Sample records for plate passive margin

  1. Evolution of passive continental margins and initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1982-05-01

    Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.

  2. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin

    2013-04-01

    Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate. Thus, active upwellings underneath oceanic plates are required to explain compression at passive margins. This conclusion is corroborated by "real-Earth" 3D spherical models, wherein the flow is alternatively driven by density anomalies inferred from seismic tomography -and therefore include both downwellings at subduction zones and upwellings above the superswells- and density anomalies that correspond to subducting slabs only. While the second scenario mostly compresses the active margins of upper plates and leave other areas at rest, the first scenario efficiently compresses passive margins where the geological record reveals their uplift, exhumation, and tectonic inversion.

  3. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Husson, Laurent; Becker, Thorsten W.; Pedoja, Kevin

    2014-05-01

    Passive margins often exhibit uplift, exhumation and tectonic inversion. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. In the same time, the many mountain belts at active margins that accompany this event seem readily witness this increase. However, how that compression increase affects passive margins remains unclear. In order to address this issue, we design a 2D viscous numerical model wherein a lithospheric plate rests above a weaker mantle. It is driven by a mantle conveyor belt, alternatively excited by a lateral downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, representing the cases of free convergence, and collision or slab anchoring, respectively. This distinction changes the upper boundary condition for mantle circulation and, as a consequence, the stress field. Our results show that between these two regimes, the flow pattern transiently evolves from a free-slip convection mode towards a no-slip boundary condition above the upper mantle. In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins provided that upwellings are active. Conversely, if downwellings alone are activated, compression occurs at short distances from the trench and extension prevails elsewhere. These results are supported by Earth-like 3D spherical models that reveal the same pattern, where active upwellings are required to excite passive margins compression. These results support the idea that compression at passive margins, is the response to the underlying mantle flow, that is increasingly resisted by the Cenozoic collisions.

  4. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Husson, Laurent; Becker, Thorsten W.; Pedoja, Kevin

    2013-12-01

    margins often exhibit uplift, exhumation, and tectonic inversion. We speculate that the compression in the lithosphere gradually increased during the Cenozoic, as seen in the number of mountain belts found at active margins during that period. Less clear is how that compression increase affects passive margins. In order to address this issue, we design a 2-D viscous numerical model wherein a lithospheric plate rests above a weaker mantle. It is driven by a mantle conveyor belt, alternatively excited by a lateral downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, representing the cases of free convergence, and collision (or slab anchoring), respectively. This distinction changes the upper mechanical boundary condition for mantle circulation and thus, the stress field. Between these two regimes, the flow pattern transiently evolves from a free-slip convection mode toward a no-slip boundary condition above the upper mantle. In the second case, the lithosphere is highly stressed horizontally and deforms. For a constant total driving force, compression increases drastically at passive margins if upwellings are active. Conversely, if downwellings alone are activated, compression occurs at short distances from the trench and extension prevails elsewhere. These results are supported by Earth-like models that reveal the same pattern, where active upwellings are required to excite passive margins compression. Our results substantiate the idea that compression at passive margins is in response to the underlying mantle flow that is increasingly resisted by the Cenozoic collisions.

  5. On the initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Wortel, Rinus; Vlaar, N. J.

    1989-03-01

    Analysis of the relation between intraplate stress fields and lithospheric rheology leads to greater insight into the role that initiation of subduction plays in the tectonic evolution of the lithosphere. Numerical model studies show that if after a short evolution of a passive margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favorable for transformation into an active margin. Although much geological evidence is available in supporting the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept. In general, initiation of subduction at passive margins requires the action of external plate-tectonic forces, which will be most effective for young passive margins prestressed by thick sedimentary loads. It is not clear how major subduction zones (such as those presently ringing the Pacific Basin) form but it is unlikely they form merely by aging of oceanic lithosphere. Conditions likely to exist in very young oceanic regions are quite favorable for the development of subduction zones, which might explain the lack of preservation of back-arc basins and marginal seas. Plate reorganizations probably occur predominantly by the formation of new spreading ridges, because stress relaxation in the lithosphere takes place much more efficiently through this process than through the formation of new subduction zones.

  6. Preliminary assessment of a Cretaceous-Paleogene Atlantic passive margin, Serrania del Interior and Central Ranges, Venezuela/Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pindell, J.L.; Drake, C.L.; Pitman, W.C.

    1991-03-01

    For several decades, Cretaceous arc collision was assumed along northern Venezuela based on isotopic ages of metamorphic minerals. From subsidence histories in Venezuelan/Trinidadian basins, however, it is now clear that the Cretaceous metamorphic rocks were emplaced southeastward as allochthons above an autochthonous suite of rocks in the Cenozoic, and that the pre-Cenozoic autochthonous rocks represent a Mesozoic passive margin. The passive margin rocks have been metamorphosed separately during overthrusting by the allochthons in central Venezuela, but they are uplifted but not significantly metamorphosed in Eastern Venezuela and Trinidad. There, in the Serrania del Interior and Central Ranges of Venezuela/Trinidad, Mesozoic-Paleogenemore » passive margin sequences were uplifted in Neogene time, when the Caribbean Plate arrived from the west and transpressionally inverted the passive margin. Thus, this portion of South America's Atlantic margin subsided thermally without tectonism from Jurassic to Eocene time, and these sections comprise the only Mesozoic-Cenozoic truly passive Atlantic margin in the Western Hemisphere that is now exposed for direct study. Direct assessments of sedimentological, depositional and faunal features indicative of, and changes in, water depth for Cretaceous and Paleogene time may be made here relative to a thermally subsiding passive margin without the complications of tectonism. Work is underway, and preliminary assessments presented here suggest that sea level changes of Cretaceous-Paleogene time are not as pronounced as the frequent large and rapid sea level falls and rises that are promoted by some.« less

  7. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.

  8. Passive recording of an active transform, an example from the Levant continental margin and the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Lang, Guy; Lazar, Michael; Schattner, Uri

    2017-04-01

    Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.

  9. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  10. Nurture Versus Nature: Accounting for the Differences Between the Taiwan and Timor active arc-continent collisions

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.

  11. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  12. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.

  13. Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins: Narrowness and asymmetry in oblique rifting context

    NASA Astrophysics Data System (ADS)

    Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim

    2017-11-01

    Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.

  14. Taconic plate kinematics as revealed by foredeep stratigraphy, Appalachian Orogen

    USGS Publications Warehouse

    Bradley, D.C.

    1989-01-01

    Destruction of the Ordovician passive margin of eastern North America is recorded by an upward deepening succession of carbonates, shales, and flysch. Shelf drowning occurred first at the northern end of the orogen in Newfoundland, then at the southern end of the orogen in Georgia, and finally in Quebec. Diachronism is attributed to oblique collision between an irregular passive margin, that had a deep embayment in Quebec, and at least one east dipping subduction complex. The rate of plate convergence during collision is estimated at 1 to 2 cm/yr, and the minimum width of the ocean that closed is estimated at 500 to 900 km. The drowning isochron map provides a new basis for estimating tectonic transport distances of four of these allochthons (about 165 to 450 km), results not readily obtained by conventional structural analysis. -Author

  15. Investigating the 3-D Subduction Initiation Processes at Transform Faults and Passive Margins

    NASA Astrophysics Data System (ADS)

    Peng, H.; Leng, W.

    2017-12-01

    Studying the processes of subduction initiation is a key for understanding the Wilson cycle and improving the theory of plate tectonics. Previous studies investigated subduction initiation with geological synthesis and geodynamic modeling methods, discovering that subduction intends to initiate at the transform faults close to oceanic arcs, and that its evolutionary processes and surface volcanic expressions are controlled by plate strength. However, these studies are mainly conducted with 2-D models, which cannot deal with lateral heterogeneities of crustal thickness and strength along the plate interfaces. Here we extend the 2-D model to a 3-D parallel subduction model with high computational efficiency. With the new model, we study the dynamic controlling factors, morphology evolutionary processes and surface expressions for subduction initiation with lateral heterogeneities of material properties along transform faults and passive margins. We find that lateral lithospheric heterogeneities control the starting point of the subduction initiation along the newly formed trenches and the propagation speed for the trench formation. New subduction tends to firstly initiate at the property changing point along the transform faults or passive margins. Such finds may be applied to explain the formation process of the Izu-Bonin-Mariana (IBM) subduction zone in the western Pacific and the Scotia subduction zone at the south end of the South America. Our results enhance our understanding for the formation of new trenches and help to provide geodynamic modeling explanations for the observed remnant slabs in the upper mantle and the surface volcanic expressions.

  16. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  17. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  18. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive margin sediments along its southern margin during the Tonian. The model depicts a sequential breakup of Rodinia, with Australia-Antarctica rifting first ( 800 Ma), Congo-São Francisco (and the Sahara Metacraton) second ( 750 Ma) and Kalahari third (700 Ma). Amazonia and West Africa rift later with the opening of the Iapetus Ocean from 600 Ma. We expect that this global model will assist in the development of future regional models for the Neoproterozoic, and that the production of this full-plate topological reconstruction will facilitate the investigation of controls on other earth systems, such as the possible role of volcanism on initiation of the Cryogenian, or the nature of mantle convection in the Neoproterozoic.

  19. Eastern Indian Ocean microcontinent formation driven by plate motion changes

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.

    2016-11-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.

  20. Collapse of passive margins by lithospheric damage and plunging grain size

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Bercovici, David

    2018-02-01

    The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least significantly facilitate, the collapse of a passive margin and initiate a new subduction zone. We use this model to estimate the conditions for passive margin collapse for modern and ancient Earth, as well as for Venus.

  1. Linking Observations of Dynamic Topography from Oceanic and Continental Realms around Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, K.; Hoggard, M. J.; White, N.; Winterbourne, J.

    2012-04-01

    In the last decade, there has been growing interest in predicting the spatial and temporal evolution of dynamic topography (i.e. the surface manifestation of mantle convection). By directly measuring Neogene and Quaternary dynamic topography around Australia's passive margins we assess the veracity of these predictions and the interplay between mantle convection and plate motion. We mapped the present dynamic topography by carefully measuring residual topography of oceanic lithosphere adjacent to passive margins. This map provides a reference with respect to which the relative record of vertical motions, preserved within the stratigraphic architecture of the margins, can be interpreted. We carefully constrained the temporal record of vertical motions along Australia's Northwest Shelf by backstripping Neogene carbonate clinoform rollover trajectories in order to minimise paleobathymetric errors. Elsewhere, we compile temporal constraints from published literature. Three principal insights emerge from our analysis. First, the present-day drawn-down residual topography of Australia, cannot be approximated by a regional tilt down towards the northeast, as previously hypothesised. The south-western and south-eastern corners of Australia are at negligible to slightly positive residual topography which slopes down towards Australia's northern margin and the Great Australian Bight. Secondly, the record of passive margin subsidence suggests drawdown across northern Australia commenced synchronously at 8±2 Ma. The amplitude of this synchronous drawdown corresponds to the amplitude of oceanic residual topography, indicating northern Australia was at an unperturbed dynamic elevation until drawdown commenced. The synchronicity of this subsidence suggests that the Australian plate has not been affected by a southward propagating wave of drawdown, despite Australia's rapid northward motion towards the subduction realm in south-east Asia. In contrast, it appears the mantle anomaly responsible for this drawdown is a relatively young, long-wavelength feature. Thirdly, there is an apparent mismatch between the current drawdown of oceanic lithosphere observed along Australia's southern margin and the onshore record of Cenozoic uplift. This disparity we attribute to the region undergoing recent uplift from a position of dynamic drawdown.

  2. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.

    2017-12-01

    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  3. Deep Stucture of the Northwestern Atlantic Moroccan Margin Studied by OBS and Deep Multichannel Seismic Reflection.

    NASA Astrophysics Data System (ADS)

    MALOD, J. A.; Réhault, J.; Sahabi, M.; Géli, L.; Matias, L.; Diaz, J.; Zitellini, N.

    2001-12-01

    The Northwestern Atlantic Moroccan margin, a conjugate of the New Scotland margin, is one of the oldest passive margin of the world. Continental break up occurred at early Liassic time and the deep margin is characterized by a large salt basin. A good knowledge of this basin is of major interest to improve the initial reconstruction between Africa, North America and Iberia (Eurasia). It is also a good opportunity to study a mature passive margin and model its structure and evolution.Moreover, there is a need to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. These topics have been adressed during the SISMAR cruise carried out from April 9th to May 4th 2001.During this cruise, 3667 km of multichannel seismic reflection (360 channels, 4500 m long streamer, 4800 ci array of air guns) were recorded together with refraction records by means of 48 OBH/OBS drops. Simultaneously, some of the marine profiles have been extended onshore with 16 portable seismic land stations. We present the initial results of this study. Off El Jadida, the Moho and structures within the thinned continental crust are well imaged on both the reflection and refraction records. In the northern area, off Casablanca, we follow the deepening of the moroccan margin beneath the up to 9 sec (twtt) allochtonous series forming a prism at the front the Rif-Betic chain. Sismar cruise has been also the opportunity to record long seismic profiles making the junction between the Portuguese margin and the Moroccan one, and crossing the Iberian-African plate boundary. This allows to observe the continuity of the sedimentary sequence after the end of the large inter-plate motion in Early Cretaceous. In addition to the authors, SISMAR Group includes: AMRHAR Mostafa, BERMUDEZ VASQUEZ Antoni, CAMURRI Francesca, CONTRUCCI Isabelle, CORELA Carlos, DIAZ Jordi, DORVAL Philippe, EL ARCHI Abdelkrim, EL ATTARI Ahmed, GONZALEZ Raquel, HARMEGNIES Francois, JAFFAL Mohamed, KLINGELÖFER Fraucke, LANDURÉ Jean Yves, LEGALL Bernard, MAILLARD-LENOIR Agnès, MARTIN Christophe, MEHDI Khalid, MERCIER Eric, MOULIN Maryline, OUAJHAIN Brahim, PERROT Julie, ROLET Joël, RUELLAN Etienne, TEIXIRA Fernando, TERRINHA Pedro, ZOURARAH Bendehhou.

  4. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  5. Neogene to recent contraction and basin inversion along the Nubia-Iberia boundary in SW Iberia

    NASA Astrophysics Data System (ADS)

    Ramos, Adrià; Fernández, Oscar; Terrinha, Pedro; Muñoz, Josep Anton

    2017-02-01

    The SW of Iberia is currently undergoing compression related to the convergence between Nubia and Iberia. Multiple compressive structures, and their related seismic activity, have been documented along the diffuse Nubia-Iberia plate boundary, including the Gorringe bank west of the Gulf of Cadiz, and the Betic-Rif orogen to the east. Despite seismic activity indicating a dominant compressive stress along the Algarve margin in the Gulf of Cadiz, the structures at the origin of this seismicity remain elusive. This paper documents the contractional structures that provide linkage across the Gulf of Cadiz and play a major role in defining the present-day seismicity and bathymetry of this area. The structures described in this paper caused the Neogene inversion of the Jurassic oblique passive margin that formed between the central Atlantic and the Ligurian Tethys. This example of a partially inverted margin provides insights into the factors that condition the inversion of passive margins.

  6. Cretaceous plate interaction during the formation of the Colombian plateau, Northandean margin

    NASA Astrophysics Data System (ADS)

    Kammer, Andreas; Piraquive, Alejandro; Díaz, Sebastián

    2015-04-01

    The Cretaceous subduction cycle at the Northandean margin ends with an accretionary event that welds the plateau rocks of the present Western Cordillera to the continental margin. A suture between plateau and rock associations of the continental margin is well exposed at the western border of the Central Cordillera, but overprinted by intense block tectonics. Analyzed in detail, its evolution tracks an increased coupling between lower and upper plate, as may be accounted for by the following stages: 1) The Cretaceous plateau suite records at its onset passive margin conditions, as it encroaches on the continental margin and accounts for an extensional event that triggered the emplacement of ultramafic and mafic igneous rock suites along major faults. 2) An early subduction stage of a still moderate plate coupling is documented by the formation of a magmatic arc in an extensional setting that may have been prompted by slab retreat. Convergence direction was oblique, as attested the transfer of strike-slip displacements to the forearc region. 3) A phase of strong plate interaction entailed the delamination of narrow crustal flakes and their entrainment to depths below the petrologic Moho, as evidenced by their present association to serpentinites in a setting that bears characteristics of a subduction channel. 4) During the final collisional stage deformation is transferred to the lower plate, where the stacking of imbricate sheets, combined with their erosional unloading, led to the formation of an antiformal bulge that fed a foreland basin. - The life time of this Cretaceous subduction cycle was strictly synchronous to the construction of the Colombian plateau. With the final collisional stage magmatic activity vanished. This coincidence incites to explore a relationship between plume activity and subduction.

  7. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  8. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    NASA Astrophysics Data System (ADS)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  9. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1989-03-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desertmore » basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.« less

  10. Cretaceous to Recent Asymetrical Subsidence of South American and West African Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Kenning, J.; Mann, P.

    2017-12-01

    Two divergent interpretations have been proposed for South American rifted-passive margins: the "mirror hypothesis" proposes that the rifted margins form symmetrically from pure shear of the lithosphere while upper-plate-lower plate models propose that the rifted margins form asymmetrically by simple shear. Models based on seismic reflection and refraction imaging and comparison of conjugate, rifted margins generally invoke a hybrid stretching process involving elements of both end member processes along with the effects of mantle plumes active during the rift and passive margin phases. We use subsidence histories of 14, 1-7 km-deep exploration wells located on South American and West African conjugate pairs now separated by the South Atlantic Ocean, applying long-term subsidence to reveal the symmetry or asymmetry of the underlying, conjugate, rift processes. Conjugate pairs characterize the rifted margin over a distance of 3500 km and include: Colorado-South Orange, Punta Del Este-North Orange, South Pelotas-Lüderitz and the North Pelotas-Walvis Basins. Of the four conjugate pairs, more rapid subsidence on the South American plate is consistently observed with greater initial rift and syn-rift subsidence rates of >60m/Ma (compared to <15 m/Ma) between approximately 145-115 Ma. High rates of tectonically-induced subsidence >100 m/Ma are observed offshore South Africa between approximately 120-80 Ma, compatible with onset of the post-rift thermal sag phase. During this period the majority of burial is completed and rates remain low at <10 m/Ma during most of the late Cretaceous and Cenozoic. The conjugate margin of Argentina/Uruguay displays more gradual subsidence throughout the Cretaceous, consistently averaging a moderate 15-30m/Ma. By the end of this stage there is a subsequent increase to 25-60 m/Ma within the last 20 Ma, interpreted to reflect lithospheric loading due to increased sedimentation rates during the Cenozoic. This increase in subsidence rate is not seen in the African conjugate section where the majority of sediments bypassed the highly aggraded Cretaceous shelf. Initially greater on the Brazilian margin compared to Namibia, here both margins exhibit moderate-steep subsidence curves until 65-55 Ma where there is reduced subsidence during much of the Late Cretaceous until 20 Ma.

  11. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  12. Plate motion changes drive Eastern Indian Ocean microcontinent formation

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S.; Halpin, J.; Wild, T.; Stilwell, J.; Jourdan, F.; Daczko, N. R.

    2016-12-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margin - several well-studied microcontinent calving events coincide in space and time with mantle plume activity, but the significance of plumes in driving microcontinent formation remains controversial, and a role for plate-driven processes has also been suggested. In 2011, our team discovered two new microcontinents in the eastern Indian Ocean, the Batavia and Gulden Draak microcontinents. These microcontinents are unique as they are the only surviving remnants of the now-destroyed or highly deformed Greater Indian margin and provide us with an opportunity to test existing models of microcontinent formation against new observations. Here, we explore models for microcontinent formation using our new data from the Eastern Indian Ocean in a plate tectonic reconstruction framework. We use Argon dating and paleontology results to constrain calving from greater India at 101-104 Ma. This region had been proximal to the active Kerguelen plume for 30 Myrs but we demonstrate that calving did not correspond with a burst of volcanic activity. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces. Changes in the relative motions between Indian and Australia led to increasing compressive forces along the long-offset Wallaby-Zenith Fracture Zone, which was eventually abandoned during the jump of the spreading ridge into the Indian continental margin.

  13. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Torsvik, T. H.; Labails, C.; van Hinsbergen, D.; Werner, S.; Medvedev, S.

    2012-04-01

    Initially part of Gondwana and Pangea, and now surrounded almost entirely by spreading centres, the African plate moved relatively slowly for the last 200 million years. Yet both Africa's cratons and passive margins were affected by tectonic stresses developed at distant plate boundaries. Moreover, the African plate was partly underlain by hot mantle (at least for the last 300 Ma) - either a series of hotspots or a superswell, or both - that contributed to episodic volcanism, basin-swell topography, and consequent sediment deposition, erosion, and structural deformation. A systematic study of the African plate boundaries since the opening of surrounding oceanic basins is presently lacking. This is mainly because geophysical data are sparse and there are still controversies regarding the ages of oceanic crust. The publication of individual geophysical datasets and more recently, global Digital Map of Magnetic Anomalies (WDMAM, EMAG2) prompted us to systematically reconstruct the ages and extent of oceanic crust around Africa for the last 200 Ma. Location of Continent Ocean Boundary/Continent Ocean Transition and older oceanic crust (Jurassic and Cretaceous) are updates in the light of gravity, magnetic and seismic data and models of passive margin formation. Reconstructed NeoTethys oceanic crust is based on a new model of microcontinent and intr-oceanic subduction zone evolution in this area.The new set of oceanic palaeo-age grid models constitutes the basis for estimating the dynamics of oceanic crust through time and will be used as input for quantifying the paleo-ridge push and slab pull that contributed to the African plate palaeo-stresses and had the potential to influence the formation of sedimentary basins.

  14. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite element analysis (~35,000 elements for a spatial resolution of approximately 50 km) for the North American plate, where previous lower resolution modeling has shown the importance of the lithospheric cooling (ridge push) force to model the broad scale stress patterns observed from the middle of the continent to the Mid-Atlantic ridge.

  15. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian

    2017-04-01

    In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases normal faults dip toward the continent. This asymmetry may either result from the mantle flowing underneath regions evolving above a migrating plume, such as the Afar, when an asymmetry is observed at the scale of the rift, or from necking of the lithosphere when the conjugate margins show an opposite asymmetry. We summarize the various observed situations with normal faults dipping toward the continent ("hot" margins) or toward the ocean ("cold" margins) and discuss whether mantle flow is responsible for the observed asymmetry of deformation or not. Slipping along pre-existing heterogeneities seems a second-order phenomenon at lithospheric or crustal scale, except at the initiation of rifting.

  16. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end-members of dynamic topography evolution along passive margins and their hinterlands, differentiating topographic stability, long-term pronounced subsidence, initial stability over a dynamic high followed by moderate subsidence and regions that are relatively proximal to subduction zones with varied dynamic topography histories. Along passive continental margins the most commonly observed process is a gradual move from dynamic highs towards lows during the fragmentation of Pangea, reflecting that many passive margins now overly slabs sinking in the lower mantle. Our best-fit model results in up to 500 ±150 m of total dynamic subsidence of continental interiors while along passive margins the maximum predicted dynamic topographic change over 140 million years is about 350 ±150 m of subsidence. Models with plumes exhibit clusters of transient passive margin uplift of about 200 ±200m. The good overall match between predicted dynamic topography and geologically mapped paleo-coastlines makes a convincing case that mantle-driven topographic change is a critical component of relative sea level change, and one of the main driving forces generating the observed geometries and timings of large-scale shifts in paleo-coastlines.

  17. Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin

    NASA Technical Reports Server (NTRS)

    Pazzaglia, Frank J.; Gardner, Thomas, W.

    1994-01-01

    Despite the century-long recognition of regional epeirogeny along the middle Atlantic passive margin, relatively few studies have focused on understanding postrift uplift mechanisms. Here, we demonstrate that epeirogenic uplift of the central Appalachian Piedmont and subsidence of the Salisbury Embayment represent first-order, flexural isostatic processes driven by continental denudation and offshore deposition. Our results show that regional epeirogenic processes, present on all Atlantic-type passive margins, are best resolved by specific stratigraphic and geomorphic relationships, rather than topography. A simple one-dimensional geodynamic model, constrained by well-dated Baltimore Canyon trough, Coastal Plain, and lower Susquehanna River (piedmont) stratigraphy, simulates flexural deforamtion of the U.S. Atlantic margin. The model represents the passive margin lithosphree as a uniformly thick elastic plate, without horizontal compressive stresses, that deforms flexurally under the stress of strike-averaged, vertically applied line loads. Model results illustrate a complex interaction among margin stratigraphy and geomorphology, the isostatic repsonse to denudational and depositional processes, and the modulating influence of exogenic forces such as eustasy. The current elevation, with respect to modern sea level, of fluvial terraces and correlateive Coastal Plain deposits or unconformities is successfully predicted through the synthesis of paleotopography, eustatic change, and margin flexure. Results suggest that the middle U.S. Atlantic margin landward of East Coast Magnetic Anomaly is underlain by lithoshpere with an average elastic thickness of 40 km (flexural rigidity, D = 4 X 10(exp 23) N m), the margin experience an average, long-term denudation rate of approximately 10m/m.y., and the Piedmont has been flexurally upwaped between 35 and 130 meters in the last 15 m.y. Long term isostatic continental uplift resulting rom denudation and basin subsidence resulting rom sediment loading are accomodated primately by a convex-up flexural hinge, physiographically represented by the Fall Zone. Our results elucidate an inherent danger in using topography alone to constrain late-stage passive margin deformation mechanisms. Only through careful synthesis of field stratigraphic and geomorphic elements such as fluvial terraces, Coastal Plain deposits, and offshore stratigraphy can age control be extended from the offshore depositional setting to the erosionally dominated continent. This sudy demonstrates that despite a relatively subdued topography, the middle U.S. Atlantic margin experiences progressive flexural isostatic deformation similar to that proposed for high-relief margins characterized by great escarpments. Thus margin topographic diversity remains a function of other factors, such as lithospheric composition and/or structure, supracrustal stratigraphy and structure, degree of drainage integration, drainage divide migration and climate.

  18. Uplift along passive continental margins, changes in plate motion and mantle convection

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Chalmers, James A.; Bonow, Johan M.

    2014-05-01

    The origin of the forces that produce elevated, passive continental margins (EPCMs) is a hot topic in geoscience. It is, however, a new aspect in the debate that episodes of uplift coincide with changes in plate motion. This has been revealed, primarily, by studies of the burial, uplift and exhumation history of EPCMs based on integration on stratigraphic landscape analysis, low-temperature thermochronology and evidence from the geological record (Green et al., 2013). In the Campanian, Eocene and Miocene, uplift and erosion affected the margins of Brazil and Africa (Japsen et al., 2012b). The uplift phases in Brazil coincided with main phases of Andean orogeny which were periods of relatively rapid convergence at the Andean margin of South America (Cobbold et al., 2001). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, Japsen et al. (2012b) suggested that all these uplift events have a common cause, which is lateral resistance to plate motion. Because the uplift phases are common to margins of diverging plates, it was also suggested that the driving forces can transmit across the spreading axis; probably at great depth, e.g. in the asthenosphere. Late Eocene, Late Miocene and Pliocene uplift and erosion shaped the elevated margin of southern East Greenland (Bonow et al., in review; Japsen et al., in review). These regional uplift phases are synchronous with phases in West Greenland, overlap in time with similar events in North America and Europe and also correlate with changes in plate motion. The much higher elevation of East Greenland compared to West Greenland suggests dynamic support in the east from the Iceland plume. Japsen et al. (2012a) pointed out that EPCMs are typically located above thick crust/lithosphere that is closely juxtaposed to thinner crust/lithosphere. The presence of mountains along the Atlantic margin of Brazil and in East and West Greenland, close to where continental crust starts to thin towards oceanic crust, illustrates the common association between EPCMs and the edges of cratons. These observations indicate that the elevation of EPCMs may be due to processes operating where there is a rapid change in crustal/lithosphere thickness. Vertical motion of EPCMs may thus be related to lithosphere-scale folding caused by compressive stresses at the edge of a craton (e.g. Cloetingh et al., 2008). The compression may be derived either from orogenies elsewhere on a plate or from differential drag at the base of the lithosphere by horizontal asthenospheric flow (Green et al., 2013). Bonow, Japsen, Nielsen. Global Planet. Change in review. Cloetingh, Beekman, Ziegler, van Wees, Sokoutis, 2008. Geol. Soc. Spec. Publ. (London) 306. Cobbold, Meisling, Mount, 2001. AAPG Bull. 85. Green, Lidmar-Bergström, Japsen, Bonow, Chalmers, 2013. GEUS Bull. 2013/30. Japsen, Chalmers, Green, Bonow 2012a, Global Planet. Change 90-91. Japsen, Bonow, Green, Cobbold, Chiossi, Lilletveit, Magnavita, Pedreira, 2012b. GSA Bull. 124. Japsen, Green, Bonow, Nielsen. Global Planet. Change in review.

  19. Is Plate Tectonics Speeding up with Time?

    NASA Astrophysics Data System (ADS)

    Condie, K. C.; Korenaga, J.; Pisarevsky, S. A.

    2014-12-01

    Cooling of the mantle is often assumed to result in a decrease in average global plate speeds with time. However, deformation in collisional orogens indicates the frequency of craton collisions increases from about 5/100 Myr 2.5 Ga to 10/100 Myr 200 Ma. Likewise, angular plate velocities weighted by craton area increase from an average of 25 deg/100Myr at 2 Ga to about 50 deg/100 Myr in the last 200 Myr. The number of cratons decreases rapidly from > 20 to ≤ 15 between 1.9 and 1.75 Ga as numerous Archean blocks were sutured together. Orogens and passive margins show the same two cycles of ocean basin closing: an early cycle from 2.5-1.9 Ga and a later cycle, which corresponds to the supercontinent cycle ≤ 1.9 Ga. Also recorded in the geologic record during the last 200 Myr is a decrease in the duration of passive continental margins from 400 Myr at 1.2 Ga to < 100 Myr during the last 200 Myr. And finally, assuming Gondwana and Pangea represent stages in the growth of a single supercontinent, the period of the supercontinent cycle has dropped from about 1000 Myr at 1.5 Ga to < 500 Myr in the last 500 Myr. All of these observations are consistent with an increase in average plate speeds with time, which is consistent with the geodynamic model of Korenaga (2006) suggesting that plate tectonics is speeding up with time. This could be due to a decrease in the magnitude of lithosphere dehydration stiffening as ambient mantle temperature falls with time. Alternatively or in addition, gradual hydration of the mantle by subduction may decrease mantle viscosity and increase convection rates.

  20. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  1. Seismic stratigraphy of the Mianwali and Bannu depressions, north-western Indus foreland basin

    NASA Astrophysics Data System (ADS)

    Farid, Asam; Khalid, Perveiz; Ali, Muhammad Y.; Iqbal, Muhammad Asim; Jadoon, Khan Zaib

    2017-11-01

    Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the Mianwali and Bannu depressions, north-western Indus foreland basin. Synthetic seismograms have been used to identify and tie the seismic horizons to the well data. Nine mappable seismic sequences are identified within the passive and active margin sediments. In general, the Mianwali and Bannu depressions deepens towards north due to the flexure generated by the loading and southward shifting of the thrust sheets of the North-western Himalayan Fold and Thrust Belt. The seismic profiles show a classic wedge shaped foreland basin with a prominent angular unconformity which clearly differentiates the active and passive margin sediments. The onlap patterns in the Late Cretaceous sediments suggest the initial onset of foreland basin formation when the Indian Plate collided with Eurasian Plate. As the collision progressed, the lithospheric flexure caused an uplift along the flexural bulge which resulted in onlaps within the Paleocene and Eocene sequences. The tectonic activity reached to its maximum during Oligocene with the formation of a prominent unconformity, which caused extensive erosion that increases towards the flexural bulge.

  2. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  3. The opening of the Indian Ocean: what is the consequence on the formation of the East African, Madagascar and Antarctic margins, and what are the origins of the aseismic ridges?

    NASA Astrophysics Data System (ADS)

    Thompson, Joseph; Moulin, Maryine; Aslanian, Daniel; Guillocheau, François; de Clarens, Philippe

    2017-04-01

    Palinspatic reconstructions of the Indian Ocean presents lots of challenges and problems, occasioned mostly as a result of a number of unanswered scientific questions in the ocean due to inadequate data, and in some cases lack of consensus on the interpretation of available data; resulting in kinematic reconstruction model proposals which are inconsistent and incoherent with current data interpretations and independently modeled motions of neighboring plates. Such models are largely characterized by gaps and overlaps in the full-fit reconstruction. Although, there is published significant scientific knowledge and data that confirms Gondwana and the Wilson cycle, a crucial scientific question that still remain unanswered is: what was the true geometry of Gondwana and how has its plates evolved through time? This is a very crucial question which is very critical in deciphering how we position the plates relative to each other. Although there has been a number of attempts to answer this question over several decades, answers so far provided differ widely, and currently there is no consensus on the true answer. We present here a new initial fit of East Gondwana within the framework of the Passive Margin Exploration Laboratories (PAMELA) project, through the adoption of a multifaceted approach by analysis and interpretation of onshore and offshore geophysical (Seismic, gravity, magnetic, and bathymetry) and geological (Stratigraphic, geochemical and geochronogical data from the plate basement and the Karoo volcanics and sediments) data, to have a better understanding of the history of all the events and processes, and to present a global picture by comparing with events in neighboring oceans. The PhD thesis of Joseph Offei Thompson is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project

  4. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  5. Initiation of extension in South China continental margin during the active-passive margin transition: kinematic and thermochronological constraints

    NASA Astrophysics Data System (ADS)

    ZUO, Xuran; CHAN, Lung

    2015-04-01

    The southern South China Block is characterized by a widespread magmatic belt, prominent NE-striking fault zones and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from an active to a passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. In this study, we used zircon fission-track dating (ZFT) and numerical modeling to examine the timing and kinematics of the active-passive margin transition. Our ZFT results on granitic plutons in the SW Cathaysia Block show two episodes of exhumation of the granitic plutons. The first episode, occurring during 170 Ma - 120 Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115 Ma - 70 Ma. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the observation based on ZFT data that exhumation of the granite-dominant Nanling Range occurred at an earlier time than the gneiss-dominant Yunkai Terrane. In addition to the difference in geology between Yunkai and Nanling, the heating from Jurassic-Early Cretaceous magmatism in the Nanling Range may have softened the upper crust, causing the area to exhume more readily. Numerical modeling results also indicate that (1) high slab dip angle, high geothermal gradient of lithosphere and low convergence velocity favor the subduction process and the reversal of crustal stress state from compression to extension in the upper plate; (2) the late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension has shed light on the geological condition producing the red bed basins during Late Cretaceous-early Paleogene in South China. It appears that the red bed basins could have formed during the late stage of the subduction process, accounting for the observations why concurrent volcanic rocks could be found in some sedimentary basin formation. We propose that the extensional events started as early as the Late Cretaceous, probably before the cessation of subduction process. (Funding from Total Company and matching support from UGC are gratefully acknowledged).

  6. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material therefore accumulates in the proximal rift and rift margin, thickening them and lifting them by isostatic response to the thickening. Flow into the rift margin is opposed by uplift and folding of the upper, strong crust, which imposes an additional normal stress, until crust thickens no more. However, flow continues through this thickened crust, thickening and uplifting the area "downstream", so widening the thickened area. Flow and uplift can continue until a reduction in imposed far-field compressive stress causes a consequent large reduction in inflow, thereby 'freezing' the thickened crust in place. Erosion of the uplifted area will lead to further uplift of the uneroded material because of the isostatic response to the erosion. Reference Cloetingh, S. & Burov, E. 2010: Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research 22, 1365-2117. doi:10.1111/j.1365-2117.2010.00490.x.

  7. Diffuse Extension of the Southern Mariana Margin: Implications for Subduction Zone Infancy and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Stern, R. J.; Kelley, K. A.; Ohara, Y.; Sleeper, J. D.; Ribeiro, J. M.; Brounce, M. N.

    2017-12-01

    Opening of the southern Mariana margin takes place in contrasting modes: Extension normal to the trench forms crust that is passively accreted to a rigid Philippine Sea plate and forms along focused and broad accretion axes. Extension also occurs parallel to the trench and has split apart an Eocene-Miocene forearc terrain accreting new crust diffusely over a 150-200 km wide zone forming a pervasive volcano-tectonic fabric oriented at high angles to the trench and the backarc spreading center. Earthquake seismicity indicates that the forearc extension is active over this broad area and basement samples date young although waning volcanic activity. Diffuse formation of new oceanic crust and lithosphere is unusual; in most oceanic settings extension rapidly focuses to narrow plate boundary zones—a defining feature of plate tectonics. Diffuse crustal accretion has been inferred to occur during subduction zone infancy, however. We hypothesize that, in a near-trench extensional setting, the continual addition of water from the subducting slab creates a weak overriding hydrous lithosphere that deforms broadly. This process counteracts mantle dehydration and strengthening proposed to occur at mid-ocean ridges that may help to focus deformation and melt delivery to narrow plate boundary zones. The observations from the southern Mariana margin suggest that where lithosphere is weakened by high water content narrow seafloor spreading centers cannot form. These conditions likely prevail during subduction zone infancy, explaining the diffuse contemporaneous volcanism inferred in this setting.

  8. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Dietmar Müller, R.

    2014-02-01

    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.

  9. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar

    2014-05-01

    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.

  10. One Dimensional Backstripping Results from IODP Expedition 318, Site U1356: Tectonic Implications for the Wilkes Land Margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Kominz, M. A.; González, J. J.; Escutia, C.; Brinkhuis, H.; Scientific Party of IODP Expedition 318

    2011-12-01

    The Wilkes Land margin of Antarctica is the conjugate margin of the Great Australian Bight, which underwent extension, thinning and rifting from ~160 Ma until breakup at ~83 Ma. Both Wilkes Land and the Great Australian Bight are considered passive margins, and were thought to be tectonically inactive since breakup at 83 Ma. We have backstripped the U1356 Core recovered from the continental rise off Wilkes Land, Antarctica by IODP Expedition 318. Backstripping input included lithological and sedimentary analysis, paleo-environmental indicators, combined paleomagnetic and biostratigraphic chronologies, and physical properties measurements. Tectonic subsidence shows a major event between 50 and 33.6 Ma, a time represented by a hiatus in the U1356 core. The magnitude of subsidence requires it to be tectonic in origin, and the timing matches with a reorganization of plate motions that represents the transition from slow spreading to fast spreading between Antarctica and Australia, which occurred at approximately 43 Ma. Coupled with a regional seismic framework, and using other Expedition 318 site analyses, the Wilkes Land margin is shown to be far more complex then the simple passive margin currently assumed. We explore several possible mechanisms for the subsidence and erosion observed; including thermal uplift due to continental insulation of the asthenosphere and it's interaction with a recently rifted margin, asthenospheric convection, transtensional or transpressional basin development and loading, and edge-driven asthenospheric convection.

  11. Submarine Landslide Hazards Offshore Southern Alaska: Seismic Strengthening Versus Rapid Sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.

    2017-12-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking

  12. The many impacts of building mountain belts on plate tectonics and mantle flow

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Husson, Laurent

    2015-04-01

    During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Such an increase of stresses in the lithosphere can impact on plate tectonics and mantle dynamics. We show that mountain belts at plate boundaries increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, this changes the dynamic and kinematic surface conditions of the underlying flowing mantle. Ultimately, this modifies the pattern of mantle flow. This forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among these, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, or the initiation of subduction, the onset of obduction, for the lithosphere. In the mantle, such change in boundary condition redesigns the pattern of mantle flow and, consequently, the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere rests. Our results show that when collision occurs, the mantle flow is highly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) to a modification of the convection style. In turn, the transition between a 'free' convection (mobile lid) and an 'upset' convection (stagnant -or sluggish- lid) highly impacts the dynamics of the lithosphere at the surface of the Earth. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, a fact that may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.

  13. Control of the Lithospheric Mantle on intracontinental Deformation: Revival of Eastern U.S. Tectonism

    NASA Astrophysics Data System (ADS)

    Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.

    2016-12-01

    The present tectonic configuration of the southeastern United States is a product of earlier episodes of arc accretion, continental collision and breakup. This region is located in the interior of the North American Plate, some 1500 km away from closest active plate margin. However, there is ongoing tectonism across the area with multiple zones of seismicity, rejuvenation of the Appalachians of North Carolina, Virginia, and Pennsylvania, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the modern-day state of stress remain enigmatic. Two factors often regarded as major contributors are plate strength and preexisting inherited structures. Recent improvements in broadband seismic data coverage in the region associated with the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array make it possible to obtain detailed information on the structure of the lithosphere in the region. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Our results indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. We observe an agreement between the locations of these upper mantle anomalies and the location of major zones of tectonism, volcanism and seismicity, providing a viable explanation for modern-day activity in this plate interior setting long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.

  14. Plate Kinematic model of the NW Indian Ocean and derived regional stress history of the East African Margin

    NASA Astrophysics Data System (ADS)

    Tuck-Martin, Amy; Adam, Jürgen; Eagles, Graeme

    2015-04-01

    Starting with the break up of Gondwana, the northwest Indian Ocean and its continental margins in Madagascar, East Africa and western India formed by divergence of the African and Indian plates and were shaped by a complicated sequence of plate boundary relocations, ridge propagation events, and the independent movement of the Seychelles microplate. As a result, attempts to reconcile the different plate-tectonic components and processes into a coherent kinematic model have so far been unsatisfactory. A new high-resolution plate kinematic model has been produced in an attempt to solve these problems, using seafloor spreading data and rotation parameters generated by a mixture of visual fitting of magnetic isochron data and iterative joint inversion of magnetic isochron and fracture zone data. Using plate motion vectors and plate boundary geometries derived from this model, the first-order regional stress pattern was modelled for distinct phases of margin formation. The stress pattern is correlated with the tectono-stratigraphic history of related sedimentary basins. The plate kinematic model identifies three phases of spreading, from the Jurassic to the Paleogene, which resulted in the formation of three main oceanic basins. Prior to these phases, intracontinental 'Karoo' rifting episodes in the late Carboniferous to late Triassic had failed to break up Gondwana, but initiated the formation of sedimentary basins along the East African and West Madagascan margins. At the start of the first phase of spreading (183 to 133 Ma) predominantly NW - SE extension caused continental rifting that separated Madagascar/India/Antarctica from Africa. Maximum horizontal stresses trended perpendicular to the local plate-kinematic vector, and parallel to the rift axes. During and after continental break-up and subsequent spreading, the regional stress regime changed drastically. The extensional stress regime became restricted to the active spreading ridges that in turn adopted trends normal to the plate divergence vector. Away from the active ridges, compressional horizontal stresses caused by ridge-push forces were transmitted through the subsiding oceanic lithosphere, with an SH max orientation parallel to plate divergence vectors. These changes are documented by the lower Bajocian continental breakup unconformity, which can be traced throughout East African basins. At 133 Ma, the plate boundary moved from north to south of Madagascar, incorporating it into the African plate and initiating its separation from Antarctica. The orientation of the plate divergence vector however did not change markedly. The second phase (89 - 61 Ma) led to the separation of India from Madagascar, initiating a new and dramatic change in stress orientation from N-S to ENE-WSW. This led to renewed tectonic activity in the sedimentary basins of western Madagascar. In the third phase (61 Ma to present) asymmetric spreading of the Carlsberg Ridge separated India from the Seychelles and the Mascarene Plateau via the southward propagation of the Carlsberg Ridge to form the Central Indian Ridge. The anti-clockwise rotation of the independent Seychelles microplate between chrons 28n (64.13 Ma) and 26n (58.38 Ma) and the opening of the short-lived Laxmi Basin (67 Ma to abandonment within chron 28n (64.13 - 63.10 Ma)) have been further constrained by the new plate kinematic model. Along the East African margin, SH max remained in a NE - SW orientation and the sedimentary basins experienced continued thick, deep water sediment deposition. Contemporaneously, in the sedimentary basins along East African passive margin, ridge-push related maximum horizontal stresses became progressively outweighed by local gravity-driven NE-SW maximum horizontal stresses trending parallel to the margin. These stress regimes are caused by sediment loading and extensional collapse of thick sediment wedges, predominantly controlled by margin geometry. Our study successfully integrates an interpretation of paleo-stress regimes constrained by the new high resolution plate kinematic and basin history to produce a margin scale tectono-stratigraphic framework that highlights the important interplay of plate boundary forces and basin formation events along the East African margin.

  15. Where does subduction initiate and die? Insights from global convection models with continental drift

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  16. The reactivation of the SW Iberian passive margin: a brief review

    NASA Astrophysics Data System (ADS)

    Duarte, Joao; Rosas, Filipe; Terrinha, Pedro; Schellart, Wouter; Almeida, Pedro; Gutscher, Marc-André; Riel, Nicolas; Ribeiro, António

    2016-04-01

    On the morning of the 1st of November of 1755 a major earthquake struck offshore the Southwest Iberian margin. This was the strongest earthquake ever felt in Western Europe. The shake, fire and tsunami devastated Lisbon, was felt as far as Finland and had a profound impact on the thinkers of that time, in particular on the Enlightenment philosophers such as Voltaire, Rousseau and Kant. The Great Lisbon Earthquake is considered by many as the event that marks the birth of modern geosciences; and made of this region one of the most well studied areas in the world. After the 1755 earthquake, Kant and others authors wrote several treaties dealing with the causes and dynamics of earthquakes and tsunamis and were close to identify some key elements of what we now call plate tectonics. More than two hundred years later, in the year of 1969, the region was struck by another major earthquake. This was precisely during the period in which the theory of plate tectonics was being built. Geoscientists like Fukao (1973), Purdy (1975) and Mackenzie (1977) immediately focused their attention in the area. They suggested that these events were related with "transient" subduction of Africa below Iberia, along the East-West Azores-Gibraltar plate boundary. Several years later, Ribeiro (1989) suggested that instead of Africa being subducted below Iberia, it was the West Iberian passive margin that was being reactivated, a process that may, in time, lead to the formation of a new subduction zone. In the turning of the millennium, a subducting slab was imaged bellow the Gibraltar Straits, a remanent of the Western Mediterranean arc system that according to Gutscher et al. (2002) was related with ongoing subduction. Recently, it was proposed that a causal link between the Gibraltar subduction system and the reactivation of the SW Iberian margin might exist. In addition, the large-scale Africa-Eurasia convergence is inducing compressive stresses along the West Iberian margin. The margin reactivation is expressed by the presence of several active lithospheric-scale thrust faults. In this communication, we will highlight the main moments of the journey that lead to the understanding that the Southwest Iberian is in fact being reactivated. We will present some of the data and ideas that were gathered over the years, including the most recent findings. Finally, we will see that despite the numerous endeavours and the substantial improvements in our tectonic knowledge of the region there are still many enigmas waiting to be resolved. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, K.H.

    A prolific hydrocarbon province extends across the northern margin of South America from Colombia to east of Trinidad. Two key components are a world-class source rock, formed on a regional Late Cretaceous passive margin, and a complex tectonic setting in which a variety of structural and stratigraphic traps, reservoirs, seals and hydrocarbon kitchens have evolved through time. Convergence between the Farallon and Caribbean plates with South America culminated in the late Cretaceous-early Palaeogene with emplacement of Colombia`s Central Cordillera in the west and a nappe-foreland basin system in the north. Regional hydrocarbon generation probably occurred below associated basins. Subsequent obliquemore » convergence between the Caribbean and South America, partitioned into strike-slip and compressional strain, generated an eastward migrating and ongoing uplift-foredeep (kitchen) system from central Venezuela to Trinidad. Similarly, oblique interaction of western Colombia with the Nazca Plate caused segmentation of the earlier orogen, northward extrusion of elements such as the Maracaibo Block, and eastward migration of uplift progressively dividing earlier kitchens into localized foredeeps.« less

  18. Architecture of ductile-type, hyper-extended passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone ('Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, Benjamin; Lagabrielle, Yves; Labaume, Pierre; Lahfid, Abdeltif; Boulvais, Philippe; Bergamini, Geraldine; Fourcade, Serge; Clerc, Camille

    2017-04-01

    Sub-continental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust during plate separation. Remnants of the Northern Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and represent field analogues to study the processes of continental crust thinning and subcontinental mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. In the western NPZ, the 'Chaînons Béarnais' ranges display a fold-and-thrust structure involving the Mesozoic sedimentary cover, decoupled from its continental basement and associated with peridotite bodies in tectonic contact with Palaeozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the allochthonous Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of the northern Iberia paleo-margin. Field work confirms that the pre-rift Mesozoic cover is intimately associated to mantle rocks and to thin tectonic lenses of crustal basement. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the hyper-extended margin. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands defining a plurimetric phacoidal fabric at the top of the serpentinized mantle. The detachment is marked by a layer of metasomatic rocks, locally 20 meters thick, made of talc-chlorite-pyrite-rich rocks that developped under greenschist facies conditions. Raman Spectroscopy on Carbonaceous Materials (RSCM), performed on the Mesozoic cover reveal that the entire sedimentary pile underwent temperatures ranging between 200°C and 480°C. We show that: (i) at the site of mantle rocks exhumation, the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. Therefore the overall crustal rheology appears dominated by shallow levels having a ductile behavior. This rheology is related to the presence of a thick pre- and syn-rift decoupled cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin that cannot be obtained from the study of seismic lines. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of extreme crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.

  19. Quantifying the thermal evolution of early passive margins formation and its consequences on the structure of passive margins

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry

    2017-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT

  20. The continent-ocean transition at the mid-northern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Yao, Bochu; Chen, Zeman; Jia, Liankai

    2015-07-01

    The northern margin of the South China Sea (SCS) has particular structural and stratigraphic characteristics that are somewhat different from those described in typical passive margin models. The differences are attributable to poly-phase tectonic movements and magmatic activity resulting from the interaction among the Eurasian, Philippine Sea and Indo-Australian plates. Based on several crustal-scale multi-channel seismic reflection profiles and satellite gravity data across the northern SCS margin, this paper analyzes the structures, volcanoes and deep crust of the continent-ocean transition zone (COT) at the mid-northern margin of the SCS to study the patterns and model of extension there. The results indicate that the COT is limited landward by basin-bounding faults near Baiyun sag and is bounded by seaward-dipping normal faults near the oceanic basin in our seismic lines. The shallow anatomy of the COT is characterized by rift depression, structural highs with igneous rock and/or a volcanic zone or a zone of tilted fault blocks at the distal edge. Gravity modeling revealed that a high velocity layer (HVL) with a 0.8-6-km thickness is frequently present in the slope below the lower crust. Our study shows that the HVL is only located in the eastern portion of the northern SCS margin based on the available geophysical data. We infer from this that the presence of an HVL is not required in the COT at the northern SCS margin. The magmatic intrusions and HVL may be related to partial melting caused by the decompression of a passive, upwelling asthenosphere, which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. Based on this study, we propose that an intermediate mode of rifting was active in the mid-northern margin of the SCS with characteristics that are closer to those of the magma-poor margins than those of volcanic margins.

  1. The Role of Magma During Continent-Ocean Transition: Evidence from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Bastow, I. D.; Keir, D.; Stuart, G. W.

    2010-12-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). The Main Ethiopian Rift offers a unique opportunity to address this problem because it captures sub-aerially the final stages of transition from continental rifting to seafloor spreading. Recent studies there have shown that magma intrusion plays an important role during the final stages of continental breakup, but the mechanism by which it is incorporated into the extending plate remains ambiguous: wide angle seismic data and complementary geophysical tools such as gravity analysis are not strongly sensitive to the geometry of subsurface melt intrusions. Studies of shear wave splitting in near-vertical SKS phases beneath the transitional Main Ethiopian Rift (MER) provide strong and consistent evidence for a rift-parallel fast anisotropic direction. However, it is difficult to discriminate between oriented melt pocket (OMP) and lattice preferred orientation (LPO) causes of anisotropy based on SKS study alone. The speeds of horizontally propagating Love (SH) and Rayleigh (SV) waves vary in similar fashions with azimuth for LPO- and OMP-induced anisotropy, but their relative change is distinctive for each mechanism. This diagnostic is exploited by studying the propagation of surface waves from a suite of azimuths across the MER. Anisotropy is roughly perpendicular to the absolute plate motion direction, thus ruling out anisotropy due to the slowly moving African Plate. Instead, three mechanisms for anisotropy act beneath the MER: periodic thin layering of seismically fast and slow material in the uppermost ~10 km, OMP between ~20-75 km depth, and olivine LPO in the upper mantle beneath. The results are explained best by a model in which low aspect ratio melt inclusions (dykes and veins) are being intruded into an extending plate during late stage breakup. The observations from Ethiopia join a growing body of evidence from rifts and passive margins worldwide that shows magma intrusion plays an important role in accommodating extension without marked crustal thinning.

  2. Architecture of ductile-type passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone (`Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, B.; Lagabrielle, Y.; Labaume, P.; Lahfid, A.; Boulvais, P.; Bergamini, G.; Fourcade, S.; Clerc, C. N.; Asti, R.

    2017-12-01

    Subcontinental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust. The North-Pyrenean Zone (NPZ) exposes remnants of such extremely stretched paleo-passive margin that represent field analogues to study the processes of continental crust thinning and mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. The Chaînons Béarnais belt displays a fold-and-thrust structure involving the Mesozoic sedimentary cover associated with peridotite bodies in tectonic contact with Paleozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of this paleo-margin. Field work confirms that the Mesozoic cover is intimately associated with mantle rocks and thin tectonic lenses of middle crust. Micro-structural studies show that the greenschist facies ductile deformation in the crust produced a mylonitic foliation which is always parallel to the crust/mantle contact. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the margin. We show that: (i) the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. The ductile behavior is related to the presence of a thick pre- and syn-rift cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.

  3. Post-Jurassic tectonic evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Seton, Maria; Dietmar Müller, R.; Flament, Nicolas

    2014-05-01

    The accretionary growth of Asia, linked to long-term convergence between Eurasia, Gondwana-derived blocks and the Pacific, resulted in a mosaic of terranes for which conflicting tectonic interpretations exist. Here, we propose solutions to a number of controversies related to the evolution of Sundaland through a synthesis of published geological data and plate reconstructions that reconcile both geological and geophysical constraints with plate driving forces. We propose that West Sulawesi, East Java and easternmost Borneo rifted from northern Gondwana in the latest Jurassic, collided with an intra-oceanic arc at ~115 Ma and subsequently sutured to Sundaland by 80 Ma. Although recent models argue that the Southwest Borneo core accreted to Sundaland at this time, we use volcanic and biogeographic constraints to show that the core of Borneo was on the Asian margin since at least the mid Jurassic. This northward transfer of Gondwana-derived continental fragments required a convergent plate boundary in the easternmost Tethys that we propose gave rise to the Philippine Archipelago based on the formation of latest Jurassic-Early Cretaceous supra-subduction zone ophiolites on Halmahera, Obi Island and Luzon. The Late Cretaceous marks the shift from Andean-style subduction to back-arc opening on the east Asian margin. Arc volcanism along South China ceased by ~60 Ma due to the rollback of the Izanagi slab, leading to the oceanward migration of the volcanic arc and the opening of the Proto South China Sea (PSCS). We use the Apennines-Tyrrhenian system in the Mediterranean as an analogue to model this back-arc. Continued rollback detaches South Palawan, Mindoro and the Semitau continental blocks from the stable east Asian margin and transfers them onto Sundaland in the Eocene to produce the Sarawak Orogeny. The extrusion of Indochina and subduction polarity reversal along northern Borneo opens the South China Sea and transfers the Dangerous Grounds-Reed Bank southward to terminate PSCS south-dipping subduction and culminates in the Sarawak Orogeny on Borneo and ophiolite obduction on Palawan. We account for the regional plate reorganizations related to the initiation of Pacific subduction along the Izu-Bonin-Mariana Arc, the extrusion tectonics resulting from the India-Eurasia collision, and the shift from basin extension to inversion on Sundaland as an indicator of collision between the Australian continent and the active Asian margin. We generate continuously closing and evolving plate boundaries, seafloor age-grids and global plate velocity fields using the open-source and cross-platform GPlates plate reconstruction software. We link our plate motions to numerical mantle flow models in order to predict mantle structure at present-day that can be qualitatively compared to P- and S- wave seismic tomography models. This method allows us to analyse the evolution of the mantle related to Tethyan and Pacific subduction and to test alternative plate reconstructions. This iterative approach can be used to improve plate reconstructions in the absence of preserved seafloor and conjugate passive margins of continental blocks, which may have been destroyed or highly deformed by multiple episodes of accretion along the Asian margins.

  4. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins

    NASA Astrophysics Data System (ADS)

    Oliveira, E. P.; McNaughton, N. J.; Windley, B. F.; Carvalho, M. J.; Nascimento, R. S.

    2015-11-01

    SHRIMP U-Pb detrital zircon geochronology and depleted-mantle Nd-model ages of clastic rocks were combined to understand the sediment provenance in the Neoproterozoic Sergipano Belt. The Sergipano is the main orogenic belt between the Borborema province and the São Francisco Craton, eastern South America; it is divisible into several lithostratigraphic domains from North to South: Canindé, Poço Redondo-Marancó, Macururé, Vaza Barris, and Estância. Nd model ages (TDM) and detrital zircon U-Pb SHRIMP geochronology indicate that the protoliths of clastic metasedimentary rocks from the Marancó and Macururé domains were mostly derived from eroded late Mesoproterozoic to early Neoproterozoic rocks (1000-900 Ma), whereas detritus of similar rocks from the Canindé domain came from a younger source (ca. 700 Ma and 1000 Ma). Samples from the Vaza Barris domain show the greatest scatter of both TDM and zircon ages amongst all domains, but with important contributions from Proterozoic sources (690-1050 Ma and ca. 2100 Ma) and less from Archaean sources. The Estância domain samples have zircon population peaks at 570 Ma, 600 Ma, and 920-980 Ma, with a few older grains; one diamictite contains only ca. 2150 Ma zircon grains. Our preliminary results support a model in which sediments of the Marancó and Macururé domains were deposited on a continental margin of the ancient Borborema plate before its collision with the São Francisco Craton; the Canindé domain is likely to be an aborted Neoproterozoic rift assemblage within the southern part of the Borborema plate (Pernambuco-Alagoas massif). The basal units of the Vaza Barris and Estância domains have clast sources from the São Francisco Craton and are best interpreted as passive margin sediments. However, the uppermost units of the Estância and Vaza Barris domains come from foreland basins formed during collision of Borborema plate with the São Francisco Craton.

  5. The Effects of Rapid Sedimentation upon Continental Breakup: Kinematic and Thermal Modeling of the Salton Trough, Southern California, Based upon Recent Seismic Images

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.

    2016-12-01

    The Salton Seismic Imaging Project (SSIP) illuminated crustal and upper mantle structure of the Salton Trough, the northern-most rift segment of the Gulf of California plate boundary. The crust is 17-18 km thick and homogeneous for 100 km in the plate motion direction. New crust is being created by distributed rift magmatism, Colorado River sedimentation, and metamorphism of the sediment. A 5 km thick pre-existing crustal layer may still exist. The crust has not broken apart to enable initiation of seafloor spreading. A one-dimensional time-dependent kinematic and thermal model was developed to simulate these observations. We assume that all crustal layers are stretched uniformly during extension. Distributed mafic magmatism and sedimentation are added simultaneously to compensate for the crustal thinning. The ratio of magmatism to sedimentation is constrained by the seismic observations. Heat is transported by thermal conduction and by advection due to stretching of the crust. A constant temperature boundary at the Moho is used to represent partial melting in the upper mantle. Assuming a constant plate motion rate, the zone of active rifting extends linearly with time. The crustal thickness and internal structure also evolve with time. The model constraints are the observed seismic structure and heat flow. The model rapidly reaches quasi-steady state, and could continue for many millions of years. The observed seismic structure and heat flow are reproduced after 3 Myr. The yield strength profile calculated from lithology and model temperature indicates that ductile deformation in the middle and lower crust dominates the crustal rheology. Rapid sedimentation delays crustal breakup and the initiation of seafloor spreading by maintaining the thickness of the crust and keeping it predominantly ductile. This process probably occurs wherever a large river flows into an active rift driven by far-field extension. It may have built passive margins in many locations globally, such as the Gulf of Mexico. This type of passive margin consists of mostly new crust created by magmatism and metamorphism of sediment. Along such margins, metamorphosed sediment could be misinterpreted as stretched pre-existing continental crust.

