ground experiment are to investigate CSI on a test article representative of a Large Space Structure (LSS); provide a platform for Guest Investigators (GI's) to conduct CSI studies; to test and evaluate LSS control methodologies, system identification (ID) techniques, failure mode analysis; and to compare ground test predictions and flight results. The proposed CASES flight experiment consists of a 32 meter deployable/retractable boom at the end of which is an occulting plate. The control objective of the experiment is to maintain alignment of the tip plate (occulter) with a detector located at the base of the boom in the orbiter bay. The tip plate is pointed towards a star, the sun, or the galactic center to collect high-energy X-rays emitted by these sources. The tip plate, boom, and detector comprise a Fourier telescope. The occulting holes in the tip plate are approximately one millimeter in diameter making the alignment requirements quite stringent. Control authority is provided by bidirectional linear thrusters located at the boom tip and Angular Momentum Exchange Devices (AMED's) located at mid-boom and at the tip. The experiment embodies a number of CSI control problems including vibration suppression, pointing a long flexible structure, and disturbance rejection. The CASES GTF is representative of the proposed flight experiment with identical control objectives.
Shock Compression of Simulated Adobe
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.
2015-06-01
A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us = 2.26up + 0.33) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement. The research was funded by DSTL through a WSTC contract.
NASA Technical Reports Server (NTRS)
Babecki, A. J. (Inventor); Haehner, C. L.
1973-01-01
A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilpueng, Kitti; Wongwises, Somchai
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less
An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.
Bailey, Christopher A; Costigan, Patrick A
2015-12-01
The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90-.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6-7% higher (Ps < .01) and occurred 0.07-0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.
The shock synthesis of complex organics from impacts into cometary analogue mixtures
NASA Astrophysics Data System (ADS)
Price, M.; Wozniakiewicz, P.; Cole, M.; Martins, Z.; Burchell, M.
2014-07-01
Introduction: If amino acids are required for the evolution of life, what was their source? Many different theories abound as to the source of amino acids on the early Earth including exogenous delivery from comets/asteroids (for example, glycine was found recently on comet Wild-2 [1]), formation in the protoplanetary nebula [2], or UV catalysed reactions of gases [3]. An alternative explanation is that amino acids can be shock-synthesised during the impact on an icy body onto a rocky body (or, equivalently, the impact of rocky body onto an icy surface). This theory is supported by computer simulations [4] and by very recent experimental data, which demonstrated the formation of simple (including abiotic) amino acids from shocks into ice mixtures mimicking the composition of comets and the surfaces of the icy Jovian and Saturnian satellites. Although the results from these experiments are fundamentally important, the yield of synthesised amino acids was low (nano-grams of material), complicating their detection and identification. In order to increase the collected yield of complex organics, and aid in their detection and identification, we have implemented a new collection technique within our hypervelocity impact facility. Experimental Methodology: Figure 1A) shows a low-resolution high-speed photograph of an impact plasma generated from an impact of a stainless-steel sphere into a mixture of water, CO_{2}, ammonia, and methanol ices. The plasma has an intense blue colour, and lasted for < 1 msec (the frame-rate of the camera). It is during and within this flash that complex organics are most likely synthesised, and thus to maximise the collection of these materials, we have implemented a new collection mechanism. Figure 1B) shows the prototype collection mechanism. Here an aluminium cold-plate (˜150 K) is placed in front of the target holder containing the ice mixtures. The plate has a central hole which allows the projectile to pass through to impact the ice mix. The plate also has two brass holders (Fig. 1C) which contain 10-mm diameter discs of high purity, sterilised gold foil (also at low temperature). During the impact, the plasma will condense onto the cold surfaces of the gold foil. One of the gold foils is pointed directly at the ice mixture, the other is pointed backwards into the gun's target chamber (and thus acts as a control). The gold discs can then be removed (Fig. 1D) and mounted onto stubs for analyses using Raman spectroscopy, SEM-EDX, GC-MS as required. Preliminary Results: Several trial shots have been performed using this system and residues have been found. The initial analysis of these residues is now underway and the results will be presented at the conference. If successful, this collection and analysis methodology will greatly speed up the number of experiments that can be done, allowing us to explore a large parameter space and determine the efficiency of shock syntheses of complex organics as a function of impact speed (peak shock pressure) and target composition.
The generalized mean zone plate
NASA Astrophysics Data System (ADS)
Xia, Tian; Cheng, Shubo; Tao, Shaohua
2018-06-01
In this paper a generalized mean zone plate is proposed, which generates twin foci located at the positions satisfying the expression of the generalized mean, which includes the m-golden mean, precious mean, and so on. The generalized mean zone plate can be designed to generate twin foci with various position ratios. The diffraction properties of the generalized mean zone plates have been investigated with simulations and experiments. The results show that the ratio of the positions of the twin foci for the generalized mean zone plate can be designed with the selected zone plate parameters.
Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material
NASA Technical Reports Server (NTRS)
Mehmed, Oral; Kosmatka, John B.
1997-01-01
One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.
NASA Technical Reports Server (NTRS)
Waas, A.; Babcock, C., Jr.
1986-01-01
A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.
Safety review package for University of Central Florida flat-plate heat pipe experiment
NASA Technical Reports Server (NTRS)
Chow, Louis C.
1998-01-01
A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.
ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, T. K.; Marcum, W. R.; Latimer, G. D.
2016-06-01
Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at amore » series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.« less
2009-08-01
Locks and Dam. ERDC/ITL TR-09-3 16 The proposed flexible approach walls at Lock and Dams 22 and 25 consist of precast concrete beams supported...Figures 2.3 and 2.5. The rounded hull plate connecting the front and side hull plates (in blue) is shown in brown in Figures 2.2 and 2.3. Figure 2.4...approach angle column in Table 3.1 is of no consequence for these analyses. Table 3.1. Three design load condition categories, frequency of loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipper, Lauren E.; Binghamton University, 4400 Vestal Parkway East, Vestal, NY 13902; Aristide, Xavier
This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fittingmore » the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less
Impaction of swallowed dentures in the sigmoid colon requiring sigmoid colectomy.
Flanagan, Michael; Clancy, Cillian; O Riordain, Micheal G
2018-05-07
Foreign body (FB) ingestion results in perforation in 1% of cases and is associated with significant morbidity and rarely mortality. Clinical presentation is variable and can present a diagnostic challenge. We report our experience and management of a patient with a delayed presentation of a sigmoid colon foreign body as a result of ingestion of a dental plate. A 67 year old female attended the colorectal outpatient clinic following an incidental finding of a sigmoid mass on computed tomography (CT) abdomen. Further investigation identified a dental plate impacted in a thickened sigmoid colon. On further questioning the patient recalled losing her dentures three years previously. At surgery the dental plate had partially eroded through the sigmoid colon into the pelvic side wall. A sigmoid colectomy and hand sewn end-to-end colo-colic anastomosis was performed. Localised perforation following ingestion of a foreign body may result in significant morbidity. Extra luminal migration and local inflammatory response resulted in the formation of a walled off collection. Delayed complications of perforation include abscess and fistula formation. Clinicians need to exhibit a high index of suspicion when treating edentulous patients and alcohol and drug abusers who present with an acute abdomen or a sub-acute presentation with associated atypical imaging and endoscopic findings. The decision regarding intervention and management strategy in cases of perforation by foreign body depends on chronicity of the case, extent of localised or diffuse peritonitis, and size of the lesion or area of bowel involved. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.
2015-03-01
Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.
This Dynamic Planet: World map of volcanoes, earthquakes, impact craters and plate tectonics
Simkin, Tom; Tilling, Robert I.; Vogt, Peter R.; Kirby, Stephen H.; Kimberly, Paul; Stewart, David B.
2006-01-01
Our Earth is a dynamic planet, as clearly illustrated on the main map by its topography, over 1500 volcanoes, 44,000 earthquakes, and 170 impact craters. These features largely reflect the movements of Earth's major tectonic plates and many smaller plates or fragments of plates (including microplates). Volcanic eruptions and earthquakes are awe-inspiring displays of the powerful forces of nature and can be extraordinarily destructive. On average, about 60 of Earth's 550 historically active volcanoes are in eruption each year. In 2004 alone, over 160 earthquakes were magnitude 6.0 or above, some of which caused casualties and substantial damage. This map shows many of the features that have shaped--and continue to change--our dynamic planet. Most new crust forms at ocean ridge crests, is carried slowly away by plate movement, and is ultimately recycled deep into the earth--causing earthquakes and volcanism along the boundaries between moving tectonic plates. Oceans are continually opening (e.g., Red Sea, Atlantic) or closing (e.g., Mediterranean). Because continental crust is thicker and less dense than thinner, younger oceanic crust, most does not sink deep enough to be recycled, and remains largely preserved on land. Consequently, most continental bedrock is far older than the oldest oceanic bedrock. (see back of map) The earthquakes and volcanoes that mark plate boundaries are clearly shown on this map, as are craters made by impacts of extraterrestrial objects that punctuate Earth's history, some causing catastrophic ecological changes. Over geologic time, continuing plate movements, together with relentless erosion and redeposition of material, mask or obliterate traces of earlier plate-tectonic or impact processes, making the older chapters of Earth's 4,500-million-year history increasingly difficult to read. The recent activity shown on this map provides only a present-day snapshot of Earth's long history, helping to illustrate how its present surface came to be. The map is designed to show the most prominent features when viewed from a distance, and more detailed features upon closer inspection. The back of the map zooms in further, highlighting examples of fundamental features, while providing text, timelines, references, and other resources to enhance understanding of this dynamic planet. Both the front and back of this map illustrate the enormous recent growth in our knowledge of planet Earth. Yet, much remains unknown, particularly about the processes operating below the ever-shifting plates and the detailed geological history during all but the most recent stage of Earth's development.
Analysis of edge impact stresses in composite plates
NASA Technical Reports Server (NTRS)
Moon, F. C.; Kang, C. K.
1974-01-01
The in-plane edge impact of composite plates, with or without a protection strip, is investigated. A computational analysis based on the Fast Fourier Transform technique is presented. The particular application of the present method is in the understanding of the foreign object damage problem of composite fan blades. The method is completely general and may be applied to the study of other stress wave propagation problems in a half space. Results indicate that for the protective strip to be effective in reducing impact stresses in the composite the thickness must be equal or greater than the impact contact dimension. Large interface shear stresses at the strip - composite boundary can be induced under impact.
Using the Richtmyer-Meshkov flow to infer the strength of LY-12 aluminum at extreme conditions
NASA Astrophysics Data System (ADS)
Yin, Jianwei; Pan, Hao; Peng, Jiangxiang; Wu, Zihui; Yu, Yuying; Hu, Xiaomian
2017-06-01
An improved analytical model of the Richtmyer-Meshkov (RM) flow in the elastoplastic materials is presented in this paper. This model describes the stabilization by yield strength (Y) effect on the RM flow in solids and linear relationships between initial configurations of perturbation and the growth. Then we make use of the model to analysis the explosion driven RM flow experiments with solid LY12 and test our model by comparing the predicted Y of existing strength models. Finally, we perform a plate impact experiment with solid LY12 aluminium alloy to validate our model and infer Y is about 1.23 GPa for a 28 GPa shock and a strain rate of 7.5 ×106 .
Readout models for BaFBr0.85I0.15:Eu image plates
NASA Astrophysics Data System (ADS)
Stoeckl, M.; Solodov, A. A.
2018-06-01
The linearity of the photostimulated luminescence process makes repeated image-plate scanning a viable technique to extract a more dynamic range. In order to obtain a response estimate, two semi-empirical models for the readout fading of an image plate are introduced; they relate the depth distribution of activated photostimulated luminescence centers within an image plate to the recorded signal. Model parameters are estimated from image-plate scan series with BAS-MS image plates and the Typhoon FLA 7000 scanner for the hard x-ray image-plate diagnostic over a collection of experiments providing x-ray energy spectra whose approximate shape is a double exponential.
The Dynamic Behaviour and Shock Recovery of a Porcine Skeletal Muscle Tissue
NASA Astrophysics Data System (ADS)
Wilgeroth, James; Hazell, Paul; Appleby-Thomas, Gareth
2011-06-01
Modern-day ballistic armours provide a high degree of protection to the individual. However, the effects of non-penetrating projectiles, blast, and high-energy blunt impact events may still cause severe tissue trauma/remote injury. The energies corresponding to such events allow for the formation and transmission of shock waves within body tissues. Consequently, the nature of trauma inflicted upon such soft tissues is likely to be intimately linked to their interaction with the shock waves that propagate through them. Notably, relatively little is known about the effect of shock upon the structure of biological materials, such as skeletal muscle tissue. In this study plate-impact experiments have been used to interrogate the dynamic response of a porcine skeletal muscle tissue under one-dimensional shock loading conditions. Additionally, development of a soft-capture system that has allowed recovery of shocked skeletal muscle tissue specimens is discussed and comparison made between experimental diagnostics and hydrocode simulations of the experiment.
Self-Sensing TDR with Micro-Strip Line
2015-06-11
detect impact damage of a CFRP plate in the second year (Todoroki A, et al., Impact damage detection of a carbon- fibre -reinforced-polymer plate...inspection methods is self-sensing technology that uses carbon fibres as sensors [1]-[11]. The self-sensing technology applies electric current to the...Time Domain Reflectometry (TDR) for damage detection [15]-[17]. Authors have developed a self-sensing TDR for detection of fibre breakages using a
NASA Astrophysics Data System (ADS)
Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet
2017-08-01
Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.
