Searching for Hysteresis in Models of Mantle Convection with Grain-Damage
NASA Astrophysics Data System (ADS)
Lamichhane, R.; Foley, B. J.
2017-12-01
The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical steady-state. Scaling analysis is performed to quantify how subduction initiation from a stagnant lid differs from sustaining subduction in a mobile lid. The implications of our results for the evolution of the mode of surface tectonics on terrestrial planets will also be discussed.
Initiation of plate tectonics from post-magma ocean thermochemical convection
NASA Astrophysics Data System (ADS)
Foley, Bradford J.; Bercovici, David; Elkins-Tanton, Linda T.
2014-11-01
Leading theories for the presence of plate tectonics on Earth typically appeal to the role of present day conditions in promoting rheological weakening of the lithosphere. However, it is unknown whether the conditions of the early Earth were favorable for plate tectonics, or any form of subduction, and thus, how subduction begins is unclear. Using physical models based on grain-damage, a grainsize-feedback mechanism capable of producing plate-like mantle convection, we demonstrate that subduction was possible on the Hadean Earth (hereafter referred to as proto-subduction or proto-plate tectonics), that proto-subduction differed from modern day plate tectonics, and that it could initiate rapidly. Scaling laws for convection with grain-damage show that though either higher mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of ≈1.75 cm/yr, can still be maintained in the Hadean, even with a CO2 rich primordial atmosphere. Furthermore, when the mantle potential temperature is high (e.g., above ≈2000 K), the mode of subduction switches to a "sluggish subduction" style, where downwellings are drip like and plate boundaries are diffuse. Finally, numerical models of post-magma ocean mantle convection demonstrate that proto-plate tectonics likely initiates within ˜100 Myr of magma ocean solidification, consistent with evidence from Hadean zircons. After the initiation of proto-subduction, non-plate-tectonic "sluggish subduction" prevails, giving way to modern style plate tectonics as both the mantle interior and climate cool. Hadean proto-subduction may hasten the onset of modern plate tectonics by drawing excess CO2 out of the atmosphere and cooling the climate.
Moore, William B; Webb, A Alexander G
2013-09-26
The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.
Plate tectonics on the Earth triggered by plume-induced subduction initiation.
Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A
2015-11-12
Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.
Mantle convection and plate tectonics: toward an integrated physical and chemical theory
Tackley
2000-06-16
Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.
Alternative Conceptions of Plate Tectonics Held by Nonscience Undergraduates
ERIC Educational Resources Information Center
Clark, Scott K.; Libarkin, Julie C.; Kortz, Karen M.; Jordan, Sarah C.
2011-01-01
The theory of plate tectonics is the conceptual model through which most dynamic processes on Earth are understood. A solid understanding of the basic tenets of this theory is crucial in developing a scientifically literate public and future geoscientists. The size of plates and scale of tectonic processes are inherently unobservable,…
NASA Technical Reports Server (NTRS)
Engeln, J. F.; Stein, S.
1984-01-01
A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.
A new model for early Earth: heat-pipe cooling
NASA Astrophysics Data System (ADS)
Webb, A. G.; Moore, W. B.
2013-12-01
In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the surface rocks were forced radially inward, resulting in uplift, exhumation, and shortening. Declining heat sources over time led to an abrupt, dynamically spontaneous transition to plate tectonics. The model predicts a geological record with rapid, semi-continuous volcanic resurfacing; contractional deformation; a low geothermal gradient across the bulk of the lithosphere; and a rapid decrease in heat-pipe volcanism after the initiation of plate tectonics. Review of data from ancient cratons and the detrital zircon record is consistent with these predictions. In this presentation, we review these findings with a focus on comparison of the model predictions with the geologic record. This comparison suggests that Earth cooled via heat pipes until a ~3.2 Ga subduction initiation episode. The Isua record reflects long-lived contractional deformation, and the Barberton and Pilbara records preserve heat-pipe lithospheric development in regions without significant contraction. In summary, the heat-pipe model provides a view of early Earth that is more globally applicable than existing plate and vertical tectonic models.
Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.
ERIC Educational Resources Information Center
Chamberlain, Valerie Elaine
1989-01-01
Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…
NASA Astrophysics Data System (ADS)
Jitrik, Oliverio; Lanzagorta, Marco; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.
2017-05-01
The study of plate tectonic motion is important to generate theoretical models of the structure and dynamics of the Earth. In turn, understanding tectonic motion provides insight to develop sophisticated models that can be used for earthquake early warning systems and for nuclear forensics. Tectonic geodesy uses the position of a network of points on the surface of earth to determine the motion of tectonic plates and the deformation of the earths crust. GPS and interferometric synthetic aperture radar are commonly used techniques used in tectonic geodesy. In this paper we will describe the feasibility of interferometric synthetic aperture quantum radar and its theoretical performance for tectonic geodesy.
Barrel organ of plate tectonics - a new tool for outreach and education
NASA Astrophysics Data System (ADS)
Broz, Petr; Machek, Matěj; Šorm, Zdar
2016-04-01
Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www.geologyinexperiments.com where additional pictures and details about the construction are available. This mechanical model represents a unique outreach tool how to present processes, normally taking eons to occur, to students and to the public in easy and funny way, and how to attract their attention to the most important concept in geology.
Looking for Plate Tectonics in all the wrong fluids
NASA Astrophysics Data System (ADS)
Davaille, Anne
2017-04-01
Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.
Spreading continents kick-started plate tectonics.
Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas
2014-09-18
Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.
Optimal Planet Properties For Plate Tectonics Through Time And Space
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Seager, Sara
2014-11-01
Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.
Break-up of Gondwana and opening of the South Atlantic: Review of existing plate tectonic models
Ghidella, M.E.; Lawver, L.A.; Gahagan, L.M.
2007-01-01
each model. We also plot reconstructions at four selected epochs for all models using the same projection and scale to facilitate comparison. The diverse simplifying assumptions that need to be made in every case regarding plate fragmentation to account for the numerous syn-rift basins and periods of stretching are strong indicators that rigid plate tectonics is too simple a model for the present problem.
NASA Astrophysics Data System (ADS)
Masterton, S. M.; Markwick, P.; Bailiff, R.; Campanile, D.; Edgecombe, E.; Eue, D.; Galsworthy, A.; Wilson, K.
2012-04-01
Our understanding of lithospheric evolution and global plate motions throughout the Earth's history is based largely upon detailed knowledge of plate boundary structures, inferences about tectonic regimes, ocean isochrons and palaeomagnetic data. Most currently available plate models are either regionally restricted or do not consider palaeogeographies in their construction. Here, we present an integrated methodology in which derived hypotheses have been further refined using global and regional palaeogeographic, palaeotopological and palaeobathymetric maps. Iteration between our self-consistent and structurally constrained global plate model and palaeogeographic interpretations which are built on these reconstructions, allows for greater testing and refinement of results. Our initial structural and tectonic interpretations are based largely on analysis of our extensive global database of gravity and magnetic potential field data, and are further constrained by seismic, SRTM and Landsat data. This has been used as the basis for detailed interpretations that have allowed us to compile a new global map and database of structures, crustal types, plate boundaries and basin definitions. Our structural database is used in the identification of major tectonic terranes and their relative motions, from which we have developed our global plate model. It is subject to an ongoing process of regional evaluation and revisions in an effort to incorporate and reflect new tectonic and geologic interpretations. A major element of this programme is the extension of our existing plate model (GETECH Global Plate Model V1) back to the Neoproterozic. Our plate model forms the critical framework upon which palaeogeographic and palaeotopographic reconstructions have been made for every time stage in the Cretaceous and Cenozoic. Generating palaeogeographies involves integration of a variety of data, such as regional geology, palaeoclimate analyses, lithology, sea-level estimates, thermo-mechanical events and regional tectonics. These data are interpreted to constrain depositional systems and tectonophysiographic terranes. Palaeotopography and palaeobathymetry are derived from these tectonophysiographic terranes and depositional systems, and are further constrained using geological relationships, thermochronometric data, palaeoaltimetry indicators and modern analogues. Throughout this process, our plate model is iteratively tested against our palaeogeographies and their environmental consequences. Both the plate model and the palaeogeographies are refined until we have obtained a consistent and scientifically robust result. In this presentation we show an example from Southeast Asia, where the plate model complexity and wide variation in hypotheses has huge implications for the palaeogeographic interpretation, which can then be tested using geological observations from well and seismic data. For example, the Khorat Plateau Basin, Northeastern Thailand, comprises a succession of fluvial clastics during the Cretaceous, which include the evaporites of the Maha Sarakham Formation. These have been variously interpreted as indicative of saline lake or marine incursion depositional environments. We show how the feasibility of these different hypotheses is dependent on the regional palaeogeography (whether a marine link is possible), which in turn depends on the underlying plate model. We show two models with widely different environmental consequences. A more robust model that takes into account all these consequences, as well as data, can be defined by iterating through the consequences of the plate model and geological observations.
A review of the tectonic evolution of the Northern Pacific and adjacent Cordilleran Orogen
NASA Astrophysics Data System (ADS)
Jakob, Johannes; Gaina, Carmen; Johnston, Stephen T.
2014-05-01
Numerous plate kinematic models for the North Pacific realm have been developed since the advent of plate tectonics in the early seventies (e.g Atwater (1970), Mammerickx and Sharman (1988)). Although published kinematic models are consistent with the broad scale features of the North Pacific, the link between plate motions and the evolution of the North American Cordillera remains poorly understood. Part of the problem lies in conflicting interpretations of geological versus paleomagnetic data sets, with the result being a lack of consensus regarding: the paleolocation of key geological units; the paleogeography of terrane formation and amalgamation; the motion, boundaries and even existence of oceanic plates; and the character (e.g. trend of subduction) and position of plate boundaries within the northern Pacific basin. Remnants of the Farallon and Kula plates, and some short-lived microplates, demonstrate the complicated tectonic evolution of the oceanic realm west of the North American margin (e.g. Rea and Dixon (1983); McCrory and Wilson (2013); Shephard et al. (2013)). The creation and destruction of major tectonic plates and microplates has presumably left a record in the Cordilleran orogen of western North America. However, working backward from the geological relationships to plate reconstructions remains difficult. Here we investigate the relationship between the plate motions of the Pacific Ocean and the terrane movements in the North American Cordillera by revising the marine magnetic and gravity anomalies of the northern Pacific. In particular, we reevaluate plate boundaries at times of major changes in plate geometry of the Pacific, Kula, Chinook and Farallon plates from C34n onward. Our focus is also on the plate geometries of the Resurrection, Eshamy and Siletz-Crescent plates during the time between anomaly C26 and C12, and the links between plate interactions and on-shore tectonic events recorded in the geological record of Vancouver Island, including the accretion of the Pacific Rim and Crescent terranes to Wrangellia between C25 and C18. References: Atwater, T. (1970). Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513-3536. McCrory, P. a., & Wilson, D. S. (2013). A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates. Tectonics, 32, 1-19. doi:10.1002/tect.20045 Rea, D. K., & Dixon, J. M. (1983). Late Cretaceous and Paleogene tectonic evolution of the North Pacific Ocean. Earth and Planetary Science Letters, 65, 145-166. Shephard, G. E., Müller, R. D., & Seton, M. (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, 124, 148-183. doi:10.1016/j.earscirev.2013.05.012 Mammerickx, J., & Sharman, G. F. (1988). Tectonic evolution of the North Pacific during the Cretaceous quiet period. Journal of Geophysical Research, 93(B4), 3009-3024. doi:10.1029/JB093iB04p03009
NASA Astrophysics Data System (ADS)
Yang, T.; Moresi, L. N.; Zhao, D.; Sandiford, D.
2017-12-01
Northeast China lies at the continental margin of the western Pacific subduction zone where the Pacific Plate subducts beneath the Eurasia Plate along the Kuril-Japan trench during the Cenozoic, after the consumption of the Izanagi Plate. The Izanagi Plate and the Izanagi-Pacific mid-ocean ridge recycled to the mantle beneath Eurasia before the early Cenozoic. Plate reconstructions suggest that (1) age of the incoming Pacific Plate at the trench increases with time; (2) convergence rate between the Pacific and Eurasia Plates increased rapidly from the late Eocene to the early Miocene. Northeast China and surrounding areas suffered widespread extension and magmatism during the Cenozoic, culminating in the opening of the Japan Sea and the rifting of the Baikal Rift Zone. The Japan Sea opened during the early Miocene and kept spreading until the late Miocene, since when compression tectonics gradually prevailed. The Baikal Rift Zone underwent slow extension in the Cenozoic but its extension rate has increased rapidly since the late Miocene. We investigate the Cenozoic tectonic evolution of Northeast China and surrounding areas with geodynamic models. Our study suggests that the rapid aging of the incoming Pacific Plate at the subduction zone leads to the increase of plate convergence and trench motion rates, and explains the observed sequence of regional tectonic events. Our geodynamic model, which reproduces the Cenozoic regional tectonic events, predicts slab morphology and stress state consistent with seismic observations, including over 1000 km of slab stagnant in the transition zone, and the along-dip principal compressional stress direction. Our model requires a value of the 660 km phase transition Clapeyron slope of -2.5 MPa/K to reproduce the stagnant slab and tectonic events in the study region. This suggests that the Pacific slab is hydrated in the transition zone, explaining geochemical characteristics of some regional Cenozoic igneous rocks which were suggested to originate from a hydrous mantle transition zone.
Models of convection-driven tectonic plates - A comparison of methods and results
NASA Technical Reports Server (NTRS)
King, Scott D.; Gable, Carl W.; Weinstein, Stuart A.
1992-01-01
Recent numerical studies of convection in the earth's mantle have included various features of plate tectonics. This paper describes three methods of modeling plates: through material properties, through force balance, and through a thin power-law sheet approximation. The results obtained are compared using each method on a series of simple calculations. From these results, scaling relations between the different parameterizations are developed. While each method produces different degrees of deformation within the surface plate, the surface heat flux and average plate velocity agree to within a few percent. The main results are not dependent upon the plate modeling method and herefore are representative of the physical system modeled.
NASA Astrophysics Data System (ADS)
Capitanio, F. A.
2017-12-01
The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.
Numerical modeling of intraplate seismicity with a deformable loading plate
NASA Astrophysics Data System (ADS)
So, B. D.; Capitanio, F. A.
2017-12-01
We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic plates.
Venus: Mantle convection, hotspots, and tectonics
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1989-01-01
The putative paradigm that planets of the same size and mass have the same tectonic style led to the adaptation of the mechanisms of terrestrial plate tectonics as the a priori model of the way Venus should behave. Data acquired over the last decade by Pioneer Venus, Venera, and ground-based radar have modified this view sharply and have illuminated the lack of detailed understanding of the plate tectonic mechanism. For reference, terrestrial mechanisms are briefly reviewed. Venusian lithospheric divergence, hotspot model, and horizontal deformation theories are proposed and examined.
Generation and Initiation of Plate Tectonics on Terrestrail Planets
NASA Astrophysics Data System (ADS)
Foley, Bradford J.
The question of why plate tectonics occurs on Earth, but not on the other planets of our solar system, is one of the most fundamental issues in geophysics and planetary science. I study this problem using numerical simulations of mantle convection with a damage-grainsize feedback (grain-damage) to constrain the conditions necessary for plate tectonics to occur on a terrestrial planet, and how plate tectonics initiates. In Chapter 2, I use numerical simulations to determine how large a viscosity ratio, between pristine lithosphere and mantle, damage can offset to allow mobile (plate-like) convection. I then use the numerical results to formulate a new scaling law to describe the boundary between stagnant lid and plate-like regimes of mantle convection. I hypothesize that damage must reduce the viscosity of shear zones in the lithosphere to a critical value, equivalent to the underlying mantle viscosity, in order for plate tectonics to occur, and demonstrate that a scaling law based on this hypothesis reproduces the numerical results. For the Earth, damage is efficient in the lithosphere and provides a viable mechanism for the operation of plate tectonics. I apply my theory to super-Earths and map out the transition between plate-like and stagnant lid convection with a "planetary plate-tectonic phase" diagram in planet size-surface temperature space. Both size and surface temperature are important, with plate tectonics being favored for larger, cooler planets. This gives a natural explanation for Earth, Venus, and Mars, and implies that plate tectonics on exoplanets should correlate with size, incident solar radiation, and atmospheric composition. In Chapters 3 and 4 I focus on the initiation of plate tectonics. In Chapter 3, I develop detailed scaling laws describing plate speed and heat flow for mantle convection with grain-damage across a wide parameter range, with the intention of applying these scaling laws to the early Earth in Chapter 4. Convection with grain-damage scales differently than Newtonian convection; whereas the Nusselt number, Nu, typically scales with the Rayleigh number, Ra, to the 1/3 power, for grain-damage this exponent is larger because increasing Ra also enhances damage. In addition, Nu and plate velocity are also functions of the damage to healing ratio, (D/H); increasing D/H increases Nu (or plate speed) because more damage leads to more vigorous convection. In Chapter 4, I demonstrate that subduction can be sustained on the early Earth, that the style of subduction at this time was different than modern day plate tectonics, and that such subduction (or proto-subduction) can initiate rapidly after magma ocean solidification. The scaling laws from Chapter 3 show that, though either higher interior mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of at least 1.5 cm/yr, can still be maintained in the Hadean, even if the primordial atmosphere was CO2 rich. Furthermore, when the interior mantle temperature is high (e.g. above ≈ 2000 K), the mode of subduction switches to a "sluggish subduction" style, where downwellings are more drip-like than slab-like and plate boundaries are more diffuse. Numerical models of post-magma ocean mantle convection, and a scaling analysis based on the results of these models, demonstrate that proto-plate tectonics likely initiates within ˜100 Myrs of magma ocean solidification. Combined with the conclusion that proto-subduction could be maintained on the early Earth, my results are consistent with evidence for Hadean subduction from zircon data, and indicate that the subduction inferred from zircons may have been distinct from modern day plate tectonics. After the initiation of proto-subduction, which occurs as a rapid overturn of the whole lithosphere, mobile lid convection takes place as non-plate tectonic "sluggish subduction" As both the mantle interior and climate cool, modern style plate tectonics develops. The rapid, initial subduction event may help hasten the onset of modern style plate tectonics by drawing excess CO 2 out of the atmosphere and cooling the climate.
An explicit plate kinematic model for the orogeny in the southern Uralides
NASA Astrophysics Data System (ADS)
Görz, Ines; Hielscher, Peggy
2010-10-01
The Palaeozoic Uralides formed in a three plate constellation between Europe, Siberia and Kazakhstan-Tarim. Starting from the first plate tectonic concepts, it was controversially discussed, whether the Uralide orogeny was the result of a relative plate motion between Europe and Siberia or between Europe and Kazakhstan. In this study, we use a new approach to address this problem. We perform a structural analysis on the sphere, reconstruct the positions of the Euler poles of the relative plate rotation Siberia-Europe and Tarim-Europe and describe Uralide structures by their relation to small circles about the two Euler poles. Using this method, changes in the strike of tectonic elements that are caused by the spherical geometry of the Earth's surface are eliminated and structures that are compatible with one of the relative plate motions can be identified. We show that only two Euler poles controlled the Palaeozoic tectonic evolution in the whole West Siberian region, but that they acted diachronously in different regions. We provide an explicit model describing the tectonism in West Siberia by an Euler pole, a sense of rotation and an approximate rotation angle. In the southern Uralides, Devonian structures resulted from a plate rotation of Siberia with respect to Europe, while the Permian structures were caused by a relative plate motion of Kazakhstan-Tarim with respect to Europe. The tectonic pause in the Carboniferous period correlates with a reorganization of the plate kinematics.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates.
Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J
2016-07-07
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
The effect of plate-scale rheology and plate interactions on intraplate seismicity
NASA Astrophysics Data System (ADS)
So, Byung-Dal; Capitanio, Fabio A.
2017-11-01
We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ =ηI /ηL, the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ =σY /σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic plates.
Mantle convection with plates and mobile, faulted plate margins.
Zhong, S; Gurnis, M
1995-02-10
A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.
Plate tectonics, damage and inheritance.
Bercovici, David; Ricard, Yanick
2014-04-24
The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.
Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates
NASA Astrophysics Data System (ADS)
Mahatsente, Rezene
2017-12-01
An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (<75 Ma) is much less than the ridge-push force for both compressional and extensional tectonics. In this case, the ridge-push related stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.
Laboratory plate tectonics: a new experiment.
Gans, R F
1976-03-26
A "continent" made of a layer of hexagonally packed black polyethylene spheres floating in clear silicon oil breaks into subcontinents when illuminated by an ordinary incandescent light bulb. This experiment may be a useful model of plate tectonics driven by horizontal temperature gradients. Measurements of the spreading rate are made to establish the feasibility of this model.
Space geodesy validation of the global lithospheric flow
NASA Astrophysics Data System (ADS)
Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.
2007-02-01
Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.
NASA Astrophysics Data System (ADS)
Foley, Bradford J.
2015-10-01
The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.
Lasting mantle scars lead to perennial plate tectonics.
Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell
2016-06-10
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-01-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541
A Cenozoic tectonic model for Southeast Asia - microplates and basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, K.A.
1995-04-01
A computer-assisted Cenozoic tectonic model was built for Southeast Asia and used to construct 23 base maps, 2 to 6 million years apart. This close temporal spacing was necessary to constrain all the local geometric shifts in a consistent and geologically feasible fashion. More than a hundred individual blocks were required to adequately treat Cenozoic microplate processes at a basic level. The reconstructions show tectonic evolution to be characterized by long periods of gradual evolution, interrupted by brief, widespread episodes of reorganization in fundamental plate geometries and kinematics. These episodes are triggered by major collisions, or by accumulation of smallermore » changes. The model takes into account difficulties inherent in the region. The Pacific and Indo-Australian plates and their predecessors have driven westward and northward since the late Paleozoic, towards each other and the relatively stationary backstop of Asia. Southeast Asia is therefore the result of a long-lived, complex process of convergent tectonics, making it difficult to reconstruct tectonic evolution as much of the continental margin and sea floor spreading record was erased. In addition, the region has been dominated by small-scale microplate processes with short time scales and internal deformation, taking place in rapidly evolving and more ductile buffer zones between the major rigid plate systems. These plate interaction zones have taken up much of the relative motion between the major plates. Relatively ephemeral crustal blocks appear and die within the buffer zones, or accrete to and disperse from the margins of the major plate systems. However, such microplate evolution is the dominant factor in Cenozoic basin evolution. This detailed testonic model aids in comprehension and prediction of basin development, regional hydrocarbon habitat, and petroleum systems.« less
Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets
NASA Astrophysics Data System (ADS)
Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.
2017-09-01
Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.
Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2015-04-01
The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.
Plate tectonics and crustal deformation around the Japanese Islands
NASA Technical Reports Server (NTRS)
Hashimoto, Manabu; Jackson, David D.
1993-01-01
We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.
ADOPT: A tool for automatic detection of tectonic plates at the surface of convection models
NASA Astrophysics Data System (ADS)
Mallard, C.; Jacquet, B.; Coltice, N.
2017-08-01
Mantle convection models with plate-like behavior produce surface structures comparable to Earth's plate boundaries. However, analyzing those structures is a difficult task, since convection models produce, as on Earth, diffuse deformation and elusive plate boundaries. Therefore we present here and share a quantitative tool to identify plate boundaries and produce plate polygon layouts from results of numerical models of convection: Automatic Detection Of Plate Tectonics (ADOPT). This digital tool operates within the free open-source visualization software Paraview. It is based on image segmentation techniques to detect objects. The fundamental algorithm used in ADOPT is the watershed transform. We transform the output of convection models into a topographic map, the crest lines being the regions of deformation (plate boundaries) and the catchment basins being the plate interiors. We propose two generic protocols (the field and the distance methods) that we test against an independent visual detection of plate polygons. We show that ADOPT is effective to identify the smaller plates and to close plate polygons in areas where boundaries are diffuse or elusive. ADOPT allows the export of plate polygons in the standard OGR-GMT format for visualization, modification, and analysis under generic softwares like GMT or GPlates.
Wet Tectonics: A New Planetary Synthesis
NASA Astrophysics Data System (ADS)
Grimm, K. A.
2005-12-01
Most geoscientists (and geoscience textbooks) describe plate tectonics as a `solid-Earth' phenomenon, with fluids playing an important role in discrete geodynamic processes. As a community of diverse research specialists, the critical role of water is being widely elucidated, however these diverse studies do not address the fundamental origin and operation of the global plate tectonic phenomenon, and its expressions in planetary geodynamics and geomorphology. The Wet Tectonics hypothesis extends well beyond the plate tectonics paradigm, to constitute a new synthesis of diverse geoscience specializations and self-organizing complexity into a simple, internally consistent and explicitly testable model. The Wet Tectonics hypothesis asserts that Earth's plate tectonic system arose from and is the explicit and dynamic result of water interacting with the hot silicate mantle. The tectosphere is defined as an interactive functional (rather than structural, compositional or rheological) entity, a planetary-scale dynamic system of plate formation, plate motion, and rock/volatile recycling. Earth's tectosphere extends from the base of the asthenosphere to the top of the crust, arising and evolving as a dynamic pattern of organization that creates, orders and perpetuates itself. Earth's tectosphere is energetically-open, materially ajar (steady-state operation may not require sub-asthenospheric inputs; shifts between distinct tectonic modes may result from changes in coupling between the tectosphere and subasthenospheric reservoirs) and chemically-closed (i.e. the tectosphere recycles its own wastes). Water is a fundamental requirement in all of the constituent processes of Earth's tectosphere, including seafloor spreading, slab cooling/subsidence, plate motion, asthenosphere rheology, and subduction (where crustal and volatile recycling occur). As a working hypothesis, we suggest that the dynamic and persistent hydrosphere and tectosphere on planet Earth are fully interdependent and co-evolving phenomena. The concept of autocatalytic hypercycles has been adapted from molecular biology to resolve the apparent paradox of circular causality amongst the coupled phenomena of liquid water oceans and `plate tectonics'. This new planetary synthesis presents fundamental implications for geological, geophysical, Earth system and planetary sciences, as well as novel hypotheses concerning plate drive (gravity sliding ± slab pull), origin of plate tectonics (Hadean, >=4.4Ga), biogeochemical cycling (balanced global fluxes of water into and out of the tectosphere; is the asthenosphere continuously rehydrated via lateral advection) and planetary geomorphology (simple contrasts between Mars, Earth and Venus).