  6. Regional uplift episodes along the NE Atlantic margin constrained by stratigraphic and thermochronologic data

    NASA Astrophysics Data System (ADS)

    Holford, S. P.; Green, P. F.; Hillis, R. R.; Duddy, I. R.; Turner, J. P.; Stoker, M. S.

    2008-12-01

    The magma-rich NE Atlantic passive margin provides a superb natural laboratory for studying vertical motions associated with continental rifting and the rift-drift transition. Here we present an extensive apatite fission-track analysis (AFTA) database from the British Isles which we combine with a detailed stratigraphic framework for the Cretaceous-Cenozoic sedimentary record of the NE Atlantic margin to constrain the uplift history along and inboard of this margin during the past 120 Myr. We show that the British Isles experienced a series of uplift episodes which began between 120 and 115 Ma, 65 and 55 Ma, 40 and 25 Ma and 20 and 15 Ma, respectively. Each episode is of regional extent (~100,000 sq km) and represents a major period of exhumation involving removal of up to 1 km or more of section. These uplift episodes can be correlated with a number of major tectonic unconformities recognised within the sedimentary succession of the NE Atlantic margin, suggesting that the margin was also affected by these uplift episodes. Anomalous syn- and post-rift uplift along this margin have been interpreted in terms of permanent and/or transient movements controlled by the Iceland plume, but neither the timing nor distribution of the uplift episodes, with the exception of the 65 to 55 Ma episode, supports a first-order control by plume activity on vertical motions. Each uplift episode correlates closely with key deformation events at adjacent plate boundaries, suggesting a causative link, and we examine the ways in which plate boundary forces can account for the observed uplift episodes. Similar km-scale uplift events are revealed by thermochronological studies in other magma-rich and magma-poor continental margins, e.g. SE Australia, South Africa, Brazil. The low angle unconformities which result from these regional episodes of km-scale burial and subsequent uplift are often incorrectly interpreted as representing periods of non-deposition and tectonic stability. Similar considerations have also led to an erroneous view of the post-rift stability of many continental margins. Our results indicate that km-scale regional uplift has affected many regions previously interpreted as areas of long-term stability, and that plate boundary deformation exerts the primary control on such episodes.

  7. Passive margin evolution, initiation of subduction and the Wilson cycle

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1984-10-01

    We have constructed finite element models at various stages of passive margin evolution, in which we have incorporated the system of forces acting on the margin, depth-dependent rheological properties and lateral variations across the margin. We have studied the interrelations between age-dependent forces, geometry and rheology, to decipher their net effect on the state of stress at passive margins. Lithospheric flexure induced by sediment loading dominates the state of stress at passive margins. This study has shown that if after a short evolution of the margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favourable for transformation into an active margin. Although much geological evidence is available in support of the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept.

  8. Intraplate mountain building in response to continent continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Dickerson, Patricia Wood

    2003-04-01

    The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia-Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.

  9. Modal Analysis of Embedded Passive Damping Materials in Composite Plates with Different Orientations

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael; Kolkailah, Faysal A.; Elghandour, Eltahry I.

    1998-01-01

    This report presents an experimental and numerical investigation of the free vibration of cantilevered composite plates with and without passive damping. A total of seven composite material plates are considered. The lay-up sequences for the two plates without damping are [90/90/0/0], and [90/0/90/0]; the other five plates are the same as the first two with two embedded layers of passive damping material. The passive damping material is embedded at different locations in the plate with orientation [90/0/90/0],. The damping material employed is a 3M material (SJ-2015 ISD 112) with peak damping properties in the ambient temperature range (32 F to 140 F). The composite material used is a carbon fiber (977-2)/epoxy resin (IM7). The effect of the passive damping system employed in this study for the composite plates are discussed. Modal testing is performed on these plates to determine resonant frequencies, amplitude and mode shape information. Numerical results are obtained using COSMOS/M software for the plates without damping. The experimental and numerical results are in very good agreement for different laminated plates without damping layers.

  10. Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin

    NASA Astrophysics Data System (ADS)

    Almatrood, M.; Mann, P.; Bugti, M. N.

    2016-12-01

    We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and collision along its southeastern edge; and 2) Laramide collision along its western edge in Mexico.

  11. When mountain belts disrupt mantle flow: from natural evidences to numerical modelling

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Husson, Laurent; Guillaume, Benjamin

    2016-04-01

    During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Here, we show that such mountain belts, at plate boundaries, increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, it changes the dynamic and kinematic surface conditions of the underlying flowing mantle, which ultimately modifies the pattern of mantle flow. Such forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among others, at lithospheric scale, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, the initiation of subductions, or the onset of obductions. In the mantle, such changes in boundary conditions redesign the flow pattern and, consequently, disturb the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere is resting on top. Our results show that when collision occurs, the mantle flow is strongly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) a modification of the convection style. In turn, the transition between a "free" convection (mobile lid) and a "disturbed" convection (stagnant - or sluggish - lid) highly impacts the dynamics of the lithosphere at the surface. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a lithosphere presenting a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction initiation or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, which may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  13. Submarine fans: Characteristics, models, classification, and reservoir potential

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.; Moiola, R. J.

    1988-02-01

    Submarine-fan sequences are important hydrocarbon reservoirs throughout the world. Submarine-fan sequences may be interpreted from bed-thickness trends, turbidite facies associations, log motifs, and seismic-reflection profiles. Turbidites occurring predominantly in channels and lobes (or sheet sands) constitute the major portion of submarine-fan sequences. Thinning- and thickening-upward trends are suggestive of channel and lobe deposition, respectively. Mounded seismic reflections are commonly indicative of lower-fan depositional lobes. Fan models are discussed in terms of modern and ancient fans, attached and detached lobes, highly efficient and poorly efficient systems, and transverse and longitudinal fans. In general, depositional lobes are considered to be attached to feeder channels. Submarine fans can be classified into four types based on their tectonic settings: (1) immature passive-margin fans (North Sea type); (2) mature passive-margin fans (Atlantic type); (3) active-margin fans (Pacific type); and (4) mixed-setting fans. Immature passive-margin fans (e.g., Balder, North Sea), and active-margin fans (e.g., Navy, Pacific Ocean) are usually small, sand-rich, and possess well developed lobes. Mature passive-margin fans (e.g., Amazon, Atlantic Ocean) are large, mud-rich, and do not develop typical lobes. However, sheet sands are common in the lower-fan regions of mature passive-margin fans. Mixed-setting fans display characteristics of either Atlantic type (e.g., Bengal, Bay of Bengal), or Pacific type (Orinoco, Caribbean), or both. Conventional channel-lobe models may not be applicable to fans associated with mature passive margins. Submarine fans develop primarily during periods of low sea level on both active- and passive-margin settings. Consequently, hydrocarbon-bearing fan sequences are associated generally with global lowstands of sea level. Channel-fill sandstones in most tectonic settings are potential reservoirs. Lobes exhibit the most favorable reservoir quality in terms of sand content, lateral continuity, and porosity development. Lower-fan sheet sands may also make good reservoirs. Quartz-rich sandstones of mature passive-margin fans are most likely to preserve depositional porosity, whereas lithic sandstones of active-margin fans may not.

  14. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  15. The extending lithosphere (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Brun, Jean-Pierre

    2017-04-01

    Extension of the lithosphere gives birth to a wide range of structures, with characteristic widths between 10 and 1000 km, which includes continental rifts, passive margins, oceanic rifts, core complexes, or back-arc basins. Because the rheology of rocks strongly depends on temperature, this variety of extensional structures falls in two broad categories of extending lithospheres according to the initial Moho temperature TM. "Cold extending systems", with TM < 750°C and mantle-dominated strength, lead to narrow rifts and, if extension is maintained long enough, to passive margins and then mantle core complexes. "Hot extending systems", with TM > 750°C and crustal-dominated strength, lead, depending on strain rate, to either wide rifts or metamorphic core complexes. A much less quoted product of extension is the exhumation of high-pressure (HP ) metamorphic rocks occurring in domains of back-arc extension driven by slab rollback (e.g. Aegean; Appennines-Calabrian) or when the subduction upper plate undergoes extension for plate kinematics reasons (e.g. Norwegian Caledonides; Papua New Guinea). In these tectonic environments, well-documented pressure-temperature-time (P - T - t) paths of HP rocks show a two-stage retrogression path whose the first part corresponds to an isothermal large pressure drop ΔP proportional to the maximum pressure Pmax recorded by the rocks. This linear relation between ΔP and Pmax, which likely results from a stress switch between compression and extension at the onset of exhumation, is in fact observed in all HP metamorphism provinces worldwide, suggesting that the exhumation of HP rocks in extension is a general process rather than an uncommon case. In summary, the modes and products of extension are so diverse that, taken all together, they constitute a very versatile natural laboratory to decipher the rheological complexities of the continental lithosphere and their mechanical implications.

  16. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe; de Gelder, Giovanni; van der Goes, Freek; Morris, Antony

    2017-04-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Supra-subduction zone (SSZ) ophiolites (i.e., emerged fragments of ancient oceanic lithosphere accreted at supra-subduction spreading centers) were generated during this subduction event, and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Current models associate these ophiolite belts to simultaneous initiation of multiple, E-W trending subduction zones at 95 Ma. Here we report paleospreading direction data obtained from paleomagnetic analysis of sheeted dyke sections from seven Neo-Tethyan ophiolites of Turkey, Cyprus, and Syria, demonstrating that these ophiolites formed at NNE-SSW striking ridges parallel to the newly formed subduction zones. This subduction system was step-shaped and composed of NNE-SSW and ESE-WNW segments. The eastern subduction segment invaded the SW Mediterranean, leading to a radial obduction pattern similar to the Banda arc. Emplacement age constraints indicate that this subduction system formed close to the Triassic passive and paleo-transform margins of the Anatolide-Tauride continental block. Because the original Triassic-Jurassic Neo-Tethyan spreading ridge must have already subducted below the Pontides before the Late Cretaceous, we infer that the Late Cretaceous Neo-Tethyan subduction system started within ancient lithosphere, along NNE-SSW oriented fracture zones and faults parallel to the E-W trending passive margins. This challenges current concepts suggesting that subduction initiation occurs along active intra-oceanic plate boundaries.

  17. Early Paleozoic tectonics for the New Siberian Islands terrane (Eastern Arctic)

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2017-11-01

    The New Siberian Islands archipelago is one of the few research objects accessible for direct study on the eastern Arctic shelf. There are several models that have different interpretations of the Paleozoic tectonic history and the structural affinity of the New Siberian Islands terrane. Some infer a direct relationship with the passive continental margin of the Siberian paleocontinent. Others connect it with the marginal basins of Baltica and Laurentia, or the Chukotka-Alaska microplate. Our paleomagnetic investigation led us to create an apparent polar wander path for the early Paleozoic interval of geological history. Based on it we can conclude that the New Siberian Islands terrane could not have been a part of these continental plates. This study considers the possible tectonic scenarios of the Paleozoic history of the Earth, presents and discusses the corresponding global reconstructions describing the paleogeography and probable mutual kinematics of the terranes of the Eastern Arctic.

  18. The North Sakhalin Neogene total petroleum system of eastern Russia

    USGS Publications Warehouse

    Lindquist, S.J.

    2000-01-01

    The North Sakhalin Basin Province of eastern Russia contains one Total Petroleum System (TPS) ? North Sakhalin Neogene ? with more than 6 BBOE known, ultimately recoverable petroleum (61% gas, 36% oil, 3% condensate). Tertiary rocks in the basin were deposited by the prograding paleo-Amur River system. Marine to continental, Middle to Upper Miocene shale to coaly shale source rocks charged marine to continental Middle Miocene to Pliocene sandstone reservoir rocks in Late Miocene to Pliocene time. Fractured, self-sourced, Upper Oligocene to Lower Miocene siliceous shales also produce hydrocarbons. Geologic history is that of a Mesozoic Asian passive continental margin that was transformed into an active accretionary Tertiary margin and Cenozoic fold belt by the collision of India with Eurasia and by the subduction of Pacific Ocean crustal plates under the Asian continent. The area is characterized by extensional, compressional and wrench structural features that comprise most known traps.

  19. Chapter 48: Geology and petroleum potential of the Eurasia Basin

    USGS Publications Warehouse

    Moore, Thomas E.; Pitman, Janet K.

    2011-01-01

    The Eurasia Basin petroleum province comprises the younger, eastern half of the Arctic Ocean, including the Cenozoic Eurasia Basin and the outboard part of the continental margin of northern Europe. For the USGS petroleum assessment (CARA), it was divided into four assessment units (AUs): the Lena Prodelta AU, consisting of the deep-marine part of the Lena Delta; the Nansen Basin Margin AU, comprising the passive margin sequence of the Eurasian plate; and the Amundsen Basin and Nansen Basin AUs which encompass the abyssal plains north and south of the Gakkel Ridge spreading centre, respectively. The primary petroleum system thought to be present is sourced in c. 50–44 Ma (Early to Middle Eocene) condensed pelagic deposits that could be widespread in the province. Mean estimates of undiscovered, technically recoverable petroleum resources include <1 billion barrels of oil (BBO) and about 1.4 trillion cubic feet (TCF) of nonassociated gas in Lena Prodelta AU, and <0.4 BBO and 3.4 TCF nonassociated gas in the Nansen Basin Margin AU. The Nansen Basin and Amundsen Basin AUs were not quantitatively assessed because they have less than 10% probability of containing at least one accumulation of 50 MMBOE (million barrels of oil equivalent).

  20. Design and control of six degree-of-freedom active vibration isolation table.

    PubMed

    Hong, Jinpyo; Park, Kyihwan

    2010-03-01

    A six-axis active vibration isolation system (AVIS) is designed by using the direct driven guide and ball contact mechanisms in order to have no cross-coupling between actuators. The point contact configuration gives an advantage of having an easy assembly of eight voice coil actuators to an upper and a base plate. A voice coil actuator is used since it can provide a large displacement and sufficient bandwidth required for vibration control. The AVIS is controlled considering the effect of flexible vibration mode in the upper plate and velocity sensor dynamics. A loop shaping technique and phase margin condition are applied to design a vibration controller. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system. The scanning profiles of the specimen are compared together by using the atomic force microscope. The robustness of the AVIS is verified by showing the impulse response.

  1. Design and control of six degree-of-freedom active vibration isolation table

    NASA Astrophysics Data System (ADS)

    Hong, Jinpyo; Park, Kyihwan

    2010-03-01

    A six-axis active vibration isolation system (AVIS) is designed by using the direct driven guide and ball contact mechanisms in order to have no cross-coupling between actuators. The point contact configuration gives an advantage of having an easy assembly of eight voice coil actuators to an upper and a base plate. A voice coil actuator is used since it can provide a large displacement and sufficient bandwidth required for vibration control. The AVIS is controlled considering the effect of flexible vibration mode in the upper plate and velocity sensor dynamics. A loop shaping technique and phase margin condition are applied to design a vibration controller. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system. The scanning profiles of the specimen are compared together by using the atomic force microscope. The robustness of the AVIS is verified by showing the impulse response.

  2. A comparison of the regional slope characteristics of Venus and earth - Implications for geologic processes on Venus

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Head, J. W., III

    1986-01-01

    The range of 3 degree by 3 degree regional slopes of the Earth and Venus is similar (approximately 0.0-2.4 degrees), although the surface distribution of these values differs significantly. On earth, cratonic and abyssal plains form extensive regions of 0.0 degree slope. Within these regions a variety of features (mid-ocean ridges, volcanic island chains, subduction zones, and floded mountains) have regional slope characteristics influenced by seafloor spreading and plate recycling, as well as an active weathering regime. The plains provinces of Venus are much more rugged than earth's plains and are marked by numerous closely spaced circular and linear features (0.1-0.2 degree regional slope) concentrated into broad linear zones of global extent. Although Venus highlands are bounded by narrow zones of relatively steep slope, the margins of Aphrodite Terra and Beta Regio are not as steep as earth's continental margins and appear to be best developed parallel to the trends of major chasmata within these regions. Ishtar Terra's margins are significantly steeper and more continuous than other highland margins and are comparable to passive margins on earth. The Venus highlands do not contain appreciable smooth, flat interior regions, implying that highland topography is not significantly modified by erosion or deposition.

  3. Study of crustal structure and stretch mechanism of central continental shelf of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.

    2017-12-01

    Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.

  4. Vestiges of the proto-Caribbean seaway: Origin of the San Souci Volcanic Group, Trinidad

    NASA Astrophysics Data System (ADS)

    Neill, Iain; Kerr, Andrew C.; Chamberlain, Kevin R.; Schmitt, Axel K.; Urbani, Franco; Hastie, Alan R.; Pindell, James L.; Barry, Tiffany L.; Millar, Ian L.

    2014-06-01

    Outcrops of volcanic-hypabyssal rocks in Trinidad document the opening of the proto-Caribbean seaway during Jurassic-Cretaceous break-up of the Americas. The San Souci Group on the northern coast of Trinidad comprises the San Souci Volcanic Formation (SSVF) and passive margin sediments of the ~ 130-125 Ma Toco Formation. The Group was trapped at the leading edge of the Pacific-derived Caribbean Plate during the Cretaceous-Palaeogene, colliding with the para-autochthonous margin of Trinidad during the Oligocene-Miocene. In-situ U-Pb ion probe dating of micro-zircons from a mafic volcanic breccia reveal the SSVF crystallised at 135.0 ± 7.3 Ma. The age of the SSVF is within error of the age of the Toco Formation. Assuming a conformable contact, geodynamic models indicate a likely origin for the SSVF on the passive margin close to the northern tip of South America. Immobile element and Nd-Hf radiogenic isotope signatures of the mafic rocks indicate the SSVF was formed by ≪10% partial melting of a heterogeneous spinel peridotite source with no subduction or continental lithospheric mantle component. Felsic breccias within the SSVF are more enriched in incompatible elements, with isotope signatures that are less radiogenic than the mafic rocks of the SSVF. The felsic rocks may be derived from re-melting of mafic crust. Although geochemical comparisons are drawn here with proto-Caribbean igneous outcrops in Venezuela and elsewhere in the Caribbean more work is needed to elucidate the development of the proto-Caribbean seaway and its rifted margins. In particular, ion probe dating of micro-zircons may yield valuable insights into magmatism and metamorphism in the Caribbean, and in altered basaltic terranes more generally.

  5. Preliminary results of layered modelling of seismic refraction data at the East Limpopo Margin, Mozambique (PAMELA project, MOZ3/5 cruise)

    NASA Astrophysics Data System (ADS)

    Watremez, Louise; Evain, Mikael; Leprêtre, Angélique; Verrier, Fanny; Aslanian, Daniel; Leroy, Sylvie; Dias, Nuno; Afilhado, Alexandra; Schnurle, Philippe; d'Acremont, Elia; de Clarens, Philippe; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The East Limpopo Margin is a continental margin located offshore southern Mozambique, in the Mozambique Channel. The southern Mozambique margin has not been studied much until now, but its formation is assumed to be the result of the separation of the African plate from the Antarctica plate. A new geophysical survey MOZ3/5 (February-April 2016; PAMELA project*) allowed the acquisition of seven wide-angle reflection and refraction seismic profiles across the southernmost Mozambique margin. In this work, we show the first results obtained from the layered modelling of an approximately 400 km long transect crossing the East Limpopo Margin and including information from 22 ocean-bottom seismometers and 18 land seismometers. The velocity model, compared to coincident seismic reflection data, allows to observe (1) the variations of seismic velocities together with the variations of reflectivity characteristics in the sediments, including the occurrence of some magmatism, (2) some deep features located below the acoustic basement and that can be related to the pre-to-syn-rift history of the margin, (3) the velocities and Moho depths in the different areas of the crust, from the thick continental crust to the clear oceanic crust (magnetic anomalies), helping to define the nature of the crust and the presence of magmatic features along the whole profile, and (4) some velocity information in the uppermost mantle. These results will allow us to (1) understand the deep structures of the East Limpopo Margin and to have better constraints on the formation of the margin, helping kinematic reconstructions, improving the quantification of the magmatism along this margin, and (2) improve the knowledge of both the thermal evolution of the sediments and the potential magmatic sources in the study area. *The PAMELA project (PAssive Margin Exploration Laboratories) is a scientific project led by Ifremer and TOTAL in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS and IFPEN. Moulin, M., Aslanian, D., et al 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., et al. 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500

  6. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  7. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Cuthbert, Simon

    2017-04-01

    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.

  8. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record

    NASA Astrophysics Data System (ADS)

    Bouaziz, Samir; Barrier, Eric; Soussi, Mohamed; Turki, Mohamed M.; Zouari, Hédi

    2002-11-01

    A reconstruction of the tectonic evolution of the northern African margin in Tunisia since the Late Permian combining paleostress, tectonic stratigraphic and sedimentary approaches allows the characterization of several major periods corresponding to consistent stress patterns. The extension lasting from the Late Permian to the Middle Triassic is contemporaneous of the rifting related to the break up of Pangea. During Liassic times, regional extensional tectonics originated the dislocation of the initial continental platform. In northern Tunisia, the evolution of the Liassic NE-SW rifting led during Dogger times to the North African passive continental margin, whereas in southern Tunisia, a N-S extension, associated with E-W trending subsiding basins, lasted from the Jurassic until the Early Cretaceous. After an Upper Aptian-Early Albian transpressional event, NE-SW to ENE-WSW trending extensions prevailed during Late Cretaceous in relationship with the general tectonic evolution of the northeastern African plate. The inversions started in the Late Maastrichtian-Paleocene in northern Tunisia, probably as a consequence of the Africa-Eurasia convergence. Two major NW-SE trending compressions occurred in the Late Eocene and in the Middle-Late Miocene alternating with extensional periods in the Eocene, Oligocene, Early-Middle Miocene and Pliocene. The latter compressional event led to the complete inversion of the basins of the northwestern African plate, originating the Maghrebide chain. Such a study, supported by a high density of paleostress data and including complementary structural and stratigraphic approaches, provides a reliable way of determining the regional tectonic evolution.

  9. Angola seismicity

    NASA Astrophysics Data System (ADS)

    Neto, Francisco António Pereira; França, George Sand; Condori, Cristobal; Sant'Anna Marotta, Giuliano; Chimpliganond, Cristiano Naibert

    2018-05-01

    This work describes the development of the Angolan earthquake catalog and seismicity distribution in the Southwestern African Plate, in Angola. This region is one of the least seismically active, even for stable continental regions (SCRs) in the world. The maximum known earthquake had a magnitude of 6.0 Ms, while events with magnitudes of 4.5 have return period of about 10 years. Events with magnitude 5 and above occur with return period of about 20 years. Five seismic zones can be confirmed in Angola, within and along craton edges and in the sedimentary basins including offshore. Overall, the exposed cratonic regions tend to have more earthquakes compared to other regions such as sedimentary basins. Earthquakes tend to occur in Archaic rocks, especially inside preexisting weakness zones and in tectonic-magmatic reactivation zones of Mesozoic and Meso-Cenozoic, associated with the installation of a wide variety of intrusive rocks, strongly marked by intense tectonism. This fact can be explained by the models of preexisting weakness zones and stress concentration near intersecting structures. The Angolan passive margin is also a new region where seismic activity occurs. Although clear differences are found between different areas along the passive margin, in the middle near Porto Amboim city, seismic activity is more frequent compared with northwestern and southwestern regions.

  10. The age and degree of diachroneity of India-Asia collision determined from the sedimentary record: a comparison of new evidence from the east (Tibet) and west (Ladakh) of the orogen

    NASA Astrophysics Data System (ADS)

    Najman, Y.; Boudagher-Fadel, M.; Godin, L.; Parrish, R.; Bown, P.; Garzanti, E.; Horstwood, M.; Jenks, D.

    2009-12-01

    The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between 65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). We studied the youngest Tethyan succession in the east (Tingri, Tibet) and west (Ladakh, India) of the orogen and used two approaches to date collision: 1) timing of closure of Tethys, by dating the youngest marine strata and 2) first evidence of Asian detritus deposited on the Indian plate, using U-Pb ages of detrital zircon to assess provenance. Both these approaches provide a minimum age to collision. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of detrital zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that India-Asia collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.

  11. Quick-Connect, Self-Alining Latch

    NASA Technical Reports Server (NTRS)

    Burns, G. C.; Williams, E. J.

    1983-01-01

    Sturdy latch tolerates 10 degrees of angular mismatch in joining structural elements. Hexagonal passive plate nests in active plate, guided by capture plates and alinement keys and grooves. Center hole in both active and passive plates is 1 meter in diameter. Latch has possible uses a pipe joint, connector for parts of portable structures, and fitting for marine risers on offshore drilling rigs.

  12. Rodinia: Supercontinent's poster child or problem child?

    NASA Astrophysics Data System (ADS)

    Cawood, Peter; Hawkesworth, Chris

    2014-05-01

    Earth's rock record extending from 1.7 to 0.75 Ga, that period encompassing the entire Rodinian supercontinent cycle and the latter part of Nuna cycle, and corresponding with Earth's Middle Age, is characterized by environmental, evolutionary and lithospheric stability that contrasts with the dramatic changes in preceding and succeeding eras. The period is marked by a paucity of passive margins, an absence of a significant Sr anomaly in the paleoseawater record or in the epsilon Hf(t) in detrital zircon, a lack of orogenic gold and volcanic-hosted massive sulfide deposits, and an absence of glacial deposits and of iron formations. In contrast, anorthosites and kindred bodies are well developed and major pulses of Mo and Cu mineralization, including the world's largest examples of these deposits, are features of this period. These trends are attributed to the combined effects of lithospheric behavior related to secular cooling of the mantle and a relatively stable continental assemblage that was initiated during assembly of the Nuna supercontinent by ~1.7 Ga and continued until breakup of its closely related successor, Rodinia, around 0.75 Ga. The overall low abundance of passive margins within this timeframe is consistent with a stable continental configuration, which also provided a framework for environmental and evolutionary stability. A series of convergent margin accretionary orogens developed along the margin of the supercontinent as evidenced by rock sequences preserved in dispersed fragments in Australia, Antarctica, Amazonia, Baltica and Laurentia. Abundant anorthosites and related rocks developed inboard of the plate margin. Their temporal distribution appears to link with the secular cooling of the mantle in which the overlying continental lithosphere was then strong enough to be thickened, during either low angle subduction or post-subduction collision, and to support the emplacement of large plutons into the crust, yet the underlying mantle was still warm enough to result in widespread melting of the lower thickened crust.

  13. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  14. Arctic reconstruction from an Alaskan viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, R.C.

    1985-04-01

    Field, seismic, structural, and stratigraphic data were used to reconstruct the geologic history of the Arctic in 10-m.y. time slices from the present to mid-Jurassic - the initial opening of the Arctic Ocean. A basic assumption is that Lomonosov Ridge, Alpha Ridge, Mendeleyev Ridge, and Chukchi Plateau are all foundered continental plates. Opening of the Arctic occurs in two stages: Late Jurassic - Cretaceous for the Canada basin and Neogene for the Eurasian basin. Opening is facilitated by two subparallel transform shears - the Arctic (Kaltag-Porcupine) on the east and the Chukchi on the west. Deformation is essentially tensional onmore » the Barents side of the Arctic and shear-compressional on the Alaska side. The development of Chutkoya, North Slope, Brooks Range, north-west Canada, Seward Peninsula, and central Alaska can be sequentially related to Arctic opening, modified by impingement on the northern terrane of allochthonous terranes arriving from the south - the Pacific plates of Tintina, Denali, Orca (Prince William-Chugach-Yakutat), Anadyr, Khatyrka, Kolyman, and other minor terranes. The North Slope of Alaska, a passive, rifted, subsided margin, is restored to line up with a similar margin on Alpha Ridge. Northeastern Alaska (the Romanzof Mountain area) lines up opposite the north end of the Sverdrup Rim, near Prince Patrick and Borden Islands.« less

  15. Polyphase Rifting and Breakup of the Central Mozambique Margin

    NASA Astrophysics Data System (ADS)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results from strike-slip deformation localised along a proposed crustal weakness, represented by the Lurio-Pebane shear zone. A more north-south oriented extension is recorded by the continental breakup and oceanisation. A failed rift is initially formed between the Beira High and the African continent followed by the successful rifting of its southern margin. This study proposes a segmentation of the Central Mozambique margin, with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift. *The PAMELA project (PAssive Margin Exploration Laboratories) is a scientific project led by Ifremer and TOTAL in collaboration with Université Rennes 1, Université Pierre and Marie Curie, Université de Bretagne Occidentale, CNRS and IFPEN.

  16. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

    USGS Publications Warehouse

    Hanks, T.C.

    1977-01-01

    A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.

  17. Inheritance vs ongoing evolution of the passive margin lithosphere in the southeastern United States: A comparison of <50Ma tectonism with tomographically imaged lithospheric structures.

    NASA Astrophysics Data System (ADS)

    Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.

    2017-12-01

    The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.

  18. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  19. Numerical experiments of volcanic dominated rifts and passive margins

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Teyssier, Christian; Rey, Patrice; Whitney, Donna; Mondy, Luke

    2017-04-01

    Continental rifting is driven by plate tectonic forces (passive rifting), thermal thinning of the lithosphere over a hotspot (active rifting), or a combination of the two. Successful rifts develop into passive margins where pre-drift stretching is accompanied by normal faulting, clastic sedimentation, and various degrees of magmatism. The structure of volcanic passive margins (VPM) differs substantially from margins that are dominated by sedimentation. VPMs are typically narrow, with a lower continental crust that is intruded by magma and can flow as a low-viscosity layer. To investigate the role of the deep crust in the early development of VPMs, we have developed a suite of 2D thermomechanical numerical experiments (Underworld code) in which the density and viscosity of the deep crust and the density of the rift basin fill are systematically varied. Our experiments show that, for a given rifting velocity, the viscosity of the deep crust and the density of the rift basin fill exert primary controls on early VPM development. The viscosity of the deep crust controls the degree to which the shallow crust undergoes localised faulting or distributed thinning. A weak deep crust localises rifting and is efficiently exhumed to the near-surface, whereas a strong deep crust distributes shallow crust extension and remains buried. A high density rift basin fill results in gravitational loading and increased subsidence rate in cases in which the viscosity of the deep crust is sufficiently low to allow that layer to be displaced by the sinking basin fill. At the limit, a low viscosity deep crust overlain by a thick basalt-dominated fill generates a gravitational instability, with a drip of cool basalt that sinks and ponds at the Moho. Experiment results indicate that the deep crust plays a critical role in the dynamic development of volcanic dominated rifts and passive margins. During rifting, the deep continental crust is heated and readily responds to solicitations of the shallow crust (rooting of normal faults, exhumation of the deep crust in normal fault footwalls). Gravitational instabilities caused by high density rift infill similar to those observed in our numerical experiments may be present in the Mesoproterozoic ( 1100 Ma) North American Midcontinent Rift System (MRS). The MRS is a failed rift that is filled with >20 km of dominantly basaltic volcanic deposits, and therefore represents an end member VPM (high density basin fill) where the initial structure of a pre-drift VPM is preserved. Magmatism occurred in two pulses over <15 Ma involving deep mantle melting first (>150 km), then shallow melting (40-70 km). Post-rift subsidence accumulated up to 10 km of clastic sediments in the center of the basin. Evidence of cool, dense rocks sinking into a low-viscosity deep crust as predicted in our numerical experiments may be present in the western arm of the MRS, where crustal density analyses suggest the presence of dense bodies (eclogite) at the base of the crust.

  20. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  1. Flow over a traveling wavy foil with a passively flapping flat plate

    NASA Astrophysics Data System (ADS)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  2. Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, V.; Stadler, G.; Gurnis, M.

    2013-12-01

    Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant because it implies we can infer which plate boundaries are more coupled (seismically) for a realistic dynamic model of plates and mantle flow.

  3. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  4. The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?

    NASA Astrophysics Data System (ADS)

    Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.

    2012-12-01

    The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.

  5. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  6. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics 1166, 143-162.

  7. Architecture of the Distal Piedmont-Ligurian Rifted Margin in NW Italy: Hints for a Flip of the Rift System Polarity

    NASA Astrophysics Data System (ADS)

    Decarlis, Alessandro; Beltrando, Marco; Manatschal, Gianreto; Ferrando, Simona; Carosi, Rodolfo

    2017-11-01

    The Alpine Tethys rifted margins were generated by a Mesozoic polyphase magma-poor rifting leading to the opening of the Piedmont-Ligurian "Ocean." This latter developed through different phases of rifting that terminated with the exhumation of subcontinental mantle along an extensional detachment system. At the onset of simple shear detachment faulting, two margin types were generated: an upper and a lower plate corresponding to the hanging wall and footwall of the final detachment system, respectively. The two margin architectures were markedly different and characterized by a specific asymmetry. In this study the detailed analysis of the Adriatic margin, exposed in the Serie dei Laghi, Ivrea-Verbano, and Canavese Zone, enabled to recognize the diagnostic elements of an upper plate rifted margin. This thesis contrasts with the classic interpretation of the Southalpine units, previously compared with the adjacent fossil margin preserved in the Austroalpine nappes and considered as part of a lower plate. The proposed scenario suggests the segmentation and flip of the Alpine rifting system along strike and the passage from a lower to an upper plate. Following this interpretation, the European and Southern Adria margins are coevally developed upper plate margins, respectively resting NE and SW of a major transform zone that accommodates a flip in the polarity of the rift system. This new explanation has important implications for the study of the pre-Alpine rift-related structures, for the comprehension of their role during the reactivation of the margin and for the paleogeographic evolution of the Alpine orogen.

  8. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  9. Lithospheric Structure Beneath Taiwan From Sp Converted Waves

    NASA Astrophysics Data System (ADS)

    Glasgow, D.; McGlashan, N.; Brown, L.

    2006-12-01

    Taiwan is the product of three dimensionally complex interaction between the Eurasian Plate (EP) and the Philippine Sea plate (PSP), with the EP subducting eastward beneath the PSP in southern Taiwan while the PSP subducts northward beneath the EP in northern Taiwan. The structural emplacement of Philippine Arc lithosphere onto Chinese passive margin lithosphere is an exemplar of continental amalgamation, yet there are relatively few contraints on the geometry of lithosphere involved at depth. We have used teleseismic data recorded by the Broadband Array for Taiwan Seismology (BATS) to compute S-to-p wave receiver functions for the Taiwan region to provide new constraints on deep geometries. Moho conversions provide independent new estimates of crustal thickness, which vary from 35 to 55 km across the island in agreement with previous P to S conversion studies and local tomography. More significantly, our results suggest that the lithosphere- asthenosphere boundary (LAB) varies in depth from ca 140 km beneath northeastern Taiwan to ca 120 km beneath central Taiwan to perhaps less than 80 km beneath southern Taiwan. We attribute this along strike variation to the depression and decapitation of the Eurasian plate in the transition to northward subduction of the PSP.

  10. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America

    USGS Publications Warehouse

    Nelson, Alan R.; Shennan, Ian; Long, Antony J.

    1996-01-01

    Tidal-wetland stratigraphy reveals that great plate boundary earthquakes have caused hundreds of kilometers of coast to subside at the Cascadia subduction zone. However, determining earthquake recurrence intervals and mapping the coastal extent of past great earthquake ruptures in this region are complicated by the effects of many sedimentologic, hydrographic, and oceanographic processes that occur on the coasts of tectonically passive as well as active continental margins. Tidal-wetland stratigraphy at many Cascadia estuaries differs little from that at similar sites on passive-margin coasts where stratigraphic sequences form through nonseismic processes unrelated to coseismic land level changes. Methods developed through study of similar stratigraphic sequences in Europe provide a framework for investigating the Cascadia estuarine record. Five kinds of criteria must be evaluated when inferring regional coastal subsidence due to great plate boundary earthquakes: the suddenness and amount of submergence, the lateral extent of submerged tidal-wetland soils, the coincidence of submergence with tsunami deposits, and the degree of synchroneity of submergence events at widely spaced sites. Evaluation of such criteria at the Cascadia subduction zone indicates regional coastal subsidence during at least two great earthquakes. Evidence for a coseismic origin remains equivocal, however, for the many peat-mud contacts in Cascadia stratigraphic sequences that lack (1) contrasts in lithology or fossils indicative of more than half a meter of submergence, (2) well-studied tsunami deposits, or (3) precise ages needed for regional correlation. Paleoecologic studies of fossil assemblages are particularly important in estimating the size of sudden sea level changes recorded by abrupt peat-mud contacts and in helping to distinguish erosional and gradually formed contacts from coseismic contacts. Reconstruction of a history of great earthquakes for the Cascadia subduction zone will require rigorous application of the above criteria and many detailed investigations.

  11. Late differentiation of proximal and distal margins in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Bache, F.; Leroy, S.; D'Acremont, E.; Autin, J.; Watremez, L.; Rouzo, S.

    2009-04-01

    Non-volcanic passive margins are usually described in three different domains (Boillot et al., 1988), namely (1) the continental domain, where the basement is structured in a series of basins and basement rises, (2) the true oceanic domain, where the bathymetry is relatively smooth, and (3) in between them, a transitional domain referred to as the oceanic-continental transition (OCT), where the basement is partly composed of exhumed mantle. The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. The distal margin and particularly the OCT domain were previously studied considering a large set of data (Leroy et al., 2004; d'Acremont et al., 2005; d'Acremont et al., 2006; Autin, 2008). This study focalises on the sedimentary cover identified on seismic reflexion profiles acquired during Encens-Sheba (2000) and Encens (2006) cruises. Sedimentary stratal pattern and seismic facies succession suggest that the differentiation between the proximal and the distal margins occurred very late in the formation of the margin, after the deposition of ~2 km of "syn-OCT" sediments which filled the distal margin grabens. A high position of the proximal and distal margins during rifting and "syn-OCT" sediments deposition could be proposed. The major implication of this evolution should be a shallow nature of "syn-OCT" deposits. The lack of boreholes doesn't permit to affirm this last point. Comparable observations have been described on other passive margins (Moulin, 2003; Moulin et al., 2005; Labails, 2007; Aslanian et al., 2008; Bache, 2008). For some authors, it shows the persistence of a deep thermal anomaly during the early history of the margin (Steckler et al., 1988; Dupré et al., 2007). These observations could be a common characteristic of passive margins evolution and are of major interest for petroleum exploration. Aslanian, D., M. Moulin, O. J.L., P. Unternehr, F. Bache, I. Contrucci, F. Klingelhoefer, C. Labails, L. Matias, H. Nouzé, and M. Rabineau, 2008, Brazilian and African Passive Margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints: Tectonophysics, v. doi: 10.1016/j.tecto.2008.12.016. Autin, J., 2008, Déchirure continentale et segmentation du Golfe d'Aden oriental en contexte de rifting oblique: Ph. D. thesis, Université Pierre et Marie Curie, Paris VI, 310 p. Bache, F., 2008, Evolution Oligo-Miocène des marges du micro océan Liguro Provençal.: Ph. D. thesis, Université de Bretagne Occidentale/CNRS/IFREMER. http://www.ifremer.fr/docelec/notice/2008/notice4768-EN.htm, Brest, 328 p. Boillot, G., J. Girardeau, and J. Kornprobst, 1988, The rifting of the Galicia margin: crustal thinning and emplacement of mantle rocks on the seafloor (ODP Leg 103). In Boillot, G., Winterer, E.L., et al., Proc. ODP, Sci. Results, v. 103, College Station, TX (Ocean Drilling Program), p. 741-756. d'Acremont, E., S. Leroy, M. O. Beslier, N. bellahsen, M. Fournier, C. Robin, M. Maia, and P. Gente, 2005, Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data: Geophys. J. Int., v. 160, p. 869-890. d'Acremont, E., S. Leroy, M. Maia, P. Patriat, M. O. Beslier, N. Bellahsen, M. Fournier, and P. Gente, 2006, Structure and evolution of the eastern Gulf of Aden: insights from magnetic and gravity data (Encens-Sheba MD117 cruise): Geophys. J. Int., v. 165, p. 786-803. Dupré, S., G. Bertotti, and S. Cloetingh, 2007, Tectonic history along the South Gabon Basin: Anomalous early post-rift subsidence: Mar. Pet. Geol., v. 24, p. 151-172. Labails, C., 2007, La marge sud-marocaine et les premières phases d'ouverture de l'océan Atlantique Central: Ph. D. thesis, Université de Bretagne Occidentale, Brest. Leroy, S., P. Gente, M. Fournier, E. d'Acremont, P. Patriat, M. O. Beslier, N. Bellahsen, M. Maia, A. Blais, J. Perrot, A. Al-Kathiri, S. Merkouriev, J. M. Fleury, P. Y. Ruellan, C. Lepvrier, and P. Huchon, 2004, From rifting to spreading in the Gulf of Aden: a geophysical survey of a young oceanic basin from margin to margin: Terra Nova, v. 16, p. 185-192. Moulin, M., 2003, Etude géologique et géophysique des marges continentales passive: exemple de l'Angola et du Zaire: Ph. D. thesis, Université de Bretagne Occidentale/IFREMER. http://www.ifremer.fr/docelec/doc/2003/these-82.pdf., Brest, 320 p. Moulin, M., D. Aslanian, J. L. Olivet, I. Contrucci, L. Matias, L. Géli, F. Klingelhoefer, H. Nouzé, J. P. Réhault, and P. Unternehr, 2005, Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (Zaïango project): Geophys. J. Int., v. 162, p. 793-810. Steckler, M., A. B. Watts, and J. A. Thorne, 1988, Subsidence and basin modeling at the U.S. Atlantic passive margin, in R. E. Sheridan, and J. A. Grow, eds., The Atlantic Continental Margin: U.S., v. The Geology of Noth America, V1-2, Geological Society of America, p. 399-416.

  12. Genesis of giant promontories during two-stage continental breakup and implications for post-Rodinia circum-Arctic margins (Invited)

    NASA Astrophysics Data System (ADS)

    Bradley, D. C.

    2013-12-01

    Giant promontories are a seldom-noted feature of the present-day population of passive margins. A number of them formed during the breakup of Pangea: the South Tasman Rise and Naturaliste Plateau off Australia, the Grand Banks and Florida off North America, the Falkland Plateau off South America, and the Horn of Africa. Giant promontories protrude hundreds of kms seaward from a corner of the continent and are not to be confused with the low-amplitude irregularies that occur at intervals along most passive margins. Giant promontories that might have formed during the breakup of the earlier supercontinents, Rodinia and Nuna, have not been recognized. Properties of the modern examples suggest some identifying criteria. They are cored by continental crust that was created or last reworked during the previous collisional cycle. Judging from the examples listed, the early histories of the two flanks of a promontory will differ because separate continents or microcontinents drift away in different directions at different times. For example, the eastern flank of the >500-km-long South Tasman Rise formed when the Lord Howe Rise separated from Australia at ca. 85 Ma, whereas the western flank formed when Antarctica moved past at ca. 65-33 Ma. (Age spans of various passive margins quoted herein are from Bradley, 2008, Earth Sci. Rev. 91:1-26.) During ocean closure (typically, arc-passive margin collision), a promontory may be exposed to earlier and more intense tectonism than elsewhere along the margin. Unique events are also possible. For example, the tip of Florida experienced a glancing collision with Cuba during the Paleogene, an event that was not felt elsewhere along the Gulf or Atlantic margins of the southeastern U.S. Giant promontories are unlikely to have deep lithospheric keels and may be prone to being dislodged and rotated during collision. Thus, what starts as a promontory may end up as a microcontinent in an orogen. The case for giant promontories in the circum-Arctic has not been thoroughly assessed, but the shape of Laurentia and the ages of its Paleozoic margins suggest that promontories dating from breakup of Rodinia may have jutted from its NE and (or) NW corners. The NE corner lies at the junction of an eastern (Caledonian) passive margin that existed from ca. 815 to 444 Ma and a northern (Innuitian) passive margin that existed from ca. 620 to 444 Ma. The hypothetical NE promontory would have attached to northern East Greenland where early Paleozoic passive-margin deposits are notably lacking. Nearby remnants of the NE promontory might include the Yermak plateau off North Greenland, the Morris Jessup plateau off Svalbard, or parts of Svalbard itself. A hypothetical NW Laurentian promontory would have attached somewhere between Banks Island in the Canadian Arctic, where the 620-444 Ma Innuitian margin is truncated along the present-day rifted margin, and east-central Alaska, site of the most northerly rocks that can be confidently placed along the ca. 710-385 Ma Cordilleran passive margin. Remnants of this promontory might include older rocks of the Ruby terrane and (or) the northeastern Brooks Range, both in Alaska. Either hypothetical promontory would have been involved in orogenesis associated with the postulated extrusion of terranes through the gap between Laurentia and Siberia.

  13. Microbial communities in methane seep sediments along US Atlantic Margin are structured by organic matter and seepage dynamics

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Pohlman, J.; Treude, T.; Ruppel, C. D.; Colwell, F. S.

    2016-12-01

    Methane seeps are dynamic environments on continental margins where subsurface methane reaches the ocean. Microbial communities play a critical role in carbon cycling within seep sediments via organic carbon degradation, methane production, and anaerobic oxidation of methane (AOM), which consumes 20-80% of methane in seep sediments. However, biogeochemical controls on microbial community structure at seeps on a margin-wide scale remain unclear. The passive US Atlantic Margin (USAM) has been identified as a region of active methane seepage. Passive margin seeps have traditionally been understudied relative to seeps on active margins. Passive margins exhibit large cross-margin variability in organic carbon deposition and are anticipated to have divergent seep dynamics from active margins. Thus, the USAM offers a unique opportunity to investigate controls on microbial communities in seep sediments. We undertook analysis of microbial communities inhabiting seep sediments at 6 biogeochemically distinct sites along the USAM. Microbiological samples were co-located with measurements of sediment geochemistry and AOM and sulfate reduction rates. Illumina sequencing of the 16S rRNA gene, using both universal (83 samples) and archaeal-specific (64 samples) primers, and the mcrA gene (18 samples) identified 44 bacterial phyla and 7 archaeal phyla. Seeps in canyons and on open slope, likely representing high and low organic content sediments, hosted distinct communities; the former was dominated by ammonia-oxidizing Marine Group I Thaumarchaeota and the latter by mixotrophic Hadesarchaeota. Seep stability also impacted microbial community structure, and in particular the establishment of an AOM community rather than a Bathyarchaeota-dominated community. These findings contribute to understanding how microbial communities are structured within methane seep sediments and pave the way for investigating broad differences in carbon cycling between seeps on passive and active margins.

  14. Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data

    NASA Astrophysics Data System (ADS)

    d'Acremont, Elia; Leroy, Sylvie; Beslier, Marie-Odile; Bellahsen, Nicolas; Fournier, Marc; Robin, Cécile; Maia, Marcia; Gente, Pascal

    2005-03-01

    The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. Its mean orientation, N75°E, strikes obliquely (50°) to the N25°E opening direction. The western conjugate margins are masked by Oligo-Miocene lavas from the Afar Plume. This paper concerns the eastern margins, where the 19-35 Ma breakup structures are well exposed onshore and within the sediment-starved marine shelf. Those passive margins, about 200 km distant, are non-volcanic. Offshore, during the Encens-Sheba cruise we gathered swath bathymetry, single-channel seismic reflection, gravity and magnetism data, in order to compare the structure of the two conjugate margins and to reconstruct the evolution of the thinned continental crust from rifting to the onset of oceanic spreading. Between the Alula-Fartak and Socotra major fracture zones, two accommodation zones trending N25°E separate the margins into three N110°E-trending segments. The margins are asymmetric: offshore, the northern margin is narrower and steeper than the southern one. Including the onshore domain, the southern rifted margin is about twice the breadth of the northern one. We relate this asymmetry to inherited Jurassic/Cretaceous rifts. The rifting obliquity also influenced the syn-rift structural pattern responsible for the normal faults trending from N70°E to N110°E. The N110°E fault pattern could be explained by the decrease of the influence of rift obliquity towards the central rift, and/or by structural inheritance. The transition between the thinned continental crust and the oceanic crust is characterized by a 40 km wide zone. Our data suggest that its basement is made up of thinned continental crust along the southern margin and of thinned continental crust or exhumed mantle, more or less intruded by magmatic rocks, along the northern margin.

  15. Mapping rift domains within an inverted hyperextended rift system: The role of rift inheritance in controlling the present-day structure of the North Iberian margin (Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Cadenas, Patricia; Fernández-Viejo, Gabriela; Álvarez-Pulgar, Javier; Tugend, Julie; Manatschal, Gianreto; Minshull, Tim

    2017-04-01

    This study presents a new rift domain map in the central and western North Iberian margin, in the southern Bay of Biscay. This margin was structured during polyphase Triassic to Lower Cretaceous rifting events which led to hyperextension and exhumation and the formation of oceanic crust during a short-lived seafloor spreading period. Extension was halted due to the Alpine convergence between the Iberian and the European plates which led to the formation of the Cantabrian-Pyrenean orogen during the Cenozoic. In the Bay of Biscay, while the northern Biscay margin was slightly inverted, the North Iberian margin, which is at present-day part of the western branch of the Alpine belt together with the Cantabrian Mountains, exhibits several degrees of compressional reactivation. This makes this area a natural laboratory to study the influence of rift inheritance into the inversion of a passive margin. Relying on the interpretation of geological and geophysical data and the integration of wide-angle results, we have mapped five rift domains, corresponding to the proximal, necking, hyperthinned, exhumed mantle, and oceanic domains. One of the main outcomes of this work is the identification of the Asturian Basin as part of a hyperthinned domain bounded to the north by the Le Danois basement high. We interpret Le Danois High as a rift-related crustal block inherited from the margin structure. Our results suggest that the inherited rift architecture controlled the subsequent compressional reactivation. The hyperextended domains within the abyssal plain focused most of the compression resulting in the development of an accretionary wedge and the underthrusting of part of these distal domains beneath the margin. The presence of the Le Danois continental block added complexity, conditioning the inversion undergone by the Asturian Basin. This residual block of less thinned continental crust acted as a local buttress hampering further compressional reactivation within the platform and the inner basin, which were only slightly inverted and uplifted passively due to the underthrusting of the hyperextended domains beneath Le Danois High. The new inverted rift domain map adds some constraints to support kinematic reconstructions and confine palinspatic restorations of the inverted rifted margin. Furthermore, it provides more insights to comprehend the strain partitioning within the Bay of Biscay-Pyrenean inverted hyperextended rift and the broad structural variability observed in such a reduced area, arising from the strong segmentation and the obliquity between the NW-SE and WNW-ESE trending rift structures and the E-W compressional front.

  16. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data

    NASA Astrophysics Data System (ADS)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.

    2018-01-01

    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above. To the west, oceanic subduction of the Bay of Biscay under the North Iberian margin is supported by an upper plate thrust wedge, gravity and magnetic anomalies, and 3D inclined sub-crustal reflections. However, discrepancies remain for the location of continent-ocean transitions in the Bay of Biscay and for the extent of oceanic subduction. The plate-kinematic evolution during the Mesozoic, which involves issues as the timing and total amount of opening, as well as the role of strike-slip drift, is also under debate, discrepancies arising from first-order interpretations of the adjacent oceanic magnetic anomaly record.

  17. Apatite fission-track thermochronometric constraints on the exhumation and evolution of the southeastern Indian (Tamil Nadu) passive margin and the role of structural inheritance

    NASA Astrophysics Data System (ADS)

    De Grave, Johan; Glorie, Stijn; Singh, Tejpal; Van Ranst, Gerben; Nachtergaele, Simon

    2017-04-01

    After rifting from Gondwana in the Late Jurassic - Early Cretaceous, and subsequent opening of the Indian Ocean basin, the continental margins of India developed into typical passive margins. Extensional tectonic forces and thermal subsidence gave rise to the formation of both on-shore and off-shore basins along the southeastern passive margin of the Indian continent, along the Tamil Nadu coast. There, basins such as the Cauvery and Krishna-Godavari basin, accumulated Meso- and Cenozoic (Early Cretaceous to recent) detrital sediments coming off the rifted blocks and the Tamil Nadu hinterland. In places, deep rift basins have accumulated up to over 3000 m of sediments. The continental basement of Tamil Nadu is chiefly composed of metamorphic rocks of the Archean to Palaeoproterozoic Eastern Dharwar Craton and the coeval Southern Granulite Terrane (e.g. Peucat et al., 2013). Several crustal scale shear zones crosscut this assemblage and at least some are considered to represent Gondwanan sutures (Santosh et al., 2012). Smaller, younger granitoid plutons intrude the basement at several locations and most of these are of Late Neoproterozoic age (Glorie et al., 2014). In this work metamorphic basements rocks and the younger granitoids were sampled for a apatite fission-track (AFT) thermochronometric study. A North-South profile from Chennai to Thanjavur mainly transects the Salem block of the Southern Granulite Terrane, and crosscuts several crustal scale shear zones, such as the Cauvery, Salem-Attur and Gangavalli shear zones. Apatites from over 30 samples were used in this study. AFT ages all range between about 190 and 120 Ma (Jurassic - Early Cretaceous). These mainly represent the slow, shallow exhumation of the basement during the rift and early drift phase of the Indian plate from Gondwana. AFT mean track lengths vary between 11 and 13 µm and are typical of slowly exhumed basement. Thermal history modelling (using the QTQt software by Gallagher, 2012) confirms that internal regions of fault blocks experienced a slow and steady cooling to ambient temperatures throughout the Meso-Cenozoic, while younger samples, mainly positioned closeby or inside the shear zones, additionally record a more moderate to rapid cooling since the Early Cenozoic.

  18. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  19. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A-type granitoids formed. 4) These dynamics are the result of subduction and extension of the oceanic plates that bordered East Asia. 5) The complex mosaic of geology and geochemistry is the result of compositional variation in the deep lithosphere, as well as variation in the dynamics of oceanic plate movements.

  20. Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic Paleozoic birth and development of peri-Gondwanan terranes and their transfer to Laurentia and Laurussia

    NASA Astrophysics Data System (ADS)

    Keppie, J. Duncan; Nance, R. Damian; Murphy, J. Brendan; Dostal, J.

    2003-04-01

    Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) ˜1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or ˜2 Ga (Cadomia) basement; (2) 750-600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic-Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician-Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an "accordion" model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a "bulldozer" model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a "Baja" model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge-trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a "Baja" model to a "bulldozer" model. By analogy with the eastern Pacific, we name the oceanic plates off northern Gondwana: Merlin (≡Farallon), Morgana (≡Pacific), and Mordred (≡Kula). If Neoproterozoic subduction was towards Gondwana, application of this combined model requires a total rotation of East Avalonia and Carolina through 180° either during separation (using a western Transverse Ranges model), during accretion (using a Baja British Columbia "train wreck" model), or during dispersion (using an Australia "bulldozer" model). On the other hand, Siluro-Devonian orthogonal transfer ("accordion" model) from northern Africa to southern Laurussia followed by a Carboniferous "Baja" model appears to best fit the existing data for Cadomia. Finally, Oaxaquia, Chortis, Maya, and Suwannee appear to have been transported along the margin of Gondwana until it collided with southern Laurentia on whose margin they were stranded following the breakup of Pangea. Forward modeling of a closing Mediterranean followed by breakup on the African margin may provide a modern analogue. These actualistic models differ in their dictates on the initial distribution of the peri-Gondwanan terranes and can be tested by comparing features of the modern analogues with their ancient tectonic counterparts.

  1. Provenance of Permian-Triassic Gondwana Sequence Units Accreted to the Banda Arc: Constraints from U/Pb and Hf Analysis of Zircons and Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Spencer, C. J.; Harris, R. A.; Hoiland, C.

    2011-12-01

    Analysis of zircons from Australian affinity Permo-Triassic units of the Timor region yield age distributions with large peaks at 230-400 Ma and 1750-1900 Ma (n=435). Similar zircon age peaks are also found in rocks from NE Australia and the eastern Cimmerian block. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the NW margin of Australia. The Cimmerian Block was removed from Gondwana during Early Permian rifting and initiation of the Neo-Tethys Ocean. Hf analysis of zircon from the Aileu Complex in Timor and Kisar shows bimodal (juvenial and evolved) magmatism in the Gondwana Sequence of NW Australia at ~300 Ma. The magmatic event produced basalt with rift valley and ocean floor geochemical affinities, and rhyolite. Similar rock types and isotopic signatures are also found in Permo-Triassic igneous units throughout the Cimmerian continental block. The part of the Cimmerian Block with zircon distributions most like the Gondwana Sequence of NW Australia is the terranes of northern Tibet and Malaysia. The large 1750-1900 Ma zircon peak is much more wide spread, and appears in terranes from Baoshan (SW China) to Borneo. The Permo-Triassic rocks of the Timor region fill syn-rift intracratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwana terranes will rejoin. However, it may be difficult to reconstruct the various ventures of they made over the past 300 Ma.

  2. Global Seismicity: Three New Maps Compiled with Geographic Information Systems

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.; Montgomery, Brian C.

    1996-01-01

    This paper presents three new maps of global seismicity compiled from NOAA digital data, covering the interval 1963-1998, with three different magnitude ranges (mb): greater than 3.5, less than 3.5, and all detectable magnitudes. A commercially available geographic information system (GIS) was used as the database manager. Epicenter locations were acquired from a CD-ROM supplied by the National Geophysical Data Center. A methodology is presented that can be followed by general users. The implications of the maps are discussed, including the limitations of conventional plate models, and the different tectonic behavior of continental vs. oceanic lithosphere. Several little-known areas of intraplate or passive margin seismicity are also discussed, possibly expressing horizontal compression generated by ridge push.

  3. Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; McCulloch, M. T.; Maynard, J. B.

    1990-07-01

    Petrographic, geochemical, and isotopic data for turbidites from a variety of tectonic settings exhibit considerable variability that is related to tectonic association. Passive margin turbidites (Trailing Edge, Continental Collision) display high framework quartz (Q) content in sands, evolved major element compositions (high Si/Al, K/Na), incompatible element enrichments (high Th/Sc, La/Sc, La/Yb), negative Eu-anomalies and variable Th/U ratios. They have low 143Nd /144Nd and high 87Sr /86Sr ( ɛNd = -26 to -10; 87Sr /86Sr = 0.709 to 0.734 ), indicating a dominance of old upper crustal sources. Active margin settings (Fore Arc, Continental Arc, Back Arc, Strike Slip) commonly exhibit quite different compositions. Th/Sc varies from <0.01 to 1.8, and ɛNd varies from -13.8 to +8.3. Eu-anomalies range from no anomaly ( Eu/Eu ∗ = 1.0 ) to Eu-depletions typical of post-Archean shales ( Eu/Eu ∗ = 0.65 ). Active margin data are explained by mixtures of young arc-derived material, with variable composition and old upper crustal sources. Major element data indicate that passive margin turbidites have experienced more severe weathering histories than those from active settings. Most trace elements are enriched in muds relative to associated sands because of dilution effects from quartz and calcite and concentration of trace elements in clays. Exceptions include Zr, Hf (heavy mineral influence) and Tl (enriched in feldspar) which display enrichments in sands. Active margin sands commonly exhibit higher Eu/Eu ∗ than associated muds, resulting from concentration of plagioclase during sorting. Some associated sands and muds, especially from active settings, have systematic differences in Th/Sc ratios and Nd-isotopic composition, indicating that various provenance components may separate into different grain-size fractions during sedimentary sorting processes. Trace element abundances of modern turbidites, from both active and passive settings, differ from Archean turbidites in several important ways. Modern turbidites have less uniformity, for example, in Th/Sc ratios. On average, modern turbidites have greater depletions in Eu (lower Eu/Eu ∗) than do Archean turbidites, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) are of greater importance for crustal evolution at modern continental margins than they were during the Archean. Modern turbidites do not display HREE depletion, a feature commonly seen in Archean data. HREE depletion ( Gd N/Yb N > 2.0 ) in Archean sediments results from incorporation of felsic igneous rocks that were in equilibrium (or their sources were in equilibrium) with garnet sometime in their history. Absence of HREE depletion at modern continental margins suggests that processes of crust formation (or mantle source compositions) may have differed. Differences in trace element abundances for Archean and modern turbidites add support to suggestions that upper continental crust compositions and major processes responsible for continental crust differentiation differed during the Archean. Neodymium model ages, thought to approximate average provenance age, are highly variable ( TDMND = 0-2.6 Ga) in modern turbidites, in contrast with studies that indicate Nd-model ages of lithified Phanerozoic sediment are fairly constant at about 1.5-2.0 Ga. This variability indicates that continental margin sediments incorporate new mantle-derived components, as well as continental crust of widely varying age, during recycling. The apparent dearth of ancient sediments with Nd-model age similar to stratigraphic age supports the suggestion that preservation potential of sediments is related to tectonic setting. Many samples from active settings have isotopic compositions similar to or only slightly evolved from mantle-derived igneous rocks. Subduction of active margin turbidites should be considered in models of crust-mantle recycling. For short-term recycling, such as that postulated for island arc petrogenesis, arc-derived turbidites cannot be easily recognized as a source component because of the lack of time available for isotopic evolution. If turbidites were incorporated into the sources of ocean island volcanics, the isotopic signatures would be considerably more evolved since most models call for long mantle storage times (1.0-2.0 Ga), prior to incorporation. Four provenance components are recognized on the basis of geochemistry and Nd-isotopic composition: (1) Old Upper Continental Crust (old igneous/metamorphic terranes, recycled sediment); (2) Young Undifferentiated Arc (young volcanic/plutonic source that has not experienced plagioclase fractionation); (3) Young Differentiated Arc (young volcanic/plutonic source that has experienced plagioclase fractionation); (4) MORB (minor). Relative proportions of these components are influenced by the plate tectonic association of the provenance and are typically (but not necessarily) reflected in the depositional basin. Provenance of quartzose (mainly passive settings) and non-quartzose (mainly active settings) turbidites can be characterized by bulk composition (e.g., Th/Sc) and Nd-isotopic composition (reflecting age).