Experimental and analytical study of high velocity impact on Kevlar/Epoxy composite plates
NASA Astrophysics Data System (ADS)
Sikarwar, Rahul S.; Velmurugan, Raman; Madhu, Velmuri
2012-12-01
In the present study, impact behavior of Kevlar/Epoxy composite plates has been carried out experimentally by considering different thicknesses and lay-up sequences and compared with analytical results. The effect of thickness, lay-up sequence on energy absorbing capacity has been studied for high velocity impact. Four lay-up sequences and four thickness values have been considered. Initial velocities and residual velocities are measured experimentally to calculate the energy absorbing capacity of laminates. Residual velocity of projectile and energy absorbed by laminates are calculated analytically. The results obtained from analytical study are found to be in good agreement with experimental results. It is observed from the study that 0/90 lay-up sequence is most effective for impact resistance. Delamination area is maximum on the back side of the plate for all thickness values and lay-up sequences. The delamination area on the back is maximum for 0/90/45/-45 laminates compared to other lay-up sequences.
Multiple lesion track structure model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.
1992-01-01
A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.
Laboratory plate tectonics: a new experiment.
Gans, R F
1976-03-26
A "continent" made of a layer of hexagonally packed black polyethylene spheres floating in clear silicon oil breaks into subcontinents when illuminated by an ordinary incandescent light bulb. This experiment may be a useful model of plate tectonics driven by horizontal temperature gradients. Measurements of the spreading rate are made to establish the feasibility of this model.
ERIC Educational Resources Information Center
Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.
2012-01-01
A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…
High-Energy-Density Shear Flow and Instability Experiments
NASA Astrophysics Data System (ADS)
Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.
2017-10-01
High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models ability to function in the high-energy-density, inertial- fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of >= 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-0AC52-06NA25396. This abstract is LA-UR-16-24930.
Research of hail impact on aircraft wheel door with lattice hybrid structure
NASA Astrophysics Data System (ADS)
Li, Shengze; Jin, Feng; Zhang, Weihua; Meng, Xuanzhu
2016-09-01
Aimed at a long lasting issue of hail impact on aircraft structures and aviation safety due to its high speed, the resistance performance of hail impact on the wheel door of aircraft with lattice hybrid structure is investigated. The proper anti-hail structure can be designed both efficiency and precision based on this work. The dynamic responses of 8 different sandwich plates in diverse impact speed are measured. Smoothed Particle Hydrodynamic (SPH) method is introduced to mimic the speciality of solid-liquid mixture trait of hailstone during the impact process. The deformation and damage degree of upper and lower panel of sandwich plate are analysed. The application range and failure mode for the relevant structure, as well as the energy absorbing ratio between lattice structure and aluminium foam are summarized. Results show that the tetrahedral sandwich plate with aluminium foam core is confirmed the best for absorbing energy. Furthermore, the high absorption characteristics of foam material enhance the capability of the impact resistance for the composition with lattice structure without increasing the structure surface density. The results of study are of worth to provide a reliable basis for reduced weight aircraft wheel door.
Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates
NASA Technical Reports Server (NTRS)
Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)
2000-01-01
Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.
TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Wight; G.A. Moore; S.C. Taylor
2008-10-01
This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculationsmore » for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.« less
Gasca, Fernando; Richter, Lars; Schweikard, Achim
2010-01-01
Transcranial Magnetic Stimulation (TMS) in the rat is a powerful tool for investigating brain function. However, the state-of-the-art experiments are considerably limited because the stimulation usually affects undesired anatomical structures. A simulation of a conductive shield plate placed between the coil stimulator and the rat brain during TMS is presented. The Finite Element (FE) method is used to obtain the 3D electric field distribution on a four-layer rat head model. The simulations show that the shield plate with a circular window can improve the focalization of stimulation, as quantitatively seen by computing the three-dimensional half power region (HPR). Focalization with the shield plate showed a clear compromise with the attenuation of the induced field. The results suggest that the shield plate can work as a helpful tool for conducting TMS rat experiments on specific targets.
Study on convection improvement of standard vacuum tube
NASA Astrophysics Data System (ADS)
He, J. H.; Du, W. P.; Qi, R. R.; He, J. X.
2017-11-01
For the standard all-glass vacuum tube collector, enhancing the vacuum tube axial natural convection can improve its thermal efficiency. According to the study of the standard all-glass vacuum tube, three kinds of guide plates which can inhibit the radial convection and increase axial natural convection are designed, and theory model is established. Experiments were carried out on vacuum tubes with three types of baffles and standard vacuum tubes without the improvement. The results show that T-type guide plate is better than that of Y-type guide plate on restraining convection and increasing axial radial convection effect, Y type is better than that of flat plate type, all guide plates are better than no change; the thermal efficiency of the tube was 2.6% higher than that of the unmodified standard vacuum tube. The efficiency of the system in the experiment can be increased by 3.1%.
Thomas, P; Mujawar, M M; Sekhar, A C; Upreti, R
2014-04-01
To understand the factors that contribute to the variations in colony-forming units (CFU) in different bacteria during spread plating. Employing a mix culture of vegetative cells of ten organisms varying in cell characteristics (Gram reaction, cell shape and cell size), spread plating to the extent of just drying the agar surface (50-60 s) was tested in comparison with the alternate spotting-and-tilt-spreading (SATS) approach where 100 μl inoculum was distributed by mere tilting of plate after spotting as 20-25 microdrops. The former imparted a significant reduction in CFU by 20% over the spreader-independent SATS approach. Extending the testing to single organisms, Gram-negative proteobacteria with relatively larger cells (Escherichia, Enterobacter, Agrobacterium, Ralstonia, Pantoea, Pseudomonas and Sphingomonas spp.) showed significant CFU reduction with spread plating except for slow-growing Methylobacterium sp., while those with small rods (Xenophilus sp.) and cocci (Acinetobacter sp.) were less affected. Among Gram-positive nonspore formers, Staphylococcus epidermidis showed significant CFU reduction while Staphylococcus haemolyticus and actinobacteria (Microbacterium, Cellulosimicrobium and Brachybacterium spp.) with small rods/cocci were unaffected. Vegetative cells of Bacillus pumilus and B. subtilis were generally unaffected while others with larger rods (B. thuringiensis, Brevibacillus, Lysinibacillus and Paenibacillus spp.) were significantly affected. A simulated plating study coupled with live-dead bacterial staining endorsed the chances of cell disruption with spreader impaction in afflicted organisms. Significant reduction in CFU could occur during spread plating due to physical impaction injury to bacterial cells depending on the spreader usage and the variable effects on different organisms are determined by Gram reaction, cell size and cell shape. The inoculum spreader could impart physical disruption of vegetative cells against a hard surface. Possibility of CFU reduction in sensitive organisms and the skewed selection of hardier organisms during spread plating, and the recommendation of SATS as an easier and safer alternative for CFU enumerations. © 2013 The Society for Applied Microbiology.
Thorninger, Rikke; Madsen, Mette Lund; Wæver, Daniel; Borris, Lars Carl; Rölfing, Jan Hendrik Duedal
2017-06-01
Volar plating of unstable distal radius fractures (DRF) has become the favoured treatment. The complication rates vary from 3 to 36%. The purpose of the study was to estimate the complication rate of volar plating of DRF and its association with AO/OTA fracture type, surgeon experience and type of volar plate. Retrospectively, all patients treated with volar plating of a DRF between February 2009 and June 2013 at Aarhus University Hospital, Denmark were included. AO/OTA fracture type, surgeon experience (1st year, 2nd-5th year resident or consultant), type of plate (VariAx ® , Acu-Loc ® ) and complications were extracted from the electronic medical records. Complications were categorized as carpal tunnel syndrome, other sensibility issues, tendon complications including irritation and rupture, deep infections, complex regional pain syndrome and unidentified DRUJ or scapholunar problems. Reoperations including hardware removal were also charted. 576 patients with a median age of 63 years (min: 15; max: 87) were included. 78% were female and the mean observation time was 3.2 years (min: 2.0; max: 5.4). 78% (n=451) of the patients were treated with VariAx ® and 22% (n=125) with Acu-Loc ® . The overall complication rate was 14.6% (95% CI 11.8-17.7) including carpal tunnel syndrome or change in sensibility in 5.2% and tendon complications in 4.7%. Five flexor tendon ruptures and 12 extensor tendon ruptures were observed. The reoperation rate was 10.4% including 41 cases of hardware removal. A statistically significant association between AO/OTA fracture type C and complications was found. No statistically significant association between complication rate and surgeon experience and type of plate was observed. The majority of DRF patients treated with a volar plate suffer no complications. However, the overall complication rate of 14.6% is substantial. Intra-articular fractures, e.g. AO/OTA-type 23C1-3, had significantly higher complication rates. Neither surgeon experience, nor type of volar plate was able to predict complications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lasting mantle scars lead to perennial plate tectonics.
Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell
2016-06-10
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-01-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541
The San Andreas fault experiment. [gross tectonic plates relative velocity
NASA Technical Reports Server (NTRS)
Smith, D. E.; Vonbun, F. O.
1973-01-01
A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.
Failure prediction of thin beryllium sheets used in spacecraft structures
NASA Technical Reports Server (NTRS)
Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.
1991-01-01
The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure criterion, the load is increased and the process is repeated. Failure results for the plate-plug and clamped plate tests are accurate to within 2 percent.
Impact force as a scaling parameter
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.; Jackson, Wade C.
1994-01-01
The Federal Aviation Administration (FAR PART 25) requires that a structure carry ultimate load with nonvisible impact damage and carry 70 percent of limit flight loads with discrete damage. The Air Force has similar criteria (MIL-STD-1530A). Both civilian and military structures are designed by a building block approach. First, critical areas of the structure are determined, and potential failure modes are identified. Then, a series of representative specimens are tested that will fail in those modes. The series begins with tests of simple coupons, progresses through larger and more complex subcomponents, and ends with a test on a full-scale component, hence the term 'building block.' In order to minimize testing, analytical models are needed to scale impact damage and residual strength from the simple coupons to the full-scale component. Using experiments and analysis, the present paper illustrates that impact damage can be better understood and scaled using impact force than just kinetic energy. The plate parameters considered are size and thickness, boundary conditions, and material, and the impact parameters are mass, shape, and velocity.
Hydrodynamics of a flexible plate between pitching rigid plates
NASA Astrophysics Data System (ADS)
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
Zha, Guo-Chun; Sun, Jun-Ying; Dong, Sheng-Jie; Zhang, Wen; Luo, Zong-Ping
2015-01-01
This study aims to assess the biomechanical properties of a novel fixation system (named AFRIF) and to compare it with other five different fixation techniques for quadrilateral plate fractures. This in vitro biomechanical experiment has shown that the multidirectional titanium fixation (MTF) and pelvic brim long screws fixation (PBSF) provided the strongest fixation for quadrilateral plate fracture; the better biomechanical performance of the AFRIF compared with the T-shaped plate fixation (TPF), L-shaped plate fixation (LPF), and H-shaped plate fixation (HPF); AFRIF gives reasonable stability of treatment for quadrilateral plate fracture and may offer a better solution for comminuted quadrilateral plate fractures or free floating medial wall fracture and be reliable in preventing protrusion of femoral head. PMID:25802849
NASA Technical Reports Server (NTRS)
Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.
1990-01-01
Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.
van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V
2017-03-21
Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.
Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei
2016-10-24
We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.
See food diet? Cultural differences in estimating fullness and intake as a function of plate size.
Peng, Mei; Adam, Sarah; Hautus, Michael J; Shin, Myoungju; Duizer, Lisa M; Yan, Huiquan
2017-10-01
Previous research has suggested that manipulations of plate size can have a direct impact on perception of food intake, measured by estimated fullness and intake. The present study, involving 570 individuals across Canada, China, Korea, and New Zealand, is the first empirical study to investigate cultural influences on perception of food portion as a function of plate size. The respondents viewed photographs of ten culturally diverse dishes presented on large (27 cm) and small (23 cm) plates, and then rated their estimated usual intake and expected fullness after consuming the dish, using 100-point visual analog scales. The data were analysed with a mixed-model ANCOVA controlling for individual BMI, liking and familiarity of the presented food. The results showed clear cultural differences: (1) manipulations of the plate size had no effect on the expected fullness or the estimated intake of the Chinese and Korean respondents, as opposed to significant effects in Canadians and New Zealanders (p < 0.05); (2) Canadian (88.91 ± 0.42) and New Zealanders (90.37 ± 0.41) reported significantly higher estimated intake ratings than Chinese (80.80 ± 0.38) or Korean (81.69 ± 0.44; p < 0.05), notwithstanding the estimated fullness ratings from the Western respondents were comparable or even higher than those from the Asian respondents. Overall, these findings, from a cultural perspective, support the notion that estimation of fullness and intake are learned through dining experiences, and highlight the importance of considering eating environments and contexts when assessing individual behaviours relating to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Pressure Induced Transformation Toughening and Strengthening in Bulk Metallic Glasses
2013-11-01
involved impact of 303 stainless steel flyer-plate on 303 stainless steel sample holder containing two BMGMC samples, at varying velocities. The Hugoniot...Technology. An aluminum sabot was used as the projectile with 303 Stainless Steel (SS) flyer plate to impact the DV1 bulk metallic glass composite. As...crystallization; polyamorphism; shear banding; high- strain -rate deformation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
High speed observation of fragment impact initiation of nitromethane charges
NASA Astrophysics Data System (ADS)
Cook, M. D.; Haskins, P. J.; Briggs, R. I.; Cheese, P.; Stennett, C.; Fellows, J.