Why is understanding when Plate Tectonics began important for understanding Earth?
NASA Astrophysics Data System (ADS)
Korenaga, J.
2015-12-01
Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.
Plate tectonics drive tropical reef biodiversity dynamics
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc
2016-01-01
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103
Plate tectonics drive tropical reef biodiversity dynamics.
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc
2016-05-06
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.
NASA Astrophysics Data System (ADS)
Kattenhorn, Simon A.
2018-03-01
A new modeling-based study by Johnson et al. (2017, https://doi.org/10.1002/2017JE005370) lends support to the hypothesis that portions of Europa's surface may have been removed by the process of subduction, as suggested by Kattenhorn and Prockter (2014, https://doi.org/10.1038/NGEO2245). Using a simple 1-D model that tracks the thermal and density structure of a descending ice plate, Johnson et al. show that ice plates with 10% porosity and overall salt contents of 5%, which differ in salt content by 2.5% from the surrounding reference ice shell, are nonbuoyant and thus likely to sink through the underlying, convecting portion of the ice shell. The feasibility of subduction in an ice shell is critical to the existence of icy plate tectonics, which is hypothesized to exist at least locally on Europa, potentially making it the only other Solar System body other than Earth with a surface modified by plate tectonics.
Plate Tectonics: The Way the Earth Works. Teacher's Guide. LHS GEMS.
ERIC Educational Resources Information Center
Cuff, Kevin
This teacher guide presents a unit on plate tectonics and introduces hands-on activities for students in grades 6-8. In each unit, students act as real scientists and gather evidence by using science process skills such as observing, graphing, analyzing data, designing and making models, visualizing, communicating, theorizing, and drawing…
NASA Astrophysics Data System (ADS)
Wu, G.; Moresi, L. N.
2017-12-01
Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.
The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system
NASA Astrophysics Data System (ADS)
Storetvedt, K. M.
Analysis of Meso-Cainozoic palaeomagnetic data for Africa, India and Eurasia has led to the development of a new mobilistic Alpine plate tectonic model characterized by a hierarchical system of plates in relative rotation. The new model, which discounts seafloor spreading, implies that there have been no significant palaeogeographic changes in the overall distribution of continental and oceanic regions. The mid-oceanic ridges are interpreted as transpressive tectonic features caused by rotation of megaplates (containing both continental and oceanic crust), the isostatic uplift due to crustal/lithospheric thickening giving rise to the general ridge topography as well as to the ridge-parallel structural grain. The new plate tectonic theory gains strong support from a variety of geophysical, geological and palaeoclimatological evidence, and several observations that have remained enigmatic or awkward within the context of the orthodox model can be readily accounted for in the new tectonic framework. The model maintains the Tethys as a relatively narrow epicontinental sea which, during its maximum extent, stretched latitudinally from the Caribbean, across the Central Atlantic to SE Asia. The Alpine-Himalayan orogenic belt developed along the boundary of two megaplates in relative rotation, which provided a transpressive tectonic regime. The location of the plate boundary to the north of the Mediterranean has important implications for discussion of Mediterranean microplates. For example, it now seems that Italy has been subjected to 10-15° of clockwise microplate rotation; previous conclusions in favour of 30-40° of anticlockwise rotation are regarded as artefacts which arise from incorrectly linking the Mediterranean region to the European palaeomagnetic frame instead of to the African one. The model suggests further that the Indo-Pakistani plate was closely tied to Eurasia; this challenges the conventional view that the Peninsula was part of an alleged Gondwanaland. The new pre-drift configuration implies that the Indo-Pakistani plate rotated ˜ 135° clockwise at around the Cretaceous-Tertiary boundary before redocking with Asia in approximately its present relative orientation.
The generation of plate tectonics from mantle convection
NASA Astrophysics Data System (ADS)
Bercovici, David
2003-01-01
In the last decade, significant progress has been made toward understanding how plate tectonics is generated from mantle dynamics. A primary goal of plate-generation studies has been the development of models that allow the top cold thermal boundary layer of mantle convection, i.e. the lithosphere, to develop broad and strong plate-like segments separated by narrow, weak and rapidly deforming boundaries; ideally, such models also permit significant strike-slip (toroidal) motion, passive ridges (i.e. pulled rather than pried apart), and self-consistent initiation of subduction. A major outcome of work so far is that nearly all aspects of plate generation require lithospheric rheologies and shear-localizing feedback mechanisms that are considerably more exotic than rheologies typically used in simple fluid-dynamical models of mantle flow. The search for plate-generating behavior has taken us through investigations of the effects of shear weakening ('stick-slip') and viscoplastic rheologies, of melting at ridges and low-viscosity asthenospheres, and of grain-size dependent rheologies and damage mechanics. Many such mechanisms, either by themselves or in combination, have led to self-consistent fluid-mechanical models of mantle flow that are remarkably plate-like, which is in itself a major accomplishment. However, many other important problems remain unsolved, such as subduction intiation and asymmetry, temporal evolution of plate geometry, rapid changes in plate motion, and the Archaean initiation of the plate-tectonic mode of convection. This paper presents a brief review of progress made in the plate-generation problem over the last decade, and discusses unresolved issues and future directions of research in this important area.
A model of convergent plate margins based on the recent tectonics of Shikoku, Japan
NASA Technical Reports Server (NTRS)
Bischke, R. E.
1974-01-01
A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.
SubductionGenerator: A program to build three-dimensional plate configurations
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.
2016-12-01
Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.
NASA Astrophysics Data System (ADS)
Suenaga, Nobuaki; Yoshioka, Shoichi; Matsumoto, Takumi; Ji, Yingfeng
2018-01-01
In Hyuga-nada, southern Kyushu in southwest Japan, afterslip events were found in association with the two large interplate earthquakes, which occurred on October 19 and December 3, 1996. In Kyushu, low-frequency earthquakes (LFEs) and tectonic tremors are not common, but a considerable concentration of tectonic tremors is observed beneath the Pacific coast of the Miyazaki prefecture. To investigate the generation mechanisms of these seismic events, we performed 2-D box-type time-dependent thermal modeling in southern Kyushu. As a result, the temperature range of the upper surface of the subducting Philippine Sea (PHS) plate, where the afterslip occurred, reached approximately 300 to 350 °C. The temperatures where the tectonic tremors occurred ranged from 450 to 650 °C in the mantle wedge corner. We also estimated the spatial distribution of water content within the subducting PHS plate, using phase diagrams of hydrous mid-ocean ridge basalt (MORB) and ultramafic rock. Then, we found that no characteristic phase transformations accompany the dehydration of the subducting PHS plate in the afterslip region, but phase transformation from lawsonite blueschist to lawsonite eclogite is expected within the oceanic crust of the PHS plate just below the active region of the tectonic tremors. Our estimated water content distribution is consistent with the VP/VS ratio calculated from the seismic tomography. Therefore, we conclude that the occurrence of the afterslip is controlled by the temperature condition at the plate boundary, and occurs near the down-dip limit of the seismogenic zone. On the other hand, determining the major factors leading to the occurrence of the tectonic tremors is difficult, we estimated the temperature in the mantle wedge is ranging from 450 °C to 650 °C, and dehydration of 1.0 wt% would be expected from the subducting PHS plate near the active region of the tectonic tremors.
Extending Whole-earth Tectonics To The Terrestrial Planets
NASA Astrophysics Data System (ADS)
Baker, V. R.; Maruyama, S.; Dohm, J. M.
Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.
1991-02-01
The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less
Plate tectonics on the terrestrial planets
NASA Astrophysics Data System (ADS)
van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.
2004-05-01
Plate tectonics is largely controlled by the buoyancy distribution in oceanic lithosphere, which correlates well with the lithospheric age. Buoyancy also depends on compositional layering resulting from pressure release partial melting under mid-ocean ridges, and this process is sensitive to pressure and temperature conditions which vary strongly between the terrestrial planets and also during the secular cooling histories of the planets. In our modelling experiments we have applied a range of values for the gravitational acceleration (representing different terrestrial planets), potential temperatures (representing different times in the history of the planets), and surface temperatures in order to investigate under which conditions plate tectonics is a viable mechanism for the cooling of the terrestrial planets. In our models we include the effects of mantle temperature on the composition and density of melt products and the thickness of the lithosphere. Our results show that the onset time of negative buoyancy for oceanic lithosphere is reasonable (less than a few hundred million years) for potential temperatures below ˜ 1500 ° C for the Earth and ˜ 1450 ° C for Venus. In the reduced gravity field of Mars a much thicker stratification is produced and our model indicates that plate tectonics could only operate on reasonable time scales at a potential mantle temperature below about 1300-1400 °C.
Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M
2017-05-12
The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.
NASA Astrophysics Data System (ADS)
Yang, G.; Shen, C.; Wang, J.
2017-12-01
we calculated the Bouguer gravity anomaly and the Airy-Heiskanen isostatic anomaly in the New Britain ocean trenches and its surrounding areas of Papua New Guinea using the topography model and the gravity anomaly model from Scripps Institute of Oceanography, and analyzed the characteristics of isostatic anomaly and the earthquake dynamic environment of this region. The results show that there are obviously differences in the isostatic state between each block in the region, and the crustal tectonic movement is very intense in the regions with high positive or negative isostatic gravity anomalies; A number of sub-plates in this area is driven by the external tectonic action such as plate subduction and thrust of the Pacific plate, the Indian - Australian plate and the Eurasian plate. From the distribution of isostatic gravity anomaly, the tectonic action of anti-isostatic movement in this region is the main source of power; from the isostatic gravity and the spatial distribution of the earthquake, with the further contraction of the Indian-Australian plate, the southwestern part of the Solomon Haiya plate will become part of the Owen Stanley fold belt, the northern part will enter the lower part of the Bismarck plate, eastern part will enter the front of the Pacific plate, the huge earthquake will migrate to the north and east of the Solomon Haiya plate.
Global tectonic reconstructions with continuously deforming and evolving rigid plates
NASA Astrophysics Data System (ADS)
Gurnis, Michael; Yang, Ting; Cannon, John; Turner, Mark; Williams, Simon; Flament, Nicolas; Müller, R. Dietmar
2018-07-01
Traditional plate reconstruction methodologies do not allow for plate deformation to be considered. Here we present software to construct and visualize global tectonic reconstructions with deforming plates within the context of rigid plates. Both deforming and rigid plates are defined by continuously evolving polygons. The deforming regions are tessellated with triangular meshes such that either strain rate or cumulative strain can be followed. The finite strain history, crustal thickness and stretching factor of points within the deformation zones are tracked as Lagrangian points. Integrating these tools within the interactive platform GPlates enables specialized users to build and refine deforming plate models and integrate them with other models in time and space. We demonstrate the integrated platform with regional reconstructions of Cenozoic western North America, the Mesozoic South American Atlantic margin, and Cenozoic southeast Asia, embedded within global reconstructions, using different data and reconstruction strategies.
Inversion for the driving forces of plate tectonics
NASA Technical Reports Server (NTRS)
Richardson, R. M.
1983-01-01
Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.
The influence of water on mantle convection and plate tectonics
NASA Astrophysics Data System (ADS)
Brändli, S.; Tackley, P. J.
2017-12-01
Water has a significant influence to mantle rheology and therefore also to the convection of the mantle and the plate tectonics. The viscosity of the mantle can be decreased by up to two orders of magnitude when water is present in the mantle. Another effect of the water is the change in the solidus of the mantle and therefore the melting regime. This two effects of water in the mantle have a significant influence to mantle convection and plate tectonics. The influx of water to the mantle is driven by plate tectonics as wet oceanic lithosphere is subducted into the mantle and then brought back to the lithosphere and the surface by MOR-, arc- and hotspot volcanism. Studies show that the amount of water in the mantle is about three times bigger than the amount of water in the oceans. To model this water cycle multiple additions to StagYY are necessary. With the enhanced code we calculated multiple steady state models with a wide range of parameters to study the effect of water on the mantle rheology and the behavior of the lithosphere. The results will help us to understand the earths interior and its reaction and behavior under partially hydrated conditions.
Variations in planetary convection via the effect of climate on damage
NASA Astrophysics Data System (ADS)
Landuyt, W.; Bercovici, D.
2008-12-01
The generation of plate tectonics on Earth and its absence on the other terrestrial planets (especially Venus) remains a significant conundrum in geophysics. We propose a model for the generation of plate tectonics that suggests an important interaction between a planet's climate and its lithospheric damage behavior; and thus provides a simple explanation for the tectonic difference between Earth and Venus. We propose that high surface temperatures will lead to higher healing rates (e.g. grain growth) in the lithosphere that will act to suppress localization, plate boundary formation, and subduction. This leads to episodic or stagnant lid convection on Venus because of its hotter climate. In contrast, Earth's cooler climate promotes damage and plate boundary formation. The damage rheology presented in this paper attempts to describe the evolution of grain size by allowing for grain reduction via deformational work input and grain growth via surface tension- driven coarsening. We present results from convection simulations and a simple "drip-instability" model to test our hypothesis. The results suggest the feasibility of our proposed hypothesis that the influence of climate on damage may control the mode of tectonics on a planet.
Hot spot abundance, ridge subduction and the evolution of greenstone belts
NASA Technical Reports Server (NTRS)
Abbott, D.; Hoffman, S.
1986-01-01
A number of plate tectonic hypotheses have been proposed to explain the origin of Archaean and Phanerozoic greenstone/ophiolite terranes. In these models, ophiolites or greenstone belts represent the remnants of one or more of the following: island arcs, rifted continental margins, oceanic crustal sections, and hot spot volcanic products. If plate tectonics has been active since the creation of the Earth, it is logical to suppose that the same types of tectonic processes which form present day ophiolites also formed Archaean greenstone belts. However, the relative importance of the various tectonic processes may well have been different and are discussed.
Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations
NASA Astrophysics Data System (ADS)
Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.
2010-12-01
We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian Pacific Congress on Computational Mechanics, July 2010, iopscience.iop.org/1757-899X/10/1/012012. [4] G. Morra, P. Chatelain, P. Tackley and P. Koumoutzakos, 2007, Large scale three-dimensional boundary element simulation of subduction, in Proceeding International Conference on Computational Science - Part III, LNCS 4489, pp. 1122-1129. Interaction between two subducting slabs.
Rheological decoupling at the Moho and implication to Venusian tectonics.
Azuma, Shintaro; Katayama, Ikuo; Nakakuki, Tomoeki
2014-03-18
Plate tectonics is largely responsible for material and heat circulation in Earth, but for unknown reasons it does not exist on Venus. The strength of planetary materials is a key control on plate tectonics because physical properties, such as temperature, pressure, stress, and chemical composition, result in strong rheological layering and convection in planetary interiors. Our deformation experiments show that crustal plagioclase is much weaker than mantle olivine at conditions corresponding to the Moho in Venus. Consequently, this strength contrast may produce a mechanical decoupling between the Venusian crust and interior mantle convection. One-dimensional numerical modeling using our experimental data confirms that this large strength contrast at the Moho impedes the surface motion of the Venusian crust and, as such, is an important factor in explaining the absence of plate tectonics on Venus.
Rheological decoupling at the Moho and implication to Venusian tectonics
Azuma, Shintaro; Katayama, Ikuo; Nakakuki, Tomoeki
2014-01-01
Plate tectonics is largely responsible for material and heat circulation in Earth, but for unknown reasons it does not exist on Venus. The strength of planetary materials is a key control on plate tectonics because physical properties, such as temperature, pressure, stress, and chemical composition, result in strong rheological layering and convection in planetary interiors. Our deformation experiments show that crustal plagioclase is much weaker than mantle olivine at conditions corresponding to the Moho in Venus. Consequently, this strength contrast may produce a mechanical decoupling between the Venusian crust and interior mantle convection. One-dimensional numerical modeling using our experimental data confirms that this large strength contrast at the Moho impedes the surface motion of the Venusian crust and, as such, is an important factor in explaining the absence of plate tectonics on Venus. PMID:24638113
NASA Astrophysics Data System (ADS)
Regalla, Christine
Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2016-10-01
Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.
The dynamics of plate tectonics and mantle flow: from local to global scales.
Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar
2010-08-27
Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.
The San Andreas fault experiment. [gross tectonic plates relative velocity
NASA Technical Reports Server (NTRS)
Smith, D. E.; Vonbun, F. O.
1973-01-01
A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele
2015-11-01
The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong similarities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed "Super"-LIP, a detailed scenario for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interaction of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tectonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight the important role of LIPs in the plate tectonic framework.
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Tectonic stress pattern in the Chinese Mainland from the inversion of focal mechanism data
NASA Astrophysics Data System (ADS)
Wei, Ju; Weifeng, Sun; Xiaojing, Ma
2017-04-01
The tectonic stress pattern in the Chinese Mainland and kinematic models have been subjected to much debate. In the past several decades, several tectonic stress maps have been figured out; however, they generally suffer a poor time control. In the present study, 421 focal mechanism data up to January 2010 were compiled from the Global/Harvard CMT catalogue, and 396 of them were grouped into 23 distinct regions in function of geographic proximity. Reduced stress tensors were obtained from formal stress inversion for each region. The results indicated that, in the Chinese Mainland, the directions of maximum principal stress were ˜NE-SW-trending in the northeastern region, ˜NEE-SWW-trending in the North China region, ˜N-S-trending in western Xinjiang, southern Tibet and the southern Yunnan region, ˜NNE-SSW-trending in the northern Tibet and Qinghai region, ˜NW-SE-trending in Gansu region, and ˜E-W-trending in the western Sichuan region. The average tectonic stress regime was strike-slip faulting (SS) in the eastern Chinese Mainland and northern Tibet region, normal faulting (NF) in the southern Tibet, western Xinjiang and Yunnan region, and thrust faulting (TF) in most regions of Xinjiang, Qinghai and Gansu. The results of the present study combined with GPS velocities in the Chinese Mainland supported and could provide new insights into previous tectonic models (e.g., the extrusion model). From the perspective of tectonics, the mutual actions among the Eurasian plate, Pacific plate and Indian plate caused the present-day tectonic stress field in the Chinese Mainland.
This dynamic earth: the story of plate tectonics
Kious, W. Jacquelyne; Tilling, Robert I.
1996-01-01
In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.
Global continental and ocean basin reconstructions since 200 Ma
NASA Astrophysics Data System (ADS)
Seton, M.; Müller, R. D.; Zahirovic, S.; Gaina, C.; Torsvik, T.; Shephard, G.; Talsma, A.; Gurnis, M.; Turner, M.; Maus, S.; Chandler, M.
2012-07-01
Global plate motion models provide a spatial and temporal framework for geological data and have been effective tools for exploring processes occurring at the earth's surface. However, published models either have insufficient temporal coverage or fail to treat tectonic plates in a self-consistent manner. They usually consider the motions of selected features attached to tectonic plates, such as continents, but generally do not explicitly account for the continuous evolution of plate boundaries through time. In order to explore the coupling between the surface and mantle, plate models are required that extend over at least a few hundred million years and treat plates as dynamic features with dynamically evolving plate boundaries. We have constructed a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea. Our model is underpinned by plate motions derived from reconstructing the seafloor-spreading history of the ocean basins and motions of the continents and utilizes a hybrid absolute reference frame, based on a moving hotspot model for the last 100 Ma, and a true-polar wander corrected paleomagnetic model for 200 to 100 Ma. Detailed regional geological and geophysical observations constrain plate boundary inception or cessation, and time-dependent geometry. Although our plate model is primarily designed as a reference model for a new generation of geodynamic studies by providing the surface boundary conditions for the deep earth, it is also useful for studies in disparate fields when a framework is needed for analyzing and interpreting spatio-temporal data.
The alternative concept of global tectonics
NASA Astrophysics Data System (ADS)
Anokhin, Vladimir; Kholmyansky, Mikhael
2016-04-01
The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set of lenses partially molten mantle material - asthenolithes previously mistaken for ubiquitous asthenosphere. Interaction between a plumes and their impact on the crust gives rise to all of the observed tectonic processes, including geosynclinal. This scheme is well complemented by some of the elements of plate tectonics, such as the separation of the crust for large plates across the present seismic belts, regional tension along the "divergence" borders, regional compression and collisions along the "convergence" borders. It is necessary to reject the dogmatic, contrary to the facts and unnecessary assumptions about the far moving plates, terraines, "hidden" boundaries, etc. The proposed scheme is contained not so much a new idea as a synthesis of already known ideas. The authors believe that in this way it is possible to construct a general geotectonic concept that would match the best of our knowledge in the earth sciences. Reference: David Pratt, Plate Tectonics: A Paradigm Under Threat - Journal of Scientific Exploration, vol. 14, no. 3, pp. 307-352, 2000.
Indentation tectonics in northern Taiwan: insights from field observations and analog models
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques
2017-04-01
In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution
Tests of crustal divergence models for Aphrodite Terra, Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1989-01-01
This paper discusses the characteristics of Aphrodite Terra, the highland region of Venus which is considered to be a likely site of mantle upwelling, active volcanism, and extensional tectonics, and examines the relation of these features to three alternative kinematic models for the interaction of mantle convection with the surface. These the 'vertical tectonics' model, in which little horizontal surface displacement results from mantle flow; the 'plate divergence' model, in which shear strain from large horizontal displacements is accommodated only in narrow zones of deformation; and the 'distributed deformation' model, in which strain from large horizontal motions is broadly accommodated. No convincing observational evidence was found to support the rigid-plate divergence, while the evidence of large-scale horizontal motions of Aphrodite argues against purely vertical tectonics. A model is proposed, involving a broad disruption of a thin lithosphere. In such a model, lineaments are considered to be surface manifestations of mantle convective flow.
Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution
NASA Astrophysics Data System (ADS)
Smrekar, S. E.; Hensley, S.; Helbert, J.
2013-12-01
As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.
Tectonic predictions with mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.
Plate tectonics and planetary habitability: current status and future challenges.
Korenaga, Jun
2012-07-01
Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Gion, Austin; Williams, Simon; Müller, Dietmar
2017-04-01
Present-day distributed plate deformation is being mapped and simulated in great detail, largely based on satellite observations. In contrast, the modelling of and data assimilation into deforming plate models for the geological past is still in its infancy. The recently released GPLates2.0 (www.gplates.org) software provides a framework for building plate models including diffuse deformation. Here we present an application example for the Eurekan orogeny, a Paleogene tectonic event driven by sea floor spreading in the Labrador Sea and Baffin Bay, resulting in compression between NW Greenland and the Canadian Arctic. The complexity of the region has prompted the development of countless tectonic models over the last 100 years. Our new tectonic model incorporates a variety of geological field and geophysical observations to model rigid and diffuse plate deformation in this region. Compression driven by Greenland's northward motion contemporaneous with sea floor spreading in the Labrador Sea, shortens Ellesmere Island in a "fan" like pattern, creating a series of thrust faults. Our model incorporates two phases of tectonic events during the orogeny from 63-35 Ma. Phase one from 63 to 55 Ma incorporates 85 km of Paleocene extension between Ellesmere Island and Devon Island with extension of 20 km between Axel Heiberg Island and Ellesmere Island and 85 km of left-lateral strike-slip along the Nares Strait/Judge Daly Fault System, matching a range of 50-100 km indicated by the offset of marker beds, facies contacts, and platform margins between the conjugate Greenland and Ellesmere Island margins. Phase two from 55 to 35 Ma captures 30 km of east-west shortening and 200 km of north-south shortening from Ellesmere Island to the Canadian Arctic Island margins. Our model extends the boundaries of the Eurekan Orogeny northward, considering its effect on the Lomonosov Ridge, Morris Jessup Rise, and the Yermak Plateau , favouring a model in which the Lomonosov Ridge moves attached to the Pearya Terrane. This model illustrates that key regional geological and geophysical observations are compatible with the relative motions of Greenland and North America constrained by marine magnetic anomaly and fracture zone identifications. This deforming plate model offers a platform and base model for future research. Gion, A.M., Williams, S.E. and Müller, R.D., 2017, A reconstruction of the Eurekan Orogeny incorporating deformation constraints, Tectonics, in press, accepted 30 Dec. 2016.
Influence of heat-piping on the initiation and evolution of plate tectonics
NASA Astrophysics Data System (ADS)
Tosi, N.; Baumeister, P. A.