  4. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco

    NASA Astrophysics Data System (ADS)

    Leprêtre, Rémi; Missenard, Yves; Barbarand, Jocelyn; Gautheron, Cécile; Saddiqi, Omar; Pinna-Jamme, Rosella

    2015-06-01

    The passive margin of South Morocco is a low-elevated passive margin. It constitutes one of the oldest margins of the Atlantic Ocean, with an Early Jurassic breakup, and little geological data are available concerning its postrift reactivation so far. We investigated the postrift thermal history of the onshore part of the margin with low-temperature thermochronology on apatite crystals. Fission track and (U-Th-Sm)/He ages we obtained are significantly younger than the breakup ( 190 Ma). Fission track ages range from 107 ± 8 to 175 ± 16 Ma, with mean track lengths from 10.7 ± 0.3 to 12.5 ± 0.2 µm. (U-Th-Sm)/He ages range from 14 ± 1 to 185 ± 15 Ma. Using inverse modeling of low-temperature thermochronological data, we demonstrate that the South Moroccan continental margin underwent a complex postrift history with at least two burial and exhumation phases. The first exhumation event occurred during Late Jurassic/Early Cretaceous, and we attribute this to mantle dynamics rather than to intrinsic rifting-related processes such as flexural rebound. The second event, from Late Cretaceous to early Paleogene, might record the onset of Africa/Europe convergence. We show a remarkably common behavior of the whole Moroccan passive margin during its early postrift evolution. The present-day differences result from a segmentation of the margin domains due to the Africa/Europe convergence. Finally we propose that varying retained strengths during rifting and also the specific crustal/lithospheric geometry of stretching explain the difference between the topographical expressions on the continental African margin compared to its American counterpart.

  5. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early Triassic time, and marine sediment deposited on the subsiding continental shelf overlapped the previously deformed Permian rocks. Renewed contractional deformation, probably in the Middle Triassic, is interpreted to be associated with emplacement of the Golconda allochthon onto the margin of the continent. This event, which is identified with certainty in the Sierra Nevada, also may have significantly affected rocks in the White and Inyo Mountains to the east. Subduction and arc magmatism that created most of the Sierra Nevada batholith began in the Late Triassic and lasted through the remainder of the Mesozoic. During this time, the East Sierran thrust system (ESTS) developed as a narrow zone of intense, predominantly E-vergent contractional deformation along the eastern margin of the growing batholith. Activity on the ESTS took place over an extended part of Mesozoic time, both before and after intrusion of voluminous Middle Jurassic plutons, and is interpreted to have been mechanically linked to emplacement of the batholith. Deformation on the ESTS and magmatism in the Sierra Nevada both ended prior to the close of the Cretaceous.

  6. Rayleigh phase velocities in the upper mantle of the Pacific-North American plate boundary in southern California

    NASA Astrophysics Data System (ADS)

    Escobar, L.; Weeraratne, D. S.; Kohler, M. D.

    2013-05-01

    The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ≥ 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the west coast margin. With this study, we seek to understand the strength and deformation of the Pacific oceanic lithosphere resulting from plate convergence and subduction beneath Southern California 30 Ma as well as translational stresses present today. We also test for predictions of several geodynamic models which describe the kinematic mantle flow that accompanies plate motion within this area including passive mantle drag due to Pacific plate motion and toroidal flow in the western U.S. region that may extend offshore.

  7. Global prediction of continuous hydrocarbon accumulations in self-sourced reservoirs

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2012-01-01

    This report was first presented as an abstract in poster format at the American Association of Petroleum Geologists (AAPG) 2012 Annual Convention and Exhibition, April 22-25, Long Beach, Calif., as Search and Discovery Article no. 90142. Shale resource plays occur in predictable tectonic settings within similar orders of magnitude of eustatic events. A conceptual model for predicting the presence of resource-quality shales is essential for evaluating components of continuous petroleum systems. Basin geometry often distinguishes self-sourced resource plays from conventional plays. Intracratonic or intrashelf foreland basins at active margins are the predominant depositional settings among those explored for the development of self-sourced continuous accumulations, whereas source rocks associated with conventional accumulations typically were deposited in rifted passive margin settings (or other cratonic environments). Generally, the former are associated with the assembly of supercontinents, and the latter often resulted during or subsequent to the breakup of landmasses. Spreading rates, climate, and eustasy are influenced by these global tectonic events, such that deposition of self-sourced reservoirs occurred during periods characterized by rapid plate reconfiguration, predominantly greenhouse climate conditions, and in areas adjacent to extensive carbonate sedimentation. Combined tectonic histories, eustatic curves, and paleogeographic reconstructions may be useful in global predictions of organic-rich shale accumulations suitable for continuous resource development. Accumulation of marine organic material is attributed to upwellings that enhance productivity and oxygen-minimum bottom waters that prevent destruction of organic matter. The accumulation of potential self-sourced resources can be attributed to slow sedimentation rates in rapidly subsiding (incipient, flexural) foreland basins, while flooding of adjacent carbonate platforms and other cratonic highs occurred. In contrast, deposition of this resource type on rifted passive margins was likely the result of reactivation of long-lived cratonic features or salt tectonic regimes that created semi-confined basins. Commonly, loading by thick sections of clastic material, following thermal relaxation after plate collision or rift phases, advances kerogen maturation. With few exceptions, North American self-sourced reservoirs appear to be associated with calcitic seas and predominantly greenhouse or transitional ("warm" to "cool") global climatic conditions. Significant changes to the global carbon budget may also be a contributing factor in the stratigraphic distribution of continuous resource plays, requiring additional evaluation.

  8. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin

    USGS Publications Warehouse

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.

  9. Provenance of Cretaceous-Pliocene Clastic Sediments in the Tachira Saddle, Western Venezuela, and Implications for Sediment Dispersal Patterns in the Northern Andes

    NASA Astrophysics Data System (ADS)

    Gomez, Ali Ricardo

    Northwestern South America is highly deformed due to the transpressive plate boundary associated with complex interactions between the Caribbean plate, the South American plate, the Nazca plate and the Panama arc. Previous studies suggest that the Cenozoic uplift of the Merida Andes and Eastern Cordillera of Colombia affected sediment dispersal patterns in the region, shifting from a Paleocene foreland basin configuration to the modern isolated basins. Well-exposed Cretaceous to Pliocene strata in the Tachira Saddle provides a unique opportunity to test proposed sediment dispersal patterns in the region. U-Pb detrital zircon geochronology and supplementary XRD heavy mineral data are used together to document the provenance of the Tachira Saddle sediments and refine the sediment dispersal patterns in the region. Results from the U-Pb detrital zircon geochronology show that there are six age groups recorded in these samples. Two groups are related to the Precambrian Guyana shield terranes and Putumayo basement in the Eastern Cordillera, and four groups are related to different magmatic episodes occurring during the Andean orogenic process. The transition between the Cretaceous passive margin and the Paleocene foreland basin and the initial uplift of the Eastern Cordillera and the uplift of the Merida Andes by the Early Miocene were also recorded in the Tachira saddle detrital zircon signature.

  10. Tectonics of the Western Gulf of Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.S.; Ross, D.A.

    1979-07-10

    The Oman line, running northward from the Strait of Hormuz separates a continent-continent plate boundary to the northwest (Persian Gulf region) from an ocean-continent plate boundary to the southeast (Gulf of Oman region). A large basement ridge detected on multichannel seismic reflection and gravity profiles to the west of the Oman line is probably a subsurface continuation of the Musandam peninsula beneath the Strait of Hormuz. Collision and underthrusting beneath Iran of the Arabian plate on which this ridge lies has caused many of the large earthquakes that have occurred in this region. Convergence between the oceanic crust of themore » Arabian plate beneath the Gulf of Oman and the continental Eurasian plate beneath Iran to the north is accommodated by northward dipping subduction. A deformed sediment prism which forms the offshore Makran continental margin and which extends onto land in the Iranian Makran has accumulated above the descending plate. In the western part of the Gulf of Oman, continued convergence has brought the opposing continental margin of Oman into contact with the Makran continental margin. This is an example of the initial stages of a continent-continent type collision. A model of imbricate thrusting is proposed to explain the development of the fold ridges and basins on the Makran continental margin. Sediments from the subducting plate are buckled and incorporated into the edge of the Makran continental margin in deformed wedges and subsequently uplifted along major faults that penetrate the accretionary prism further to the north.« less

  11. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  12. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    NASA Astrophysics Data System (ADS)

    Zalan, Pedro

    2014-05-01

    Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.

  13. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study area includes three stages,that is Eogene,middle stage of lately Oligocene to early Miocene and middle Miocene to Present.Result shows that there are a good association of petroleum source rocks,reservoir rocks and seal rocks and structural traps in the Cenozoic and Mesozoic strata,as well as good conditions for the generation-migration-accumulation-preservation of petroleum in the lower continatal slope of Southern Chaoshan Sag.So the region has good petroleum prospect. Key words:Northern South China Sea;Chaoshan Sag; lower continental slope; deposition.

  14. Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

    USGS Publications Warehouse

    Spotila, J.A.; Bank, G.C.; Reiners, P.W.; Naeser, C.W.; Naeser, N.D.; Henika, B.S.

    2004-01-01

    The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U-Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. ?? 2003 Blackwell Publishing Ltd.

  15. Correlation studies of passive and active microwave data in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1991-01-01

    The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.

  16. Giardia muris and Giardia duodenalis groups: ultrastructural differences between the trophozoites.

    PubMed

    Sogayar, M I; Gregório, E A

    1989-01-01

    Trophozoites of the Giardia muris group from hamsters, domestic rats and mice and of the Giardia duodenalis group from hamsters and domestic rats were examined by transmission electron microscopy. The basic ultrastructure of the trophozoites was similar. Differences were shown in the morphology of the ventrolateral flange of the trophozoites of Giardia muris and Giardia duodenalis groups. Marginal plates are less developed in the species of the Giardia duodenalis group. In this group, the distal extremity of the lateral flange is short and thick and the marginal plate does not penetrate into the distal extremity of the flange. In the Giardia muris group, the ventro-lateral flange is well developed and narrow and the marginal plate penetrates the distal extremity of the flange. The osmiophilic lamella, which accompanies the dorsal surface of the marginal plate is seen only in the Giardia muris group.

  17. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels. Artemieva, I.M., Thybo, H., and Shulgin, A., 2015. Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2015.06.010

  18. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper slope is inferred as the source of gravity flows driving canyon evolution. Canyon morphology is shown to be maintained over the course of more than one fall and rise in sea-level. Our model of canyon evolution is applicable to other passive margins (e.g. Argentine continental margin).

  19. Isostatic and dynamic support of high topography on a North Atlantic passive margin

    NASA Astrophysics Data System (ADS)

    Pedersen, Vivi K.; Huismans, Ritske S.; Moucha, Robert

    2016-07-01

    Substantial controversy surrounds the origin of high topography along passive continental margins. Here we focus on the well-documented elevated passive margin in southwestern Scandinavia, and quantify the relative contributions of crustal isostasy and dynamic topography in controlling the present topography. We find that majority of the topography is compensated by the crustal structure, suggesting a topographic age that is in accord with the 400 Myr old Caledonian orogenesis. In addition, we propose that dynamic uplift of ∼300 m has rejuvenated existing topography locally in the coastal region over the last 10 Myr. Such uplift, combined with a general sea level fall, can help explain a variety of observations that have traditionally been interpreted in favor of a peneplain uplift model. We conclude that high topography along the Scandinavian margin cannot represent remnants of a peneplain uplifted within the last 20 Myr. The topography must have been high since the Caledonian orogeny.

  20. Elastic thickness estimates at northeast passive margin of North America and its implications

    NASA Astrophysics Data System (ADS)

    Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  1. Influence of obliquely subducting slab on Pacific-North America shear motion inferred from seismic anisotropy along the Queen Charlotte margin

    NASA Astrophysics Data System (ADS)

    Cao, L.; Kao, H.; Wang, K.; Wang, Z.

    2016-12-01

    Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence of a subducted portion of the Pacific plate. Because the slab travels mostly in the strike direction, it is expected to induce margin-parallel shear deformation of the mantle material. This result has importance implications to the geodynamics of transpressive plate margins.

  2. Volcanic passive margins: another way to break up continents

    PubMed Central

    Geoffroy, L.; Burov, E. B.; Werner, P.

    2015-01-01

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807

  3. Volcanic passive margins: another way to break up continents.

    PubMed

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  4. Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Amerasia Basin Petroleum Province encompasses the Canada Basin and the sediment prisms along the Alaska and Canada margins, outboard from basinward margins (hingelines) of the rift shoulders that formed during extensional opening of the Canada Basin. The province includes the Mackenzie delta and slope, the outer shelves and marine slopes along the Arctic margins of Alaska and Canada, and the deep Canada Basin. The province is divided into four assessment units (AUs): (1) The Canning-Mackenzie deformed margin AU is that part of the rifted margin where the Brooks Range orogenic belt has overridden the rift shoulder and is deforming the rifted-margin prism of sediment outboard of the hingeline. This is the only part of the Amerasia Basin Province that has been explored and—even though more than 3 billion barrels of oil equivalent (BBOE) of oil, gas, and condensate have been discovered—none has been commercially produced. (2) The Alaska passive margin AU is the rifted-margin prism of sediment lying beneath the Beaufort outer shelf and slope that has not been deformed by tectonism. (3) The Canada passive margin AU is the rifted-margin prism of sediment lying beneath the Arctic outer shelf and slope (also known as the polar margin) of Canada that has not been deformed by tectonism. (4) The Canada Basin AU includes the sediment wedge that lies beneath the deep Canada Basin, north of the marine slope developed along the Alaska and Canada margins. Mean estimates of risked, undiscovered, technically recoverable resources include more than 6 billion barrels of oil (BBO), more than 19 trillion cubic feet (TCF) of associated gas, and more than 16 TCF of nonassociated gas in the Canning-Mackenzie deformed margin AU; about 1 BBO, about 3 TCF of associated gas, and about 3 TCF of nonassociated gas in the Alaska passive margin AU; and more than 2 BBO, about 7 TCF of associated gas, and about 8 TCF of nonassociated gas in the Canada passive margin AU. Quantities of natural gas liquids also are assessed in each AU. The Canada Basin AU was not quantitatively assessed because it is judged to hold less than 10 percent probability of containing at least one accumulation of 50 million barrels of oil equivalent.

  5. High resolution 2D numerical models from rift to break-up: Crustal hyper-extension, Margin asymmetry, Sequential faulting

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan

    2013-04-01

    Numerical modelling is a powerful tool to integrate a multitude of geological and geophysical data while addressing fundamental questions of passive margin formation such as the occurrence of crustal hyper-extension, (a-)symmetries between conjugate margin pairs, and the sometimes significant structural differences between adjacent margin segments. This study utilises knowledge gathered from two key examples of non-magmatic, asymmetric, conjugate margin pairs, i.e. Iberia-New Foundland and Southern Africa-Brazil, where many published seismic lines provide solid knowledge on individual margin geometry. While both margins involve crustal hyper-extension, it is much more pronounced in the South Atlantic. We investigate the evolution of these two margin pairs by carefully constraining our models with detailed plate kinematic history, laboratory-based rheology, and melt fraction evaluation of mantle upwelling. Our experiments are consistent with observed fault patterns, crustal thickness, and basin stratigraphy. We conduct 2D thermomechanical rift models using the finite element code SLIM3D that operates with nonlinear stress- and temperature-dependent elasto-visco-plastic rheology, with parameters provided by laboratory experiments on major crustal and upper mantle rocks. In our models we also calculate the melt fraction within the upwelling asthenosphere, which allows us to control whether the model indeed corresponds to the non-magmatic margin type or not. Our modelling highlights two processes as fundamental for the formation of hyper-extension and margin asymmetry at non-magmatic margins: (1) Strain hardening in the rift center due to cooling of upwelling mantle material (2) The formation of a weak crustal domain adjacent to the rift center caused by localized viscous strain softening and heat transfer from the mantle. Simultaneous activity of both processes promotes lateral rift migration in a continuous way that generates a wide layer of hyper-extended crust on one side of the rift basin. This mechanism implies that syn-rift deformation at the distal margin postdates faulting at the proximal margin by several million years. The succession of events holds intriguing implications not only for peak heat flow migration but also for processes like serpentinization and magmatic underplating.

  6. The Wisconsin magmatic terrane: An Early Proterozoic greenstone-granite terrane formed by plate tectonic processes

    NASA Technical Reports Server (NTRS)

    Schulz, K. J.; Laberge, G. L.

    1986-01-01

    The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.

  7. Anomalous Accretionary Margin Topography Formed By Repeated Earthquakes

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.

    2014-05-01

    It has long been recognized that accretionary margins of major subduction zones undergo substantial deformation. However even with the large amounts of shortening accommodated within the margin, for most subduction zones, there is an extended submarine portion to the accretionary, highly-deformed upper-plate between the trench and the coast. This is a vexing situation since this submarine section typically overlies the actual locked or coupled patch of the plate interface. The result of this is added difficulty in directly observing processes related to the plate interface coupling - such processes as micro-seismicity and the actual patterns of plate coupling. There are a few locations globally in which there are sub-aerially exposed terranes that lie closer to the trench and overlie the inferred coupled or seismogenic portion of the plate interface. Such regions have taken on significance in subduction zone studies as they provide locations to observe the plate interface coupling effects in the near-field. In particular the Pacific coast of Costa Rica provides such a location, and there has been substantial geologic, geophysical, and geodetic research exploiting the positions of these near-trench peninsulas (Nicoya, Osa, and Burica). These sites provide near-field access to plate-interface processes, but whether they represent typical subduction zone behavior remains an open question as the deformational processes or inherited structures that have produced this anomalous topography are not well constrained. Simply put, if the existence of these sub-aerial, near-trench terranes is a result of anomalous behavior on the plate interface (as has been suggested), then their utility in providing high-fidelity near-field insight into the plate interface properties and processes is substantially reduced. Here we propose a new mechanism that could be responsible for the formation of both the Nicoya and Osa Peninsulas in the past, and is currently producing a third peninsula - the Burica Peninsula at the intersection of the Panama fracture zone and the margin. Specifically we propose that the anomalous topography along the Pacific coast of Costa Rica has been produced by repeated, great subduction earthquakes that have ruptured across the boundary separating the Cocos and Nazca plates - the subducted continuation of the Panama fracture zone. The pattern of upper-plate shortening generated by such a process (documented in the 2007 Mw 8.1 Solomon Islands earthquake, which produced co-seismic localized uplift above the subducted transform plate boundary) convolved with the migration history of the Panama triple junction (PTJ) is proposed as the mechanism to produce substantial along-margin, long-lived accretionary margin topography. Specifically we argue that repeated great subduction earthquakes that rupture across fundamental plate boundary structures can produce substantial, long-lived upper plate deformation above the inter-seismically coupled plate interface.

  8. Control of hyper-extended passive margin architecture on subduction initiation with application to the Alps and present-day North Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Candioti, Lorenzo; Bauville, Arthur; Picazo, Suzanne; Mohn, Geoffroy; Kaus, Boris

    2016-04-01

    Hyper-extended magma-poor margins are characterized by extremely thinned crust and partially serpentinized mantle exhumation. As this can act as a zone of weakness during a subsequent compression event, a hyper-extended margin can thus potentially facilitate subduction initiation. Hyper-extended margins are also found today as passive margins fringing the Atlantic and North Atlantic ocean, e.g. Iberia and New Foundland margins [1] and Porcupine, Rockwall and Hatton basins. It has been proposed in the literature that hyper-extension in the Alpine Tethys does not exceed ~600 km in width [2]. The geodynamical evolution of the Alpine and Atlantic passive margins are distinct: no subduction is yet initiated in the North Atlantic, whereas the Alpine Tethys basin has undergone subduction. Here, we investigate the control of the presence of a hyper-extended margin on subduction initiation. We perform high resolution 2D simulations considering realistic rheologies and temperature profiles for these locations. We systematically vary the length and thickness of the hyper-extended crust and serpentinized mantle, to better understand the conditions for subduction initiation. References: [1] G. Manatschal. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) (2004); 432-466. [2] G. Mohn, G. Manatschal, M. Beltrando, I. Haupert. The role of rift-inherited hyper-extension in alpine-type orogens. Terra Nova (2014); 347-353.

  9. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion

    2013-04-01

    The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.

  10. Rollback of an intraoceanic subduction system and termination against a continental margin

    NASA Astrophysics Data System (ADS)

    Campbell, S. M.; Simmons, N. A.; Moucha, R.

    2017-12-01

    The Southeast Indian Slab (SEIS) seismic anomaly has been suggested to represent a Tethyan intraoceanic subduction system which operated during the Jurassic until its termination at or near the margin of East Gondwana (Simmons et al., 2015). As plate reconstructions suggest the downgoing plate remained coupled to the continental margin, this long-lived system likely experienced a significant amount of slab rollback and trench migration (up to 6000 km). Using a 2D thermomechanical numerical code that includes the effects of phase transitions, we test this interpretation by modeling the long-term subduction, transition zone stagnation, and rollback of an intraoceanic subduction system in which the downgoing plate remains coupled to a continental margin. In addition, we also investigate the termination style of such a system, with a particular focus on the potential for some continental subduction beneath an overriding oceanic plate. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-735738

  11. Large and giant hydrocarbon accumulations in the transitional continent-ocean zone

    NASA Astrophysics Data System (ADS)

    Khain, V. E.; Polyakova, I. D.

    2008-05-01

    The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.

  12. Hybrid passive/active damping for robust multivariable acoustic control in composite plates

    NASA Astrophysics Data System (ADS)

    Veeramani, Sudha; Wereley, Norman M.

    1996-05-01

    Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.

  13. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  14. Syn- and post-rift anomalous vertical movements in the eastern Central Atlantic passive margin: a transect across the Moroccan passive continental margin.

    NASA Astrophysics Data System (ADS)

    Charton, Remi; Bertotti, Giovanni; Arantegui, Angel; Luber, Tim; Redfern, Jonathan

    2017-04-01

    Traditional models of passive margin evolution suggesting generalised regional subsidence with rates decreasing after the break-up have been questioned in the last decade by a number of detailed studies. The occurrence of episodic km-scale exhumation well within the post-rift stage, possibly associated with significant erosion, have been documented along the Atlantic continental margins. Despite the wide-spread and increasing body of evidence supporting post-rift exhumation, there is still limited understanding of the mechanism or scale of these phenomena. Most of these enigmatic vertical movements have been discovered using low-temperature geochronology and time-temperature modelling along strike of passive margins. As proposed in previous work, anomalous upward movements in the exhuming domain are coeval with higher-than-normal downward movements in the subsiding domain. These observations call for an integrated analysis of the entire source-to-sink system as a pre-requisite for a full understanding of the involved tectonics. We reconstruct the geological evolution of a 50km long transect across the Moroccan passive margin from the Western Anti-Atlas (Ifni area) to the offshore passive margin basin. Extending the presently available low-temperature geochronology database and using a new stratigraphic control of the Mesozoic sediments, we present a reconstruction of vertical movements in the area. Further, we integrate this with the analysis of an offshore seismic line and the pattern of vertical movements in the Anti-Atlas as documented in Gouiza et al. (2016). The results based on sampled rocks indicate exhumation by circa 6km after the Variscan orogeny until the Middle Jurassic. During the Late Jurassic to Early Cretaceous the region was subsequently buried by 1-2km, and later exhumed by 1-2km from late Early/Late Cretaceous onwards. From the Permian to present day, the Ifni region is the link between the generally exhuming Anti Atlas and continually subsiding offshore basins. Along strike, the rifted margin exhibits significant variability in the architecture of the Mesozoic deposits onshore and present day offshore shelf. North of the High Atlas, the ca. 2km thick Mesozoic succession is characterized by continuous sedimentation. South of the High Atlas the thickness increases to 6km in the offshore Tarfaya basin, where the Jurassic succession may be separated by a regional unconformity. Further south, close to the border with Mauritania, the Triassic to Jurassic succession is missing and the Cretaceous attains less than a kilometre of strata. In the Meseta and High Atlas, studies documented a similar kinematic Mesozoic evolution, whereas in the Anti-Atlas Gouiza et al. (2016) and this study document a different evolution. In addition, the kinematic evolution of the Reguibate domain to the south is also different from the other segments, showing post-Variscan exhumation with amplitudes lower than the ones observed in the Anti-Atlas. These observations highlight changes in the pattern of enigmatic movements along the same passive continental margin thereby showing that passive continental margins are more complex than expected only a few years ago. Gouiza, M., Charton, R., Bertotti, G., Andriessen, P. and Storms, J.E.A., 2016. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology: International Journal of Earth Sciences.

  15. Uplift history of a transform continental margin revealed by the stratigraphic record: The case of the Agulhas transform margin along the Southern African Plateau

    NASA Astrophysics Data System (ADS)

    Baby, Guillaume; Guillocheau, François; Boulogne, Carl; Robin, Cécile; Dall'Asta, Massimo

    2018-04-01

    The south and southeast coast of southern Africa (from 28°S to 33°S) forms a high-elevated transform passive margin bounded to the east by the Agulhas-Falkland Fracture Zone (AFFZ). We analysed the stratigraphic record of the Outeniqua and Durban (Thekwini) Basins, located on the African side of the AFFZ, to determine the evolution of these margins from the rifting stage to present-day. The goal was to reconstruct the strike-slip evolution of the Agulhas Margin and the uplift of the inland high-elevation South African Plateau. The Agulhas transform passive margin results from four successive stages: Rifting stage, from Late Triassic to Early Cretaceous ( 200?-134 Ma), punctuated by three successive rifting episodes related to the Gondwana breakup; Wrench stage (134-131 Ma), evidenced by strike- and dip-slip deformations increasing toward the AFFZ; Active transform margin stage (131-92 Ma), during which the Falkland/Malvinas Plateau drifts away along the AFFZ, with an uplift of the northeastern part of the Outeniqua Basin progressively migrating toward the west; Thermal subsidence stage (92-0 Ma), marked by a major change in the configuration of the margin (onset of the shelf-break passive margin morphology). Two main periods of uplift were documented during the thermal subsidence stage of the Agulhas Margin: (1) a 92 Ma short-lived margin-scale uplift, followed by a second one at 76 Ma located along the Outeniqua Basin and; (2) a long-lasting uplift from 40 to 15 Ma limited to the Durban (Thekwini) Basin. This suggests that the South African Plateau is an old Upper Cretaceous relief (90-70 Ma) reactivated during Late Eocene to Early Miocene times (40-15 Ma).

  16. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (???43,500 km) is calculated to be 1.5 km3/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km3/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km3/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km3/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km3/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km3/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km3/yr to a total of 1.1 km3/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km3/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted materia

  17. Seismicity of the Earth 1900-2007, Japan and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley

    2010-01-01

    This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.

  18. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau within the Nazca slab. These intra-slab velocity anomalies provide the most complete tomographic evidence to date in support the classic, but still controversial hypothesis of subducted, relatively buoyant oceanic lithosphere features along the Andean margin.

  19. A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2017-12-01

    In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.

  20. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  1. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  2. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along active, compressional plate margins recording a protracted and complex phase of supercontinent assembly between 800 and 550 Ma. Local cordilleran glaciations of volcanic peaks is indicated. Many deposits are preserved within mobile belts that record the subduction of interior oceans now preserved as "welds" between different cratons. Discrimination between glacially-influenced and non-glacial, volcaniclastic mass flow successions continues to be problematic. The second tectonostratigraphic category of Late Proterozoic glacial strata includes successions of glacially-influenced, mostly marine strata deposited along rifted, extensional plate margins. The oldest (Sturtian) glaciclastic sediments result from the break-out of Laurentia from the Late Proterozoic supercontinent starting around 750 Ma along its "palaeo-Pacific" margin with a later (Marinoan) phase of rifting at about 650 Ma. "Passive margin" uplifts and the generation of "adiabatic" ice covers on uplifted crustal blocks triggered widespread glaciation along the "palaeo-Pacific" margin of North America and in Australia. A major phase of rifting along the opposite ("palaeo-Atlantic") margin of Laurentia occurred after 650 Ma and is similarly recorded by glaciclastic strata in basins preserved around the margins of the present day North Atlantic Ocean. Glaciation of the west African platform after 650 Ma is closely related to collision of the West African and Guyanan cratons and uplift of the orogenic belt; the same process, involving uplift around the northern and western margins of the Afro-Arabian platform subsequently triggered Late Ordovician glaciation at about 440 Ma when the south polar region lay over North Africa. Early Silurian glaciation in Bolivia and Brazil was followed by a non-glacial episode and renewed Late Devonian glaciation of northern Brazil and Bolivia. The latter event may have resulted from rotation of Gondwana under the South Pole combined with active orogenesis along the western margin of the supercontinent. Hercynian uplift along the western margin of South America caused by the collision and docking of "Chilinia" at about 350 Ma (Late Tournasian—Early Visean) was the starting point of a long Late Palaeozoic glacial record that terminated at about 255 Ma (Kungurian-Kazanian) in western Australia. The arrival of large landmasses at high latitude may have been an important precondition for ice growth. Strong Namurian uplift around virtually the entire palaeo-Pacific rim of Gondwana culminated in glaciation of the interior of the supercontinent during the latest Westphalian (c. 300 Ma). There is a clear picture of plate margin compression and propagation of "far field" stresses to the plate interior allowing preservation of glacially-influenced strata in newly-rifted intracratonic basins. Many basins show a "steer's head" style of infill architecture recording successive phases of subsidence and overstepping of younger strata during basin subsidence and expansion. Exploration for oil and gas in Gondwanan glaciated basins is currently a major stimulus to understanding the relationship between tectonics and sedimentation. Warm Mesozoic palaeoclimates do not rule out the existence of restricted ice covers in the interiors of continental landmasses at high palaeolatitudes (e.g. Siberia, Antarctica) but there is as yet, no direct geological record of their existence. The most likely record of glaciers is contained in Late Jurassic and early Cretaceous strata. In any event, these ice masses are unlikely to have had any marked effect on global sea levels and alternative explanations should perhaps be sought for 4th order, so-called "glacio-eustatic" changes in sea level, inferred from Triassic, Jurassic and Cretaceous strata. The growth of extensive Northern Hemisphere ice sheets in Plio-Pleistocene time (c. 2.5 Ma) was the culmination of a long global climatic deterioration that began sometime after 60 Ma during the late Tertiary. Tectonic uplift of areas such as the Tibetan Plateau and plate tectonic reorganizations have been identified as first-order controls. Initiation of the East Antarctic ice sheet, at about 36 Ma, is the result of the progressive thermal isolation of the continent combined with uplift along the Transantarctic Mountains. In the Northern Hemisphere, the upwarping of extensive passive margin plateaux around the margins of the newly-rifted North Atlantic may have amplified global climatic changes and set the scene for the growth of continental ice sheets after 2.5 Ma. Ice sheet growth and decay was driven by complexly interrelated changes in ocean circulation, Milankovitch orbital forcing and global geochemical cycles. It is arguable whether continental glaciations of the Northern Hemisphere, and the evolution of hominids, would have occurred without the necessary precondition of tectonic uplift.

  3. Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.

    2016-12-01

    Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault, consistent with seismicity and seismic structure data.

  4. Towards a Holistic Model for the Tectonic Evolution of the North China Craton

    NASA Astrophysics Data System (ADS)

    Kusky, T. M.; Polat, A.; Windley, B. F.; Wang, J.; Deng, H.

    2016-12-01

    The North China Craton (NCC) consists of distinctly different tectonic elements assembled during the late Archean - early Proterozoic. We propose a new tectonic evolution of the NCC. The Eastern Block (EB) consists of small microblocks that resemble a collage of accreted arc-rocks from a sutured archipelago similar to the SW Pacific, accreted between 2.6 and 2.7 Ga. An Atlantic-type margin developed on the western side of the EB by 2.5 Ga, and a >1,300 km long arc/accretionary prism collided with this passive margin at 2.5 Ga, obducting ophiolites and ophiolitic mélanges, and forming a foreland basin. This was followed by arc-polarity reversal, and injection of mantle wedge-derived melts. By 2.43 Ga, the ocean behind the accreted arc closed through the collision of an oceanic plateau. Rifting of the amalgamated craton followed at 2.4-2.35 Ga, with a failed rift arm preserved in the center of the craton, and two that successfully made an ocean along the northern margin. By 2.3 Ga an arc built on older cratonic material collided with this passive margin which soon converted to an Andean-type margin. Andean margin tectonics affected much of the craton from 2.3-1.9 Ga, forming a broad E-W swath of continental margin magmas, and retro-arc sedimentary basins including a superimposed basin over the passive margin on the northern margin. From 1.88-1.79 Ga the craton experienced a craton-wide granulite facies metamorphism and basement reactivation event with high-pressure granulites and eclogites in the north, and medium-pressure granulites across the craton. Early Proterozoic granulites and anatectic melts were generated by high-grade metamorphism and partial melting at mid-crustal levels beneath a collisionally-thickened plateau. This collision of the NCC on its northern margin was with the Columbia (Nuna) Continent. The NCC broke out in the period 1753-1673 Ma, as indicated by the formation of a suite of anorthosite, mangerite, charnockite, and alkali-feldspar granites in an ENE-striking belt across the northern margin of the craton, followed by the development of rifts and graben, intrusion of mafic dike swarms, and formation of shelf sediments on the northern passive margin of the craton, which signaled the beginning of a long period of quiescence for the NCC until the Paleozoic.

  5. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  6. Life and death of the resurrection plate: Evidence for its existence and subduction in the northeastern Pacific in Paleocene-Eocene time

    USGS Publications Warehouse

    Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.

    2003-01-01

    Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade Range just after 50 Ma, related to slab-window magmatism, (5) birth of the Queen Charlotte transform margin at ca. 50 Ma, (6) extensional exhumation of high-grade metamorphic terranes and development of core complexes in British Columbia, Idaho, and Washington, and extensional collapse of the Cordilleran foreland fold-and-thrust belt in Alberta, Montana, and Idaho after 50 Ma related to initiation of the transform margin, (7) enigmatic 53-45 Ma magmatism associated with extension from Montana to the Yukon Territory as related to slab breakup and the formation of a slab window, (8) right-lateral margin-parallel strike-slip faulting in southern and western Alaska during Late Cretaceous and Paleocene time, which cannot be explained by Farallon convergence vectors, and (9) simultaneous changes in Pacific-Farallon and Pacific-Kula plate motions concurrent with demise of the Kula-Resurrection Ridge.

  7. Plate-shaped Yb:LuPO4 crystal for efficient CW and passively Q-switched microchip lasers

    NASA Astrophysics Data System (ADS)

    Liu, Junhai; Wang, Lisha; Han, Wenjuan; Xu, Honghao; Zhong, Degao; Teng, Bing

    2016-10-01

    It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.

  8. The Effects of Applied Stress and Sensitization on the Passive Film Stability of Al-Mg Alloys

    DTIC Science & Technology

    2013-06-01

    and residual tensile and compressive stresses impact the passive layer film and the material’s electrochemistry. Sample plates of AA5083 were...electrochemistry. Sample plates of AA5083 were sensitized to different levels to promote the formation of intergranular β phase (Al3Mg2). The...41  A.  MATERIAL PROCESSING: FABRICATION AND APPLIED STRESSES OF TEST SAMPLES

  9. Cenozoic forearc tectonics in northeastern Japan: Relationships between outer forearc subsidence and plate boundary kinematics

    NASA Astrophysics Data System (ADS)

    Regalla, Christine

    Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.

  10. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  11. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  12. Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Forsythe, R. D.

    1988-01-01

    The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.

  13. U-pb zircon age of metafelsite from the pinney hollow formation: Implications for the development of the vermont Appalachians

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.

    1999-01-01

    The Pinney Hollow Formation of central Vermont is part of a rift-clastic to drift-stage sequence of cover rocks deposited on the Laurentian margin during the development of the Iapetan passive margin in Late Proterozoic to Cambrian time. Conventional U-Pb zircon data indicate an age of 571 ?? 5 Ma for a metafelsite from the Pinney Hollow Formation. Geochemical data indicate that the protolith for the metafelsite, now a quartz-albite gneiss or granofels, was rhyolite from a source that was transitional between a witnin-plate granite and ocean-ridge granite setting and probably came through partially distended continental crust The transitional setting is consistent with previous data from metabasalts in the Pinney Hollow Formation and supports the idea that the source magma came through continental crust on the rifted margin of the Laurentian craton. The 571 ?? 5 Ma age provides the first geochronologic age from the rift-clastic cover sequence in New England and establishes a Late Proterozoic age for the Pinney Hollow Formation. The Late Proterozoic age of the Pinney Hollow confirms the presence of a significant mapped thrust fault between the autochthonous and para-autochthonous rocks of the cover sequence. These findings support the interpretation that the Taconic root zone is located in the hinterland of the Vermont Appalachians on the eastern side of the Green Mountain massif.

  14. Age distribution of lithium-cesium-tantalum enriched pegmatites and relationships to orogeny

    NASA Astrophysics Data System (ADS)

    McCauley, A.; Bradley, D. C.

    2011-12-01

    Pegmatites account for about one third of the world's lithium production, most of the tantalum, and all of the cesium. Pegmatites enriched in these elements (LCT pegmatites) are widely interpreted as extreme fractionation products of orogenic granitic melts, although it is not always possible to tie a particular pegmatite to a known granite of the same age. The global age distribution of LCT pegmatites is similar to the age distributions of common pegmatites, of orogenic granites, and of detrital zircons. Our geochronological synthesis expands on, and generally confirms, the recent study by Tkachev (2011, Geol. Soc. Spec. Publ. 350, 7). The LCT pegmatite maxima at ca. 2650, 1800, 525, 350, and 100 Ma correspond to times of collisional orogeny and, except for the comparatively minor peak at 100 Ma, to times of supercontinent assembly. Between these pulses are long intervals of few or no LCT pegmatites. Global minima in LCT pegmatite abundance overlap with supercontinent tenures at ca. 2450-2225, 1625-1000, 875-725, and 250-200 Ma, as established, for the Precambrian, from global minima in the abundances of passive margins and detrital zircons. A key question that bears on both metallogenesis and exploration strategies is why are some orogenic belts well endowed with LCT pegmatites, whereas other, seemingly similar orogens are barren? For the present study, LCT pegmatites from the Appalachian, Variscan, Damara, and Argentine Precordilleran orogens are being dated by the U-Pb method to relate pegmatite emplacement to other igneous events, shortening, metamorphism, foreland-basin sedimentation, and, on the broadest scale, to supercontinent assembly. Anecdotal evidence suggests that LCT pegmatites typically are emplaced late in orogenic cycles. In the Inland Branch of the Damaride orogen, about 45 m.y. elapsed between initial arc-passive margin collision at ca. 550 Ma and LCT pegmatite emplacement at ca. 505 Ma, very late in the assembly of this part of Gondwana. In the Appalachian orogen, LCT pegmatites evidently were emplaced at ca. 345 and ca. 275 Ma-long after initial arc-passive margin collision. Neither time is particularly remarkable in the long sequence of Appalachian orogenic events. The ca. 275 Ma event was coeval with the last increment of Appalachian plate convergence during the final assembly of Pangea. Possible triggers for melt generation in various pegmatite provinces include late collisional crustal thickening, shear heating, mantle plumes, slab break-off, and lower lithospheric delamination.

  15. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  16. Arabian Plate Deformation: The role of inherited structures in the localization of strain in the Red Sea extensional system

    NASA Astrophysics Data System (ADS)

    Aldaajani, T.; Furlong, K.; Malservisi, R.

    2017-12-01

    The Red Sea rift structural architecture changes dramatically along strike from narrow localized spreading (with creation of new oceanic crust) in the south to asymmetrical diffuse extension north of 21 ° latitude. The region of diffuse extension falls within a triangle that is bounded to the east by the Sarhan graben, (a Cenozoic failed rift), to the west by the northern Red Sea Rift, and to the south by the Makkah-Madinah-Nafud (MMN) volcanic line. Geological observations appear to show that tectonic stresses acting on inherited structures within the NW Arabian margin are associated with the region of diffuse extension. In contrast, in the southern Red Sea, a single strong block within the SW Arabian margin led to localize the extension there. Using current velocities from more than 30 GNSS stations distributed within the Arabian plate, we are able to map its rigidity and the distribution of strain along the plate margin. The data show that the transition between the two styles of extension within the Red Sea (crustal accretion vs crustal extension) corresponds with a transition between rigid behavior and diffuse extension within the Arabian Plate. This suggests that the preexisting structures within the Arabian plate play a significant role in the style of extension along the Red Sea margin.

  17. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von Huene, Roland E.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  18. An Amphibious Seismic Study of the Crustal Structure of the Adriatic Microplate

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Kopp, H.; Schurr, B.; Improta, L.; Papenberg, C. A.; Krabbenhoeft, A.; Argnani, A.; Ustaszewski, K. M.; Handy, M.; Glavatovic, B.

    2016-12-01

    The present-day structure of the southern Adriatic area is controlled by two oppositely-vergent fold-and-thrust belt systems (Apennines and Dinarides). The Adriatic continental domain is one of the most enigmatic segments of the Alpine-Mediterranean collision zone. It separated from the African plate during the Mesozoic extensional phase that led to the opening of the Ionian Sea. Basin widening and deepening peaked during Late Triassic-Liassic extension, resulting in the formation of the southern Adriatic basin, bounded on either side by the Dinaric and Apulian shallow water carbonate platforms. Because of its present foreland position with respect to the Dinaric part of orogenic belt, the southern Adriatic basin represents the only remnant of the Neotethyan margin and offers the unique opportunity to image a segment of Mesozoic passive margin in the Mediterranean. To study the deep crustal structure, the upper mantle and the shape of the plate margin, the German research vessel Meteor acquired 2D seismic refraction and wide-angle reflection data during an onshore-offshore experiment (cruise M86-3). We present two profiles: Profile P03 crossed Adria from the Gargano Promontory into Albania. A second profile (P01) was shot parallel to the coastlines, extending from the southern Adriatic basin to a possible mid-Adriatic strike-slip fault that purportedly segments the Adriatic microplate. Two different approaches of travel time tomography are applied to the data set: A non-linear approach is used for the shorter profile P01. A linear approach is applied to profile P03 (360 km length) and allows for the integration of the 36 ocean bottom stations and 19 land stations. First results show a good resolution of the sedimentary part of the Adriatic region. The depth of the basement as well as the depth of the Moho discontinuity vary laterally and deepen towards the North-East, consistent with the notion of flexural loading of the externally propagating orogenic wedge of the Dinarides.

  19. Obduction of old oceanic lithosphere due to reheating and plate reorganization: Insights from numerical modelling and the NE Anatolia - Lesser Caucasus case example

    NASA Astrophysics Data System (ADS)

    Hässig, Marc; Duretz, Thibault; Rolland, Yann; Sosson, Marc

    2016-05-01

    The ophiolites of NE Anatolia and of the Lesser Caucasus (NALC) evidence an obduction over ∼200 km of oceanic lithosphere of Middle Jurassic age (c. 175-165 Ma) along an entire tectonic boundary (>1000 km) at around 90 Ma. The obduction process is characterized by four first order geological constraints: Ophiolites represent remnants of a single ophiolite nappe currently of only a few kilometres thick and 200 km long. The oceanic crust was old (∼80 Ma) at the time of its obduction. The presence of OIB-type magmatism emplaced up to 10 Ma prior to obduction preserved on top of the ophiolites is indicative of mantle upwelling processes (hotspot). The leading edge of the Taurides-Anatolides, represented by the South Armenian Block, did not experience pressures exceeding 0.8 GPa nor temperatures greater than ∼300 °C during underthrusting below the obducting oceanic lithosphere. An oceanic domain of a maximum 1000 km (from north to south) remained between Taurides-Anatolides and Pontides-Southern Eurasian Margin after the obduction. We employ two-dimensional thermo-mechanical numerical modelling in order to investigate obduction dynamics of a re-heated oceanic lithosphere. Our results suggest that thermal rejuvenation (i.e. reheating) of the oceanic domain, tectonic compression, and the structure of the passive margin are essential ingredients for enabling obduction. Afterwards, extension induced by far-field plate kinematics (subduction below Southern Eurasian Margin), facilitates the thinning of the ophiolite, the transport of the ophiolite on the continental domain, and the exhumation of continental basement through the ophiolite. The combined action of thermal rejuvenation and compression are ascribed to a major change in tectonic motions occurring at 110-90 Ma, which led to simultaneous obductions in the Oman (Arabia) and NALC regions.

  20. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    NASA Technical Reports Server (NTRS)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  1. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercovici, D.

    1995-02-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less

  2. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  3. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.

  4. Geographic information system (GIS) compilation of geophysical, geologic, and tectonic data for the Circum-North Pacific

    USGS Publications Warehouse

    Greninger, Mark L.; Klemperer, Simon L.; Nokleberg, Warren J.

    1999-01-01

    The accompanying directory structure contains a Geographic Information Systems (GIS) compilation of geophysical, geological, and tectonic data for the Circum-North Pacific. This area includes the Russian Far East, Alaska, the Canadian Cordillera, linking continental shelves, and adjacent oceans. This GIS compilation extends from 120?E to 115?W, and from 40?N to 80?N. This area encompasses: (1) to the south, the modern Pacific plate boundary of the Japan-Kuril and Aleutian subduction zones, the Queen Charlotte transform fault, and the Cascadia subduction zone; (2) to the north, the continent-ocean transition from the Eurasian and North American continents to the Arctic Ocean; (3) to the west, the diffuse Eurasian-North American plate boundary, including the probable Okhotsk plate; and (4) to the east, the Alaskan-Canadian Cordilleran fold belt. This compilation should be useful for: (1) studying the Mesozoic and Cenozoic collisional and accretionary tectonics that assembled this continental crust of this region; (2) studying the neotectonics of active and passive plate margins in this region; and (3) constructing and interpreting geophysical, geologic, and tectonic models of the region. Geographic Information Systems (GIS) programs provide powerful tools for managing and analyzing spatial databases. Geological applications include regional tectonics, geophysics, mineral and petroleum exploration, resource management, and land-use planning. This CD-ROM contains thematic layers of spatial data-sets for geology, gravity field, magnetic field, oceanic plates, overlap assemblages, seismology (earthquakes), tectonostratigraphic terranes, topography, and volcanoes. The GIS compilation can be viewed, manipulated, and plotted with commercial software (ArcView and ArcInfo) or through a freeware program (ArcExplorer) that can be downloaded from http://www.esri.com for both Unix and Windows computers using the button below.

  5. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  6. The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics

    NASA Astrophysics Data System (ADS)

    Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.

    2016-12-01

    Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.

  7. Chapter 34: Geology and petroleum potential of the rifted margins of the Canada Basin

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.

    2011-01-01

    Three sides of the Canada Basin are bordered by high-standing, conjugate rift shoulders of the Chukchi Borderland, Alaska and Canada. The Alaska and Canada margins are mantled with thick, growth-faulted sediment prisms, and the Chukchi Borderland contains only a thin veneer of sediment. The rift-margin strata of Alaska and Canada reflect the tectonics and sediment dispersal systems of adjacent continental regions whereas the Chukchi Borderland was tectonically isolated from these sediment dispersal systems. Along the eastern Alaska-southern Canada margin, termed herein the 'Canning-Mackenzie deformed margin', the rifted margin is deformed by ongoing Brooks Range tectonism. Additional contractional structures occur in a gravity fold belt that may be present along the entire Alaska and Canada margins of the Canada Basin. Source-rock data inboard of the rift shoulders and regional palaeogeographic reconstructions suggest three potential source-rock intervals: Lower Cretaceous (Hauterivian-Albian), Upper Cretaceous (mostly Turonian) and Lower Palaeogene. Burial history modelling indicates favourable timing for generation from all three intervals beneath the Alaska and Canada passive margins, and an active petroleum system has been documented in the Canning-Mackenzie deformed margin. Assessment of undiscovered petroleum resources indicates the greatest potential in the Canning-Mackenzie deformed margin and significant potential in the Canada and Alaska passive margins. ?? 2011 The Geological Society of London.

  8. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity

    USGS Publications Warehouse

    Smoczyk, Gregory M.; Hayes, Gavin P.; Hamburger, Michael W.; Benz, Harley M.; Villaseñor, Antonio; Furlong, Kevin P.

    2013-01-01

    The complex tectonics surrounding the Philippine Islands are dominated by the interactions of the Pacific, Sunda, and Eurasia plates with the Philippine Sea plate (PSP). The latter is unique because it is almost exclusively surrounded by zones of plate convergence. At its eastern and southeastern edges, the Pacific plate is subducted beneath the PSP at the Izu-Bonin, Mariana, and Yap trenches. Here, the subduction zone exhibits high rates of seismic activity to depths of over 600 km, though no great earthquakes (M>8.0) have been observed, likely because of weak coupling along the plate interface. In the northeast, the PSP subducts beneath Japan and the eastern margin of the Eurasia plate at the Nankai and Ryukyu trenches, extending westward to Taiwan. The Nankai portion of this subduction zone has hosted some of the largest earthquakes along the margins of the PSP, including a pair of Mw8.1 megathrust events in 1944 and 1946. Along its western margin, the convergence of the PSP and the Sunda plate is responsible for a broad and active plate boundary system extending along both sides of the Philippine Islands chain. The region is characterized by opposite-facing subduction systems on the east and west sides of the islands, and the archipelago is cut by a major transform structure: the Philippine Fault. Subduction of the Philippine Sea plate occurs at the eastern margin of the islands along the Philippine Trench and its northern extension, the East Luzon Trough. On the west side of Luzon, the Sunda Plate subducts eastward along a series of trenches, including the Manila Trench in the north, the smaller Negros Trench in the central Philippines, and the Sulu and Cotabato trenches in the south. Twentieth and early twentyfirst century seismic activity along the boundaries of the Philippine Sea plate has produced seven great (M>8.0) earthquakes and 250 large (M>7) events. Among the most destructive events were the 1923 Kanto, the 1948 Fukui, and the 1995 Kobe, Japan, earthquakes; the 1935 and the 1999 Chi-Chi, Taiwan, earthquakes; and the 1976 M7.6 Moro Gulf and 1990 M7.6 Luzon, Philippines, earthquakes.

  9. Florida: A Jurassic transform plate boundary

    USGS Publications Warehouse

    Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans

    1984-01-01

    Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our plate reconstructions combined with chronostratigraphic and lithostratigraphic information for the Gulf of Mexico, southern Florida, and the Bahamas indicate that the gulf was sealed off from the Atlantic waters until Callovian time by an elevated Florida-Bahamas region. Restricted influx of waters started in Callovian as a plate reorganization, and increased plate separation between North America and South America/Africa produced waterways into the Gulf of Mexico from the Pacific and possibly from the Atlantic.

  10. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  11. Recent uplift of the Atlantic Atlas (offshore West Morocco): Tectonic arch and submarine terraces

    NASA Astrophysics Data System (ADS)

    Benabdellouahed, M.; Klingelhoefer, F.; Gutscher, M.-A.; Rabineau, M.; Biari, Y.; Hafid, M.; Duarte, J. C.; Schnabel, M.; Baltzer, A.; Pedoja, K.; Le Roy, P.; Reichert, C.; Sahabi, M.

    2017-06-01

    Re-examination of marine geophysical data from the continental margin of West Morocco reveals a broad zone characterized by deformation, active faults and updoming offshore the High Atlas (Morocco margin), situated next to the Tafelney Plateau. Both seismic reflection and swath-bathymetric data, acquired during Mirror marine geophysical survey in 2011, indicate recent uplift of the margin including uplift of the basement. This deformation, which we propose to name the Atlantic Atlas tectonic arch, is interpreted to result largely through uplift of the basement, which originated during the Central Atlantic rifting stage - or even during phases of Hercynian deformation. This has produced a large number of closely spaced normal and reverse faults, ;piano key faults;, originating from the basement and affecting the entire sedimentary sequence, as well as the seafloor. The presence of four terraces in the Essaouira canyon system at about 3500 meters water depth and ;piano key faults; and the fact that these also affect the seafloor, indicate that the Atlantic Atlas is still active north of Agadir canyon. We propose that recent uplift is causing morphogenesis of four terraces in the Essaouira canyon system. In this paper the role of both Canary plume migration and ongoing convergence between the African and Eurasian plates in the formation of the Atlantic Atlas are discussed as possibilities to explain the presence of a tectonic arch in the region. The process of reactivation of passive margins is still not well understood. The region north of Agadir canyon represents a key area to better understand this process.

  12. Importance of flexure in response to sedimentation and erosion along the US Atlantic passive margin in reconciling sea level change and paleoshorelines

    NASA Astrophysics Data System (ADS)

    Moucha, R.; Ruetenik, G.; de Boer, B.

    2017-12-01

    Reconciling elevations of paleoshorelines along the US Atlantic passive margin with estimates of eustatic sea level have long posed to be a challenge. Discrepancies between shoreline elevation and sea level have been attributed to combinations of tectonics, glacial isostatic adjustment, mantle convection, gravitation and/or errors, for example, in the inference of eustatic sea level from the marine 18O record. Herein we present a numerical model of landscape evolution combined with sea level change and solid Earth deformations to demonstrate the importance of flexural effects in response to erosion and sedimentation along the US Atlantic passive margin. We quantify these effects using two different temporal models. One reconciles the Orangeburg scarp, a well-documented 3.5 million-year-old mid-Pliocene shoreline, with a 15 m mid-Pliocene sea level above present-day (Moucha and Ruetenik, 2017). The other model focuses on the evolution of the South Carolina and northern Georgia margin since MIS 11 ( 400 Ka) using a fully coupled ice sheet, sea level and solid Earth model (de Boer et al, 2014) while relating our results to a series of enigmatic sea level high stand markers. de Boer, B., Stocci, P., and van de Wal, R. (2014). A fully coupled 3-d ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development, 7:2141-2156. Moucha, R. and Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149: 72-78

  13. Modelling the role of magmatic intrusions in the post-breakup thermal evolution of Volcanic Passive Margins

    NASA Astrophysics Data System (ADS)

    Peace, Alexander; McCaffrey, Ken; Imber, Jonny; van Hunen, Jeroen; Hobbs, Richard; Gerdes, Keith

    2013-04-01

    Passive margins are produced by continental breakup and subsequent seafloor spreading, leaving a transition from continental to oceanic crust. Magmatism is associated with many passive margins and produces diagnostic criteria that include 1) abundant breakup related magmatism resulting in a thick igneous crust, 2) a high velocity zone in the lower crust and 3) seaward dipping reflectors (SDRs) in seismic studies. These Volcanic Passive Margins (VPMs) represent around 75% of the Atlantic passive margins, but beyond this high level description, these magma-rich settings remain poorly understood and present numerous challenges to petroleum exploration. In VPMs the extent to which the volume, timing, location and emplacement history of magma has played a role in controlling heat flow and thermal evolution during margin development remains poorly constrained. Reasons for this include; 1) paucity of direct heat flow and thermal gradient measurements at adequate depth ranges across the margins, 2) poor onshore exposure 3) highly eroded flood basalts and 4) poor seismic imaging beneath thick offshore basalt sequences. As a result, accurately modelling the thermal history of the basins located on VPMs is challenging, despite the obvious importance for determining the maturation history of potential source rocks in these settings. Magmatism appears to have affected the thermal history of the Vøring Basin on the Norwegian VPM, in contrast the effects on the Faeroe-Shetland Basin was minimal. The more localised effects in the Faeroe-Shetland Basin compared to Vøring Basin may be explained by the fact that the main reservoir sandstones appear to be synchronous with thermal uplift along the basin margin and pulsed volcanism, indicating that the bulk of the magmatism occurred at the basin extremities in the Faeroe-Shetland Basin, where its effect on source maturation was lessened. Our hypothesis is that source maturation occurs as a result of regional temperature and pressure increases, and the effects of even a large singular magmatic event are small beyond the immediate vicinity, therefore quantifying cumulative regional heat flow is of utmost importance. The apparently complex relationships between source rock maturation and magmatism are not limited to the north-east Atlantic margins. Other VPMs of interest include the regions between West Greenland and Eastern Canada (Labrador Sea, Davis Strait and Baffin Bay), East Greenland, NW Australia, Western India and segments of the Western African and Eastern South American margins. This project utilises 1D numerical modelling of magmatic intrusions into a sedimentary column to gain an understanding into the thermal influence of post-breakup magmatic activity on source rock maturation in representative VPMs. Considerations include the timing, periodicity of intrusions, thickness, spacing and background heat in the basin.

  14. Mineral, Virginia earthquake illustrates seismicity of a passive-aggressive margin

    NASA Astrophysics Data System (ADS)

    Stein, S. A.; Pazzaglia, F. J.; Meltzer, A.; Berti, C.; Wolin, E.; Kafka, A. L.

    2011-12-01

    The August 2011 M5.8 Virginia earthquake illustrated again that "passive" continental margins, at which the continent and neighboring seafloor are part of the same plate, are often seismically active. This phenomenon occurs worldwide, with the east coast of North America a prime example. Examples from North to South include the 1933 M 7.3 Baffin Bay, 1929 M 7.2 Grand Banks of Newfoundland, 1755 M 6 Cape Ann, Massachusetts, and 1886 M 7 Charleston earthquakes. The mechanics of these earthquakes remains unclear. Their overall alignment along the margin suggests that they reflect reactivation of generally margin-parallel faults remaining from continental convergence and later rifting by the modern stress field. This view accords with the occurrence of the Virginia earthquake by reverse faulting on a margin-parallel NE-SW striking fault. However, it occurred on the northern edge of the central Virginia seismic zone, a seismic trend normal to the fault plane, margin, and associated structures, that has no clear geologic expression. Hence it is unclear why this and similar seismic zones have the geometry they do. Although it is tempting to correlate these zones with extensions of Atlantic fracture zones, this correlation has little explanatory power given the large number of such zones. It is similarly unclear whether these zones and the intervening seismic gaps reflect areas that are relatively more active over time, or are instead the present loci of activity that migrates. It is also possible that the presently-active zones reflect long-lived aftershocks of large prehistoric earthquakes. The forces driving the seismicity are also unclear. In general, seismic moment release decreases southward along the margin, consistent with the variation in vertical motion rates observed by GPS, suggesting that glacial-isostatic adjustment (GIA) provides some of the stresses involved. However, in the mid-Atlantic region - south of the area of significant GIA - deformed stratigraphic and geomorphic markers, localized high-relief topography, and rapid river incision show uplift of the Piedmont and Appalachians relative to the Coastal Plain for the past 10 Ma, suggesting that the seismicity reflects active and long-term deformation. These challenging questions are natural candidates for further study using new seismological and GPS data from the EarthScope program, together with geological and modeling studies. The dense deployment of seismometers in the wake of the Mineral VA earthquake and the arrival of EarthScope on the eastern seaboard in 2012 and 2013 can provide the required observations at multiple scales to better understand the mechanics of and forces driving east coast seismicity. Here we begin this study by comparing the aftershock sequence of the Mineral VA earthquake to previously recorded events in the Reading Lancaster Seismic Zone and the Central Virginia Seismic Zone.