2000-04-01
Ultra high-speed digital photography has been used to record the onset and build-up of reaction in nitromethane charges that have been impacted by steel fragments. The nitromethane charges were housed in PMMA cylinders and back-lit using conventional flash bulbs. Flat plates of aluminum were glued to one end of the cylinder and PMMA plates to the other. The completed charge was positioned to allow normal impact of the projectiles through the aluminum barrier plate. The events were filmed using an Imacon 468, ultra high-speed digital image system, capable of framing at up to 100 million pictures per second. Using this system it was possible to record detailed photographic information concerning the onset and growth of reaction due to shock initiation of the nitromethane charges. The results obtained to date are consistent with the established concepts for initiation of homogeneous and heterogeneous materials.
NASA Astrophysics Data System (ADS)
Mali, K. D.; Singru, P. M.
2018-03-01
In this work effect of the impact location and the type of hammer tip on the frequency response function (FRF) is studied. Experimental modal analysis of rectangular plates is carried out for this purpose by using impact hammer, accelerometer and fast Fourier transform (FFT) analyzer. It is observed that the impulse hammer hit location has, no effect on the eigenfrequency, yet a difference in amplitude of the eigenfrequencies is obtained. The effect of the hammer tip on the pulse and the force spectrum is studied for three types of tips metal, plastic and rubber. A solid rectangular plate was excited by using these tips one by one in three different tests. It is observed that for present experimental set up plastic tip excites the useful frequency range.
The effect of butterfly-scale inspired patterning on leading-edge vortex growth
NASA Astrophysics Data System (ADS)
Wilroy, Jacob Aaron
Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.
A Didactic Experiment and Model of a Flat-Plate Solar Collector
ERIC Educational Resources Information Center
Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2011-01-01
We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…
Quasisubharmonic vibrations in metal plates excited by high-power ultrasonic pulses
NASA Astrophysics Data System (ADS)
Chen, Zhao-jiang; Zhang, Shu-yi; Zheng, Kai; Kuo, Pao-kuang
2009-07-01
Strongly nonlinear vibration phenomena in metal plates excited by high-power ultrasonic pulses in different conditions are studied experimentally and theoretically. The experimental conditions for generating quasisubharmonics and subharmonics are found and discussed. The plate vibrations are characterized by waveforms, frequency spectra, pseudostate portraits, and Poincaré maps. Then, a three-degree-of-freedom vibroimpact-dynamic model is presented to explore the generation mechanisms of the quasisubharmonic and subharmonic vibrations in the plates. According to the model, the intermittent contact-impact forces caused by the interactions between the transducer horn tip and the plate are considered as the main source for generating the complex nonlinear vibration in the plate. The numerical calculation results can explain reasonably the observed experimental phenomena.
Track following of Ξ-hyperons in nuclear emulsion for the E07 experiment
NASA Astrophysics Data System (ADS)
Mishina, Akihiro; Nakazawa, Kazuma; Hoshino, Kaoru; Itonaga, Kazunori; Yoshida, Junya; Than Tint, Khin; Kyaw Soe, Myint; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; Umehara, Kaori; Yokoyama, Hiroyuki; Nakashima, Daisuke; J-PARC E07 Collaboration
2014-09-01
Events of Double- Λ and Twin Single- Λ Hypernuclei are very important to understand Λ- Λ and Ξ--N interaction. We planned the E07 experiment to find Nuclear mass dependences of them with ten times higher statistics than before. In the experiment, the number of Ξ- hyperon stopping at rest is about ten thousands which is ten times larger than before. Such number of tracks for Ξ- hyperon candidates should be followed in nuclear emulsion plate up to their stopping point. To complete its job within one year, it is necessary for development of automated track following system. The important points for track following is Track connection in plate by plate. To carry out these points, we innovated image processing methods. Especially, we applied pattern match of K- beams for 2nd point. Position accuracy of this method was 1.4 +/-0.8 μm . If we succeed this application in about one minute for a track in each plate, all track following can be finished in one year.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1994-01-01
Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.
Compressive strength of damaged and repaired composite plates
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Yi-Fei; Springer, George S.; Lee, Hung-Joo
1992-01-01
Tests were performed assessing the effectiveness of repair in restoring the mechanical properties of damaged, solid composite plates made either of Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, or ICI APC-2 graphite-PEEK. The plate length, the layup and the amount of damage were also varied. Damage was introduced in the plates either by impacting them with a solid projectile or by applying a transverse static load. Some (75 percent) or all (100 percent) of the damaged zone was then cut out, and the plate was repaired by plugging and patching the hole. The effectiveness of the repair was evaluated by measuring the compressive strengths of undamaged plates, damaged plates with no cutout, damaged plates with a cutout, and repaired plates. The data at an intermediate stage of repair provide information on the effect of each repair step on the compressive strength. The results indicated that for the solid plates used in these tests, the repair methods used herein did not improve the compressive strength of already damaged plates.
The Influence of Non-Nociceptive Factors on Hot Plate Latency in Rats
Gunn, Amanda; Bobeck, Erin N.; Weber, Ceri; Morgan, Michael M.
2010-01-01
The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot plate latency was examined. Comparison of body weight and hot plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hr prior to testing did not decrease hot plate latency except for female rats tested on Days 2 - 4. Hot plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all four trials, and prior exposure to a room temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot plate latency, but these effects are small and have relatively little impact on morphine antinociception. PMID:20797920
Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher
2013-01-01
Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images. PMID:23994351
Elastic and plastic buckling of simply supported solid-core sandwich plates in compression
NASA Technical Reports Server (NTRS)
Seide, Paul; Stowell, Elbridge Z
1950-01-01
A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
Ultrafast dynamic response of single crystal β-HMX
NASA Astrophysics Data System (ADS)
Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.
2017-01-01
We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.
NASA Astrophysics Data System (ADS)
Xu, Caixia; Zhang, Jingwen; Xu, Long; Ma, Xinyan; Zhao, Hua
2017-06-01
To pinpoint the driving forces behind the random lasing in Nd3+ doped lanthanum lead zirconate titanate (Nd:PLZT) ceramic plates, a combinatorial cavity with two gain media (Nd:YVO4 and Nd:PLZT) was used to study the switching feature between conventional lasing and random lasing oscillations. The complex laser output dynamics observed hinted that the photo-induced charge accumulation on the plate surface and the grain boundaries of Nd:PLZT is responsible for the lasing action switching, which was confirmed by a series of experiments, including strong electro-induced scattering, remarkable photoinduced currents, and light transmission reduction, along with measured single-pass-gain over the theoretical limit. It was found that the charge accumulation results in optical energy storage and nonuniform refractive index and hence strong scattering, which give rise to the random walks and weak localization of photons and long lasting lasing action and mode switching.
Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles
NASA Astrophysics Data System (ADS)
Tu, Y.; You, C.
2010-12-01
Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.
Hypervelocity impact survivability experiments for carbonaceous impactors
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef
1993-01-01
We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.
Deformation of Polymer Composites in Force Protection Systems
NASA Astrophysics Data System (ADS)
Nazarian, Oshin
Systems used for protecting personnel, vehicles and infrastructure from ballistic and blast threats derive their performance from a combination of the intrinsic properties of the constituent materials and the way in which the materials are arranged and attached to one another. The present work addresses outstanding issues in both the intrinsic properties of high-performance fiber composites and the consequences of how such composites are integrated into force protection systems. One aim is to develop a constitutive model for the large-strain intralaminar shear deformation of an ultra-high molecular weight polyethylene (UHMWPE) fiber-reinforced composite. To this end, an analytical model based on a binary representation of the constituent phases is developed and validated using finite element analyses. The model is assessed through comparisons with experimental measurements on cross-ply composite specimens in the +/-45° orientation. The hardening behavior and the limiting tensile strain are attributable to rotations of fibers in the plastic domain and the effects of these rotations on the internal stress state. The model is further assessed through quasi-static punch experiments and dynamic impact tests using metal foam projectiles. The finite element model based on this model accurately captures both the back-face deflection-time history and the final plate profile (especially the changes caused by fiber pull-in). A separate analytical framework for describing the accelerations caused by head impact during, for example, the secondary collision of a vehicle occupant with the cabin interior during an external event is also presented. The severity of impact, characterized by the Head Injury Criterion (HIC), is used to assess the efficacy of crushable foams in mitigating head injury. The framework is used to identify the optimal foam strength that minimizes the HIC for prescribed mass and velocity, subject to constraints on foam thickness. The predictive capability of the model is evaluated through comparisons with a series of experimental measurements from impacts of an instrumented headform onto several commercial foams. Additional comparisons are made with the results of finite element simulations. An analytical model for the planar impact of a cylindrical mass on a foam is also developed. This model sets a theoretical bound for the reduction in HIC by utilizing a "plate-on-foam" design. Experimental results of impact tests on foams coupled with stiff composite plates are presented, with comparisons to the theoretical limits predicted by the analytical model. Design maps are developed from the analytical models, illustrating the variations in the HIC with foam strength and impact velocity.
The shock and spall response of AA 7010-T7651
NASA Astrophysics Data System (ADS)
Hazell, Paul; Appleby-Thomas, Gareth; Wood, David; Painter, Jonathan
2013-06-01
Aluminium alloys are used extensively in armour. Their use as armour materials is primarily due to their relatively low densities and their high strength characteristics. The aerospace-grade 7000-series alloy Al7010-T7651 is one possible contender for armour. In this study a series of plate-impact experiments were undertaken to investigate the behaviour of this alloy under shock. Manganin stress gauges and a heterodyne velocimeter system were used to interrogate both strength and dynamic tensile failure (spall) respectively; with microscopic analysis of recovered samples providing insight into the development of failure in the material.
Investigation of laser holographic interferometric techniques for structure inspection
NASA Technical Reports Server (NTRS)
Chu, W. P.
1973-01-01
The application of laser holographic interferometric techniques for nondestructive inspection of material structures commonly used in aerospace works is investigated. Two types of structures, composite plate and solid fuel rocket engine motor casing, were examined. In conducting the experiments, both CW HeNe gas lasers and Q-switched ruby lasers were used as light sources for holographic recording setups. Different stressing schemes were investigated as to their effectiveness in generating maximum deformation at regions of structural weakness such as flaws and disbonds. Experimental results on stressing schemes such as thermal stressing, pressurized stressing, transducer excitation, and mechanical impact are presented and evaluated.
The calibration of specular gloss meters and gloss plates
NASA Astrophysics Data System (ADS)
Li, Tiecheng; Lai, Lei; Yin, Dejin; Ji, Muyao; Lin, Fangsheng; Shi, Leibing; Xia, Ming; Fu, Yi
2017-10-01
Specular gloss is the perception by an observer of the mirror-like appearance of a surface. Specular gloss is usually measured by a glossmeter, which can be calibrated by a group of gloss plates according to JJG 696-2015. The characteristics of a gloss meter include stability, zero error, and error of indication. The characteristics of a gloss plate include roughness and spectral transmissivity of a high gloss plate, spectral reflectivity of a ceramic gloss plate. The experiment results indicate that calibration of both gloss meters and gloss plates should be carefully performed according to the latest verification regulation in order to reduce the measurement error.
New System for Measuring Impact Vibration on Floor Decking Sheets
Moron, Carlos; Garcia, Alfonso; Ferrandez, Daniel
2015-01-01
Currently, there is a narrow range of materials that are used as attenuators of impact noise and building vibrations. Materials used in construction, such as elastic materials, must meet the requirement of having very low elastic modulus values. For the determination of the material's elastic modulus and the acoustic insulation of the same, costly and difficult to execute testing is required. The present paper exposes an alternative system that is simpler and more economic, consisting of a predefined striking device and a sensor able to determine, once the strike is produced, the energy absorbed by the plate. After the impact is produced, the plate undergoes a deformation, which absorbs part of the energy, the remaining part being transmitted to the slab and, at the same time, causing induced airborne noise in the adjoining room. The plate absorbs the power through its own deformation, which is measured with the help of a capacitive sensor. This way, it would be possible to properly define the geometry of the plates, after the execution of the test, and we will try to establish a relationship between the values proposed in this research and the acoustic behavior demanded by the Spanish standards. PMID:25558998
Gaseous phase ion detection method based on laser-induced fluorescence for ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Guo, Kaitai; Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2015-08-01
Ion mobility spectrometry (IMS) is widely used in the field of chemical composition analysis. Faraday cup is the most classical method to detect ions for IMS in the atmospheric pressure. However, the performance of Faraday plate was limited by many kinds of factors, including interfering electromagnetic waves, thermal(Johnson) noise, induced current , gain bandwidth product, etc. There is a theoretical limit in detection of ions at ambient condition which is approximately 106 ions per second. In this paper, we introduced a novel way using laser-induced fluorescence (LIF) to bypass the limitation of Faraday plate. Fluorescent ions which were selected by IMS get excited when they fly through the laser excitation area. The fluorescence emitted by the excited ions was captured exponentially and amplified through proper optoelectronic system. Rhodamine 6G (R6G) was selected as the fluorochrome for the reason that excitation wavelength, emission wavelength, and fluorescence quantum yield were more appropriate than others. An orthometric light path is designed to eliminate the adverse impact which was caused by induced laser. The experiment result shows that a fluorescence signal from the sample ions of the IMS could be observed. Compared with Faraday plate, the LIF-IMS may find a potential application in more system at the atmosphere condition.
Release mechanism for releasing and reattaching experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Clark, A. V.
1980-01-01
The release mechanism (REM) unlatches an experiment so that it can be moved about inside and outside the shuttle bay by the remote manipulator system (RMS), and then reattaches it to the REM base. Operated from the crew compartment after the RMS has been attached to the experiment, the REM releases the experiment by an electric motor driving a gear train and linkage which extracts four pins from holes in four plates. Electrical connectors on the REM are disengaged by the mechanical action of the structural pins retracting from the plates. When the REM releases the experiment, an unlatched indicator is actuated in the crew compartment, and then the experiment can be moved by using the RMS. To reattach the experiment to the REM, the RMS places the experiment with REM attachment angles against the flat, smooth surface of the REM; then the RMS moves the experiment into position for latchup. Actuation of an electric motor drives the four pins into the four holes in the plates. When fully latched, a switch actuated by the motion of the linkage, shuts the electric motor off and gives an indication to the crew compartment that the REM is latched.
Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992
1993-10-01
constructive and destructive wave interaction that produces interference fringes on the holographic plate. If the object moves more than a fraction of a...wavelength during the duration of the laser exposure these interference fringes are lost and with it the holographic image of the object. However there...interest, it is possible to use magnification optics such as microscope objectives or lithography lenses between the holographic plate and the impact
Designing dual-plate meteoroid shields: A new analysis
NASA Technical Reports Server (NTRS)
Swift, H. F.; Bamford, R.; Chen, R.
1982-01-01
Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.
Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration
NASA Astrophysics Data System (ADS)
Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.
2017-06-01
Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1995-01-01
#Experiment AO187-2, that was flown on board the Long Duration Exposure Facility(LDEF), was designed to measure the chemical and isotopic compositions of interplanetary dust impinging on the spacecraft from outer space. Information on the nature and composition of orbital debris was also anticipated. The spacecraft maintained a constant orientation with respect to its velocity vector thereby defining leading and trailing edges that faced respectively into and away from the direction of motion. Arrays of individual capture cells each 80.8 sq cm in size and totaling 237 in number were exposed on both the leading and trailing edges of LDEF. Each cell consisted of a pure Ge target surface slightly separated from a thin (2.5 micrometers) metallized plastic 'entrance foil.' The basic concept was that incoming projectiles would penetrate the foil, strike the Ge target plate at high velocity producing a vapor-liquid cloud that would re-deposit material on the underside of the plastic foil. This material would then be analyzed using the sensitive surface analysis technique of Secondary Ion Mass Spectrometry (SIMS). In practice, most of the plastic entrance foils failed during the extended period of orbital exposure probably due to a combination of UV embrittlement, large densities of impact events and (for the leading edge) the effects of atomic oxygen erosion in orbit. However the foils failed gradually and most remained in place on the capture cells for a significant fraction of the duration of the flight . Because most of the impactors were small (less than 10 micrometers) they were heated and dispersed in traversing the entrance foils producing clouds of molten droplets and vapor that produced easily identifiable 'extended impacts' on the Ge target plates. Fortunately, it proved possible to make ion probe measurements of projectile compositions from material deposited on the Ge in the extended impact structures.
NASA Astrophysics Data System (ADS)
Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.
2013-12-01
The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ ≈ 41-46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.
2 x 2 Polyethylene Reflected and Moderated Highly Enriched Uranium System with Rhenium
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Nichole Ellis; Jesson Hutchinson; John D. Bess
2010-09-01
The 2 × 2 array HEU-Re experiment was performed on the Planet universal critical assembly machine on November 4th, 2003 at the Los Alamos Critical Experiments Facility (LACEF) at Los Alamos National Laboratory (LANL). For this experiment, there were 10 ½ units, each full unit containing four HEU foils and two rhenium foils. The top unit contained only two HEU foils and two rhenium foils. A total of 42 HEU foils were used for this experiment. Rhenium is a desirable cladding material for space nuclear power applications. This experiment consisted of HEU foils interleaved with rhenium foils and is moderatedmore » and reflected by polyethylene plates. A unit consisted of a polyethylene plate, which has a recess for rhenium foils, and four HEU foils in a single layer in the top recess of each polyethylene plate. The Planet universal criticality assembly machine has been previously used in experiments containing HEU foils interspersed with SiO2 (HEU-MET-THERM-001), Al (HEU-MET-THERM-008), MgO (HEU-MET-THERM-009), Gd foils (HEU-MET-THERM-010), 2 × 2 × 26 Al (HEU-MET-THERM-012), Fe (HEU-MET-THERM-013 and HEU-MET-THERM-015), 2 × 2 × 23 SiO2 (HEU-MET-THERM-014), 2 × 2 × 11 hastalloy plates (HEU-MET-THERM-016), and concrete (HEU-MET-THERM-018). The 2 × 2 array of HEU-Re is considered acceptable for use as a benchmark critical experiment.« less
Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones.
NASA Astrophysics Data System (ADS)
Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.
2015-12-01
One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise rates, also commonly surface as linear, age progressive tracks. Applying these results to systems like the Cascades and Tonga-Lau suggest there are multiple ways to produce timing trends due both to linear flows and waves of heterogeneity obliquely impacting surface plates.
Ignition behavior of magnesium powder layers on a plate heated at constant temperature.
Chunmiao, Yuan; Dezheng, Huang; Chang, Li; Gang, Li
2013-02-15
The minimum temperature at which dust layers or deposits ignite is considered to be very important in industries where smoldering fires could occur. Experiments were conducted on the self-ignition behavior of magnesium powder layers. The estimated effective thermal conductivity k for modeling is 0.17 W m(-1)K(-1). The minimum ignition temperature (MIT) of magnesium powder layers for four different particle sizes: 6, 47, 104 and 173 μm, are also determined in these experiments. A model was developed describing temperature distribution and its change over time while considering the melting and boiling of magnesium powder. Parameter analysis shown that increasing particle size from 6 to 173 μm increased MIT from 710 to 760 K, and increased thickness of the dust layer led to a decreased MIT. The calculation termination time more than 5000 s didn't significantly impact MIT. Comparing predicted and experimental data showed satisfactory agreement for MIT of magnesium powder layers at various particle sizes. According to the ignition process of magnesium powder layer, a meaningful definition for the most sensitive ignition position (MSIP) was proposed and should be taken into consideration when preventing smoldering fires induced by hot plates. Copyright © 2012 Elsevier B.V. All rights reserved.
Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation
NASA Astrophysics Data System (ADS)
Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu
2016-11-01
Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.
Effects of a portion design plate on food group guideline adherence among hospital staff.
de Korne, Dirk F; Malhotra, Rahul; Lim, Wai Yee; Ong, Christine; Sharma, Ashu; Tan, Tai Kiat; Tan, Thiam Chye; Ng, Kee Chong; Østbye, Truls
2017-01-01
Food group guideline adherence is vital to prevent obesity and diabetes. Various studies have demonstrated that environmental variables influence food intake behaviour. In the present study we examined the effect of a portion design plate with food group portion guidelines demarcated by coloured lines (ETE Plate™). A two-group quasi-experimental design was used to measure proportions of carbohydrate, vegetable and protein portions and user experience in a hospital staff lounge setting in Singapore. Lunch was served on the portion design plate before 12.15 hours. For comparison, a normal plate (without markings) was used after 12.15 hours. Changes in proportions of food groups from 2 months before the introduction of the design plate were analysed in a stratified sample at baseline (859 subjects, all on normal plates) to 1, 3 and 6 months after (in all 1016 subjects on the design plate, 968 subjects on the control plate). A total of 151 participants were asked about their experiences and opinions. Between-group comparisons were performed using t tests. Among those served on the portion design plate at 6 months after its introduction, the proportion of vegetables was 4·71 % ( P < 0·001) higher and that of carbohydrates 2·83 % ( P < 0·001) lower relative to the baseline. No significant change was found for proteins (-1·85 %). Over 6 months, we observed different change patterns between the different food group proportions. While participants were positive about the portion design plate, they did not think it would influence their personal behaviour. A portion design plate might stimulate food group guideline adherence among hospital staff and beyond.
Spacecraft wall design for increased protection against penetration by space debris impacts
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Tullos, Randy J.
1990-01-01
All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.
Feasibility of Active Monitoring for Plate Coupling Using ACROSS
NASA Astrophysics Data System (ADS)
Yamaoka, K.; Watanabe, T.; Ikuta, R.
2004-12-01
Detectability of temporal changes in reflected wave from the boundary of subducting plates in Tokai district with active sources are studied. Based on rock experiments the change in the intensity of reflection wave can be caused by change in coupling between subducting and overriding plates. ACROSS (Accurately-Controlled Rountine-Operated Signal System) consists of sinusoidal vibration sources and receivers is proved to provide a data of excellent signal resolution. The following technical issues should be overcome to monitor the returned signal from boundaries of subducting plates. (1) Long term operation of the source. (2) Detection of temporal change. (3) Accurate estimation of source functions and their temporal change. First two issues have already overcome. We have already succeeded a long-term operation experiment with the ACROSS system in Awaji, Japan. The operation was carried out for 15 months with only minor troubles. Continuous signal during the experiment are successfully obtained. In the experiment we developed a technique to monitor the temporal change of travel time with a resolution of several tens of microseconds. The third issue is one of the most difficult problem for practical monitoring using artificial sources. In the 15-month experiment we correct the source function using the record of seismometers that were deployed around the source We also estimate the efficiency of the reflected wave detection using ACROSS system. We use a data of seismic exploration experiment by blasts that carried out above subducting plate in Tokai district. Clear reflection from the surface of the Philippine Sea plate is observed in the waveform. Assuming that the ACROSS source is installed at the same place of the blast source, the detectability of temporal variation of reflection wave can be estimated. As we have measured the variation of signal amplitude that depends on the distance from an ACROSS source, ground noise at seismic stations (receivers) provide us the signal-to-noise ratio for the signal from ACROSS. The resolution can be estimated only by the signal-to-noise ratio. We surveyed the noise level at the place where reflection from the boundary of subducting Philippine Sea Plate can be detected. The results show that the resolution will be better than 1% in amplitude and 0.1milisecond in travel time for the stacking of one week using three-unit source and ten-elements receiver arrays.
Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.
Gay, C; Rognon, P; Reinelt, D; Molino, F
2011-01-01
Up to a global scaling, the geometry of foams squeezed between two solid plates (2D GG foams) essentially depends on two independent parameters: the liquid volume fraction and the degree of squeezing (bubble thickness to diameter ratio). We describe it in two main asymptotic regimes: fully dry floor tiles, where the Plateau border radius is smaller than the distance between the solid plates, and dry pancakes, where it is larger. We predict a rapid variation of the Plateau border radius in one part of the pancake regime, namely when the Plateau border radius is larger than the inter-plate distance but smaller than the geometric mean of that distance and the bubble perimeter. This rapid variation is not related to any topological change in the foam: in all the regimes we consider, the bubbles remain in mutual lateral contact through films located at mid-height between both plates. We provide asymptotic predictions in different types of experiments on such 2D GG foams: when foam is being progressively dried or wetted, when it is being squeezed further or stretched, when it coarsens through film breakage or through inter-bubble gas diffusion. Our analysis is restricted to configurations close to equilibrium, as we do not include stresses resulting from bulk viscous flow or from non-homogeneous surfactant concentrations. We also assume that the inter-plate distance is sufficiently small for gravity to be negligible. The present work does not provide a method for measuring small Plateau border radii experimentally, but it indicates that large (and easily observable) Plateau borders should appear or disappear rather suddenly in some types of experiments with small inter-plate gaps. It also gives expected orders of magnitude that should be helpful for designing experiments on 2D GG foams.
Add-on unidirectional elastic metamaterial plate cloak
Lee, Min Kyung; Kim, Yoon Young
2016-01-01
Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated. PMID:26860896
Add-on unidirectional elastic metamaterial plate cloak
NASA Astrophysics Data System (ADS)
Lee, Min Kyung; Kim, Yoon Young
2016-02-01
Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.
NPS Gas Gun for Planar Impact Studies
NASA Astrophysics Data System (ADS)
Cheong Ho, Chien; Hixson, Robert
2009-11-01
The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.
Plate-shaped non-contact ultrasonic transporter using flexural vibration.
Ishii, Takahiko; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro; Harada, Kana; Uchida, Yukiyoshi
2014-02-01
We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf. Copyright © 2013. Published by Elsevier B.V.
Buckling behavior of compression-loaded symmetrically-laminated angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Nemeth, M. P.
1986-01-01
An approximate analysis for buckling of a rectangular specially-orthotropic plate with a central circular hole is applied to symmetrically-laminated angle-ply plates. Results obtained from finite element analyses and experiments indicate that the approximate analysis predicts accurately the buckling loads of (+/-theta sub m)s plates with integer values of m not below 6 and with hole diameters up to 50 percent of the plate width. Moreover, the results indicate that the approximate analysis can be used to predict the buckling trends of plates with hole diameters up to 70 percent of the plate width. Results of a parametric study indicate the influence of hole size, plate aspect ratio, loading conditions, boundary conditions, and orthotropy on the buckling load. Results are also presented that indicate the relationship of the bending stiffness and the prebuckling load distribution to the buckling load of a plate with a hole.
Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.
Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong
2016-02-01
In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.
The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
Projection Moire measurement of the deflection of composite plates subject to bird strike impact
NASA Astrophysics Data System (ADS)
Shulev, A.; Van Paepegem, W.; Harizanova, J.; Moentjens, A.; Degrieck, J.; Sainov, V.
2007-06-01
For the new generation aircraft families, the use of fibre-reinforced plastics is considered for the leading edge of the wings. However, this leading edge is very prone to bird strike impact. This paper presents the use of the projection moire technique to measure the out-of-plane deflections of composite plates subject to bird strike. Very strict constraints with regard to: (i) high speed image acquisition, (ii) vibrations of the impact chamber, and (iii) projection and observation angles - complicated substantially the development of the set-up. Moreover, the high frame rates (12000 fps) required a very intensive illumination. In the optimized configuration, a specially designed grating with gradually changing period is projected by means of special Metal Hydride lamps through one of the side windows of the impact chamber onto the composite plate riveted in a steel frame. The digital high speed camera is mounted on the roof of the impact chamber and records through a mirror the object surface with the projected fringe pattern on it. Numerical routines based on Local Fourier Transform were developed to process the digital images, to extract the phase and the out-of-plane displacements. The phase evaluation is possible due to the carrier frequency nature of the projected moire pattern. This carrier frequency allows separation of the unwanted additive and multiplicative fringe pattern components in the frequency domain via the application of a proper mask. The numerical calculations were calibrated for the bird strike of an aluminium plate, where the plastic deformation could be checked after the test.