2017-12-01
The onset of plate tectonics on Earth is believed to be caused by local weakening of the lithosphere. If the convective stress locally exceeds a critical value, a plate-breaking event may occur and initiate plate tectonics. Heat-piping is a heat transport process in which a large amount of melt produced at depth migrates either to the surface (extrusive volcanism) or the base of the crust and lithosphere (intrusive volcanism) due to positive buoyancy and over-pressure in the melting region. As a result of melt being extruded and compacted at the surface or within the crust and lithosphere, cold, near surface material is advected downwards. This mechanism, which effectively cools the mantle, has been proposed to dominate the early phases of the Earth's evolution preventing the onset of plate tectonics by leveling the slope of the lithosphere (e.g. Moore & Webb, 2013, Kankanamge & Moore, 2016). This in turn prevents the formation of lithospheric undulations that are necessary to locally build up sufficient stress to initiate a plate-breaking event. In this work we explore the effects of both extrusive and intrusive heat-piping on the critical yield stress needed to start a plate-breaking event and maintain a regime of surface mobilization over long timescales. We use a two-dimensional cylindrical model of compressible thermal convection. The melt generated at depth is extracted instantaneously according to a defined ratio between extrusive and intrusive volcanism. Extrusive melt is deposited at the surface, whereas intrusive melt is assumed to migrate to a depth dependent on the pressure distribution in the column above the melt region. Considering heat piping tends to increase the episodicity in the mobilization of the surface due to the additional local cooling caused by melt extraction but does not affect significantly the critical yield stress necessary to induce lid failure. Our models indicate that the evolution of plate mobility is a stochastic process, strongly dependent on the choice of the initial conditions. Heat-piping does not seem to be a controlling factor for the onset of plate tectonics.
Global geodynamic models constrained by tectonic reconstructions including plate deformation
NASA Astrophysics Data System (ADS)
Gurnis, M.; Flament, N.; Spasojevic, S.; Williams, S.; Seton, M.; Müller, R. D.
2011-12-01
In order to investigate the effect of mantle flow on the Earth's surface, imposing the kinematics predicted by plate reconstructions in global convection models has become common practice. Such models are valuable to investigate the effect of the mantle flow beneath the lithosphere on surface topography. Changes in surface topography due to lithospheric deformation are so far not part of top-down tectonic models in which plates are treated as rigid in traditional tectonic reconstructions. We introduce a new generation of geodynamic models that are based on tectonic reconstructions with deforming plates at both passive and convergent margins. These models allow us to investigate the relationships between lithospheric deformation and mantle flow, and their combined effects on surface topography. In traditional tectonic reconstructions, continents are represented as rigid blocks that either overlap or are separated by gaps in full-fit reconstructions. Reconstructions that include a global network of topological plate polygons avoid continental overlaps and gaps, but velocities are still derived on the basis of the Euler poles for rigid blocks. To resolve these issues, we developed a series of deforming plate models using the open source plate modeling software GPlates. For a given area, our methodology requires the relative motions between major rigid continental blocks, and a definition of the regions in which continental lithosphere deformed between these blocks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions is then used as a time-dependent surface boundary condition in global 3-D geodynamic models. To incorporate the continental lithosphere in our global models, we embed compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using the half-space cooling model. We also use this capacity to define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a new slab assimilation method in which the thermal structure of the slab, derived analytically, is progressively assimilated in the upper mantle into the dynamic models. This method not only improves the continuity of slabs in our models, but it also allows us to model flat slab segments that are particularly relevant for dynamic topography. This new generation of models allows us to analyse the contributions of continental deformation and of mantle flow to surface topography. We compare our results to geological and geophysical data, including stratigraphy, paleo-altimetry, paleo-environment and mantle tomography. This allows us to place constraints on key model parameters and to refine our knowledge of plate-mantle interactions during continental deformation.
On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics
NASA Astrophysics Data System (ADS)
Araceli Sanchez-Maes, Sophia
2018-01-01
Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.
Effects of tectonic plate deformation on the geodetic reference frame of Mexico
NASA Astrophysics Data System (ADS)
Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.
2013-05-01
Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.
A Simple Class Exercise on Plate Tectonic Motion.
ERIC Educational Resources Information Center
Bates, Denis E. B.
1990-01-01
Presented is an activity in which students construct a model of plate divergence with two sheets of paper to show the separation of two continental plates in a system of spreading ridges and faults. Diagrams and procedures are described. (CW)
Subduction hinge migration: The backwards component of plate tectonics
NASA Astrophysics Data System (ADS)
Stegman, D.; Freeman, J.; Schellart, W.; Moresi, L.; May, D.
2005-12-01
There are approximately 50 distinct segments of subduction zones in the world, of which 40% have oceanic lithosphere subducting under oceanic lithosphere. All of these ocean-ocean systems are currently experiencing hinge-rollback, with the exception of 2 (Mariana and Kermadec). In hinge-rollback, the surface trace of the suduction zone (trench) is moving in the opposite direction as the plate is moving (i.e. backwards). Coincidentally, the fastest moving plate boundary in the world is actually the Tonga trench at an estimated 17 cm/yr (backwards). Although this quite important process was recognized soon after the birth of plate tectonic theory (Elsasser, 1971), it has received only a limited amount of attention (Garfunkel, 1986; Kincaid and Olson, 1987) until recently. Laboratory models have shown that having a three dimensional experiment is essential in order to build a correct understanding of subduction. We have developed a numerical model with the neccessary 3-D geometry capable of investigating some fundamental questions of plate tectonics: How does hinge-rollback feedback into surface tectonics and mantle flow? What can we learn about the forces that drive plate tectonics by studying hinge-rollback? We will present a quantatitive analysis of the effect of the lateral width of subduction zones, the key aspect to understanding the nature of hinge-rollback. Additionally, particular emphasis has been put on gaining intuition through the use of movies (a 3-D rendering of the numerical models), illustrating the time evolution of slab interactions with the lower mantle as seen in such fields as velocity magnitude, strain rate, viscosity, as well as the toroidal and poloidal components of induced flow. This investigation is well-suited to developing direct comparisons with geological and geophysical observations such as geodetically determined hinge retreat rates, geochemical and petrological observations of arc volcanics and back-arc ridge basalts, timing and distribution of metamorphic core complexes in backarc basins under extension, paleostress observables such surface movements and block rotations, observations of seismic anistropy determined by shear wave splitting, and the emerging studies of regional tomographic models of seismic anistropy.
Plate tectonic model for the oligo-miocene evolution of the western Mediterranean
NASA Astrophysics Data System (ADS)
Cohen, Curtis R.
1980-10-01
This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.
NASA Astrophysics Data System (ADS)
Butterworth, N.; Steinberg, D.; Müller, R. D.; Williams, S.; Merdith, A. S.; Hardy, S.
2016-12-01
Porphyry ore deposits are known to be associated with arc magmatism on the overriding plate at subduction zones. While general mechanisms for driving magmatism are well established, specific subduction-related parameters linking episodes of ore deposit formation to specific tectonic environments have only been qualitatively inferred and have not been formally tested. We develop a four-dimensional approach to reconstruct age-dated ore deposits, with the aim of isolating the tectonomagmatic parameters leading to the formation of copper deposits during subduction. We use a plate tectonic model with continuously closing plate boundaries, combined with reconstructions of the spatiotemporal distribution of the ocean floor, including subducted portions of the Nazca/Farallon plates. The models compute convergence rates and directions, as well as the age of the downgoing plate through time. To identify and quantify tectonic parameters that are robust predictors of Andean porphyry copper magmatism and ore deposit formation, we test two alternative supervised machine learning methods; the "random forest" (RF) ensemble and "support vector machines" (SVM). We find that a combination of rapid convergence rates ( 100 km/Myr), subduction obliquity of 15°, a subducting plate age between 25-70 Myr old, and a location far from the subducting trench boundary (>2000 km) represents favorable conditions for porphyry magmatism and related ore deposits to occur. These parameters are linked to the availability of oceanic sediments, the changing small-scale convection around the subduction zone, and the availability of the partial melt in the mantle wedge. When coupled, these parameters could influence the genesis and exhumation of porphyry copper deposits.
Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface
NASA Astrophysics Data System (ADS)
Adams, A.; Thielmann, M.; Golabek, G.
2017-12-01
Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses and eclogitization.
History and Evolution of Precambrian plate tectonics
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2014-05-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.
NASA Astrophysics Data System (ADS)
Moore, W. B.; Simon, J. I.
2018-05-01
We propose that cooling via volcanic heat pipes may provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases.
Microplate and shear zone models for oceanic spreading center reorganizations
NASA Technical Reports Server (NTRS)
Engeln, Joseph F.; Stein, Seth; Werner, John; Gordon, Richard
1988-01-01
The kinematics of rift propagation and the resulting goemetries of various tectonic elements for two plates is reviewed with no overlap zone. The formation and evolution of overlap regions using schematic models is discussed. The models are scaled in space and time to approximate the Easter plate, but are simplified to emphasize key elements. The tectonic evolution of overlap regions which act as rigid microplates and shear zones is discussed, and the use of relative motion and structural data to discriminate between the two types of models is investigated. The effect of propagation rate and rise time on the size, shape, and deformation of the overlap region is demonstrated.
Self-consistent formation of continents on early Earth
NASA Astrophysics Data System (ADS)
Noack, Lena; Van Hoolst, Tim; Breuer, Doris; Dehant, Véronique
2013-04-01
In our study we want to understand how Earth evolved with time and examine the initiation of plate tectonics and the possible formation of continents on Earth. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life [1], and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), and may also depend on the biosphere. Earth is the only terrestrial planet (i.e. with a rocky mantle and iron core) in the solar system where long-term plate tectonics evolved. Knowing the factors that have a strong influence on the occurrence of plate tectonics allows for prognoses about plate tectonics on terrestrial exoplanets that have been detected in the past decade, and about the likelihood of these planets to harbour Earth-like life. For this purpose, planetary interior and surface processes are coupled via 'particles' as computational tracers in the 3D code GAIA [2,3]. These particles are dispersed in the mantle and crust of the modelled planet and can track the relevant rock properties (e.g. density or water content) over time. During the thermal evolution of the planet, the particles are advected due to mantle convection and along melt paths towards the surface and help to gain information about the thermo-chemical system. This way basaltic crust that is subducted into the silicate mantle is traced in our model. It is treated differently than mantle silicates when re-molten, such that granitic (felsic) crust is produced (similar to the evolution of continental crust on early Earth [4]), which is stored in the particle properties. We apply a pseudo-plastic rheology and use small friction coefficients (since an increased reference viscosity is used in our model). We obtain initiation of plate tectonics and self-consistent formation of pre-continents after a few Myr up to several Gyr - depending on the initial conditions and applied rheology. Furthermore, our first results indicate that continents can stabilize plate tectonics, analogous to the results obtained by [5]. The model will be further developed to treat hydration and dehydration of oceanic crust as well as subduction of carbonates to allow for a self-consistent 3D model of early Earth including a direct link between interior and atmosphere via both outgassing [6] and regassing. References [1] Ward, P.D. and Brownlee, D. (2000), Rare Earth, Springer. [2] Hüttig, C. and Stemmer, K. (2008), PEPI, 171(1-4):137-146. [3] Plesa, A.-C., Tosi, N. and Hüttig, C. (2013), in: Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences, IGI Global, 302-323. [4] Arndt, N.T. and Nisbet, E.G. (2012), Annu. Rev. Earth Planet. Sci., 40:521-549. [5] Rolf, T. and Tackley, P.J. (2011), GRL, 38:L18301. [6] Noack, L., Breuer, D. and Spohn, T. (2012), Icarus, 217(2):484-498.
Intermittent Granular Dynamics at a Seismogenic Plate Boundary.
Meroz, Yasmine; Meade, Brendan J
2017-09-29
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15} s^{-1}, and released intermittently at intervals >100 yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20 km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
Intermittent Granular Dynamics at a Seismogenic Plate Boundary
NASA Astrophysics Data System (ADS)
Meroz, Yasmine; Meade, Brendan J.
2017-09-01
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
CRUSTAL TECTONICS AND SEISMICITY OF THE MIDDLE EAST
NASA Astrophysics Data System (ADS)
Ghalib, H. A.; Gritto, R.; Sibol, M. S.; Herrmann, R. B.; Aleqabi, G. I.; Caron, P. F.; Wagner, R. A.; Ali, B. S.; Ali, A. A.
2009-12-01
The Arabian plate describes a geological entity and a dynamic system that has been in continuous interaction with the African plate to the west and south and the Eurasian plate to the north and east. The western and southern boundaries are distinguished by see floor spreading along the Gulf of Aden and Red Sea and transform faulting along the Dead Sea, whereas the northern and eastern boundaries are portrayed by compressional suture zones under thrusting the Turkish and Iranian plateaus. Despite this favorable juxtaposition of continental land masses and the plethora of national seismic networks in every country of the Middle East, the majority of published research on the Arabian plate and surrounding tectonic blocks still depends primarily on global seismographic stations and occasional local networks. Since 2005, we deployed a number of seismic stations, and more recently a five elements array, in close proximity to the northeastern boundary of the Arabian plate. The primary objective of the effort is to better understand the regional seismicity and seismotectonics of the Arabian plate and surrounding regions. To date over a terabyte of high quality 100 sps continuous three-component broadband data have been collected and being analyzed to derive models representative of the greater Middle East tectonic setting. This goal is, in part, achieved by estimating local and regional seismic velocity models using receiver function and surface wave dispersion analyses, and by using these models to obtain accurate hypocenter locations and event focal mechanisms. The resulting events distribution reveals a distinct picture of the interaction between the seismicity and tectonics of the region. The highest seismicity rate seems to be confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases again in the Bandar Abbas region. Spatial distribution of the events and stations provide thorough coverage of all the tectonic provinces in the region. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on recorded seismograms. Blockage or attenuation of some of the crustal body waves is observed along propagation paths crossing the Zagros-Bitlis zone. These findings are also in support of earlier tectonic models that suggest the existence of multiple parallel listric faults splitting off the main Zagros fault zone in east-west direction. Surface- and body wave results in support of these findings will be presented. Our initial structural models of the crust beneath north-eastern Iraq depict a thickness of 40-50 km in the foothills, which increases to 45-55 km beneath the Zagros-Bitlis zone.
Numerical Models of Alaskan Tectonics: A Review and Looking Ahead to a New Era of Research
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Freymueller, J. T.
2015-12-01
The Pacific-North American plate boundary in Alaska is in the current scientific spotlight, as a highlighted tectonic region for integrated scientific investigation. It is timely, therefore, to step back and examine the previous numerical modeling studies of Alaska. Reviewing the numerical models is valuable, as geodynamic modeling can be a predictive tool that can guide and target field studies, both geologic and geophysical. This review presents a comparison of the previous numerical modeling studies of the Alaska-Aleutian subduction zone, including the mainland and extending into northwestern Canada. By distinguishing between the model set-up, governing equations, and underlying assumptions, non-modelers can more easily understand under what context the modeling predictions can be interpreted. Several key features in the Alaska tectonic setting appear in all the models to have a first order effect on the resulting deformation, such as the plate margin geometry and Denali fault. In addition, there are aspects of the tectonic setting that lead to very different results depending how they are implemented into the models. For example, models which fix the slab velocity to surface plate motions predict lower mantle flow rates than models that allow the slab to steepen. Despite the previous modeling studies, many unanswered questions remain, including the formation of the Wrangell volcanics, the driver for motion in western and interior Alaska, and the timing and nature of slab deformation. A synthesis of this kind will be of value to geologists, geodeticists, seismologists, volcanologists, sedimentologists, geochemists, as well as geodynamicists.
Uplift of Zagros Mountains slows plate convergence
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2013-05-01
Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)
Global Tectonics of Enceladus: Numerical Model
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-10-01
Introduction: Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of 200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic process that could explain this paradox. Our hypotheses states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypotheses is presented in [2], [3] and[4].We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion is presented at the Fig.1 and includes:Subsidence of the 'lithosphere' of SPT.Flow of the matter in the mantle.Motion of plates adjacent to SPT towards the active regionMethods and results: The numerical model of processes presented is developed. It is based on the equations of continuous media..If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is 0.05 mmyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is 0.02 mmyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be 0.02 mmyr-1 for the Newtonian rheology.Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT does not have to be compressed, so the open "tiger stripes" could exist for long time. e suppose that it means the end of activity in the given region.
Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data
NASA Astrophysics Data System (ADS)
Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.
2014-12-01
Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and discuss the level of interplate and intraplate deformations in Africa.
A new GNSS velocity field for Fennoscandia and comparison to GIA models (Invited)
NASA Astrophysics Data System (ADS)
Kierulf, H. P.; Simpson, M. J.; Steffen, H.; Lidberg, M.
2013-12-01
In Fennoscandia, the process of Glacial Isostatic Adjustment (GIA) causes ongoing crustal deformation. The vertical and horizontal movements of the Earth can be measured to a high degree of precision using Global Navigation Satellite System (GNSS). The GNSS network in Fennoscandia has gradually been established since the early 1990s and today contains a dense network well suited for geophysical studies and especially GIA. We will present new velocity estimates for the Fennoscandian and North-European GNSS network using the processing package GAMIT/GLOBK. GNSS measurements have proved to be a good tool to constrain and validate GIA models. However, reference frame uncertainties, plate tectonics as well as intra-plate deformations might decontaminate the results. Different ITRFs have had large discrepancies, especially in the TZ-component, which have made the geophysical interpretation of GNSS results difficult. In GIA areas the uncertainties in the TZ component almost directly affect the height component which makes constraining of GIA models less reliable. Plate tectonics introduces large horizontal velocities which are hard to distinguish from horizontal GIA-induced velocities. We will present a new approach where our GNSS velocity field is directly realized in a GIA frame. With this approach, the effect of systematic errors in the reference frames and 'biasing' signal from the plate tectonics will be reduced to a minimum for our GIA results. Moreover, we are able to provide consistent GIA-free plate velocities for the Eurasian plate.
Plate Tectonics: A Paradigm under Threat.
ERIC Educational Resources Information Center
Pratt, David
2000-01-01
Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)
Plate Motions, Regional Deformation, and Time-Variation of Plate Motions
NASA Technical Reports Server (NTRS)
Gordon, R. G.
1998-01-01
The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.
Puzzling features of western Mediterranean tectonics explained by slab dragging
NASA Astrophysics Data System (ADS)
Spakman, Wim; Chertova, Maria V.; van den Berg, Arie.; van Hinsbergen, Douwe J. J.
2018-03-01
The recent tectonic evolution of the western Mediterranean region is enigmatic. The causes for the closure of the Moroccan marine gateway prior to the Messinian salinity crisis, for the ongoing shortening of the Moroccan Rif and for the origin of the seismogenic Trans-Alboran shear zone and eastern Betics extension are unclear. These puzzling tectonic features cannot be fully explained by subduction of the east-dipping Gibraltar slab in the context of the regional relative plate motion frame. Here we use a combination of geological and geodetic data, as well as three-dimensional numerical modelling of subduction, to show that these unusual tectonic features could be the consequence of slab dragging—the north to north-eastward dragging of the Gibraltar slab by the absolute motion of the African Plate. Comparison of our model results to patterns of deformation in the western Mediterranean constrained by geological and geodetic data confirm that slab dragging provides a plausible mechanism for the observed deformation. Our results imply that the impact of absolute plate motion on subduction is identifiable from crustal observations. Identifying such signatures elsewhere may improve the mantle reference frame and provide insights on subduction evolution and associated crustal deformation.
North-South contraction of the mojave block and strike-slip tectonics in southern california.
Bartley, J M; Glazner, A F; Schermer, E R
1990-06-15
The Mojave block of southern California has undergone significant late Cenozoic north-south contraction. This previously unappreciated deformation may account for part of the discrepancy between neotectonic and plate-tectonic estimates of Pacific-North American plate motion, and for part of the Big Bend in the San Andreas fault. In the eastern Mojave block, contraction is superimposed on early Miocene crustal extension. In the western Mojave block, contractional folds and reverse faults have been mistaken for extensional structures. The three-dimensional complexity of the contractional structures may mean that rigid-block tectonic models of the region based primarily on paleomagnetic data are unreliable.
A new plate tectonic concept for the eastern-most Mediterranean
NASA Astrophysics Data System (ADS)
Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.
2012-04-01
Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.
State of stress, faulting, and eruption characteristics of large volcanoes on Mars
NASA Technical Reports Server (NTRS)
Mcgovern, Patrick J.; Solomon, Sean C.
1993-01-01
The formation of a large volcano loads the underlying lithospheric plate and can lead to lithospheric flexure and faulting. In turn, lithospheric stresses affect the stress field beneath and within the volcanic edifice and can influence magma transport. Modeling the interaction of these processes is crucial to an understanding of the history of eruption characteristics and tectonic deformation of large volcanoes. We develop models of time-dependent stress and deformation of the Tharsis volcanoes on Mars. A finite element code is used that simulates viscoelastic flow in the mantle and elastic plate flexural behavior. We calculate stresses and displacements due to a volcano-shaped load emplaced on an elastic plate. Models variously incorporate growth of the volcanic load with time and a detachment between volcano and lithosphere. The models illustrate the manner in which time-dependent stresses induced by lithospheric plate flexure beneath the volcanic load may affect eruption histories, and the derived stress fields can be related to tectonic features on and surrounding martian volcanoes.
NASA Technical Reports Server (NTRS)
Toksoz, M. Nafi
1988-01-01
The long-term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate movements and intraplate deformation. The approach is to combine realistic modeling studies with analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also reported on briefly is progress in the use of the Global Positioning System to densify SLR observations in the Eastern Mediterranean. Reference is made to the previous annual report for a discussion of modeling results.
Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities
NASA Astrophysics Data System (ADS)
Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.
2015-05-01
The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.
Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1994-01-01
It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.
Plate Tectonic Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…
Continental tectonics in the aftermath of plate tectonics
NASA Technical Reports Server (NTRS)
Molnar, Peter
1988-01-01
It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.
The origin of strike-slip tectonics in continental rifts
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Pagli, C.; Yun, S. H.; Keir, D.; Wang, H.
2016-12-01
Although continental rifts are zones of lithospheric extension, strike-slip tectonics is also accommodated within rifts and its origin remains controversial. Here we present a combined analysis of recent seismicity, InSAR and GPS derived strain maps to reveal that the plate motion in Afar is accommodated primarily by extensional tectonics in all rift arms and lacks evidences of regional scale bookshelf tectonics. However in the rifts of central Afar we identify crustal extension and normal faulting in the central part of the rifts but strike-slip earthquakes at the rift tips. We investigate if strike-slip can be the result of Coulomb stress changes induced by recent dyking but models do not explain these earthquakes. Instead we explain strike-slips as shearing at the tips of a broad zone of spreading where extension terminates against unstretched lithosphere. Our results demonstrate that plate spreading can develop both strike-slip and extensional tectonics in the same rifts.
Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.
1983-01-01
Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
Learning Plate Tectonics Using a Pre-Analogy Step
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Sandoval, W. A.
2011-12-01
Previous research has shown that children tend to demonstrate lower performance on analogical reasoning tasks at a causal relations level compared to most adults (Gentner & Toupin, 1986). This tendency is an obstacle that geoscience educators must overcome because of the high frequency of analogies used in geoscience pedagogy. In particular, analog models are used to convey complex systems of non-everyday/non-observable events found in nature, such as plate tectonics. Key factors in successful analogical reasoning that have been suggested by researchers include knowledge of the causal relations in the base analog (Brown & Kane, 1988; Gentner, 1988; Gentner & Toupin, 1986), and development of learning strategies and metaconceptual competence(Brown & Kane, 1988). External factors, such as guiding cues and hints have been useful cognitive supports that help students reason through analogical problems (Gick & Holyoak, 1980). Cognitive supports have been seen by researchers to decrease processing demands on retrieval and working memory (Richland, Zur, & Holyoak, 2007). We observed third and fourth graders learning about plate tectonics beginning with a pre-analogy step-a cognitive support activity a student can do before working with an analogy to understand the target. This activity was designed to aid students in developing their understanding of object attributes and relations within an analog model so that more focus can be placed on mapping the corresponding higher-order relations between the base and target. Students learned targeted concepts of plate tectonics, as measured by pre to post gains on items adapted from the Geosciences Concept Inventory. Analyses of classroom interaction showed that students used the object attributes and higher-order relations highlighted in the pre-analogy activity as resources to reason about plate boundaries and plate movement during earthquakes.
The fate of water within Earth and super-Earths and implications for plate tectonics
2017-01-01
The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729
The fate of water within Earth and super-Earths and implications for plate tectonics.
Tikoo, Sonia M; Elkins-Tanton, Linda T
2017-05-28
The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.