  15. Optimization of Water Output by Experimental Analysis on Passive Solar Still

    NASA Astrophysics Data System (ADS)

    Parekh, Winners; Patel, Mrugen; Patel, Nikunj; Prajapati, Jaimin; Patel, Maitrik

    2018-02-01

    This paper presents experimental analysis obtained using the single slope passive solar still. The experiments were conducted in Ahmedabad (23°03’ N, 72°40’ E) using a passive solar still with different water depths and basin materials. Salt was added to study the effect of salinity of water on solar distillation. An extra clear glass is used as cover plate as it transmits 91% light into solar still. Rubber plate and Styrofoam were used as insulating material. So, the productivity of solar still was determined by increasing the temperature of water in the basin and glass temperature.

  16. An Analysis of Wilson Cycle Plate Margins

    NASA Astrophysics Data System (ADS)

    Buiter, S.; Torsvik, T. H.

    2012-12-01

    The Wilson Cycle theory that oceans close and open along the same suture is a powerful concept in analyses of ancient plate tectonics. It implies that collision zones are structures that are able to localize extensional deformation for long times after the collision has waned. However, some sutures are seemingly never reactivated and already Tuzo Wilson recognized that Atlantic break-up did not follow the precise line of previous junction. We have reviewed margin pairs around the Atlantic and Indian Oceans with the aim to evaluate the extent to which oceanic opening used former sutures, summarize delay times between collision and break-up, and analyze the role of mantle plumes in continental break-up. We aid our analyses with plate tectonic reconstructions using GPlates (www.gplates.org). Although at first sight opening of the North Atlantic Ocean largely seems to follow the Iapetus and Rheic sutures, a closer look reveals deviations. For example, Atlantic opening did not utilize the Iapetus suture in Great Britain and rather than opening along the younger Rheic suture north of Florida, break-up occurred along the older Pan-African structures south of Florida. We find that today's oceanic Charlie Gibbs Fracture Zone, between Ireland and Newfoundland, is aligned with the Iapetus suture. We speculate therefore that in this region the Iapetus suture was reactivated as a transform fault. As others before us, we find no correlation of suture and break-up age. Often continental break-up occurs some hundreds of Myrs after collision, but it may also take over 1000 Myr, as for example for Australia - Antarctica and Congo - São Francisco. This places serious constraints on potential collision zone weakening mechanisms. Several studies have pointed to a link between continental break-up and large-scale mantle upwellings. It is, however, much debated whether plumes use existing rifts as a pathway, or whether plumes play an active role in causing rifting. We find a positive correlation between break-up age and plume age, which we interpret to indicate that plumes can aid the factual continental break-up. However, plumes may have been guided towards the rift for margins that experienced a long rift history (e.g., Norway-Greenland), to then trigger the break-up. This could offer a partial reconciliation in the debate of a passive or active role for mantle plumes in continental break-up.

  17. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.

  18. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology 26, 873-886. Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters 185, 199-210.

  19. The role of small-scale convection on the formation of volcanic passive margins

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; Phethean, Jordan

    2014-05-01

    Volcanic passive margins (VPMs) are areas of continental rifting where the amount of newly formed igneous crust is larger than normal, in some areas up to 30 km. In comparison, magma-poor margins have initial oceanic crustal thicknesses of less than 7 km (Simon et al., 2009; Franke, 2012). The mechanism for the formation of these different types of margins is debated, and proposed mechanisms include: 1) variation in rifting speed (van Wijk et al., 2001), variation in rifting history (Armitage et al., 2010), enhanced melting from mantle plumes (e.g. White and McKenzie, 1989), and enhanced movement of mantle material through the melting zone by sublithospheric small-scale convection (SSC) driven by lithospheric detachments (Simon et al., 2009). Understanding the mechanism is important to constrain the petroleum potential of VPM. In this study, we use a numerical modelling approach to further elaborate the effect of SSC on the rate of crust production during continental rifting. Conceptually, SSC results in patterns of upwelling (and downwelling) mantle material with a typical horizontal wavelength of a 100 to a few 100 km (van Hunen et al., 2005). If occurring shallowly enough, such upwellings lead to decompression melting (Raddick et al., 2002). Subsequent mantle depletion has multiple effects on buoyancy (from both latent heat consumption and compositional changes), which, in turn, can affect mantle dynamics under the MOR, and can potentially enhance SSC and melting further. We use two- and three-dimensional Cartesian flow models to examine the mantle dynamics associated with continental rifting, using a linear viscous rheology (in addition to a semi-brittle stress limiter to localize rifting) in which melting (parameterized using (Katz et al., 2003)) leads to mantle depletion and crust accumulation at the surface. The newly formed crust is advected away with the diverging plates. A parameter sensitivity study of the effects of mantle viscosity, spreading rate, mantle temperature, and a range material parameters have indicated the following results. Decompression melting leads to a colder (from consumption of latent heat of melting) and therefore thermally denser, but compositionally more buoyant residue. The competition between thermal and compositional buoyancy determines the mantle dynamics after rifting initiation. For a mantle viscosity > ~ 1022 Pa s, no SSC occurs, and a uniform 7-8 km-thick oceanic crust forms. For mantle viscosity < ~ 1021 Pa s, SSC might be vigorous and can form passive margins with a crustal thickness > 10-20 km. If thermal density effects dominate, a convection inversion may occur for low mantle viscosities, and mantle downwellings underneath the rift/ridge area can result in a significant upwelling return flow that enhances further decompression melting, and can create VPMs. Such dynamics could also explain the continent-dipping normal faults that are commonly observed at VPMs. After the initial rifting phase, the crustal thickness reduces significantly, but not always to a uniformly thick 7-8 km, as would be appropriate for mature oceanic basins.

  20. New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset

    NASA Astrophysics Data System (ADS)

    Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian

    2014-05-01

    The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.

  1. Cryptic crustal events during the Taconic Orogeny elucidated through LA-ICPMS studies of volcanic zircons, southern Appalachians, Alabama

    NASA Astrophysics Data System (ADS)

    Herrmann, A. D.; Leslie, S.; Haynes, J.

    2017-12-01

    Despite a long history of stratigraphic work, many questions remain about the tectonic setting of the Taconic orogeny during the early late Ordovician. Several different global paleogeographic hypotheses exist about the driving force that led to this orogeny. While some studies suggest that the closing of the Iapetus ocean was caused by the collision of the North American and South American plates, most studies suggest that island arc systems collided with the passive continental margin of North America. Nevertheless, disagreement exists on how to explain the stratigraphic architecture of the siliciclastic sequences representing the erosion of the Taconic Highlands in an island arc setting. Some studies suggest the collision was analogous to the modern Banda Arc system with the development of a foreland basin and a sedimentary wedge, while other studies call for the presence of a back arc basin. Here we present U-Pb results of volcanic zircons that are associated with the magmatic activity during this time. Previous studies focused on slender zircons for age dating. However, in this study we analyzed several large zircons from close to the volcanic center in Alabama that have inherited cores in order to test for the presence of geochemical evidence for multiple crustal events. While the rims have ages consistent with the Taconic Orogeny ( 450 my), the cores have much older ages ( 1000 my). Our results support the hypothesis that during the closing of the Iapetus ocean, Precambrian and Cambrian sediments from the passive continental margin were subducted and incorporated into the volcanic system. This led to the inclusion of Precambrian zircons into melts associated with the Taconic Orogeny. Overall, our study supports the presence of subduction of preexisting sedimentary rocks and potentially the presence of a sedimentary wedge.

  2. Jurassic subduction initiation in the western and central Neo-Tethys and the origin of the Balkan ophiolites

    NASA Astrophysics Data System (ADS)

    Van Hinsbergen, D. J. J.; Maffione, M.

    2017-12-01

    Jurassic subduction initiation in the Neo-Tethys Ocean was the first, critical step of a long tectonic process that eventually led to the collision of the Adria-Africa and Eurasia plates and the formation of a 6000 km long Alpine orogenic belt spanning from the Balkan Peninsula to Iran. Investigating the process of subduction initiation in the Neo-Tethys during the Jurassic is crucial to (i) reconstruct the complex geological evolution of this orogen from its initial stages, and (ii) shed new lights over the enigmatic kinematics and driving mechanisms of subduction initiation. Records of the initial closure of the Neo-Tethys are today preserved in a fragmented belt of Middle Jurassic ophiolites (170-160 Ma) distributed above the Alpine orogen. In particular, the well-preserved and extensively studied ophiolites of the Balkan Peninsula offer a unique chance to study the mechanisms leading to the closure of the western domain of the Neo-Tethys. Here we provide the first quantitative constraints on the geometry of the Jurassic Neo-Tethyan subduction system using a net tectonic rotation analysis based on paleomagnetic and structural geological data from the sheeted dyke complexes of various ophiolites of Serbia (Maljen, Ibar) and Greece (Othris, Pindos, Vourinos, Guevgueli). Our results show that closure of the western Neo-Tethys was accommodated by two subduction zones, one intra-oceanic, formed at the N-S trending Neo-Tethyan ridge, the other initiated at the European passive margin and curving southward from a N-S to a NW-SE direction following the shape of the passive margin. We propose that these two subduction zones formed upon propagation of subduction(s) initiated in the central Neo-Tethys (modern Turkey) in the late Early Jurassic ( 185-180 Ma).

  3. Global Geomorphology

    NASA Technical Reports Server (NTRS)

    Douglas, I.

    1985-01-01

    Any global view of landforms must include an evaluation of the link between plate tectonics and geomorphology. To explain the broad features of the continents and ocean floors, a basic distinction between the tectogene and cratogene part of the Earth's surface must be made. The tectogene areas are those that are dominated by crustal movements, earthquakes and volcanicity at the present time and are essentially those of the great mountain belts and mid ocean ridges. Cratogene areas comprise the plate interiors, especially the old lands of Gondwanaland and Laurasia. Fundamental as this division between plate margin areas and plate interiors is, it cannot be said to be a simple case of a distinction between tectonically active and stable areas. Indeed, in terms of megageomorphology, former plate margins and tectonic activity up to 600 million years ago have to be considered.

  4. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  5. Passive cooler

    NASA Technical Reports Server (NTRS)

    Aronson, Albert Irving (Inventor)

    1977-01-01

    A three stage passive cooler for use in a spacecraft for cooling an infra-red detector includes a detector mounting cold plate for mounting the detector directly to the telescope optics. The telescope optics collect and direct the infra-red radiation from the earth, for example, to the infra-red detector, and are mounted directly to the spacecraft. The remaining stages of the cooler are mounted with thermal insulators to each other and to the spacecraft at separate locations from the detector mounting cold plate.

  6. Adaptive Focused Acoustics (AFA) Improves the Performance of Microtiter Plate ELISAs.

    PubMed

    Green, David J; Rudd, Edwin A; Laugharn, James A

    2014-08-01

    We investigated the use of Adaptive Focused Acoustics (AFA) technology to improve the performance of microtiter plate enzyme-linked immunosorbent assays (ELISAs). Experiments were performed with commercially available AFA instrumentation and off-the-shelf 96-well microtiter plate sandwich ELISAs. AFA was applied over a range of acoustic energies, temperatures, and durations to the antigen/antibody binding step of an ELISA for measuring HIV-1 p24 in tissue culture samples. AFA-mediated antigen/antibody binding was enhanced up to 2-fold over passive binding at comparable temperatures and was superior or comparable at low temperature (8-10 °C) to passive binding at 37 °C. Lower nonspecific binding (NSB), lower inter- and intra-assay coefficients of variation (CVs), higher Z' factors, and lower limits of detection (LODs) were measured in AFA-mediated assays compared with conventional passive binding. In a more limited study, AFA enhancement of antigen/antibody binding and lower NSB was measured in an ELISA for measuring IGFBP-3 in human plasma. We conclude from this study that application of AFA to antigen/antibody binding steps in microtiter plate ELISAs can enhance key assay performance parameters, particularly Z' factors and LODs. These features render AFA-mediated binding assays potentially more useful in applications such as high-throughput screening and in vitro diagnostics than assays processed with conventional passive antigen/antibody binding steps. © 2014 Society for Laboratory Automation and Screening.

  7. Structural controls on the hydrogeology of the Costa Rica subduction thrust NW of the Osa Peninisula (Invited)

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J.; Ranero, C. R.

    2013-12-01

    Three-dimensional seismic reflection data from the Costa Rica margin NW of the Osa peninsula have enabled us to map the subduction megathrust from the trench to ~12 km subseafloor beneath the shelf. The subduction thrust has a large, abrupt downdip transition in seismic reflection amplitude from very high to low amplitude 6 km subseafloor beneath the upper slope. This transition broadly corresponds with an increase in concentration of microseismic earthquakes potentially due to a significant increase in plate coupling (Bangs et al., 2012, AGU Fall Meeting, T13A-2587), thus linking seismic reflection amplitude to fluid content and mechanical coupling along the fault. A detailed look at the overriding plate reflectivity shows numerous high-amplitude, continuous seismic reflections through the upper plate, many of which are clearly reversed-polarity from the seafloor reflection and are thus likely active fluid conduits through the overriding margin wedge, the slope cover sediment, and the seafloor. Broadly, the structural grain of the margin wedge trends E-W and dips landward across the lower slope and onto the shelf, presumably due to stress imparted by subducting ridges. However, directly above the abrupt high-to-low plate-boundary reflection amplitude transition, structures within the overlying margin wedge reverse dip, steepen, and change strike to an ESE direction. Within this zone we interpret a set of parallel reflections with small offsets and reverse-polarity as high-angle reverse faults that act as fluid conduits leading directly into shallow fluid migration systems described by Bangs et al., 2012 (AGU Fall Meeting, T13A-2587) and Kluesner et al. [this meeting]. The coincidence between the plate-boundary reflection amplitude patterns and the change in structure implies that the fluid migration pathways that drain the plate interface are locally disrupted by overriding plate structure in two possible ways: 1) by focusing up dip fluid migration along the plate interface into a thinner but richer fluid zone along the subduction thrust, or 2) by creating a more direct, nearly vertical route along high-angle reverse faults through the overlying margin wedge to the seafloor (possibly shortened by a factor of two) and draining deeper portions of the plate-boundary more efficiently.

  8. Opal-CT in chert beneath the toe of the Tohoku margin and its influence on the seismic aseismic transition in subduction zones

    NASA Astrophysics Data System (ADS)

    Kameda, Jun; Okamoto, Atsushi; Sato, Kiminori; Fujimoto, Koichiro; Yamaguchi, Asuka; Kimura, Gaku

    2017-01-01

    Thick accumulation of chert is a ubiquitous feature of old oceanic plates at convergent margins. In this study, we investigate chert fragments recovered by the Integrated Ocean Drilling Program expedition 343 at the Japan Trench where the 2011 Tohoku-Oki earthquake (Mw 9.0) occurred. This sample provides a unique opportunity to investigate in situ chert diagenesis at an active subduction margin and its influence on the kinematics of megathrust faulting. Our mineralogical analyses revealed that the chert is characterized by hydrous opal-CT and may therefore be highly deformable via pressure solution creep and readily accommodate shear strain between the converging plates at driving stresses of kilopascal order. As chert diagenesis advances, any further deformation requires stresses of >100 MPa, given the increasing transport distances for solutes as represented in cherts on land. The chert diagenesis is thus related to the mechanical transition from a weakly to strongly coupled plate interface at this margin.

  9. Influence of Passive Stiffness of Hamstrings on Postural Stability

    PubMed Central

    Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej

    2015-01-01

    The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability. PMID:25964809

  10. Influence of passive stiffness of hamstrings on postural stability.

    PubMed

    Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej

    2015-03-29

    The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability.

  11. Burial, Uplift and Exhumation History of the Atlantic Margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Bonow, Johan M.; Green, Paul F.; Cobbold, Peter R.; Chiossi, Dario; Lilletveit, Ragnhild

    2010-05-01

    We have undertaken a regional study of landscape development and thermo-tectonic evo-lution of NE Brazil. Our results reveal a long history of post-Devonian burial and exhuma-tion across NE Brazil. Uplift movements just prior to and during Early Cretaceous rifting led to further regional denudation, to filling of rift basins and finally to formation of the Atlantic margin. The rifted margin was buried by a km-thick post-rift section, but exhumation began in the Late Cretaceous as a result of plate-scale forces. The Cretaceous cover probably extended over much of NE Brazil where it is still preserved over extensive areas. The Late Cretaceous exhumation event was followed by events in the Paleogene and Neogene. The results of these events of uplift and exhumation are two regional peneplains that form steps in the landscape. The plateaux in the interior highlands are defined by the Higher Surface at c. 1 km above sea level. This surface formed by fluvial erosion after the Late Cretaceous event - and most likely after the Paleogene event - and thus formed as a Paleogene pene-plain near sea level. This surface was reburied prior to the Neogene event, in the interior by continental deposits and along the Atlantic margin by marine and coastal deposits. Neo-gene uplift led to reexposure of the Palaeogene peneplain and to formation of the Lower Surface by incision along rivers below the uplifted Higher Surface that characterise the pre-sent landscape. Our results show that the elevated landscapes along the Brazilian margin formed during the Neogene, c. 100 Myr after break-up. Studies in West Greenland have demonstrated that similar landscapes formed during the late Neogene, c. 50 Myr after break-up. Many passive continental margins around the world are characterised by such elevated plateaus and it thus seems possible, even likely, that they may also post-date rifting and continental separation by many Myr.

  12. High risk of tsunami in the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Grindlay, Nancy R.; Hearne, Meghan; Mann, Paul

    The magnitude Mw = 9.3 Sumatra earthquake of 26 December 2004 claimed the lives of an estimated 300,000 people living in coastal areas of seven different countries around the Indian Ocean. This event raised the question of whether similar far-traveled tsunamis generated by plate boundary faulting could affect the estimated 150 million people living in coastal areas of the United States, including Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands.Aside from the Pacific plate margin of North America, the North America-Caribbean plate boundary is the closest (˜2000 km) active plate boundary to coastal areas in the Gulf of Mexico and the U.S. Atlantic seaboard. Researchers also have proposed that other possible tsunami-generating sources that could affect coastal areas of the United States include slumping of the shelf margin along the Virginia-North Carolina margin [Driscoll et al., 2000] and slumping of volcanic edifices in the Canary Islands [Ward and Day, 2001].

  13. The Edges of the Ocean: An Introduction.

    ERIC Educational Resources Information Center

    Burke, Kevin

    1979-01-01

    Introduces a series of related articles on the study of ocean/continent boundaries (margins) within the framework of plate tectonics. Topics discussed include: early attempts to interpret ocean/continent boundaries, Atlantic-type margins, Pacific-type margins, the edges of ancient oceans, and future challenges in the study of continental margins.…

  14. Post-breakup faulting of the outer Vøring Margin

    NASA Astrophysics Data System (ADS)

    Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Hafeez, A.; Abdelmalak, M. M.; Zastrozhnov, D.; Faleide, J. I.

    2017-12-01

    Tectonic activity on passive margins may continue for a long time after the main phase of continental breakup. On the southern Vøring Margin, offshore Norway, new high-quality 3D seismic data reveal the presence of extensive normal faults offsetting the Top basalt horizon, along with overlying lower Eocene age sediments. We have completed a detailed seismic interpretation of the new data using a combination of conventional seismic horizon interpretation and igneous seismic geomorphological techniques. The seismic data have been tied to scientific and industry wells to constrain the age of the interpreted horizons and the age and duration of the faulting. The Top basalt horizon displays a dominantly subaerial lava field, on the Vøring Marginal High, with well-defined lava flow morphologies including inflated flow lobes and surface pressure ridges. The prominent kilometer-high Vøring Escarpment was developed when landward flowing lava met the ocean, developing an extensive foreset bedded hyaloclastite delta. Later, a pitted surface was developed in the west during lava emplacement in a wet environment during subsidence of the central rift valley. Earliest Eocene sediments were subsequently deposited on the marginal high. Well-defined northeast trending faults are imaged on the marginal high, cutting across the escarpment. Spacing of the faults is ca. 400-500 m, and offsets are typically of ca. 30-50 m, often defining graben structures. The faults further offset the overlying earliest Eocene sequences in a number of examples. Based on the well ties, faulting mainly took place 5-10 m.y. after continental breakup near the Paleocene-Eocene boundary. Our hypothesis is that the faulting is related to strain partitioning across the developing Vøring Transform Margin. Plate tectonic constraints show that there was an active continent-continent transform in this region also for 10-15 m.y. after breakup. The transform margin is a linear, northwest trending structure, with a well-developed transform marginal high, the Mimir High, along its central part. The transform margin extends into the southwestern segment of the Jan Mayen Fracture Zone to the northwest. We speculate that the ocean basin separating the Vøring Spur from the Vøring Marginal High was formed by a rift propagation event during the same time period.

  15. Upper mantle structure at Walvis Ridge from Pn tomography

    NASA Astrophysics Data System (ADS)

    Ryberg, Trond; Braeuer, Benjamin; Weber, Michael

    2017-10-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.

  16. Erosion of Terrestrial Rift Flank Topography: A Quantitative Study

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.

    1999-01-01

    Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.

  17. Radiographic Outcomes of Dorsal Distraction Distal Radius Plating for Fractures With Dorsal Marginal Impaction.

    PubMed

    Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A

    2017-04-01

    The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.

  18. The Sunda-Banda Arc Transition: New Insights From Marine Wide-Angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Planert, L.; Shulgin, A.; Kopp, H.; Mueller, C.; Flueh, E.; Lueschen, E.; Engels, M.; Dayuf Jusuf, M.

    2007-12-01

    End of 2006, RV SONNE cruise SO190 SINDBAD (Seismic and Geoacoustic Investigations along the Sunda- Banda Arc Transition) went south of the Indonesian archipelago to acquire various geophysical datasets between 112 °E and 122 °E. The main goal of the project is to investigate the modifications of the lower plate (variability in the plate roughness, transition from oceanic to continental lower plate) and their effects on the tectonics of the upper plate (development of an outer high and forearc basin, accretionary and erosive processes). The tectonic style changes in neighboring margin segments from an oceanic plate-island arc subduction along the eastern Sunda margin to a continental plate-island arc collision along the Banda margin. Moreover, the character of the incoming oceanic plate varies from the rough topography in the area where the Roo Rise is subducting off eastern Java, to the smooth oceanic seafloor of the Argo- Abyssal Plain subducting off Bali, Lombok, and Sumbawa. In order to cover the entire variations of the lower plate, seven seismic refraction profiles were conducted along four major north-south oriented corridors of the margin, at 113 °E, 116 °E, 119 °E, and 121 °E, as well as three profiles running perpendicular to the major corridors. A total of 239 ocean bottom hydrophone and seismometer deployments were successfully recovered. Shooting was conducted along 1020 nm of seismic profiles using a G-gun cluster of 64 l. Here, we present velocity models obtained by applying a tomographic approach which jointly inverts for refracted and reflected phases. Additional geometry and velocity information for the uppermost layers, obtained by prestack depth migration of multichannel seismic reflection data (see poster of Mueller et al. in this session), is incorporated into our models and held fixed during the iterations. geomar.de/index.php?id=sindbad

  19. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  20. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  1. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and trench retreat in the western Pacific readily result in the horizontal stagnation of the Pacific plate in the transition zone beneath eastern Asian continent [2]. Dehydration of this slab supplies water, which rises and results in 'basal hydration weakening' of the eastern China lithosphere and its thinning by converting it into weak material of asthenospheric property [3]. We note the proposal that multiple subduction zones with more water (i.e., subduction of the South China Block beneath the North China Craton, NCC; subduction of the Siberian/Mongolian block beneath the NCC) all contribute to the lithosphere thinning beneath the NCC [4]. However, 'South China-NCC' and 'Siberian/Mongolian-NCC' represent two collisional tectonics involving no trench retreat, causing no transition-zone slab stagnation, supplying no water, and thus contributing little to lithosphere thinning beneath the NCC. Furthermore, lithosphere thinning happened to the entire eastern China, not just limited to the NCC, emphasizing the effects of the western Pacific subduction system on eastern China geology. References: [1] Niu et al., 2003, Journal of Petrology, 44, 851-866. [2] Kárason & van der Hilst, R., 2000, Geophysical Monograph, 121, 277-288. [3] Niu, 2005, Geological Journal of China Universities, 11, 9-46. [4] Windley et al., 2010, American Journal of Science, 310, 1250-1293.

  2. Multiphase Structural Evolution of a Continental Margin During Obduction Orogeny: Insights From the Jebel Akhdar Dome, Oman Mountains

    NASA Astrophysics Data System (ADS)

    Grobe, A.; Virgo, S.; von Hagke, C.; Urai, J. L.; Littke, R.

    2018-03-01

    The structural evolution of the carbonate platform in the footwall of the Semail ophiolite emplaced onto the passive continental margin of Arabia helps to better understand the early stages of obduction-related orogens. These early stages are rarely observable in other orogens as they are mostly overprinted by later mountain building phases. We present an extensive structural analysis of the Jebel Akhdar anticline, the largest tectonic window of the Oman Mountains, and integrate it on different scales. Outcrop observations can be linked to plate motion data, providing an absolute timeframe for structural generations consistent with radiometric dating of veins. Top-to-S overthrusting of the Semail ophiolite and Hawasina nappes onto the carbonate platform during high plate convergence rates between Arabia and Eurasia caused rapid burial and overpressure, generation and migration of hydrocarbons, and bedding-confined veins, but no major deformation in the carbonate platform. At reduced convergence rates, subsequent tectonic thinning of the ophiolite took place above a top-to-NNE, crustal-scale ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers in early Campanian times. Ongoing extension occurred along normal- to oblique-slip faults, forming horst-graben structures and a precursor of the Jebel Akhdar dome (Campanian to Maastrichtian). This was followed by NE-SW oriented ductile shortening and the formation of the Jebel Akhdar dome, deforming the earlier structures. Thereafter, exhumation was associated with low-angle normal faults on the northern flank of the anticline. We correlate the top-to-NNE crustal-scale shear zone with a similar structure in the Saih Hatat window to develop a unified model of the tectonic evolution of the Oman Mountains.

  3. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  4. Constraints for timing of extensional tectonics in the western margin of the Red Sea in Eritrea

    NASA Astrophysics Data System (ADS)

    Ghebreab, Woldai; Carter, Andrew; Hurford, Anthony J.; Talbot, Christopher J.

    2002-06-01

    Recent work on asthenosphere-lithosphere coupling reinforces past observations that active and passive rifting models do not adequately describe real rifts. There remains insufficient knowledge of fundamental controls on rift architecture. In the actively extending Red Sea margin of eastern Eritrea, which lies at the Red Sea/Danakil-Gulf of Aden and the East African rift triple junction zone, the geometry and kinematics of extension are complex and poorly defined due to large data gaps. Extension and sea-floor spreading in both the Red Sea and Gulf of Aden have influenced the Neogene tectonic development of Eritrea but many of the structures have Pan-African origins and do not follow normal plate opening geometries. To constrain the rifting history in eastern Eritrea, apatite fission-track thermochronologic data were measured for 22 Pan-African rock samples. Results identify late Oligocene-early Miocene cooling coincident with extension and erosion along the conjugate margin in Yemen. A younger age group, confined to Mt Ghedem, relates to an episode of fault reactivation and dyke injection that began ˜10 Ma coincident with rotation of the nearby Danakil block. Initially this was driven by onset of sea-floor spreading in the Gulf of Aden and later, in the Pliocene, aided by northward rifting in the Afar depression concomitant with spreading in the Red Sea. These different processes highlight the complex linkage between different extensional events and rift architecture.

  5. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath overthrust, dismembered ophiolite derived from adjacent marginal basin crust. ?? 1989.

  6. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    NASA Astrophysics Data System (ADS)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the Gop Rift axis. We propose that the conspicuous buoyant central part of the Gop Rift is likely associated with a continental C-Block as described in a recent paper on conjugated VPMs8, at least in the southern part of the Gop Rift. The crust below the Laxmi basin is probably transitional continental i.e. strongly intruded. West of India and west of the Laxmi Ridge, the transition to the Carlsberg Basin occurs along a clearly-expressed transform fault, not through an extended and thinned continental margin. We reinterpret the whole system based on those observations and propositions, giving some explanations on controversial magnetic anomalies based on similar observations from the southern Atlantic Ocean. 1: Collier et al., 2008. Age of the Seychelles-India break-up. Earth and Planetary Science Letters. 2: Minshull et al., 2008. The relationship between riftingand magmatism in the northeastern Arabian Sea. Nature Geoscience. 3 : Armitage et al., 2010. The importance of rift history for volcanic margin. Nature. 4 : Krishna et al., 2006. Nature of the crust in the Laxmi Basin (14 degrees-20 degrees N), western continental margin of India. Tectonics. 5 : Misra et al., 2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology. 6 : Biswas, 1982. Rift basins in the western margin of India and their hydrocarbon prospects. Bull. Am. Assoc. Pet. Geol. 7 : Chatterjee et al., 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research. 8 : Geoffroy et al., 2015. Volcanic passive margins: anotherway to break up continents. Scientific Reports.

  7. Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2001-12-01

    Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also. Plate motions are driven by subduction, the passive falling away of oceanic lithosphere which is negatively buoyant because of top-down cooling. Slabs have top and bottom rolling hinges and sink subvertically (inclinations of slabs mark their positions, not trajectories) into the transition zone, where they are laid down on, and depress, the 660-km discontinuity. Rollback of upper hinges into subducting plates is required by plate behavior at all scales. That fronts of overriding plates advance at rollback velocity is required by common preservation atop their thin leading edges of little-deformed fore-arc basins. Convergence velocity also commonly equals rollback but is faster in some arcs. Steeply-sinking inclined slabs push sublithospheric upper mantle forward into the shrinking ocean from which they came, forcing seafloor spreading therein, and pull overriding plates behind them. Continental plates pass over sunken slabs like tanks above their basal treads, and material from, and displaced rearward by, sunken slabs is cycled into pull-apart oceans opening behind the continents, thus transferring mantle from shrinking to enlarging oceans. Hot mantle displaced above slabs enables backarc spreading. Spreading ridges, in both shrinking and enlarging oceans, are passive byproducts of subduction, and migrate because it is more energy efficient to process new asthenosphere than to get partial melt from increasingly distant sources. A plate-motion framework wherein hinges roll back, ridges migrate, Antarctica is approximately fixed, and intraplate deformation is integrated may approximate an absolute reference to sluggish lower mantle, whereas the hotspot frame is invalid, and the no-net-rotation frame minimizes trench and ridge motions.

  8. Inherited segmentation of the Iberian-African margins and tectonic reconstruction of a diffuse plate boundary.

    NASA Astrophysics Data System (ADS)

    Fernàndez, Manel; Torne, Montserrat; Vergés, Jaume; Casciello, Emilio

    2016-04-01

    Diffuse plate-boundary regions are characterized by non-well defined contacts between tectonic plates thus making difficult their reconstruction through time. The Western Mediterranean is one of these regions, where the convergence between the African and Iberian plates since Late Cretaceous resulted in the Betic-Rif arcuate orogen, the Gulf of Cadiz imbricate wedge, and the Alboran back-arc basin. Whereas the Iberia-Africa plate boundary is well defined west to the Gorringe Bank and along the Gloria Fault, it becomes much more diffuse eastwards with seismicity spreading over both the south-Iberian and north-African margins. Gravity data, when filtered for short wavelengths, show conspicuous positive Bouguer anomalies associated with the Gorringe Bank, the Gulf of Cadiz High and the Ronda/Beni-Bousera peridotitic massifs reflecting an inherited Jurassic margin segmentation. The subsequent Alpine convergence between Africa and Iberia reactivated these domains, producing crustal-scale thrusting in the Atlantic segments and eventually subduction in the proto-Mediterranean segments. The Jurassic segmentation of the Iberia-Africa margins substantiates the double-polarity subduction model proposed for the region characterized by a change from SE-dipping polarity in the Gorringe, Gulf of Cadiz and Betic-Rif domains, to NW-dipping polarity in the proto-Algerian domain. Therefore, the Algerian and Tyrrhenian basins in the east and the Alboran basin in the west are the result of SSE-E and NW-W retreating slabs of oceanic and/or hyper-extended Tethyan domains, respectively.

  9. Albian salt-tectonics in Central Tunisia: Evidences for an Atlantic-type passive margin

    NASA Astrophysics Data System (ADS)

    Jaillard, Etienne; Bouillin, Jean-Pierre; Ouali, Jamel; Dumont, Thierry; Latil, Jean-Louis; Chihaoui, Abir

    2017-11-01

    Tunisia is part of the south-Tethyan margin, which comprises Triassic evaporites and a thick series of Jurassic and Cretaceous, mainly marine deposits, related to the Tethyan rifting evolution. A survey of various Cretaceous outcrops of central Tunisia (Kasserine-El Kef area), combined with literature descriptions, shows that the style of Albian deformation changes from the proximal (South) to the distal part (North) of the margin. The southern part is dominated by tilted blocks and growth faults, which evolve to the north to turtle-back and roll-over structures. Farther North, deformation is dominated by the extrusion of diapirs and salt walls. Such a distribution of deformation strongly suggests that the whole sedimentary cover glided northward on the Triassic evaporites during Albian times, as described for the Atlantic passive margin or for the Gulf of Mexico. Subsequently, these halokinetic structures have been folded during Alpine compressional tectonics.

  10. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle

    NASA Astrophysics Data System (ADS)

    Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.

    2018-02-01

    The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

  11. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin

    2017-11-01

    We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its dehydration than in the central region. Fluid pressure in the overlying plate is high, but Qs/Qp indicates that it is not uniformly fluid-rich. This heterogeneity is consistent with the rough topography of the plateau, including seamounts which entrain fluid-rich sediments. Deep slow-slip events in the southern part of the margin occur where the Moho of the overlying plate meets the plate interface, as typically seen in other deep slow-slip events worldwide. But in the central and northern parts of the margin, the locations of shallow slow-slip events appear to be controlled by a shallow brittle-viscous transition within the fluid-rich upper plate. There is also evidence that a major fault zone in the overlying plate might bleed off some of the high fluid pressure promoting slow-slip events.

  12. The sedimentary record of India-Asia collision: an evaluation of new and existing constraints

    NASA Astrophysics Data System (ADS)

    Najman, Yani; Henderson, Alex; Boudagher-Fadel, Marcelle; Godin, Laurent; Parrish, Randy; Bown, Paul; Garzanti, Eduardo; Horstwood, Matt; Jenks, Dan

    2010-05-01

    The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between ~65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). Such discrepancy is, to some extent, the result of the different definitions and methods used to define the collision. Here, we evaluate constraints from the sedimentary record preserved in the suture zone and Tethyan Himalaya where a minimum age to collision has been constrained by determining 1) the timing of cessation of marine facies, 2) first evidence of Asian detritus deposited on the Indian plate and 3) first evidence of mixed Indian-Asian detritus in the sedimentary record. Extensive previous work has been carried out on the Indus molasse of the Indus Suture zone in Ladakh, India. Here, cessation of marine facies is dated at 50.5 Ma (Green et al. 2008), with the underlying Chogdo Formation considered to show first evidence of mixed Indian and Asian provenance, and be the oldest Formation of Asian-derived provenance to lie in sedimentary contact with the underlying Indian plate (Clift et al 2001, 2002), thus constraining collision at >50.5 Ma. However, our new mapping and provenance analyses on these rocks show that there is no unequivocal evidence of Indian-derived material in the Chogdo Formation, nor that the Chogdo Formation lies in sedimentary contact with the underlying Indian plate (Henderson et al., in review). Thus we question the timing of Indian-Asian collision based on these evidences. South of the suture zone in India and Tibet, we carried out similar investigations of the youngest Tethyan strata. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that although the Indus Molasse does not provide constraint to the timing of India-Asia collision as previously thought, data from the Tethyan strata show that collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.

  13. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Yang, Yong-Tai

    2013-11-01

    Interactions at plate boundaries induce stresses that constitute critical controls on the structural evolution of intraplate regions. However, the traditional tectonic model for the East Asian margin during the Mesozoic, invoking successive episodes of paleo-Pacific oceanic subduction, does not provide an adequate context for important Late Cretaceous dynamics across East Asia, including: continental-scale orogenic processes, significant sinistral strike-slip faulting, and several others. The integration of numerous documented field relations requires a new tectonic model, as proposed here. The Okhotomorsk continental block, currently residing below the Okhotsk Sea in Northeast Asia, was located in the interior of the Izanagi Plate before the Late Cretaceous. It moved northwestward with the Izanagi Plate and collided with the South China Block at about 100 Ma. The indentation of the Okhotomorsk Block within East Asia resulted in the formation of a sinistral strike-slip fault system in South China, formation of a dextral strike-slip fault system in North China, and regional northwest-southeast shortening and orogenic uplift in East Asia. Northeast-striking mountain belts over 500 km wide extended from Southeast China to Southwest Japan and South Korea. The peak metamorphism at about 89 Ma of the Sanbagawa high-pressure metamorphic belt in Southwest Japan was probably related to the continental subduction of the Okhotomorsk Block beneath the East Asian margin. Subsequently, the north-northwestward change of motion direction of the Izanagi Plate led to the northward movement of the Okhotomorsk Block along the East Asian margin, forming a significant sinistral continental transform boundary similar to the San Andreas fault system in California. Sanbagawa metamorphic rocks in Southwest Japan were rapidly exhumed through the several-kilometer wide ductile shear zone at the lower crust and upper mantle level. Accretionary complexes successively accumulated along the East Asian margin during the Jurassic-Early Cretaceous were subdivided into narrow and subparallel belts by the upper crustal strike-slip fault system. The departure of the Okhotomorsk Block from the northeast-striking Asian margin resulted in the occurrence of an extensional setting and formation of a wide magmatic belt to the west of the margin. In the Campanian, the block collided with the Siberian margin, in Northeast Asia. At about 77 Ma, a new oceanic subduction occurred to the south of the Okhotomorsk Block, ending its long-distance northward motion. Based on the new tectonic model, the abundant Late Archean to Early Proterozoic detrital zircons in the Cretaceous sandstones in Kamchatka, Southwest Japan, and Taiwan are interpreted to have been sourced from the Okhotomorsk Block basement which possibly formed during the Late Archean and Early Proterozoic. The new model suggests a rapidly northward-moving Okhotomorsk Block at an average speed of 22.5 cm/yr during 89-77 Ma. It is hypothesized that the Okhotomorsk-East Asia collision during 100-89 Ma slowed down the northwestward motion of the Izanagi Plate, while slab pull forces produced from the subducting Izanagi Plate beneath the Siberian margin redirected the plate from northwestward to north-northwestward motion at about 90-89 Ma.

  14. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina peninsular and the South China is occurring. Moreover, a low-velocity layer on the top of the lower-crust was also modeled, and its intersection with the fractured zone formed a weak zone where stresses concentrated, and led to those abovementioned earthquakes along the LFZ.

  15. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.C.; Russo, R.M.; Foland, K.A.

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal covermore » of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.« less

  16. Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface

    NASA Astrophysics Data System (ADS)

    Adams, A.; Thielmann, M.; Golabek, G.

    2017-12-01

    Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses and eclogitization.

  17. The Maule, 2010, earthquake - geophysical and kinematic observations of the South American margin prior to the earthquake (Invited)

    NASA Astrophysics Data System (ADS)

    Oncken, O.; Haberland, C. A.; Moreno, M.; Melnick, D.; Tilmann, F.; Tipteq Research Groups

    2010-12-01

    Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and several active international initiatives (Integrated Plate Boundary Observatory Chile; IPOC-network.org) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, GFZ Potsdam, and Caltech (USA) employing an integrated plate boundary observatory and associated projects. Results from these studies allow us to define the preseismic state - with respect to the Maule eartghquake - of the margin system at the south Central Chilean convergent margin. Here, two major seismic events have occurred in adjoining segments (Valdivia 1960, Mw = 9.5; Maule 2010, Mw = 8.8) yielding observations from critical time windows of the seismic cycle in the same region. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry and properties of the seismogenic zone. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone and its hanging wall as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, and of lateral variation of locking degree on subsequent rupture and aftershock distribution as evidenced by the recent Maule earthquake. Moreover, the latter coseismic rupture pattern was foreseeable from its pre-seismic locking pattern as derived by inversion of GPS observations during the previous decade. Neogene surface deformation at the Chilean coast related to these locking properties has been complex exhibiting tectonically uplifting areas along the coast driven by interseismically active reverse faulting. In addition, we observe coseismically subsiding domains along other parts of the coast - mostly above fully locked patches. Finally, we note that the characteristic peninsulas along the South American margin constitute stable rupture boundaries and appear to have done so for a protracted time as evidenced by their long-term uplift history since at least the Late Pliocene. This suggests barriers to rupture being related to anomalous properties of the plate interface affecting the mode of strain accumulation and plate interface rupture - like e.g. velocity strengthening in contrast to the weakening property of most of the remaining domains.

  18. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Hassanzadeh, Jamshid; Kirschvink, Joseph L.; Bahroudi, Abbas

    2017-11-01

    We study the transition from passive margin to foreland basin sedimentation now exposed in the High Zagros belt to provide chronological constraints on the initial stage of Arabia-Eurasia collision and closure of the Neo-Tethys. We performed magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture which expose the oldest preserved foreland deposits: the Shalamzar section in the west and the Dehmoord section in the east. The top of the passive margin Asmari formation has an age of 28-29 Ma in the High Zagros and is overlain by foreland deposits with a major basal unconformity representing 7 Myr of hiatus. The base of the foreland deposits has an age of 21.5 Ma at Dehmoord and ca. 26 Ma at Shalamzar. The sedimentation rate increased from 30 m/Myr in the passive margin to 247 m/Myr in the foreland. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24 ± 2 mm/yr over the last 27 Ma. The time evolution of sediment accumulation in the Zagros foreland follows the prediction from a flexural model, as the foreland is thrust beneath the orogenic wedge and loaded by the wedge and basin fill. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27 ± 2 Ma. Hence, the Arabia-Eurasia collision was probably not the main driver of global cooling which started near the Eocene-Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. We conclude the average rate of shortening across the Zagros to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate. Palinspastic restoration of structural cross-sections and crustal volume conservation comprise only ca. 200 km of shortening across the Zagros and metamorphic Sanandaj-Sirjan belt implying that at least 150 km of the Arabian crust was underthrust beneath Eurasia without contributing to crustal thickening, possibly due to eclogitization.

  19. Stratigraphic and Paleomagnetic Comparisons of Mesoproterozoic Strata and Sills from the Belt Basin, NW Montana, USA, and NW Anabar Shield, Russia: Testing a Precambrian Plate Reconstruction

    NASA Astrophysics Data System (ADS)

    Sears, J. W.; Pavlov, V.; Veselovskiy, R.; Khudoley, A.

    2008-12-01

    Mesoproterozoic sedimentary strata and mafic sills overlie Archean and Paleoproterozoic basement rocks with profound unconformity in NW Montana and along the NW margin of the Anabar Shield in northern Siberia. The two localities plot adjacent to one another on a Precambrian plate reconstruction proposed by Sears and Price (2003) that places the NE margin of the Siberian craton against the SW margin of the North American craton. The plate reconstruction predicts that these strata occupied contiguous parts of an intracratonic basin prior to late Neoproterozoic breakup of Rodinia. Here we show that the Mesoproterozoic stratigraphic sequences, sedimentary structures, and lithologies of the NW Anabar margin closely match the Neihart, Chamberlain, and Newland formations of the Little Belt Mountains of Montana. They may predate opening of the Belt Supergroup rift basin at ca. 1500 Ma, when a major mafic magmatic episode occurred in both regions. Preliminary paleomagnetic data from the Siberian section will be compared with the Laurentian APWP to evaluate the reconstruction.

  20. On the role of tip curvature on flapping plates.

    PubMed

    Martin, Nathan; Gharib, Morteza

    2018-01-09

    During the flapping motion of a fish's tail, the caudal fin exhibits antero-posterior bending and dorso-ventral bending, the latter of which is referred to as chord-wise bending herein. The impact of chord-wise tip curvature on the hydrodynamic forces for flapping plates is investigated to explore potential mechanisms to improve the maneuverability or the performance of autonomous underwater vehicles. First, actuated chord-wise tip curvature is explored. Comparison of rigid curved geometries to a rigid flat plate as a baseline suggests that an increased curvature decreases the generated forces. An actuated plate with a dynamic tip curvature is created to illustrate a modulation of this decrease in forces. Second, the impact of curvature is isolated using curved plates with an identical planform area. Comparison of rigid curved geometries as a baseline corroborates the result that an increased curvature decreases the generated forces, with the exception that presenting a concave geometry into the flow increases the thrust and the efficiency. A passively-actuated plate is designed to capitalize on this effect by presenting a concave geometry into the flow throughout the cycle. The dynamically and passively actuated plates show potential to improve the maneuverability and the efficiency of autonomous underwater vehicles, respectively.

  1. A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

    PubMed

    Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di

    2017-11-16

    This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.

  2. Structure of the Red Dog District, western Brooks Range, Alaska

    USGS Publications Warehouse

    de Vera, Jean-Pierre P.; McClay, K. R.

    2004-01-01

    The Red Dog district of the western Brooks Range of northern Alaska, which includes the sediment-hosted Zn-Pb-Ag ± Ba deposits at Red Dog, Su-Lik, and Anarraaq, contains one of the world's largest reserves of zinc. This paper presents a new model for the structural development of the area and shows that understanding the structure is crucial for future exploration efforts and new mineral discoveries in the district. In the Red Dog district, a telescoped Late Devonian through Jurassic continental passive margin is exposed in a series of subhorizontally stacked, internally imbricated, and regionally folded thrust sheets. These sheets were emplaced during the Middle Jurassic to Late Cretaceous Brookian orogeny and subsequently were uplifted by late tectonic activity in the Tertiary. The thrust sheet stack comprises seven tectonostratigraphically distinct allochthonous sheets, three of which have been subject to regional and detailed structural analysis. The lowermost of these is the Endicott Mountains allochthon, which is overlain by the structurally higher Picnic Creek and Kelly River allochthons. Each individual allochthon is itself internally imbricated into a series of tectonostratigraphically coherent and distinct thrust plates and subplates. This structural style gives rise to duplex development and imbrication at a range of scales, from a few meters to tens of kilometers. The variable mechanical properties of the lithologic units of the ancient passive margin resulted in changes in structural styles and scales of structures across allochthon boundaries. Structural mapping and analysis of the district indicate a dominant northwest to west-northwest direction of regional tectonic transport. Local north to north-northeast transport of thrust sheets is interpreted to reflect the influence of underlying lateral and/or oblique ramps, which may have been controlled by inherited basin margin structures. Some thrust-sheet stacking patterns suggest out-of-sequence thrusting. The west-northwest-east-southeast-trending Wrench Creek and Sivukat Mountain faults were previously interpreted to be strike-slip faults, but this study shows that they are Tertiary (Eocene?) late extensional faults with little or no lateral displacement.

  3. Review of the subgenus Xizicus (Xizicus) Gorochov, 1993 (Orthoptera: Tettigoniidae: Meconematinae) from China.

    PubMed

    Feng, Jiyuan; Shi, Fuming; Mao, Shaoli

    2017-03-23

    Gorochov (1993) erected the subgenus Xizicus (Xizicus), with the type species Xizicus (Xizicus) fascipes (Bey-Bienko, 1955). This subgenus is distinguished from the other subgenera of Xizicus by the following characters: male tenth abdominal tergite with a pair of contiguous posterior processes in the middle; subgenital plate simple, styli slender, located on the apices or subapices of lateral margins; posterior margin of female subgenital plate rounded.

  4. A description of Pseudechiniscus xiai sp. nov., with a key to genus Pseudechiniscus in China.

    PubMed

    Wang, Lizhi; Xue, Jing; Li, Xiaochen

    2018-03-01

    The new species from the Liupan Mountains in China, Pseudechiniscus xiai sp. nov., differs from other Pseudechiniscus species by the following characters: absence of striae between dots which institute cuticular sculpture, projections absent on caudal margin of pseudosegmental plate, notches absent on caudal margin of terminal plate, dots on ventral side of body forms a reticular patched design. A diagnostic key to the Chinese Pseudechiniscus species is provided.

  5. Asymmetry and polarity of the South Atlantic conjugated margins related to the presence of cratons: a numerical study

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Pérez-Gussinyé, Marta; de Monserrat Navarro, Albert; Morgan, Jason P.

    2015-04-01

    Tectonic asymmetry of conjugated passive margins, where one margin is much narrower than the conjugate one, is commonly observed at many passive margins world-wide. Conjugate margin asymmetry has been suggested to be a consequence of lateral changes in rheology, composition, temperature gradient or geometries of the crust and lithosphere. Here we use the South Atlantic margins (from Camamu/Gabon to North Santos/South Kwanza) as a natural laboratory to understand conjugate margin asymmetry. Along this margin sector the polarity of the asymmetry changes. To the North, the Brazilian margin developed in the strong Sao Francisco craton, and this constitutes the narrow side of the conjugate pair. To the South, the Brazilian margin developed in the Ribeira fold belt, and the margin is wide. The opposite is true for the African side. We have thus numerically analysed how the relative distance between the initial location of extension and the craton influences the symmetry/asymmetry and polarity of the conjugate margin system. Our numerical model is 2D visco-elasto-plastic and has a free surface, strain weakening and shear heating. The initial set-up includes a cratonic domain, a mobile belt and a transition area between both. We have run tests with different rheologies, thickness of the lithosphere, and weak seeds at different distances from the craton. Results show asymmetric conjugated margins, where the narrower margin is generally the closest to the craton. Our models also allow us to study how the polarity is controlled by the distance between the initial weakness and the craton, and help to understand how the presence of cratonic domains affects the final architecture of the conjugated margins.

  6. ORION Project-(SPLASH) Structural Passive Landing Attenuation fo

    NASA Image and Video Library

    2011-07-12

    ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pot Phase"0" Test Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)

  7. Geodynamic evolution of the Taiwan-Luzon-Mindoro belt since the late eocene

    NASA Astrophysics Data System (ADS)

    Stephan, Jean François; Blanchet, René; Rangin, Claude; Pelletier, Bernard; Letouzey, Jean; Muller, Carla

    1986-05-01

    The structural framework of the Taiwan-Luzon-Mindoro belt (or festoon) is described, following three major transects: the Luzon transect with active subduction and active island arc; the Taiwan transect with active collision; the Mindoro transect with active subduction and inactive collision. Based on this geological study and on available geophysical data, a model for the geodynamic evolution of this portion of the Philippine Sea and Eurasia Plates boundary is proposed in a succession of reconstructions between the Late Eocene and the Present. The major geodynamic events are: (1) beginning of the opening of the South China Sea (S.C.S.) in Lower Oligocene times, contemporaneous with obduction of the Zambales and Angat ophiolites on Luzon. (2) subduction of a Mesozoic (?) oceanic basin along the proto-Manila trench from the Upper Oligocene to the Lower Miocene. (3) obduction of the South China Sea oceanic crust onto the Chinese and Reed Bank—Calamian passive margins in Middle Miocene time (14-15 Ma) related to a major kinematic reorganization (end of opening of the S.C.S.). (4) beginning of collision between the Luzon microblock and the two margins of the S.C.S. in the Upper Miocene (~ 7 Ma); collision is still active in Taiwan whereas it stopped in Mindoro during the Pliocene.

  8. Qualification testing of general electric 50 Ah nickel-cadmium cells with new separator and new positive plate processing

    NASA Astrophysics Data System (ADS)

    Morrow, G. W.

    1986-09-01

    Forty-two 50 Ah aerospace nickel-cadmium cells were delivered to Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985, for the purpose of evaluating and qualifying a new nylon separator material Pellon 2536, and the new GE Positive Plate Nickel Attack Control Passivation process. Testing began in May, 1985, at the Naval Weapons Support Center (NWSC) in Crane, Indiana with standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985, with approximately 1200 LEO cycles complete at this writting. Early test results show that cells with positive plate passivation exhibit higher than normal charge voltage characteristics. Other aspects of performance were nominal.

  9. Qualification Testing of General Electric 50 Ah Nickel-Cadmium Cells with New Separator and New Positive Plate Processing

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1986-01-01

    Forty-two 50 Ah aerospace nickel-cadmium cells were delivered to Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985, for the purpose of evaluating and qualifying a new nylon separator material Pellon 2536, and the new GE Positive Plate Nickel Attack Control Passivation process. Testing began in May, 1985, at the Naval Weapons Support Center (NWSC) in Crane, Indiana with standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985, with approximately 1200 LEO cycles complete at this writting. Early test results show that cells with positive plate passivation exhibit higher than normal charge voltage characteristics. Other aspects of performance were nominal.

  10. A quantitative analysis of transtensional margin width

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Buiter, Susanne J. H.

    2018-06-01

    Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).

  11. Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-06-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.

  12. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2007-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both sides of the South Atlantic, western India, eastern Australia, and possibly in Antarctica. Our results show that we cannot simply assume that these elevations were produced either at the time of rifting or as underplating at the time of plume impact. There is, however, no general agreement as to what caused them and we suggest that the history of these margins need to be re-assessed in the light of our results.

  13. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2004-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both sides of the South Atlantic, western India, eastern Australia, and possibly in Antarctica. Our results show that we cannot simply assume that these elevations were produced either at the time of rifting or as underplating at the time of plume impact. There is, however, no general agreement as to what caused them and we suggest that the history of these margins need to be re-assessed in the light of our results.

  14. ORION Project-(SPLASH) Structural Passive Landing Attenuation fo

    NASA Image and Video Library

    2011-07-21

    ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pot Phase"0" Test POT#2 Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)

  15. ORION Project-(SPLASH) Structural Passive Landing Attenuation fo

    NASA Image and Video Library

    2011-12-13

    ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pit Phase 4 Test or Pit 4 Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)

  16. Continental underplating after slab break-off

    NASA Astrophysics Data System (ADS)

    Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.

    2017-09-01

    We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.

  17. On the design and role of passive stabilisation within the ST40 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Buxton, P. F.; Asunta, O.; Gryaznevich, M. P.; Lockley, D.; McNamara, S.; Medvedev, S.; Ruiz de Villa Valdés, E.; Whitfield, G.; Wood, J. M.

    2018-06-01

    The position of passive stabilisation has been optimised for the low aspect ratio tokamak ST40. We find that passive stabilisation is most effective when conductors are placed near the plasma’s x-point, and the combined effect of having both inboard and outboard passive stabilisation significantly reduces the vertical instability growth rate. The growth rate can be further decreased by cooling the passive conductors down to 80 K. Two concepts for passive stabilisation are considered, passive plates and passive coils, and the relative advantages and disadvantages of each are discussed. Both concepts involve connecting the upper and lower conductors in an ‘anti-symmetric’ manner, which prevents large currents from being induced.

  18. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015.

    PubMed

    Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh

    2017-09-12

    We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.

  19. The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes

    NASA Astrophysics Data System (ADS)

    Govers, R.; Furlong, K. P.; van de Wiel, L.; Herman, M. W.; Broerse, T.

    2018-03-01

    Recent megathrust events in Tohoku (Japan), Maule (Chile), and Sumatra (Indonesia) were well recorded. Much has been learned about the dominant physical processes in megathrust zones: (partial) locking of the plate interface, detailed coseismic slip, relocking, afterslip, viscoelastic mantle relaxation, and interseismic loading. These and older observations show complex spatial and temporal patterns in crustal deformation and displacement, and significant differences among different margins. A key question is whether these differences reflect variations in the underlying processes, like differences in locking, or the margin geometry, or whether they are a consequence of the stage in the earthquake cycle of the margin. Quantitative models can connect these plate boundary processes to surficial and far-field observations. We use relatively simple, cyclic geodynamic models to isolate the first-order geodetic signature of the megathrust cycle. Coseismic and subsequent slip on the subduction interface is dynamically (and consistently) driven. A review of global preseismic, coseismic, and postseismic geodetic observations, and of their fit to the model predictions, indicates that similar physical processes are active at different margins. Most of the observed variability between the individual margins appears to be controlled by their different stages in the earthquake cycle. The modeling results also provide a possible explanation for observations of tensile faulting aftershocks and tensile cracking of the overriding plate, which are puzzling in the context of convergence/compression. From the inversion of our synthetic GNSS velocities we find that geodetic observations may incorrectly suggest weak locking of some margins, for example, the west Aleutian margin.

  20. Flutter suppression of plates using passive constrained viscoelastic layers

    NASA Astrophysics Data System (ADS)

    Cunha-Filho, A. G.; de Lima, A. M. G.; Donadon, M. V.; Leão, L. S.

    2016-10-01

    Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

  1. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins

    NASA Astrophysics Data System (ADS)

    Kopf, Achim

    2013-11-01

    The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (μres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to μres = 0.43; μpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (μres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity strengthening at the conditions tested.

  2. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar

    2016-10-01

    The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw < 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.

  3. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  4. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was intruded by the 110-130 Ma massive granitoids, suggesting late Early Cretaceous accretionary event. From late Early Cretaceous to Late Cretaceous, the spatial extent of magmatisms was reduced from west to east, revealing roll-back of subducted slab. This research was financially supported by the NSFC (41330206).

  5. Comparison of Subsidence Rates for Conjugate Margins of the Equatorial and Northern South Atlantic Ocean as A First-Order Constraint on Symmetry of Underlying, Early Rift Structures

    NASA Astrophysics Data System (ADS)

    Zavala, O.

    2017-12-01

    We compared subsidence histories from wells into Cretaceous-Cenozoic conjugate margins in the Equatorial and northern South Atlantic as a first-order constraint on whether rifting occurred in a symmetrical, pure shear mode, or whether rifting occurred in an asymmetrical, simple shear mode. For the pure shear mode of rifting, the prediction is for longterm subsidence on both conjugate margins to be similar and reflective of underlying, rift symmetry; for the simple shear mode of rifting, the prediction is that subsidence above the more thinned and wider, lower plate margin is greater than subsidence above the less thinned and more narrow, upper plate margin. A major caveat of this approach is that subsidence variations can be affected by other external factors that include increased sedimentation related to local deltas and structural or hotspot-related uplifts of coastal areas. In the northern Equatorial Atlantic, the longterm subsidence rate for the Guyana basin of northeastern South America of 18.52 m/Ma is less that of the Senegal area of west Africa of 54 m/Ma suggestive of an upper plate to the west and lower plate to the east. Moving southwards, the Potiguar basin of northern Brazil of 23 m/Ma is roughly the same as the Keta-Togo-Benin-Cote d'Ivoire basins of west Africa (21 m/Ma) and suggestive of an underlying rift symmetry. The Bahia Norte-Reconcavo-Sergipe-Alogoas basins of Brazil are less (28 m/Ma) than the Gabon basin (57 m/Ma) of west Africa suggesitive of an lower plate to the east and an upper plate to the west. The Bahia Sul-Espirito Santo basins of Brazil are less (20 m/Ma) than the Lower Congo basin (45 m/Ma) although the latter area includes the localized influence of the Congo delta. We compare additional evidence such as seismic reflection and refraction data and gravity modeling to the predictions of the subsidence values.

  6. Accommodation by Varying Strain Regimes along the Northern Luzon Arc (Coastal Range, Taiwan) - Insights from Focal Mechanism Strain Inversions

    NASA Astrophysics Data System (ADS)

    O'Hara, D.; Lee, J.; Lewis, J. C.; Rau, R.