Using Al Foam to Reduce the Transfer of Impact Stress between Ceramic Plates
2004-11-01
2004 Using Al foam to reduce the transfer of impact stress between ceramic plates. Final Technical Report No.2 by Ing. Milos Bortel November 2004...United States Army EUROPEAN RESEARCH OFFICE OF THE U.S.ARMY London, England CONTRACT NUMBER N62558-03-M-0815 ZTS-MATEC, a.s. Areal ZTS No.924 018 41...Dubnica nad Vahom Slovakia Approved for public release, distribution unlimited. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public
Sandbox Tectonics As A Teaching Tool
NASA Astrophysics Data System (ADS)
Delaughter, J.
2005-12-01
Students are typically introduced to the relative motions of plates and its effects either through text-based descriptions, paper models, or both. However, though students may learn to repeat the description of the effects, many students still do not show a deeper understanding of the process, as shown by examinations of students before and after an introductory geology course (DeLaughter et al, 1998). This is because students are rarely affected by the information on a visceral level; because their preconceptions are never challenged, they never internalize the information as part of their model of how the world works. However, when concepts such as plate motions and their effects are presented to students as part of a tangible, physical experiment, the ideas can have a much greater impact (Carey et al, 1989). The students use the new information to build more complete mental models while learning that such models can and must change in response to new information (Herbert, 2003). When such experiments are performed in a geology class, they afford the students a direct and visceral experience that may enhance the learning process. In this exercise for middle school students, the effects of relative plate motions on overlying sediments are modeled through a simple and inexpensive set of experiments using sand and newspaper. These experiments provide qualitatively the same results as those performed by geologists researching various aspects of faulting and folding (e.g., Horsfield, 1977, Domingez et al., 2000). A secondary benefit of these experiments is that when the students do not pull the papers perfectly the combination of effects can mimic real terrains (e.g., transpressional) very closely. This intrusion of methodological errors can also lead to a lively discussion of how science is done and what the results of an experiment imply, thereby providing a pedagogical benefit as well. Thus students can be shown the effects of relative plate motions in a direct and obvious manner. Because the experiments produce tangible results, the students experience them on a more visceral level and may be able to incorporate the concepts better than they would through a description or computer simulation of the effects (Klosko et al., 2000). And, as the equipment used is very inexpensive, the experiment is well within the means of almost any school system. References Carey, S., R. Evans, M. Honda, E. Jay, C. Unger, 1989, ``An experiment is when you try it and see if it works'': A study of grade 7 students' understanding of the construction of knowledge, International Journal of Science Education, 11, 514-529 DeLaughter, J., S. Stein, C. Stein, K. R. Bain, 1998, Preconceptions abound among students in an introductory earth science course, EOS, 79, 429+432 Dominguez, S, J. Malavieille, S. Lallemand, 2000, Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments, Tectonics, 19(1), 182-196 Herbert, B., 2003, The role of scaffolding student metacognition in developing mental models of complex, Earth and environmental systems. DFG-NSF International Workshops on Research and Development in Mathematics and Science Education, November 19-21, 2003, Washington D.C. http://geoexplorer.tamu.edu/dfgnsf/WG1.html Horsfield, W.T., 1977, An experimental approach to basement controlled faulting, Geologie en Mijnbouw, 56, 363-370 Klosko, E., J. DeLaughter, S. Stein, 2000, Technology in introductory geophysics: the high - low mix, Computers & Geosciences, 26(6), 693-698
Nishimura, Hidekazu
2012-11-01
Several Japanese companies sell electrical devices advertised as effective in inactivating viruses and killing bacteria by releasing special materials, e.g., Plasmacluster ions, Nanoe particle and minus ions, into the air. These companies claim that their devices killed bacteria on plates in their own experiments. We tested device effectiveness using the same experiments from the Plasmacluster ioniser SHARP Co., Japan, the Nanoe generator Panasonic Co., Japan, and the Vion KING JIM Co., Japan, to test their advertising claims. Bactericidal ability on agar plate was tested, using Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Enterococcus faecalis as follows: the medium containing a certain amount of each bacterium was put onto an agar plate and smeared. Plates were kept in a closed chamber (inner volume 14.4 m3) or a glove box (inner volume 0.2 m), with one of the devices run for 2 hours. Plates not exposed to any device were used as controls. Each plate was retrieved and put in an incubator to count the number of bacterial colonies formed on the plate. There was no significant difference in the number of colonies on plates exposed to devices compared to control, in the number for all devices, or in all bacteria tested in experiments in the 14.4 m3 chamber. These results strongly suggest that these devices have almost no bactericidal effect, at least in space exceeding this volume. Colony formation was suppressed in the glove box in all devices and in all bacteria tested except P. aeruginosa, although the degree of suppression differed among experiments. The colony formation suppression mechanism was analyzed, and indicated that:colony formation did not change even after the removal of Plasmacluster ions, Nanoe particles, or negative ions from the air, while colony formation was decreased drastically by the removal of ozone from space, which was revealed to be generated inevitably during device operation. These results strongly suggest that the bactericidal effect seen only on the agar plate in narrow space was explained by ozone released in space as a by-product, not by special materials as advertising claimed. It is thus important to analyze the effect of special materials such as those done in this study and to suggest the involvement of ozone as the true cause, as have been done in this study, in evaluating bactericidal effect or viral inactivation as advertised by these companies.
Mantle flow influence on subduction evolution
NASA Astrophysics Data System (ADS)
Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard
2018-05-01
The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.
Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates.
Pietrzak, William S
2010-01-01
Bioabsorbable devices are generally susceptible to some form of degradation or alteration of material properties in response to exposure to the terminal sterilization cycle. In addition to affecting the material strength, sterilization can also increase the rate of hydrolysis, both of which can impact clinical performance. The impact of sterilization on the material/device is unpredictable and must be empirically determined. This study examined the effects of ethylene oxide treatment on the material properties of LactoSorb 82:18 poly(L-lactic acid)-poly(glycolic acid) craniofacial plates. Compared with untreated control plates, there was no effect on the initial inherent viscosity (1.3 dL/g), the glass transition temperature (58 degrees C), or on the flexural mechanical properties. Furthermore, there was no effect on the in vitro rate of hydrolysis and mechanical strength loss profile. This provides evidence that the ethylene oxide sterilization cycle is compatible with these copolymer plates and that such treatment should not affect the clinical performance.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
Llinas’ Phase Reset Mechanism Delays the Onset of Chaos in Shark and Dolphin Wall Turbulence
2014-02-10
eruption due to plate tectonics . (The plate becomes locally thin and is unable to prevent the high-pressure hot magma from erupting.) The vorticity...flat plate value. The spacing between riblet peaks s+= 10 is used unless noted. KM gives the "strength" of the riblets, where the terms "weak" and...exhibit spanwise variations in skin friction coefficients and integral boundary layer properties, even in flat plate experiments where great care has
Halogen occultation experiment (HALOE) optical witness-plate program
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Raper, James L.
1989-01-01
An optical witness plate program was implemented to monitor buildup of molecular contamination in the clean room during the assembly and testing of the Halogen Occulation Experiment (HALOE) instrument. Travel plates to monitor molecular contamination when the instrument is not in the clean room are also measured. The instrument technique is high-resolution transmission spectroscopy in the 3 micron spectral region using a Fourier transform spectrometer. Witness specimens of low index of refraction, infrared transmitting material are used for contaminant monitoring and for spectral signature analysis. Spectral signatures of possible molecular contamination are presented. No condensible volatile material contamination of HALOE optical witness specimens have yet been found.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Chaotic sources of noise in machine acoustics
NASA Astrophysics Data System (ADS)
Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.
1994-05-01
In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.
Reconfiguration of a flexible flat plate under snow loading
NASA Astrophysics Data System (ADS)
Gosselin, Frédérick; de Langre, Emmanuel
2015-11-01
Snow and wind constitute two of the main sources of mechanical loading on terrestrial plants. Plants bend and twist with large amplitude to bear these loads. For the past ten years, various authors have sought to decompose the problem of plant reconfiguration under fluid flow into its fundamental mechanical ingredients by studying the reconfiguration of simple flexible structures such as beams, plates, rods and strips. Here, we adopt a similar approach to these studies and consider the snow interception of a flexible flat plate. We performed two sets of experiments on thin flexible rectangular plates supported at their center: in the first one, a plate was subjected to real snowing events; in the second one, a plate was loaded with glass beads acting as a granular media similar to snow. Moreover, a theoretical model coupling the Elastica formulation to a loading with a set angle of repose is developed. The model is found to be in good agreement with the experiments on glass beads. Asymptotic scaling laws can be found similarly to the Vogel exponents of reconfiguring structures. For the real snow loading, it is found that the cohesive force in snow which is highly dependent on the snow temperature complicate things greatly.
NASA Astrophysics Data System (ADS)
Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Miao, Yuanhao; Han, Genquan; Wang, Bin
2018-06-01
In this paper, a novel fully-depleted Ge1-xSnx n-Tunneling FET (FD Ge1-xSnx nTFET) with field plate is investigated theoretically based on the experiment previously published. The energy band structures of Ge1-xSnx are calculated by EMP and the band-to-band tunneling (BTBT) parameters of Ge1-xSnx are calculated by Kane's model. The electrical characteristics of FD Ge1-xSnx nTFET and FD Ge1-xSnx nTFET with field plate (FD-FP Ge1-xSnx nTFET) having various Sn compositions are investigated and simulated with quantum confinement model. The results indicated that the GIDL effect is serious in FD Ge1-xSnx nTFET. By employing the field plate structure, the GIDL effect of FD-FP Ge1-xSnx nTFET is suppressed and the off-state current Ioff is decreased more than 2 orders of magnitude having Sn compositions from 0 to 0.06 compared with FD Ge1-xSnx nTFET. The impact of the difference of work function between field plate metal and channel Φfps is also studied. With the optimized Φfps = 0.0 eV, the on-state current Ion = 4.6 × 10-5 A/μm, the off-state current Ioff = 1.6 × 10-13 A/μm and the maximum on/off ration Ion/Ioff = 2.9 × 108 are achieved.
Early impact basins and the onset of plate tectonics. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Frey, H.
1977-01-01
The fundamental crustal dichotomy of the Earth (high and low density crust) was established nearly 4 billion years ago. Therefore, subductable crust was concentrated at the surface of the Earth very early in its history, making possible an early onset for plate tectonics. Simple thermal history calculations spanning 1 billion years show that the basin forming impact thins the lithosphere by at least 25%, and increases the sublithosphere thermal gradients by roughly 20%. The corresponding increase in convective heat transport, combined with the highly fractured nature of the thinned basin lithosphere, suggest that lithospheric breakup or rifting occurred shortly after the formation of the basins. Conditions appropriate for early rifting persisted from some 100,000,000 years following impact. We suggest a very early stage of high temperature, fast spreading "microplate" tectonics, originating before 3.5 billion years ago, and gradually stabilizing over the Archaean into more modern large plate or Wilson Cycle tectonics.
Elastic wave generated by granular impact on rough and erodible surfaces
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime
2018-01-01
The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.
The Geophysical Revolution in Geology.
ERIC Educational Resources Information Center
Smith, Peter J.
1980-01-01
Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…
NASA Astrophysics Data System (ADS)
Chang, G. S.; Lillo, M. A.
2009-08-01
The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.
1991-01-01
Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.
Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna
2003-07-01
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.
Damage Detection Using Lamb Waves for Structural Health Monitoring
2007-03-01
experiments have been reported by Seth Kessler [8]. 2.2 Large Aluminum Plate The second experiment included a 2024-0 aluminum plate with dimensions of...Mechanical Engineering Congress , (IMECE2002- 39017) (17-22 November 2002). 6. Kessler , Seth S. Piezoelectric-Based In-Situ Damage Detection of...Composite Materials for Structural Health Monitoring Systems. Ph.D. thesis, Massachusetts Institute of Technology, January 2002. 7. Kessler , Seth S. “Metis
NASA Astrophysics Data System (ADS)
Korman, Murray S.; Bond, Emilia
2005-09-01
Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.
Radon daughter plate-out onto Teflon
NASA Astrophysics Data System (ADS)
Morrison, E. S.; Frels, T.; Miller, E. H.; Schnee, R. W.; Street, J.
2018-01-01
Radiopure materials for detector components in rare event searches may be contaminated after manufacturing with long-lived 210Pb produced by the decay of atmospheric radon. Charged radon daughters deposited on the surface or implanted in the bulk of detector materials have the potential to cause noticeable backgrounds within dark matter regions of interest. Understanding the mechanics governing these background signals is therefore a paramount concern in dark matter experiments in order to distinguish a real signal from internal detector backgrounds. Teflon (i.e. PTFE) is a specific material of interest because it makes up the walls of the inner detector of many liquid noble detectors such as the LUX-ZEPLIN experiment. The rate of radon daughter plate-out onto Teflon can be orders of magnitude larger than the plate-out rate onto other materials. Mitigation of plate-out onto Teflon and steel by proximity to other materials is demonstrated.
Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets
NASA Astrophysics Data System (ADS)
Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.
1996-03-01
We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.