A convective forecast experiment of global tectonics
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Giering, Ralf
2016-04-01
Modeling jointly the deep convective motions in the mantle and the deformation of the lithosphere in a self-consistent way is a long-standing quest, for which significant advances have been made in the late 1990's. The complexities used in lithospheric models are making their way into the models of mantle convection (density variations, pseudo-plasticity, elasticity, free surface), hence global models of mantle motions can now display tectonics at their surface, evolving self-consistantly and showing some of the most important properties of plate tectonics on Earth (boundaries, types of boundaries, plate sizes, seafloor spreading properties, continental drift). The goal of this work is to experiment the forecasting power of such convection models with plate-like behavior, being here StagYY (Tackley, 2008). We generate initial conditions for a 3D spherical model in the past (50Ma and younger), using models with imposed plate velocities from 200Ma. By doing this, we introduce errors in the initial conditions that propagate afterwards. From these initial conditions, we run the convection models free, without imposing any sort of motion, letting the self-organization take place. We compare the forecast to the present-day plate velocities and plate boundaries. To investigate the optimal parameterization, and also have a flavor of the sensitivity of the results to rheological parameters, we compute the derivatives of the misfit of the surface velocities relative to the yield stress, the magnitude of the viscosity jump at 660km and the properties of a weak crust. These derivates are computed thanks to the tangent linear model of StagYY, that is built through the automatic differentiation software TAF (Giering and Kaminski, 2003). References Tackley, P. J., Modeling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter. 171, 7-18 (2008). Giering, R., Kaminski, T., Applying TAF to generate efficient derivative code of Fortran 77-95 programs, PAMM 2, 54-57 (2003).
Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.
2017-12-01
The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.
Earthquakes and plate tectonics
Spall, H.
1977-01-01
An explanation is to be found in plate tectonics, a concept which has revolutionized thinking in the Earth sciences in the last 10 years. The theory of plate tectonics combines many of the ideas about continental drift (originally proposed in 1912 by Alfred Wegener in Germany) and sea-floor spreading (suggested originally by Harry Hess of Princeton University).
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Wu, J.; Suppe, J.
2017-12-01
Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau within the Nazca slab. These intra-slab velocity anomalies provide the most complete tomographic evidence to date in support the classic, but still controversial hypothesis of subducted, relatively buoyant oceanic lithosphere features along the Andean margin.
Plate Tectonics on Earth-like Planets: Implications for Habitability
NASA Astrophysics Data System (ADS)
Noack, L.; Breuer, D.
2011-12-01
Plate tectonics has been suggested to be essential for life (see e.g. [1]) due to the replenishment of nutrients and its role in the stabilization of the atmosphere temperature through the carbon-silicate cycle. Whether plate tectonics can prevail on a planet should depend on several factors, e.g. planetary mass, age of the planet, water content (at the surface and in the interior), surface temperature, mantle rheology, density variations in the mantle due to partial melting, and life itself by promoting erosion processes and perhaps even the production of continental rock [2]. In the present study, we have investigated how planetary mass, internal heating, surface temperature and water content in the mantle would factor for the probability of plate tectonics to occur on a planet. We allow the viscosity to be a function of pressure [3], an effect mostly neglected in previous discussions of plate tectonics on exoplanets [4, 5]. With the pressure-dependence of viscosity allowed for, the lower mantle may become too viscous in massive planets for convection to occur. When varying the planetary mass between 0.1 and 10 Earth masses, we find a maximum for the likelihood of plate tectonics to occur for planetary masses around a few Earth masses. For these masses the convective stresses acting at the base of the lithosphere are strongest and may become larger than the lithosphere yield strength. The optimum planetary mass varies slightly depending on the parameter values used (e.g. wet or dry rheology; initial mantle temperature). However, the peak in likelihood of plate tectonics remains roughly in the range of one to five Earth masses for reasonable parameter choices. Internal heating has a similar effect on the occurrence of plate tectonics as the planetary mass, i.e. there is a peak in the probability of plate tectonics depending on the internal heating rate. This result suggests that a planet may evolve as a consequence of radioactive decay into and out of the plate tectonics regime. References [1] Parnell, J. (2004): Plate tectonics, surface mineralogy, and the early evolution of life. Int. J. Astrobio. 3(2): 131-137. [2] Rosing, M.T.; D.K. Bird, N.H. Sleep, W. Glassley, and F. Albar (2006): The rise of continents - An essay on the geologic consequences of photosynthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 232 (2006) 99-11. [3] Stamenkovic, V.; D. Breuer and T. Spohn (2011): Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths. Submitted to Icarus. [4] Valencia, D., R.J. O'Connell and D.D. Sasselov (2007): Inevitability of plate tectonics on super-Earths. Astrophys. J. Let. 670(1): 45-48. [5] O'Neill, C. and A. Lenardic (2007). Geological consequences of super-sized Earths. GRL 34: 1-41.
NASA Technical Reports Server (NTRS)
Toksoz, M. Nafi
1987-01-01
The long term objective of this project is to interpret NASA's Crustal Dynamics measurements (SLR) in the Eastern Mediterranean region in terms of relative plate motions and intraplate deformation. The approach is to combine realistic modeling studies with an analysis of available geophysical and geological observations to provide a framework for interpreting NASA's measurements. This semi-annual report concentrates on recent results regarding the tectonics of Anatolia and surrounding regions from ground based observations. Also briefly reported on is progress made in using GPS measurements to densify SLR observations in the Eastern Mediterranean.
NASA Astrophysics Data System (ADS)
Hashima, A.; Matsu'Ura, M.
2006-12-01
We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate subduction and back-arc spreading is crucial to understand the development of back-ark spreading.
Plate tectonics of the Mediterranean region.
McKenzie, D P
1970-04-18
The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.
Escape tectonics and the extrusion of Alaska: Past, present, and future
Redfield, T.F.; Scholl, D. W.; Fitzgerald, P.G.; Beck, M.E.
2007-01-01
The North Pacific Rim is a tectonically active plate boundary zone parts of which may be characterized as a laterally moving orogenic stream. Crustal blocks are transported along large-magnitude strike-slip faults in western Canada and central Alaska toward the Aleutian-Bering Sea subduction zones. Throughout much of the Cenozoic, at and west of its Alaskan nexus, the North Pacific Rim orogenic Stream (NPRS) has undergone tectonic escape. During transport, relatively rigid blocks acquired paleomagnetic rotations and fault-juxtaposed boundaries while flowing differentially through the system, from their original point of accretion and entrainment toward the free face defined by the Aleutian-Bering Sea subduction zones. Built upon classical terrane tectonics, the NPRS model provides a new framework with which to view the mobilistic nature of the western North American plate boundary zone. ?? 2007 The Geological Society of America.
Filling in the juvenile magmatic gap: Evidence for uninterrupted Paleoproterozoic plate tectonics
NASA Astrophysics Data System (ADS)
Partin, C. A.; Bekker, A.; Sylvester, P. J.; Wodicka, N.; Stern, R. A.; Chacko, T.; Heaman, L. M.
2014-02-01
Despite several decades of research on growth of the continental crust, it remains unclear whether the production of juvenile continental crust has been continuous or episodic throughout the Precambrian. Models for episodic crustal growth have gained traction recently through compilations of global U-Pb zircon age frequency distributions interpreted to delineate peaks and lulls in crustal growth through geologic time. One such apparent trough in zircon age frequency distributions between ∼2.45 and 2.22 Ga is thought to represent a pause in crustal addition, resulting from a global shutdown of magmatic and tectonic processes. The ∼2.45-2.22 Ga magmatic shutdown model envisions a causal relationship between the cessation of plate tectonics and accumulation of atmospheric oxygen over the same period. Here, we present new coupled U-Pb, Hf, and O isotope data for detrital and magmatic zircon from the western Churchill Province and Trans-Hudson orogen of Canada, covering an area of approximately 1.3 million km2, that demonstrate significant juvenile crustal production during the ∼2.45-2.22 Ga time interval, and thereby argue against the magmatic shutdown hypothesis. Our data is corroborated by literature data showing an extensive 2.22-2.45 Ga record in both detrital and magmatic rocks on every continent, and suggests that the operation of plate tectonics continued throughout the early Paleoproterozoic, while atmospheric oxygen rose over the same time interval. We argue that uninterrupted plate tectonics between ∼2.45 and 2.22 Ga would have contributed to efficient burial of organic matter and sedimentary pyrite, and the consequent rise in atmospheric oxygen documented for this time interval.
NASA Astrophysics Data System (ADS)
van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.
2005-06-01
Geophysical arguments against plate tectonics in a hotter Earth, based on buoyancy considerations, require an alternative means of cooling the planet from its original hot state to the present situation. Such an alternative could be extensive flood volcanism in a more stagnant-lid like setting. Starting from the notion that all heat output of the Earth is through its surface, we have constructed two parametric models to evaluate the cooling characteristics of these two mechanisms: plate tectonics and basalt extrusion/flood volcanism. Our model results show that for a steadily (exponentially) cooling Earth, plate tectonics is capable of removing all the required heat at a rate of operation comparable to or even lower than its current rate of operation, contrary to earlier speculations. The extrusion mechanism may have been an important cooling agent in the early Earth, but requires global eruption rates two orders of magnitude greater than those of known Phanerozoic flood basalt provinces. This may not be a problem, since geological observations indicate that flood volcanism was both stronger and more ubiquitous in the early Earth. Because of its smaller size, Mars is capable of cooling conductively through its lithosphere at significant rates, and as a result may have cooled without an additional cooling mechanism. Venus, on the other hand, has required the operation of an additional cooling agent for probably every cooling phase of its possibly episodic history, with rates of activity comparable to those of the Earth.
Ensemble Kalman filter for the reconstruction of the Earth's mantle circulation
NASA Astrophysics Data System (ADS)
Bocher, Marie; Fournier, Alexandre; Coltice, Nicolas
2018-02-01
Recent advances in mantle convection modeling led to the release of a new generation of convection codes, able to self-consistently generate plate-like tectonics at their surface. Those models physically link mantle dynamics to surface tectonics. Combined with plate tectonic reconstructions, they have the potential to produce a new generation of mantle circulation models that use data assimilation methods and where uncertainties in plate tectonic reconstructions are taken into account. We provided a proof of this concept by applying a suboptimal Kalman filter to the reconstruction of mantle circulation (Bocher et al., 2016). Here, we propose to go one step further and apply the ensemble Kalman filter (EnKF) to this problem. The EnKF is a sequential Monte Carlo method particularly adapted to solve high-dimensional data assimilation problems with nonlinear dynamics. We tested the EnKF using synthetic observations consisting of surface velocity and heat flow measurements on a 2-D-spherical annulus model and compared it with the method developed previously. The EnKF performs on average better and is more stable than the former method. Less than 300 ensemble members are sufficient to reconstruct an evolution. We use covariance adaptive inflation and localization to correct for sampling errors. We show that the EnKF results are robust over a wide range of covariance localization parameters. The reconstruction is associated with an estimation of the error, and provides valuable information on where the reconstruction is to be trusted or not.
Maps, Plates, and Mount Saint Helens.
ERIC Educational Resources Information Center
Lary, Barbara E.; Krockover, Gerald H.
1987-01-01
Describes a laboratory activity on plate tectonics which focuses on the connection between plate tectonics and the different types of volcanoes. Provides questions for discussion and includes suggestions for extending the activity. (ML)
On the breakup of tectonic plates by polar wandering
NASA Technical Reports Server (NTRS)
Liu, H. S.
1973-01-01
The observed boundary system of the major tectonic plates on the surface of the earth lends fresh support to the hypothesis of polar wandering. A dynamic model of the outer shell of the earth under the influence of polar shift is developed. The analysis falls into two parts: (1) deriving equations for stresses caused by polar shifting; and (2) deducing the pattern according to which the fracture of the shell can be expected. For stress analysis, the theory of plates and shells is the dominant feature of this model. In order to determine the fracture pattern, the existence of a mathematical theorem of plasticity is recalled: it says that the plastic flow begins to occur when a function in terms of the differences of the three principal stresses surpasses a certain critical value. By introducing the figures for the geophysical constants, this model generates stresses which could produce an initial break in the lithosphere.
NASA Astrophysics Data System (ADS)
Kocaturk, Huseyin; Kumral, Mustafa
2016-04-01
Plate tectonics is one of the most illustrated theory and biggest geo-dynamic incident on earth surface and sub-surface for the earth science. Tectonic settlement, rock forming minerals, form of stratigraphy, ore genesis processes, crystal structures and even rock textures are all related with plate tectonic. One of the most known region of Turkey is Southern part of Uludaǧ and has been defined with three main lithological union. Region is formed with metamorphics, ophiolites and magmatic intrusions which are generally I-type granodiorites. Also these intrusion related rocks has formed and altered by high grade hydrothermal activity. This study approaches to understand bigger to smaller frameworks of these processes which between plate tectonics and fluid pathways. Geodynamic related fuzzy logic modelling is present us compact conclusion report about structural associations for the economic generations. Deformation structures and fluid pathways which related with plate tectonics progressed on our forearc system and each steps of dynamic movements of subducting mechanism has been seemed affect both hydrothermal stages and mineral variations together. Types of each deformation structure and mineral assemblages has characterized for flux estimations which can be useful for subsurface mapping. Geoanalytical results showed us clear characteristic stories for mutual processes. Determined compression and release directions on our map explains not only hydrothermal stages but also how succesion of intrusions changes. Our fuzzy logic models intersect sections of physical and chemical interactions of study field. Researched parameters like mafic minerals and enclave ratios on different deformation structures, cross sections of structures and relative existing sequence are all changes with different time periods like geochemical environment and each vein. With the combined informations in one scene we can transact mineralization processes about region which occurs in different stages such as subducting slabs, arc volcanism, subsurface flux estimates related orogenic processes, and other geochemical effects of plate movements. Keywords: Hydrothermal Stages, Flux Estimate, Southern Region of Uludaǧ, Subsurface Mapping
NASA Astrophysics Data System (ADS)
van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.
2003-12-01
The cooling of the terrestrial planets from their presumed hot initial states to the present situation has required the operation of one or more efficient cooling mechanisms. In the recent history of the Earth, plate tectonics has been responsible for most of the planetary cooling. The high internal temperature of the early Earth, however, prevented the operation of plate tectonics because of the greater inherent buoyancy of thicker oceanic lithosphere (basaltic crust and depleted mantle) produced from a hotter mantle. A similar argument is valid for Venus, and also for Mars. An alternative cooling mechanism may therefore have been required during a part of the planetary histories. Starting from the notion that all heat output of planets is through their surfaces, we have constructed two parametric models to evaluate the cooling characteristics of two cooling mechanisms: plate tectonics and basalt extrusion / flood volcanism. We have applied these models to the Earth, Mars and Venus for present-day and presumed early thermal conditions. Our model results show that for a steadily (exponentially) cooling Earth, plate tectonics is capable of removing all the required heat at a rate comparable to or even lower than its current rate of operation during its entire history, contrary to earlier speculations. The extrusion mechanism may have been an important cooling agent in the early Earth, but requires global eruption rates two orders of magnitude greater than those of known Phanerozoic flood basalt provinces. This may not be a problem, since geological observations indicate that flood volcanism was both stronger and more ubiquitous in the early Earth. Because of its smaller size, Mars is capable of cooling conductively through its lithosphere at significant rates. As a result may have cooled without an additional cooling mechanism during its entire history. Venus, on the other hand, has required the operation of an additional cooling agent for probably every cooling phase of its possibly episodic history, with rates of activity comparable to those of the Earth.
Bases of creation of new concept in global tectonics
NASA Astrophysics Data System (ADS)
Anokhin, Vladimir
2014-05-01
With the accumulation of new facts about the structure of the Earth existing plate paradigm is becoming more doubtful. In fact, it is supported by the opinion of the majority specialist-theorist interested in its preservation and substantial use of administrative resources. The author knows well what is totalitarianism, and regretfully sees signs of it in monopolistic domination of the world geotectonic «the only correct» plate tectonics theory. Scientists have been looking for the factual material in the field, most belong to the plate theory skeptical, to the extent that believe their own eyes more than books. Believing that science is a search for truth, not only grants, the author proposes to critically reconsider the position in modern geotectonic and look for a way out of the impasse. Obviously, if we are not satisfied with the existing paradigm, we should not be limited by its critics, and must seek an alternative concept, avoiding errors, for which we criticize plate tectonic. The new concept should be based on all the facts, using only the necessary minimum of modeling. Methodological principles of creation of the concept are presented to the author of the following: - strict adherence to scientific logic; - the constant application of the principle of Occam's razor; - ranking of existing tectonic information on groups, in descending order of reliability: 1) established facts 2) the facts to be checked 3) empirical generalizations 4) physical and other models, including the facts and their generalizations 5) theoretical constructions based on empirical generalizations and models 6) hypotheses arising from the grounded theoretical constructions 7) the concepts 8) ideas (Professor's theory or idea can cost less than a fact from a student). - generalization, rethinking the information according to the indicated rankings, including outside the boards paradigm; - establishment of boundary conditions of the action and the eligibility of the consequences of all newly created entity, strict adherence to these restrictions. In the new geotectonic, perhaps there is a place some synthesis with some provisions of the plate tectonic provided they are consistent with the above principles.
Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth
NASA Astrophysics Data System (ADS)
Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit
2017-09-01
The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.
Silurian to Early Carboniferous plate tectonic model of Central Europe
NASA Astrophysics Data System (ADS)
Golonka, Jan; Barmuta, Jan; Barmuta, Maria
2014-05-01
The presented plate tectonic model focuses on Silurian to Early Carboniferous evolution of Central Europe with special attention given to the Sudetes region (north and north-east part of the Bohemian Massif). During our studies, we tested alternative models focused on the position of the Armorican terranes, known as the Armorican Terrane Assembly (ATA) (e.g.: Matte, 2001) and tried to refine the existing reconstructions, which describe Armorica as an individual continent during the Late Silurian and Devonian (e.g. Lewandowski, 2003, Winchester, 2002). Our plate tectonic model depict that these small blocks were scattered along the northern margin of Gondwana, where they formed the "Armorican Spour" as suggested by Kroner and Romer (2013). The seaways were present between blocks. Because of the north dipping subduction zone along the southern margin of the Laurussia continent the back-arc basin and island arc were formed. The narrowing of the Rheic ocean led to the complicated collision of Gondwana and Laurussia. Three main stages of this event can be distinguished: (1) collision of the Armorican Spour with the Laurussian island arc, (2) back-arc basin closure, (3) final Gondwana and Laurussian collision. Those stages correlate well with Variscan Subduction Zone System proposed by Kroner and Romer (2013). Interactive modeling performed in GPlates, shows that the presented model is valid from kinematic and geometrical point of view. Kroner U., Romer R., L., 2013, Two plates - many subduction zones: the Variscan orogeny reconsidered. Gondwana Research, 24: 298-329. Lewandowski M., 2003, Assembly of Pangea: Combined paleomagnetic and paleoclimatic approach, Advances in Geophysics, 46: 199-236 Matte P., 2001, The Variscan collage and orogeny (480 290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13: 122¨C128. Winchester J., A., The Pace TMR Network Team, 2002, Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations, Tectonophysics, 360: 5-21
Extrusional Tectonics at Plate Corner: an Example in Northern Taiwan
NASA Astrophysics Data System (ADS)
Lu, C. Y.; Lee, J. C.; Li, Z.; Yeh, C. H.; Lee, C. A.
2015-12-01
In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter and opening of the Okinawa trough at plate corner.
Viscoelastic deformation near active plate boundaries
NASA Technical Reports Server (NTRS)
Ward, S. N.
1986-01-01
Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.
Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics
NASA Astrophysics Data System (ADS)
Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.
2012-12-01
MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields plate velocities and heat flux that are in good agreement with observations. The long-term thermal evolution of the Earth obtained with our model shows a slow monotonous decrease of mantle mean temperature, with a cooling rate of around 50-100 K per billion years, which is in good agreement with petrological and geochemical constraints. Heat flux and plate velocities show a more irregular evolution, because tectonic events, such as a continental breakup, give rise to abrupt changes in Earth's surface dynamics and heat loss. Therefore MACMA is a powerful tool to study in a systematic way the effect of local events (subduction initiation, continental breakup, ridge vanishing) on plate reorganizations and global surface dynamics.
Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures
NASA Astrophysics Data System (ADS)
Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.
1999-12-01
The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.
Edge-Driven Block Rotations Interpreted From New GPS Results: Papua New Guinea
NASA Astrophysics Data System (ADS)
Wallace, L.
2001-12-01
An ongoing discussion in plate tectonics involves whether microplate motions are driven by plate edge forces or by flow at the base of the lithosphere. We present results from a GPS network of 40 sites spanning much of the mainland of Papua New Guinea (PNG). Most of the sites are concentrated in the region of the active Finisterre arc-continent collision and have been observed on multiple campaigns from 1993-2001. Significant portions of the Ramu-Markham fault are locked, which has implications for seismic hazard assessment in the Markham Valley region. Additionally, we find that out-of-sequence thrusting is important in emplacement of the Finisterre arc terrane onto the PNG mainland. Site velocities derived from these GPS data have helped to delineate the major tectonic blocks in the region. We model site velocities by simultaneously dealing with rigid block rotation and elastic strain. We find that the mainland of PNG consists of four distinct tectonic plates: the Australian, South Bismarck and Woodlark plates (in agreement with previous studies), and a previously unrecognized New Guinea Highlands plate. The relative rotation poles for at least two of these plate pairs plot on their respective boundaries, indicating that microplate motion in PNG may be dominantly edge-driven, as predicted for this region by Schouten and Benes (1993).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... of 1983'' (or ``NAD 83''). The new realizations are NAD 83 (2011) epoch 2010.00 [for the North America and Caribbean tectonic plates], NAD 83 (MA11) epoch 2010.00 [for the Mariana tectonic plate] and NAD 83 (PA11) epoch 2010.00 [for the Pacific tectonic plate]. These three realizations supersede all...
NASA Astrophysics Data System (ADS)
Foley, B. J.; Driscoll, P. E.
2015-12-01
Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.
ERIC Educational Resources Information Center
Marques, Luis; Thompson, David
1997-01-01
This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)
Impact of GRM: New evidence from the Soviet Union
NASA Technical Reports Server (NTRS)
Mcnutt, M.
1985-01-01
Gravity information released by the Soviet Union allows the quantitative assessment of how the geopotential research mission (GRM) mission might effect the ability to use global gravity data for continental tectonic interpretation. The information is of an isostatic response spectra for eight individual tectonic units in the USSR. The regions examined include the Caroathians, Caucasus, Urals, Pamirs, Tien-Shan, Altal, Chersky Ridge, and East Siberian Platform. The 1 deg x 1 deg gravity data are used to calculate the admittances are used in two different sorts of tectonic studies of mountain belts in the USSR: (1) interpretation of isostatic responses in terms of plate models of compensation for mountainous terrain. Using geologic information concerning time of the orogeny, lithospheric plates involved, and polarity of subduction in collision zones, they convert the best-fitting flexural rigidity to an elastic plate thickness for the lithospheric plate inferred to underlie the mountains; the isostatic admittance functions is an attempt to directly model gravity and topography data for a few select regions in the Soviet Union. By knowing the value of the expected correlation between topography and gravity from the admittances, the Artemjev's map in mountainous areas can be calibrated, and the maps are converted back to Bouguer gravity. This procedure is applied to the Caucasus and southern Urals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com; Lantu,; Aswad, Sabrianto
Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). Themore » result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.« less
Layers and Fractures in Ophir Chasma
2015-11-05
Ophir Chasma forms the northern portion of Valles Marineris, and this image from NASA Mars Reconnaissance Orbiter spacecraft features a small part of its wall and floor. The wall rock shows many sedimentary layers and the floor is covered with wind-blown ridges, which are intermediate in size between sand ripples and sand dunes. Rocks protruding on the floor could be volcanic intrusions of once-molten magma that have pushed aside the surrounding sedimentary layers and "froze" in place. Images like this can help geologists study the formation mechanisms of large tectonic systems like Valles Marineris. (The word "tectonics" does not mean the same thing as "plate tectonics." Tectonics simply refers to large stresses and strains in a planet's crust. Plate tectonics is the main type of tectonics that Earth has; Mars does not have plate tectonics.) http://photojournal.jpl.nasa.gov/catalog/PIA20044
NASA Astrophysics Data System (ADS)
Hoeink, T.; Lenardic, A.; Jellinek, M.; Richards, M. A.
2011-12-01
One of the fundamental unresolved problems in Earth and planetary science is the generation of plate tectonics from mantle convection. Important achievements can be made when considering rheological properties in the context of mantle convection dynamics. Among these milestones are (1) a deeper understanding of the balance of forces that drive and resist plate motion and (2) the dynamic generation of narrow plate boundaries (that lead to a piecewise continuous surface velocity distribution). Extending classic plate-tectonic theory we predict a plate driving force due to viscous coupling at the base of the plate from fast flow in the asthenosphere. Flow in the asthenosphere is due to shear-driven contributions from an overriding plate and due to additional pressure-driven contributions. We use scaling analysis to show that the extent to which this additional plate-driving force contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces driving the motions of the Atlantic and Pacific plates. At the global scale of terrestrial planets, we use 3D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to demonstrate that a thin low-viscosity layer (asthenosphere) governs convective stresses imparted to the lithosphere. We find, consistent with theoretical predictions, that convective stresses increase for thinner asthenospheres. This result might eliminate the need for special weakening mechanisms to generate plate tectonics from mantle convection. Our results elucidate the role of the asthenosphere for plate tectonics on Earth, and also provide insights into the differences in tectonic styles between Earth and Venus.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Beavan, John; McCaffrey, Robert; Berryman, Kelvin; Denys, Paul
2007-01-01
The landmass of New Zealand exists as a consequence of transpressional collision between the Australian and Pacific plates, providing an excellent opportunity to quantify the kinematics of deformation at this type of tectonic boundary. We interpret GPS, geological and seismological data describing the active deformation in the South Island, New Zealand by using an elastic, rotating block approach that automatically balances the Pacific/Australia relative plate motion budget. The data in New Zealand are fit to within uncertainty when inverted simultaneously for angular velocities of rotating tectonic blocks and the degree of coupling on faults bounding the blocks. We find that most of the plate motion budget has been accounted for in previous geological studies, although we suggest that the Porter's Pass/Amberley fault zone in North Canterbury, and a zone of faults in the foothills of the Southern Alps may have slip rates about twice that of the geological estimates. Up to 5 mm yr-1 of active deformation on faults distributed within the Southern Alps <100 km to the east of the Alpine Fault is possible. The role of tectonic block rotations in partitioning plate boundary deformation is less pronounced in the South Island compared to the North Island. Vertical axis rotation rates of tectonic blocks in the South Island are similar to that of the Pacific Plate, suggesting that edge forces dominate the block kinematics there. The southward migrating Chatham Rise exerts a major influence on the evolution of the New Zealand plate boundary; we discuss a model for the development of the Marlborough fault system and Hikurangi subduction zone in the context of this migration.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; O'Neill, C.