    2013-12-01

    Taiwan is the product of modern subduction polarity reversal coupled with arc-continent collision. The NW-moving Philippine Sea plate (PSP) subducts beneath the Eurasian plate (EUR) to the northeast of Taiwan at the Ryukyu trench, while overriding EUR south of Taiwan at the Manila trench, bringing the Luzon volcanic arc into collision with the deforming sediments of the Eurasian passive margin. The obliquity between the N-S trending Luzon Arc (LA) and NE-SW trending passive margin is causing the southward, temporal propagation of collision since ~6 Ma. The collided forearc and clastic sediments accreted by the advancing arc created the Coastal Range (CR), whose western-most extent lies at the suture zone between the two plates, the NNE-SSW trending Longitudinal Valley Fault (LVF). In order to understand the change in stress along the northern LA as it docks onto EUR, we inverted over 1900 relocated earthquake focal mechanism solutions within the on-land CR and offshore LA regions for spatial strain tensors. The focal mechanisms cover seismicity from 1991-2013, ranging in depths 0-112 km and magnitudes 2.22-6.92. For our analyses, we grouped the focal mechanisms based on 15' Latitudinal intervals along the study area and inverted the data for best-fit strain tensors using a micropolar continuum model of crustal deformation. Results suggest dominant compression in all regions with accommodation occurring through oblique reverse faults of varying dips. Trends of σ1 rotate clockwise (CW) from 100° in the south to 155° in the north. This CW rotation is also observed in the preferred nodal plane slip vector trends - from E-W orientation in the south to NW-SE in the north. The rotation of σ1 and slip vector trends creates varying degrees of obliquity with the direction normal (DN) to CR (112°). The trends in the southern part of the study area show obliquity counterclockwise (CCW) to DN; trends in the central part are near parallel to DN; and trends in the northern part show obliquity CW to DN. GPS vectors from 2008-2012 using an ITRF reference frame show similar changes in obliquity with GPS velocity trends oblique CCW and CW to DN in the southern and northern areas, respectively, and near parallel to DN in the central area. Our results suggest the accommodation of three varying strain regimes along the northern LA (CR) system - (1) strain partitioning within the Manila forearc basin due to the obliquity between N-S trending LA and NW trending convergence vector; (2) convergence-related strain in the central LVF and CR along NNE trending major thrust faults with a small oblique component due to the obliquity between DN and the convergence vector; and (3) strain partitioning along the Ryukyu trench and forearc basin due to the obliquity between northward subducting plate along the WNW- ESE trending Ryukyu trench and NW convergence vector. As a result, the different subducting characteristics of strain regimes correspond to the different stages of arc accretion/collision, from south to north: pre-collision, present collision, waning collision, and subduction.

  7. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  8. Introducing tectonically and thermo-mechanically realistic lithosphere in the models of plume head -lithosphere interactions (PLI) including intra-continental plate boundaries.

    NASA Astrophysics Data System (ADS)

    Guillou-Frottier, L.; Burov, E.; Cloetingh, S.

    2007-12-01

    Plume-Lithosphere Interactions (PLI) in continets have complex topographic and magmatic signatures and are often identified near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical, thermal and rheological barriers that interact with the emplacement of the plume head (e.g., Archean West Africa, East Africa, Pannonian - Carpathian system). The observable PLI signatures are conditioned by plume dynamics but also by complex rheology and structure of continental lithosphere. We address this problem by considering a new free-surface thermo-mechanical numerical model of PLI with two stratified elasto-viscous-plastic (EVP) continental plates of contrasting age, thickness and structure. The results show that: (1) surface deformation is poly-harmonic and contains smaller wavelengths (50-500 km) than that associated with the plume head (>1000 km). (2) below intra-plate boundaries, plume head flattening is asymmetric, it is blocked from one side by the cold vertical boundary of the older plate, which leads to mechanical decoupling of crust from mantle lithosphere, and to localized faulting at the cratonic margin; (2) the return flow from the plume head results in sub-vertical down-thrusting (delamination) of the lithosphere at the margin, producing sharp vertical cold boundary down to the 400 km depth; (3) plume head flattening and migration towards the younger plate results in concurrent surface extension above the centre of the plume and in compression (pushing), down-thrusting and magmatic events at the cratonic margin (down-thrusting is also produced at the opposite border of the younger plate); these processes may result in continental growth at the "craton side"; (4) topographic signatures of PLI show basin-scale uplifts and subsidences preferentially located at cratonic margins. Negative Rayleigh-Taylor instabilities in the lithosphere above the plume head provide a mechanism for crustal delamination. In case of several cratonic blocks, the combined effect of subsidence and lithospheric thinning at cratons edges, while plume head material is being stocked in between the cratons, favours major magmatic events at cratonic margins. Numerous field evidence (West Africa, Western Australia) underline the trapping effect of cratonic margins for formation of (e.g.) orogenic gold deposits, which require particular extreme P-T conditions. Location of gemstones deposits is also associated with cratonic margins, as demonstrated by the Tanzanian Ruby belt. Their formation depend on particularly fast isothermal deepening processes, which can be reproduced by slab-like instabilities induced by plume head-cratonic margin interaction. On the other hand, absence of magmatic events should not be interpreted as evidence for the absence of plume: at surface, these events may not necessary have unambiguous deep geochemical signatures, as the hot source plume material stalls below Moho and forms a long-lasting (10 to 100 Myr) sub-Moho reservoir. This should induce strong crustal melting that may overprint deeper signatures since crustal melts are generated at much lower temperatures than mantle, and produce light low-viscous rapidly ascending magmas. Drip-like down- sagging of the lithospheric mantle and metamorphic lower crustal material inside the plume head may contaminate the latter and also alter the geochemical signature of related magmas.

  9. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation deposits (MTDs) were identified in deeper stratigraphic section below BSR. This indicated several big former submarine landslide events occurred. In summary, the passive margin often show typical submarine landslide features than active margin, which driven by gravity force.

  10. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    NASA Astrophysics Data System (ADS)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed and inverted rifts without upwelling mantle and positive gravity anomalies.

  11. Longitude through time

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Steinberger, B.; Cocks, R. L.

    2007-12-01

    Earth scientists today have had no objective method of calculating what the palaeolongitudes of tectonic plates and other geological units were in the long eons prior to the oldest known hotspot trails, which are only of Cretaceous age (ca. 130 Ma). Before this time, palaeomagnetism is the only method by which to position plates quantitatively on the globe. Palaeomagnetic studies only directly yield latitudes and plate rotations, but the longitude uncertainty can be minimized by selecting an appropriate reference plate: if one can determine which plate has moved least, then it should be used as the reference plate. Africa has been nearly surrounded by mid- ocean ridges since the break-up of Pangea, and thus the ridge push forces should have roughly cancelled each other out. Moving hotspot-based plate motion models show minimal longitudinal motion for Africa (<10 degrees) for the past 130 million years, confirming the lack of significant longitudinal motion inferred from consideration of the plate driving forces. It is uncertain whether the 'zero-longitude' assumption about Africa holds before Pangea's break-up, but in the absence of better reference points, we have regarded zero longitudinal average motion for Africa as the best assumption. With this approach we have been able to demonstrate that virtually all Large Igneous Province (LIPs) for the last 300 million years project radially onto the edges of the African and Pacific Large Low Shear Velocity Province (LLSVPs) near the core-mantle-boundary (CMB). The LIPs must for this reason be derived from mantle plumes, and CMB heterogeneities must have remained quite stationary since the formation of Pangea. LIPs have erupted since Archean times and there is no reason to preclude that they were all derived from LLSVPs in the deep mantle. That inspired us to consider whether older LIP events would yield similar results. We attempt to reconstruct Gondwana in longitude in Cambrian times based on the substantial Antrim plateau volcanics (Australia), a LIP of ca. 510 Ma age along the Gondwanan margin. If the LIP was formed at the margin of the Africa or Pacific LLSVPs and they have remained the same throughout Earth's history there are six possible marginal sites on the CMB from which to choose, but three sites that do not position the long- lived subduction margin of Gondwana (e.g. South America, East Antarctica and East Australia) above regions of high seismic velocity (the subduction graveyards) can be eliminated. If, as recently postulated, there have only been one LLSVP (or upwelling zone) in Pre-Pangean time (Pacific LLSVP) that reduces longitude choices to two possible marginal sites on the CMB.

  12. Variscan to Neogene thermal and exhumation history at the Moroccan passive continental margin assessed by low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Sehrt, M.; Glasmacher, U. A.; Stockli, D. F.; Kluth, O.; Jabour, H.

    2012-04-01

    In North Africa, a large amount of Mesozoic terrigenous sedimentary rocks are deposited in most of the basins along the continental margin indicating a major episode of erosion occurred during the rift and early post-rift period in the Central Atlantic. In the Tarfaya-Dakhla Basin, Morocco the sedimentary cover reaches thicknesses of up to 9000 m. The presence of high surface elevations in the Anti-Atlas mountain belt (2500 m) indicates a potential source area for the surrounding basins. The NE-SW oriented Anti-Atlas of Morocco is located at the northwestern fringe of the West African Craton and south of the High Atlas and represents the Phanerozoic foreland of the Late Paleozoic North African Variscides and the Cenozoic Atlas Belt. Variscan deformation affected most of Morocco. Paleozoic basins were folded and thrusted, with the major collision dated as late Devonian to Late Carboniferous. Zircon fission-track ages of 287 (±23) to 331 (±24) Ma confirmed the main exhumation referred to the Variscan folding, followed by rapid exhumation and the post-folding erosion. Currently, phases of uplift and exhumation in the Anti-Atlas during the Central Atlantic rifting and places where the associated erosion products are deposited are poorly constrained and there is little quantitative data available at present. The objective of the study is to determine the thermal and exhumation history of the Anti-Atlas and the connected Tarfaya-Dakhla Basin at the Moroccan passive continental margin. Besides zircon fission-track dating, apatite and zircon (U-Th-Sm)/He and apatite fission-track analyses and furthermore 2-D modelling with 'HeFTy' software has been carried out at Precambrian rocks of the Western Anti-Atlas and Cretaceous to Neogene sedimentary rocks from the Northern Tarfaya-Dakhla Basin. The apatite fission-track ages of 120 (±13) to 189 (±14) Ma in the Anti-Atlas and 176 (±20) to 216 (±18) Ma in the Tarfaya Basin indicate very obvious a Central Atlantic opening signal and confirm the Anti-Atlas as a potential source area of the Mesozoic basins along the passive continental margin. Young apatite (U-Th-Sm)/He ages of 49 (±3) Ma to 89 (±5) Ma in the Anti-Atlas and 64 (±4) to 73 (±4) Ma in the Tarfaya Basin are related to the interplay between the African and Eurasian plates. The time-temperature models of samples from the AA indicate that the main exhumation in the Anti-Atlas occurred during the Variscan folding, the post-folding erosion and besides the Central Atlantic rifting phase until the Upper Triassic. After this event large parts of the Western Anti-Atlas hold a stable position without significant movements during the Jurassic and Cretaceous, followed by an exhumation phase during the Atlasian orogeny.

  13. Deposition of Franciscan Complex cherts along the paleoequator and accretion to the American margin at tropical paleolatitudes

    USGS Publications Warehouse

    Hagstrum, J.T.; Murchey, B.L.

    1993-01-01

    Red radiolarian cherts from three localities within the Franciscan subduction complex of northern California contain three components of remanent magnetization which are best isolated by progressive thermal demagnetization. The available paleomagnetic, biostratigraphic, and geochemical data indicate deposition of these cherts along the paleoequator (0??-2??N or S paleolatitude) between Pliensbachian and Oxfordian time as the oceanic plate moved eastward, relative to North America, beneath the equatorial zone of high biologic productivity. The chert sequences were subsequently accreted to the American continental margin. Plate reconstruction models for the Farallon plate corrobotate low-paleolatitude trajectories from ridge crest to subduction zone, and they imply subsequent northward translation of the Franciscan Complex by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates. -from Authors

  14. Structure and degree of magmatism of North and South Atlantic rifted margins

    NASA Astrophysics Data System (ADS)

    Faleide, Jan Inge; Breivik, Asbjørn J.; Blaich, Olav A.; Tsikalas, Filippos; Planke, Sverre; Mansour Abdelmalak, Mohamed; Mjelde, Rolf; Myklebust, Reidun

    2014-05-01

    The structure and evolution of conjugate rifted margins in the South and North Atlantic have been studied mainly based on seismic reflection and refraction profiles, complemented by potential field data and plate reconstructions. All margins exhibit distinct along-margin structural and magmatic changes reflecting both structural inheritance extending back to a complex pre-breakup geological history and the final breakup processes. The sedimentary basins at the conjugate margins developed as a result of multiple phases of rifting, associated with complex time-dependent thermal structure of the lithosphere. A series of conjugate crustal transects reveal tectonomagmatic asymmetry, both along-strike and across the conjugate margin systems. The continent-ocean transitional domain along the magma-dominated margin segments is characterized by a large volume of flood basalts and high-velocity/high-density lower crust emplaced during and after continental breakup. Both the volume and duration of excess magmatism varies. The extrusive and intrusive complexes make it difficult to pin down a COB to be used in plate reconstructions. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower crustal levels. The transition is further constrained by comparing the mean P-wave velocity to the thickness of the crystalline crust. By this comparison we can also address the magmatic processes associated with breakup, whether they are convection dominated or temperature dominated. In the NE Atlantic there is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. It is likely that mantle plumes (Iceland in the NE Atlantic, Tristan da Cunha in the South Atlantic) may have influenced the volume of magmatism but they did not necessarily alter the process of rifted margin formation, implying that parts of the margins may have much in common with more magma-poor margins. Conjugate margin segments from the North and South Atlantic will be compared and discussed with particular focus on the tectonomagmatic processes associated with continental breakup.

  15. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    NASA Astrophysics Data System (ADS)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and perhaps geologically than the Nankai margin. The developing Central American countries do not have the resources to contribute to IODP but this should not deter acquiring the scientific insights proposed in CRISP considering the broader scientific benefits. Such benefits include the first sampling and instrumentation of an actively eroding plate interface and drilling near or into an earthquake asperity. Drilling an eroding margin should significantly advance understanding of subduction zone fault mechanisms and help improve assessment of future hazardous earthquakes and tsunamis.

  16. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  17. Anomalous heat flow belt along the continental margin of Brazil

    NASA Astrophysics Data System (ADS)

    Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.

    2018-01-01

    A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.

  18. Permian-Triassic thermal anomaly of the active margin of South America as a result of plate kinematics reorganization

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean

    2013-04-01

    From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.

  19. Time constraints on post-rift evolution of the Southwest Indian passive margin from ^{40}Ar-^{39Ar dating of supergene K-Mn oxides

    NASA Astrophysics Data System (ADS)

    Bonnet, Nicolas; Arnaud, Nicolas; Beauvais, Anicet; Chardon, Dominique

    2013-04-01

    The high-elevation passive margin of Southwest India is marked by the Western Ghats escarpment, which separates the coastal domain from the low-relief East-dipping Mysore plateau. The escarpment has evolved from the Seychelles rifting at ~ 63 Ma following the Deccan traps volcanic event at ~ 65-63 Ma. This escarpment results from differential erosion processes across the passive margin, the rate and timing of which depend upon whether the margin has evolved according to a model of downwarped or rising flank topography. We explore the post-rift evolution of the South Indian passive margin through the characterisation of stepped relicts of lateritic paleosurfaces across that margin, and notably by 40Ar-39Ar dating of in-situ formed K-Mn oxides in supergene Mn-ore deposits carried by these paleosurfaces. The genesis and maturation of Mn-ore deposits are generally linked to progressive weathering processes of the paleosurfaces, which expose them. Dating of K-Mn oxides thus document the timing of these processes [1], and potentially the ages of the altered paleosurface. Moreover, the elevation differences between successive lateritic paleosurfaces of different ages may provide denudation rates for the considered time spans. Previous work (e.g., [2]) and our own field investigations, allow identifying three main lateritic paleosurfaces on the plateau at altitude ranges of 1000-900 m (S2), 900-800 m (S3) and 800-700 m (S3d), and a lower paleosurface in the coastal domain at 150-50 m (S4). K-Mn oxides (cryptomelane) were sampled in Mn ore deposits from different paleosurfaces, particularly in the coastal area around Goa on S4 and in Sandur and Shimoga Mn-ore deposits exposed on S2 and S3. The 40Ar-39Ar ages obtained from carefully characterised mineralogical assemblages range from ~ 26 to ~ 36 Ma in the Sandur Mn-ore deposit indicating intense lateritic weathering processes at the Eocene-Oligocene transition underneath paleosurface S2. Similar ages of ~ 24 and ~ 32 Ma are obtained in two Shimoga Mn ore deposits carried by S3 and S2, respectively. A younger age (~ 21 Ma) is also obtained in a Goa deposit carried by S4. These first results suggest that the Western Ghats passive margin escarpment was established at the latest by early Miocene and that at least part of the inland Mysore plateau morphogenesis was achieved at that time. [1] Beauvais A. et al., Journal of Geophysical Research 113, F04007, 2008. [2] Gunnell, Y., Basin Research 10, 281-310, 1998.

  20. Turbiditic systems on passive margins: fifteen years of fruitful industry-academic exchanges.

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.

    2012-04-01

    During the last fifteen years, with the oil discovery in deep offshore plays, new tools have been developed that deeply modified our knowledge on sedimentary gravity processes on passive margins: geometry, physical processes, but also the importance of the topography and the quantification of the stratigraphic parameters of control. The major breakthrough was of course the extensive 3D seismic data available around most of the world margins with a focus on gravity-tectonics dominated margins. The first major progress was the characterization of the sinuous channels infilling, their diversity and different models for their origin. This also was a better knowledge of the different types of slopes (graded vs. above-graded) and the extension of the concept of accommodation to deep-water environments (ponded, healed-slope, incised submarine valley and slope accommodation). The second step was the understanding of the synsedimentary deformations for the location and the growth of turbiditic systems on margins dominated by gravity tectonics, with the importance of the sedimentary flux and its variation through time and space. The third step is now the integration of the sedimentary system, from the upstream erosional catchment to the abyssal plain (source to sink approach), with the question of the sediment routing system. During the last 100 Ma, continents experienced major changes of both topography and climate. In the case of Africa, those are (1) the growth of the plateaus (and mainly the South African one) around 90-80 Ma (Late Cretaceous) and 40-20 Ma (Late Eocene-Early Miocene) and (2) a climate evolution from hot humid (50-40 Ma) to hot dry conditions since 20-15 Ma. This evolution changed the topography, the processes of erosion and the volume and nature (weathered vs. non weathered rocks) materials. Those are primary processes for controlling the deposition of turbiditic systems, and then to predict the location of sands. This will be discussed along the Atlantic margin of Africa. Keywords: Turbidite, Passive margins, Topography, Deformation, Source to sink

  1. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  2. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  3. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  4. Chile's seismogenic coupling zones - geophysical and neotectonic observations from the South American subduction zone prior to the Maule 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Oncken With Tipteq, Onno; Ipoc Research Groups

    2010-05-01

    Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and an active international initiative (IPOC; Integrated Plate Boundary Observatory Chile) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, and GFZ Potsdam employing an integrated plate boundary observatory and associated projects. We focus on the south Central Chilean convergent margin and the North Chilean margin as natural laboratories embracing the recent Maule 2010 megathrust event. Here, major recent seismic events have occurred (south Central Chile: 1960, Mw = 9.5; 2010, Mw = 8.8; North Chile: 1995, Mw = 8; 2001, Mw = 8.7; 2007, Mw: 7.8) or are expected in the very near future (Iquique, last ruptured 1877, Mw = 8.8) allowing observation at critical time windows of the seismic cycle. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry of the locked zone and the degree of locking in both areas. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, an inference that is strongly supported from recent findings along the exhumed, fossil seismogenic coupling zone of the European Alps. The data provide additional evidence that the degree of interseismic locking is closely mirrored by subsequent megathrust failure as evidenced by the slip and aftershock pattern of the Maule 2010 earthquake. Neogene surface deformation in Chile has been complex exhibiting tectonically uplifting areas along the coast driven by interseismically active reverse faulting. In addition, we observe coseismically subsiding domains along other parts of the coast. Moreover, the coseismic and interseismic vertical displacement identified is not coincident with long-term vertical motion that probably is superseded by slow basal underplating or tectonic erosion occurring at the downdip parts of the seismogenic zone causing discontinuous uplift. Analogue and numerical modelling lend additional support to the kinematic patterns linking slip at the seismogenic coupling zone and upper plate response. Finally we note that the characteristic peninsulas along the South American margin constitute stable rupture boundaries/barriers and appear to have done so for a protracted time as evidenced by their long-term uplift history since at least the Late Pliocene that points to anomalous properties of the plate interface affecting the mode of strain accumulation and plate interface rupture.

  5. Young People Speaking Back from the Margins

    ERIC Educational Resources Information Center

    Smyth, John

    2010-01-01

    The diminished educational opportunities and subsequent life chances of many marginalized young people have been dramatic, even to the point of being catastrophic. But they are not hapless victims, nor are they passive recipients of deficit categories like "at riskness", placed upon them by the media, politicians, agencies, and some…

  6. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  7. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction

    USGS Publications Warehouse

    Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.

    2018-01-01

    Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).

  8. Rift-Related Sediments of the Passive Continental Margin of the Paleo-Asian Ocean (Baikal Segment)

    NASA Astrophysics Data System (ADS)

    Mazukabzov, A. M.; Stanevich, A. M.; Gladkochub, D. P.; Donskaya, T. V.; Khubanov, V. B.; Motova, Z. L.; Kornilova, T. A.

    2018-02-01

    The geological position, composition, and age of detrital zircons of sedimentary deposits of the Nugan Formation of the Western Baikal region underlying the Golousta Formation of the Baikal series of Ediacaran age have been studied. The formation of both stratigraphic units due to the same sources of detrital material, located within the southern flank of the Siberian Craton, has been proved. The deposits of the Nugan Formation have been demonstrated to mark the rifting stage of the formation of the passive margin of the Paleo-Asiatic Ocean: their accumulation occurred in the Late Cryogenian during the interval 720-640 Ma.

  9. Passive microwave characteristics of the Bering Sea ice cover during Marginal Ice Zone Experiment (MIZEX) West

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.

    1984-01-01

    Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea ice types.

  10. Crustal structure and tectonic deformation of the southern Ecuadorian margin

    NASA Astrophysics Data System (ADS)

    Calahorrano, Alcinoe; Collot, Jean-Yves; Sage, Françoise; Ranero, César R.

    2010-05-01

    Multichannel seismic lines acquired during the SISTEUR cruise (2000) provide new constraints on the structure and deformation of the subduction zone at the southern Ecuadorian margin, from the deformation front to the continental shelf of the Gulf of Guayaquil. The pre-stack depth migrated images allows to characterise the main structures of the downgoing and overriding plates and to map the margin stratigraphy in order to propose a chronology of the deformation, by means of integrating commercial well data and industry seismic lines located in the gulf area. The 100-km-long seismic lines show the oceanic Nazca plate underthrusting the South American plate, as well as the subduction channel and inter-plate contact from the deformation front to about 90 km landward and ~20 km depth. Based on seismic structure we identify four upper-plate units, consisting of basement and overlaying sedimentary sequences A, B and C. The sedimentary cover varies along the margin, being few hundreds of meters thick in the lower and middle slope, and ~2-3 km thick in the upper slope. Exceptionally, a ~10-km -thick basin, here named Banco Peru basin, is located on the upper slope at the southernmost part of the gulf. This basin seems to be the first evidence of the Gulf of Guayaquil opening resulting from the NE escaping of the North Andean Block. Below the continental shelf, thick sedimentary basins of ~6 to 8 km occupy most of the gulf area. Tectonic deformation across most of the upper-plate is dominated by extensional regime, locally disturbed by diapirism. Compression evidences are restricted to the deformation front and surrounding areas. Well data calibrating the seismic profiles indicate that an important portion of the total thickness of the sedimentary coverage of the overriding plate are Miocene or older. The data indicate the extensional deformation resulting from the NE motion of the North Andean Block and the opening of the Gulf of Guayaquil, evolves progressively in age from the southern edge of the gulf near Banco Peru, where main subsidence seems to be Miocene or older, toward the northern limit, where high subsidence rates are early Pleistocene.

  11. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex.

    PubMed

    Polonia, A; Torelli, L; Gasperini, L; Cocchi, L; Muccini, F; Bonatti, E; Hensen, C; Schmidt, M; Romano, S; Artoni, A; Carlini, M

    2017-12-19

    Mantle-derived serpentinites have been detected at magma-poor rifted margins and above subduction zones, where they are usually produced by fluids released from the slab to the mantle wedge. Here we show evidence of a new class of serpentinite diapirs within the external subduction system of the Calabrian Arc, derived directly from the lower plate. Mantle serpentinites rise through lithospheric faults caused by incipient rifting and the collapse of the accretionary wedge. Mantle-derived diapirism is not linked directly to subduction processes. The serpentinites, formed probably during Mesozoic Tethyan rifting, were carried below the subduction system by plate convergence; lithospheric faults driving margin segmentation act as windows through which inherited serpentinites rise to the sub-seafloor. The discovery of deep-seated seismogenic features coupled with inherited lower plate serpentinite diapirs, provides constraints on mechanisms exposing altered products of mantle peridotite at the seafloor long time after their formation.

  12. Preface

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster; Talwani, Manik

    In compiling this volume, we have aimed to develop and enhance our current understanding of the structural evolution and sedimentation processes along divergent continental margins. To counteract the unfortunate situation of a lack of modem seismic and potential fields data on circum-Atlantic passive margins in the literature, we have linked new data from oil companies with that of research institutions. To update the data offered in most volumes used as reference works for the study of continental margins, now upwards of 20 years old, and to remedy the dispersal of important, more recent contributions in specialized journals, we present a current synthesis of materials in one volume focused on the deeper geology of the sedimentary basins along continental margins. In the early 1990s, as oil companies and other institutions developed tools to probe deeper into the architecture of passive margin sedimentary basins, a great amount of data based on regional deep seismic profiles evolved rapidly from its specialized niche as geophysical interpretation of the Earth's interior to widespread use by those same companies and institutions. At the same time, these findings demonstrated that some breakthroughs in data acquisition, processing and interpretation initially achieved by research institutions could almost instantaneously be globalized throughout different research groups, thereby influencing the thinking of geoscientists worldwide.

  13. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean bathymetry, starting with age of the oceanic crust. We then reconstructed paleobathymetry for PETM (55 Ma) and Cenomanian-Turonian (90 Ma) times. For each case, the final products are: a) a global depth to basement measurement map based on plate model and EarthByte published age of the ocean crust for modern world; b) global oceanic crust bathymetry maps with a multilayer sediment layer (two versions with two types of sediment layers based on: i) observed total sediment thickness of the modern oceans and marginal seas, and ii) EarthByte-estimated global sediment data for 00 Ma); c) global oceanic bathymetry maps (two versions with two types of sediment layers) with reconstructed shelf and slope; and d) global elevation-bathymetry maps (two versions with two types of sediment layers) with continental elevations (PALEOMAP) and ocean bathymetry. Similar maps for other geological times can be produced using this method provided that ocean crustal age is known.

  14. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  15. Initial Closure of the Neo-Tethys and Kinematics of the Arabian Crustal Shortening

    NASA Astrophysics Data System (ADS)

    Pirouz, M.; Avouac, J. P.; Hassanzadeh, J.; Kirschvink, J. L.; Bahroudi, A.

    2017-12-01

    Exposed transition from passive margin to foreland basin sedimentation in the High Zagros provides chronological constraints on the initial stage of Arabia-Eurasia collision and closure of the Neo-Tethys. Magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture display that the top of the passive margin Asmari formation has an age of 28 - 29 Ma and is overlain by foreland deposits with a major hiatus. The base of the foreland deposits has an age of ca. 26 Ma in the western Zagros and 21.5 Ma in the eastern Zagros. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24±2 mm/yr since the collision. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27±2 Ma. Hence, the Arabia-Eurasia collision could not be the main driver of global cooling which started near the Eocene-Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. The average rate of shortening across the Zagros is estimated to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate. Palinspastic restoration of structural cross-sections and crustal volume conservation accounts for only ca. 200 km of shortening across the Zagros and metamorphic Sanandaj-Sirjan belt implying that at least 150 km of the Arabian crust was underthrust beneath Eurasia without contributing to crustal thickening, possibly due to eclogitization.

  16. Isostasy, Stress and Gravitational Potential Energy in the Southern Atlantic - Insights from Satellite Gravity Observations

    NASA Astrophysics Data System (ADS)

    Goetze, H. J.; Klinge, L.; Scheck-Wenderoth, M.; Dressel, I.; Sippel, J.

    2015-12-01

    New satellite gravity fields e.g. EGM2008, GoCo3S and very recently EIGEN-6C4 (Förste et al., 2014) provide high-accuracy and globally uniform information of the Earth's gravity field and partly of its gradients. The main goal of this study is to investigate the impact of this new gravity field and its processed anomalies (Bouguer, Free-air and Vening-Meinesz residual fields) on lithospheric modelling of passive plate margins in the area of the Southern Atlantic. In an area fixed by the latitudes 20° N - 50° S and longitudes 70° W - 20° E we calculated station-complete Bouguer anomalies (bathymetry/topography corrected) both on- and offshore and compared them with the gravity effect of a velocity model which bases on S - waves tomography (Schaeffer and Lebedev, 2013). The corresponding maps provide more insight in the abnormal mass distribution of oceanic lithosphere and the ocean-continent transition zones on both sides of the Atlantic Ocean than Free-air anomalies which are masked by bathymetry. In a next step we calculated isostatic residual fields (Vening-Meinesz isostasy with regard to different lithospheric rigidities) to remove global components (long wavelengths) from the satellite gravity. The Isostatic residual field will be compared with the GPE (gravitational potential energy). GPE variations in the Southern Atlantic, relative to the reference state, were calculated as ΔGPE. Often the oceanic lithosphere is characterized by negative ΔGPE values indicating that the ocean basin is in compression. Differences from this observation will be compared with the state of stress in the area of the passive margins of South America and South Africa and the oceanic lithosphere in between. Schaeffer, A. J. and S. Lebedev, Global shear-speed structure of the upper mantle and transition zone. Geophys. J. Int., 194 (1), 417-449, 2013. doi:10.1093/gji/ggt095

  17. Earthquakes at North Atlantic passive margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, S.; Basham, P.W.

    1989-01-01

    The main focus of this volume is the earthquakes that occur at and near the continental margins on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in Northmore » America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the ice sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the ice melted about 9000 years ago.« less

  18. BOLIVAR: the Caribbean-South America plate boundary between 60W and 71W as imaged by seismic reflection data

    NASA Astrophysics Data System (ADS)

    Magnani, M.; Mann, P.; Clark, S. A.; Escalona, A.; Zelt, C. A.; Christeson, G. L.; Levander, A.

    2007-12-01

    We present the results of ~6000km of marine multi-channel seismic (MCS) reflection data collected offshore Venezuela as part of the Broadband Ocean Land Investigation of Venezuela and the Antilles arc Region project (BOLIVAR). The imaged area spans almost 12 degrees of longitude and 5 degrees of latitude and encompasses the diffuse plate boundary between South America (SA) and the SE Caribbean plate (CAR). This plate boundary has been evolving for at least the past 55My when the volcanic island arc that borders the CAR plate started colliding obliquely with the SA continent: the collision front has migrated from west to east. BOLIVAR MCS data show that the crustal architecture of the present plate boundary is dominated by the eastward motion of the Caribbean plate with respect to SA and is characterized by a complex combination of convergent and strike-slip tectonics. To the north, the reflection data image the South Caribbean Deformed Belt (SCDB) and the structures related to the thrusting of the CAR plate under the Leeward Antilles volcanic arc region. The data show that the CAR underthrusting continues as far east as the southern edge of the Aves ridge and detailed stratigraphic dating of the Venezuela basin and trench deposits suggests that the collision began in the Paleogene. The amount of shortening along the SCDB decreases toward the east, in part due to the geometry of plate motion vectors and in part as a result of the NNE escape of the Maracaibo block in western Venezuela. South of the SCDB the MCS profiles cross the Leeward Antilles island arc and Cenozoic sedimentary basins, revealing a complex history of Paleogene-Neogene multiphase extension, compression, and tectonic inversion, as well as the influence of the tectonic activity along the right-lateral El Pilar - San Sebastian fault system. East of the Bonaire basin the MCS data image the southern end of the Aves Ridge abandoned volcanic island arc and the southwestern termination of the Grenada basin, characterized here by middle Miocene inverted structures, likely related to the WNW-ESE transpression between CAR and SA. The easternmost MCS profile crosses the ongoing arc-continent collision of the Lesser Antilles arc with SA and the backarc (Grenada Basin) and forearc (Tobago Basin) basins as well as the suture between the Caribbean arc and the passive margin of the continental SA plate near eastern Trinidad.

  19. Passive Fit in Screw Retained Multi-unit Implant Prosthesis Understanding and Achieving: A Review of the Literature.

    PubMed

    Buzayan, Muaiyed Mahmoud; Yunus, Norsiah Binti

    2014-03-01

    One of the considerable challenges for screw-retained multi-unit implant prosthesis is achieving a passive fit of the prosthesis' superstructure to the implants. This passive fit is supposed to be one of the most vital requirements for the maintenance of the osseointegration. On the other hand, the misfit of the implant supported superstructure may lead to unfavourable complications, which can be mechanical or biological in nature. The manifestations of these complications may range from fracture of various components in the implant system, pain, marginal bone loss, and even loss of osseointegration. Thus, minimizing the misfit and optimizing the passive fit should be a prerequisite for implant survival and success. The purpose of this article is to present and summarize some aspects of the passive fit achieving and improving methods. The literature review was performed through Science Direct, Pubmed, and Google database. They were searched in English using the following combinations of keywords: passive fit, implant misfit and framework misfit. Articles were selected on the basis of whether they had sufficient information related to framework misfit's related factors, passive fit and its achievement techniques, marginal bone changes relation with the misfit, implant impression techniques and splinting concept. The related references were selected in order to emphasize the importance of the passive fit achievement and the misfit minimizing. Despite the fact that the literature presents considerable information regarding the framework's misfit, there was not consistency in literature on a specified number or even a range to be the acceptable level of misfit. On the other hand, a review of the literature revealed that the complete passive fit still remains a tricky goal to be achieved by the prosthodontist.

  20. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  1. Phanerozoic geological evolution of Northern and Central Africa: An overview

    NASA Astrophysics Data System (ADS)

    Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A.

    2005-10-01

    The principal paleogeographic characteristics of North and Central Africa during the Paleozoic were the permanency of large exposed lands over central Africa, surrounded by northerly and northwesterly dipping pediplanes episodically flooded by epicontinental seas related to the Paleotethys Ocean. The intra-continental Congo-Zaire Basin was also a long-lived feature, as well as the Somali Basin from Late Carboniferous times, in conjunction with the development of the Karoo basins of southern Africa. This configuration, in combination with eustatic sea-level fluctuations, had a strong influence on facies distributions. Significant transgressions occurred during the Early Cambrian, Tremadocian, Llandovery, Middle to Late Devonian, Early Carboniferous, and Moscovian. The Paleozoic tectonic history shows an alternation of long periods of predominantly gentle basin subsidence and short periods of gentle folding and occasionally basin inversion. Some local rift basins developed episodically, located mainly along the northern African-Arabian plate margin and near the West African Craton/Pan-African Belt suture. Several arches or spurs, mainly N-S to NE-SW trending and inherited from late Pan-African fault swarms, played an important role. The Nubia Province was the site of numerous alkaline anorogenic intrusions, starting in Ordovician times, and subsequently formed a large swell. Paleozoic compressional events occurred in the latest Early Cambrian ("Iskelian"), Medial Ordovician to earliest Silurian ("pre-Caradoc" and "Taconian"), the end Silurian ("Early Acadian" or "Ardennian"), mid-Devonian ("Mid-Acadian"), the end Devonian ("Late Acadian" or "Bretonnian"), the earliest Serpukhovian ("Sudetic"), and the latest Carboniferous-earliest Permian ("Alleghanian" or "Asturian"). The strongest deformations, including folding, thrusting, and active strike-slip faulting, were registered in Northwestern Africa during the last stage of the Pan-African Belt development around the West African Craton (end Early Cambrian) and during the polyphased Hercynian-Variscan Orogeny that extended the final closure of the Paleotethys Ocean and resulted in the formation of the Maghrebian and Mauritanides belts. Only gentle deformation affected central and northeastern African during the Paleozoic, the latter remaining a passive margin of the Paleotethys Ocean up to the Early Permian when the development of the Neotethys initiated along the Eastern Mediterranean Basins. The Mesozoic-Cenozoic sedimentary sequence similarly consists of a succession of eustatically and tectonically controlled depositional cycles. Through time, progressive southwards shift of the basin margins occurred, related to the opening of the Neotethys Ocean and to the transgressions resulting from warming of the global climate and associated rise of the global sea level. The Guinean-Nigerian Shield, the Hoggar, Tibesti-Central Cyrenaica, Nubia, western Saudi Arabia, Central African Republic, and other long-lived arches delimited the principal basins. The main tectonic events were the polyphased extension, inversion, and folding of the northern African-Arabian shelf margin resulting in the development of the Alpine Maghrebian and Syrian Arc belts, rifting and drifting along the Central Atlantic, Somali Basins, and Gulf of Aden-Red Sea domains, inversion of the Murzuq-Djado Basin, and rifting and partial inversion along the Central African Rift System. Two major compressional events occurred in the Late Santonian and early Late Eocene. The former entailed folding and strike-slip faulting along the northeastern African-northern Arabian margin (Syrian Arc) and the Central African Fold Belt System (from Benue to Ogaden), and thrusting in Oman. The latter ("Pyrenean-Atlasic") resulted in folding, thrusting, and local metamorphism of the northern African-Arabian plate margin, and rejuvenation of intra-plate fault zones. Minor or more localized compressional deformations took place in the end Cretaceous, the Burdigalian, the Tortonian and Early Quaternary. Recent tectonic activity is mainly concentrated along the Maghrebian Alpine Belt, the offshore Nile Delta, the Red Sea-East African Rifts Province, the Aqaba-Dead Sea-Bekaa sinistral strike-slip fault zone, and some major intra-plate fault zones including the Guinean-Nubian, Aswa, and central Sinai lineaments. Large, long-lived magmatic provinces developed in the Egypt-Sudan confines (Nubia), in the Hoggar-Air massifs, along the Cameroon Line and Nigerian Jos Plateau, and along the Levant margin, resulting in uplifts that influenced the paleogeography. Extensive tholeiitic basaltic magmatism at ˜200 Ma preceded continental break-up in the Central Atlantic domain, while extensive alkaline to transitional basaltic magmatism accompanied the Oligocene to Recent rifting along the Red Sea-Gulf of Aden-East African rift province.

  2. Plate tectonic reconstruction of the northeast Eurasian margin and Alaska since 50 Ma using subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Chen, Y. W.

    2016-12-01

    Seismic tomographic studies have revealed a swath of flat slab anomalies in the mantle transition zone at 410 to 660 km depths under Japan, Korea and NE China that continue northwards at deeper depths under the Russian Far East. These slab anomalies are remarkable because they appear to be continuous from their western edge far inland (>2000 km) under the NE Eurasian margin to the present-day NW Pacific subduction zones, which suggests they are Pacific slabs that were subducted in the Cenozoic. Other studies have proposed that some of these slabs were subducted at an ancient subduction zone during the Mesozoic or earlier. Here we discuss the fate of these slabs and their implications for the plate tectonic reconstruction of the NW Pacific margin along NE Asia and Alaska. We present both new and recently published slab mapping (Wu et al., 2016; JGR Solid Earth) including 30 major and minor slabs mapped in 3D from MITP08 global seismic tomography. We unfolded our mapped slabs to a spherical Earth model to estimate their pre-subduction size, shape and locations. The slab constraints were input into GPlates software to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic. Mapped slabs included the Marianas, Izu-Bonin, Japan and Kuril slabs, the Philippine Sea slabs and Aleutian slabs under the Bering Sea. Our mapped western Pacific slabs between the southernmost Izu-Bonin trench and the western Aleutians had unfolded E-W lengths of 3400 to 4900 km. Our plate model shows that these slabs are best reconstructed as Pacific slabs that were subducted in the Cenozoic and account for fast Pacific subduction along the NE Eurasian margin since plate reorganization at 50 Ma. Our mapped northern Kuril slab edge near the western Aleutians and a southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with the orientations of Pacific absolute motions since 50 Ma. We interpret these long E-W slab edges as STEP fault-type transforms (i.e. lithospheric tears that progressively formed during subduction). We further discuss our plate model against the opening of the NW Pacific marginal basins in the Cenozoic, including the Japan Sea, Kuril Basin and Okhotsk Sea.

  3. Restoration and evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India

    NASA Astrophysics Data System (ADS)

    Searle, M. P.; Pickering, K. T.; Cooper, D. J. W.

    1990-03-01

    Collision of the Indian Plate with the Karakorum Plate-Lhasa Block during the Eocene (ca. 55-50 Ma) created predominantly a S- or SW-verging thrust culmination across the Himalaya. During the late Tertiary, two molasse basins existed — the Siwalik Bain, formed in the late Miocene to Present on the Indian foreland south of the Himalaya, and the mid-Eocene to late Miocene Indus Basin along the Indus Suture Zone north of the High Himalaya. The Indus Basin is approximately 2000 km long, extending eastwards from Ladakh across South Tibet. A balanced cross-section along the Zanskar River shows a minimum 36 km shortening in the Eocene-?late Miocene molasse, and suggests that the minimum basin width was approximately 60 km in Ladakh. More than 2000 m of post-Eocene alluvial fan, fluvial and fluvio-lacustrine sediments accumulated in the Ladakh sector with petrographies suggesting derivation mainly from the deeply dissected and uplifted northern granodioritic Ladakh batholith (Aptian-Eocene), with only minor amounts of debris derived from the deformed southern Tethyan passive margin. Palaeocurrents show predominant E-W, axis-parallel, sediment transport, with subordinate lateral input paths being preserved. The Indus molasse basin is deformed by numerous, post-Eocene, N-directed backthrusts, many of which cut the entire stratigraphy and, therefore, were active at least into late Tertiary times.

  4. Characterization of indoor bioaerosols from a hospital ward in a tropical setting.

    PubMed

    Sudharsanam, S; Swaminathan, S; Ramalingam, A; Thangavel, G; Annamalai, R; Steinberg, R; Balakrishnan, K; Srikanth, P

    2012-06-01

    Study was conducted to assess whether temporal variation exists in airborne microbial concentrations of a hospital ward (west-Chennai, India) using active and passive methods, and characterise the microorganisms. Air samples (duplicates) were collected simultaneously using exposed-plate, impingement (BioSampler) and filtration (personal sampling filter cassette loaded with gelatin filter) methods over different periods of the year. Bacterial plates were incubated at 37°C and observed for growth after 48h; fungal plates were incubated at 25°C and 37°C and observed upto 7 days. Microorganisms were identified using standard microbiological procedures. Microbial loads were found to vary with the sampling method. Concentrations of bacteria were higher (exposed-plate: 45-150 CFU/plate; impingement: 1.12E+03-1.6856E+05 CFU/m(3); filtration: 3.788E+03-1.91111E+05 CFU/m(3)) than fungi (exposed-plate: 0-13 CFU/plate; impingement: 0-3.547E+03 CFU/m(3); filtration: 0-1.515E+04 CFU/ m(3)). Coagulase-negative Staphylococci and Micrococci were the predominant Gram-positive cocci in active and passive samples. Enterobacter and Pseudomonas were the predominant Gram-negative bacilli. Among fungi, Aspergillus niger was isolated throughout the year. There was no significant temporal variation in airborne microbial loads irrespective of methods. Exposed-plate method was found to capture microorganisms efficiently with little variation in duplicate samples, suggesting its use in hospitals for preliminary assessment of indoor air quality and determine pathogenic microorganisms due to particle fall-out.

  5. Contrast of lithospheric dynamics across the southern and eastern margins of the Tibetan Plateau: a numerical study

    NASA Astrophysics Data System (ADS)

    Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai

    2018-05-01

    Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.

  6. The Northwestern Atlantic Moroccan Margin From Deep Multichannel Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Malod, J. A.; Réhault, J. P.; Sahabi, M.; Géli, L.; Matias, L.; Zitellini, N.; Sismar Group

    The NW Atlantic Moroccan margin, a conjugate of the Nova Scotia margin, is one of the oldest passive margins of the world. Continental break up occurred in the early Jurassic and the deep margin is characterized by a large salt basin. The SISMAR cruise (9 April to 4 May 2001) acquired 3667 km of 360 channel seismic reflection profiles. In addition, refraction data were recorded by means of 48 OBH/OBS deployments. Simultaneously, some of the marine profiles were extended onshore with 16 portable seismic land stations. WNW-ESE profiles 4 and 5 off El Jadida show a good section of the margin. The crustal thinning in this region is fairly abrupt. These profiles image the crust above a strong seismic reflector at about 12 s.twt., interpreted as the Moho. The crust exhibits several different characteristics from the continent towards the ocean.: - highly diffractive with a thickness larger than 25 km beneath the shelf. - stratified at a deep level and topped by few "tilted blocks" with a diffractive acoustic facies and for which 2 hypotheses are proposed: either continental crust tilted during the rifting or large landslides of crustal and sedimentary material slid down later. Liassic evapor- ites are present but seem less thick than to the south. - layered with seaward dipping reflectors: this type of crust correlates with the magnetic anomaly S1 and corresponds to the continent-ocean transition. - diffractive with an oceanic character. Oceanwards, the crust becomes more typically oceanic, but shows internal reflectors that may be re- lated to compressional reactivation during the Tertiary attested by large scale inverted basins. Our results allow us to discuss the nature and location of the continent-ocean transition at a regional scale and the rifting to spreading evolution of the very ma- ture continental margin off El Jadida. This provide us with some constraints for the initial reconstruction between Africa, North America and Iberia. Moreover, these re- sults help to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. * SISMAR Group includes the authors and Amhrar M., Camurri F., Contrucci I., Diaz J., El Archi A., Gutscher M.A., Jaffal M., Klingelhöfer F., Legall B., Maillard A., Mehdi K., Mercier E., Moulin M., Olivet J.L., Ouajhain B., Perrot J., Rolet J., Ruellan E., Sibuet J.C., Zourarah B.

  7. Cenozoic deformation from the Yakutat-North American collision to the eastern margin of the Northern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.

    2017-12-01

    The western margin of the Northern Cordillera of North America is dominated by transform motion of the Yakutat microplate along the Fairweather fault system. In southeast Alaska the transform boundary changes to convergence and the oblique collision of the buoyant Yakutat microplate formed the St. Elias Mountains. One of the outstanding questions in understanding the St. Elias orogeny is how stress from the plate boundary has been transferred inboard and distributed strain in the North American plate. The timing, amount, and spatial pattern of deformation and rock exhumation have been studied using multiple thermochronology methods. Together the data reveal that Late Cenozoic deformation inboard of the Fairweather Fault and the colliding Yakutat plate corner at the St. Elias syntaxis was spatially very limited, resulting in rock exhumation within a <30 km-wide corridor north and northeast of the plate boundary. The data from this inboard region, located in Yukon and northern British Columbia, record Late Cretaceous-Early Eocene cooling associated with Cordilleran deformation, and Paleocene-Eocene cooling due to spreading-ridge subduction. In contrast, the region west of the St. Elias syntaxis is dominated by convergence, which resulted in significant Cenozoic deformation in southeastern and southern Alaska. In the St. Elias orogen itself, most of the Late Cenozoic deformation and exhumation occurs within the Yakutat microplate and its Cenozoic sedimentary cover that composes the fold-thrust belt. The efficient interaction between tectonic uplift and glacial erosion resulted in rapid exhumation (>1 km/Myr) and extreme rates (4 km/Myr) that are localized at the syntaxis region and have shifted southward over the past 10 Myr. Far-field deformation reaches more than 500 km to the northwest of the convergent margin and caused mountain building in south-central Alaska. Deformation to the northeast is unclear. New thermochronology data from the eastern margin of the Northern Canadian Cordillera (Northwest Territory) reveal exhumation during the Oligocene to early Miocene. At this time, transform motion was already dominating the plate margin in the west. The post-Cordilleran deformation at the eastern front may thus be related to mantle convection and/or stresses associated with the North Atlantic opening.

  8. Two new species of the genus Haplotropis Saussure, 1888 (Orthoptera, Acridoidea, Pamphagidae) from China.

    PubMed

    Ye, Bao-Hua; Yin, Zhan; Li, Xin-Jiang

    2016-06-30

    Two new species of the genus Haplotropis Saussure, 1888 from China are described in this paper. The new species Haplotropis xiai sp. nov. is similar to Haplotropis brunneriana Saussure, 1888, but differs from latter by frontal ridge of male widened at median ocellus; tegmina narrower, cover 2/5 tympanum; cercus of male apical half part gently tapering; lower margin of epiphallus with high projection in the middle; anterior margin of pronotum in female with distinct acute angular in middle; length of subgenital plate shorter than width in female. The Haplotropis zhuoluensis sp. nov. is similar to Haplotropis xiai sp. nov., but differs from latter by anterior margin of pronotum reaching hind margin of eyes; length of temina is 1.6 times in male and 1.3 times in female of width; length of interspace shorter than narrowest in mesosternum of male; ancorae of epiphallus oblique inward distinctly, lower margin with high projection in the middle; length of subgenital plate longer than width in female. Type specimens are deposited in the College of Life Sciences, Hebei University, Baoding, China.

  9. Geodynamics and synchronous filling of rift-type basin evolved through compression tectonics

    NASA Astrophysics Data System (ADS)

    Papdimitriou, Nikolas; Nader, Fadi; Gorini, Christian; Deschamps, Remy

    2016-04-01

    The Levant Basin falls in the category of frontier basins, and is bounded by the Eratosthenes seamount to the West, the Nile cone delta to the south, Cyprus to the north and Lebanon to the east. The Levant Basin was initially a rift type basin, which is located at a major plate boundary since the Late Triassic. It evolved later on through compression tectonics. The post-rift phase prevailed since the Late Jurassic and is expressed by the gradual initiation of a passive margin. A thick infill, mostly of deep water sediments (about 12 km thick) is accounted for the Levant Basin. The post-rift sediments are pinching-out along the slope of the well preserved (and imaged) eastern margin of the Eratosthenes seamount, which is essentially made up of Mesozoic platform carbonates (about 5 km). Thus, the Eratosthenes carbonate platform was adjacent to the deep marine facies of the Levant Basin until the late Cretaceous/Cenozoic. At that time, both the Eratosthenes seamount and the Levant Basin became part of a foreland basin along the Cyprus Arc zone as a result of the collision of the African and Eurasian plates. The objective of this contribution is to investigate the timing and the mechanisms of flexural subsidence as well as the sedimentary filling of Levant Basin (through a source-to-sink approach) in a well-deformed tectonic region. The interpretation of twenty-four 2D seismic profiles coupled with the available ODP wells, offshore Cyprus, aims to define the primary reflectors and seismic packages. Then, concepts of seismic stratigraphy and sequence stratigraphy are applied to achieve a better understanding of the tectonostratigraphy and sedimentary architecture of the Eratosthenes seamount (as an isolated carbonate platform) and its surroundings. Recent offshore discoveries south of the Eratosthenes seamount (e.g., Zhor) have confirmed the presence of gas accumulations exceeding 30Tcf in subsalt Lower Miocene carbonate buildups, making out the understanding of the evolution of this new frontier hydrocarbon province of great importance.

  10. The Caribbean-South American plate boundary at 65°W: Results from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Magnani, M. B.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2010-08-01

    We present the results of the analysis of new wide-angle seismic data across the Caribbean-South American plate boundary in eastern Venezuela at about 65°W. The ˜500 km long profile crosses the boundary in one of the few regions dominated by extensional structures, as most of the southeastern Caribbean margin is characterized by the presence of fold and thrust belts. A combination of first-arrival traveltime inversion and simultaneous inversion of PmP and Pn arrivals was used to develop a P wave velocity model of the crust and the uppermost mantle. At the main strike-slip fault system, we image the Cariaco Trough, a major pull-apart basin along the plate boundary. The crust under the Southern Caribbean Deformed Belt exhibits a thickness of ˜15 km, suggesting that the Caribbean Large Igneous Province extends to this part of the Caribbean plate. The velocity structures of basement highs and offshore sedimentary basins imaged by the profile are comparable to those of features found in other parts of the margin, suggesting similarities in their tectonic history. We do not image an abrupt change in Moho depth or velocity structure across the main strike-slip system, as has been observed elsewhere along the margin. It is possible that a terrane of Caribbean island arc origin was accreted to South America at this site and was subsequently bisected by the strike-slip fault system. The crust under the continental portion of the profile is thinner than observed elsewhere along the margin, possibly as a result of thinning during Jurassic rifting.

  11. The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Leroy, S.; Rouzo, S.; D'Acremont, E.; Unternehr, P.; Ebinger, C.; Lucazeau, F.; Al-Lazki, A.

    2011-02-01

    The wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determine the deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Its current geometry shows first- and second-order segmentation: our study focusses on the Ashawq-Salalah second-order segment, between Alula-Fartak and Socotra-Hadbeen fracture zones. Modelling of the WAS and gravity data (three profiles across and three along the margin) gives insights into the first- and second-order structures. (1) Continental thinning is abrupt (15-20 km thinning across 50-100 km distance). It is accommodated by several tilted blocks. (2) The ocean-continent transition (OCT) is narrow (15 km wide). The velocity modelling provides indications on its geometry: oceanic-type upper-crust (4.5 km s-1) and continental-type lower crust (>6.5 km s-1). (3) The thickness of the oceanic crust decreases from West (10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supply along the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6 to 7.8 km s-1) exists at the crust-mantle interface below the thinned margin, the OCT and the oceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic material emplaced during a `post-rift' event, according to the presence of a young volcano evidenced by heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encens survey). We propose that the non-volcanic passive margin is affected by post-rift volcanism suggesting that post-rift melting anomalies may influence the late evolution of non-volcanic passive margins.

  12. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin

    USGS Publications Warehouse

    England, Philip; Wells, Ray E.

    1991-01-01

    Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.

  13. High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-11-01

    We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear from 12-6.3 Ma. Pacific-North America plate motion since 16 Myr estimated with our new rotations agrees well with structurally summed deformation along two transects of western North America between the Colorado Plateau and western California, with a difference as small as 40 km out of 760 km of margin-parallel motion. A strong resemblance between a 20-Myr-to-present flow line reconstructed with our new rotations and the traces of the 700-km-long Queen Charlotte Fault and continental slope west of Canada suggests that the plate margin geometry was influenced by the passage of the Pacific plate and Yakutat block. The new rotations also suggest that (1) oblique convergence west of Canada initiated at 12-11 Ma, 5-8 Myr earlier than previously estimated, (2) no significant margin-normal shortening has occurred in areas of Canada located east of the Haida Gwaii archipelago since 20 Ma and (3) Pacific plate underthrusting of Haida Gwaii has accommodated the margin-normal component of plate motion since 12-11 Ma. Our rotations suggest an ≈70 per cent increase in the rate that the Pacific plate has been consumed by subduction beneath the Aleutian arc since 19.7 Ma, with still-unknown consequences for the rate of arc magmatism.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  15. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  16. Fuel cell separator with compressible sealing flanges

    DOEpatents

    Mientek, A.P.

    1984-03-30

    A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.

  17. Fuel cell separator with compressible sealing flanges

    DOEpatents

    Mientek, Anthony P.

    1985-04-30

    A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.

  18. Mantle convective support, drainage patterns and sedimentary flux: Examples from the West Africa passive margin

    NASA Astrophysics Data System (ADS)

    Lodhia, B. H.; Roberts, G. G.; Fraser, A.; Goes, S. D. B.; Fishwick, S.; Jarvis, J.

    2017-12-01

    Sedimentary flux measurements, regional subsidence patterns, inversion of drainage patterns, tomographic models and simple isostatic calculations are combined to constrain the history of sub-plate support of North West Africa. Backstripping of 8 commercial wells and mapping of 53,000 line-km of 2D seismic reflection data show that rapid ( 0.03 mm a-1) Neogene-Recent subsidence occurred in a 500 x 500 km region offshore Mauritania. 0.4-0.8 km of water-loaded subsidence occurred in the center of the basin during the last 23 Ma. Salt withdrawal, thin-skinned tectonics, glacio-eustasy and flexure of the lithosphere due to the emplacement of Cape Verde cannot explain the timing or magnitude of this phase of subsidence. Instead, conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Our results indicate that asthenospheric flow from Cape Verde to Mauritania generated a bathymetric gradient of 1/300 at a wavelength of 103 km during the last 23 Ma. We explore the relationship between uplift and erosion onshore and measured solid sedimentary flux offshore. First, the history of sedimentary flux to the margin was determined by depth-converting and decompacting biostratigraphically-dated isopachs. Compaction and velocity errors, determined using check-shot data, were propagated into calculated sedimentary flux history. Solid-sedimentary flux rates of 0.2-0.1+0.2 ×103 km3 /Ma between 23.8-5.6 Ma, and 1.9-1.4+2.0 ×103 km3 /Ma from 5.6-0 Ma are observed. Secondly, a calibrated stream power erosional model was used to invert 14700 river profiles for a history of regional uplift rate. Incision rates were integrated along best-fitting theoretical river profiles to predict sedimentary flux at mouths of the rivers draining NW Africa. Our predicted history of sedimentary flux increases in two stages towards the present-day, in agreement with our offshore measurements. Predicted fluxes are indistinguishable if precipitation rate varies with a period < 1 Ma or drainage area varies by < 50%. We suggest that the history of Cenozoic epeirogeny in the Fouta Djallon swell and growth of the Atlas Mountains determined the rate of Neogene sediment delivery to NW Africa's passive margin.

  19. Dislocation models of interseismic deformation in the western United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.

    2008-01-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  20. Seismicity of the Earth 1900-2013 offshore British Columbia-southeastern Alaska and vicinity

    USGS Publications Warehouse

    Hayes, Gavin P.; Smoczyk, Gregory M.; Ooms, Jonathan G.; McNamara, Daniel E.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio

    2014-01-01

    The tectonics of the Pacific margin of North America between Vancouver Island and south-central Alaska are dominated by the northwest motion of the Pacific plate with respect to the North America plate at a velocity of approximately 50 mm/yr. In the south of this mapped region, convergence between the northern extent of the Juan de Fuca plate (also known as the Explorer microplate) and North America plate dominate. North from the Explorer, Pacific, and North America plate triple junction, Pacific:North America motion is accommodated along the ~650-km-long Queen Charlotte fault system. Offshore of Haida Gwaii and to the southwest, the obliquity of the Pacific:North America plate motion vector creates a transpressional regime, and a complex mixture of strike-slip and convergent (underthrusting) tectonics. North of the Haida Gwaii islands, plate motion is roughly parallel to the plate boundary, resulting in almost pure dextral strike-slip motion along the Queen Charlotte fault. To the north, the Queen Charlotte fault splits into multiple structures, continuing offshore of southwestern Alaska as the Fairweather fault, and branching east into the Chatham Strait and Denali faults through the interior of Alaska. The plate boundary north and west of the Fairweather fault ultimately continues as the Alaska-Aleutians subduction zone, where Pacific plate lithosphere subducts beneath the North America plate at the Aleutians Trench. The transition is complex, and involves intraplate structures such as the Transition fault. The Pacific margin offshore British Columbia is one of the most active seismic zones in North America and has hosted a number of large earthquakes historically.

  1. Geologic Assessment of Undiscovered Oil and Gas Resources of the North Cuba Basin, Cuba

    USGS Publications Warehouse

    Schenk, Christopher J.