In-situ data collection at the photon factory macromolecular crystallography beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Yusuke, E-mail: yusuke.yamada@kek.jp; Matsugaki, Naohiro; Kato, Ryuichi
Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography, and in-situ diffraction experiment has a capability to make researchers to proceed this step more efficiently. At the Photon Factory, a new tabletop diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, an on-axis viewing system and a plate rack with a capacity for ten crystallization plates. These components sit on a common plate and are able to be placed on the existing diffractometer table. The CCD detector with a large active area and a pixel arraymore » detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and a user interface have also been developed. The new diffractometer has been operational for users and used for evaluation of crystallization screening since 2014.« less
Impact, and its implications for geology
NASA Technical Reports Server (NTRS)
Marvin, Ursula B.
1988-01-01
The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.
2015-06-01
environmental test chamber attachment to control temperature and disposable parallel plates . The experiment can be stopped when the sample...is auto-stopping when its torque limit is reached and to prevent too high of an extent of cure that could make removal of the disposable plates from...separated by a 0.025-mm-thick Teflon spacer (International Crystal Labs) or pressed with potassium bromide (KBr) powder into pellets. The salt plate
ORION Project-(SPLASH) Structural Passive Landing Attenuation fo
2011-07-12
ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pot Phase"0" Test Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)
Optimization of Uranium Molecular Deposition for Alpha-Counting Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria
2016-12-12
Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less
Hayward, Gordon; Hyslop, Jamie
2006-02-01
A theoretical and experimental approach for extraction of guided wave dispersion data in plate structures is described. Finite element modeling is used to calculate the surface displacement data (in-plane and out-of-plane) when the plate is subject to either symmetrical or antisymmetrical impulsive force stimulation at one or both of the parallel faces. Fourier transformation of the resultant space-time displacement histories is then employed to obtain phase velocity as a function of frequency. Experimental verification in the case of antisymmetrical stimulation is provided by means of a high-power Q-switched laser source that is used to excite guided waves in the plate. The subsequent out-of-plane displacement data were then obtained by means of a scanning laser vibrometer, and good agreement between theory and experiment is demonstrated. Examples of dispersion data are provided for aluminum, and excellent correlation between the data sets and conventional Rayleigh-Lamb theory for plate structures was obtained. This was then extended to lossy polymeric plates, in addition to both unpolarized and polarized piezoelectric ceramic plates, again with good agreement between the finite element modeling and optical experiments. The last set of results prepares the way for a detailed investigation of the nonhomogeneous piezoelectric composite waveguides described in a companion paper (Part II).
Damage Detection and Impact Testing on Laminated and Sandwich Composite Panels
NASA Technical Reports Server (NTRS)
Hughes, Derke R.; Craft, William J.; Schulz, Mark J.; Naser, Ahmad S.; Martin, William N.
1998-01-01
This research investigates health monitoring of sandwich shell composites to determine if the Transmittance Functions (TF) are effective in determining the present of damage. The health monitoring test was conducted on the sandwich plates before and after low velocity impacts using the health monitoring technique given in TFs are a NDE (Nondestructive Evaluation) technique that utilizes the ratios of cross-spectrums to auto-spectrums between two response points on the sandwich composites. The test for transmittance was conducted on the same density foam core throughout the experiment. The test specimens were 17.8 cm by 25.4 cm in dimension. The external sheets (face sheets) were created from graphite/epoxy laminate with dimension of 1.58 mm thick. The polymethacrylide (Rohacell) foam core was 12.7 mm thick. These samples experienced a transformation in the TF that was considered the low velocity impact damage. The low velocity damage was observed in the TFs for the sandwich composites.
Diagnostic techniques in deflagration and detonation studies.
Proud, William G; Williamson, David M; Field, John E; Walley, Stephen M
2015-12-01
Advances in experimental, high-speed techniques can be used to explore the processes occurring within energetic materials. This review describes techniques used to study a wide range of processes: hot-spot formation, ignition thresholds, deflagration, sensitivity and finally the detonation process. As this is a wide field the focus will be on small-scale experiments and quantitative studies. It is important that such studies are linked to predictive models, which inform the experimental design process. The stimuli range includes, thermal ignition, drop-weight, Hopkinson Bar and Plate Impact studies. Studies made with inert simulants are also included as these are important in differentiating between reactive response and purely mechanical behaviour.
Emergence of energy dependence in the fragmentation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Pál, Gergő; Varga, Imre; Kun, Ferenc
2014-12-01
The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size) distribution of pieces is described by a power law functional form. The exponent of the distribution displays a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical response of the system. Recently, experiments and computer simulations have reported an energy dependence of the exponent increasing with the imparted energy. These novel findings question the phase transition picture of fragmentation phenomena, and have also practical importance for industrial applications. Based on large scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy dependence in fragmentation processes resolving controversial issues on the problem: studying the impact induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of blending the contributions of universal partial processes.
Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures
NASA Astrophysics Data System (ADS)
Genetier, M.; Osmont, A.; Baudin, G.
2014-05-01
The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP - air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.
Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures
NASA Astrophysics Data System (ADS)
Genetier, Marc; Osmont, Antoine; Baudin, Gerard
2013-06-01
The objective is to compare ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes into account only the detonation, the secondary combustion DP - air being not considered. To solve this problem a secondary combustion model has been developed to take into account the OB effect. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.
Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R
2017-05-01
Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a <3-fold difference between prevalence estimates based on freshly isolated bacteria when compared to isolates collected from unprocessed fecal samples or fecal slurries that had been stored at 4°C for up to 7days. No time-dependence was evident (P>0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO 2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of butterfly-scale inspired patterning on leading-edge vortex growth
NASA Astrophysics Data System (ADS)
Wilroy, Jacob; Lang, Amy
2015-11-01
Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied and the subsequent affect on the growth rate of the circulation in the LEV. For this experiment we used butterfly inspired grooves attached to a flat plate and compared the vortex formation to a smooth plate case as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 3.0 and is based on the flat plate travel length and chord length. We would like to thank the National Science Foundation REU Site Award 1358991 for funding this research.
NASA Astrophysics Data System (ADS)
Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.
2017-09-01
Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.
High-speed photography and stress-gauge studies of the impact and penetration of plates by rods
NASA Astrophysics Data System (ADS)
Bourne, Neil K.; Forde, Lucy C.; Field, John E.
1997-05-01
There has been much study of the penetration of semi- infinite and finite thickness targets by long rods at normal incidence. The effects of oblique impact have received relatively little attention and techniques of modeling are thus less developed. It was decided to conduct an experimental investigation of the effects of rod penetration at various angles of impact at zero yaw. The rods were mounted in a reverse ballistic configuration so that their response could be quantified through the impact. Scale copper, mild steel and tungsten alloy rods with hemispherical ends were suspended at the end of the barrel of a 50 mm gas gun at the University of Cambridge. The rods were instrumented with embedded manganin piezoresistive stress gauges. Annealed aluminum, duraluminum and rolled homogeneous armor plates of varying thickness and obliquity were fired at the rods at one of two velocities. The impacts were backlit and photographed with an Ultranac FS501 programmable high-speed camera operated in framing mode. The gauges were monitored using a 2 GH s-1 storage oscilloscope. Rods and plates were recovered after the impact for microstructural examination. Additionally, penetration of borosilicate glass targets was investigated using high-speed photography and a localized Xe flash source and schlieren optics. Additional data was obtained by the use of flash X-ray. Waves and damage were visualized in the glass. High-speed sequences and gauge records are presented showing the mechanisms of penetration and exit seen during impact.
Investigation on filter method for smoothing spiral phase plate
NASA Astrophysics Data System (ADS)
Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian
2018-03-01
Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.
Spallation behaviour of a Zr-bulk metallic glass
NASA Astrophysics Data System (ADS)
Ling, Z.; Huang, X.; Shen, L. T.; Dai, L. H.
2012-08-01
Plate impact experiments have been conducted on a Zr-based bulk metal glass (BMG) using a single stage light gas gun. To understand the spallation process of the material, samples were subjected to dynamic tensile loadings of the same amplitude but different durations. Fractographs of spallation surface and fracture features were characterized and the fracture mechanism of different regions of the spallation surface was discussed. Morphology of the spallation surface in the Zr-BMG exhibited a typical equiaxial cellular pattern and porous microstructure. These experiments revealed that, subjected to hydro-tensile stresses, the microdamage of the spallation occurred in the Zr-BMG is microvoids; the spallation in the Zr-BMG is resulted from nucleation, growth and coalescence of microvoids; and the time needed for these microvoids nucleation is less than 100 ns with a stress amplitude of 3.18 GPa.
Observations on the nucleation of ice VII in compressed water
NASA Astrophysics Data System (ADS)
Stafford, Samuel J. P.; Chapman, David J.; Bland, Simon N.; Eakins, Daniel E.
2017-01-01
Water can freeze upon multiple shock compression, but the window material determines the pressure of the phase transition. Several plate impact experiments were conducted with liquid targets on a single-stage gas gun, diagnosed simultaneously using photonic doppler velocimetry (PDV) and high speed imaging through the water. The experiments investigated why silica windows instigate freezing above 2.5 GPa whilst sapphire windows do not until 7 GPa. We find that the nucleation of ice occurs on the surfaces of windows and can be affected by the surface coating suggesting the surface energy of fused silica, likely due to hydroxyl groups, encourages nucleation of ice VII crystallites. Aluminium coatings prevent nucleation and sapphire surfaces do not nucleate until approximately 6.5 GPa. This is believed to be the threshold pressure for the homogeneous nucleation of water.
Representing ductile damage with the dual domain material point method
Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; ...
2015-12-14
In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less
Sanchez, Christopher A
2012-02-01
Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.
Optimization Design of Bipolar Plate Flow Field in PEM Stack
NASA Astrophysics Data System (ADS)
Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong
2017-12-01
A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.
2012-08-01
Radiography Scans Each of the two specimens consists of three 14- × 14-in transparent ceramic plates with adhesive between them to bond them...vertically close to the centerline. The depth of the impact cavity in specimen 741-2 is beyond the relatively thin front ceramic plate . Figure 2...The points defining the corners of the ceramic plates in both specimens were also determined. Figure 5. Centerline XCT scan of specimen 740-1
Phenomena after meteoroid penetration of a bumper plate
NASA Technical Reports Server (NTRS)
Todd, F. C.
1971-01-01
The analysis of hypervelocity impact of particles on a detector in space, with flow and shock penetration through fluid, plastic, and elastic zones was studied. The original paper and computer program on this topic is presented. Improvements in the program for the study of the formation of a cone of debris are discussed. The truncated apex of the cone is at the hole formed by the penetration of an initially spherical rock through a thin plate. A solution for the penetration of the thin plate was sought.
2012-01-16
January 2012 2012 226:Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications M Grujicic, W C Bell...unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Effect of the tin- versus air-side plate-glass...orientation on the impact response and penetration resistance of a laminated transparent armour structure M Grujicic1*, W C Bell1, B Pandurangan1, B
Hypervelocity impact testing above 10 km/s of advanced orbital debris shields
NASA Astrophysics Data System (ADS)
Christiansen, Eric L.; Crews, Jeanne Lee; Kerr, Justin H.; Chhabildas, Lalit C.
1996-05-01
NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel™ ceramic fabric and Kevlar™ high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ("hypervelocity launcher") and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at ˜11.5 km/s. The >10 km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel™/Kevlar™ shield provides superior protection performance compared to an all-aluminum shield alternative.
Pauchard, Yves; Ivanov, Todor G; McErlain, David D; Milner, Jaques S; Giffin, J Robert; Birmingham, Trevor B; Holdsworth, David W
2015-03-01
High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.
Flow-induced corrosion behavior of absorbable magnesium-based stents.
Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung
2014-12-01
The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
ORION Project-(SPLASH) Structural Passive Landing Attenuation fo
2011-07-21
ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pot Phase"0" Test POT#2 Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)
ORION Project-(SPLASH) Structural Passive Landing Attenuation fo
2011-12-13
ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pit Phase 4 Test or Pit 4 Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)
Shock Initiation and Equation of State of Ammonium Nitrate
NASA Astrophysics Data System (ADS)
Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad
2013-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.
RERTR-10 Irradiation Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-10 was designed to further test the effectiveness of modified fuel/clad interfaces in monolithic fuel plates. The experiment was conducted in two campaigns: RERTR-10A and RERTR-10B. The fuel plates tested in RERTR-10A were all fabricated by Hot Isostatic Pressing (HIP) and were designed to evaluate the effect of various Si levels in the interlayer and the thickness of the Zr interlayer (0.001”) using 0.010” and 0.020” nominal foil thicknesses. The fuel plates in RERTR-10B were fabricated by Friction Bonding (FB) with two different thickness Si layers and Nb and Zrmore » diffusion barriers.1 The following report summarizes the life of the RERTR-10A/B experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.« less
Simulation Study on Missile Penetration Based on LS - DYNA
NASA Astrophysics Data System (ADS)
Tang, Jue; Sun, Xinli
2017-12-01
Penetrating the shell armor is an effective means of destroying hard targets with multiple layers of protection. The penetration process is a high-speed impact dynamics research category, involving high pressure, high temperature, high speed and internal material damage, including plugging, penetration, spalling, caving, splashing and other complex forms, therefore, Analysis is one of the difficulties in the study of impact dynamics. In this paper, the Lagrang algorithm and the SPH algorithm are used to analyze the penetrating steel plate, and the penetration model of the rocket penetrating the steel plate, the failure mode of the steel plate and the missile and the advantages and disadvantages of Lagrang algorithm and SPH algorithm in the simulation of high-speed collision problem are analyzed and compared, which provides a reference for the study of simulation collision problem.
Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco
NASA Astrophysics Data System (ADS)
Pujiyanto, Hamdani
2017-01-01
A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.
Stress wave calculations in composite plates using the fast Fourier transform.
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.