2015-06-01
We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.
The many impacts of building mountain belts on plate tectonics and mantle flow
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent
2015-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Such an increase of stresses in the lithosphere can impact on plate tectonics and mantle dynamics. We show that mountain belts at plate boundaries increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, this changes the dynamic and kinematic surface conditions of the underlying flowing mantle. Ultimately, this modifies the pattern of mantle flow. This forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among these, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, or the initiation of subduction, the onset of obduction, for the lithosphere. In the mantle, such change in boundary condition redesigns the pattern of mantle flow and, consequently, the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere rests. Our results show that when collision occurs, the mantle flow is highly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) to a modification of the convection style. In turn, the transition between a 'free' convection (mobile lid) and an 'upset' convection (stagnant -or sluggish- lid) highly impacts the dynamics of the lithosphere at the surface of the Earth. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, a fact that may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
Greninger, Mark L.; Klemperer, Simon L.; Nokleberg, Warren J.
1999-01-01
The accompanying directory structure contains a Geographic Information Systems (GIS) compilation of geophysical, geological, and tectonic data for the Circum-North Pacific. This area includes the Russian Far East, Alaska, the Canadian Cordillera, linking continental shelves, and adjacent oceans. This GIS compilation extends from 120?E to 115?W, and from 40?N to 80?N. This area encompasses: (1) to the south, the modern Pacific plate boundary of the Japan-Kuril and Aleutian subduction zones, the Queen Charlotte transform fault, and the Cascadia subduction zone; (2) to the north, the continent-ocean transition from the Eurasian and North American continents to the Arctic Ocean; (3) to the west, the diffuse Eurasian-North American plate boundary, including the probable Okhotsk plate; and (4) to the east, the Alaskan-Canadian Cordilleran fold belt. This compilation should be useful for: (1) studying the Mesozoic and Cenozoic collisional and accretionary tectonics that assembled this continental crust of this region; (2) studying the neotectonics of active and passive plate margins in this region; and (3) constructing and interpreting geophysical, geologic, and tectonic models of the region. Geographic Information Systems (GIS) programs provide powerful tools for managing and analyzing spatial databases. Geological applications include regional tectonics, geophysics, mineral and petroleum exploration, resource management, and land-use planning. This CD-ROM contains thematic layers of spatial data-sets for geology, gravity field, magnetic field, oceanic plates, overlap assemblages, seismology (earthquakes), tectonostratigraphic terranes, topography, and volcanoes. The GIS compilation can be viewed, manipulated, and plotted with commercial software (ArcView and ArcInfo) or through a freeware program (ArcExplorer) that can be downloaded from http://www.esri.com for both Unix and Windows computers using the button below.
Effect of a weak layer at the base of an oceanic plate on subduction dynamics
NASA Astrophysics Data System (ADS)
Carluccio, Roberta; Kaus, Boris
2017-04-01
The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (<100) and a layer thickness of 30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.
Global tectonics and space geodesy.
Gordon, R G; Stein, S
1992-04-17
Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries \\m=~\\1 to 60 kilometers wide. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover \\m=~\\15 percent of Earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, is providing the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities averaged over millions of years.
Global tectonics and space geodesy
NASA Technical Reports Server (NTRS)
Gordon, Richard G.; Stein, Seth
1992-01-01
Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.
Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies
NASA Astrophysics Data System (ADS)
Rangin, Claude
2016-01-01
Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.
Development of the Plate Tectonics and Seismology markup languages with XML
NASA Astrophysics Data System (ADS)
Babaie, H.; Babaei, A.
2003-04-01
The Extensible Markup Language (XML) and its specifications such as the XSD Schema, allow geologists to design discipline-specific vocabularies such as Seismology Markup Language (SeismML) or Plate Tectonics Markup Language (TectML). These languages make it possible to store and interchange structured geological information over the Web. Development of a geological markup language requires mapping geological concepts, such as "Earthquake" or "Plate" into a UML object model, applying a modeling and design environment. We have selected four inter-related geological concepts: earthquake, fault, plate, and orogeny, and developed four XML Schema Definitions (XSD), that define the relationships, cardinalities, hierarchies, and semantics of these concepts. In such a geological concept model, the UML object "Earthquake" is related to one or more "Wave" objects, each arriving to a seismic station at a specific "DateTime", and relating to a specific "Epicenter" object that lies at a unique "Location". The "Earthquake" object occurs along a "Segment" of a "Fault" object, which is related to a specific "Plate" object. The "Fault" has its own associations with such things as "Bend", "Step", and "Segment", and could be of any kind (e.g., "Thrust", "Transform'). The "Plate" is related to many other objects such as "MOR", "Subduction", and "Forearc", and is associated with an "Orogeny" object that relates to "Deformation" and "Strain" and several other objects. These UML objects were mapped into XML Metadata Interchange (XMI) formats, which were then converted into four XSD Schemas. The schemas were used to create and validate the XML instance documents, and to create a relational database hosting the plate tectonics and seismological data in the Microsoft Access format. The SeismML and TectML allow seismologists and structural geologists, among others, to submit and retrieve structured geological data on the Internet. A seismologist, for example, can submit peer-reviewed and reliable data about a specific earthquake to a Java Server Page on our web site hosting the XML application. Other geologists can readily retrieve the submitted data, saved in files or special tables of the designed database, through a search engine designed with J2EE (JSP, servlet, Java Bean) and XML specifications such as XPath, XPointer, and XSLT. When extended to include all the important concepts of seismology and plate tectonics, the two markup languages will make global interchange of geological data a reality.
NASA Astrophysics Data System (ADS)
Stamenkovic, V.
2017-12-01
We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are suggested to be statistically more common around young stars in the outer disk of the Milky Way. Rocky super-Earths, undifferentiated planets, and still hypothetical carbon planets have the lowest plate yielding efficiencies found in our study. This work aids exoplanet characterization and helps explore the fundamental drivers of plate tectonics.
Geology is the Key to Explain Igneous Activity in the Mediterranean Area
NASA Astrophysics Data System (ADS)
Lustrino, M.
2014-12-01
Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.
Plate-tectonic boundary formation by grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, David
2015-04-01
Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.
Precise GPS/Acoustic Positioning of Seafloor Reference Points for Tectonic Studies
NASA Technical Reports Server (NTRS)
Spiess, F. N.; Chadwell, C.; Hildebrand, J. A.; Young, L. E.; Purcell, G. H., Jr.; Dragert, H.
1998-01-01
Global networks for crustal strain measurement provide important constraints for studies of tectonic plate motion and deformation. To date, crustal strain measurements have been possible only in terrestrial settings: on continental plates and island sites within oceanic plates.
Global organization of tectonic deformation on Venus
NASA Astrophysics Data System (ADS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-03-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.
Global organization of tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-01-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.
2013-12-01
The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.
NASA Astrophysics Data System (ADS)
Kerrich, Robert; Polat, Ali
2006-03-01
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to ˜ 350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone-granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to ˜ 2.7 Ga: Kenorland or Ur ˜ 2.7-2.4 Ga; Columbia ˜ 1.6-1.4 Ga; Rodinia ˜ 1100-750 Ma; and Pangea ˜ 230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological-geochemical-seismic records endorse the operation of plate tectonics since the early Archean.
NASA Astrophysics Data System (ADS)
Sleeper, Jonathan D.
This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
NASA Technical Reports Server (NTRS)
Bercovici, David
1995-01-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercovici, D.
1995-02-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less
NASA Astrophysics Data System (ADS)
Nishikawa, T.; Ide, S.
2014-12-01
There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and tectonic properties may be useful for seismic risk assessment.
Creep of phyllosilicates at the onset of plate tectonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiguet, Elodie; Reynard, Bruno; Caracas, Razvan
Plate tectonics is the unifying paradigm of geodynamics yet the mechanisms and causes of its initiation remain controversial. Some models suggest that plate tectonics initiates when the strength of lithosphere is lower than 20-200 MPa, below the frictional strength of lithospheric rocks (>700 MPa). At present-day, major plate boundaries such as the subduction interface, transform faults, and extensional faults at mid-oceanic ridge core complexes indicate a transition from brittle behaviour to stable sliding at depths between 10 and 40 km, in association with water-rock interactions forming phyllosilicates. We explored the rheological behaviour of lizardite, an archetypal phyllosilicate of the serpentinemore » group formed in oceanic and subduction contexts, and its potential influence on weakening of the lithospheric faults and shear zones. High-pressure deformation experiments were carried out on polycrystalline lizardite - the low temperature serpentine variety - using a D-DIA apparatus at a variety of pressure and temperature conditions from 1 to 8 GPa and 150 to 400 C and for strain rates between 10{sup -4} and 10{sup -6} s{sup -1}. Recovered samples show plastic deformation features and no evidence of brittle failure. Lizardite has a large rheological anisotropy, comparable to that observed in the micas. Mechanical results and first-principles calculations confirmed easy gliding on lizardite basal plane and show that the flow stress of phyllosilicate is in the range of the critical value of 20-200 MPa down to depths of about 200 km. Thus, foliated serpentine or chlorite-bearing rocks are sufficiently weak to account for plate tectonics initiation, aseismic sliding on the subduction interface below the seismogenic zone, and weakening of the oceanic lithosphere along hydrothermally altered fault zones. Serpentinisation easing the deformation of the early crust and shallow mantle reinforces the idea of a close link between the occurrence of plate tectonics and water at the surface of the Earth.« less
Plate motion changes drive Eastern Indian Ocean microcontinent formation
NASA Astrophysics Data System (ADS)
Whittaker, J. M.; Williams, S.; Halpin, J.; Wild, T.; Stilwell, J.; Jourdan, F.; Daczko, N. R.
2016-12-01
The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margin - several well-studied microcontinent calving events coincide in space and time with mantle plume activity, but the significance of plumes in driving microcontinent formation remains controversial, and a role for plate-driven processes has also been suggested. In 2011, our team discovered two new microcontinents in the eastern Indian Ocean, the Batavia and Gulden Draak microcontinents. These microcontinents are unique as they are the only surviving remnants of the now-destroyed or highly deformed Greater Indian margin and provide us with an opportunity to test existing models of microcontinent formation against new observations. Here, we explore models for microcontinent formation using our new data from the Eastern Indian Ocean in a plate tectonic reconstruction framework. We use Argon dating and paleontology results to constrain calving from greater India at 101-104 Ma. This region had been proximal to the active Kerguelen plume for 30 Myrs but we demonstrate that calving did not correspond with a burst of volcanic activity. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces. Changes in the relative motions between Indian and Australia led to increasing compressive forces along the long-offset Wallaby-Zenith Fracture Zone, which was eventually abandoned during the jump of the spreading ridge into the Indian continental margin.
Plate Tectonics: A Framework for Understanding Our Living Planet.
ERIC Educational Resources Information Center
Achache, Jose
1987-01-01
Discusses some of the events leading to the development of the theory of plate tectonics. Describes how seismic, volcanic, and tectonic features observed at the surface of the planet are now seen as a consequence of intense internal activity, and makes suggestions about their further investigation. (TW)
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution
NASA Astrophysics Data System (ADS)
Foley, Bradford J.; Driscoll, Peter E.
2016-05-01
Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.
Episodic plate tectonics on Venus
NASA Technical Reports Server (NTRS)
Turcotte, Donald
1992-01-01
Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.
Bourguignon, Thomas; Tang, Qian; Ho, Simon Y W; Juna, Frantisek; Wang, Zongqing; Arab, Daej A; Cameron, Stephen L; Walker, James; Rentz, David; Evans, Theodore A; Lo, Nathan
2018-04-01
Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared ∼235 Ma, ∼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.
The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics
NASA Astrophysics Data System (ADS)
Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.
2017-12-01
Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (<100) and a layer thickness of ˜30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.
Weathering on a stagnant lid planet: Prospects for habitability?
NASA Astrophysics Data System (ADS)
Foley, B. J.
2016-12-01
Plate tectonics plays a major role in the operation of the long term carbon cycle on Earth, which in turn buffers Earth's climate by regulating atmospheric CO2 levels. As a result, plate tectonics has long been considered to be essential for maintaining habitable conditions over geologic timescales. In particular, plate tectonics returns carbon to the mantle through subduction, allowing for long-lived CO2 degassing to the atmosphere, and plate tectonics sustains a large supply of fresh, weatherable rock at the surface through continual uplift, orogeny, and seafloor spreading. Without a large supply of fresh rock weathering can become supply-limited, where no climate regulating weathering feedback occurs. However, another mechanism for supplying fresh rock to the surface is through volcanism. Volcanism occurs on rocky planets, at least for some portion of their history, regardless of their mode of surface tectonics. In this presentation I assess whether a stagnant lid planet can avoid supply-limited weathering, and thus buffer its climate through the weathering feedback, when the supply of fresh rock is provided solely by volcanism. A simple analysis shows that the amount of CO2 in the mantle is critical for determining whether volcanic degassing overwhelms the supply of rock produced by eruptions, leading to supply-limited weathering and a hot climate, or not. Models of the coupled evolution of climate, mantle temperature, and volcanic rate are then used to determine how long a habitable climate could be maintained on a stagnant lid planet, and how different initial conditions influence this timescale. The results have important implications for the prospects for habitability of stagnant lid planets.
Eastern Indian Ocean microcontinent formation driven by plate motion changes
NASA Astrophysics Data System (ADS)
Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.
2016-11-01
The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.
Tectonic deformation in southern California
NASA Technical Reports Server (NTRS)
Jackson, David D.
1993-01-01
Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.
Tectonic Evolution of the Jurassic Pacific Plate
NASA Astrophysics Data System (ADS)
Nakanishi, M.; Ishihara, T.
2015-12-01
We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.
An Integrated View of Tectonics in the North Pacific Derived from GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J.; Marechal, A.; Larsen, C.; Perea Barreto, M. A.
2015-12-01
Textbooks show a simple picture of the tectonics of the North Pacific, with discrete deformation along the boundary between the Pacific and North American plates along the Aleutian megathrust and Fairweather/Queen Charlotte fault system. Reality is much more complex, with a pattern of broadly distributed deformation. This is in part due to a number of studies and initiatives (such as PBO) in recent years that have greatly expanded the density of GPS data throughout the region. We present an overview of the GPS data acquired and various tectonic interpretations developed over the past decade and discuss a current effort to integrate the available data into a regional tectonic model for Alaska and northwestern Canada. Rather than discrete plate boundaries, we observe zones of concentrated deformation where the majority of the relative plate motion is accommodated. Within these zones, there are major fault systems, such as the Fairweather-Queen Charlotte transform and the Aleutian megathrust, where most of the deformation occurs along a main structure, but often motion is instead partitioned across multiple faults, such as the fold-and-thrust belt of the eastern St. Elias orogen. In zones of particular complexity, such as the eastern syntaxis of the St. Elias orogen, the deformation is better described by continuum deformation than localized strain along crustal structures. Strain is transferred far inboard, either by diffuse deformation or along fault system such as the Denali fault, and outboard of the main zones of deformation. The upper plate, if it can be called such, consists of a number of blocks and deforming zones while the lower plate is segmented between the Yakutat block and Pacific plate and is also likely undergoing internal deformation.
Reducing risk where tectonic plates collide
Gomberg, Joan S.; Ludwig, Kristin A.
2017-06-19
Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.
ERIC Educational Resources Information Center
Landalf, Helen
1998-01-01
Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)
Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.
Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric
2018-05-01
Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.
Active NE-SW Compressional Strain Within the Arabian Plate
NASA Astrophysics Data System (ADS)
Floyd, M. A.; ArRajehi, A.; King, R. W.; McClusky, S.; Reilinger, R. E.; Douad, M.; Sholan, J.; Bou-Rabee, F.
2012-12-01
Motion of the Arabian plate with respect to Eurasia has been remarkably steady over more than 25 Myr as revealed by comparison of geodetic and plate tectonic reconstructions (e.g., McQuarrie et al., 2003, GRL; ArRajehi et al., 2010, Tectonics). While internal plate deformation is small in comparison to the rate of Arabia-Eurasia convergence, the improved resolution of GPS observations indicate ~ NE-SW compressional strain that appears to affect much of the plate south of latitude ~ 30°N. Seven ~ NE-SW oriented inter-station baselines all indicated shortening at rates in the range of 0.5-2 mm/yr, for the most part with 1-sigma velocity uncertainties < 0.4 mm/yr. Plate-scale strain rates exceed 2×10-9/yr. The spatial distribution of strain can not be resolved from the sparse available data, but strain appears to extend at least to Riyadh, KSA, ~ 600 km west of the Zagros Fold and Thrust Belt that forms the eastern, collisional boundary of the Arabian plate with Eurasia (Iran). Geodetic velocities in the plate tectonic reference frame for Arabia, derived from magnetic anomalies in the Red Sea (Chu and Gordon, 1998, GJI), show no significant E-W motion for GPS stations located along the Red Sea coast (i.e., geodetic and plate tectonic spreading rates across the Red Sea agree within their resolution), in contrast to sites in the plate interior and along the east side of the plate that indicate east-directed motions. In addition, NE-SW contraction is roughly normal to ~ N-S striking major structural folds in the sedimentary rocks within the Arabian Platform. These relationships suggest that geodetically observed contraction has characterized the plate for at least the past ~ 3 Myr. Broad-scale contraction of the Arabian plate seems intuitively reasonable given that the east and north sides of the plate are dominated by active continental collision (Zagros, E Turkey/Caucasus) while the west and south sides are bordered by mid-ocean ridge spreading (Red Sea and Gulf of Aden). While the dynamic processes responsible for the observed strain remain speculative, we are investigating models involving long-range effects of the Arabia-Eurasia collision, ridge-push along the Red Sea and Gulf of Aden, and gravitational spreading of the higher elevation Arabian Shield towards the lower elevation platform.
From Plate Tectonic to Continental Dynamics
NASA Astrophysics Data System (ADS)
Molnar, P. H.
2017-12-01
By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental tectonics, many of the questions that loomed large 3 or 4 decades ago remain controversial, such as at what depth in the lithosphere does the strength lie?, How do chemical differences between mantle lithosphere and asthenosphere manifest themselves in continental geodynamics?, or To what extent can mantle lithosphere be removed as part of convective flow?
On volcanism and thermal tectonics on one-plate planets
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1978-01-01
For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.
Plate tectonics, habitability and life
NASA Astrophysics Data System (ADS)
Spohn, Tilman; Breuer, Doris
2016-04-01
The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate weathering of possible land surfaces and a biosphere could set up a CO2 sink that would further stabilize the temperature. As long as the planet keeps degassing CO2 at a sufficient rate, CO2 recycling through the mantle may not be required. However, this would require a sufficiently oxidized planet early on. If not sufficiently oxidized during accretion and core formation, oxidization of the planet would require cycling of matter between surface and interior reservoirs. Oxidization of an initially reduced Earth interior with the help of plate tectonics has been cited as a possible mechanism to allow the building up of oxygen in the terrestrial atmosphere around 2.3Ga b.p. (e.g., Catling and Claire, 2005), a pre-requisite for more evolved eukaryotic life. The oxidization would diminish a sink in the oxygen budget of the atmosphere by lowering the rate of outgassing of chemically reducing gases from the interior. Clearly, plate tectonics is a mechanism more potent of keeping a planet habitable and allow evolution of the biosphere than alternative concepts such as crust delamination. Catling, DC, Claire DW (2005), EPSL, 237, 1-20 Elkins-Tanton, L (2015) AGU Fall Meeting Abstract Tosi, N et al. (2016) EGU Abstract
Multi-phase structural and tectonic evolution of the Andaman Sea Region
NASA Astrophysics Data System (ADS)
Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga
2017-04-01
We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the opening of the South China Sea to the east. Consequently, the obliquity of plate convergence along this margin increased, ultimately resulting in a change from minor strain partitioning to hyper oblique convergence and full strain partitioning by the mid-Miocene. Investigation into the effects of slab-steepening and dynamic subsidence in the Indochina region could be used as further tests of our proposed tectonic evolution of the Andaman Sea.
Extrusional Tectonics over Plate Corner: an Example in Northern Taiwan
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Li, Zhinuo; Lee, Ching-An; Yeh, Chia-Hung
2016-04-01
In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough.
The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.
NASA Astrophysics Data System (ADS)
Ulvrova, Martina; Brune, Sascha; Williams, Simon
2017-04-01
Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates persist until break-up is achieved and often reduce several tens of millions of years after continental separation. By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration during the transition from phase 1 to phase 2 induces elevated convergence rates at the opposite side of the continents. This leads to enhanced subduction velocities, e.g. between North America and the Farallon plate 200 million years ago, or to the closure of potential back-arc basins such as in the proto-Andean ranges of South America. Post-rift deceleration occurs when the global plate system re-equilibrates after the phase of enhanced stress during continental rupture. This phenomenon of a plate slow-down after mechanical rupture occurred in the real-world aftermath of Australia-Antarctica separation, South Atlantic opening, and North Atlantic break-up.
Geophysical Limitations on the Habitable Zone: Volcanism and Plate Tectonics
NASA Astrophysics Data System (ADS)
Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim
2016-04-01
Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophysical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate if the planet mass as well as the interior structure can set constraints on the occurrence of plate tectonics and outgassing, and therefore affect the habitable zone, using both parameterized evolution models [1] and mantle convection simulations [1,2]. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2), see also [3]. One-plate planets, however, may suffer strong volcanic limitations. The existence of a dense-enough CO2 atmosphere allowing for the carbon-silicate cycle and release of carbon at the outer boundary of the habitable zone may be strongly limited for planets: 1) without plate tectonics, 2) with a large planet mass, and/or 3) a high iron content. Acknowledgements This work has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and results within the collaboration of the COST Action TD 1308. References Noack, L., Rivoldini, A., and Van Hoolst, T.: CHIC - Coupling Habitability, Interior and Crust, INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. Hüttig, C. and Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids, PEPI, Vol 171, pp. 137-146, 2008. Noack, L. et al.: Constraints for planetary habitability from interior modeling, PSS, Vol. 98, pp. 14-29, 2014.
Mantle convection: concensus and queries (Augustus Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Ricard, Y.
2012-04-01
Thermal convection driven by surface cooling and internal heat production is the cause of endogenic activity of all planets, expressed as tectonic activity and volcanism for solid planets. The sluggish convection of the silicated mantle also controls the activity of the metallic core and the possibility of an active dynamo. A glimpse of the internal structure of Earth's mantle is provided by seismic tomography. However, both the limited resolution of seismic methods and the complexity of the relations between seismic velocities and the thermo-mechanical parameters (mostly temperature and density), leave to the geodynamicist a large degree of interpretation. At first order, a very simple model of mantle heterogeneities, only built from the paleogeographic positions of Cenozoic and Mesozoic slabs, explains the pattern and amplitude of Earth's plate motions and gravity field, while being in agreement with long wavelength tomography. This indicates that the mantle dynamics is mostly controlled by thermal anomalies and by the dynamics of the top boundary layer, the lithosphere. However, the presence of various complexities due to variations in elemental composition and to phase transitions is required by seismology, mineralogy and geochemistry. I will review how these complexities affect the dynamics of the transition zone and of the deep mantle and discuss the hypothesis on their origins, either primordial or as a consequence of plate tectonics. The rheologies that are used in global geodynamic models for the mantle and the lithosphere remain very simplistic. Some aspects of plate tectonics (e.g., the very existence of plates, their evolution, the dynamics of one-sided subductions...) are now reproduced by numerical simulations. However the rheologies implemented and their complexities remain only remotely related to that of solid minerals as observed in laboratories. The connections between the quantities measured at microscopic scale (e.g., mineralogy, grainsize, mechanisms of creeping, anisotropy, preferential shape orientations, water content...), their macroscopic averages, and the retroaction between them, are still unclear. The understanding of these relations would explain why Earth has plate tectonics while the other planets of the solar system, including her sister planet Venus, do not. As plate tectonics can be advocated to be a major ingredient for life to developp, we can speculate that a better understanding of the interaction between rheology and geodynamics would help us to estimate on what extrasolar planets including super earths, life might be expected.
NASA Technical Reports Server (NTRS)
Moore, W.; Schubert, Gerald; Sandwell, David T.
1992-01-01
Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.
Fundamentals studies in geodynamics
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1980-01-01
Research in geodynamics, seismology, and planetary quakes is presented. Terradynamics and plate tectonics are described using dynamic models. The early evolution of the Earth's mantle is also discussed.