    2010-01-01

    Petroleum generation in the North Cuba Basin is primarily the result of thrust loading of Jurassic and Cretaceous source rocks during formation of the North Cuba fold and thrust belt in the Late Cretaceous to Paleogene. The fold and thrust belt formed as Cuban arc-forearc rocks along the leading edge of the Caribbean plate translated northward during the opening of the Yucatan Basin and collided with the passive margin of southern North America in the Paleogene. Petroleum fluids generated during thrust loading migrated vertically into complex structures in the fold and thrust belt, into structures in the foreland basin, and possibly into carbonate reservoirs along the margins of the Yucatan and Bahama carbonate platforms. The U.S. Geological Survey (USGS) defined a Jurassic-Cretaceous Composite Total Petroleum System (TPS) and three assessment units (AU)-North Cuba Fold and Thrust Belt AU, North Cuba Foreland Basin AU, and the North Cuba Platform Margin Carbonate AU-within this TPS based mainly on structure and reservoir type (fig. 1). There is considerable geologic uncertainty as to the extent of petroleum migration that might have occurred within this TPS to form potential petroleum accumulations. Taking this geologic uncertainty into account, especially in the offshore area, the mean volumes of undiscovered resources in the composite TPS of the North Cuba Basin are estimated at (1) 4.6 billion barrels of oil (BBO), with means ranging from an F95 probability of 1 BBO to an F5 probability of 9 BBO; and (2) 8.6 trillion cubic feet of of gas (TCFG), of which 8.6 TCFG is associated with oil fields, and about 1.2 TCFG is in nonassociated gas fields in the North Cuba Foreland Basin AU.

  2. Understanding Extension in the Southern Marianas and the Challenger Deep: a 21ST Century Geoscientific Challenge

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Ribeiro, J. M.; Martinez, F.; Ohara, Y.

    2017-12-01

    The Challenger Deep (CD) is the deepest spot on Earth's solid surface and the reasons for its great depth are controversial. In general, trench depths (without sediments) are thought to reflect slab age; old oceanic lithosphere arrives at the trench deeper so similar downbending makes deeper trenches than young oceanic lithosphere. Slab tears and edges and short slabs also may help trenches deepen by making it easier to roll back. In the case of the CD, we are unsure of subducted oceanic lithosphere age because this lies near the juncture of Jurassic and Oligocene crusts. A slab edge to the west and a slab tear to the east may also help the Pacific plate roll back and contribute to its depth. A possible unexamined reason for CD's great depth may be strong extension of the overlying plate associated with opening of the Mariana Trough backarc basin (MT-BAB). GPS on islands indicate southward-increasing extension rates of at least 45mm/yr at the latitude of Guam (Kato et al. 2003 GRL; see Martinez et al. T037 for more info); extension rates are likely to be greater in the MT-BAB north of CD. There are few convergent margins where strong extension affects the overriding plate. Overriding plate extension may help deepen trenches by narrowing the plate coupling zone (Gvirtzman and Stern 2003 Tectonics). Asthenosphere outflow from the shrinking Philippine Sea plate could also push against the slab to depress it. The region around the CD is very deep water, presenting major challenges for future study. The combined deepwater assets and brainpower of the US, Japan, and China are needed to do this work. Both subducting and overriding plates need study. For the downgoing plate, we need IODP drilling and refraction studies to determine its age and crustal and lithospheric structure; electromagnetic sounding would also help reveal upper plate structure. We need passive OBS studies to map slab tears and edges. We need to better understand the tectonic evolution of the MT-BAB-CD region over the last few Ma. To do this, we need better sampling of seafloor basalts to determine their composition and age. Further exploration is needed to find more forearc seeps such as Shinkai Seep Field (Okumura et al. 2016, G3). Understanding the CD and surrounding region provides a natural focus for joint US-Japan-China marine geoscientific research in the 21st Century.

  3. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  4. Numerical and experimental study of bistable plates for morphing structures

    NASA Astrophysics Data System (ADS)

    Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.

    2017-04-01

    This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.

  5. Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.

    PubMed

    Yu, Wei; Duan, Zheng; Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2018-03-14

    Carbon nanotubes (CNTs) and other related CNT-based materials with a high thermal conductivity can be used as promising heat dissipation materials. Meanwhile, the miniaturization and high functionality of portable electronics, such as laptops and mobile phones, are achieved at the cost of overheating the high power-density components. The heat removal for hot spots occurring in a relatively narrow space requires simple and effective cooling methods. Here, an auxiliary passive cooling approach by the aid of a flat plate (aluminum-magnesium alloy) is investigated to accommodate heat dissipation in a narrow space. The cooling efficiency can be raised to 43.5%. The cooling performance of several CNT-based samples is compared under such circumstances. Heat dissipation analyses show that, when there is a nearby plate for cooling assistance, the heat radiation is weakened and natural convection is largely improved. Thus, improving heat radiation by increasing emissivity without reducing natural convection can effectively enhance the cooling performance. Moreover, the decoration of an auxiliary cooling plate with sprayed CNTs can further improve the cooling performance of the entire setup.

  6. Effect of polyethylene glycols on the trans-ungual delivery of terbinafine.

    PubMed

    Nair, Anroop B; Chakraborty, Bireswar; Murthy, S Narasimha

    2010-12-01

    Topical nail drug delivery could be improved by identifying potent chemical penetration enhancers. The purpose of this study was to assess the effect of polyethylene glycols (PEGs) on the trans-ungual delivery of terbinafine. In vitro permeation studies were carried out by passive and iontophoresis (0.5 mA/cm2) processes for a period of 1 h using gel formulations containing different molecular weight PEGs (30%w/w). The release of drug from the loaded nail plates and the possible mechanisms for the enhanced delivery was studied. Passive delivery using formulation with low molecular weight PEGs (200 and 400 MW) indicated moderate enhancement in the permeation and drug load in the nail plate, compared to the control formulation. However, the effect of low molecular weight PEGs was predominant during iontophoresis process with greater amount of terbinafine being permeated (≈35 µg/cm2) and loaded into the nail plate (≈2.7 µg/mg). However, little or no effect on drug delivery was observed with high molecular weight PEGs (1000- 3350 MW) in passive and iontophoresis processes. Release of drug from the nail plates loaded by iontophoresis using low molecular weight PEG (400 MW) exhibited sustain effect which continued over a period of 72 days. The enhancement in drug permeation by low molecular weight PEGs is likely due to their ability to lead to greater water uptake and swelling of nail. This study concluded that the low molecular weight PEGs are indeed a promising trans-ungual permeation enhancer.

  7. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  8. Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Pilidou, S.; Kendall, J.-M.; Stuart, G. W.

    2010-06-01

    The East African rift in Ethiopia is unique worldwide because it captures the final stages of transition from continental rifting to seafloor spreading. A recent study there has shown that magma intrusion plays an important role during the final stages of continental breakup, but the mechanism by which it is incorporated into the extending plate remains ambiguous: wide-angle seismic data and complementary geophysical tools such as gravity analysis are not strongly sensitive to the geometry of subsurface melt intrusions. Studies of shear wave splitting in near-vertical SKS phases beneath the transitional Main Ethiopian Rift (MER) provide strong and consistent evidence for a rift-parallel fast anisotropic direction. However, it is difficult to discriminate between oriented melt pocket (OMP) and lattice preferred orientation (LPO) causes of anisotropy based on SKS study alone. The speeds of horizontally propagating Love (SH) and Rayleigh (SV) waves vary in similar fashions with azimuth for LPO- and OMP-induced anisotropy, but their relative change is distinctive for each mechanism. This diagnostic is exploited by studying the propagation of surface waves from a suite of azimuths across the MER. Anisotropy is roughly perpendicular to the absolute plate motion direction, thus ruling out anisotropy due to the slowly moving African Plate. Instead, three mechanisms for anisotropy act beneath the MER: periodic thin layering of seismically fast and slow material in the uppermost ˜10 km, OMP between ˜20-75 km depth, and olivine LPO in the upper mantle beneath. The results are explained best by a model in which low aspect ratio melt inclusions (dykes and veins) are being intruded into an extending plate during late stage breakup. The observations from Ethiopia join a growing body of evidence from rifts and passive margins worldwide that shows magma intrusion plays an important role in accommodating extension without marked crustal thinning.

  9. The controversy over plumes: Who is actually right?

    NASA Astrophysics Data System (ADS)

    Puchkov, V. N.

    2009-01-01

    The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the mantle-core interface.

  10. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  11. Marginal inherited structures impact on the oblique convergent N American Plate/ Central Caribbean plate-boundary in the Northern Caribbean. The tectonic evolution since Miocene times based on Haiti data acquired onshore and offshore since 2012- a step toward an ADP Drilling Proposal (Haiti-DRILL).

    NASA Astrophysics Data System (ADS)

    Ellouz, N.; Hamon, Y.; Deschamps, R.; Battani, A.; Wessels, R.; Boisson, D.; Prepetit, C.; Momplaisir, R.

    2017-12-01

    Since Early Paleogene times, the North Caribbean plate is colliding obliquely with the south continental part of the old N. American Margins, which is represented by various segments from West to East, inherited from Jurassic times. Location, amount of displacement, rotation and the structural deformation of these margin segments, resulting from the dislocation of the continental N American margin, are not clearly yet established. At present, the plate limits are marked either by two left lateral faults west and inside Haiti (OSF in the North and EPGF in the South), oblique collision front (further west in Cuba), oblique subducted segments (to the East, Porto-Rico). From our recent works operated both offshore (Haiti-SIS and Haiti-BGF surveys 2012-2015) and onshore (field campaigns 2013-2017) in Haitian zone, the position of the present-day and paleo major limits have been redefined. These paleolimits have been reconstructed up to early Miocene times, based on: restoration of regional structural cross-sections, sedimentology and on paleoenvironement studies. In a preliminary way, we analyzed the complexity of the tectonic heritage with possible nature, heterogeneity of the crustal fragments and associated margins close to Haiti (age, structure, environment, location of the dislocated blocks through times) which profoundly impact the partitioning of the deformation along this complex transformed margin. The change in the structure wavelength, decollement level variations are primary constraints in the restoration of the main units and do impose a deep connection along specific segments either related to strike-slip or to splay faults. The asymmetry on the repartition of the fault activity tend to prove that the past motion related to "EPGF transfer zone" is mainly partitioned in Haiti to the North of the present-day EPGF position. At present, these results are still coherent with the distribution of the aftershoks registered after 2010, and with the present-day seismicity during the last years.

  12. Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith

    2015-02-01

    Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up subduction of the Cyprus Arc on its northern margin, while deformed Tethyan oceanic crust remains trapped between its northeastern margin and the Hecataeus Rise.

  13. Reconstructing Plate Boundaries in the Jurassic Neo-Tethys From the East and West Vardar Ophiolites (Greece and Serbia)

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe J. J.

    2018-03-01

    Jurassic subduction initiation in the Neo-Tethys Ocean eventually led to the collision of the Adria-Africa and Eurasia continents and the formation of an 6,000 km long Alpine orogen spanning from Iberia to Iran. Reconstructing the location and geometry of the plate boundaries of the now disappeared Neo-Tethys during the initial moments of its closure is instrumental to perform more realistic plate reconstructions of this region, of ancient ocean basins in general, and on the process of subduction initiation. Neo-Tethyan relics are preserved in an ophiolite belt distributed above the Dinaric-Hellenic fold-thrust belt. Here we provide the first quantitative constraints on the geometry of the spreading ridges and trenches active in the Jurassic Neo-Tethys using a paleomagnetically based net tectonic rotation analysis of sheeted dykes and dykes from the West and East Vardar Ophiolites of Serbia (Maljen and Ibar) and Greece (Othris, Pindos, Vourinos, and Guevgueli). Based on our results and existing geological evidence, we show that initial Middle Jurassic ( 175 Ma) closure of the western Neo-Tethys was accommodated at a N-S trending, west dipping subduction zone initiated near and parallel to the spreading ridge. The West Vardar Ophiolites formed in the forearc parallel to this new trench. Simultaneously, the East Vardar Ophiolites formed above a second N-S to NW-SE trending subduction zone located close to the European passive margin. We tentatively propose that this second subduction zone had been active since at least the Middle Triassic, simultaneously accommodating the closure of the Paleo-Tethys and the back-arc opening of Neo-Tethys.

  14. Midterm Follow-up of Treating Volar Marginal Rim Fractures with Variable Angle Lcp Volar Rim Distal Radius Plates.

    PubMed

    Goorens, Chul Ki; Geeurickx, Stijn; Wernaers, Pascal; Staelens, Barbara; Scheerlinck, Thierry; Goubau, Jean

    2017-06-01

    Specific treatment of the volar marginal rim fragment of distal radius fractures avoids occurance of volar radiocarpal dislocation. Although several fixation systems are available to capture this fragment, adequately maintaining internal fixation is difficult. We present our experience of the first 10 cases using the 2.4 mm variable angle LCP volar rim distal radius plate (Depuy Synthes®, West Chester, US), a low-profile volar rim-contouring plate designed for distal plate positioning and stable buttressing of the volar marginal fragment. Follow-up patient satisfaction, range of motion, grips strength, functional scoring with the QuickDASH and residual pain with a numeric rating scale were assessed. Radiological evaluation consisted in evaluating fracture consolidation, ulnar variance, volar angulation and maintenance of the volar rim fixation. The female to male ratio was 5:5 and the mean age was 52.2 (range, 17-80) years. The mean follow-up period was 11 (range, 5-19) months postoperatively. Patient satisfaction was high. The mean total flexion/extension range was 144° (range, 100-180°) compared to the contralateral uninjured side 160° (range, 95-180°). The mean total pronation/supination range was 153° (range, 140-180°) compared to the contralateral uninjured side 170° (range, 155-180°). Mean grip strength was 14 kg (range, 9-22), compared to the contralateral uninjured side 20 kg (range, 12-25 kg). Mean pre-injury level activity QuickDASH was 23 (range, 0-34.1), while post-recovery QuickDASH was 25 (range 0-43.2). Residual pain was 1.5 on the visual numerical pain rating scale. Radiological evaluation revealed in all cases fracture consolidation, satisfactory reconstruction of ulnar variance, volar angulation and volar rim. We encountered no flexor tendon complications, although plate removal was systematically performed after fracture consolidation. The 2.4 mm variable angle LCP volar rim distal radius plates is a valid treatment option for treating the volar marginal fragment in distal radius fractures.

  15. Tracking the India-Arabia Transform Plate Boundary during Paleogene Times.

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Huchon, P.; Chamot-Rooke, N. R. A.; Fournier, M.; Delescluse, M.

    2014-12-01

    The Zagros and Himalaya mountain belts are the most prominent reliefs built by continental collision. They respectively result from Arabia and India collision with Eurasia. Convergence motions at mountain belts induced most of plate reorganization events in the Indian Ocean during the Cenozoic. Although critical for paleogeographic reconstructions, the way relative motion between Arabia and India was accommodated prior to the formation of the Sheba ridge in the Gulf of Aden remains poorly understood. The India-Arabia plate-boundary belongs to the category of long-lived (~90-Ma) oceanic transform faults, thus providing a good case study to investigate the role of major kinematic events over the structural evolution of a long-lived transform system. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental crust overlaid by Early Paleocene ophiolites on its western side. A major transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ~40 Ma ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge to the Arabian plate. The episode of plate transfer at the India-Arabia plate boundary during the Late Eocene-Oligocene interval is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and Himalaya belts. The Owen Ridge uplifted later, in Late Miocene times, and is unrelated to any major migration of the India-Arabia boundary.

  16. Brittle deformation along the Gulf of Alaska margin in response to Paleocene-Eocene triple junction migration: in Sisson

    USGS Publications Warehouse

    Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.

    2003-01-01

    A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation above slab windows may be a common occurrence.

  17. Determining passive cooling limits in CPV using an analytical thermal model

    NASA Astrophysics Data System (ADS)

    Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard

    2013-09-01

    We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.

  18. Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    USGS Publications Warehouse

    Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary

    2012-01-01

    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.

  19. Active faults and minor plates in NE Asia

    NASA Astrophysics Data System (ADS)

    Kozhurin, Andrey I.; Zelenin, Egor A.

    2014-05-01

    Stated nearly 40 yr ago the uncertainty with plate boundaries location in NE Asia (Chapman, Solomon, 1976) still remains unresolved. Based on the prepositions that a plate boundary must, first, reveal itself in linear sets of active structures, and, second, be continuous and closed, we have undertaken interpretation of medium-resolution KH-9 Hexagon satellite imageries, mostly in stereoscopic regime, for nearly the entire region of NE Asia. Main findings are as follows. There are two major active fault zones in the region north of the Bering Sea. One of them, the Khatyrka-Vyvenka zone, stretches NE to ENE skirting the Bering Sea from the Kamchatka isthmus to the Navarin Cape. Judging by the kinematics of the Olyutorsky 2006 earthquake fault, the fault zones move both right-laterally and reversely. The second active fault zone, the Lankovaya-Omolon zone, starts close to the NE margin of the Okhotsk Sea and extends NE up to nearly the margin of the Chukcha Sea. The fault zone is mostly right-lateral, with topographically expressed cumulative horizontal offsets amounting to 2.5-2.6 km. There may be a third NE-SW zone between the major two coinciding with the Penzhina Range as several active faults found in the southern termination of the Range indicate. The two active fault zones divide the NE Asia area into two large domains, which both could be parts of the Bering Sea plate internally broken and with uncertain western limit. Another variant implies the Khatyrka-Vyvenka zone as the Bering Sea plate northern limit, and the Lankovaya-Omolon zone as separating an additional minor plate from the North-American plate. The choice is actually not crucial, and more important is that both variants leave the question of where the Bering Sea plate boundary is in Alaska. The Lankovaya-Omolon zone stretches just across the proposed northern boundary of the Okhorsk Sea plate. NW of the zone, there is a prominent left-lateral Ulakhan fault, which is commonly interpreted to be a portion of the plate northern boundary. With this, we have discovered no active faults or fault zones of the Ulakhan fault strike, which could be the portion of the boundary between the Lankovaya-Omolon zone and either the western margin of the Komandor basin or the westernmost Aleutians. We conclude that there is a certain disagreement between active faulting pattern and plate models for NE Asia, relating to the extent of the plates and missing portions of the plate boundaries. The research was supported by grant # 110500136-a from the Russian Foundation for Basic Research.

  20. Tectonics of the Scotia-Antarctica plate boundary constrained from seismic and seismological data

    NASA Astrophysics Data System (ADS)

    Civile, D.; Lodolo, E.; Vuan, A.; Loreto, M. F.

    2012-07-01

    The plate boundary between the Scotia and Antarctic plates runs along the broadly E-W trending South Scotia Ridge. It is a mainly transcurrent margin that juxtaposes thinned continental and transitional crust elements with restricted oceanic basins and deep troughs. Seismic profiles and regional-scale seismological constraints are used to define the peculiarities of the crustal structures in and around the southern Scotia Sea, and focal solutions from recent earthquakes help to understand the present-day geodynamic setting. The northern edge of the western South Scotia Ridge is marked by a sub-vertical, left-lateral master fault. Locally, a narrow wedge of accreted sediments is present at the base of the slope. This segment represents the boundary between the Scotia plate and the independent South Shetland continental block. Along the northern margin of the South Orkney microcontinent, the largest fragment of the South Scotia Ridge, an accretionary prism is present at the base of the slope, which was possibly created by the eastward drift of the South Orkney microcontinent and the consequent subduction of the transitional crust present to the north. East of the South Orkney microcontinent, the physiography and structure of the plate boundary are less constrained. Here the tectonic regime exhibits mainly strike-slip behavior with some grade of extensional component, and the plate boundary is segmented by a series of NNW-SSE trending release zones which favored the fragmentation and dispersion of the crustal blocks. Seismic data have also identified, along the north-western edge of the South Scotia Ridge, an elevated region - the Ona Platform - which can be considered, along with the Terror Rise, as the conjugate margin of the Tierra del Fuego, before the Drake Passage opening. We propose here an evolutionary sketch for the plate boundary (from the Late Oligocene to the present) encompassing the segment from the Elephant Island platform to the Herdman Bank.

  1. The Ebro margin study, northwestern Mediterranean Sea - an introduction

    USGS Publications Warehouse

    Maldonado, A.; Hans, Nelson C.

    1990-01-01

    The Ebro continental margin from the coast to the deep sea off northeastern Spain was selected for a multidisciplinary project because of the abundant Ebro River sediment supply, Pliocene and Quaternary progradation, and margin development in a restricted basin where a variety of controlling factors could be evaluated. The nature of this young passive margin for the last 5 m.y. was investigated with particular emphasis on marine circulation, sediment dynamics, sediment geochemistry, depositional facies, seismic stratigraphy, geotechnical properties, geological hazards and human influences. These studies show the importance of marine circulation, variation in sediment supply, sea-level oscillation and tectonic setting for the understanding of modern and ancient margin depositional processes and growth patterns. ?? 1990.

  2. The End of Tethys: Opening and Closing of Oceans between Australia, India and SE Asia

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2008-12-01

    SE Asia has grown by closure of Tethyan oceans south of Asia, principally by addition of fragments rifted from the Gondwana margins, resulting in a mosaic of continental crust and arc/ophiolite sutures. A new reconstruction identifies the blocks rifted from West and NW Australia in the Late Jurassic. They are now in Borneo, Java and Sulawesi, not West Burma as often assumed. Rifting in the Banda and Argo regions began at about 160 Ma, possibly due to south-directed subduction at the north Gondwana margin. Greater India is proposed to have extended north to the northern edge of the Exmouth Plateau and began to separate from Australia at about 140 Ma. The Banda and Argo blocks collided with the SE Asian margin between 110 and 90 Ma. At 90 Ma the Woyla intra-oceanic arc also collided with the Sumatra margin. This terminated subduction beneath Sundaland. The Indian and Australian plates were separated by a leaky transform from about 90 to 75 Ma which became a slightly convergent transform from about 75 to 55 Ma. This transform boundary is considered the eastern end of Tethys from the mid Cretaceous. There was a completely different history of subduction north of India compared to that north of Australia. The subduction history is recorded in the deep mantle by distinctive velocity anomalies which change from east to west abruptly at about 110°E. Between 90 and 45 Ma, India moved rapidly north with north-directed subduction within Tethys and at the Asian margin. It collided with an intra-oceanic arc at about 57 Ma, west of Sumatra, but continued to move north. The first contact of India with Asia was probably about 45 Ma, an estimate dependent on the shape of Greater India and the Asian margin; final ocean closure was later. North of Australia, between 90 and 45 Ma, there was no subduction beneath Sumatra and Java. During this interval south Sundaland was a mainly passive margin with some strike-slip deformation and extension. At 45 Ma Australia began to move north and subduction resumed beneath Indonesia. This was a time of major changes in lengths of subduction boundaries which may be of global importance. Subduction has continued to the present. The structure of the now-subducted ocean floor south of Indonesia, and the rifted NW Australian margin, subsequently influenced the Cenozoic development of SE Asia.

  3. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  4. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  5. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  6. Simulation study of disruption characteristics in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Jongkyu; Kim, J. Y.; Kessel, C. E.; Poli, F.

    2012-10-01

    A detailed simulation study of disruption in KSTAR had been performed using the Tokamak Simulation Code(TSC) [1] during the initial design phase of KSTAR [2]. Recently, however, a partial modification in the structure of passive plate was made in relation to reduce eddy current and increase the efficiency of control of vertical position. A substantial change can then occur in disruption characteristics and plasma behavior during disruption due to changes in passive plate structure. Because of this, growth rate of vertical instability is expected to be increased and eddy current and its associated electomagnetic force are expected to be reduced. To check this in more detail, a new simulation study is here given with modified passive plate structure of KSTAR. In particular, modeling of vertical disruption that is vertical displacement event (VDE) was carried out. We calculated vertical growth rate for a drift phase of plasma and electromagnetic force acting on PFC structures and compared the results between in a new model and an old model. [4pt] [1] S.C. Jardin, N. Pomphrey and J. Delucia, J. Comp. Phys. 66, 481 (1986).[0pt] [2] J.Y. Kim, S.Y. Cho and KSTAR Team, Disruption load analysis on KSTAR PFC structures, J. Accel. Plasma Res. 5, 149 (2000).

  7. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions

    NASA Astrophysics Data System (ADS)

    Suess, Erwin

    2014-10-01

    Characteristics of cold seeps at different geologic settings are the subject of this review primarily based on results of the Research Consortium SFB 574. Criteria are drawn from examples on the erosive convergent margin off Costa Rica, the accretionary margin off Chile supplemented by examples from the transform margin of the Golf of Cadiz and the convergent Hikurangi margin off New Zealand. Others are from well-studied passive margins of the Black Sea, the Golf of Mexico, the eastern Mediterranean Sea and the South China Sea. Seeps at all settings transport water and dissolved compounds to the ocean through the seafloor by different forcing mechanism and from different depths of the submerged geosphere (10s of meters to 10s of km). The compounds sustain oasis-type ecosystems by providing bioactive reductants sulfide, methane and hydrogen. Hereby, the interaction between fluid composition, flux rates and biota results in a diagnostic hydrocarbon-metazoan-microbe-carbonate association; currently, well over 100 active sites are known. The single most important reaction is microbially mediated anaerobic oxidation of methane with secondary reactions involving S-biogeochemistry and carbonate mineral precipitation. Seep fluids and their seafloor manifestations provide clues as to source depth, fluid-sediment/rock interaction during ascent, lifetime and cyclicity of seepage events but less so on the magnitude of return flow. At erosive margins, Cl-depleted and B-enriched fluids from clay dehydration provide criteria for source depth and temperature. The upward material flow generates mud volcanoes at the seafloor above the projected location of dehydration at depth. At accretionary margins, fluids are derived from more shallow depths by compaction of sediments as they ride on the incoming oceanic plate; they are emitted through thrust faults. At highly sedimented margins, organic-rich and evaporite-containing strata (when present) determine the final fluid composition, by emitting characteristically gas hydrate-derived methane, brine-associated non-methane hydrocarbons or leached elements and their isotopes (Li, δ7Li, B, Ba) from host sediments. Smectite-illite transformation and associated Cl-depletion from release of interlayer water is a pervasive process at these margins. Rare earth element pattern in conjunction with redox-sensitive metals retained in seep carbonates indicate whether or not they precipitated in contact with oxic bottom water or suboxic fluids; clear environmental characterization, though, currently remains inconclusive. More deeply sourced fluids as in transform margins may be characterized by their 87Sr/86Sr ratios from interaction with oceanic crustal rocks below. Quantification of flow and reliable estimates of total volatile output from fore-arcs remain a challenge to seep research, as does understanding the role of geologically derived methane in the global methane cycle.

  8. Sea-level-induced seismicity and submarine landslide occurrence

    USGS Publications Warehouse

    Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.

    2013-01-01

    The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.

  9. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94°W. West of 102°W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.

  10. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Weinrebe, Wilhelm

    2012-01-01

    Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.

  11. Hydrocarbon gas seeps of the convergent Hikurangi margin, North Island, New Zealand

    USGS Publications Warehouse

    Kvenvolden, K.A.; Pettinga, J.R.

    1989-01-01

    Two hydrocarbon gas seeps, located about 13 km apart, have distinctive molecular and isotopic compositions. These seeps occur within separate tectonic melange units of narrow parallel trending and structurally complex zones with incorporated upper Cretaceous and Palaeogene passive continental margin deposits which are now compressively deformed and imbricated along the convergent Hikurangi margin of North Island, New Zealand. At Brookby Station within the Coastal High, the seeping hydrocarbon gas has a methane/ethane ratio of 48 and ??13C and ??D values of methane of -45.7 and -188???, respectively (relative to the PDB and SMOW standards). Within the complex core of the Elsthorpe Anticline at Campbell Station seep, gas has a methane/ethane ratio of about 12000, and the methane has ??13C and ??D values of -37.4 and -170???, respectively. The source of the gases cannot be positively identified, but the gases probably originate from the thermal decomposition of organic matter in tectonically disturbed upper Cretaceous and/or lower Tertiary sedimentary rocks of passive margin affinity and reach the surface by migration along thrust faults associated with tectonic melange. The geochemical differences between the two gases may result from differences in burial depths of similar source sediment. ?? 1989.

  12. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American continental margins, inferred to be close to the oceanic realm, were affected by rifting and within-plate tholeiitic magmatism (WPT); this interpretation supports a near mid-America original location of the "proto-Caribbean" LIP. The MORB magmatic sections and rock blocks in the ophiolitic melanges are interpreted as exhumed tectonic sheets of the normal proto-Caribbean oceanic lithosphere, or part of a back-arc crust, both deformed in the eo-Caribbean stages. The SSZ complexes, considered as Cordilleran-type deformed ophiolites, were derived from a LIP that experienced two superimposed eo-Caribbean stages of intra-oceanic subduction. The older (Mid-Cretaceous) stage involved the eastward subduction of the un-thickened proto-Caribbean lithosphere, resulting in IAT and CA magmatism accompanied by HP-LT metamorphism and melange formation. The second, Late Cretaceous stage involved a westward dipping intra-oceanic subduction, which generated tonalitic arc magmatism. The eastward wedging of the Caribbean Plateau between the North and South American plates progressively trapped remnants of the Colombia and Venezuela Basins between the Atlantic and Pacific subduction zones and their new volcanic arcs (Aves-Lesser Antilles and Central American Isthmus). Unlike the proto-Caribbean, it appears that this LIP did not involve the main continental margins, even though the northern and southern Caribbean borders experienced different evolutionary paths. It was largely lost by superimposed accretionary and collisional events producing the marginal belts of the Caribbean Plate; its evolution has been dominated by a strongly oblique tectonic regime, constraining seafloor spreading, subduction, crustal exhumation, emplacement, and dismembering processes.

  13. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  14. Characterization of the Time-Dependent Fluid-Structure Interaction of Passive Flow Control of Low Reynolds Number Membrane Wings

    DTIC Science & Technology

    2013-07-01

    plates usually experiences separation near or at the leading-edge, creating an aerodynamic shear layer that either reattaches to form a separation...blunt-body shedding. At low angle-of-attack, however, flat plates do not exhibit strong blunt-body shedding, thus, is an unlikely driver. Additionally...range from 0 – 10% for typical flat plate membrane models in low-Re flow. Two distinct regions of membrane vibration relative to the tensioning

  15. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    NASA Astrophysics Data System (ADS)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  16. Seismicity of the Earth 1900-2010 eastern margin of the Australia plate

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    The eastern margin of the Australia plate is one of the most seismically active areas of the world due to high rates of convergence between the Australia and Pacific plates. In the region of New Zealand, the 3,000 km long Australia-Pacific plate boundary extends from south of Macquarie Island to the southern Kermadec Island chain. It includes an oceanic transform (the Macquarie Ridge), two oppositely verging subduction zones (Puysegur and Hikurangi), and a transpressive continental transform, the Alpine Fault through South Island, New Zealand. Since 1900, there have been 15 M7.5+ earthquakes recorded near New Zealand. Nine of these, and the four largest, occurred along or near the Macquarie Ridge, including the 1989 M8.2 event on the ridge itself, and the 2004 M8.1 event 200 km to the west of the plate boundary, reflecting intraplate deformation. The largest recorded earthquake in New Zealand itself was the 1931 M7.8 Hawke's Bay earthquake, which killed 256 people. The last M7.5+ earthquake along the Alpine Fault was 170 years ago; studies of the faults' strain accumulation suggest that similar events are likely to occur again.

  17. Plume-stagnant slab-lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.

    2018-02-01

    Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.

  18. Rheology and strength of the Eurasian continental lithosphere in the foreland of the Taiwan collision belt: Constraints from seismicity, flexure, and structural styles

    NASA Astrophysics Data System (ADS)

    Mouthereau, FréDéRic; Petit, Carole

    2003-11-01

    Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of ˜15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.

  19. Hydrodynamics of a flexible plate between pitching rigid plates

    NASA Astrophysics Data System (ADS)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  20. Petroleum systems of the Po Basin Province of northern Italy and the northern Adriatic Sea; Porto Garibaldi (biogenic), Meride/Riva di Solto (thermal), and Marnoso Arenacea (thermal)

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Porto Garibaldi total petroleum system dominates the Po Basin Province of onshore northern Italy and offshore Italy and Croatia in the northern Adriatic Sea. Porto Garibaldi contains Pliocene (primarily) and Pleistocene (secondarily) biogenic gas ? approximately 16 TCF (2.66 BBOE) ultimately recoverable ? accumulated in co-eval siliciclastic reservoirs. This area was the northwestern edge of the Gondwanan (African) continental plate in pre-Hercynian time until the assembly of Pangea, a dominantly carbonate passive continental margin during the Mesozoic breakup of Pangea, and a Cenozoic collision zone with siliciclastic foredeep and foreland regions surrounded by thrust belts. At least two other petroleum systems, with Triassic (Meride / Riva di Solto) and Miocene (Marnoso Arenacea) source rocks, contribute oil and thermal gas reserves (nearly 1 BBOE) to the province. The major time of hydrocarbon expulsion of the thermal systems was Late Neogene during the Alpine and Apennine orogenies. Local Mesozoic oil expulsion from Triassic rocks also occurred, but those oils either were not trapped or were leaked from faulty traps through time.

  1. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry exists between these conjugate margins. The main implications from this work are that different processes may have operated during and after rifting on these conjugate margins. This concept should be carried forward when conducting conjugate margin studies elsewhere, particularly when exploring for hydrocarbons as prospectivity on one margin may not be predictive for its conjugate as different thermal and structural regimes may have been in operation during conjugate basin evolution.

  2. Structural development of the onshore Otway passive margin (Australia): the interaction of rotating syn-sedimentary faults

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Ziesch, Jennifer; Krawczyk, Charlotte M.

    2017-04-01

    Within the context of long-term CO2 storage integrity, we interpreted the faults within the 2.2 km thick, syn-rift, Late Cretaceous to Recent sediments below the CO2CRC Otway Project site in Australia using a detailed interpretation of a 3-D reflection seismic cube (32.3 km×14.35 km × 4100 ms TWT). All the faults in the onshore Otway passive margin basin in this area were active to varying degrees during sedimentation, between ca. 120 and 50 Ma, before they died out. From analysis of fault juxtaposition and fault tip-line propagation maps, as well as analysis of individual stratigraphic thickness maps, we determine the direction and incremental amount of syn-sedimentary movement on each fault. Thickening of the hanging-walls of the faults occurred, as is typical for syn-sedimentary faults. However, we also determine that substantial local footwall thinning took place. Although the syn-sedimentary behaviour of the faults was constantly maintained until 50 Ma, there were two main phases of footwall thinning, separated by a quiescent phase. We postulate that these phases of footwall thinning represent rotation of the fault blocks that correlate with prograding sediment pulses within the passive margin. The rotation of the fault blocks occurred simultaneously, i.e., they could only rotate if they interacted.

  3. Testing thin-skinned inversion of a prerift salt-bearing passive margin (Eastern Prebetic Zone, SE Iberia)

    NASA Astrophysics Data System (ADS)

    Escosa, Frederic O.; Roca, Eduard; Ferrer, Oriol

    2018-04-01

    Detailed geologic mapping combined with well and seismic data from the Eastern Prebetic Zone (SE Iberia) reveal extensional and contractional structures that permit characterization of passive margin development and its incorporation into a thin-skinned fold-and-thrust belt. The study area is represented by NW-directed, ENE-trending folds and thrusts faults locally disrupted by the NW-trending Matamoros Basin and the active Jumilla and La Rosa diapirs. These structures resulted from the thin-skinned inversion of the proximal part of the Eastern South Iberian passive margin containing prerift salt. Here, Upper Jurassic to Santonian thick-skinned extension controlled the accumulation of sediment over mobile prerift salt. This in turn defined the style of salt tectonics characterized by monoclinal drape folds, suprasalt extensional faults and diapirs. The structural and sedimentological analysis suggests that during extension, salt localizes strain thus decoupling sub- and suprasalt deformation. Thick-skinned extension controls suprasalt deformation as well as its location and distribution which changes over time. Salt also localizes strain during inversion. The preexisting salt structures, weaker than adjacent areas, preferentially absorb the contractional deformation. In addition, the stepped subsalt geometry that results from thick-skinned extension also controls the shortening propagation. Therefore, the degree of strain localization depends on the thickness of the suprasalt cover and on the dip of subsalt faults relative to the thin-skinned transport direction.

  4. Gravimetric and magnetic fabric study of the Sintra Igneous complex: laccolith-plug emplacement in the Western Iberian passive margin

    NASA Astrophysics Data System (ADS)

    Terrinha, Pedro; Pueyo, Emilio L.; Aranguren, Aitor; Kullberg, José Carlos; Kullberg, Maria Carla; Casas-Sainz, Antonio; Azevedo, Maria do Rosário

    2017-12-01

    The geometry and emplacement of the 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive margin is presented, based on structural data, gravimetric modeling, and magnetic fabrics. A granite laccolith ( 76 km2, < 1 km thick, according to gravimetric modeling) surrounds a suite of gabbro-diorite-syenite plugs ( 20 km2, 4 km deep) and is encircled by cone sheets and radial dykes. Anisotropy of Magnetic Susceptibility was interpreted from 54 sites showing fabrics of para- and ferro-magnetic origin. Most fabrics can be interpreted to have a magmatic origin, according to the scarcity of solid-state deformation in most part of the massif. Magnetic foliations are shallowly dipping in the granite laccolith and contain a sub-horizontal ENE-WSW lineation. The gabbro-syenite body displays concentric magnetic foliations having variable dips and steeply-plunging lineations. The SIC can be interpreted to be intruded along an NNW-SSE, 200 km-long fault, perpendicular to the magnetic lineation within the laccolith, and was preceded by the intrusion of basic sills and plugs. The SIC intruded the Mesozoic series of the Lusitanian Basin during the post-rift, passive margin stage, and its geometry was only slightly modified during the Paleogene inversion that resulted in thrusting of the northern border of the intrusion over the country rocks.

  5. Preliminary results from combined wide-angle and reflection seismic data in the Natal Valley, South Mozambique margin across the Almirante Leite volcanic ridge : MZ2 profile (MOZ3/5 cruise).

    NASA Astrophysics Data System (ADS)

    Verrier, Fanny; Leprêtre, Angélique; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; De Clarens, Philippe; Afonso Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The study of South Mozambique passive margin is essential to understand its rifting evolution and better constrain kinematic reconstructions model of the Indian Ocean. MOZ3-5 oceanographic cruises (2016) is part of the PAMELA project (PAssive Margin Exploration LAboratory), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN. These campaigns allowed the acquisition of wide-angle and multichannel seismic data as well as high resolution bathymetric data, dredges, magnetic and gravimetric data. This work focuses on the deep structure of the northern segment of the Natal Valley which was investigated along a 300 km long E-W seismic transect cross-cutting the Almirante Leite volcanic ridge (MZ2 profile). The wide-angle data set is composed of 23 OBS (Ocean Bottom Seismometers) and 19 LSS (Land Seismic Station) spaced by about 12 km and 4-5 km respectively. Forward modelling of the wide-angle data led to a preliminary 2D P-waves velocity model revealing the sedimentary architecture, crustal and lithospherical structures and shallow high velocity material at the volcanic ridge. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along the profile MZ2, in order to discuss the sedimentary sequences, the geometry and nature of the crust (oceanic or continental) as well as structures associated with volcanism, and to better understand the margin's evolution. The post-doc of Fanny Verrier is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Moulin, M., Aslanian, D., 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500

  6. Tectonic evolution of the Paranoá basin: New evidence from gravimetric and stratigraphic data

    NASA Astrophysics Data System (ADS)

    Martins-Ferreira, Marco Antonio Caçador; Campos, José Eloi Guimarães; Von Huelsen, Monica Giannoccaro

    2018-06-01

    Field gravimetric and stratigraphic surveys were conducted with the aim to constraint the mechanisms responsible for the initiation of the Stenian-Tonian Paranoá basin, central Brazil, a subject not yet studied in detail. The Paranoá Group crops out in the external zone of the Brasília Belt, a Neoproterozoic orogen in the western margin of the São Francisco Craton. Detailed geological mapping confirmed the existence of a regional scale fault that controlled sedimentation of the Paranoá Group during the deposition of its basal formations, revealing important details about basin initiation and early evolution. Gravimetric modeling indicates the existence of paleorift structures beneath the Paranoá sequence in the study area. Results from both stratigraphic and gravimetric surveys show strong evidence of mechanical subsidence by faulting during basin initiation. Unsorted, angular, clasts cut by quartz veins and brecciated boulders present in the basal conglomerate, support this hypothesis. Basin initiation faults coincide with deeper paleorift faults and are thus interpreted as reactivations of the older Statherian Araí Rift. The reactivations favored an initial regime of mechanical subsidence, dominated by the development of epirogenic arches subsiding at different rates. Apart from faulting activity, the post-basal sequence presents no evidence of rift environment in the strict sense. Besides, the great lateral continuity and relatively constant thickness of facies, indicate that an initial mechanic subsidence rapidly gave way to flexural subsidence during subsequent stages of basin evolution. The Paranoá Group do not present reliable characteristics that would allow its strict classification as a passive margin. Its main stratigraphic characteristics, tectonic location and basement architecture, indicate that the Paranoá Group was deposited in a cratonic margin basin, and may have been either connected to a passive margin basin at times of sea level rise, or evolved to a passive margin later in time.

  7. Robustness of a multimodal piezoelectric damping involving the electrical analogue of a plate

    NASA Astrophysics Data System (ADS)

    Lossouarn, Boris; Cunefare, Kenneth A.; Aucejo, Mathieu; Deü, Jean-François

    2016-04-01

    Multimodal passive damping of a mechanical structure can be implemented by a coupling to a secondary structure exhibiting similar modal properties. When considering a piezoelectric coupling, the secondary structure is an electrical network. A suitable topology for such a network can be obtained by a finite difference formulation of the mechanical equations, followed by a direct electromechanical analogy. This procedure is applied to the Kirchhoff-Love theory in order to find the electrical analogue of a clamped plate. The passive electrical network is implemented with inductors, transformers and the inherent capacitance of the piezoelectric patches. The electrical resonances are tuned to approach those of several mechanical modes simultaneously. This yields a broadband reduction of the plate vibrations through the array of interconnected piezoelectric patches. The robustness of the control strategy is evaluated by introducing perturbations in the mechanical or electrical designs. A non-optimal tuning is considered by way of a uniform variation of the network inductance. Then, the effect of local or boundary modifications of the electromechanical system is observed experimentally. In the end, the use of an analogous electrical network appears as an efficient and robust solution for the multimodal control of a plate.

  8. The Dauki Fault and its Shillong-Sylhet Thrust Anticline-Foredeep Pair: A Footwall Reactivation along the Progressive Burma-India Collision

    NASA Astrophysics Data System (ADS)

    Seeber, L.; Ferguson, E. K.; Grall, C.; Steckler, M. S.; Betka, P. M.; Akhter, S. H.

    2016-12-01

    The Shillong Massif and the Sylhet basin form a south-verging anticline-foredeep pair associated with the E-W striking Dauki fault. Fold geometry and receiver-functions identify it as a blind thrust fault dipping north into the craton. This contractional structure may represent an incipient forward jump of the Himalayan front to the trailing margin of India. The Shillong Massif is one of the largest known basement-cored anticlines and is delineated by a relict erosional surface and folded strata. Where best exposed in the central segment, it has a steep southern limb and a gentle northern limb. This asymmetry is mirrored in the Sylhet foredeep, with a steep north flank and low dip south flank. The combined structure has 5 km of relief, most of which developed during the Quaternary. This foredeep overprints a thicker sequence that records the progradation of the Brahmaputra delta. These older strata thicken southward as expected at a passive margin. The Sylhet Traps, which are coeval with India-Antarctica rifting, outcrop along the southern limb of the anticline. Associated basalt dikes are also parallel to the E-W Dauki structure. The basal Cretaceous-Paleogene shallow marine strata onlap northward the regional unconformity above the cratonic and trap rocks. This suggests that the Dauki thrust front traces an E-W segment of the passive margin and former rift. The IndoBurma forearc overrides the Dauki structure 200 km farther west on the foredeep (south) side than on the massif (north) side of the Dauki fault. Much of this differential advance of the Burma deformation front predates the Dauki foredeep and was a response to the shape of the passive margin of India. This deformation front, known locally as the Haflong Fault, crosses obliquely the Dauki thrust front. Evidence includes contractional structures verging up-dip onto the forelimb of the Shillong anticline. The Shillong Massif-Sylhet Foredeep pair has a strong gravity signature that can be traced eastward across most of the IndoBurma Ranges. Correlated topography and drainage features, including the Imphal intramountain basin, and a drainage switch from northward to southward across this basin suggest that this entire gravity anomaly reflects differential uplift along the eastward continuation of the buried Dauki fault and not just a buried passive margin.

  9. The dynamics of plate tectonics and mantle flow: from local to global scales.

    PubMed

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  10. Grooved Armor Plate

    DTIC Science & Technology

    1935-05-16

    that many of the olateo tested do sux^ ass the reouired limita by a considerable margin. Therefore, the efficiency of these grooved plate...Plpte Thicknesn B>lll<tle .Llji^f - ./.. s... a’ ^ea:: of All RtSUltS !’ Teen of Rlgbeot lOf of All Reoultr. s/i«- 1830 an« 7/16" ?180

  11. Asthenospheric outflow from the shrinking Philippine Sea Plate: Evidence from Hf-Nd isotopes of southern Mariana lavas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Julia M.; Stern, Robert J.; Martinez, Fernando; Woodhead, Jon; Chen, Min; Ohara, Yasuhiko

    2017-11-01

    At subduction zones, sinking of the downgoing lithosphere is thought to enable a return flow of asthenospheric mantle around the slab edges, so that the asthenosphere from underneath the slab invades the ambient mantle flowing underneath the volcanic arc and the backarc basin. For instance at the northern end of the Lau Basin, trench retreat and slab rollback enable toroidal return flow of Samoan mantle beneath a transform margin to provide a supply of fresh, undepleted Indian mantle that feeds the backarc spreading center. Questions, however, arise about the sense of mantle flow when plate kinematics predict that the trench is advancing, as seen in the Mariana convergent margin. Does the mantle flow in or does it escape outward through slab tears or gaps? Here, we address the origin and sense of asthenospheric mantle flow supplying the southern Mariana convergent margin, a region of strong extension occurring above the subducting Pacific plate. Does the asthenosphere flow northward, from underneath the Pacific plate and Caroline hotspot through a slab tear or gap, or does it flow outward from the Mariana Trough, which possesses a characteristic Indian Ocean isotopic signature? To address these questions, we integrate geodetic data along with new Hf-Nd isotopic data for fresh basaltic lavas from three tectonic provinces in the southernmost Marianas: the Fina Nagu volcanic complex, the Malaguana-Gadao backarc spreading ridge and the SE Mariana forearc rift. Our results indicate that Indian mantle flows outward and likely escapes through slab tears or gaps to accommodate shrinking of the Philippine Sea plate. We thus predict that asthenospheric flow around the Pacific slab at the southern Mariana Trench is opposite to that predicted by most subduction-driven mantle flow models.

  12. Impact effects and regional tectonic insights: Backstripping the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Hayden, T.; Kominz, M.; Powars, D.S.; Edwards, L.E.; Miller, K.G.; Browning, J.V.; Kulpecz, A.A.

    2008-01-01

    The Chesapeake Bay impact structure is a ca. 35.4 Ma crater located on the eastern seaboard of North America. Deposition returned to normal shortly after impact, resulting in a unique record of both impact-related and subsequent passive margin sedimentation. We use backstripping to show that the impact strongly affected sedimentation for 7 m.y. through impact-derived crustal-scale tectonics, dominated by the effects of sediment compaction and the introduction and subsequent removal of a negative thermal anomaly instead of the expected positive thermal anomaly. After this, the area was dominated by passive margin thermal subsidence overprinted by periods of regional-scale vertical tectonic events, on the order of tens of meters. Loading due to prograding sediment bodies may have generated these events. ?? 2008 The Geological Society of America.

  13. NRC Continental Margins Workshop

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.

  14. Maximum magnitude (Mmax) in the central and eastern United States for the 2014 U.S. Geological Survey Hazard Model

    USGS Publications Warehouse

    Wheeler, Russell L.

    2016-01-01

    Probabilistic seismic‐hazard assessment (PSHA) requires an estimate of Mmax, the moment magnitude M of the largest earthquake that could occur within a specified area. Sparse seismicity hinders Mmax estimation in the central and eastern United States (CEUS) and tectonically similar regions worldwide (stable continental regions [SCRs]). A new global catalog of moderate‐to‐large SCR earthquakes is analyzed with minimal assumptions about enigmatic geologic controls on SCR Mmax. An earlier observation that SCR earthquakes of M 7.0 and larger occur in young (250–23 Ma) passive continental margins and associated rifts but not in cratons is not strongly supported by the new catalog. SCR earthquakes of M 7.5 and larger are slightly more numerous and reach slightly higher M in young passive margins and rifts than in cratons. However, overall histograms of M from young margins and rifts and from cratons are statistically indistinguishable. This conclusion is robust under uncertainties inM, the locations of SCR boundaries, and which of two available global SCR catalogs is used. The conclusion stems largely from recent findings that (1) large southeast Asian earthquakes once thought to be SCR were in actively deforming crust and (2) long escarpments in cratonic Australia were formed by prehistoric faulting. The 2014 seismic‐hazard model of the U.S. Geological Survey represents CEUS Mmax as four‐point probability distributions. The distributions have weighted averages of M 7.0 in cratons and M 7.4 in passive margins and rifts. These weighted averages are consistent with Mmax estimates of other SCR PSHAs of the CEUS, southeastern Canada, Australia, and India.

  15. Upper plate contraction north of the migrating Mendocino triple junction northern California: Implications for partitioning of strain

    USGS Publications Warehouse

    McCrory, P.A.

    2000-01-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.

  16. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    The Kaoko Belt in northwestern Namibia originates in the collision of the Rio de la Plata and Kongo Craton during the Pan-African Orogeny in the Neoproterozoic (1) and represents the northern arm of the Damara Orogen. NW-Namibias continental crust mainly consists of the NE-SW striking intracontinental branch of the Pan-African Damara mobile belt, which separates the Congo from the Kalahari craton. The Damara Orogen is divided into several tectonostratigraphic zones that are bounded by steeply dipping, ductile shear zones. These regional lineaments can be traced at least 150 km offshore (2). The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks (534 (7) Ma - 481 (25) Ma (3) as well as Mesozoic sedimentary and igneous rocks. From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (4), and the deposition of the Nama Group sediments and the Karoo megasequence (5). Between the Otjihorongo and the Omaruru Lineament-Waterberg Thrust early Mesozoic tectonic activity is recorded by coarse clastic sediments deposited within NE trending half-graben structures. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183±1 Ma (6). The Early Cretaceous Paraná-Etendeka flood basalts (132±1 Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (7). Early Cretaceous alkaline intrusions (137-124 Ma) occur preferentially along Mesozoic half-graben structures and are called the Damaraland Igneous Province (8). Late Cretaceous alkaline intrusions and kimberlite pipes occur in northern Namibia. Post Early Paleocene siliciclastic sedimentation in Namibia was largely restricted to a 150 km wide zone (9) and is represented by the Tsondab Sandstone Formation (~ 300 m thickness). The oldest part has an age of early Paleocene and the upper part span from middle Miocene (~13 Ma) to Pliocene (~2 Ma) (10). Cenozoic alkaline intrusions and kimberlite pipes are also known from the region. The so-called "Great Escarpment" that reach elevation of up to 2350 m characterizes strongly the morphology of the passive continental margin in Namibia (11,12). In contrast to Brazil, the escarpment is more than 150 km inland of Namibia. Interesting enough the Brandenberg intrusive complex of ~130 Ma age clearly indicates the post-intrusion denudation of more than 4,000m (13). The Great Escarpment can be traced from central Angola to the eastern edge of South Africa. A considerable variation along its distribution reflects variations in tectonic history, in lithologies, and in the drainage system. In Namibia, the retreating model has dominated the genetic discussion (14,15,16). However, surface process modeling has suggested other possibilities11. In addition, apatite fission-track research, terrigenious cosmogenic nuclides (TCN) have been used on specific landscape elements to determine denudation rates. In the central Namib Desert, denudation rates calculated from 10Be and 26Al are in the range of ±5 m Ma-1 and might be representative for the last 103 - 106 a (17). The persistence of arid climatic conditions throughout the Cenozoic might even lead to such low denudation rates for the past 10-12 Ma. A low retreat rate of ~10 m Ma-1 representative for the last 1 Ma was determined for the Great Escarpment in central and southern Namibia. Considering all currently, available thermochronological data for the Namibian margin (18,19,20), the validity of the scarp retreat model is highly problematic. Apatite fission-track ages revealed so far range between 390.9±17.9 Ma and 80.8±6.0 Ma. The large spread in ages is partly related to significant changes of ages at the NW-SE trending Purros Lineament and at the Sesfontein thrust. In general, the AFT-ages are older northeast of the Purros Lineament. Furthermore, all basalt samples of Etendeka age display the same AFT-age range within error, between 103.5±4.9 and 108.0±5.6 Ma. The oldest ages are revealed from metamorphic rocks of the Damara Group as well as sandstones and glacial deposits of the Permo-Carboniferous Karoo series. References 1. Goscombe, B. D., Gray, D. R., 2008. Structure and strain variation at mid-crustal levels in a transpressional orogen: A review of Kaoko Belt structure and the character of west Gondwana amalgamation and dispersal. Gondwana Res. 13, 45-85. 2. Clemson, J., Cartwright, J., Booth, J., 1997. Structural segmentation and the influence of basement structure on the Namibian passive margin. J. Geol. Soc. London 154, 477-482. 3. Miller, R.M., 1983. Evolution of the Damara Orogen, Vol. 11, Geol. Soc., South Africa Spec. Pub.. 4. Coward, M.P., Daly, M.C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. 5. Stollhofen, H., 1999. Karoo Synrift-Sedimentation und ihre tektonische Kontrolle am entstehenden Kontinentalrand Namibias, Z.dt.geol.Ges. 149: 519-632. 6. Duncan, R., Hooper, P., Rehacek, J., March, J., Duncan, A., 1997. The timing and duration of the Karoo igneous event, southern Gondwana, J. Geophy. Res. 102: 18127-18138. 7. Renne, P.R., Glen, J.M., Milner, S.C., Duncan, A.R., 1996. Age of Etendeka flood volcanism and associated intrusions in southwestern Africa, Geology 24 (7): 659- 662. 8. Watkins, R.T., McDougall, I., le Roex, A. P., 1994. K-Ar ages of the Brandberg and Okenenya igneous complexes, north-western Namibia, Geol. Rund. 83: 348-356. 9. Ward, J.D., 1988. Geology of the Tsondab Sandstone Formation, Journal of Sedimentary Geology 55: 143-162. 10. Senut, B., Pickford, M., 1995. Fossil eggs and Cenozoic continental biostratigraphy of Namibia, Pal. Afr.,32: 33-37. 11. Gilchrist, A.R., Kooi, H., Beaumont, C.,1994. Post Gondwana geomorphic evolution of southwestern Africa: Implications for the controls on landscape development from observations and numerical experiments, J. Geophy. Res. 99: 12211-12228. 12. Brown, R. W., Gallagher, K. and Gleadow, A. J. W., 2000. Morphotectonic evolution of the South Atlantic margins of Africa and South America, in M. A. Summerfield (ed.), Geomorphology and Global Tectonics, JohnWiley and Sons Ltd., Chichester, pp. 255-281. 13. Raab, M. J., Brown, R. W., Gallagher, K., Weber, K., Gleadow, A. J. W., 2005. Denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's Atlantic passive margin Tectonics 24: 1-15. 14. Guillocheau, F., Rouby, D., Robin, C. Helm, C., Rolland, N., Le Carlier de Veslud, C., Braun, J., 2012. Quantification and causes of the terrigeneous sediment budget at the scale of a continent margin: a new method applied to the Namibia-South Africa Margin. BasinRes. 24, 3-30. 15. Dauteuil, O., Rouby, D., Braun, J., Guillocheau, F., Deschamps, F., 2013. Post-breakup evolution of the margin of Namibia: constraints from numerical approach. Tectonophysics 604, 122-138. 16. Rouby, D., Braun, J., Dauteuil, O., Deschamps, F., Robin, C., 2013. Long-term stratigraphic evolution of Atlantic-type passive margins: a numerical approach of interactions between surface processes, flexural isostasy and 3D thermal subsidence. Tectonophysics 604, 83-103. 17. Cockburn, H. A. P., Brown, R. W., Summerfield, M. A. and Seidl, M. A., 2000. Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach, EPSL 179: 429-435. 18. Brown, R. W., 1992. A fission track thermochronology study of the tectonic and geomorphic development of the sub-aerial continental margins of southern Africa., PhD thesis, La Trobe University, Bundoora, Australia. 19. Gallagher, K. and Brown, R. W., 1999. Denudation and uplift at passive margins: the record on the Atlantic Margin of southern Africa, Philosophical Transactions Royal Society London A 357: 835-859. 20. Raab, M. J., Brown, R. W., Gallagher, K., Carter, A., Weber, K., 2002. Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics 349: 75-92.

  17. Mantle convection with plates and mobile, faulted plate margins.

    PubMed

    Zhong, S; Gurnis, M

    1995-02-10

    A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.

  18. Crustal geometry of the northeastern Gulf of Aden passive margin: localization of the deformation inferred from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Tiberi, C.; Leroy, S.; d'Acremont, E.; Bellahsen, N.; Ebinger, C.; Al-Lazki, A.; Pointu, A.

    2007-03-01

    Here we use receiver function analysis to retrieve crustal thickness and crustal composition along the 35-My-old passive margin of the eastern Gulf of Aden. Our aims are to use results from the 3-D seismic array to map crustal stretching across and along the Aden margin in southern Oman. The array recorded local and teleseismic events between 2003 March and 2004 March. Seventy-eight events were used in our joint inversions for Vp/Vs ratio and depth. The major results are: (1) Crustal thickness decreases from the uplifted rift flank of the margin towards the Sheba mid-ocean ridge. We found a crustal thickness of about 35 km beneath the northern rift flank. This value decreases sharply to 26 km beneath the post-rift subsidence zone on the Salalah coastal plain. This 10 km of crustal thinning occurs across a horizontal distance of less than 30 km showing a localization of the crustal thinning below the first known rifted block of the margin. (2) A second rift margin transect located about 50 km to the east shows no thinning from the coast to 50 km onshore. The lack of crustal thickness variation indicates that the maximum crustal stretching could be restricted to offshore regions. (3) The along-strike variations in crustal structure demonstrate the scale and longevity of the regular along-axis rift segmentation. (4) Extension is still observed north of the rifted domain, 70 km onshore from the coast, making the width of margin larger than first expected from geology. (5) The crust has a felsic to normal composition with a probably strong effect of the sedimentary layer on the Vp/Vs ratio (comprised between 1.67 and 1.91).

  19. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  20. The northern Lesser Antilles oblique subduction zone: new insight about the upper plate deformation, 3D slab geometry and interplate coupling.

    NASA Astrophysics Data System (ADS)

    Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.

    2017-12-01

    In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that the slab deepening angle lower beneath the Virgin Islands segment than beneath the St Martin-Barbuda segment possibly generates a northward increasing interplate coupling. As a result, it possibly favors an increase in the seismic activity and the tectonic partitioning beneath the Virgin Islands margin contrary to the St Martin-Barbuda segment.

  1. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Floyd E.; Hu, Lin-wen; Wilson, Erik

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings onmore » avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.« less

  2. Experimental and simulation characterisation of flexural vibration modes in unimorph ultrasound transducers.

    PubMed

    Eriksson, T J R; Ramadas, S N; Dixon, S M

    2016-02-01

    A unimorph flexural transducer design is proposed and tested with regard to mode shapes and frequencies. The transducers consist of a passive metal cap structure, and a thin piezoelectric disc, rigidly bonded to the inside. Extensive finite element (FE) modelling, and experimental 2D, time-resolved displacement measurements were done to characterise the transducers flexural properties, and to compare them to the analytical solutions of thin vibrating plates. Emphasis was put on characterising the passive layer of the unimorph structure, before bonding the piezoelectric element, to understand how the active element affects the behaviour of the flexing plate. A high power Nd:YAG laser was used to actuate the metal plate (non-contact), and the frequency content of the resulting displacement signal was analysed to identify the flexural modes. The non-axisymmetric modes, which are conventionally disregarded because of their unfavourable acoustic properties, were also taken into account. There was excellent agreement between the experimental results and the FE simulation data. There was good agreement with the analytical edge clamped plate model, but with some notable deviations, which have not previously been identified or commented upon. Specifically, the second axisymmetric mode is split into three separate modes, which is not explained by the traditional theory of vibrating plates. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic

    NASA Astrophysics Data System (ADS)

    Golonka, J.