Elastic Buckling under Combined Stresses of Flat Plates with Integral Waffle-Like Stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris F.; Levin, L. Ross; Troutman, John L.
1953-01-01
Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
Elastic Buckling Under Combined Stresses of Flat Plates with Integral Waffle-like Stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris F; Levin, L Ross; Troutman, John L
1954-01-01
Theory and experiment were compared and found in good agreement for the elastic buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45 degree waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Formation of vortex wakes at flow separation from plate
NASA Astrophysics Data System (ADS)
Gorelov, D. N.; Govorova, A. I.
2017-05-01
The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.
Jack Rabbit Pretest 2021E PT6 Photonic Doppler Velocimetry Data Volume 6 Section 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M M; Strand, O T; Bosson, S T
The Jack Rabbit Pretest (PT) 2021E PT6 experiment was fired on April 1, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT6, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on themore » central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The earliest PDV signal extinction was 54.2 microseconds at 30 millimeters. The latest PDV signal extinction time was 64.5 microseconds at the central axis. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters at 14.1 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1860 meters per second. At 55 millimeters the last measured velocity was 2408 meters per second. The low-to-high velocity ratio was 0.77. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 227 kilobars at 20.1 microseconds, indicating a late time chemical reaction in the LX-17 dead-zone. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 1.7 microseconds.« less
Jack Rabbit Pretest 2021E PT7 Photonic Doppler Velocimetry Data Volume 7 Section 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M M; Strand, O T; Bosson, S T
The Jack Rabbit Pretest (PT) 2021E PT7 experiment was fired on April 3, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT7, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on themore » central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The PDV earliest signal extinction was 50.7 microseconds at 45 millimeters. The latest PDV signal extinction time was 65.0 microseconds at 20 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters and at 15.2 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1447 meters per second. At 65 millimeters the last measured velocity was 2360 meters per second. The low-to-high velocity ratio was 0.61. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 49 kilobars at 23.3 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 4.6 microseconds.« less
Hara, Katsutoshi; Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi
2015-07-01
We used a three-dimensional finite element method to investigate the conditions behind the Kerboull-type (KT) dome. The KT plate dome was divided into five areas, and 14 models were created to examine different conditions of dome contact with the acetabulum. The maximum stress on the KT plate and screws was estimated for each model. Furthermore, to investigate the impact of the contact area with the acetabulum on the KT plate, a multiple regression analysis was conducted using the analysis results. The dome-acetabulum contact area affected the maximum equivalent stress on the KT plate; good contact with two specific areas of the vertical and horizontal beams (Areas 3 and 5) reduced the maximum equivalent stress. The maximum equivalent stress on the hook increased when the hardness of the bone representing the acetabulum varied. Thus, we confirmed the technical importance of providing a plate with a broad area of appropriate support from the bone and cement in the posterior portion of the dome and also proved the importance of supporting the area of the plate in the direction of the load at the center of the cross-plate and near the hook.
46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Plate for which Charpy V-notch impact testing is required in the parent material and for which V-notch minima are specified shall similarly have welding procedures qualified for toughness by Charpy V-notch testing. For these tests, the test plates shall be oriented with their final rolling direction parallel to...
Impact of Volcanic Activity on AMC Channel Operations
2014-06-13
active volcanic settings in the world. The location and behavior of volcanoes are a direct result of tectonic plate boundaries and the dynamic nature...Figure 2: Ash Detected Outside Iceland within 40°–70°N and 40°W–30°E (Scientific Reports, 2014) The potential for tectonic plate movement
Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.
2016-01-01
In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178
A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan
NASA Astrophysics Data System (ADS)
He, Jiaze; Yuan, Fuh-Gwo
2016-10-01
A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.
An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates
NASA Astrophysics Data System (ADS)
He, Jiaze; Yuan, Fuh-Gwo
2016-04-01
A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.
Frameless stereotactic radiosurgery with a bite-plate: our experience with brain metastases.
Furuse, M; Aoki, T; Takagi, T; Takahashi, J A; Ishikawa, M
2008-12-01
Non-invasive frameless stereotactic radiosurgical systems have recently been developed. We report our experience of frameless stereotactic radiosurgery (SRS) with a bite-plate for brain metastases. Between February 2002 and December 2005, 147 patients with brain metastases were treated with C-arm linear accelerator-based SRS and 122 patients were followed up by our institute. An optic tracking system with infrared light-emitting diodes was used for real-time monitoring. A bite-plate with fiducial markers was applied as a first-line method for frameless SRS. Head-ring fixation was used in patients lacking teeth. Lung carcinomas (63%) were the most common primary tumors, followed by breast carcinomas (13%). Ninety patients underwent radiosurgery with a bite-plate and 32 patients underwent fixation of a head ring. Males were significantly more predominant in the head-ring group (26 men and 6 women), compared with the bite-plate group (47 men and 43 women, p < 0.01). The average age (62 years) in the bite-plate group was significantly younger than that (68 years) in the head-ring group (p < 0.01). The median survival time was 12.0 months in the bite-plate group and 8.0 months in the head-ring group (p = 0.0621). Nine patients who had brain metastases in or close to the brain stem were treated with fractionated stereotactic radiotherapy. The frameless stereotactic radiosurgical system with a bite-plate is safe and effective for the treatment of brain metastasis. Elderly male patients sometimes are edentulous and require placement of a head ring for radiosurgery.
Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong
2017-04-01
In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08 ± 0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13 ± 0.22 °C compared with sublingual temperature, while a significant increase of 1.36 ± 0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.
Impact of Glacial Isostatic Adjustment on North America Plate Specific Terrestrial Reference Frame
NASA Astrophysics Data System (ADS)
Herring, Thomas; Melbourne, Tim; Murray, Mark; Floyd, Mike; Szeliga, Walter; King, Robert; Phillips, David; Puskas, Christine
2017-04-01
We examine the impact of incorporating glacial isostatic adjustment (GIA) models in determining the Euler poles for plate specific terrestrial reference frames. We will specifically examine the impact of GIA models on the realization of a North America Reference frame. We use a combination of the velocity fields determined by the Geodesy Advancing Geosciences and EarthScope (GAGE) Facility which analyzes GPS data from the Plate Boundary Observatory (PBO) and other geodetic quality GPS sites in North America, and from the ITRF2014 re-analysis. Initial analysis of the GAGE velocity field shows reduced root-mean-square (RMS) scatter of velocity estimate residuals when the North America Euler pole is estimated including the ICE-6G GIA mode. The reduction in the north-south direction is from 0.69 mm/yr to 0.52 mm/yr, in the east-west direction from 0.34 mm/yr to 0.30 mm/yr and in height from 0.93 mm/yr to 0.72 mm/yr. The reduction in the height RMS is not surprising since the contemporary geodetic height velocity estimates are used in the developing the ICE-6G model. Contemporary horizontal motions are not used the GIA model development, and the reduction in horizontal RMS provides a partial validation of the model. There is no reduction in the horizontal velocity residual when the ICE-5G model is used. Although removing the ICE-6G model before fitting an Euler pole for the North American plate reduces the RMS of the residuals, the pattern of residuals is still systematic suggesting possibly that a spherically symmetric viscosity model might not be adequate for accurate modeling of the horizontal motions associated with GIA in North America. This presentation in focus on the prospects and impacts of incorporating GIA models in plate-specific Euler poles with emphasis on North America.
Dog rivalry impacts following behavior in a decision-making task involving food.
Hoffman, Christy L; Suchak, Malini
2017-07-01
Dogs learn a great deal from humans and other dogs. Previous studies of socially influenced learning between dogs have typically used a highly trained demonstrator dog who is unfamiliar to the observer. Because of this, it is unknown how dynamics between familiar dogs may influence their likelihood of learning from each other. In this study, we tested dogs living together in two-dog households on whether individual dogs' rivalry scores were associated with performance on a local enhancement task. Specifically, we wanted to know whether dog rivalry impacted whether an observer dog would approach a plate from which a demonstrator dog had eaten all available food, or whether the observer dog would approach the adjacent plate that still contained food. Dog rivalry scores were calculated using the Canine Behavioral Assessment and Research Questionnaire and indicated each dog's tendency to engage aggressively with the other household dog. Low-rivalry dogs were more likely to approach the empty plate than high-rivalry dogs when the observer dog was allowed to approach the plates immediately after the demonstrator had moved out of sight. This difference between low- and high-rivalry dogs disappeared, however, when observer dogs had to wait 5 s before approaching the plates. The same pattern was observed during a control condition when a human removed the food from a plate. Compared to low-rivalry dogs, high-rivalry dogs may pay less attention to other dogs due to a low tolerance for having other dogs in close proximity.
Characterization of Hypervelocity Impact Debris from the DebriSat Tests
NASA Astrophysics Data System (ADS)
Adams, P. M.; Sheaffer, P. M.; Lingley, Z.; Radhakrishnan, G.
The DebriSat program consisted of 3 hypervelocity impact tests conducted in 2 Torr of air with 7 km/s, 600 g aluminum projectiles. In the first test, Pre Preshot, the target consisted of multiple layers of fiberglass, stainless steel and Kevlar fabric. No soft catch foam was used. The subsequent two tests, DebrisLV and DebriSat, were designed to simulate hypervelocity impacts with a launch vehicle upper stage and a modern LEO satellite, respectively. The interior of the chamber was lined with soft catch foam to trap break-up fragments. In all three tests, witness plates were placed near the target to sample impact debris and determine its reflectance, composition and spectral properties. Reflectance measurements are important for calculating the size of orbital hypervelocity impact fragments. The debris from the Pre Preshot test consisted of a two-phase mixture formed from solidified molten silicate and steel droplets. Individual droplets ranged from 100 μm to 10 nm. The reflectance of witness plates dropped from 95% to 20-30% as a result of the debris. Debris collected on witness plates in the DebrisLV and DebriSat tests consisted of μm to nm-sized solidified molten metallic droplets in a matrix of condensed vaporized soft catch. Disordered graphitic carbon was also detected. The reflectance of debris-covered witness plates dropped from 95% to 5%. The dramatic decrease in reflectance for hypervelocity impact debris is attributed to the effect of scattering from μm to nm sized solidified molten metallic droplets and the presence of graphitic carbon, when organics are present. The presence of soft catch in the later tests and the high organic content with graphitic carbon in the debris appear to be responsible for this much lower post-test reflectance. Understanding orbital debris reflectance is critical for estimating size and determining debris detectability.
Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion
NASA Astrophysics Data System (ADS)
Moubogha Moubogha, Joseph; Astolfi, Jacques Andre
Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.
The influence of non-nociceptive factors on hot-plate latency in rats.
Gunn, Amanda; Bobeck, Erin N; Weber, Ceri; Morgan, Michael M
2011-02-01
The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot-plate latency was examined. Comparison of body weight and hot-plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hour prior to testing did not decrease hot-plate latency except for female rats tested on days 2 to 4. Hot-plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all 4 trials, and prior exposure to a room-temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot-plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot-plate latency, but these effects are small and have relatively little impact on morphine antinociception. This manuscript shows that non-nociceptive factors such as body weight, habituation, and repeated testing can alter hot-plate latency, but these factors do not alter morphine potency. In sum, the hot-plate test is an easy to use and reliable method to assess supraspinally organized nociceptive responses. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Impact design methods for ceramic components in gas turbine engines
NASA Technical Reports Server (NTRS)
Song, J.; Cuccio, J.; Kington, H.
1991-01-01
Methods currently under development to design ceramic turbine components with improved impact resistance are presented. Two different modes of impact damage are identified and characterized, i.e., structural damage and local damage. The entire computation is incorporated into the EPIC computer code. Model capability is demonstrated by simulating instrumented plate impact and particle impact tests.
Episodic plate tectonics on Venus
NASA Technical Reports Server (NTRS)
Turcotte, Donald
1992-01-01
Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.
Liquid-handling Lego robots and experiments for STEM education and research
Gerber, Lukas C.; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday
2017-01-01
Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research. PMID:28323828
Tailored ramp wave generation in gas gun experiments
NASA Astrophysics Data System (ADS)
Cotton, Matthew; Chapman, David; Winter, Ron; Harris, Ernie; Eakins, Daniel
2015-09-01
Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ˜ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.
Liquid-handling Lego robots and experiments for STEM education and research.
Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H
2017-03-01
Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.
Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.
1984-01-01
A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.
Theory and performance of plated thermocouples.
NASA Technical Reports Server (NTRS)
Pesko, R. N.; Ash, R. L.; Cupschalk, S. G.; Germain, E. F.
1972-01-01
A theory has been developed to describe the performance of thermocouples which have been formed by electroplating portions of one thermoelectric material with another. The electroplated leg of the thermocouple was modeled as a collection of infinitesimally small homogeneous thermocouples connected in series. Experiments were performed using several combinations of Constantan wire sizes and copper plating thicknesses. A transient method was used to develop the thermoelectric calibrations, and the theory was found to be in quite good agreement with the experiments. In addition, data gathered in a Soviet experiment were also found to be in close agreement with the theory.
Spall Strength Measurements in Transparent Epoxy Polymers
NASA Astrophysics Data System (ADS)
Pepper, Jonathan; Rahmat, Meysam; Petel, Oren
2017-06-01
Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
A study on the strength of an armour-grade aluminum under high strain-rate loading
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.
2010-06-01
The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.
Research on Microstructure and Properties of Welded Joint of High Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai
2018-01-01
BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.
Comparison of Resorbable Plating Systems: Complications During Degradation.