A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries
NASA Astrophysics Data System (ADS)
Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar
2017-04-01
The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive margin sediments along its southern margin during the Tonian. The model depicts a sequential breakup of Rodinia, with Australia-Antarctica rifting first ( 800 Ma), Congo-São Francisco (and the Sahara Metacraton) second ( 750 Ma) and Kalahari third (700 Ma). Amazonia and West Africa rift later with the opening of the Iapetus Ocean from 600 Ma. We expect that this global model will assist in the development of future regional models for the Neoproterozoic, and that the production of this full-plate topological reconstruction will facilitate the investigation of controls on other earth systems, such as the possible role of volcanism on initiation of the Cryogenian, or the nature of mantle convection in the Neoproterozoic.
PyGPlates - a GPlates Python library for data analysis through space and deep geological time
NASA Astrophysics Data System (ADS)
Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar
2017-04-01
A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute plate motions, subduction zone kinematics, and mid-ocean ridge migration and orientation through deep time; to investigate the systematics of continental rift velocity evolution during Pangea breakup; and to make connections between kinematics of the Andean subduction zone and ore deposit formation. To support the numerical modelling community, pyGPlates facilitates the connection between tectonic surface boundary conditions contained within plate tectonic reconstructions (plate boundary configurations and plate velocities) and simulations such as thermo-mechanical models of lithospheric deformation and mantle convection. To support the development of web-based applications that can serve the wider geoscience community, we will demonstrate how pyGPlates can be combined with other open-source tools to serve alternative reconstructions together with a diverse array of reconstructed data sets in a self-consistent framework over the internet. PyGPlates is available to the public via the GPlates web site and contains comprehensive documentation covering installation on Windows/Mac/Linux platforms, sample code, tutorials and a detailed reference of pyGPlates functions and classes.
NASA Astrophysics Data System (ADS)
Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.
2014-12-01
The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.
NASA Astrophysics Data System (ADS)
Mazzotti, Stephane; Baratin, Laura-May; Chéry, Jean; Vernant, Philippe; Gueydan, Frédéric; Tahayt, Abdelilah; Mourabit, Taoufik
2017-04-01
In Western Mediterranean, the Betic-Alboran-Rif orocline accommodates the WNW-ESE convergence between the Nubia and Eurasia plates. Recent geodetic data show that present-day tectonics in northern Morocco and southernmost Spain are not compatible with this simple two-plate-convergence model: GPS observations indicate significant (2-4 mm/a) deviations from the expected plate motion, and gravity data define two major negative Bouguer anomalies beneath the Betic and south of the Rif, interpreted as a thickened crust in a state of non-isostatic equilibrium. These anomalous geodetic patterns are likely related to the recent impact of the sub-vertical Alboran slab on crustal tectonics. Using 2-D finite-element models, we study the first-order behavior of a lithosphere affected by a downward normal traction, representing the pull of a high-density body in the upper mantle (slab pull or mantle delamination). We show that a specific range of lower crust and upper mantle viscosities allow a strong coupling between the mantle and the base of the brittle crust, thus enabling (1) the efficient conversion of vertical movement (resulting from the downward traction) to horizontal movement and (2) shortening and thickening on the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to the Alboran slab pull, can explain the present-day abnormal tectonics and non-isostatic equilibrium in northern Morocco. Similar processes may be at play in the whole Betic-Alboran-Rif region, although the fast temporal evolution of the slab - upper plate interactions needs to be taken into account to better understand this complex system.
NASA Astrophysics Data System (ADS)
Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar
2013-03-01
models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.
On the relationship between tectonic plates and thermal mantle plume morphology
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1993-01-01
Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.
The Relation Between Plate Spreading Rate, Crustal Thickness and Axial Relief at Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Liu, Z.; Buck, W. R.
2017-12-01
Variations in axial valley relief and in faulting at plate spreading centers are clearly related to magma supply and axial lithospheric structure. Previous models that consider the interaction of magmatic dikes with lithospheric stretching do not successfully reproduce both of these trends. We present the first model that reproduces these trends by making simple assumptions about the partitioning of magma between dikes, gabbros and extrusives. A key concept is that dikes open not only in the brittle axial lithosphere but also into the underlying ductile crust, where they cool to form gabbro. The amount of gabbro so intruded depends on magma pressure that is related to axial relief. The deeper the valley the less magma goes into gabbros and the more magma is available for dikes to accommodate plate separation. We define the fraction of plate separation rate accommodated by dikes as M. If M<1 then part of the plate separation occurs as fault offset which deepens the axial valley. This axial deepening decreases the amount of magma go into gabbros and this increases M. If the valley reaches the depth where M =1 then the faulting ceases and the valley stays at that depth. However, even if M<1, the valley depth cannot increase without limit. Through a distributed pattern of tectonic faults, the valley depth reaches a maximum possible depth that depends on the thickness of the axial lithosphere. If M < 1, where the axial depth reaches this tectonic limit, then moderate to large offset faults can develop. If M = 1 before the depth reaches the tectonic limit, normal faults only develop in response to oscillations in magma supply and fault offset is proportional to the amount of extruded lava. We have derived analytic expressions relates axial lithospheric thickness (HL) and crustal thickness (Hc) to axial valley depth. We then used a 2D model numerical model with a fixed axial lithospheric structure to show that the analytic model predictions are reasonable. Finally, we describe themo-mechanical models that allow us to relate plate spreading rate and crustal thickness and to axial valley depth.
Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin
NASA Astrophysics Data System (ADS)
Kimura, G.; Hamahashi, M.
2015-12-01
Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to ~8 Ma due to the transference of subduction from the Pacific Plate to the Philippine Sea Plate, as opposed to the continuous subduction of the Phillipine Sea Plate with subduction erosion.
High-Resolution 3D P-Wave Velocity Model in the Trans-European Suture Zone in Poland
NASA Astrophysics Data System (ADS)
Polkowski, M.; Grad, M.; Ostaficzuk, S.
2014-12-01
Poland is located on conjunction of major European tectonic units - the Precambrian East European Craton and the Paleozoic Platform of Central and Western Europe. This conjunction is known as Trans-European Suture Zone (TESZ). Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and other methods: vertical seismic profiling, magnetic, gravity, magnetotelluric, thermal. Compilation of these studies allows creation of detailed, high-resolution 3D P-wave velocity model for entire Earth's crust in the area of Poland. Model provides detailed six layer sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated / crystalline crust and uppermost mantle. Continental suturing is a fundamental part of the plate tectonic cycle, and knowing its detailed structure allows understanding plate tectonic cycle. We present a set of crustal cross sections through the TESZ, illustrating differentiation in the structure between Precambrian and Wariscan Europe. National Science Centre Poland provided financial support for this work by NCN grant DEC- 2011/02/A/ST10/00284.
NASA Astrophysics Data System (ADS)
Booker, David; Clarke, Peter J.; Lavallée, David A.
2014-09-01
The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.
Long aftershock sequences within continents and implications for earthquake hazard assessment.
Stein, Seth; Liu, Mian
2009-11-05
One of the most powerful features of plate tectonics is that the known plate motions give insight into both the locations and average recurrence interval of future large earthquakes on plate boundaries. Plate tectonics gives no insight, however, into where and when earthquakes will occur within plates, because the interiors of ideal plates should not deform. As a result, within plate interiors, assessments of earthquake hazards rely heavily on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. Here, however, we show that many of these recent earthquakes are probably aftershocks of large earthquakes that occurred hundreds of years ago. We present a simple model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Aftershock sequences within the slowly deforming continents are predicted to be significantly longer than the decade typically observed at rapidly loaded plate boundaries. These predictions are in accord with observations. So the common practice of treating continental earthquakes as steady-state seismicity overestimates the hazard in presently active areas and underestimates it elsewhere.
First results of high-resolution modeling of Cenozoic subduction orogeny in Andes
NASA Astrophysics Data System (ADS)
Liu, S.; Sobolev, S. V.; Babeyko, A. Y.; Krueger, F.; Quinteros, J.; Popov, A.
2016-12-01
The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to 300 km shortening, the Earth's second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18°-35°S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (< 1km) 2D subduction models with application to Nazca-South America convergence. In particular, we will present the models focusing on the effect of friction reduction in the Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.
On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean
NASA Astrophysics Data System (ADS)
Boschman, L.; Van Hinsbergen, D. J. J.
2016-12-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.
On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean.
Boschman, Lydian M; van Hinsbergen, Douwe J J
2016-07-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate's birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of "Thalassa Incognita" that comprises the comprehensive Panthalassa Ocean surrounding Pangea.
NASA Astrophysics Data System (ADS)
Środa, Piotr
2010-07-01
The 2-D full waveform modelling of the mantle arrivals from the CELEBRATION 2000 profiles crossing the Carpathian orogen suggests two possible tectonic models for the collision of ALCAPA (Alpine-Carpathian-Pannonian) and the European Plate in the West Carpathians in southern Poland and Slovakia. Due to an oblique (NE-SW) convergence of plates, the character of the collision may change along the zone of contact of the plates: in the western part of the area an earlier collision might have caused substantial crustal shortening and formation of a crocodile-type structure, with the delaminated lower crust of ~100km length acting as a north-dipping reflecting discontinuity in the uppermost mantle. In the eastern part, a less advanced collision only involved the verticalization of the subducted slab remnant after a slab break-off. The lower crustal remnant of ~10km size in the uppermost mantle acts as a pseudo-diffractor generating observable mantle arrivals. Due to the similarity of synthetic data generated by both models, the question of the non-uniqueness of seismic data interpretation, that may lead to disparate tectonic inferences, is also discussed.
NASA Astrophysics Data System (ADS)
Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.
2010-12-01
Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro
2016-04-01
The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.
Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate
NASA Astrophysics Data System (ADS)
Yang, Ting; Moresi, Louis; Zhao, Dapeng; Sandiford, Dan; Whittaker, Joanne
2018-06-01
Northeast Asia underwent widespread rifting and magmatic events during the Cenozoic. The geodynamic origins of these tectonic events are often linked to Pacific plate subduction beneath Northeast Asia. However, the Japan Sea did not open until the late Oligocene, tens of millions of years after Pacific Plate subduction initiation in the Paleocene. Moreover, it is still not clear why the Baikal Rift Zone extension rate increased significantly after the late Miocene, while the Japan Sea opening ceased at the same time. Geodynamic models suggest these enigmatic events are related to the rapidly-aging Pacific Plate at the trench after Izanagi-Pacific spreading ridge subduction. Subduction of the young Pacific Plate delayed the Japan Sea opening during the Eocene while advection of the old Pacific Plate towards the trench increases seafloor age rapidly, allowing the Japan Sea to open after the early Miocene. The Japan Sea opening promotes fast trench retreat and slab stagnation, with subduction-induced wedge zone convection gradually increasing its extent during this process. The active rifting center associated with wedge zone convection upwelling also shifts inland-ward during slab stagnation, preventing further Japan Sea spreading while promoting the Baikal Rift Zone extension. Our geodynamic model provides a good explanation for the temporal-spatial patterns of the Cenozoic tectonic and magmatic events in Northeast Asia.
The Crustal and Mantle Velocity Structure in Central Asia from 3D Travel Time Tomography
2010-09-01
the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the...Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically
Crustal deformation: Earth vs Venus
NASA Technical Reports Server (NTRS)
Turcotte, D. L.
1989-01-01
It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.
On the breakup of tectonic plates by polar wandering
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1974-01-01
The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).
Slab dragging and the recent geodynamic evolution of the western Mediterranean plate boundary region
NASA Astrophysics Data System (ADS)
Spakman, Wim; Chertova, Maria V.; van den Berg, Arie P.; Thieulot, Cedric; van Hinsbergen, Douwe J. J.
2016-04-01
The Tortonian-Present geodynamic evolution of the plate boundary between North Africa and Iberia is characterized by first-order enigmas. This concerns, e.g., the diffuse tectonic activity of the plate boundary; the crustal thickening below the Rif; the closing of the northern Moroccan marine gateways prior to the Messinian Salinity Crisis; crustal extension of the central to eastern Betics; the origin and sense of motion of the large left-lateral Trans Alboran Shear Zone (TASZ) and Eastern Betic Shear Zone (EBSZ); and lithosphere delamination of the North African continental edge. Many explanations have been given for each of these seemingly disparate tectonic features, which invariably have been addressed in the plate tectonic context of the NW-SE relative plate convergence between the major plates since the Tortonian, mostly independently from each other. Usually there is no clear role for the subducted slab underlying the region, except for presumed rollback, either to SW or to the W, depending on the type of observations that require explanation. Here we integrate the dynamic role of the slab with the NW-SE relative plate convergence by 3-D numerical modelling of the slab evolution constrained by absolute plate motions (Chertova et al., JGR,2014 & Gcubed 2014). By combining observations and predictions from seismology, geology, and geodesy, with our numerical 3-D slab-mantle dynamics modelling, we developed a new and promising geodynamic framework that provides explanations of all noted tectonic enigmas in a coherent and connected way. From the Tortonian until today, we propose that mantle-resisted slab dragging combines with the NW-SE plate convergence across the (largely) unbroken plate boundary to drive the crustal deformation of the region. Slab dragging is the lateral transport, pushing or pulling, of slab through the mantle by the absolute motion of the subducting plate (Chertova et al., Gcubed, 2014). Because the slab is connected to both the Iberian and African lithosphere, both plates are dragging the slab by their shared ~NNE component of absolute plate motion, which in fact is invisible in the relative plate convergence frame that is usually adopted. Slab dragging induces mantle resistance that, we demonstrate by numerical modelling, leads in the region to differential lateral motion between the slab and African plate driving indentation of the Africa continental lithosphere leading to crustal shortening explaining the closure of Moroccan seaways and the thickening of the Rif crust. The differential motion also explains the TASZ and the transition from western Betics shortening to eastern Betics extension, both still active today. During Miocene westward slab rollback mantle-resisted slab dragging also provided the driving force of edge delamination of African lithosphere, we propose. These explanations of geological features are fully corroborates by an analysis of the GPS motion field in terms of the strain- and rotation rate fields using the method of Spakman and Nyst (2002), and the predicted crustal flow field. In particular, we derive from the GPS and geological data that the direction of African absolute motion is ~NNE and that the slab experiences at present negligible rollback.
Understanding Magnetic Anomalies and Their Significance.
ERIC Educational Resources Information Center
Shea, James H.
1988-01-01
Describes a laboratory exercise testing the Vine-Matthews-Morley hypothesis of plate tectonics. Includes 14 questions with explanations using graphs and charts. Provides a historical account of the current plate tectonic and magnetic anomaly theory. (MVL)
Seismicity of the Earth 1900–2010 Middle East and vicinity
Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.
2013-01-01
No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.
On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean
Boschman, Lydian M.; van Hinsbergen, Douwe J. J.
2016-01-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea. PMID:29713683
Venus magmatic and tectonic evolution
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Hansen, V. L.
1993-01-01
Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.
NASA Astrophysics Data System (ADS)
Albert, Gáspár; Szentpéteri, Krisztián
2017-04-01
Remotely sensed and digital map data are useful sources for regional structural analysis, including stress calculations. If the type of a given fault is determined and is considered as Andersonian, and rather juvenile instead of a reactivated one, the tectonic stress can be calculated for each of the fault segments (Albert et al. 2016). The North Arm of Sulawesi, a west-east-trending land strip of the irregular shaped Sulawesi Island, is actively deforming and the upper plate tectonic setting is quite complex in this region since it is situated above a triple junction of the Eurasian, Pacific and Australian plates. The stress currently acting in this region not only creates neotectonics but triggers subduction-related volcanism shifting from west to east on the peninsula. The volcanic centers - adjacent to transfer faults and the colliding plates at depth - appear to be the most productive areas for epithermal-porphyry mineralization systems of economic potential (Szentpéteri et al. 2015). In this work we demonstrate how the derived stress field model helps to understand the location and clustering of various mineralization types in the NAoS. We examine if this method is applicable for mineral prospectively assessments. References Albert, G., Barancsuk, Á., and Szentpéteri, K., 2016, Stress field modelling from digital geological map data: Geophysical Research Abstracts, v. 18, EGU2016-14565. Szentpéteri, K., Albert, G., and Ungvári, Z., Plate tectonic - and stress field - modeling of the North Arm of Sulawesi, Indonesia, to better understand distribution of mineral deposits styles., in Proceedings SEG 2015 I World Class Ore Deposits: Discovery to Recovery, Wrest Point Convention Centre, Hobart, Australia, September 27 - 30. 2015.
Tectonics and volcanism of Eastern Aphrodite Terra, Venus - No subduction, no spreading
NASA Technical Reports Server (NTRS)
Hansen, Vicki L.; Phillips, Roger J.
1993-01-01
Eastern Aphrodite Terra, a deformed region with high topographic relief on Venus, has been interpreted as analogous to a terrestrial extensional or convergent plate boundary. However, analysis of geological and structural relations indicates that the tectonics of eastern Aphrodite Terra is dominated by blistering of the crust by magma diapirs. The findings imply that, within this region, vertical tectonism dominates over horizontal tectonism and, consequently, that this region is neither a divergent nor a convergent plate boundary.
NASA Astrophysics Data System (ADS)
Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.
2016-12-01
Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.
NASA Astrophysics Data System (ADS)
Gomez, F. G.; Yassminh, R.; Cochran, W. J.; Reilinger, R. E.; Barazangi, M.
2015-12-01
An updated GPS velocity field along the Dead Sea Fault (DSF) provides a basis for assessing off-transform strain within the Sinai and Arabian plates along entire length of this left-lateral, continental transform. As one of the main tectonic elements in the eastern Mediterranean region, an improved kinematic view of the DSF elucidates the broader understanding of the regional tectonic framework, as well as contributes to refining the earthquake hazard assessment. Reconciling short-term (geodetic) measurements of crustal strain with neotectonic data on fault movements can yield insight into the mechanical and rheological properties of crustal deformation associated with transform tectonics. In addition to regional continuous GPS stations, this study assembles results from campaign GPS networks in Syria, Lebanon, and Jordan spanning more than a decade. 1-sigma uncertainties on velocities range from less than 0.4 mm/yr (continuous stations and older GPS survey sites) to about 1.0 mm/yr (newer survey sites). Analyses using elastic block models suggest slip rates of 4.0 - 5.0 mm/yr along the southern and central DSF and slip rates of 2.0 - 3.0 mm/yr along the northern DSF, and fault locking depths also vary along strike of the transform. Furthermore, the spatial distribution of GPS observations permits analyzing residual strains within the adjacent plates, after plate boundary strain is removed. A key observation is horizontal stretching within the Sinai plate, which may be related to pull by the subducted slab of the Sinai plate. Within the Arabian plate, areas of horizontal stretching generally correlate with locations of Quaternary volcanism.
The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…
NASA Technical Reports Server (NTRS)
Douglas, I.
1985-01-01
Any global view of landforms must include an evaluation of the link between plate tectonics and geomorphology. To explain the broad features of the continents and ocean floors, a basic distinction between the tectogene and cratogene part of the Earth's surface must be made. The tectogene areas are those that are dominated by crustal movements, earthquakes and volcanicity at the present time and are essentially those of the great mountain belts and mid ocean ridges. Cratogene areas comprise the plate interiors, especially the old lands of Gondwanaland and Laurasia. Fundamental as this division between plate margin areas and plate interiors is, it cannot be said to be a simple case of a distinction between tectonically active and stable areas. Indeed, in terms of megageomorphology, former plate margins and tectonic activity up to 600 million years ago have to be considered.
Teaching And Learning Tectonics With Web-GIS
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Sahagian, D. L.; Bodzin, A.; Teletzke, A. L.; Rutzmoser, S.; Cirucci, L.; Bressler, D.; Burrows, J. E.
2012-12-01
Tectonics is a new curriculum enhancement consisting of six Web GIS investigations designed to augment a traditional middle school Earth science curriculum. The investigations are aligned to Disciplinary Core Ideas: Earth and Space Science from the National Research Council's (2012) Framework for K-12 Science Education and to tectonics benchmark ideas articulated in the AAAS Project 2061 (2007) Atlas of Science Literacy. The curriculum emphasizes geospatial thinking and scientific inquiry and consists of the following modules: Geohazards, which plate boundary is closest to me? How do we recognize plate boundaries? How does thermal energy move around the Earth? What happens when plates diverge? What happens when plate move sideways past each other? What happens when plates collide? The Web GIS interface uses JavaScript for simplicity, intuition, and convenience for implementation on a variety of platforms making it easier for diverse middle school learners and their teachers to conduct authentic Earth science investigations, including multidisciplinary visualization, analysis, and synthesis of data. Instructional adaptations allow students who are English language learners, have disabilities, or are reluctant readers to perform advanced desktop GIS functions including spatial analysis, map visualization and query. The Web GIS interface integrates graphics, multimedia, and animation in addition to newly developed features, which allow users to explore and discover geospatial patterns that would not be easily visible using typical classroom instructional materials. The Tectonics curriculum uses a spatial learning design model that incorporates a related set of frameworks and design principles. The framework builds on the work of other successful technology-integrated curriculum projects and includes, alignment of materials and assessments with learning goals, casting key ideas in real-world problems, engaging students in scientific practices that foster the use of key ideas, uses geospatial technology, and supports for teachers in adopting and implementing GIS and inquiry-based activities.
Estimation of current plate motions in Papua New Guinea from Global Positioning System observations
NASA Astrophysics Data System (ADS)
Tregoning, Paul; Lambeck, Kurt; Stolz, Art; Morgan, Peter; McClusky, Simon C.; van der Beek, Peter; McQueen, Herbert; Jackson, Russell J.; Little, Rodney P.; Laing, Alex; Murphy, Brian
1998-06-01
Plate tectonic motions have been estimated in Papua New Guinea from a 20 station network of Global Positioning System sites that has been observed over five campaigns from 1990 to 1996. The present velocities of the sites are consistent with geological models in which the South Bismarck, Woodlark, and Solomon Sea Plates form the principal tectonic elements between the Pacific and Australian Plates in this region. Active spreading is observed on the Woodlark Basin Spreading Centre but at a rate that is about half the rate determined from magnetic reversals. The other major motions observed are subduction on the New Britain Trench, seafloor spreading across the Bismarck Sea Seismic Lineation, convergence across the Ramu-Markham Fault and left-lateral strike slip across the Papuan Peninsula. These motions are consistent with a 8.2° Myr-1 clockwise rotation of the South Bismarck Plate about a pole in the Huon Gulf and a rotation of the Woodlark Plate away from the Australian Plate. Second order deformation may also be occurring; in particular, Manus Island and northern New Ireland may be moving northward relative to the Pacific Plate at ˜5-8 mm yr-1 (significant at the 95% but not at the 99% confidence level) which may suggest the existence of a North Bismarck Plate.
NASA Astrophysics Data System (ADS)
Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.
2017-12-01
Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing thickness of the high-strained subduction channel and (2) an accumulation of fluid-rich materials that serve as an environment for episodic tremor and slip events assisted by tectonic shearing and fluid release and percolation.
Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico
NASA Technical Reports Server (NTRS)
Demets, Charles; Stein, Seth
1990-01-01
A model for the present-day motion of the Rivera plate relative to the North America, Cocos, and Pacific plates is derived using new data from the Pacific-Rivera rise and Rivera transform fault, together with new estimates of Pacific-Rivera motions. The results are combined with the closure-consistent NUVEL-1 global plate motion model of DeMets et al. (1990) to examine present-day deformation in southwestern Mexico. The analysis addresses several questions raised in previous studies of the Rivera plate. Namely, do plate motion data from the northern East Pacific rise require a distinct Rivera plate? Do plate kinematic data require the subduction of the Rivera plate along the seismically quiescent Acapulco trench? If so, what does the predicted subduction rate imply about the earthquake recurrence interval in the Jalisco region of southwestern Mexico?
Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault
NASA Technical Reports Server (NTRS)
Argus, Donald F.; Gordon, Richard G.; Demets, Charles; Stein, Seth
1989-01-01
The current motions of the African, Eurasian, and North American plates are examined. The problems addressed include whether there is resolvable motion of a Spitsbergen microplate, the direction of motion between the African and North American plates, whether the Gloria fault is an active transform fault, and the implications of plate circuit closures for rates of intraplate deformation. Marine geophysical data and magnetic profiles are used to construct a model which predicts about 4 mm/yr slip across the Azores-Gibraltar Ridge, and west-northwest convergence near Gibraltar. The analyzed data are consistent with a rigid plate model with the Gloria fault being a transform fault.
Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern
NASA Astrophysics Data System (ADS)
Fuchs, L.; Becker, T. W.
2017-12-01
How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface deformation is reduced significantly and mainly governed by the location of the up- and downwellings. VSWH thereby affects plate dynamics due to two main properties: the intensity of weakening with increasing strain and the strain healing rate. As both increase, mobility increases as well and strain becomes more localized at the downwellings.
Kimberlites in western Liberia - An overview of the geological setting in a plate tectonic framework
NASA Astrophysics Data System (ADS)
Haggerty, S. E.