    2004-03-01

    Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic-Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic-Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus-proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian-Penninic-Pieniny-Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic-Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western-central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous-Cenomanian. The latest Cretaceous-Paleogene was the time of the closure of the Ligurian-Pieniny Ocean. Adria-Alcapa terranes continued their northward movement during Eocene-Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians. During the Late Cretaceous, the Lesser Caucasus, Sanandaj-Sirjan and Makran plates were sutured to the Iranian-Afghanistan plates in the Caucasus-Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian-Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene-Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW-SE wrench faults. The remnants of Jurassic-Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.

  4. Frequency-Magnitude relationships for Underwater Landslides of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Urgeles, R.; Gràcia, E.; Lo Iacono, C.; Sànchez-Serra, C.; Løvholt, F.

    2017-12-01

    An updated version of the submarine landslide database of the Mediterranean Sea contains 955 MTDs and 2608 failure scars showing that submarine landslides are ubiquitous features along Mediterranean continental margins. Their distribution reveals that major deltaic wedges display the larger submarine landslides, while seismically active margins are characterized by relatively small failures. In all regions, landslide size distributions display power law scaling for landslides > 1 km3. We find consistent differences on the exponent of the power law depending on the geodynamic setting. Active margins present steep slopes of the frequency-magnitude relationship whereas passive margins tend to display gentler slopes. This pattern likely responds to the common view that tectonically active margins have numerous but small failures, while passive margins have larger but fewer failures. Available age information suggests that failures exceeding 1000 km3 are infrequent and may recur every 40 kyr. Smaller failures that can still cause significant damage might be relatively frequent, with failures > 1 km3 likely recurring every 40 years. The database highlights that our knowledge of submarine landslide activity with time is limited to a few tens of thousand years. Available data suggest that submarine landslides may preferentially occur during lowstand periods, but no firm conclusion can be made on this respect, as only 149 landslides (out of 955 included in the database) have relatively accurate age determinations. The timing and regional changes in the frequency-magnitude distribution suggest that sedimentation patterns and pore pressure development have had a major role in triggering slope failures and control the sediment flux from mass wasting to the deep basin.

  5. Tectonic Reorganization of the Western Pacific in Eocene Time: Missing Pieces in the Subduction Initiation Puzzle

    NASA Astrophysics Data System (ADS)

    Bloomer, S. H.; Stern, R. J.

    2002-12-01

    The initiation of subduction is probably the geologic process most responsible for large-scale changes in the motions and interactions of plates. To the extent that subduction drives mantle convection, the initiation of subduction also drives major changes in the convection of the mantle. The mechanisms of subduction initiation remain, however, obscure, but it is becoming increasingly clear that Eocene sequences in the western Pacific provide an outstanding opportunity to study this phenomenon. The major subduction zones of the western Pacific (Tonga, Mariana, Izu, Bonin) all first produced volcanic products in early Eocene time (55-48 Ma). The similarity of timing and of the characteristics of these margins suggests that there may be a common process involved. There is no evidence in the forearc crust of any of these convergent margins for proximity to a continental margin at the time of initiation. Current models of plate motion (particularly given recent reinterpretations of the Hawaiian hotspot bend) show no major plate reorganization that might have provided excess compressional stress across the western Pacific margins. The only mechanically viable mechanism for subduction initiation in the region appears to be spontaneous failure due to gravitational instability of cold, old oceanic lithosphere. There are a number of geologic and geophysical unknowns in assessing the viability of such spontaneous nucleation. The lithosphere becomes stronger as it ages as well as becoming denser. Failure of such crust to form a nascent subduction zone requires a crustal weakness such as a fault and a mechanism to decrease the bending strength of the plate. Paleomagnetic data and plate reconstructions for both the IBM and the Tonga-Kermedec region provide no clear answer to these issues and in fact conflict with interpretations placing large transform faults at the site of subduction nucleation. The large-scale rotations inferred from those data for the IBM conflict, or at least complicate, geologic observations around the Philippine Sea. We will review the currrent structural, mechanical, and geologic constraints on pre-subduction geometry of the western Pacific and will discuss the most essential problems to be solved if we are to constrain how subduction began in the Pacific in Eocene time.

  6. Global tectonic studies: Hotspots and anomalous topography

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Delong, S.; Thiessen, R. L.; Carosella, R.; Mcgetchin, T. R.

    1979-01-01

    Volcanic activity on Earth and its secular variations are compared with that on other terrestrial planets. Activity at divergent, transform, and convergent plate margins is described with particular emphasis on hot spots and flood basalts. The timing and causing of uplifting above 500 meters, which in not associated with either plate boundaries or the normal nonplate margin edges of continents is considered with particular focus on the Guyana Highlands in southern Venezuela and western British Guiana, and the Brazilian Highlands in the central, eastern, and southern parts of the country. The mode and mechanism of plateau uplifting and the re-elevation of old mountain belts and subsidence of intra-continental basins are also discussed.

  7. Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Turco, Eugenio

    2009-08-01

    A new central Pangaea fit (type A) is proposed for the late Ladinian (230 Ma), together with a plate motions model for the subsequent phases of rifting, continental breakup and initial spreading in the central Atlantic. This model is based on: (1) a reinterpretation of the process of formation of the East Coast Magnetic Anomaly along the eastern margin of North America and the corresponding magnetic anomalies at the conjugate margins of northwest Africa and the Moroccan Meseta; (2) an analysis of major rifting events in the central Atlantic, Atlas and central Mediterranean and (3) a crustal balancing of the stretched margins of North America, Moroccan Meseta and northwest Africa. The process of fragmentation of central Pangaea can be described by three major phases spanning the time interval from the late Ladinian (230 Ma) to the Tithonian (147.7 Ma). During the first phase, from the late Ladinian (230 Ma) to the latest Rhaetian (200 Ma), rifting proceeded along the eastern margin of North America, the northwest African margin and the High, Saharan and Tunisian Atlas, determining the formation of a separate Moroccan microplate at the interface between Gondwana and Laurasia. During the second phase, from the latest Rhaetian (200 Ma) to the late Pliensbachian (185 Ma), oceanic crust started forming between the East Coast and Blake Spur magnetic anomalies, whereas the Morrocan Meseta simply continued to rift away from North America. During this time interval, the Atlas rift reached its maximum extent. Finally, the third phase, encompassing the time interval from the late Pliensbachian (185 Ma) to chron M21 (147.7 Ma), was triggered by the northward jump of the main plate boundary connecting the central Atlantic with the Tethys area. Therefore, as soon as rifting in the Atlas zone ceased, plate motion started along complex fault systems between Morocco and Iberia, whereas a rift/drift transition occurred in the northern segment of the central Atlantic, between Morocco and the conjugate margin of Nova Scotia. The inversion of the Atlas rift and the subsequent formation of the Atlas mountain belt occurred during the Oligocene-early Miocene time interval. In the central Atlantic, this event was associated with higher spreading rates of the ridge segments north of the Atlantis FZ. An estimate of 170 km of dextral offset of Morocco relative to northwest Africa, in the central Atlantic, is required by an analysis of marine magnetic anomalies. Five plate tectonic reconstructions and a computer animation are proposed to illustrate the late Triassic and Jurassic process of breakup of Pangaea in the central Atlantic and Atlas regions.

  8. East African and Kuunga Orogenies in Tanzania - South Kenya

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Hauzenberger, C. A.; Tenczer, V.

    2012-04-01

    Tanzania and southern Kenya hold a key position for reconstructing Gondwana consolidation because here different orogen belts with different tectonic styles interfere. The older, ca. 650-620 Ma East African Orogeny resulted from the amalgamation of arc terranes in the northern Arabian-Nubian Shield (ANS) and continental collision between East African pieces and parts of the Azania terrane in the south (Collins and Pisarevsky, 2005). The change form arc suturing to continental collision settings is found in southern Kenya where southernmost arcs of the ANS conjoin with thickened continental margin suites of the Eastern Granulite Belt. The younger ca. 570-530 Ma Kuunga orogeny heads from the Damara - Zambesi - Irumide Belts (De Waele et al., 2006) over Tanzania - Mozambique to southern India and clashes with the East African orogen in southern-central Tanzania. Two transitional orogen settings may be defined, (1) that between island arcs and inverted passive continental margin within the East African Orogen and, (2) that between N-S trending East African and W-E trending Kuungan orogenies. The Neoproterozoic island arc suites of SE-Kenya are exposed as a narrow stripe between western Azania and the Eastern Granulite belt. This suture is a steep, NNW stretched belt that aligns roughly with the prominent southern ANS shear zones that converge at the southern tip of the ANS (Athi and Aswa shear zones). Oblique convergence resulted in low-vorticity sinstral shear during early phases of deformation. Syn-magmatic and syn-tectonic textures are compatible with deformation at granulite metamorphic conditions and rocks exhumed quickly during ongoing transcurrent motion. The belt is typified as wrench tectonic belt with horizontal northwards flow of rocks within deeper portions of an island arc. The adjacent Eastern Granulite Nappe experienced westward directed, subhorizontal, low-vorticity, high temperature flow at partly extreme metamorphic conditions (900°C, 1.2 to 1.4 GPa) (Fritz et al., 2009). Majority of data suggest an anticlockwise P-T loop and prolonged, slow cooling at deep crustal levels without significant exhumation. Isobaric cooling is explained by horizontal flow with rates faster than thermal equilibration of the lower crust. Those settings are found in domains of previously thinned lithosphere such as extended passive margins. Such rheolgically weak plate boundaries do not produce self-sustaining one-sided subduction but large areas of magmatic underplating that enable melt enhanced lateral flow of the lower crust. Western Granulites deformed by high-vorticity westwards thrusting at c. 550 Ma (Kuunga orogeny). Rocks exhibit clockwise P-T paths and experienced significant exhumation during isothermal decompression. Overprint between Kuungan structures and 620 Ma East African fabrics resulted in complex interference pattern within the Eastern Granulites. The three orogen portions that converge in Tanzania / Southern Kenya have different orogen styles. The southern ANS formed by transcurrent deformation of an island arc root; the Eastern Granulites by lower crustal channelized flow of a hot inverted passive margin; the Western Granulites by lower to mid crustal stacking of old and cold crustal fragments. Collins, A.S., Pisarevsky, S.A. (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71, 229-270. De Waele, B., Kampunzu, A.B., Mapani, B.S.E., Tembo, F. (2006). The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences, 46, 36-70 Fritz, H., Tenczer, V., Hauzenberger, C., Wallbrecher, E., Muhongo, S. (2009). Hot granulite nappes — Tectonic styles and thermal evolution of the Proterozoic granulite belts in East Africa. Tectonophysics, 477, 160-173.

  9. Cambrian-lower Middle Ordovician passive carbonate margin, southern Appalachians: Chapter 14

    USGS Publications Warehouse

    Read, J. Fred; Repetski, John E.

    2012-01-01

    The southern Appalachian part of the Cambrian–Ordovician passive margin succession of the great American carbonate bank extends from the Lower Cambrian to the lower Middle Ordovician, is as much as 3.5 km (2.2 mi) thick, and has long-term subsidence rates exceeding 5 cm (2 in.)/k.y. Subsiding depocenters separated by arches controlled sediment thickness. The succession consists of five supersequences, each of which contains several third-order sequences, and numerous meter-scale parasequences. Siliciclastic-prone supersequence 1 (Lower Cambrian Chilhowee Group fluvial rift clastics grading up into shelf siliciclastics) underlies the passive margin carbonates. Supersequence 2 consists of the Lower Cambrian Shady Dolomite–Rome-Waynesboro Formations. This is a shallowing-upward ramp succession of thinly bedded to nodular lime mudstones up into carbonate mud-mound facies, overlain by lowstand quartzose carbonates, and then a rimmed shelf succession capped by highly cyclic regressive carbonates and red beds (Rome-Waynesboro Formations). Foreslope facies include megabreccias, grainstone, and thin-bedded carbonate turbidites and deep-water rhythmites. Supersequence 3 rests on a major unconformity and consists of a Middle Cambrian differentiated rimmed shelf carbonate with highly cyclic facies (Elbrook Formation) extending in from the rim and passing via an oolitic ramp into a large structurally controlled intrashelf basin (Conasauga Shale). Filling of the intrashelf basin caused widespread deposition of thin quartz sandstones at the base of supersequence 4, overlain by widespread cyclic carbonates (Upper Cambrian lower Knox Group Copper Ridge Dolomite in the south; Conococheague Formation in the north). Supersequence 5 (Lower Ordovician upper Knox in the south; Lower to Middle Ordovician Beekmantown Group in the north) has a basal quartz sandstone-prone unit, overlain by cyclic ramp carbonates, that grade downdip into thrombolite grainstone and then storm-deposited deep-ramp carbonates. Passive margin deposition was terminated by arc-continent collision when the shelf was uplifted over a peripheral bulge while global sea levels were falling, resulting in the major 0- to 10-m.y. Knox–Beekmantown unconformity. The supersequences and sequences appear to relate to regionally traceable eustatic sea level cycles on which were superimposed high-frequency Milankovitch sea level cycles that formed the parasequences under global greenhouse conditions.

  10. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2007-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated temperature and excess flux, and magmatism dies off as this rift-restricted material is spent. The buoyancy of the plume-material also elevates the plate boundaries and enhances plate spreading forces initially. The rapid drop in magma productivity to the north correlates with the northern boundary of the wide and deep Cretaceous Vøring Basin, thus less plume material was accommodated off Lofoten. This model predicts that the magma segmentation will show little variation in the geochemical signature.

  11. Initiation of the Pyrenean plate boundary fault and its effect on the near- and far-field deformation of the European plate

    NASA Astrophysics Data System (ADS)

    Dielforder, Armin; Frasca, Gianluca; Ford, Mary

    2017-04-01

    The European plate was affected by contractional deformation events in Late Cretaceous time. This is recorded by inception of thrusting and foreland basin subsidence in the Pyrenean realm, and inversion of Mesozoic rift systems in the interior of the European plate. It is widely accepted that the plate-wide deformation resulted from the onset of NE-directed convergence of Africa-Iberia relative to Europe, and a strong mechanical coupling of the plates, which allowed the transfer of stresses far into Europe. Geological data from both the Pyrenean orogen and the interior of the European plate indicate, however, that these conditions persisted only for 15-20 Myr and that Europe experienced a plate-wide stress relaxation during Paleocene time. Although a slow down in plate convergence between Africa and Europe and North Atlantic continental rifting were proposed as potential causes for the stress relaxation, the subject has remained controversial. In particular, none of the mechanisms seem to be suitable to explain the required changes in the mechanical coupling of Iberian and European plates and the associated stress transfer. Here we propose a new model for the Upper Cretaceous to Paleocene tectonic evolution of the European plate, which takes the temporal evolution of the Pyrenean plate boundary fault into account. Based on plate reconstructions, geological field-data, and restored cross-sections we argue that the plate boundary fault initiated during the Upper Cretaceous within the exhumed mantle domain situated between the rifted margins of the Iberian and European plates. At the transition from the Late Cretaceous to Paleocene, the mantle domain was closed and the rifted margins collided. This evolution was associated with a substantial change in the fault rheology leading to an overall decrease in the plate coupling force. During Paleocene time, the plate coupling force was efficiently balanced by the gravitational push of the European plate, leading to a near neutral stress state in the upper plate and the observed plate-wide stress relaxation in Europe. This study is part of the Orogen research program and conducted in close collaboration with the BRGM (Bureau de Recherches Géologiques et Minières), the CNRS (Centre National de la Recherche Scientifique), and Total.

  12. 3D modeling of seismic waves propagation in the Israeli continental shelf: soft sediments, buried canyons and their effects.

    NASA Astrophysics Data System (ADS)

    Tsesarsky, M.; Volk, O.; Shani-Kadmiel, S.; Gvirtzman, Z.

    2016-12-01

    Sedimentary wedges underlay many coastal areas, specifically along passive continental margins. Although a large portion of the world`s population is concentrated along coastal areas, relatively few studies investigated the seismic hazard related to internal structure of these wedges. This is particularly important, when the passive margin is located in proximity to active plate boundaries. Sedimentry wedges have low angles compared to fault bounded basins, hence commonly treated using 1D methods. In various locations the sedimentary wedges are transected by deep buried canyons typically filled with sediments softer than their surrounding bedrock. Such structures are found is the Mediterranean coast of Israel. Here, a sedimentary wedge and buried canyons underlay some of the country's most densely populated regions. Seismic sources can be found both at sea and on land at epicentral distances ranging from 50 to 200 km. Although this region has a proven seismic record, it has, like many other parts of the world, limited instrumental coverage and long return periods. This makes assessment of ground motions in a future earthquake difficult and highlights the importance of non-instrumental methods. We employ numerical modeling (SW4 FD code) to study seismic ground motions and their amplification atop the sedimentary wedge and canyons. This goal is a part of a larger objective aiming at developing a systematic approach for distinction between individual contributions of basin structures to the highly complex overall basin response. We show that the sedimentary wedge and buried canyon both exhibit a unique response and modeling them as one-dimensional structures could significantly underestimate seismic hazard. The sedimentary wedge exhibit amplification ratios, relative to a horizontally layered model, up to a factor of 2. This is mainly due to the amplification of Rayleigh waves traveling into the wedge from its thin side. The buried canyon structure shows a simple, "easy to use" response with considerably high PGV values and amplification ratios of up to 3 along its axis. This response is due to a geometrical focusing effect caused by the convex shape of the canyon's floor. The canyon's response is significant even where the canyon is buried deep under the surface.

  13. Insights into Rift Initiation, Evolution, and Failure from North America's Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.; Wysession, M. E.

    2017-12-01

    Recent studies of the Midcontinent Rift (MCR) near Lake Superior give insights into how some rifts start, evolve, and fail because the rift-filling volcanic and sedimentary rocks are exposed at the surface and well imaged by deep seismic reflection and gravity data. The MCR was traditionally considered to have formed by midplate extension and volcanism 1.1 Ga that ended due to compression from the Grenville orogeny, the 1.3 - 0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that the MCR formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. A cusp in Laurentia's apparent polar wander path just before the onset of MCR volcanism likely reflects the rifting. Such cusps have been observed elsewhere when continents separate and a new ocean forms between the two fragments. New analyses also find that the MCR's failure did not result from Grenville compression. This view is consistent with the observation that many intracontinental rifts form and fail as part of plate boundary reorganizations. Present-day continental extension in the East African Rift and seafloor spreading in the Red Sea and Gulf of Aden form a classic three-arm rift geometry as Africa splits into Nubia, Somalia, and Arabia. The West Central African Rift system formed during the Mesozoic breakup of Africa and South America and became inactive once full seafloor spreading was established on the Mid-Atlantic Ridge. An important feature of the MCR is that it is has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). We view it as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP. The MCR exhibits many key features of volcanic passive margins: seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and a high-velocity lower crustal body. Hence the MCR can be treated as a rift that failed just short of forming a passive margin.

  14. Structure and Evolution of the Central Appalachians from the Mantle to the Surface: Results from the MAGIC Project

    NASA Astrophysics Data System (ADS)

    Long, M. D.; Benoit, M. H.; Evans, R. L.; King, S. D.; Kirby, E.; Aragon, J. C.; Miller, S. R.; Liu, S.; Elsenbeck, J.

    2017-12-01

    The eastern margin of North America has undergone multiple episodes of orogenesis and rifting, yielding the surface geology and topography visible today. It is poorly known, however, how the crust and mantle lithosphere have responded to these tectonic forces, and how geologic units preserved at the surface relate to deeper structures. Furthermore, the evolution of Appalachian topography through time, which reflects a complex interplay among erosion, lithology, and mantle flow, remains a major outstanding problem. The MAGIC project involves a multidisciplinary, collaborative effort to understand the structure and evolution of the central Appalachians, from the mantle to the surface. New images of the lithosphere derived from a passive broadband seismic array and a magnetotelluric deployment demonstrate significant along-strike lateral variability across the MAGIC transect. We observe a sharp change in crustal thickness across the eastern edge of the Appalachians, with a deeper Moho beneath the mountains than suggested by simple isostatic models. We find evidence for a relatively shallow lithosphere-asthenosphere boundary (LAB) beneath the Appalachians, with the thinnest LAB coinciding with the location of Eocene volcanism in and around Harrisonburg, VA. This observation is consistent with lithospheric loss as a mechanism for Eocene volcanic activity. Observations of seismic anisotropy suggest deformation of the mantle lithosphere associated with both Appalachian orogenesis and later Mesozoic rifting, with an observable component of anisotropy due to present-day mantle flow. Geodynamic models of mantle flow using a variety of tomographic models and density scaling relationships are being used to generate predictions of dynamic topography and plate motions for comparison with observations, and are currently being refined to incorporate realistic lithospheric morphology based on imaging results. Models of present-day erosion rates throughout the Appalachians from stream profile analysis show particularly fast erosion rates just to the west of Harrisonburg. Integration of results from the MAGIC project is yielding new insight into the structure and evolution of the central Appalachians and into the processes associated with orogenesis, rifting, and post-rift evolution of the passive margin.

  15. Deciphering the influence of the thermal processes on the early passive margins formation

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille

    2015-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere.
However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs.
In addition, it seems that the relationship between basin formation and thermal evolution is not always the same:
- Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic .
- Other examples show that temperature changes are synchronous with basin formation . For example, extensive ponds Cretaceous North Pyrenean clearly indicate that the "cooking" of contemporary sediment deposit. In the light of new models, we discuss the consequences of the formation of LP-granulites during rifting on deformation and the subsidence processes.

  16. Qualification testing of general electric 50 A h nickel—cadmium cells with pellon 2536 separator and passivated positive plates

    NASA Astrophysics Data System (ADS)

    Morrow, George W.

    Forty-two, 50 A h nickel—cadmium cells were delivered to the Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985 for the purpose of evaluating and qualifying a new, nonwoven nylon separator material, Pellon 2536, and the new GE positive plate passivation process. Testing began in May, 1985 at the Naval Weapons Support Center (NWSC) at Crane, Indiana with GSFC standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985 with approximately 6500 LEO cycles and three GEO eclipse seasons complete at this writing. After early problems in maintaining test pack temperature control, all packs were performing well but were exhibiting higher than normal charge voltage characteristics.

  17. Qualification testing of General Electric 50 Ah nickel-cadmium cells with Pellon 2536 separator and passivated positive plates

    NASA Technical Reports Server (NTRS)

    Morrow, George W.

    1987-01-01

    Forty-two 50 Ah nickel-cadmium cells were delivered to the Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985 for the purpose of evaluating and qualifying a nonwoven nylon separator material, Pellon 2536, and the GE positive plate nickel attack control gas passivation process. Testing began May, 1985 at the Naval Weapons Support Center (NWSC) in Crane, Indiana with GSFC standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985 with approximately 6500 LEO cycles and three GEO eclipse seasons completed. After early problems in maintaining test pack temperature control, all packs are performing well but are exhibiting higher than normal charge voltage characteristics.

  18. Qualification testing of General Electric 50 Ah nickel-cadmium cells with Pellon 2536 separator and passivated positive plates

    NASA Astrophysics Data System (ADS)

    Morrow, George W.

    1987-09-01

    Forty-two 50 Ah nickel-cadmium cells were delivered to the Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985 for the purpose of evaluating and qualifying a nonwoven nylon separator material, Pellon 2536, and the GE positive plate nickel attack control gas passivation process. Testing began May, 1985 at the Naval Weapons Support Center (NWSC) in Crane, Indiana with GSFC standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985 with approximately 6500 LEO cycles and three GEO eclipse seasons completed. After early problems in maintaining test pack temperature control, all packs are performing well but are exhibiting higher than normal charge voltage characteristics.

  19. Satellite-Based Investigations of the Transition from an Oceanic to Continental Transform Margin

    NASA Technical Reports Server (NTRS)

    Miller, M. Meghan

    1998-01-01

    Detailed characterization of neotectonics evolution of the Valle de San Felipe and Arroyo Grande regions in northern Baja California. Reoccupied GEOMEX GPS sites, and occupied a regional GPS (Global Positioning System) network. The Baja California peninsula in Mexico offers a unique setting for studying the kinematic evolution of a complex, active strike-slip/rift plate boundary. We are currently conducting remote sensing, geologic, and geodetic studies of this boundary. The combined data sets will yield instantaneous and time integrated views of its evolution. This proposal solicits renewed funding from NASA to support remote sensing and geologic studies. During the late Cenozoic, Baja California has been the locus of changing fault geometry that has accommodated components of the relative motion between the North America and Pacific plates. Contemporary slip between the two plates occurs in a broad zone that encompasses much of southern California and the Baja California Peninsula. The transfer of slip across this zone in southern California is relatively well understood. South of the border, the geometry and role of specific faults and structural provinces in transferring plate margin deformation across the peninsula is enigmatic. Results We use Landsat Thematic Mapper imagery of the Baja California Peninsula to identify recent and active faults, and then conduct field studies that characterize the temporal and spatial structural evolution of the plate margin. These data address questions concerning the neotectonic development of the Gulf of California, the Baja California Peninsula, and their role in evolution of the post-Miocene Pacific - North American plate boundary. Moreover, these studies provide constraints on the geometry of active faults, allowing more exact understanding of the results of ongoing NASA-supported geodetic experiments. In addition, anticipated publication of the TM scenes will provide a widely available geological data base for relatively little-known peninsula California. Achievements include development of an ArcInfo data base of Landsat and SPOT imagery, detailed field studies of Neogene structures in northeastern Baja California, and new constraint on Pacific - North America plate motion at Baja California latitudes. These results are reported in maps, manuscripts and data products which are published or near completion.

  20. Tectonic map of the Circum-Pacific region, Pacific basin sheet

    USGS Publications Warehouse

    Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.

    2013-01-01

    Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and George W. Moore (Arctic Region). Project coordination and final cartography was being carried out through the cooperation of the Office of the Chief Geologist of the U.S. Geological Survey, under the direction of General Chairman, George Gryc of Menlo Park, California. Project headquarters were located at 345 Middlefield Road, MS 952, Menlo Park, California 94025, U.S.A. The framework for the Circum-Pacific Map Project was developed in 1973 by a specially convened group of 12 North American geoscientists meeting in California. The project was officially launched at the First Circum-Pacific Conference on Energy and Mineral Resources, which met in Honolulu, Hawaii, in August 1974. Sponsors of the conference were the AAPG, Pacific Science Association (PSA), and the Coordinating Committee for Offshore Prospecting for Mineral Resources in Offshore Asian Areas (CCOP). The Circum-Pacific Map Project operates as an activity of the Circum-Pacific Council for Energy and Mineral Resources, a nonprofit organization that promotes cooperation among Circum-Pacific countries in the study of energy and mineral resources of the Pacific basin. Founded by Michel T. Halbouty in 1972, the Council also sponsors conferences, topical symposia, workshops and the Earth Science Series books. Tectonic Map Series: The tectonic maps distinguish areas of oceanic and continental crust. Symbols in red mark active plate boundaries, and colored patterns show tectonic units (volcanic or magmatic arcs, arc-trench gaps, and interarc basins) associated with active plate margins. Well-documented inactive plate boundaries are shown by symbols in black. The tectonic development of oceanic crust is shown by episodes of seafloor spreading. These correlate with the rift and drift sequences at passive continental margins and episodes of tectonic activity at active plate margins. The recognized episodes of seafloor spreading seem to reflect major changes in plate kinematics. Oceanic plateaus and other prominences of greater than normal oceanic crustal thickness such as hotspot traces are also shown. Colored areas on the continents show the ages of deformation and metamorphism of basement rocks and the emplacement of igneous rocks. Transitional tectonic (molassic) and reactivation basins are shown by a colored boundary, and if they are deformed, a colored horizontal line pattern indicates the age of deformation. Colored bands along basin boundaries indicate age of inception, and isopachs indicate thickness of platform strata on continental crust and cover on oceanic crust. Colored patterns at separated continental margins show the age of inception of rift and drift (breakup) sequences. Symbols mark folds and faults, and special symbols show volcanoes and other structural features. Affiliations are as of compilation of the data. This map was created in quadrants and then compiled together. They are the Northwest land, Northwest Marine (different compilers), Northeast, Southwest and Southeast, and parts in plate-boundary sections.

  1. Comparison of marine sampling methods for organic contaminants: Passive samplers, water extractions, and live oyster deployment.

    PubMed

    Raub, Kristin B; Vlahos, Penny; Whitney, Michael

    2015-08-01

    Laboratory and field trials evaluated the efficacy of three methods of detecting aquatic pesticide concentrations. Currently used pesticides: atrazine, metolachlor, and diazinon and legacy pesticide dieldrin were targeted. Pesticides were extracted using solid-phase extraction (SPE) of water samples, titanium plate passive samplers coated in ethylene vinyl acetate (EVA) and eastern oysters (Crassostrea viginica) as biosamplers. A laboratory study assessed the extraction efficiencies and precision of each method. Passive samplers yielded the highest precision of the three methods (RSD: 3-14% EVA plates; 19-60% oysters; and 25-56% water samples). Equilibrium partition coefficients were derived. A significant relationship was found between the concentration in oyster tissue and the ambient aquatic concentration. In the field (Housatonic River, CT (U.S.)) water sampling (n = 5) detected atrazine at 1.61-7.31 μg L(-1), oyster sampling (n = 2×15) detected dieldrin at n.d.-0.096 μg L(-1) SW and the passive samplers (n = 5×3) detected atrazine at 0.97-3.78 μg L(-1) SW and dieldrin at n.d.-0.68 μg L(-1) SW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  3. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin from Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    ERIC Educational Resources Information Center

    Busch, Melanie M. D.

    2011-01-01

    An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely…

  4. 75 FR 1031 - Certain Hot-Rolled Carbon Steel Flat Products from India: Notice of Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... measuring at least 10 times the thickness. Universal mill plate (i.e., flat-rolled products rolled on four... determinations. If the Department chooses as facts available a calculated dumping margin from the investigation... questionnaire. See Certain Cut-to-Length Carbon-Quality Steel Plate Products from the Republic of Korea: Final...

  5. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  6. Magma-poor and magma-rich segments along the hyperextended, pre-Caledonian passive margin of Baltica

    NASA Astrophysics Data System (ADS)

    Andersen, Torgeir B.; Alsaif, Manar; Corfu, Fernando; Jakob, Johannes; Planke, Sverre; Tegner, Christian

    2015-04-01

    The Scandinavian Caledonides constitute a more than 1850 km long 'Himalayan-type' orogen, formed by collision between Baltica-Avalonia and Laurentia. Subduction-related magmatism in the Iapetus ended at ~430 Ma and continental convergence continued for ~30 Myr until ~400 Ma. The collision produced a thick orogenic wedge comprising the stacked remnants of the rifted to hyperextended passive Baltican margin (Andersen et al. 2012), as well as suspect, composite and outboard terranes, which were successively emplaced as large-scale nappe complexes onto Baltica during the Scandian collision (see Corfu et al. 2014 for a recent review). Large parts (~800 km) of the mountain-belt in central Scandinavia, particularly in the Särv and Seve Nappes and their counterparts in Troms, are characterised by spectacular dyke complexes emplaced into continental sediments (e.g. Svenningsen 2001, Hollocher et al. 2007). These constitute a magma-rich segment formed along the margin of Baltica or within hyperextended continental slivers outboard of Baltica. The intensity of the pre-Caledonian magmatism is comparable to that of the present NE-Atlantic and other volcanic passive margins. The volumes and available U-Pb ages of 610-597 Ma (Baird et al. 2014 and refs therein) suggest that the magmatism was short lived, intense and therefore compatible with a large igneous province (LIP). By analogy with present-day margins this LIP may have been associated with continental break-up and onset of sea-floor spreading. The remnants of the passive margin both north and south of the magma-rich segment have different architectures, and are almost devoid of rift/drift related magmatic rocks. Instead, these magma-poor segments are dominated by heterogeneous sediment-filled basins characterised by the abundant presence of solitary bodies of variably altered mantle peridotites, also commonly present as detrital serpentinites. These basins are interpreted to have formed by hyperextension. We suggest that the pre-Caledonian margin of Baltica underwent hyperextension until break-up, which was associated with emplacement of a LIP at ~600 Ma in the central segment. Andersen, T.B., Labrousse, L., Corfu, F. and Osmundsen, P.T., 2012: Evidence for hyperextension along the pre-Caledonian margin of Baltica. Jl. Geol. Soc. London, 601-612 Baird, G.B., Figg, SA. and Chamberlain, K.R., 2014: Intrusive age and geochemistry of the Kebne Dyke Complex in the Seve Nappe Complex, Kebnekaise Massif, arctic Sweden Caledonides, GFF, doi: 10.1080/11035897.2014.924553 Corfu, F., Andersen, T.B. and Gasser, D., 2014: The Scandinavian Caledonides: main features, conceptual advances and critical questions. Geol. Soc. London Spec. Publ. 390 doi:10.1144/SP390.25 Hollocher. K, Robinson, P., Walsh, E. and Terry M.P., 2007:The Neoproterozoic Ottfjellet dike swarm of the Middle Allochthon, traced geochemically into the hinterland, Western Gneiss Region, Norway. Am. Jl. Sci. 307, 901-953 Svenningsen, O., 2001: Onset of seafloor spreading in the Iapetus Ocean at 608Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res., 110, 241-254.

  7. Provenance and sedimentary environments of the Proterozoic São Roque Group, SE-Brazil: Contributions from petrography, geochemistry and Sm-Nd isotopic systematics of metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Henrique-Pinto, R.; Janasi, V. A.; Tassinari, C. C. G.; Carvalho, B. B.; Cioffi, C. R.; Stríkis, N. M.

    2015-11-01

    The Proterozoic metasedimentary sequences exposed in the São Roque Domain (Apiaí Terrane, Ribeira Belt, southeast Brazil) consist of metasandstones and meta-felspathic wackes with some volcanic layers of within-plate geochemical signature (Boturuna Formation), a passive margin turbidite sequence of metawackes and metamudstones (Piragibu Formation), and volcano-sedimentary sequences with MORB-like basalts (Serra do Itaberaba Group; Pirapora do Bom Jesus Formation). A combination of zircon provenance studies in metasandstones, whole-rock geochemistry and Sm-Nd isotopic systematics in metamudstones was used to understand the provenance and tectonic significance of these sequences, and their implications to the evolution of the Precambrian crust in the region. Whole-rock geochemistry of metamudstones, dominantly from the Piragibu Formation, points to largely granitic sources (as indicated for instance by LREE-rich moderately fractionated REE patterns and subtle negative Eu anomalies) with some mafic contribution (responding for higher contents of Fe2O3, MgO, V, and Cr) and were subject to moderate weathering (CIA - 51 to 85). Sm-Nd isotope data show three main peaks of Nd TDM ages at ca. 1.9, 2.1 and 2.4 Ga; the younger ages define an upper limit for the deposition of the unit, and reflect greater contributions from sources younger than the >2.1 Ga basement. The coincident age peaks of Nd TDM and U-Pb detrital zircons at 2.1-2.2 Ga and 2.4-2.5 Ga, combined with the possible presence of a small amount of zircons derived from mafic (gabbroid) sources with the same ages, as indicated by a parallel LA-ICPMS U-Pb dating study in metapsammites, are suggestive that these were major periods of crustal growth in the sources involving not only crust recycling but also some juvenile addition. A derivation from similar older Proterozoic sources deposited in a passive margin basin is consistent with the main sedimentary sequences in the São Roque Domain being broadly coeval and in part laterally continuous. The coincident age, Sm-Nd isotope signature and geographic proximity make the exposures of basement orthogneisses in the Apiaí Terrane candidates for source material to the São Roque Domain. Additional sources with younger Nd TDM could be juvenile 2.2 Ga basement from the southern portion of the São Francisco Craton and its marginal belts (e.g., Mineiro Belt and Juiz de Fora Complex).

  8. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    NASA Astrophysics Data System (ADS)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un-ruptured southern segment of the seismic gap.

  9. Trace-element geochemistry of metabasaltic rocks from the Yukon-Tanana Upland and implications for the origin of tectonic assemblages in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Cooper, K.M.

    1999-01-01

    We present major- and trace- element geochemical data for 27 amphibolites and six greenstones from three structural packages in the Yukon-Tanana Upland of east-central Alaska: the Lake George assemblage (LG) of Devono-Mississippian augen gneiss, quartz-mica schist, quartzite, and amphibolite; the Taylor Mountain assemblage (TM) of mafic schist and gneiss, marble, quartzite, and metachert; and the Seventymile terrane of greenstone, serpentinized peridotite, and Mississippian to Late Triassic metasedimentary rocks. Most LG amphibolites have relatively high Nb, TiO2, Zr, and light rare earth element contents, indicative of an alkalic to tholeiitic, within-plate basalt origin. The within-plate affinities of the LG amphibolites suggest that their basaltic parent magmas developed in an extensional setting and support a correlation of these metamorphosed continental-margin rocks with less metamorphosed counterparts across the Tintina fault in the Selwyn Basin of the Canadian Cordillera. TM amphibolites have a tholeiitic or calc-alkalic composition, low normalized abundances of Nb and Ta relative to Th and La, and Ti/V values of <20, all indicative of a volcanic-arc origin. Limited results from Seventymile greenstones indicate a tholeiitic or calc-alkalic composition and intermediate to high Ti/V values (27-48), consistent with either a within-plate or an ocean-floor basalt origin. Y-La-Nb proportions in both TM and Seventymile metabasalts indicate the proximity of the arc and marginal basin to continental crust. The arc geochemistry of TM amphibolites is consistent with a model in which the TM assemblage includes arc rocks generated above a west-dipping subduction zone outboard of the North American continental margin in mid-Paleozoic through Triassic time. The ocean-floor or within-plate basalt geochemistry of the Seventymile greenstones supports the correlation of the Seventymile terrane with the Slide Mountain terrane in Canada and the hypothesis that these oceanic rocks originated in a basin between the continental margin and an arc to the west.

  10. Distribution of long-lived radioactive iodine isotope (I-129) in pore waters from the gas hydrate fields on the continental margins: Indication for methane source of gas hydrate deposits

    NASA Astrophysics Data System (ADS)

    Tomaru, H.; Lu, Z.; Fehn, U.

    2011-12-01

    Because iodine has a strong association with organic matters in marine environments, pore waters in high methane potential region, in particular gas hydrate occurrences on the continental margins, are enriched significantly in iodine compared with seawater. Natural iodine system is composed of stable and radioactive species, I-129 (half-life of 15.7 Myr) has been used for estimating the age of source formations both for methane and iodine, because iodine can be liberated into pore water during the degradation of organic matter to methane in deep sediments. Here we present I-129 age data in pore waters collected from variety of gas hydrate occurrences on the continental margins. The I-129 ages in pore waters from these locations are significantly older than those of host sediments, indicating long-term transport and accumulation from deep/old sediments. The I-129 ages in the Japan Sea and Okhotsk Sea along the plate boundary between the North American and Amurian Plates correspond to the ages of initial spreading of these marginal seas, pointing to the massive deposition of organic matter for methane generation in deep sediments within limited periods. On the Pacific side of these areas, organic matter-rich back stop is responsible for methane in deep-seated gas hydrate deposits along the Nankai Trough. Deep coaly sequences responsible for deep conventional natural gas deposits are also responsible for overlying gas hydrate deposits off Shimokita Peninsula, NE Japan. Those in the Gulf of Mexico are correlative to the ages of sediments where the top of salt diapirs intrude. Marine sediments on the Pacific Plate subducting beneath the Australian Plate are likely responsible for the methane and iodine in the Hikurangi Trough, New Zealand. These ages reflect well the regional geological settings responsible for generation, transport, and accumulation of methane, I-129 is a key to understand the geological history of gas hydrate deposition.

  11. The planet beyond the plume hypothesis

    NASA Astrophysics Data System (ADS)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for intraplate volcanism evolve from the source residues of arc volcanism located along sutures in the continental mantle. Continental rifting and the lateral distribution of intraplate sources in the asthenosphere are controlled by Earth rotation. Shear induced on the base of the asthenosphere from the mesosphere as the Earth rotates is transmitted to the lithosphere as basal drag. Attenuation of the drag due to the low viscosity of the asthenosphere, in conjunction with plate motions from boundary forces, results in a rotation differential of up to 5 cm yr -1 between the lithosphere and mesosphere manifest as westward plate lag/eastward mantle flow. Continental rifting results from basal drag supplemented by local convection induced by lithospheric architecture. Large continental igneous provinces are generated by convective melting, with passive margin volcanic sequences following the axis of rifting and flood basalts overlying the intersection of sutures in the continental mantle. As rifting progresses, the convection cells expand, cycling continental mantle from sutures perpendicular to the rift axis to generate intraplate tracks in the ocean basin. Continental mantle not melted on rifting, or delaminated on continental collision, becomes displaced to the east of the continent by differential rotation, which also sets up a means for tapping the material to give fixed melting anomalies. When plates move counter to the Earth's rotation, as in the example of the Pacific plate, asthenospheric flow is characterised by a counterflow regime with a zero velocity layer at depths within the stability field for volatile-bearing minerals. Intraplate volcanism results when melts are tapped from this stationary layer along lithospheric stress trajectories induced by stressing of the plate from variations in the subduction geometry around the margins of the plate. Plate boundary forces acting in the same direction as Earth rotation, as for the Nazca plate, produce fast plate velocities but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction in size of crust and continental mantle roots, the latter becoming a source for intraplate volcanism while the crust was incorporated into the convecting mantle.

  12. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    NASA Astrophysics Data System (ADS)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing the history of plate motion and subduction and tracing the geological and deformation records in continents play a significant role in revealing the effects of complex plate motions and the interactions of plate boundary forces on plate-mantle coupling and plate motion-intracontinental deformation coupling.

  13. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  14. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexicomore » shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.« less

  15. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  16. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  17. Seismic Reflection Characteristic and Structure Unit Division of Nanwei Uplift in the Nansha Waters, South China Sea

    NASA Astrophysics Data System (ADS)

    Guo, L.; Zhan, W.; Yao, Y.

    2016-12-01

    Nanwei uplift is located in the continent-ocean transition zone at the southern margin of the South China Sea (SCS). It has the structural characteristics in typical passive margin models. Attributed to squeezing action, the anticline and faulted anticline structure were well developed since Oligocene. The development of organic reef and marine mudstone deposit indicated the drifting and subsidence stage. In this area, the structural evolution is not only related to the dynamic systems of rifting, basin spreading and expansion ending, but also to the collisions between different plates. Meanwhile, a large number of continental margin rifting basins with rich oil and gas resources developed in Nanwei uplift. It is meaningful to analyze the characteristics of seismic reflection waves. Also, two main structural unit were divided for studying the special structures and stratigraphic features in this paper. Two high-resolution single-channel seismic Line Nan-1 and Line Nan-2 in the Nansha Waters, acquired by the trial vessel "Shiyan 2" of the South China Sea Institute of Oceanology in 2013, is interpreted and analyzed in this study. The profiles show that there are a lot of normal fault half-garben systems and depressions in NE direction. Five seismic interfaces have been distinguished, named T0,T3,T4,T5 and Tg respectively. It corresponds to different regional unconformities in different geological age which indicated the characteristics of regional tectonics. On the basis of tectonic shape and previous geophysical data, it is believed that the Nanwei uplift zone is mainly composed of two structural units, the southern subsidence belt and northern buried volcanic uplift belt. The general range of zoning is also discussed in this paper. It is considered that the buried volcanic uplift belt mainly involved the marginal area along the southern ocean basin from 63-72 km wide in SE direction, the neighboring subsidence belt in rifting stage is parallel to the buried volcanic uplift belt with 57.5-128 km wide. In addition, the epicenter distributions of sporadic and larger than 4 magnitude earthquakes suggest that the entire Nanwei uplift is still a relatively stable tectonic activity zone, the crustal stability is good.

  18. Sedimentological analysis and long term chronostratigraphy (> 30 ka) of turbidite record offshore the central Algerian margin

    NASA Astrophysics Data System (ADS)

    Bachir, Roza Si; Babonneau, Nathalie; Cattaneo, Antonio; Ratzov, Gueorgui; Déverchère, Jacques; Yelles, Karim

    2016-04-01

    The Algerian margin is a Cenozoic passive margin located at the diffuse plate boundary between Eurasia and Africa, presently reactivated in compression. It is among the most seismically active areas of the Western Mediterranean and it suffered from numerous devastating earthquakes, for example the El Asnam earthquake in 1980 (Ms = 7.3) and the Boumerdès earthquake in 2003 (Ms = 6.7). A consistent dataset of sediment cores was collected between 2003 and 2007 during the MARADJA and PRISME cruises. Previous work has focused on the Holocene and allowed to highlight a consistent paleosesimological record in the central area of the Algerian margin (Algiers area). The purpose of this work is to extend the sedimentary analysis of turbiditic deposits over longer periods of time (throughout the Last Glacial Maximum), in order to determine whether the record of seismic events is exploitable, or if the impact of climate-driven and eustatic variations is dominant in turbidite triggering and accumulation. A sedimentological and stratigraphic approach was performed on the three most distal sediment cores of the area: PSM-KS21, PSM-KS23 and PSM-KS27. The establishment of an age model is based on radiocarbon dating and measurements of oxygen stable isotopes on planktonic foraminifera collected from the pelagic intervals (hemipelagites) interfingered with the turbidites. A homogeneous clay bed identifiable by its grey colour is a marker to correlate the three cores and it is dated between 18 and 19 ka BP. The PSM-KS23 core has the longest sedimentary record, thus it was used as a reference. Preliminary results show a significant increase in the number and thickness of individual turbidites between 10 and 20 ka BP. The expected results of this work are: 1) to determine whether the number of turbidites is consistent and correlates among the three cores; 2) to assess if the paleo-earthquake signal related to turbidites can be extracted beyond the Holocene; 3) to identify the recurrence interval of recorded paleo-earthquake events.

  19. Tectonic and thermal history of the western Serrania del Interior foreland fold and thrust belt and Guarico Basin, north central Venezuela: Implications of new apatite fission track analysis and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Perez de Armas, Jaime Gonzalo

    Structural analysis, interpretation of seismic reflection lines, and apatite fission-track analysis in the Western Serrania del Interior fold and thrust belt and in the Guarico basin of north-central Venezuela indicate that the area underwent Mesozoic and Tertiary-to-Recent deformation. Mesozoic deformation, related to the breakup of Pangea, resulted in the formation of the Espino graben in the southernmost portion of the Guarico basin and in the formation of the Proto-Caribbean lithosphere between the diverging North and South American plates. The northern margin of Venezuela became a northward facing passive margin. Minor normal faults formed in the Guarico basin. The most intense deformation took place in the Neogene when the Leeward Antilles volcanic island arc collided obliquely with South America. The inception of the basal foredeep unconformity in the Late Eocene-Early Oligocene marks the formation of a perisutural basin on top of a buried graben system. It is coeval with minor extension and possible reactivation of Cretaceous normal faults in the Guarico basin. It marks the deepening of the foredeep. Cooling ages derived from apatite fission-tracks suggest that the obduction of the fold and thrust belt in the study area occurred in the Late Oligocene through the Middle Miocene. Field data and seismic interpretations suggest also that contractional deformation began during the Neogene, and specifically during the Miocene. The most surprising results of the detrital apatite fission-track study are the ages acquired in the sedimentary rocks of the easternmost part of the study area in the foreland fold and thrust belt. They indicate an Eocene thermal event. This event may be related to the Eocene NW-SE convergence of the North and South American plates that must have caused the Proto-Caribbean lithosphere to be shortened. This event is not related to the collision of the arc with South America, as the arc was far to the west during the Eocene.

  20. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar

    NASA Astrophysics Data System (ADS)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare

    2017-04-01

    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the Wuntho-Popa Arc and in the sedimentary basins onshore Myanmar (including the onshore Rakhine Basin and the Myanmar Central Basin), providing evidence for ongoing, although non-continuous, subduction in the region.

  1. Spreading And Collapse Of Big Basaltic Volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bonforte, A.; Guglielmino, F.; Peltier, A.; Poland, M. P.

    2015-12-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. Our work aims to investigate the relation between basement setting and volcanic activity and stability at Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These volcanoes, due to their similarities and differences, coupled with their long-time and high-level monitoring networks, represent the best natural laboratories for investigating the manifestations and mechanisms of spreading and collapse, the feedback process between spreading and eruptive activity (especially along rift zones), and the role of the regional geodynamics.

  2. Spreading and collapse of big basaltic volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These Supersite volcanoes, due to their similarities and differences, coupled with their long-time and high-level monitoring networks, represent the best natural laboratories for investigating the manifestations and mechanisms of spreading and collapse, the feedback process between spreading and eruptive activity (especially along rift zones), and the role of the regional geodynamics.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, J.R.; Russell, O.R.; Staskowski, R.J.

    Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexitymore » of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.« less

  4. Basin formation and Neogene sedimentation in a backarc setting, Halmahera, eastern Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.; Nichols, G.J.

    1991-03-01

    It has been proposed that basins in backarc setting form in association with subduction by thinning of continental crust, backarc spreading in oceanic crust, compression, or trapping of pieces of oceanic plate behind an arc. The Halmahera basin in eastern Indonesia developed in a backarc setting but does not fall into these categories; it formed by subsidence of thickened crust made up of imbricated Mesozoic-Paleogene arc and ophiolite rocks. Halmahera lies at the western edge of the Philippine Sea Plate in a complex zone of convergence between the Eurasian margin, the oceanic plates of the West Pacific, and the Australian/Indianmore » Plate to the south. The basement is an imbricated complex of Mesozoic to Paleogene ophiolite, arc, and arc-related rocks. During the Miocene this basement complex formed an area of thickened crust upon which carbonate reef and reef-associated sediments were deposited. The authors interpret this shallow marine region to be similar to many of the oceanic plateaus and ridges found within the Philippine Sea Plate today. In the Late Miocene, convergence between the Philippine Sea Plate and the Eurasian margin resulted in the formation of the Halmahera Trench to the west of this region of thickened crust. Subduction of the Molucca Sea Plate caused the development of a volcanic island arc. Subsidence in the backarc area produced a broad sedimentary basin filled by clastics eroded from the arc and from uplifted basement and cover rocks. The basin was asymmetric with the thickest sedimentary fill on the western side, against the volcanic arc. The Halmahera basin was modified in the Plio-Pleistocene by east-west compression as the Molucca Sea Plate was eliminated by subduction.« less

  5. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region

    NASA Astrophysics Data System (ADS)

    Steckler, Michael S.; ten Brink, Uri S.

    1986-08-01

    The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.

  6. Testing Spatial Correlation of Subduction Interplate Coupling and Forearc Morpho-Tectonics

    NASA Technical Reports Server (NTRS)

    Goldfinger, Chris; Meigs, Andrew; Meigs, Andrew; Kaye, Grant D.; VanLaningham, Sam

    2005-01-01

    Subduction zones that are capable of generating great (Mw greater than 8) earthquakes appear to have a common assemblage of forearc morphologic elements. Although details vary, each have (from the trench landward), an accretionary prism, outer arc high, outer forearc basin, an inner forean: basin, and volcanic arc. This pattern is common in spite of great variation in forearc architecture. Because interseismic strain is known to be associated with a locked seismogenic plate interface, we infer that this common forearc morphology is related, in an unknown way, to the process of interseismic Strain accumulation and release in great earthquakes. To date, however, no clear relationship between the subduction process and the common elements of upper plate form has emerged. Whereas certain elements of the system, i.e. the outer arc high, are reasonably well- understood in a structural context, there is little understanding of the structural or topographic evolution of the other key elements like the inner arc and inner forearc basin, particularly with respect to the coupled zone of earthquake generation. This project developed a model of the seismologic, topographic, and uplift/denudation linkages between forearc topography and the subduction system by: 1) comparing geophysical, geodetic, and topographic data from subduction margins that generate large earthquakes; 2) using existing GPS, seismicity, and other data to model the relationship between seismic cycles involving a locked interface and upper-plate topographic development; and 3) using new GPS data and a range-scale topographic, uplift, and denudation analysis of the presently aseismic Cascadia margin to constrain topographic/plate coupling relationships at this poorly understood margin.

  7. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    PubMed

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  8. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    PubMed Central

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  9. The Cascadia Subduction Zone: two contrasting models of lithospheric structure

    USGS Publications Warehouse

    Romanyuk, T.V.; Blakely, R.; Mooney, W.D.

    1998-01-01

    The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.

  10. Passive Isolators for use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Gattis, Christy

    2003-01-01

    The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.

  11. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-12-01

    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep intrusions into the faulted crustal blocks are responsible for the rough character of the TR, whereas intrusions into the lower crust and detachment faults are likely responsible for its smoother appearance. Deep magma intrusions can be responsible for metamorphic processes leading to an increased velocity of the lower crust of more than 7 km/s.

  12. Continental margin sedimentation: From sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins.- Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes- Explores timescales ranging from particle transport at one extreme, to deep burial at the other- Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy- Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation- Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  13. An inter-sensor comparison of the microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.

    1986-01-01

    Active and passive microwave and physical properties of Arctic sea ice in the marginal ice zone were measured during the summer. Results of an intercomparison of data acquired by an aircraft synthetic aperture radar, a passive microwave imager and a helicopter-mounted scatterometer indicate that early-to-mid summer sea ice microwave signatures are dominated by snowpack characteristics. Measurements show that the greatest contrast between thin first-year and multiyear sea ice occurs when operating actively between 5 and 10 GHz. Significant information about the state of melt of snow and ice is contained in the active and passive microwave signatures.

  14. Inter-Labeler and Intra-Labeler Variability of Condition Severity Classification Models Using Active and Passive Learning Methods

    PubMed Central

    Nissim, Nir; Shahar, Yuval; Boland, Mary Regina; Tatonetti, Nicholas P; Elovici, Yuval; Hripcsak, George; Moskovitch, Robert

    2018-01-01

    Background and Objectives Labeling instances by domain experts for classification is often time consuming and expensive. To reduce such labeling efforts, we had proposed the application of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of any of three AL methods (one well known [SVM-Margin], and two that we introduced [Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-Margin AL method. However, because labelers have varying levels of expertise, a major issue associated with learning methods, and AL methods in particular, is how to best to use the labeling provided by a committee of labelers. First, we wanted to know, based on the labelers’ learning curves, whether using AL methods (versus standard passive learning methods) has an effect on the Intra-labeler variability (within the learning curve of each labeler) and inter-labeler variability (among the learning curves of different labelers). Then, we wanted to examine the effect of learning (either passively or actively) from the labels created by the majority consensus of a group of labelers. Methods We used our CAESAR-ALE framework for classifying the severity of clinical conditions, the three AL methods and the passive learning method, as mentioned above, to induce the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, represented by features aggregated from the medical records of 1.9 million patients treated at Columbia University Medical Center. We analyzed the variance of the classification performance within (intra-labeler), and especially among (inter-labeler) the classification models that were induced by using the labels provided by seven labelers. We also compared the performance of the passive and active learning models when using the consensus label. Results The AL methods produced, for the models induced from each labeler, smoother Intra-labeler learning curves during the training phase, compared to the models produced when using the passive learning method. The mean standard deviation of the learning curves of the three AL methods over all labelers (mean: 0.0379; range: [0.0182 to 0.0496]), was significantly lower (p = 0.049) than the Intra-labeler standard deviation when using the passive learning method (mean: 0.0484; range: [0.0275 to 0.0724). Using the AL methods resulted in a lower mean Inter-labeler AUC standard deviation among the AUC values of the labelers’ different models during the training phase, compared to the variance of the induced models’ AUC values when using passive learning. The Inter-labeler AUC standard deviation, using the passive learning method (0.039), was almost twice as high as the Inter-labeler standard deviation using our two new AL methods (0.02 and 0.019, respectively). The SVM-Margin AL method resulted in an Inter-labeler standard deviation (0.029) that was higher by almost 50% than that of our two AL methods. The difference in the inter-labeler standard deviation between the passive learning method and the SVM-Margin learning method was significant (p = 0.042). The difference between the SVM-Margin and Exploitation method was insignificant (p = 0.29), as was the difference between the Combination_XA and Exploitation methods (p = 0.67). Finally, using the consensus label led to a learning curve that had a higher mean intra-labeler variance, but resulted eventually in an AUC that was at least as high as the AUC achieved using the gold standard label and that was always higher than the expected mean AUC of a randomly selected labeler, regardless of the choice of learning method (including a passive learning method). Using a paired t-test, the difference between the intra-labeler AUC standard deviation when using the consensus label, versus that value when using the other two labeling strategies, was significant only when using the passive learning method (p = 0.014), but not when using any of the three AL methods. Conclusions The use of AL methods, (a) reduces intra-labeler variability in the performance of the induced models during the training phase, and thus reduces the risk of halting the process at a local minimum that is significantly different in performance from the rest of the learned models; and (b) reduces Inter-labeler performance variance, and thus reduces the dependence on the use of a particular labeler. In addition, the use of a consensus label, agreed upon by a rather uneven group of labelers, might be at least as good as using the gold standard labeler, who might not be available, and certainly better than randomly selecting one of the group’s individual labelers. Finally, using the AL methods when provided by the consensus label reduced the intra-labeler AUC variance during the learning phase, compared to using passive learning. PMID:28456512

  15. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.

    PubMed

    Nissim, Nir; Shahar, Yuval; Elovici, Yuval; Hripcsak, George; Moskovitch, Robert

    2017-09-01

    Labeling instances by domain experts for classification is often time consuming and expensive. To reduce such labeling efforts, we had proposed the application of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of any of three AL methods (one well known [SVM-Margin], and two that we introduced [Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-Margin AL method. However, because labelers have varying levels of expertise, a major issue associated with learning methods, and AL methods in particular, is how to best to use the labeling provided by a committee of labelers. First, we wanted to know, based on the labelers' learning curves, whether using AL methods (versus standard passive learning methods) has an effect on the Intra-labeler variability (within the learning curve of each labeler) and inter-labeler variability (among the learning curves of different labelers). Then, we wanted to examine the effect of learning (either passively or actively) from the labels created by the majority consensus of a group of labelers. We used our CAESAR-ALE framework for classifying the severity of clinical conditions, the three AL methods and the passive learning method, as mentioned above, to induce the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, represented by features aggregated from the medical records of 1.9 million patients treated at Columbia University Medical Center. We analyzed the variance of the classification performance within (intra-labeler), and especially among (inter-labeler) the classification models that were induced by using the labels provided by seven labelers. We also compared the performance of the passive and active learning models when using the consensus label. The AL methods: produced, for the models induced from each labeler, smoother Intra-labeler learning curves during the training phase, compared to the models produced when using the passive learning method. The mean standard deviation of the learning curves of the three AL methods over all labelers (mean: 0.0379; range: [0.0182 to 0.0496]), was significantly lower (p=0.049) than the Intra-labeler standard deviation when using the passive learning method (mean: 0.0484; range: [0.0275-0.0724). Using the AL methods resulted in a lower mean Inter-labeler AUC standard deviation among the AUC values of the labelers' different models during the training phase, compared to the variance of the induced models' AUC values when using passive learning. The Inter-labeler AUC standard deviation, using the passive learning method (0.039), was almost twice as high as the Inter-labeler standard deviation using our two new AL methods (0.02 and 0.019, respectively). The SVM-Margin AL method resulted in an Inter-labeler standard deviation (0.029) that was higher by almost 50% than that of our two AL methods The difference in the inter-labeler standard deviation between the passive learning method and the SVM-Margin learning method was significant (p=0.042). The difference between the SVM-Margin and Exploitation method was insignificant (p=0.29), as was the difference between the Combination_XA and Exploitation methods (p=0.67). Finally, using the consensus label led to a learning curve that had a higher mean intra-labeler variance, but resulted eventually in an AUC that was at least as high as the AUC achieved using the gold standard label and that was always higher than the expected mean AUC of a randomly selected labeler, regardless of the choice of learning method (including a passive learning method). Using a paired t-test, the difference between the intra-labeler AUC standard deviation when using the consensus label, versus that value when using the other two labeling strategies, was significant only when using the passive learning method (p=0.014), but not when using any of the three AL methods. The use of AL methods, (a) reduces intra-labeler variability in the performance of the induced models during the training phase, and thus reduces the risk of halting the process at a local minimum that is significantly different in performance from the rest of the learned models; and (b) reduces Inter-labeler performance variance, and thus reduces the dependence on the use of a particular labeler. In addition, the use of a consensus label, agreed upon by a rather uneven group of labelers, might be at least as good as using the gold standard labeler, who might not be available, and certainly better than randomly selecting one of the group's individual labelers. Finally, using the AL methods: when provided by the consensus label reduced the intra-labeler AUC variance during the learning phase, compared to using passive learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Plate tectonic reconstruction of South and East Asia since 43 Ma using seismic tomographic constraints: role of the subducted ';East Asia Sea' (Invited)

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V.