Nguyen, Dennis C; Woo, Albert S; Farber, Scott J; Skolnick, Gary B; Yu, Jenny; Naidoo, Sybill D; Patel, Kamlesh B
2017-01-01
Several bioresorbable plating systems have become standard in pediatric craniosynostosis reconstruction. A comparison of these systems is needed to aid surgeons in the preoperative planning process. The authors aim to evaluate 1 institution's experience using Resorb-X by KLS Martin and Delta Resorbable Fixation System by Stryker (Stryker Craniomaxillofacial, Kalamazoo, MI). A sample of patients with single-suture nonsyndromic craniosynostosis treated at St Louis Children's Hospital between 2007 and 2014 using either Resorb-X or Delta bioresorbable plating systems were reviewed. Only patients with preoperative, immediate, and long-term 3-dimensional photographic images or computed tomography scans were included. A comparison of plating system outcomes was performed to determine the need for clinic and emergency room visits, imaging obtained, and incidence of subsequent surgical procedures due to complications. Forty-six patients (24 Resorb-X and 22 Delta) underwent open repair with bioabsorbable plating for single suture craniosynostosis. The mean age at each imaging time point was similar between the 2 plating systems (P > 0.717). Deformity-specific measures for sagittal (cranial index), metopic (interfrontotemporale), and unicoronal (frontal asymmetry) synostosis were equivalent between the systems at all time points (0.05 < P < 0.904). A single Delta patient developed bilateral scalp cellulitis and abscesses and subsequently required operative intervention and antibiotics. Bioabsorbable plating for craniosynostosis in children is effective and has low morbidity. In our experience, the authors did not find a difference between the outcomes and safety profiles between Resorb-X and Delta.
Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment
NASA Astrophysics Data System (ADS)
Williams, W. J.; Robinson, A. B.; Rabin, B. H.
2017-12-01
This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.
Experiments on elastic cloaking in thin plates.
Stenger, Nicolas; Wilhelm, Manfred; Wegener, Martin
2012-01-06
Following a theoretical proposal [M. Farhat et al., Phys. Rev. Lett. 103, 024301 (2009)], we design, fabricate, and characterize a cloaking structure for elastic waves in 1 mm thin structured polymer plates. The cloak consists of 20 concentric rings of 16 different metamaterials, each being a tailored composite of polyvinyl chloride and polydimethylsiloxane. By using stroboscopic imaging with a camera from the direction normal to the plate, we record movies of the elastic waves for monochromatic plane-wave excitation. We observe good cloaking behavior for carrier frequencies in the range from 200 to 400 Hz (one octave), in good agreement with a complete continuum-mechanics numerical treatment. This system is thus ideally suited for demonstration experiments conveying the ideas of transformation optics.
NASA Astrophysics Data System (ADS)
Elbing, Brian R.
2006-11-01
Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.
NASA Astrophysics Data System (ADS)
Amengual, A.; Romero, R.; Homar, V.; Ramis, C.; Alonso, S.
2007-08-01
Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were usedmore » in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.« less
Response of composite plates subjected to acoustic loading
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.
1989-01-01
The objectives of the project were to investigate numerical methodology for the determination of narrowband response in the geometrically nonlinear regime, to determine response characteristics for geometrically nonlinear plates subjected to random loading and to compare the predictions with experiments to be performed at NASA-Langley. The first two objectives were met. The response of composite plates subjected to both narrowband and broadband excitation were studied and the results are presented and discussed.
On the rotation and pitching of flat plates
NASA Astrophysics Data System (ADS)
Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.
2016-11-01
Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.
NASA Technical Reports Server (NTRS)
Maestrello, L.; Grosveld, F. W.
1991-01-01
The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.
Effects of oil on the feeding mechanism of the bowhead whale. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braithwaite, L.F.
1983-06-10
Research was designed to determine the effect of crude oil on the filtration efficiency of bowhead whale (Balaena mysticetus) baleen. An experiment apparatus was constructed with temperature-controlled, circulating sea water moving through a chamber containing mounted baleen plates. All circulating water of the apparatus flowed over and through the hair-fringed stratum of the baleen plates. Efficiency of filtration of living plankters was measured and compared for various kinds and levels of petroleum fouling. The filtering efficiency of the baleen plates decreased when the plates were fouled with Prudhoe Bay crude oil.
NASA Astrophysics Data System (ADS)
Schweigert, I. V.; Yadrenkin, M. A.; Fomichev, V. P.
2017-11-01
Modification of the sheath structure near the emissive plate placed in magnetized DC discharge plasma of Hall thruster type was studied in the experiment and in kinetic simulations. The plate is made from Al2O3 which has enhanced secondary electron emission yield. The energetic electrons emitted by heated cathode provide the volume ionization and the secondary electron emission from the plate. An increase of the electron beam energy leads to an increase of the secondary electron generation, which initiates the transition in sheath structure over the emissive plate.
Impact fuze testing at 3000 m/sec employing explosively accelerating plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, W.
1981-01-01
The Explosives Testing Division at Sandia has developed a method of simulating a re-entry vehicle impacting the ground. The purpose of the simulation is to evaluate different fusing concepts. The design and operation of this impact testing facility are described.
A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.
1999-01-01
A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.
Phenomena after meteoroid penetration of a bumper plate
NASA Technical Reports Server (NTRS)
Todd, F. C.
1972-01-01
The results are presented of a study to obtain a computer program for the penetration of a thin plate of aluminum by a sphere of rock. The study was divided into two projects. One project covers the initial impact, the crushing of the sphere of rock, the break up of the aluminum sheet, and the conversion of the sufficiently shock-compressed regions of rock and aluminum into a plasma. The other project considers the ejection of a cone of plasma with entrained particles from the impact zone, its expansion as it traverses a region of free space, and its impact on a stack of paper sheets. The ablation of fragments in penetrating the stack of paper sheets is also considered.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Le, Thang D. (Inventor); Morales, Ray H. (Inventor); Robertson, Brandan R. (Inventor)
2009-01-01
An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.
ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagler, L
2008-07-17
A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). Thismore » report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.« less
NASA Astrophysics Data System (ADS)
Uprety, Bibhisha
Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.
Scattering of ultrasonic wave by cracks in a plate
NASA Technical Reports Server (NTRS)
Liu, S. W.; Datta, S. K.
1993-01-01
A hybrid numerical method combining finite elements and the boundary integral representation is used to investigate the transient scattering of ultrasonic waves by a crack in a plate. The incident wave models the guided waves generated by a steel ball impact on the plate. Two surface-breaking cracks and one subsurface crack are studied here. The results show that the location and depth of cracks have measurable effects on the surface responses in time and frequency domains. Also, the scattered fields have distinct differences in the three cases.
NASA Technical Reports Server (NTRS)
Tamminga, Joshua D.
2011-01-01
Test Rationale -- Attempt to Address 10% vs. 25+% effects of crater penetration on full scale titanium alloy tanks and comparison to plate tests Utilize Baseline Burst Pressure versus HVI impacted vessels as gauge of effects Examine craters (post test) to determine penetration characteristics on a fluid filled vessel versus plate tests. Examine crater effects leading to vessel failure (if any).
16 CFR 1203.17 - Impact attenuation test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... lb), the upper surface of which shall consist of a steel plate at least 12 mm (0.47 in.) thick and... aluminum plate. The geometric center of the MEP pad shall be aligned with the center vertical axis of the... orientation shall be chosen by the test personnel to provide the most severe test for the helmet. Rivets and...
16 CFR § 1203.17 - Impact attenuation test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 135 kg (298 lb), the upper surface of which shall consist of a steel plate at least 12 mm (0.47 in... mm (1/4 in.) thick aluminum plate. The geometric center of the MEP pad shall be aligned with the... anvil sites and orientation shall be chosen by the test personnel to provide the most severe test for...
16 CFR 1203.17 - Impact attenuation test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... lb), the upper surface of which shall consist of a steel plate at least 12 mm (0.47 in.) thick and... aluminum plate. The geometric center of the MEP pad shall be aligned with the center vertical axis of the... orientation shall be chosen by the test personnel to provide the most severe test for the helmet. Rivets and...
16 CFR 1203.17 - Impact attenuation test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... lb), the upper surface of which shall consist of a steel plate at least 12 mm (0.47 in.) thick and... aluminum plate. The geometric center of the MEP pad shall be aligned with the center vertical axis of the... orientation shall be chosen by the test personnel to provide the most severe test for the helmet. Rivets and...
16 CFR 1203.17 - Impact attenuation test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lb), the upper surface of which shall consist of a steel plate at least 12 mm (0.47 in.) thick and... aluminum plate. The geometric center of the MEP pad shall be aligned with the center vertical axis of the... orientation shall be chosen by the test personnel to provide the most severe test for the helmet. Rivets and...
Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures.
Lin, Xuezhi; Xiao, Xingling; Wang, Yimeng; Gu, Cheng; Wang, Canbin; Chen, Jiahui; Liu, Han; Luo, Juan; Li, Tao; Wang, Di; Fan, Shicai
2018-01-01
Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures.
Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures
Xiao, Xingling; Wang, Yimeng; Gu, Cheng; Wang, Canbin; Chen, Jiahui; Liu, Han; Luo, Juan; Li, Tao
2018-01-01
Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures. PMID:29682523
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less
Sánchez, D; Vandame, R
2012-06-01
To increase our understanding in bee vision ecology, we investigated the color and shape discrimination performance of the stingless bee Scaptotrigona mexicana Guérin. Our main goal was to describe the choice behavior of experienced foragers over time, trying to understand to what extent color and shape stimuli (separately tested) aid them to choose the rewarding option, in the presence of distracting, unrewarding stimuli. Single foragers were trained to collect sucrose solution from a target plate. Afterwards, one distracting, unrewarding plate was placed besides the target plate and eight choices were recorded. Our results showed that both color and shape stimuli assisted efficiently the trained foragers in locating the target plate. However, foragers chose significantly more often the target plate in the color experiments than in the shape experiments. In conclusion, in our experimental setup, color was of better assistance to the foragers of S. mexicana than shape to choose their rewards. This is the first study in which it is demonstrated that the choice performance over time in a stingless bee depends upon the characteristics of the resource, such as shape and color.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.
2007-01-01
Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.
Damage areas on selected LDEF aluminum surfaces
NASA Technical Reports Server (NTRS)
Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.; Hennessy, Corey J.; Wagner, John D.
1993-01-01
With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers.
InSAR Time Series Analysis of Dextral Strain Partitioning Across the Burma Plate
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Wang, Y.; Lin, N.; Lindsey, E. O.; Mueller, K. J.
2017-12-01
Oblique convergence between the India and Sunda plates creates partitioning of strike-slip and compressional strain across the Burma plate. GPS data indicate up to 40 mm/yr (Steckler et al 2016) of dextral strain exists between the India and Sunda plates. The Sagaing fault in Myanmar accommodates 20 mm/yr at the eastern boundary of the Burma plate, but the location and magnitude of dextral strain on other faults remains an open question, as does the relative importance of seismic vs aseismic processes. The remaining 20 mm/yr of dextral strain may be accommodated on one or two faults or widely distributed on faults across the Burma plate, scenarios that have a major impact on seismic hazard. However, the dense GPS data necessary for precise determination of which faults accommodate how much strain do not exist yet. Previous studies using GPS data ascribe 10-18 mm/yr dextral strain on the Churachandpur Mao fault in India (Gahaluat et al 2013, Steckler et al 2016) and 18-22 mm/yr on the northern Sagaing fault (Maurin et al 2010, Steckler et al 2016), leaving up to 10 mm/yr unconstrained. Several of the GPS results are suggestive of shallow aseismic slip along parts of these faults, which, if confirmed, would have a significant impact on our understanding of hazard in the area. Here, we use differential InSAR analyzed in time series to investigate dextral strain on the Churachandpur Mao fault and across the Burma plate. Ascending ALOS-1 imagery spanning 2007-2010 were processed in time series for three locations. Offsets in phase and a strong gradient in line-of-sight deformation rate are observed across the Churachandpur Mao fault, and work is ongoing to determine if these are produced by shallow fault movement, topographic effects, or both. The results of this study will provide further constraints for strain rate on the Churachandpur Mao fault, and yield a more complete understanding of strain partitioning across the Burma plate.
Matsuura, Yusuke; Rokkaku, Tomoyuki; Suzuki, Takane; Thoreson, Andrew Ryan; An, Kai-Nan; Kuniyoshi, Kazuki
2017-08-01
Forearm diaphysis fractures are usually managed by open reduction internal fixation. Recently, locking plates have been used for treatment. In the long-term period after surgery, some patients present with bone atrophy adjacent to the plate. However, a comparison of locking and conventional plates as a cause of atrophy has not been reported. The aim of this study was to investigate long-term bone atrophy associated with use of locking and conventional plates for forearm fracture treatment. In this study we included 15 patients with forearm fracture managed by either locking or conventional plates and with more than 5 years of follow-up. Computed tomographic imaging of both forearms was performed to assess bone thickness and local bone mineral density and to predict bone strength without plate reinforcement based on finite element analysis. Mean patient age at surgery was 48.0 years. Eight patients underwent reduction with fixed locking plates and were followed up for a mean of 79.5 months; the remaining 7 patients were treated with conventional plates and were followed up for a mean of 105.0 months. Compared with the conventional plate group, the locking plate group had the same fractured limb-contralateral limb ratio of cortex bone thickness, but had significantly lower ratios of mineral density adjacent to the plate and adjusted bone strength. This study demonstrated bone atrophy after locking plate fixation for forearm fractures. Treatment plans for forearm fracture should take into consideration the impact of bone atrophy long after plate fixation. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
A sealed capsule system for biological and liquid shock-recovery experiments.
Leighs, James A; Appleby-Thomas, Gareth J; Stennett, Chris; Hameed, Amer; Wilgeroth, James M; Hazell, Paul J
2012-11-01
This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ~500 ms(-1) (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.