1982-12-01
Evidence which includes Landsat images is presented for prolonged periods of tectonism, marginal to and extending within the intracratonic region of the West African platform. Also found are indications of intermittent, or perhaps even sustained activity, dating back to more than three billion years. The petrology and mineral chemistry of kimberlites, and their associated nodule suites in the present region, are broadly similar to those from kimberlite localities throughout the African continent, and should therefore be considered as part of a major province. Attention is drawn to the lineament control of kimberlites, and the coincidence of these lineaments with the basement fabric and with faults. The proposed interpretation for the distribution of West African kimberlites is in essential agreement with the intraplate and intracratonic model of Dawson (1970) and Sykes (1978), which calls upon the reactivation of paleofaults and sutures during plate tectonism.
NASA Astrophysics Data System (ADS)
Chen, Yi-Wei; Wu, Jonny; Suppe, John; Liu, Han-Fang
2016-04-01
Our understanding of the global plate tectonics is based mainly on seafloor spreading and hotspot data obtained from the present earth surface, which records the growth of present ocean basins. However, in convergent tectonic settings vast amounts of lithosphere has been lost to subduction, contributing to increasing uncertainty in plate reconstruction with age. However, subducted lithosphere imaged in seismic tomography provides important information. By analyzing subducted slabs we identify the loci of subduction and assess the size and shape of subducted slabs, giving better constrained global plate tectonic models. The Andean margin of South America is a classic example of continuous subduction up to the present day, providing an opportunity to test the global plate prediction that ~24×10e6 km2 (4.7% of earth surface) lithosphere has been subducted since ~80 Ma. In this study, we used 10 different global seismic tomographies and Benioff zone seismicity under South America. To identify slabs, we first compared all data sets in horizontal slices and found the subducted Nazca slab is the most obvious structure between the surface and 750 km depth, well imaged between 10°N and 30°S. The bottom of the subducted Nazca slab reaches its greatest depth at 1400 km at 3°N (Carnegie Andes) and gradually shallows towards the south with 900 km minimum depth at 30°S (Pampean Andes). To assess the undeformed length of subducted slab, we used a refined cross-sectional area unfolding method from Wu et al. (in prep.) in the MITP08 seismic tomography (Li et al., 2008). Having cut spherical-Earth tomographic profiles that parallel to the Nazca-South America convergence direction, we measured slab areas as a function of depth based on edges defined by steep velocity gradients, calculating the raw length of the slab by the area and dividing an assumed initial thickness of oceanic lithosphere of 100km. Slab areas were corrected for density based on the PREM Earth model (Dziewonski and Anderson, 1981). We found the unfolded length of the Nazca slab is 7000km at 5°N and gradually decreases to 4700 km at 30°S, with total area of ~24×10e6 km2. Finally, we imported our unfolded Nazca slab into Gplates software to reconstruct its tectonic evolution, using the Seton et al. (2012) and Gibbons et al. (2015) global plate model. We find that our unfolded base of the Nazca slab fits tightly against South America at ~80 Ma if the pre-deformed South America margin of McQuarrie (2002) is used. This close fit implies a plate reorganization at the South American margin, marking the beginning of Nazca subduction at ~80 Ma. This observation is in agreement with a beginning of Andian magmatism ~80 Ma, following a 80-100 Ma hiatus in magmatism (Haschke et al., 2002). This result illustrates the importance of subducted-slab constraints in convergent plate-tectonic reconstruction. Our study also provides tracers for mantle flow yielding Nazca slab sinking rates between 1.2 cm/yr and 1.6 cm/yr, which are similar to other global results.
From Geodynamics to Simplicity
NASA Astrophysics Data System (ADS)
Anderson, D. L.
2002-12-01
Mantle convection and plate tectonics are often thought as synonymous. Convection is sometimes treated as the driver or plate tectonics is viewed as simply a manifestation of mantle convection. Mantle plumes are regarded as supplying some of the elements missing in the plate tectonic and mantle convection paradigms, such as island chains, swells and large igneous provinces. An alternate view is motivated by Prigogine's concept of far-from-equilibrium self-organization ( SOFFE), not to be confused with Bak's self-organized criticality ( SOC) . In a SOFFE system the components interact, and the system is small compared to the outside world to which it is open. There must be multiple possible states and dissipation is important. Such a system is sensitive to small changes. Rayleigh-Benard convection in a container with isothermal walls is such a self-organizing system ; the driving bouyancy and the dissipation ( viscosity ) are in the fluid. In Marangoni convection the driving forces ( surface tension ) and dissipation are in the surface film and this organizes the surface and the underlying fluid. The mantle provides energy and matter to the interacting plate system but forces in the plates drive and dissipate the energy. Thus, plate tectonics may be a SOFFEE system that drives convection,as are systems cooled from above, in general. If so, plates will reorganize as boundary conditions change ; incipient plate boundaries will emerge as volcanic chains at tensile regions. Plates are defined as regions of lateral compression ( force chains ), rather than strength, and they are ephemeral. The plate system, rather than mantle viscosity, will modulate mantle cooling. The supercontinent cycle, with episodes of reorganization and massive magmatism, may be a manifestation of this far-from-equilibrium, driven from above, system. Geodynamics may be simpler than we think. Plate tectonics is certainly a more powerful concept once the concepts of rididity, elasticity, homogeneity, steady-state, equilibrium and uniformity are dropped or modified, as qualifiers of the system,as recommended in Occam's philosophy.
ERIC Educational Resources Information Center
Smith, Gary A.; Bermea, Shannon Belle
2012-01-01
Should instructors assume that students possess conceptual knowledge of plate tectonics when they reach a second college geoscience course? Five cohorts in a historical geology course over 5 y--a total of 149 students--completed an in-class assignment in which they drew sketches of plate boundaries with required annotations. Analysis of the…
Continental crust formation on early Earth controlled by intrusive magmatism
NASA Astrophysics Data System (ADS)
Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.
2017-05-01
The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.
Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.
2008-01-01
We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.
Continental crust formation on early Earth controlled by intrusive magmatism.
Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T
2017-05-18
The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.
Global plate motion frames: Toward a unified model
NASA Astrophysics Data System (ADS)
Torsvik, Trond H.; Müller, R. Dietmar; van der Voo, Rob; Steinberger, Bernhard; Gaina, Carmen
2008-09-01
Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called "absolute plate motions," describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a "hybrid" model for the time period from the assembly of Pangea (˜320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre-100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core-mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.
NASA Astrophysics Data System (ADS)
Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.
2017-09-01
The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.
Earthquake Potential in Myanmar
NASA Astrophysics Data System (ADS)
Aung, Hla Hla
Myanmar region is generally believed to be an area of high earthquake potential from the point of view of seismic activity which has been low compared to the surrounding regions like Indonesia, China, and Pakistan. Geoscientists and seismologists predicted earthquakes to occur in the area north of the Sumatra-Andaman Islands, i.e. the southwest and west part of Myanmar. Myanmar tectonic setting relative to East and SE Asia is rather peculiar and unique with different plate tectonic models but similar to the setting of western part of North America. Myanmar crustal blocks are caught within two lithospheric plates of India and Indochina experiencing oblique subduction with major dextral strike-slip faulting of the Sagaing fault. Seismic tomography and thermal structure of India plate along the Sunda subduction zone vary from south to north. Strong partitioning in central Andaman basin where crustal fragmentation and northward dispersion of Burma plate by back-arc spreading mechanism has been operating since Neogene. Northward motion of Burma plate relative to SE Asia would dock against the major continent further north and might have caused the accumulation of strain which in turn will be released as earthquakes in the future.
Kinematic reconstruction of the Caribbean region since the Early Jurassic
NASA Astrophysics Data System (ADS)
Bochman, Lydian; van Hinsbergen, Douwe; Torsvik, Trond; Spakman, Wim; Pindell, James
2014-05-01
The Caribbean region results from a complex tectonic history governed by the interplay of the North American, South American and (Paleo-)Pacific plates, between which the Caribbean plate evolved since the early Cretaceous. During its entire tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, which hampers a quantitative integration into the global circuit of plate motions. In addition, reconstructions of the region have so far not resulted in a first order kinematic description of the main tectonic units in terms of Euler poles and finite rotation angles. Here, we present an updated, quantitatively described kinematic reconstruction of the Caribbean region back to 200 Ma integrated into the global plate circuit, and implemented with GPlates free software. Our analysis of Caribbean tectonic evolution incorporates an extensive literature review. To constrain the Caribbean plate motion between the American continents, we use a novel approach that takes structural geological observations rather than marine magnetic anomalies as prime input, and uses regionally extensive metamorphic and magmatic phenomena such as the Great Arc of the Caribbean, the Caribbean Large Igneous Province (CLIP) and the Caribbean high-pressure belt as correlation markers. The resulting model restores the Caribbean plate back along the Cayman Trough and major strike-slip faults in Guatemala, offshore Nicaragua, offshore Belize and along the Northern Andes towards its position of origin, west of the North and South American continents in early Cretaceous time. We provide the paleomagnetic reference frame for the Caribbean region by rotating the Global Apparent Polar Wander Path into coordinates of the Caribbean plate interior, Cuba, and the Chortis Block. We conclude that a plate kinematic scenario for a Panthalassa/Pacific origin of Caribbean lithosphere leads to a much simpler explanation than a Proto-Caribbean/Atlantic origin. Placing our reconstruction in the most recent mantle reference frames shows that the CLIP erupted 2000-3000 km east of the modern Galápagos hotspot, and may not have been derived from the corresponding mantle plume. Finally, our reconstruction suggests that most if not all modern subduction zones surrounding the Caribbean plate initiated at transform faults, two of these (along the southern Mexican and NW South American margins) evolved diachronously as a result of migrating trench-trench-transform triple junctions.
Neogene Caribbean plate rotation and associated Central American tectonic evolution
NASA Technical Reports Server (NTRS)
Wadge, G.; Burke, K.
1983-01-01
A theoretical model of the opening of the Cayman Trough is developed on the basis of geological evidence from a wide area. It is proposed that strike slip motion began about 30 Myr ago and proceeded at a rate of 37 + or - 6 mm/yr for a total of 1100 km of relative plate displacement, and that Central America Underwent an anticlockwise rotation with internal plate deformation. Maps of the reconstructed motion are provided.
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Seton, Maria; Rolf, Tobias; Müller, R. Dietmar; Tackley, Paul J.
2013-04-01
The theory of plate tectonics theory has enabled possible the reconstruction of the ancient seafloor and paleogeography. Over 50 years of data collection and kinematic reconstruction efforts, plate models have improved significantly (Seton et al., 2012) although reconstructions of ancient seafloor are naturally limited by the limited preservation of of very old seafloor. It is challenging to reconstruct ancient ocean basins and associated plate boundaries for times earlier than 200 Ma, since seafloor of this age is not preserved. This means we can merely reconstruct only 5% of the history of the planet in this fashion. However, geodynamic models can now help evaluate how seafloor spreading may evolve over longer time periods, since recent developments of numerical models of mantle convection with pseudo-plasticity can generate long-term solutions that simulate a form of seafloor spreading (Moresi and Solomatov, 1998; Tackley, 2000a; Tackley, 2000b). The introduction of models of continental lithosphere further improves the quality of the predictions: the computed distribution of seafloor ages reproduces the consumption of young seafloor as observed on the present-day Earth (Coltice et al., 2012). The time-dependence of the production of new seafloor has long been debated and there is no consensus on how much it has varied in the past 150My, and how it could have fluctuated over longer time-scales. Using plate reconstructions, Parsons (1982) and Rowley (2002) proposed the area vs. age distribution of the seafloor could have experienced limited fluctuations in the past 150My while others suggest stronger variations would fit the observations equally well (Seton et al., 2009. Here we propose to investigate the global dynamics of seafloor spreading using state-of-the-art plate reconstructions and geodynamic models. We focus on the evolution of the distribution of seafloor ages because fundamental geophysical observations like mantle heat flow or sea level provide "ground-truth" for modeling this parameter. Both kinematic reconstructions and geodynamic models suggest the rate of production of new seafloor can vary by a factor of 3 over a Wilson cycle, with concomitant changes of the shape of the area vs. age distribution. Geodynamic models show seafloor production time-series contain fluctuations of time scales exceeding 500My that depend on the strength of the lithosphere and the amount of basal heating. References Coltice, N., Rolf, T., Tackley P.J., Labrosse, S., Dynamic causes of the relation between area and age of the ocean floor, Science 336, 335-338 (2012). Moresi, L., Solomatov, V., Mantle convection with a brittle lithosphere: Thoughts on the global tectonic style of the Earth and Venus, Geophys. J. 133, 669-682 (1998). Parsons, B., 1982, Causes and consequences of the relation between area and age of the ocean floor, J. of Geophys. Res. 87, 289-302 (1982). Rowley, D. B., History of Plate Creation 180 Ma to Present, Geol. Soc. of America Bull. 114, 927-933 (2002). Seton, M., Gaina, C., Müller, R.D., and Heine, C., Mid Cretaceous Seafloor Spreading Pulse: Fact or Fiction?, Geology, 37, 687-690 (2009). Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T.H., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., Chandler, M. (2012), Global continental and ocean basin reconstructions since 200 Ma, Earth Sci. Rev. 113, 212-270 (2012). Tackley, P.J., Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, part 1: Pseudoplastic yielding, Geoch. Geophys. Geosys. 1 (2000a). Tackley, P.J., Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, part 2: Strain weakening and asthenosphere, Geochem. Geophys. Geosys. 1, (2000b).
Seismic behaviour of mountain belts controlled by plate convergence rate
NASA Astrophysics Data System (ADS)
Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.
2018-01-01
The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.
Using Google Earth to Explore Multiple Data Sets and Plate Tectonic Concepts
NASA Astrophysics Data System (ADS)
Goodell, L. P.
2015-12-01
Google Earth (GE) offers an engaging and dynamic environment for exploration of earth science data. While GIS software offers higher-level analytical capability, it comes with a steep learning curve and complex interface that is not easy for the novice, and in many cases the instructor, to negotiate. In contrast, the intuitive interface of GE makes it easy for students to quickly become proficient in manipulating the globe and independently exploring relationships between multiple data sets at a wide range of scales. Inquiry-based, data-rich exercises have been developed for both introductory and upper-level activities including: exploration of plate boundary characteristics and relative motion across plate boundaries; determination and comparison of short-term and long-term average plate velocities; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions. Used successfully in undergraduate course settings, for TA training and for professional development programs for middle and high school teachers, the exercises use the following GE data sets (with sources) that have been collected/compiled by the author and are freely available for non-commercial use: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA, UNAVCO); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).
Incorporation of New and Old Tectonics Concepts Into a Modern Course in Tectonics.
ERIC Educational Resources Information Center
Hatcher, Robert D., Jr.
1983-01-01
Describes a graduate-level tectonics course which includes the historical basis for modern tectonics concepts and an in-depth review of pros/cons of plate tectonics. Tectonic features discussed include: ocean basins; volcanic arcs; continental margins; continents; orogenic belts; foreland fold and thrust belts; volcanic/plutonic belts of orogens;…
NASA Astrophysics Data System (ADS)
Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias
2016-04-01
The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.
Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile
NASA Technical Reports Server (NTRS)
Nelson, E. P.; Forsythe, R. D.
1988-01-01
The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.
The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.
ERIC Educational Resources Information Center
King, Chris
2000-01-01
Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)
NASA Astrophysics Data System (ADS)
Putirka, K. D.; Rarick, J.
2018-05-01
Many exoplanets have pyroxenite mantle mineralogies, which may impede plate tectonics, due higher mantle viscosities and lid yield strengths; majorite-rich transition zones on these may also prevent subducted slabs from reaching lower mantle depths.
Venusian tectonics: Convective coupling to the lithosphere?
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1987-01-01
The relationship between the dominant global heat loss mechanism and planetary size has motivated the search for tectonic style on Venus. Prior to the American and Soviet mapping missions of the past eight years, it was thought that terrestrial style plate tectonics was operative on Venus because this planet is approximately the size of the Earth and is conjectured to have about the same heat source content per unit mass. However, surface topography mapped by the altimeter of the Pioneer Venus spacecraft did not show any physiographic expression of terrestrial style spreading ridges, trenches, volcanic arcs or transform faults, although the horizontal resolution was questionable for detection of at least some of these features. The Venera 15 and 16 radar missions mapped the northern latitudes of Venus at 1 to 2 km resolution and showed that there are significant geographic areas of deformation seemingly created by large horizontal stresses. These same high resolution images show no evidence for plate tectonic features. Thus a fundamental problem for venusian tectonics is the origin of large horizontal stresses near the surface in the apparent absence of plate tectonics.
Improving global paleogeographic reconstructions since the Devonian using paleobiology
NASA Astrophysics Data System (ADS)
Cao, Wenchao; Zahirovic, Sabin; Williams, Simon; Flament, Nicolas; Müller, Dietmar
2017-04-01
Paleogeographic reconstructions are important to understand past eustatic and regional sea level change, the tectonic evolution of the planet, hydrocarbon genesis, and to constrain and interpret the dynamic topography predicted by time-dependent global mantle convection models. Several global paleogeographic compilations have been published, generally presented as static snapshots with varying temporal resolution and fixed spatial resolution. Published paleogeographic compilations are tied to a particular plate motion model, making it difficult to link them to alternative digital plate tectonic reconstructions. In order to address this issue, we developed a workflow to reverse-engineer reconstructed paleogeographies to their present-day coordinates and link them to any reconstruction model. Published paleogeographic compilations are also tied to a given dataset. We used fossil data from the Paleobiology Database to identify inconsistencies between fossils paleoenvironments and paleogeographic reconstructions, and to improve reconstructed terrestrial-marine boundaries by resolving these inconsistencies. We used the improved reconstructed paleogeographies to estimate the surface areas of global paleogeographic features (shallow marine environments, landmasses, mountains and ice sheets), to investigate the global continental flooding history since the late Paleozoic, which has inherent links to global eustasy as well as dynamic topography. Finally, we discuss the relationships between our modeled emerged land area and total continental area through time, continental growth models, and strontium isotope (87Sr/86Sr) signatures in ocean water. Our study highlights the flexibility of digital paleogeographic models linked to state-of-the-art plate tectonic reconstructions in order to better understand the interplay of continental growth and eustasy, with wider implications for understanding Earth's paleotopography, ocean circulation, and the role of mantle convection in shaping long-wavelength topography.
Upwarp of anomalous asthenosphere beneath the Rio Grande rift
Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.
1984-01-01
Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.
Seismicity of the Earth 1900-2010 Mexico and vicinity
Rhea, Susan; Dart, Richard L.; Villaseñor, Antonio; Hayes, Gavin P.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.
2011-01-01
Mexico, located in one of the world's most seismically active regions, lies on three large tectonic plates: the North American plate, Pacific plate, and Cocos plate. The relative motion of these tectonic plates causes frequent earthquakes and active volcanism and mountain building. Mexico's most seismically active region is in southern Mexico where the Cocos plate is subducting northwestward beneath Mexico creating the deep Middle America trench. The Gulf of California, which extends from approximately the northern terminus of the Middle America trench to the U.S.-Mexico border, overlies the plate boundary between the Pacific and North American plates where the Pacific plate is moving northwestward relative to the North American plate. This region of transform faulting is the southern extension of the well-known San Andreas Fault system.
How mantle slabs drive plate tectonics.
Conrad, Clinton P; Lithgow-Bertelloni, Carolina
2002-10-04
The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.
Kinematic signature of India/Australia plates break-up
NASA Astrophysics Data System (ADS)
Iaffaldano, G.; Bunge, H.
2008-12-01
The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi- rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.
Kinematic signature of India/Australia plates break-up
NASA Astrophysics Data System (ADS)
Iaffaldano, G.; Bunge, H.-P.
2009-04-01
The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi-rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.
Seismotectonics and crustal stress across the northern Arabian plate
NASA Astrophysics Data System (ADS)
yassminh, R.; Gomez, F. G.; Sandvol, E. A.; Ghalib, H. A.; Daoud, M.
2013-12-01
The region encompassing the collision of northern Arabia with Eurasia is a tectonically heterogeneous region of distributed deformation. The northern Arabia plate is bounded to the west by the subducting Sinai plate and the left-lateral Dead Sea transform. This complexity suggests that there are, multiple competing processes that may influence regional tectonics in northern Arabia and adjacent areas. Earthquake mechanisms provide insight into crustal kinematics and stress; however, reliable determination of earthquake source parameters can be challenging in a complex geological region, such as the continental collision zone between the Arabian and Eurasian plates. The goal of this study is to investigate spatial patterns of the crustal stress in the northern Arabian plate and surrounding area. The focal mechanisms used in this study are based on (1) first-motion polarities for earthquakes recorded by Syrian earthquake center during 2000-2011, and (2) regional moment tensors from broadband seismic data, from Turkey and Iraq. First motion focal mechanisms were assigned quality classifications based on the variation of both nodal planes. Regional moment tensor analysis can be significantly influenced by seismic velocity structure; thus, we have divided the study area into regions based on tectonic units. For each region, a specific velocity model is defined using waveform-modeling technique prior to the regional moment tensor inversion. The resulting focal mechanisms, combined with other previously published focal mechanisms for the study area, provide a basis for stress inversion analysis. The resulting deviatoric stress tensors show the spatial distribution of the maximum horizontal stress varies from NW-SE along the Dead Sea Fault to the N-S toward the east. We interpret this to reflect the eastward change from the transform to collision processes in northern Arabia. Along the Dead Sea Fault, transposition of the sigma-1 and sigma-2 to vertical and horizontal, respectively, may relate to influences from the subducted part of the Sinai plate. This change in regional stress is also consistent with extensional strains observed from GPS velocities.
Plate Tectonics and Continental Drift: Classroom Ideas.
ERIC Educational Resources Information Center
Stout, Prentice K.
1983-01-01
Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)
Junior Secondary School Students' Conceptions about Plate Tectonics
ERIC Educational Resources Information Center
Mills, Reece; Tomas, Louisa; Lewthwaite, Brian
2017-01-01
There are ongoing calls for research that identifies students' conceptions about geographical phenomena. In response, this study investigates junior secondary school students' (N = 95) conceptions about plate tectonics. Student response data was generated from semi-structured interviews-about-instances and a two-tiered multiple-choice test…
NASA Astrophysics Data System (ADS)
Louro Lourenço, Diogo; Rozel, Antoine; Ballmer, Maxim; Tackley, Paul
2017-04-01
It is now well established that compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. Mechanisms that have been found to facilitate plate tectonics include: water circulation [Regenauer-Lieb et al., Science 2001; Dymkova and Gerya, GRL 2013], presence of continents [Rolf and Tackley, GRL 2011], and melting [Korenaga, GJI 2009; Armann and Tackley, JGR 2012]. In a recent work by Lourenço et al. [EPSL 2016], it has been shown that Earth-like plate tectonics is more likely to occur in planets that can produce a crust of variable thickness and density through melt extraction from the mantle. The authors employed a first-order approximation by assuming that all magmatism was extrusive. However, volumes of intruded magmas are observed to be around 4- 9 times more present on Earth than erupted magmas [Crisp, J. Volcanol. Geotherm. Res. 1984]. Therefore, intrusive magmatism is thought to play a role in the dynamics of the lithosphere on Earth [Cawood et al., Geol. Soc. Am. Bull. 2013] and other Earth-like planets. We extend the work of Lourenço et al. [2016] by taking into account intrusive magmatism, and systematically investigate the effect of plutonism, in conjugation with eruptive volcanism. We present a set of 2D spherical annulus simulations of thermo-compositional global mantle convection using StagYY [Tackley, PEPI 2008], which uses a finite-volume discretization of the governing compressible anelastic Stokes equations. Tracers are used to track composition and to allow for the treatment of partial melting and crustal formation. A direct solver is employed to obtain a solution of the Stokes and continuity equations, using the PETSc toolkit. The heat equation is solved in two steps: advection is performed using the MPDATA scheme and diffusion is then solved implicitly using a PETSc solver. Results show that three common convection regimes are usually reached in simulations when using a visco-plastic rheology: stagnant-lid regime (a one-plate planet), episodic lid (where the lithosphere is unstable and frequently overturns into the mantle), and mobile-lid regime (similar to plate tectonics). At high intrusion efficiencies, we observe and characterise a new additional regime called here "plutonic-squishy lid". This regime is characterised by a set of strong plates separated by warm and weak regions due to plutonism. Eclogitic drippings and lithospheric delaminations often occur around these weak regions. These processes lead to significant surface velocities, even if subduction is not active. The location of plate boundaries is strongly time-dependent and mainly occurs in magma intrusion regions. This regime is also distinctive because it generates a thin lithosphere, which results in high conductive heat fluxes and lower internal temperatures when compared to a stagnant lid. The plutonic-squishy-lid regime has the potential to be applicable to the Archean Earth and Venus, as it combines elements of both protoplate tectonic and vertical tectonic models, such as horizontal plate motion and reprocessing of the lithosphere for the former, and lithospheric diapirism, volcanism, and basal delamination for the later.
Active deformation processes of the Northern Caucasus deduced from the GPS observations
NASA Astrophysics Data System (ADS)
Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury
2015-04-01
The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of the relative Arabian-Eurasian plate motion. This work is partly supported by the Russian Foundation for Basic Research under Grant No 14-45-01005 and № 14-05-90411.