    2013-12-01

    Lithosphere that subducts at convergent plate boundaries provides a potentially decipherable plate tectonic record. In this study we use global seismic tomography to map subducted slabs in the upper and lower mantle under South and East Asia to constrain plate reconstructions. The mapped slabs include the Pacific, the Indian Ocean and Banda Sea, the Molucca Sea, Celebes Sea, the Philippine Sea and Eurasia, New Guinea and other lower mantle detached slabs. The mapped slabs were restored to the earth surface and used with Gplates software to constrain a globally-consistent, fully animated plate reconstruction of South and East Asia. Three principal slab elements dominate possible plate reconstructions: [1] The mapped Pacific slabs near the Izu-Bonin and the Marianas trenches form a subvertical slab curtain or wall extending down to 1500 km in the lower mantle. The ';slab curtain' geometry and restored slabs lengths indicate that the Pacific subduction zone has remained fixed within +/- 250 km of its present position since ~43 Ma. In contrast, the Tonga Pacific slab curtain records at least 1000 km trench rollback associated with expansion of back-arc basins. [2] West of the Pacific slab curtain, a set of flat slabs exist in the lower mantle and record a major 8000km by 2500-3000km ocean that existed at ~43 Ma. This now-subducted ocean, which we call the ';East Asian Sea', existed between the Ryukyu Asian margin and the Lord Howe hotspot, present-day eastern Australia, and fills a major gap in Cenozoic plate reconstructions between Indo-Australia, the Pacific Ocean and Asia. [3] An observed ';picture puzzle' fit between the restored edges of the Philippine Sea, Molucca Sea and Indian Ocean slabs suggests that the Philippine Sea was once part of a larger Indo-Australian Ocean. Previous models of Philippine Sea plate motions are in conflict with the location of the East Asian Sea lithosphere. Using the mapped slab constraints, we propose the following 43 Ma to 0 plate tectonic reconstruction. At ~43 Ma a major plate reorganization occurred in South and East Asia marked by Indian Ocean Wharton ridge extinction, initiation of Pacific Ocean WNW motions and the rapid northward motion of the Australian plate. The Philippine Sea and Molucca Sea were clustered at the northern margin of Australia, northwest of New Guinea. During the mid-Cenozoic these plates moved NNE with Australia, accommodated by N-S transforms at the eastern margin of Sundaland. The East Asian Sea was subducted under the northward-moving Philippine Sea and Australia plates, and the expanding Melanesian and Shikoku-Parece Vela backarc basins. At ~20 to 25 Ma the Philippine Sea and Molucca Sea were fragmented from Indo-Australia and began to have a westward component of motion due to partial Pacific capture. Around 1-2 Ma the Philippine Sea was more fully captured by the Pacific and now has rapid Pacific-like northwestward motions.

  17. Balancing shortening and extension around the Adriatic Plate to constrain its independent motion and driving forces since Late Cretaceous time.

    NASA Astrophysics Data System (ADS)

    Le Breton, E.; Handy, M.; Ustaszewski, K. M.

    2015-12-01

    The Adriatic microplate (Adria) is a key player in the geodynamics of the Western Mediterranean area because it separates two major plates, Africa and Europe, that have been converging since Late Cretaceous time. Today, Adria comprises only continental lithosphere and is surrounded by zones of distributed deformation along convergent boundaries (Alps, Apennines, Calabrian Arc, Dinarides-Hellenides,) and back-arc basins (Liguro-Provencal, Tyrrhenian). For a long time, Adria was thought to be a promontory of Africa and thus to have moved coherently with Africa. However, recent re-evaluation of geological and geophysical data from the Alps yields an independent motion path for Adria that features a significant change in the direction and rate of its motion relative to both Africa and Europe since late Cretaceous time. To evaluate this, we first compare existing plate reconstructions of the Western Mediterranean to develop a best-fit model for the motion of Africa, Iberia and the Corsica-Sardinia block relative to Europe. We then use two motion models for Adria in which Adria moved either coherently or independently of Africa since late Cretaceous time. The model for independent Adria motion is further constrained by new estimates of extension and shortening in the Western Mediterranean and Northern Apennines based on field observations and recently published Moho depth maps, seismic profiles along the Gulf of Lion - Sardinian passive margins and the Northern Apennines. Initial results suggest that Miocene extension and opening of the Liguro-Provencal basin exceeds Miocene-to-Recent shortening related to roll-back subduction in the Northern Apennines; we attribute this to counter-clockwise rotation of the Adriatic plate with respect to Europe. Combined with the previously published estimates of shortening in the Alps, this counter-clockwise motion is predicted to have produced significantly less post-Paleogene, orogen-normal shortening in the Dinarides than previously thought. This modified motion path for Adria raises the question of what forces drive the motion of Adria; so far, the most likely explanation invokes a combination of trench suction and slab pull along the northern borders of Adria in Late Cretaceous-Paleogene time, transitional to Africa push since Early Miocene time.

  18. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate-scale relationship between the intraplate magmatism and the subduction factory down to the transition zone depth, and anticipates future discoveries of kimberlites, potentially diamondiferous, in the mid-west of the North American continent.

  19. Intraplate mafic magmatism: New insights from Africa and N. America

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.

    2017-12-01

    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread intraplate earthquakes and magmatism, across areas broader than the surface expression of rifting. Integrated geophysical, geological and geochemical studies reveal large volumes and rates of magmatism at rift zones, provoking re-evaluation of crustal accretion and carbon and water cycles, as well as earthquake and volcanic hazards.

  20. Heat transfer with very high free stream turbulence

    NASA Technical Reports Server (NTRS)

    Moffat, Robert J.; Maciejewski, Paul K.

    1985-01-01

    Stanton numbers as much as 350 percent above the accepted correlations for flat plate turbulent boundary layer heat transfer have been found in experiments on a low velocity air flow with very high turbulence (up to 50 percent). These effects are far larger that have been previously reported and the data do not correlate as well in boundary layer coordinates (Stanton number and Reynolds number) as they do in simpler coordinates: h vs. X. The very high relative turbulence levels were achieved by placing the test plate in different positions in the margin of a large diameter free jet. The large increases may be due to organized structures of large scale which are present in the marginal flowfield around a free jet.

  1. Geodynamic Evolution of Subduction to Collision to Escape in Central Anatolia From Surface to Mantle - Results From the CD-CAT Project

    NASA Astrophysics Data System (ADS)

    Darin, Michael

    2017-04-01

    Despite significant progress toward understanding the kinematics of modern tectonic escape in Anatolia, considerable uncertainty remains regarding the dynamics of the transition from collision to escape. Because of the relatively small size of the Anatolia microplate, regional-scale studies spanning the plate margins and interior are well-suited to investigate the driving forces and space-time evolution of this unique tectonic transition in collisional orogens. CD-CAT (Continental Dynamics-Central Anatolia Tectonics) is a five-year (2011-2016) project funded by the National Science Foundation (USA) designed to explore the surface-to-mantle dynamics of Anatolia during the Cenozoic subduction-collision-escape transition in central Anatolia. Our approach integrates results from a diversity of methods including: structural, stratigraphic, and geomorphic analyses; magnetostratigraphy; low-temperature thermochronometry; Ar/Ar geochronology; geochemistry; passive seismic experiments (71 stations over two years); magnetotellurics; and numerical modeling. The principal results from this project include: recognition of a margin-wide magmatic lull from 40-20 Ma, followed by a southwestward migration of the initiation of magmatism toward and within the Central Anatolia Volcanic Province (CAVP); an early Miocene switch from contraction/transpression to extension/transtension in the Kırşehir and Niǧde Massifs, while contraction changed to late Miocene strike-slip deformation east of the Central Anatolian fault zone (CAFZ); rain shadow development due to uplift of the central Taurides 11-5 Ma; thin to absent lithospheric mantle beneath central Anatolia; the lack of an Arabia slab shallower than 800 km depth; and a change in the Cyprus slab from horizontal beneath the central Taurides and apparently fragmented beneath the CAVP, to very steeply dipping beneath the eastern Isparta Angle. The CAFZ lies along part of the Inner Tauride Suture (ITS) and represents a fundamental inherited lithosphere-scale structure that has accommodated contrasting magnitudes and styles of deformation to the east and west since Arabia collision. The coincidence of a similarly NNE-oriented lower plate boundary (Africa COB) or STEP fault between the Cyprus and Arabia slabs may have amplified the role of the CAFZ in controlling differential upper plate deformation. These findings support the following tectonic scenario: the first stage involved late Eocene to early Miocene horizontal subduction of the Afro-Arabia slab from central Anatolia to the Zagros, culminating in the final suturing of the Taurides and Pontides in Anatolia. The second stage occurred during the Miocene and involved the segmentation of the downgoing slab at the longitude of the CAFZ to form the Arabia slab in the east and the Cyprus slab in the west. North of Arabia, early Miocene rollback and foundering of the Arabia slab resulted in widespread volcanism, slab delamination beneath the eastern Taurides and eventual break-off and rapid sinking into the lower mantle starting at 15-10 Ma. North of Cyprus, initial rollback, steepening and breakup of the Cyprus slab are recorded by early Miocene upper plate extension and exhumation, followed by middle Miocene voluminous CAVP magmatism and uplift of the southern Taurides margin. The final stage involved a transition from diffuse to localized strain along transcurrent structures that have facilitated the westward escape of Anatolia since the latest Miocene-Pliocene.

  2. Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin: Geometry and kinematics of the NW Taiwan fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Mouthereau, FréDéRic; Angelier, Jacques; Chu, Hao-Tsu; Lee, Jian-Cheng

    2003-06-01

    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric "primary arc" type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N-S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate.

  3. Multichannel Seismic Images of Cascadia Forearc Structure at the Oregon Margin

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Canales, J.; Nedimovic, M. R.

    2013-12-01

    We present new Multichannel Seismic (MCS) images of the Cascadia forearc and downgoing Juan de Fuca plate offshore Oregon. The data were collected during the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 aboard the R/V Langseth. 2D processing including geometry definition, filtering and editing, deconvolution, amplitude correction, velocity analysis, CMP stacking, and post-stack time migration, has been conducted. The new images confirm some previous observations on the location of the plate boundary and structure of the forearc and also reveal new features of the Oregon margin. West of the deformation front, the Juan de Fuca Plate has a dip of ~1.5o and sediment thickness is > 3 km. A bright Moho reflection and reflections from faults cutting through the crust are imaged. The subducting oceanic crust can be traced continuously landward at least to 15 km from the deformation front. One major forearc basin and a smaller basin 10 km from its west end are imaged. Sediments in both basins are folded with wavelengths of 4-6 km and several faults are identified in the larger basin. Beneath the major basin, a low-frequency reflection is imaged at 3.7 s TWTT similar to that imaged by Trehu et al (1995) and interpreted as originating from the top of Siletz terrane. About 70-80 km from the deformation front, a shallowly dipping reflection is imaged at 7.3 s, which likely corresponds to the top of the downgoing plate. Based on existing velocity models for the margin, the location of this reflection is approximately coincident with the July 2004 earthquake cluster interpreted to have occurred at the plate boundary. This bright reflection is presumably similar in origin to the 'bright spot' imaged from two prior multichannel and wide-angle seismic reflection surveys lines located 40 km and 60 km north of our line. The brightness of the reflection may reflect high pore fluid pressure at the plate interface. Just 4 km west of this presumed top-of-subducting plate reflection, there is another deep reflection at around 7 s dipping landward. This reflection may correspond to the base of the Siletz terrane, which would imply a subduction channel beneath the Siletz terrane. Alternatively, this reflection may be related to a subducted seamount identified from magnetic anomalies by Trehu et al (2012). In addition, we image several small diffractors at 5-7 s TWTT to the west, which are likely related to heterogeneities within the accretionary complex. MCS images of the Cascadia forearc at the Oregon margin illustrating these features will be presented and will be compared with the forearc structure imaged along our Washington MCS line from the same survey.

  4. The Rovuma Transform Margin: the enigmatic continent-ocean boundary of East Africa

    NASA Astrophysics Data System (ADS)

    Phethean, Jordan; Kalnins, Lara; van Hunen, Jeroen; McCaffrey, Ken; Davies, Richard

    2017-04-01

    The N-S trending Davie Fracture Zone (DFZ) is often assumed to form the continent-ocean transform margin (COTM) of the Western Somali Basin. However, multiple plate tectonic reconstructions favour a pre-breakup location for Madagascar that crosses the DFZ, incompatible with its interpretation as the COTM (e.g., Lottes & Rowley, 1990; Reeves, 2014; Phethean et al., 2016). For the first time, we have identified classic COTM features in seismic reflection data from the Southern Rovuma Basin, to the west and inboard of the DFZ. These suggest a NNW trend to the margin, consistent with the tectonic reconstructions. 2D gravity models, with the seabed and top basement constrained by seismic data, are used to investigate the Moho structure across the Rovuma margin and are best fit using steep 'transform style' geometries, confirming the nature of the margin. We thus model generic COTM geometries elsewhere along the East African and Madagascan transform margins to locate best-fitting positions for these conjugate COTMs. This analysis confirms that the COTMs follow a NNW trend along the Rovuma Basin and Southern Madagascar, respectively, and allows a restoration of the conjugate COTMs. This restoration is used alongside geological maps and satellite imagery from Madagascar and East Africa to refine early plate motions and further constrain the precise origin of Madagascar within Gondwana. Our refined plate tectonic model independently predicts major observations made from seismic reflection and gravity data across the basin, including: regions of major transpression/transtension along the DFZ, merging of fracture zones to form the DFZ, oceanic crust on either side of the DFZ and within the Tanzania coastal basin, and the location of an abandoned MOR within the Tanzania coastal basin. We believe that this study finally provides conclusive evidence that Madagascar originated from within the Tanzania Coastal Basin, inboard of the DFZ, after some 30 years of debate regarding this matter. Lottes, A.L., Rowley, D.B., 1990. Reconstruction of the Laurasian and Gondwanan segments of Permian Pangea. Geol. Soc. London Mem., 12, 383-395. Reeves, C., 2014. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. Afr. Earth Sci., 94, 45-57. Phethean, J.J.J., Kalnins, L.M., van Hunen, J.,Biffi, P.G., Davies, R.J., McCaffrey, K.J.W., 2016. Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal. Geochem. Geophys. Geosyst., 17, doi:10.1002/2016GC006624.

  5. Contrasting upper-mantle shear wave anisotropy across the transpressive Queen Charlotte margin

    NASA Astrophysics Data System (ADS)

    Cao, Lingmin; Kao, Honn; Wang, Kelin

    2017-10-01

    In order to investigate upper mantle and crustal anisotropy along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates, we conducted shear wave splitting analyses using 17 seismic stations in and around the island of Haida Gwaii, Canada. Despite the limited station coverage at present, our reconnaissance study does reveal a systematic pattern of mantle anisotropy in this region. Fast directions derived from teleseismic SKS-phase splitting are mostly margin-parallel (NNW-SSE) near the plate boundary but transition to predominantly E-W-trending farther away. We propose that the former is associated with the absolute motion of PA, and the latter reflects a transition from this direction to that of the absolute motion of NA. The broad width of the zone of transition from the PA to NA direction is probably caused by the very obliquely subducting PA slab that travels primarily in the margin-parallel direction. Anisotropy of Haida Gwaii based on local earthquakes features a fast direction that cannot be explained with regional stresses and is probably associated with local structural fabric within the overriding crust. Our preliminary shear wave splitting measurements and working hypotheses based on them will serve to guide more refined future studies to unravel details of the geometry and kinematics of the subducted PA slab, as well as the viscous coupling between the slab and upper mantle in other transpressive margins.

  6. Late Paleozoic orogeny in Alaska's Farewell terrane

    USGS Publications Warehouse

    Bradley, D.C.; Dumoulin, Julie A.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.

    2003-01-01

    Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.

  7. The gravitational extension in the Central Range of Taiwan induced by the instability of intrinsic buoyancy

    NASA Astrophysics Data System (ADS)

    Lo, C.; Kuo-Chen, H.; Hsu, S.

    2013-12-01

    The active Taiwan orogen is situated in the tectonic convergence between the Philippine Sea plate and Eurasian passive margin. The thick crust under the Central Range of Taiwan was demonstrated by the results from the TAIGER project during 2004-2009. The results show that the deepest moho (~60 km thickness) is located at the eastern flank of the Central Range, while the averaged crust thickness is over 50 km beneath the whole mountain ranges from south to north. Physically the thickened crust provides an excess of the gravitational potential energy (GPE) with respect to the vicinity, implying that the Central Range itself behaves intrinsic extension stress environment. However, due to limited geophysical information such a phenomenon was not well evaluated and not considered to be one of the important factors for the Taiwan mountain building process. In this study, we calculate the GPE of the whole Taiwan region from recent Vp tomography via seismic velocity-rock density empirical relationship. From the catalogue of the earthquake focal mechanisms of Broadband Array in Taiwan for Seismology (BATS), a quite number of extensional earthquakes are distributed in the 10-40 km deep in and around the Central Range, where the crustal potential energy is distinctively higher. Besides, the principal axes of these extensional earthquakes are mainly normal to the large gradient of crust ΔGPE at the edge of Central Range. Accordingly, we conclude that the Central Range is undergoing the mountain building by the strong plate collision; meanwhile it is also bearing the gravitationally instable extension due to inherent buoyant thickening crust.

  8. Zum Auf und Ab des Meeresspiegels in Skandinavien: Langer Streit um Eustasie oder Isostasie

    NASA Astrophysics Data System (ADS)

    Seibold, Eugen; Seibold, Ilse

    2012-03-01

    The phenomenon of the rise of the Scandinavian shield during the Holocene and the concomitant fall in level of the Baltic Sea has been investigated for centuries. Already in medieval times, there were reports about the coastlines of the Gulf of Bothnia that are full of relevant observations. During the eighteenth century, scientists such as Celsius and Linnaeus collected observations such as these. The result was that the search for the possible explanations of this rise-and-fall phenomenon intensified. The generally favoured explanation was that there was an active sinking of sea level in the Baltic rather than an active rising of the land surface in Fennoscandia. This was because water was seen as mobile, in contrast to a "terra firma". The relevant discussion was often emotional, and here, we try to illustrate it using material from the Geologenarchiv Freiburg (von Hoff, von Buch and Goethe). No more than a few decades later, it became obvious by the theory of Ice Age that both the sea level and the land could be mobile (eustatic sea level changes—glacial isostasy). Additionally, of course, plate tectonics had some influence: Norway is situated at the western end of the Eurasian plate and is part of a passive continental margin. There are still open research problems, many of which can be addressed using modern methods of satellite-based geophysics and geodesy. Some other aspects as the permanent uplift trend of Scandinavia since the Cambrium or the rhythmic to and fro of magma in the upper mantle during the Pleistocene are mentioned.

  9. One microplate - three orogens: Alps, Dinarides, Apennines and the role of the Adriatic plate

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Le Breton, Eline; Balling, Philipp; Handy, Mark R.; Molli, Giancarlo; Tomljenović, Bruno

    2017-04-01

    The motion of the Adriatic microplate with respect to the Eurasian and African plates is responsible for the Mesozoic to present tectonic evolution of the Alps, Carpathians, the Dinarides and Hellenides as well as the Apennines. The classical approach for reconstructing plate motions is to assume that tectonic plates are rigid, then apply Euler's theorem to describe their rotation on an ideally spherical Earth by stepwise restorations of magnetic anomalies and fracture zones in oceanic basins. However, this approach is inadequate for reconstructing the motion of Mediterranean microplates like Adria, which, at present, is surrounded by convergent margins and whose oceanic portions have by now been entirely subducted. Most constraints on the motion of the Adriatic microplate come either from palaeomagnetics or from shortening estimates in the Alps, i.e., its northern margin. This approach renders plate tectonic reconstructions prone to numerous errors, yielding inadmissible misfits in the Ionian Sea between southern Italy and northern Greece. At the same time, Adria's western and eastern margins in the Apennines and in the Dinarides have hitherto not been appropriately considered for improving constraints on the motion of Adria. This presentation presents new results of ongoing collaborative research that aims at improving the relative motion path for the Adriatic microplate for the Cenozoic by additionally quantifying and restoring the amount of shortening and extension in a set of geophysical-geological transects from the Tyrrhenian Sea, the Apennines and the Dinarides. Already now, our approach yields an improved motion path for the Adriatic microplate for the last 20 Ma, which minimizes misfits in previous reconstructions. The currently largest challenge in our reconstructions is to reconcile amount and age of shortening in the Dinarides fold-and-thrust belt. For one thing, we see good agreement between the cross-sectional length of subducted material (c. 135 km, estimated from p-wave tomographic models) and shortening in the external carbonate platform of the Dinarides thrust belt (c. 127 km, from balanced cross sections). However, most of the thrust belt shortening is of Palaeogene age, which is difficult to bring into agreement with the fact that most of the subduction observed in tomographic models is most likely of Neogene age. This suggests that a substantial amount of Neogene crustal shortening must have been accommodated in the internal parts of the Dinarides fold-and-thrust belt rather than along its front. More field studies are therefore badly needed to obtain a better understanding of the timing of individual faults and their role during the Neogene evolution of the NE margin of the Adriatic plate.

  10. Functionally Graded Shape Memory Alloy Composites Optimized for Passive Vibration Control

    DTIC Science & Technology

    2006-11-20

    Nitinol , it is anticipated that the wire can only experience an incomplete hysteresis. 2.1. SMA wires in sleeves continuously bonded to the plate...Gilheany, J. 1995. Control of the natural frequencies of nitinol -reinforced composite beams, Journal of Sound and Vibrations, Vol. 185, 171-185. 3 Ro...J., and Baz, A., 1995. Nitinol -reinforced plates: Part III, Dynamic characteristics, Composites Engineering, Vol. 5, 91-106. 4 Epps, J and Chandra

  11. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  12. The Role of Magma During Continent-Ocean Transition

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Rooney, Tyrone; Kendall, J.-Michael

    2010-05-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). These margins are no longer tectonically active so the roles of faulting, stretching and magma intrusion in accommodating extension, and timing of SDRs emplacement during rift evolution have to be inferred from rifting models or from the geological record preserved at the fully developed passive margin. Similarly mantle processes during COT development have long since ceased, so whether breakup was characterized by broad thermal upwelling, small-scale convection or a fertile geoscientific mantle remains ambiguous. The East African rift in Ethiopia offers a unique opportunity to address all these problems because south-to-north it exposes subaerially the transition from continental rifting and incipient sea-floor spreading within a young flood basalt province. Here we present a suite of geophysical and geochemical observations from Ethiopia that document the significance of magma intrusion and extrusion as rifting evolves from an initially broad zone of stretching and faulting to a narrower axial graben in which magma injection dominates strain.

  13. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  14. Method for producing highly reflective metal surfaces

    DOEpatents

    Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.

    1983-01-01

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  15. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    NASA Astrophysics Data System (ADS)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to ~8 Ma due to the transference of subduction from the Pacific Plate to the Philippine Sea Plate, as opposed to the continuous subduction of the Phillipine Sea Plate with subduction erosion.

  16. Textures of water-rich mud sediments from the continental margin offshore Costa Rica (IODP expeditions 334 and 344)

    NASA Astrophysics Data System (ADS)

    Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd

    2017-04-01

    During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.

  17. The three scales of submarine groundwater flow and discharge across passive continental margins

    USGS Publications Warehouse

    Bratton, John F.

    2010-01-01

    Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0–10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacio-eustatic change in sea level.

  18. Multisensor comparison of ice concentration estimates in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.

    1987-01-01

    Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.

  19. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  20. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The invention is an ambulatory, passive sensor for use in a fetal monitoring system. The invention incorporates piezoelectric polymer film combined with a metallic mounting plate fastened to a belt and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted from a fetus inside an expectant mother and to provide means for filtering out pressure pulses arising from other sources, such as the maternal heart.

  1. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  2. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was thrusted onto the edge of the rifted continental block of the Dangerous Grounds. The subducted oceanic crust of the proto South China Sea must today be located below the Eastern part of Sabah and not along the present NW Sabah Trough.

  3. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  4. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  5. Changes in Student Knowledge and Views of Geohazards, Societal Risks, and Monitoring at Active Plate Boundaries Using a Data-Rich Curriculum

    NASA Astrophysics Data System (ADS)

    Selkin, P. A.; Goodell, L. P.; Teasdale, R.

    2015-12-01

    The "Living on the Edge: Building Resilient Societies on Active Plate Margins" curriculum consists of six data-rich activities, each intended for a 50-minute class, in which students assess risk at active plate boundaries due to earthquakes and volcanoes. Developed as part of the InTeGrate NSF STEP Center the peer-reviewed, publically available materials (http://serc.carleton.edu/104296) have been used at several institutions in diverse classroom settings including small laboratory sections, large lecture courses, medium-sized upper division courses and professional development programs for middle and high school teachers. Pre- and post-instruction surveys measured content knowledge and geoscience literacy, self-efficacy in using geologic data to assess hazards and risk, and attitudes towards the value of monitoring plate margins. The activities have overall positive effects on knowledge of geohazard concepts. Views about the value of scientific practice also became more positive: 74% of students indicated they "agree" or "strongly agree" that monitoring geologic activity has value to them personally (even if they don't live on an active plate margin) and 94% indicated that such monitoring is valuable to society. Most became more confident in evaluating geologic hazard and risk (>60% of students self-described increased confidence by one or more Likert levels). Student knowledge of both the types and limits of data in forecasting geological hazards and their effects also improved. However, attitudes toward sustainability and geoscience careers did not change. Learning and attitudinal improvements are true for all classroom types, but the degree of change varies with class size and the amount of time spent on activities. Learning data and instructor feedback suggest that interactive classroom activities that use real-world data to address societally relevant issues increase student learning and enhance students' ability to synthesize scientific information.

  6. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2017-12-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use controlled-source seismic data collected in 2012 as part of the Ridge-to-Trench seismic experiment to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. We use wide-angle OBS seismic data along a 400-km-long margin-parallel profile 10-15 km seaward from the Cascadia deformation front to obtain P-wave tomography models of the sediments, crust, and uppermost mantle, and effective medium theory combined with a stochastic description of crustal properties (e.g., temperature, alteration assemblages, porosity, pore aspect ratio), to analyze the pore fluid and structurally bound water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the Cascadia margin. Our results demonstrate that the Juan de Fuca lower crust and mantle are much drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Previously documented, variable but limited bend faulting along the margin, which correlates with degree of plate locking, limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. Our results have important implications for a number of subduction processes at Cascadia, such as: (1) the dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust; (2) decompression rather than hydrous melting must dominate arc magmatism in northern-central Cascadia; and (3) dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  7. Cenozoic evolution of the Yakutat-North American collision zone and structural accommodation of St. Elias syntaxis exhumation, Alaska/Yukon

    NASA Astrophysics Data System (ADS)

    Falkowski, Sarah; Enkelmann, Eva; Ehlers, Todd

    2016-04-01

    Active convergent margins potentially pose multiple natural hazards to human life and infrastructure. Tectonic strain may be further focused where convergent margins are warped into broad syntaxes. However, the processes responsible for upper plate deformation in these settings are not well understood. The St. Elias syntaxis in southeast Alaska and southwest Yukon is located at the eastern corner of the Yakutat microplate, which indents into the North American Plate and subducts at a flat angle beneath Alaska. High rates of long-term glacial erosion and exhumation (>2 mm/yr) are found on the southern, coastal flanks of the St. Elias orogen, but the deepest and most rapid exhumation is focused at the St. Elias syntaxis. In this location, transform motion transitions into subduction of the wedge-shaped, oceanic plateau of the Yakutat microplate. In order to map the spatio-temporal pattern of exhumation in the Yakutat-North American collision zone, we conducted zircon and apatite fission-track analyses of predominantly detrital, sand-sized material and five bedrock samples from 47 different glacio-fluvial catchments covering an area of ~45,000 km2 around the St. Elias syntaxis. Integration of the new thermochronologic data with prior work and other geologic and geophysical observations yielded information on past terrane accretion events at the North American margin since the late Mesozoic and the evolution of exhumation at the St. Elias syntaxis in the context of the ongoing Yakutat-North American plate collision. Our results indicate a migrating focus of the most rapid exhumation from north to south and from the upper (North American Plate) to the lower (Yakutat microplate) plate in the syntaxis area over the past ~10 Myr. This migration occurred in response to a change in plate motions, increasingly thicker crust of the subducting Yakutat microplate, and changes in surface processes after glaciation began that resulted in modification of the rheology. We propose a positive, two-sided flower structure to have accommodated the rapid, and temporarily deep (~10 km), exhumation.

  8. Two-phase opening of Andaman Sea: a new seismotectonic insight

    NASA Astrophysics Data System (ADS)

    Khan, P. K.; Chakraborty, Partha Pratim

    2005-01-01

    High-resolution reconstruction of Benioff zone depth-dip angle trajectory for Burma-Java subduction margin between 2° and 17°N Lat. reveals two major episodes of plate geometry change expressed as abrupt deviation in subduction angle. Estimation of effective rate of subduction in different time slices (and then length of subducted slab) allowed drawing of isochrones in Ma interval through these trajectories for the time period 5-12 Ma. With these isochrones, the deformation events on the subducting Indian plate are constrained in time as of 4-5 and 11 Ma old. This well-constrained time connotation offered scope for the correlation of slab deformation events with the well-established two-phase opening history of the Andaman Sea. While the 11 Ma event recorded from southern part of the study area is correlated with early stretching and rifting phase, the 4-5 Ma event is interpreted as major forcing behind the spreading phase of the Andaman Sea. Systematic spatio-temporal evaluation of Indian plate obliquity on the Andaman Sea evolution shows its definite control on the early rifting phase, initiated towards south near northwest Sumatra. The much young spreading phase recorded towards north of 7° Lat. is possibly the result of late Miocene-Pliocene trench retreat and follow-up transcurrent movement (along Sagaing and Sumatran fault system) with NW-SE pull-apart extension. Nonconformity between plate shape and subduction margin geometry is interpreted as the causative force behind Mid-Miocene intraplate extension and tearing. Enhanced stretching in the overriding plate consequently caused active forearc subsidence, recorded all along this plate margin. Initial phase of the Andaman Sea opening presumably remains concealed in this early-middle Miocene forearc subsidence history. The late Miocene-Pliocene pull-apart opening and spreading was possibly initiated near the western part of the Mergui-Sumatra region and propagated northward in subsequent period. A temporary halt in rifting at this pull-apart stage and northeastward veering of the Andaman Sea Ridge (ASR) are related with uplifting of oceanic crust in post-middle Miocene time in form of Alcock and Sewell seamounts, lying symmetrically north and south of this spreading ridge.

  9. Global tectonic reconstructions with continuously deforming and evolving rigid plates

    NASA Astrophysics Data System (ADS)

    Gurnis, Michael; Yang, Ting; Cannon, John; Turner, Mark; Williams, Simon; Flament, Nicolas; Müller, R. Dietmar

    2018-07-01

    Traditional plate reconstruction methodologies do not allow for plate deformation to be considered. Here we present software to construct and visualize global tectonic reconstructions with deforming plates within the context of rigid plates. Both deforming and rigid plates are defined by continuously evolving polygons. The deforming regions are tessellated with triangular meshes such that either strain rate or cumulative strain can be followed. The finite strain history, crustal thickness and stretching factor of points within the deformation zones are tracked as Lagrangian points. Integrating these tools within the interactive platform GPlates enables specialized users to build and refine deforming plate models and integrate them with other models in time and space. We demonstrate the integrated platform with regional reconstructions of Cenozoic western North America, the Mesozoic South American Atlantic margin, and Cenozoic southeast Asia, embedded within global reconstructions, using different data and reconstruction strategies.

  10. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  11. Topographic form of the Coast Ranges of the Cascadia Margin in relation ot coastal uplift rates and plate subduction

    NASA Technical Reports Server (NTRS)

    Kelsey, Harvey M.; Engebretson, David C.; Mitchell, Clifton E.; Ticknor, Robert L.

    1994-01-01

    The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the interseismic strain that accumulates as rapid short-term uplift is not recovered by subduction earthquakes but rather contributes to rock uplift of the Coast Ranges. The conjecture that permanent rock uplift is related to interseismic uplift is consistent with the observation that those segments of the subduction zone subject to greater interseismic uplift rates are at approximately the same latitudes as those segments of the Coast Ranges that have higher magnitudes of rock uplift over the long term.

  12. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.

  13. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  14. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  15. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  16. Integrated Geophysical Models Extending From The Craton Across The Gulf Coast Region Of The USA

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Mickus, K. L.; Thomas, W. A.

    2017-12-01

    In spite of decades of industry geophysical studies in the US Gulf Coast region, its crustal and uppermost mantle structure remain poorly understood. To understand the structure of this region and its variations from the southern Appalachians to northernmost Mexico, we have complied and integrated multiple data sets to produce a set of lithospheric scale transects crossing this region. These transects are presented as gravity models, but they are constrained by the available seismic reflection/refraction, passive seismic, magnetic, drilling, and geological data. The key transect is based on the PASSCAL wide-angle reflection/refraction experiment that extended from the Ouachita Mountains in Arkansas across the Sabine uplift in Louisiana and into the northernmost Gulf of Mexico. This experiment imaged the Iapetan rifted margin and showed that it was not strongly deformed. This model and one across Alabama delineated crustal blocks south of the rifted margin of Laurentia whose origin is unknown. In central Texas, the models show a crust that thins gradually from the Ouachita orogenic belt southward across the coastline to the edge of the continental margin in the Gulf of Mexico. In western Texas and adjacent northern Mexico, another crustal block has been proposed. Thus, our integrated models and geologic constraints show that the Appalachian and Ouachita orogenic belts were formed during assembly of Pangea (by 270 Ma), and were driven onto the Iapetan rifted margin by collisions with arcs, exotic terranes, and other continents. They also show that the sinuous curves of the Appalachian-Ouachita orogen mimic the shape of the Iapetan rifted margin and subsequent passive-margin shelf edge. Our results indicate that the Ouachita orogeny appears to be the result of soft collisions that have left the pre-orogenic rifted margins largely intact and reflect the complex interactions of compressional and strike-slip deformation.

  17. First results on the crustal structure of the Natal Valley from combined wide-angle and reflection seismic data (MOZ3/5 cruise), South Mozambique Margin.

    NASA Astrophysics Data System (ADS)

    Leprêtre, Angélique; Verrier, Fanny; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; de Clarens, Philippe; Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The Natal valley (South Mozambique margin) is a key area for the understanding of the SW Indian Ocean history since the Gondwana break-up, and widely, the structure of a margin system at the transition between divergent and strike-slip segments. As one part of the PAMELA project (PAssive Margins Exploration Laboratories), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN, the Natal Valley and the East Limpopo margin have been explored during the MOZ3/5 cruise (2016), conducted onboard the R/V Pourquoi Pas?, through the acquisition of 7 wide-angle profiles and coincident marine multichannel (720 traces) seismic as well as potential field data. Simultaneously, land seismometers were deployed in the Mozambique coastal plains, extending six of those profiles on land for about 100 km in order to provide information on the onshore-offshore transition. Wide-angle seismic data are of major importance as they can provide constrains on the crustal structure of the margin and the position of the continent-ocean boundary in an area where the crustal nature is poorly known and largely controversial. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along two perpendicular MZ1 & MZ7 wide-angle profiles crossing the Natal Valley in an E-W and NNW-SSE direction respectively, which reveal a crust up to 30 km thick below the Natal Valley and thus raises questions of a purely oceanic origin of the Valley. The post-doc of Angélique Leprêtre is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  18. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    NASA Astrophysics Data System (ADS)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps, where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results highlight that both indentation and subduction of Adria are valid collisional mechanisms to provoke lateral extrusion-type deformation within the Eastern Alps lithosphere, i.e. the upper plate. Moreover, the insights suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps is best described by phases of oblique and subsequent orthogonal subduction which is in line with Miocene rotations of the Adriatic plate. Furthermore, oblique subduction of the Adriatic plate provides a viable mechanism to explain the rapid decrease in slab length beneath the Eastern Alps towards the Pannonian Basin, also implying that the Adriatic slab can behave and form independently with regards to the adjacent subduction of Adria beneath the Dinarides.

  19. Formation of an Oceanic Transform Fault During Continental Rifting

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, F.; Bull, J. M.; Keir, D.; Gerya, T.; Pagli, C.; Gernon, T.; Ayele, A.; Goitom, B.; Hammond, J. O. S.; Kendall, J. M.

    2017-12-01

    We integrate evidence from surface faults, geodetic measurements, local seismicity, and 3D numerical modelling of the subaerial Afar continental rift to show that an oceanic-style transform fault is forming during the final stages of continental breakup. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges, and are vital in palaeotectonic reconstructions of passive margins. The current consensus is that transform faults initiate after the onset of seafloor spreading. However this inference has been difficult to test given the lack of observations of transform fault formation. We present the first direct observation of transform fault initiation, and shed unprecedented light on their formation mechanisms. We demonstrate that they originate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Our results have important implications for reconstructing the breakup history of the continents. Palaeotectonic reconstructions that use transform fault terminations as an indicator of the continent-ocean boundary may have placed the continent-ocean boundary landward of its true location. This will have led to an overestimation of the age of continental breakup of between 8-18 Myr. Our results therefore have significant implications for studies that rely on accurate dating of continental breakup events.

  20. Supercycles, Wilson cycles and the future of Earth's oceans

    NASA Astrophysics Data System (ADS)

    Duarte, Joao; Schellart, Wouter; Rosas, Filipe

    2014-05-01

    At the dawn of the 20th Century Alfred Wegener proposed the existence of a supercontinent - Pangaea - gathering all the continental masses on Earth. Five decades later, while seeding the theory of plate tectonics, Tuzo Wilson introduced a new concept that would become known as Wilson cycles, which describes the evolution of oceans: 1) opening and spreading, 2) foundering of the passive margins and development of new subduction zones and 3) consumption and closure. Later on, in the 70's evidences for the existence of a number of other supercontinents and ancient oceans on Earth's history started to emerge. Today, concepts like supercycles, supercontinents, superoceans and Wilson cycles are loosely used. However, several important questions remain. How do subduction zones initiate in pristine oceans? Which major ocean on Earth will close to form the next supercontinent? The Atlantic (introversion), the Pacific (extroversion), or both? Are Wilson cycles of lower order than Supercycles? Are we in an abnormally long supercycle? Is there any cyclicity at all? These are some of the questions that we will tentatively address together with the proposal of several future scenarios for the evolution of Earth's oceans and continents.

  1. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  2. Oceanic ridges and transform faults: Their intersection angles and resistance to plate motion

    USGS Publications Warehouse

    Lachenbruch, A.H.; Thompson, G.A.

    1972-01-01

    The persistent near-orthogonal pattern formed by oceanic ridges and transform faults defies explanation in terms of rigid plates because it probably depends on the energy associated with deformation. For passive spreading, it is likely that the ridges and transforms adjust to a configuration offering minimum resistance to plate separation. This leads to a simple geometric model which yields conditions for the occurrence of transform faults and an aid to interpretation of structural patterns in the sea floor. Under reasonable assumptions, it is much more difficult for diverging plates to spread a kilometer of ridge than to slip a kilometer of transform fault, and the patterns observed at spreading centers might extend to lithospheric depths. Under these conditions, the resisting force at spreading centers could play a significant role in the dynamics of plate-tectonic systems. ?? 1972.

  3. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  4. Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.

    2017-10-01

    Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (< 240 °C) indicated that the Upper Jurassic to Lower Cretaceous opening of the South Atlantic has not completely thermally reset the surface rocks. The LTT archives apatite and zircon still revealed information on the pre- to post-orogenic history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges received their geographic NW-SE orientation during the syn- to post-orogenic history of the Gondwanides.

  5. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    NASA Astrophysics Data System (ADS)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.

  6. Virtual Research Expeditions along Plate Margins: Examples from an Online Oceanography Course

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H. J.

    2010-12-01

    An undergraduate online course in oceanography is based on the participation of each student in a series of virtual, at-sea, research expeditions, two of which are used to examine the tectonic processes at plate boundaries. The objective is to leverage the results of major federal research initiatives in the ocean sciences into effective learning tools with a long lifespan for use in undergraduate geoscience courses. These web-based expeditions examine: (1) hydrothermal vents along the divergent plate boundary at the Explorer Ridge and (2) the convergent plate boundary fault along the Nankai Trough, which is the objective of the multi-year NanTroSEIZE drilling program. Here we focus on the convergent plate boundary in NanTroSEIZE 3-D, which is based on a seismic survey supported through NSF-MARGINS, IODP and CDEX in Japan to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project, and comes in two versions, one that is being used in geoscience major courses and the other in non-major courses, such as the oceanography course mentioned above and a lower-division global studies course with a science emphasis. NanTroSEIZE in 3-D places undergraduate learning in an experiential framework as students participate on the expedition and carry out research on the structure of the plate boundary fault. Students learn the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the 3-D seismic imaging expedition to identify the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. The initial results of phase I ODP drilling that began in 2007 are also reviewed. Students document their research on a worksheet that accompanies the expedition, interpret a slice through the 3-D seismic volume, and compose an “AGU-style” abstract summarizing their work, which is submitted to the instructor for review. NanTroSEIZE in 3-D is openly available and can be accessed through the MARGINS Mini-lesson section of the Science Education Resource Center (SERC).

  7. Tsujal Marine Survey: Crustal Characterization of the Rivera Plate-Jalisco Block Boundary and its Implications for Seismic and Tsunami Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Danobeitia, J.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Cameselle, A. L.; Estrada, F.; Prada, M.; Bandy, W. L.

    2014-12-01

    During the spring of 2014, a team of Spanish and Mexican scientists explored the western margin of Mexico in the frame of the TSUJAL project. The two main objectives were to characterize the nature and structure of the lithosphere and to identify potential sources triggering earthquakes and tsunamis at the contact between Rivera plate-Jalisco block with the North American Plate. With these purposes a set of marine geophysical data were acquired aboard the RRS James Cook. This work is focus in the southern part of the TSUJAL survey, where we obtain seismic images from the oceanic domain up to the continental shelf. Thus, more than 800 km of MCS data, divided in 7 profiles, have been acquired with a 6km long streamer and using an air-gun sources ranging from 5800 c.i. to 3540 c.i. Furthermore, a wide-angle seismic profile of 190 km length was recorded in 16 OBS deployed perpendicular to the coast of Manzanillo. Gravity and magnetic, multibeam bathymetry and sub-bottom profiler data were recorded simultaneously with seismic data in the offshore area. Preliminary stacked MCS seismic sections reveal the crustal structure in the different domains of the Mexican margin. The contact between the Rivera and NA Plates is observed as a strong reflection at 6 s two way travel time (TWTT), in a parallel offshore profile (TS01), south of Manzanillo. This contact is also identified in a perpendicular profile, TS02, along a section of more than 100 km in length crossing the Rivera transform zone, and the plate boundary between Cocos and Rivera Plates. Northwards, offshore Pto. Vallarta, the MCS data reveals high amplitude reflections at around 7-8.5 s TWTT, roughly 2.5-3.5 s TWTT below the seafloor, that conspicuously define the subduction plane (TS06b). These strong reflections which we interpret as the Moho discontinuity define the starting bending of subduction of Rivera Plate. Another clear pattern observed within the first second of the MCS data shows evidences of a bottom simulating reflector (BSR) along the continental margin, particularly strong offshore Pto. Vallarta. The integration of all these acquired geophysical information will allow obtaining a comprehensive image of the lithosphere that will be valuable for the seismic and tsunamigenic hazard assessment.

  8. Abrupt plate acceleration during rifted margin formation: Cause and effect

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon; Butterworth, Nathaniel; Müller, Dietmar

    2017-04-01

    Extension rate is known to control key processes during rifted margin formation such as crust-mantle coupling, decompression melting, magmatism, and serpentinisation. Here we build on recent advances in plate tectonic reconstructions by quantifying the extension velocity history of Earth's major rifted margins during the last 240 million years. We find that many successful rifts start with a slow phase of extension followed by rapid acceleration that introduces a fast phase. The transition from slow to fast rifting takes place long before crustal break-up: approximately half of the present day rifted margin area was created during the slow, and the other half during the fast rift phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. In these models, rift velocities are not imposed but instead evolve naturally in response to the changing strength of the rift. Our results demonstrate that abrupt plate acceleration during continental rifting is controlled by a rift-intrinsic strength-velocity feedback. The abruptness of rift acceleration is thereby governed by the nonlinearity of lithospheric localization. Realistic brittle and power-law rheologies lead to a speed-up duration between two and ten million years. For successful rifts that generate a new ocean basin, the duration of rift speed-up is notably almost independent of the applied extensional force. Instead, the force controls the duration of the slow phase: higher forces shorten the slow phase while lower forces prolong it. If the force is too low, however, delocalisation processes prevent the rift from reaching the point of speed-up and produce a failed rift, even if the extensional system was active for many million years.

  9. Evidence for an east-west regional gravity trend in northern Tunisia: Insight into the structural evolution of northern Tunisian Atlas

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mogren, Saad; Mickus, Kevin; Turki, Mohamed Moncef

    2013-11-01

    The Atlas orogeny in northern Algeria and Tunisia led to the destruction of Tethys oceanic lithosphere and cumulated in a collision of microplates rifted off the European margin with the North African continental margin. The location of the boundary between African plate and Kabylian microplate is expressed in northern Algeria by a crustal wedge with double vergence of thrust sheets, whereas in northern Tunisia the geologic environment is more complex and the location of the plate boundary is ambiguous. In this study, we analyzed gravity data to constrain the crustal structure along the northern margin of Tunisia. The analysis includes a separation of regional and residual gravity anomalies and the application of gradient operators to locate density contrast boundaries. The horizontal gradient magnitude and directional gradient highlight a prominent regional E-W gravity gradient in the northern Tunisian Atlas interpreted as a deep fault (active since at least the Early Mesozoic) having a variable kinematic activity depending on the tectonic regime in the region. The main E-W gravity gradient separates two blocks having different gravitational and seismic responses. The southern block has numerous gravity lineaments trending in different directions implying several density variations within the crust, whereas the northern block shows a long-wavelength negative gravity anomaly with a few lineaments. Taking into account the geologic context of the Western Mediterranean region, we consider the E-W prominent feature as the boundary between African plate and Kabylian microplate in northern Tunisia that rifted off Europe. This hypothesis fits most previous geological and geophysical studies and has an important impact on the petroleum and mineral resource prospection as these two blocks were separated by an ocean and they did not belong to the same margin.

  10. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Korinko, P.; Spencer, W.

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivitymore » with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2, while H 2O off-gas rate was on the level of 10 -15 l mbar/s cm 2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and unmeasurable HD formation. ND and Cu were initially chosen to develop improved passivation technology, because Cu has a lower permeability of hydrogen, and diamond is more inert than other materials under a hydrogen atmosphere. However, our tests demonstrated that even after an 8-18 day vacuum extraction heat treatment, the electroless plated Cu and ND-Cu coated stainless steel CFVAs exhibited H 2 off-gassing rates that were just comparable to those for the untreated or electropolished stainless steel CFVA, and the HD formation was still observed. Thus, the Restek Electro-Polished (EP) bottle outperformed the electroless plated Cu and ND-Cu coated stainless steel CFVAs, and the electroless plated nanodiamond coating is not promising as a surface passivation technology. However, the ND-Cu coating may be beneficial to another application in which catalyzing the H 2-D 2 exchange reaction is desired.« less

  11. MARGINS mini-lessons: A tour of the Mariana Subduction System (Invited)

    NASA Astrophysics Data System (ADS)

    Goodliffe, A. M.; Oakley, A.

    2009-12-01

    MARGINS mini-lessons provide an efficient way to quickly move cutting edge MARGINS research into the university classroom. Instructors who are not necessarily familiar with the MARGINS program can easily use mini-lessons in a variety of educational settings. The mini-lesson described herein is centered on bathymetric and multi-channel seismic data collected during a 2003 NSF-MARGINS funded marine geophysical survey in the Mariana Basin. Designed as an approximately sixty minute lecture segment, the lesson covers both the techniques used to collect marine geophysical data and a description of the geology of the system. All geological provinces are included, from the subducting Pacific Plate in the east to the remnant arc in the west. Representative seismic lines and bathymetric images are presented for each province, along with a description of key processes including deformation of the subducting plate, serpentinite mud volcanism, forearc faulting, potentially tsunamigenic landslides, arc volcanism, and backarc spreading. The Mariana subduction system mini-lesson requires a computer with an internet connection, powerpoint, Google Earth, and a web-browser. Questions are embedded in the powerpoint presentation that can be adapted to a specific interactive response system as needed. Optimally the lesson should be used in parallel with a GeoWall. A 3-dimensional ArcScene visualization of the Mariana system is available for download through the MARGINS mini-lessons web site. Such visualizations are particularly effective in helping students understand complex three-dimensional systems. If presented in a computer lab students will benefit from being able to explore the Mariana system using tools such as GeoMapApp.

  12. A new model for early Earth: heat-pipe cooling

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.

    2013-12-01

    In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the surface rocks were forced radially inward, resulting in uplift, exhumation, and shortening. Declining heat sources over time led to an abrupt, dynamically spontaneous transition to plate tectonics. The model predicts a geological record with rapid, semi-continuous volcanic resurfacing; contractional deformation; a low geothermal gradient across the bulk of the lithosphere; and a rapid decrease in heat-pipe volcanism after the initiation of plate tectonics. Review of data from ancient cratons and the detrital zircon record is consistent with these predictions. In this presentation, we review these findings with a focus on comparison of the model predictions with the geologic record. This comparison suggests that Earth cooled via heat pipes until a ~3.2 Ga subduction initiation episode. The Isua record reflects long-lived contractional deformation, and the Barberton and Pilbara records preserve heat-pipe lithospheric development in regions without significant contraction. In summary, the heat-pipe model provides a view of early Earth that is more globally applicable than existing plate and vertical tectonic models.

  13. Images for the base of the Pacific lithospheric plate beneath Wellington, New Zealand, from 500 kg dynamite shots recorded on a 100 km-long, 1000 seismometer array

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Sato, H.; Okaya, D. A.

    2012-12-01

    Seismic P and S-wave reflections are recorded from a west-dipping horizon at depth of 105 km beneath Wellington, New Zealand. From the depth and dip of this horizon we interpret this horizon to be the bottom of the subducting Pacific plate. In May 2011 the Seismic Array on Hikurangi margin Experiment (SAHKE) recorded reflections on a ~100 km-long high-resolution seismic line across the lower North Island of New Zealand. The main goal of this experiment was to provide a detailed image of the west dipping subducted Pacific plate beneath the Wellington city region. The seismic line had ~1000 seismographs spaced between 50-100 m apart and the 500 kg shots were in 50 m-deep, drill holes. An exceptionally high-resolution image for the top of the subducting Pacific Plate at a depth of 20-25 km beneath the Wellington region is seen. In addition, on most of the shots are a pair of 10-14 Hz reflections between 27 and 29 s two-way-travel-time (twtt) at zero offset. The quality of this reflection pair varies from shot to shot. When converted to depth and ray-traced the best solution for these deep events is a west-dipping ( ~ 15 degrees) horizon at a depth of about 105 km. This is consistent with the dip of the upper surface of the plate beneath Wellington, and therefore we argue that the deep (~105 km) reflector is the base of the Pacific plate. On two of the shots another pair 5-8 Hz reflections can also be seen between 47 and 52 s, and the move-out of these events is consistent with them being S-wave reflections from the same 105 km deep, west-dipping, boundary for a Vp/Vs ~ 1.74. Both the P-and S-wave reflections occur in pairs of twtt-thickness of 2 and 5 s, respectively and appear to define a ~ 6-8 km thick channel at the base of the plate if the Vp/Vs ratio~ 5/2 or 2.5. Such a high value of Vp/Vs is consistent with the channel containing fluids or partial melt of an unknown percent. Although we can't rule out the double reflections in both P and S as being multiples, this seems unlikely as multiples are not seen any where else in the shot gathers. Thus the lithosphere-asthenosphere boundary (LAB), at least in this setting, appears to be a sharp boundary, less than 10 km thick. As the top of the subduction zone is 20-25 km deep beneath our profile, the total thickness of the plate beneath Wellington is about 80 km. This is consistent with the thickness of old oceanic plates measured elsewhere with passive seismic methods.

  14. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  15. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  16. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bai, Ling; Zhou, Yuanze; Wang, Xiaoran; Cui, Qinghui

    2017-11-01

    P-wave triplications related to the 410 km discontinuity (the 410) were clearly observed from the vertical component seismograms of three intermediate-depth earthquakes that occurred in the Indo-Burma Subduction Zone (IBSZ) and were recorded by the Chinese Digital Seismic Network (CDSN). By matching the observed P-wave triplications with synthetics through a grid search, we obtained the best-fit models for four azimuthal profiles (I-IV from north to south) to constrain the P-wave velocity structure near the 410 beneath the southeastern margin of the Tibetan Plateau (TP). A ubiquitous low-velocity layer (LVL) resides atop the mantle transition zone (MTZ). The LVL is 25 to 40 km thick, with a P-wave velocity decrement ranging from approximately - 5.3% to - 3.6% related to the standard Earth model IASP91. An abrupt transition in the velocity decrement of the LVL was observed between profiles II and III. We postulate that the mantle structure beneath the southeastern margin of the TP is primarily controlled by the southeastern extrusion of the TP to the north combined with the eastward subduction of the Indian plate to the south, but not affected by the Emeishan mantle plume. We attribute the LVL to the partial melting induced by water and/or other volatiles released from the subducted Indian plate and the stagnant Pacific plate, but not from the upwelling or the remnants of the Emeishan mantle plume. A high-velocity anomaly ranging from approximately 1.0% to 1.5% was also detected at a depth of 542 to 600 km, providing additional evidence for the remnants of the subducted Pacific plate within the MTZ.

  17. Peridinialean dinoflagellate plate patterns, labels and homologies

    USGS Publications Warehouse

    Edwards, L.E.

    1990-01-01

    Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between plate series as a guide to interpretation. Application of the proposed plate labelling system involves: (1) locating the cingulum and identifying the plate series, (2) identifying the landmark plates within each series, (3) assigning appropriate plate numbers to plates in the E- and H-series, (4) assigning appropriate plate numbers to the remaining plates using thigmation and interactions of diagonally opposite pairs of plates (quartets) as guides to interpretation. A "typical" gonyaulacoid tabulation pattern combines a 7-model epitheca/epicyst and an 8-model hypotheca/hypocyst. A "typical" peridinioid tabulation pattern combines an 8-model epitheca/epicyst and a 7-model hypotheca/hypocyst. The group that is presently termed partiform gonyaulacoid (which includes the modern genus Cladopyxis Stein and the fossil Microdinium Cookson and Eisenack) has an 8-model epitheca/epicyst and an 8-model hypotheca/hypocyst. ?? 1990.

  18. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  19. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; de Lépinay, Bernard Mercier

    1997-11-01

    Analysis of seismic reflection profiles, swath bathymetry, side-scan sonar imagery, and sediment samples reveal the three-dimensional structure, morphology, and stratigraphic evolution of the central to southern Hikurangi margin accretionary wedge, which is developing in response to thick trench fill sediment and oblique convergence between the Australian and Pacific plates. A seismic stratigraphy of the trench fill turbidites and frontal part of the wedge is constrained by seismic correlations to an already established stratigraphic succession nearby, by coccolith and foraminifera biostratigraphy of three core and dredge samples, and by estimates of stratigraphic thicknesses and rates of accumulation of compacted sediment. Structural and stratigraphic analyses of the frontal part of the wedge yield quantitative data on the timing of inception of thrust faults and folds, on the growth and mechanics of frontal accretion under variable convergence obliquity, and on the amounts and rates of horizontal shortening. The data place constraints on the partitioning of geological strain across the entire southern Hikurangi margin. The principal deformation front at the toe of the wedge is discontinuous and represented by right-stepping thrust faulted and folded ridges up to 1 km high, which develop initially from discontinuous protothrusts. In the central part of the margin near 41°S, where the convergence obliquity is 50°, orthogonal convergence rate is slow (27 mm/yr), and about 75% of the total 4 km of sediment on the Pacific Plate is accreted frontally, the seismically resolvable structures within 30 km of the deformation front accommodate about 6 km of horizontal shortening. At least 80% of this shortening has occurred within the last 0.4±0.1 m.y. at an average rate of 12±3 mm/yr. This rate indicates that the frontal 30 km of the wedge accounts for about 33-55% of the predicted orthogonal contraction across the entire plate boundary zone. Despite plate convergence obliquity of 50°, rapid frontal accretion has occurred during the late Quaternary with the principal deformation front migrating seaward up to 50 km within the last 0.5 m.y. (i.e., at a rate of 100 km/m.y.). The structural response to this accretion rate has been a reduction in wedge taper and, consequently, internal deformation behind the present deformation front. Near the southwestern termination of the wedge, where there is an along-the-margin transition to continental transpressional tectonics, the convergence obliquity increases to >56°, and the orthogonal convergence rate decreases to 22 mm/yr, the wedge narrows to 13 km and is characterized simply by two frontal backthrusts and landward-verging folds. These structures have accommodated not more than 0.5 km of horizontal shortening at a rate of < 1 mm/yr, which represents < 5% of the predicted orthogonal shortening across the entire plate boundary in southern North Island. The landward-vergent structural domain may represent a transition zone from rapid frontal accretion associated with low basal friction and high pore pressure ratio in the central part of the margin, to the northern South Island region where the upper and lower plates are locked or at least very strongly coupled.

  20. The effect of passive ultrasonic activation of 2% chlorhexidine or 5.25% sodium hypochlorite irrigant on residual antimicrobial activity in root canals.

    PubMed

    Weber, Carol Diener; McClanahan, Scott B; Miller, Glenn A; Diener-West, Marie; Johnson, James D

    2003-09-01

    Ninety-four single-canal roots were prepared using the step-down technique. Forty-two canals were irrigated with 2% chlorhexidine, 42 canals with 5.25% sodium hypochlorite (NaOCl), and 10 control canals with phosphate-buffered saline (PBS). The chlorhexidine and NaOCl groups were each then equally divided into a final irrigation group and a 1-min passive ultrasonic irrigation group. Canals were enlarged with a Parapost drill. The apical 3-5 mm was covered with nail polish. Canals were rinsed with PBS, dried, refilled with PBS, and stored. At 6 h, 20 microl of fluid was pipetted from each canal and placed into wells on agar plates, which were inoculated with Streptococcus sanguinis. The plates were incubated, and zones of inhibition were measured. Sampling was repeated at 24, 48, 72, 96, 120, 144, and 168 h. Residual antimicrobial activity with 2% chlorhexidine was statistically significantly superior to 5.25% NaOCl with irrigation alone and with final passive ultrasonic activation (p < 0.001). Chlorhexidine experimental groups demonstrated residual antimicrobial activity for as long as 168 h.

Top