An Intracratonic Record of North American Tectonics
NASA Astrophysics Data System (ADS)
Lovell, Thomas Rudolph
Investigating how continents change throughout geologic time provides insight into the underlying plate tectonic process that shapes our world. Researchers aiming to understand plate tectonics typically investigate records exposed at plate margins, as these areas contain direct structural and stratigraphic information relating to tectonic plate interaction. However, these margins are also susceptible to destruction, as orogenic processes tend to punctuate records of plate tectonics. In contrast, intracratonic basins are long-lived depressions located inside cratons, shielded from the destructive forces associated with the plate tectonic process. The ability of cratonic basins to preserve sedimentological records for extended periods of geologic time makes them candidates for recording long term changes in continents driven by tectonics and eustacy. This research utilizes an intracratonic basin to better understand how the North American continent has changed throughout Phanerozoic time. This research resolves geochronologic, thermochronologic, and sedimentologic changes throughout Phanerozoic time (>500 Ma) within the intracratonic Illinois Basin detrital record. Core and outcrop sampling provide the bulk of material upon which detrital zircon geochronologic, detrital apatite thermochronologic, and thin section petrographic analyses were performed. Geochronologic evidence presented in Chapters 2 and 3 reveal the Precambrian - Cretaceous strata of the intracratonic Illinois Basin yield three detrital zircon U-Pb age assemblages. Lower Paleozoic strata yield ages corresponding to predominantly cratonic sources (Archean - Mesoproterozoic). In contrast, Middle - Upper Paleozoic strata have a dominant Appalachian orogen (Neoproterozoic - Paleozoic) signal. Cretaceous strata yield similar ages to underlying Upper Paleozoic strata. We conclude that changes in the provenance of Illinois Basin strata result from eustatic events and tectonic forcings. This evidence demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.
Relative Motion of the Nazca (farallon) and South American Plates Since Late Cretaceous Time
NASA Astrophysics Data System (ADS)
Pardo-Casas, Federico; Molnar, Peter
1987-06-01
By combining reconstructions of the South American and African plates, the African and Antarctic plates, the Antarctic and Pacific plates, and the Pacific and Nazca plates, we calculated the relative positions and history of convergence of the Nazca and South American plates. Despite variations in convergence rates along the Andes, periods of rapid convergence (averaging more than 100 mm/a) between the times of anomalies 21 (49.5 Ma) and 18 (42 Ma) and since anomaly 7 (26 Ma) coincide with two phases of relatively intense tectonic activity in the Peruvian Andes, known as the late Eocene Incaic and Mio-Pliocene Quechua phases. The periods of relatively slow convergence (50 to 55 ± 30 mm/a at the latitude of Peru and less farther south) between the times of anomalies 30-31 (68.5 Ma) and 21 and between those of anomalies 13 (36 Ma) and 7 correlate with periods during which tectonic activity was relatively quiescent. Thus these reconstructions provide quantitative evidence for a correlation of the intensity of tectonic activity in the overriding plate at subduction zones with variations in the convergence rate.
NASA Astrophysics Data System (ADS)
Harris, L. B.; Bédard, J. H.
2015-05-01
Radar about Lakshmi Planum, Venus, shows regional transcurrent shear zones, folds and thrusts formed by indentation and lateral escape. The Archean Abitibi subprovince Canada shows identical structures suggesting a similar, non-plate tectonic origin.
ERIC Educational Resources Information Center
Hein, Annamae J.
2011-01-01
The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…
ERIC Educational Resources Information Center
Kàdàr, Anett; Farsang, Andrea
2017-01-01
International research into the nature, emergence, and development of geographical misconceptions is substantial. However, Hungarian educational research lags behind in exploring this phenomenon in detail. The present study identified some plate-tectonics-related misconceptions of three distinctive groups of students: ninth-grade secondary school…
NASA Astrophysics Data System (ADS)
Spakman, Wim; Chertova, Maria V.; van den Berg, Arie. P.; van Hinsbergen, Douwe J. J.
2018-05-01
In the version of this Article originally published, the author list and journal name were incorrect in ref. 23, the reference should have read: `Neres, M. et al. Lithospheric deformation in the Africa-Iberia plate boundary: improved neotectonic modeling testing a basal-driven Alboran plate. J. Geophys. Res. Solid Earth 121, 6566-6596 (2016).' This has been corrected in the online versions.
NASA Astrophysics Data System (ADS)
Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro
2015-04-01
The Kanto basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the collision of the Izu-Bonin arc with the Japanese island arc. Geomorphological, geological, and thermochronological data on long-term vertical movements over the last 1 My suggest that subsidence initially affected the entire Kanto basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modelled the tectonic evolution of the Kanto basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the arc-arc collision process has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following a change in plate motion. Observed changes in the subsidence/uplift pattern are better explained by scenario (2), suggesting that recent (<1 My) deformation in the Kanto basin shows a lag in crustal response to the shift in plate motion. We also calculated recent stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.
NASA Astrophysics Data System (ADS)
Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro
2016-06-01
The Kanto Basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the repeated collision of the Izu-Bonin arc fragments with the Japanese island arc. Geomorphological, geological, and thermochronological data on vertical movements over the last 1 My suggest that subsidence initially affected the entire basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modeled the tectonic evolution of the Kanto Basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the latest collision of the Izu Peninsula block has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following the shift in plate motion. Observed changes in the uplift/subsidence pattern are better explained by scenario (2), suggesting that recent (< 1 My) deformation in the Kanto Basin shows a lag in crustal response to the plate motion shift. We also calculated stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.
Earth Evolution and Dynamics (Arthur Holmes Medal Lecture)
NASA Astrophysics Data System (ADS)
Torsvik, Trond H.
2016-04-01
While physicists are fantasizing about a unified theory that can explain just about everything from subatomic particles (quantum mechanics) to the origin of the Universe (general relativity), Darwin already in 1858 elegantly unified the biological sciences with one grand vision. In the Earth Sciences, the description of the movement and deformation of the Earth's outer layer has evolved from Continental Drift (1912) into Sea-Floor Spreading (1962) and then to the paradigm of Plate Tectonics in the mid-to-late 1960s. Plate Tectonics has been extremely successful in providing a framework for understanding deformation and volcanism at plate boundaries, allowed us to understand how continent motions through time are a natural result of heat escaping from Earth's deep interior, and has granted us the means to conduct earthquake and volcanic hazard assessments and hydrocarbon exploration, which have proven indispensable for modern society. Plate Tectonics is as fundamentally unifying to the Earth Sciences as Darwin's Theory of Evolution is to the Life Sciences, but it is an incomplete theory that lacks a clear explanation of how plate tectonics, mantle convection and mantle plumes interact. Over the past decade, however, we have provided compelling evidence that plumes rise from explicit plume generation zones at the margins of two equatorial and antipodal large low shear-wave velocity provinces (Tuzo and Jason). These thermochemical provinces on the core-mantle boundary have been stable for at least the last 300 million years, possibly the last 540 million years, and their edges are the dominant sources of the plumes that generate large igneous provinces, hotspots and kimberlites. Linking surface and lithospheric processes to the mantle is extremely challenging and is only now becoming feasible due to breakthroughs in the estimation of ancient longitudes before the Cretaceous, greatly improved seismic tomography, recent advances in mineral physics, and new developments in our understanding of the dynamics of true polar wander. Dramatic improvements in computational capacity and numerical methods that efficiently model mantle flow while incorporating surface tectonics, plumes, and subduction, have emerged to facilitate further study - We are now capitalizing on these recent advances so as to generate a new Earth model that links plate tectonics with shallow and deep mantle convection through time, and which includes elements such as deeply subducted slabs and stable thermochemical piles with plumes that rise from their edges. It is still unclear, though, why lower mantle structures similar to today would have existed since the Early Phanerozoic (540 Ma), and perhaps for much longer time. Could large-scale upwellings act as an anchor for mantle structure that also controls where downward flow and subduction occurs? Or could it be that subduction keeps itself in place? These are open questions, and at the moment we do not even know with certainty whether Tuzo and Jason were spatially stable for much longer than 300 Myr; we can only state that their stability before Pangea formed is consistent with palaeomagnetic and geological data, but is not necessarily required.
Thermal Evolution of the Earth from a Plate Tectonics Point of View
NASA Astrophysics Data System (ADS)
Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.
2011-12-01
Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.
NASA Astrophysics Data System (ADS)
Niviere, B.; Backé, G.
2006-12-01
The tectonic evolution of the Central Andes is a consequence of the relative convergence between the Nazca and the South American plates. The Neuquén basin is located in the southernmost part of the Central Andes, between latitudes 32°S and 40°S. The present day geometry of the basin has been inherited from different compressive pulses, separated by times of relative tectonic quiescence since the late Cretaceous. The complex tectonic evolution of the area has often been explained by changes in the geometry of the subducted plate. The last broad scale tectonic event in the Neuquén basin is the Miocene compressive stage referred to as the Quechua phase. The tectonic evolution of the outer part of the Neuquén Basin from the late Miocene onwards is still a matter of debate. For instance, strain partitioning has been described in the inner part of the basin, which corresponds to the modern arc area close to the Chile Argentina border. The strain regime in the foreland between 35°S and 37°S is more uncertain. Extensional tectonic features have been described in different areas of the basin, leading to the formulation of a possible orogenic collapse in response to the steepening of the oceanic slab that followed a late Miocene shallow subduction. This model accounts for the occurrence of large Pleistocene to Quaternary back-arc volcanism in the Neuquén basin. However, field structural data and borehole breakout analysis strongly support on-going compression in the basin. Our study is based on the morphostructural analysis of remote sensing data (satellite and digital elevation model images) complemented by field work. Here we show that strike-slip faulting and localized extension in the outer zone of the basin is coeval with active thrusting and folding. This can be explained by strain partitioning or segmentation processes due to the oblique convergence between the Nazca and the South American plates.
Fossil slabs attached to unsubducted fragments of the Farallon plate.
Wang, Yun; Forsyth, Donald W; Rau, Christina J; Carriero, Nina; Schmandt, Brandon; Gaherty, James B; Savage, Brian
2013-04-02
As the Pacific-Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My.
Plate tectonics and hotspots: the third dimension.
Anderson, D L; Tanimoto, T; Zhang, Y S
1992-06-19
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.
Origin of the Dongsha Event in the South China Sea
NASA Astrophysics Data System (ADS)
Xie, Zhiyuan; Sun, Longtao; Pang, Xiong; Zheng, Jinyun; Sun, Zhen
2017-12-01
Post-rift tectonic activities have been widely observed in the northern continental margin of the South China Sea, especially during the late Miocene. Large numbers of faults became active. Unconformities, uplift of faulted blocks, sequence tilting, erosion along the Dongsha massif and canyon incision were also discriminated at this stage in the Pearl River Mouth basin (PRMB) and the area to the east. This tectonism has been named Dongsha Event. A number of hypotheses have been put forward to explain the mechanism of the Dongsha Event, such as high-velocity lower crustal flow, magmatic underplating, and arc-continent collision. To investigate the tectonic dynamics, sequence contact relationships, fault activities, and magmatism were analyzed along large numbers of seismic profiles that cover the eastern PRMB and Southwest Taiwan Basin. The timing, affected regions, and differences in the intensity of tectonic deformation were assessed, upon which the plate bending model was favored. In order to check the reasonableness of plate bending model, effective elastic thickness and other geodynamic parameters were calculated constrained by uplift area width and regarding the trench as sediment filling. A maximum Te value of 27 km and a minimum value of 4 km were obtained. Integrating with the former stress field calculation, we conclude that the Dongsha Event was mainly affected by subduction and collision of the South China Sea toward the Philippine Sea plate. This event commenced at about 10 Ma and peaked at around 3.6 Ma. Although the high effective elastic thickness required is a problem to be addressed, this research provides by far the most comprehensive evidences to the mechanism of the Dongsha Event.
Application of Laser Ranging and VLBI Data to a Study of Plate Tectonic Driving Forces
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1980-01-01
The conditions under which changes in plate driving or resistive forces associated with plate boundary earthquakes are measurable with laser ranging or very long base interferometry were investigated. Aspects of plate forces that can be characterized by such measurements were identified. Analytic solutions for two dimensional stress diffusion in a viscoelastic plate following earthquake faulting on a finite fault, finite element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting, and quantitative constraints from modeling of global intraplate stress on the magnitude of deviatoric stress in the lithosphere are among the topics discussed.
NASA Astrophysics Data System (ADS)
Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin
2018-03-01
The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.
NASA Astrophysics Data System (ADS)
Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi
2018-04-01
The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.
NASA Astrophysics Data System (ADS)
Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.
2018-06-01
In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.
Subduction-driven recycling of continental margin lithosphere.
Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S
2014-11-13
Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.
Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations.
Nielsen, Søren B; Stephenson, Randell; Thomsen, Erik
2007-12-13
The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic reconstructions, can be obtained from the response of the interior of adjacent continental plates to stress changes generated by plate boundary processes. Here we demonstrate a causal relationship between North Atlantic continental rifting at approximately 62 Myr ago and an abrupt change of the intra-plate deformation style in the adjacent European continent. The rifting involved a left-lateral displacement between the North American-Greenland plate and Eurasia, which initiated the observed pause in the relative convergence of Europe and Africa. The associated stress change in the European continent was significant and explains the sudden termination of a approximately 20-Myr-long contractional intra-plate deformation within Europe, during the late Cretaceous period to the earliest Palaeocene epoch, which was replaced by low-amplitude intra-plate stress-relaxation features. The pre-rupture tectonic stress was large enough to have been responsible for precipitating continental break-up, so there is no need to invoke a thermal mantle plume as a driving mechanism. The model explains the simultaneous timing of several diverse geological events, and shows how the intra-continental stratigraphic record can reveal the timing and dynamics of stress changes, which cannot be resolved by reconstructions based only on plate kinematics.
Passive margins getting squeezed in the mantle convection vice
NASA Astrophysics Data System (ADS)
Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin
2013-04-01
Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate. Thus, active upwellings underneath oceanic plates are required to explain compression at passive margins. This conclusion is corroborated by "real-Earth" 3D spherical models, wherein the flow is alternatively driven by density anomalies inferred from seismic tomography -and therefore include both downwellings at subduction zones and upwellings above the superswells- and density anomalies that correspond to subducting slabs only. While the second scenario mostly compresses the active margins of upper plates and leave other areas at rest, the first scenario efficiently compresses passive margins where the geological record reveals their uplift, exhumation, and tectonic inversion.
Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.
1984-01-01
Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.
Generation of plate tectonics via grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, D.; Ricard, Y. R.
2012-12-01
Weakening and shear localization in the lithosphere are essential ingredients for understanding how and whether plate tectonics is generated from mantle convection on terrestrial planets. The grain-damage and pinning mechanism of Bercovici & Ricard (2012) for lithospheric shear--localization proposes that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces that constrain mineral grains to ever smaller sizes regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreoever, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. This mechanism is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion from convective type flow and to influence plate evolution. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields are found to never recover or lose memory of the original configuration, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction and highly localized, weak and long lived acute plate-boundary junctions such as at the Aleution-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets. References: Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Int. 202-203, 27--55.
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
NASA Astrophysics Data System (ADS)
Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul
2017-04-01
Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2013-03-01
The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets.
NASA Astrophysics Data System (ADS)
Koehler, Karen E.
The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific with fragments. Most of the participants in the study increased their scientific understandings of plate tectonics and other geoscience concepts and held more scientific understandings after instruction than before instruction. All students had misconceptions before the instructional period began, but the number of misconceptions were fewer after the instructional period. Students in the TG group not only had fewer misconceptions than the 3D group before instruction, but also after instruction. Many of the student misconceptions were similar to those held by students with typical vision; however, some were unique to students with visual impairments. One unique aspect of this study was the examination of student mental models, which had not previously been done with students with visual impairments, but is more commonplace in research on students with typical vision. Student mental models were often descriptive rather than explanatory, often incorporating scientific language, but not clearly showing that the student had a complete grasp of the concept. Consistent with prior research, the use of 3-D printed models instead of tactile graphics seemed to make little difference either positively or negatively on student conceptual understanding; however, the participants did interact with the 3-D printed models differently, sometimes gleaning additional information from them. This study also provides additional support for inquiry-based instruction as an effective means of science instruction for students with visual impairments.
NASA Astrophysics Data System (ADS)
Ishizuka, O.; Tani, K.; Harigane, Y.; Umino, S.; Stern, R. J.; Reagan, M. K.; Hickey-Vargas, R.; Yogodzinski, G. M.; Kusano, Y.; Arculus, R. J.
2016-12-01
Robust tectonic reconstruction of the evolving Philippine Sea Plate for the period immediately before and after subduction initiation 52 Ma to form the Izu-Bonin-Mariana (IBM) arc is prerequisite to understand cause of subduction initiation (SI) and test competing hypotheses for SI such as spontaneous or induced nucleation. Understanding of nature and origin of overriding and subducting plates is especially important because plate density is a key parameter controlling SI based on numerical modeling (e.g., Leng and Gurnis 2015). There is increasing evidence that multiple geological events related to changing stress fields took place in and around Philippine Sea plate about the time of SI 52 Ma (Ishizuka et al., 2011). For our understanding of the early IBM arc system to increase, it is important to understand the pattern and tempo of these geological events, particularly the duration and extent of seafloor spreading in the proto arc associated with SI, and its temporal relationship with spreading in the West Philippine Basin (WPB). IODP Exp. 351 provided evidence of SI-related seafloor spreading west of the Kyushu-Palau Ridge (Arculus et al., 2015). Planned age determination of the basement crust at Site U1438 will constrain the timing and geometry of SI-related spreading and its relationship to variation in mode of spreading in the WPB including rotation of spreading axis. Some tectonic reconstructions suggest that part of the IBM arc could have formed on "young" WPB crust. Dredging of the northern Mariana forearc crust and mantle in 2014 aimed to test this hypothesis. Preliminary data indicates that early arc crustal section of the N. Mariana forearc is geochemically and temporally similar to that exposed in the Bonin and southern Mariana forearcs. New tectonic reconstructions for the nascent IBM system will be presented based on these observations.
Scaling and spatial complementarity of tectonic earthquake swarms
NASA Astrophysics Data System (ADS)
Passarelli, Luigi; Rivalta, Eleonora; Jónsson, Sigurjón; Hensch, Martin; Metzger, Sabrina; Jakobsdóttir, Steinunn S.; Maccaferri, Francesco; Corbi, Fabio; Dahm, Torsten
2018-01-01
Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.
The Viability and Style of the Modern Plate-Tectonic Subduction Process in a Hotter Earth
NASA Astrophysics Data System (ADS)
van Hunen, J.; van den Berg, A.; Vlaar, N. J.
2001-12-01
The Earth was probably warmer during the Archean and Proterozoic, and a 50 to 300 K mantle temperature increase has been suggested. This resulted in a thicker basaltic oceanic crust and underlying harzburgitic layer, and increased buoyancy of the lithosphere. This phenomenon has raised questions about the style or even the existence of plate tectonics in a younger Earth. Buoyant, low-angle subduction (e.g. below overriding plates) could have been more important, but also alternative tectonic styles, such as small-scale layered convection within the thickened crust have been proposed. We conducted 2-D Cartesian numerical model calculations to quantify the viability of the subduction process for an Earth with a higher potential temperature.As the basalt-to-eclogite transition in the crust plays an important role in the buoyancy of the oceanic plate and slab, and therefore also in its propensity to subduct, the kinetics of this phase transition is included in the numerical model. One set of model results suggest that flat subduction below a continuously overriding lithosphere, or lithospheric doubling, can give rise to flat subduction up to a mantle temperature, which is not much higher (38 to 75 K) than today. An even hotter mantle is too weak to support the flat slab, so that fast, steep Benioff subduction develops. We performed another set of model calculations to examine the possibility of modern-style subduction in a hotter Earth, without extra driving forces such as lithospheric doubling. We use again the mechanism of lithospheric doubling, but only to trigger the subduction process, and switch it off after a few million years, when `active' subduction developes. For a mantle temperature increase up to 150 K, we find subduction to be essentially the same as today, but subduction rates increase with increasing mantle temperature and increasing eclogitisation rates. For a 225 K mantle temperature increase, considerable amounts of the dense eclogitic crust delaminate from its mantle lithosphere, and sink rapidly into the mantle, which leaves the remainder of the slab too buoyant to continue the subduction process. For a 300 K hotter mantle, the mechanical coherence of the descending slab is reduced to such extent that frequent detachment of small pieces of the slab occur. These results indicate that the eventual viability and `mode' of the plate tectonic mechanism in a hotter Earth is determined by a complicated interaction between crustal thickness, eclogitisation rate, slab age, and the rheology of both crust and mantle.
Crustal stress across the northern Arabian plate and the relationship with the plate boundary forces
NASA Astrophysics Data System (ADS)
Yassminh, Rayan
The region encompassing the collision of northern Arabia with Eurasia is a tectonically heterogeneous region of distributed deformation. The northern Arabia plate is bounded to the west by the subducting Sinai plate and the left-lateral Dead Sea transform. This complexity suggests that there are multiple competing processes that may influence regional tectonics in northern Arabia and adjacent areas. Earthquake mechanisms provide insight into crustal kinematics and stress; however, reliable determination of earthquake source parameters can be challenging in a complex geological region, such as the continental collision zone between the Arabian and Eurasian plates. The goal of this study is to investigate spatial patterns of the crustal stress in the northern Arabian plate and surrounding area. The focal mechanisms used in this study are based on (1) first-motion polarities for earthquakes recorded by Syrian earthquake center during 2000-2011, and (2) regional moment tensors from broadband seismic data, from Turkey and Iraq. First motion focal mechanisms were assigned quality classifications based on the variation of both nodal planes. Regional moment tensor analysis can be significantly influenced by seismic velocity structure; thus, we have divided the study area into regions based on tectonic units. For each region, the velocity model is described using a waveform-modeling technique prior to the regional moment tensor inversion. The resulting focal mechanisms, combined with other previously published focal mechanisms for the study area, provide a basis for stress inversion analysis. The resulting deviatoric stress tensors show the spatial distribution of the maximum horizontal stress varies from NW-SE along the Dead Sea Fault to the N-S toward the east. We interpret this to reflect the eastward change from the transform to collision processes in northern Arabia. Along the Dead Sea Fault, transposition of the sigma-1 and sigma-2 to vertical and horizontal, respectively, may relate to influences from the subducted part of the Sinai plate. This change in regional stress is also consistent with extensional strains observed from GPS velocities.
NASA Astrophysics Data System (ADS)
Brune, S.; Ulvrova, M.; Williams, S.
2017-12-01
The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America during South Atlantic opening. Post-rift deceleration occurs when the global plate system re-equilibrates after continental rupture. This phenomenon of a plate slow-down after mechanical rupture is recorded by observations from rifted margins between Australia-Antarctica and Greenland-Eurasia.
Reports on crustal movements and deformations. [bibliography
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Peck, T.
1983-01-01
This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.
Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking
ERIC Educational Resources Information Center
Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott
2016-01-01
Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…
Plate Tectonism on Early Mars: Diverse Geological and Geophysical Evidence
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Maruyama, S.; Baker, V. R.; Anderson, R. C.; Ferris, Justin C.; Hare, Trent M.
2002-01-01
Mars has been modified by endogenic and exogenic processes similar in many ways to Earth. However, evidence of Mars embryonic development is preserved because of low erosion rates and stagnant lid convective conditions since the Late Noachian. Early plate tectonism can explain such evidence. Additional information is contained in the original extended abstract.
Impact of Volcanic Activity on AMC Channel Operations
2014-06-13
active volcanic settings in the world. The location and behavior of volcanoes are a direct result of tectonic plate boundaries and the dynamic nature...Figure 2: Ash Detected Outside Iceland within 40°–70°N and 40°W–30°E (Scientific Reports, 2014) The potential for tectonic plate movement
Comment on "Intermittent plate tectonics?".
Korenaga, Jun
2008-06-06
Silver and Behn (Reports, 4 January 2008, p. 85) proposed that intermittent plate tectonics may resolve a long-standing paradox in Earth's thermal evolution. However, their analysis misses one important term, which subsequently brings their main conclusion into question. In addition, the Phanerozoic eustasy record indicates that the claimed effect of intermittency is probably weak.
NASA Astrophysics Data System (ADS)
Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.
2012-04-01
The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group, TOTAL S.A., Paris.
NASA Astrophysics Data System (ADS)
Song, Ying; Stepashko, Andrei; Liu, Keyu; He, Qingkun; Shen, Chuanbo; Shi, Bingjie; Ren, Jianye
2018-03-01
The classic lithosphere-stretching model predicts that the post-rift evolution of extensional basin should be exclusively controlled by decaying thermal subsidence. However, the stratigraphy of the Songliao Basin in northeastern China shows that the post-rift evolution was punctuated by multiple episodes of uplift and exhumation events, commonly attributed to the response to regional tectonic events, including the far-field compression from plate margins. Three prominent tectonostratigraphic post-rift unconformities are recognized in the Late Cretaceous strata of the basin: T11, T03, and T02. The subsequent Cenozoic history is less constrained due to the incomplete record of younger deposits. In this paper, we utilize detrital apatite fission track (AFT) thermochronology to unravel the enigmatic timing and origin of post-rift unconformities. Relating the AFT results to the unconformities and other geological data, we conclude that in the post-rift stage, the basin experienced a multiepisodic tectonic evolution with four distinct cooling and exhumation events. The thermal history and age pattern document the timing of the unconformities in the Cretaceous succession: the T11 unconformity at 88-86 Ma, the T03 unconformity at 79-75 Ma, and the T02 unconformity at 65-50 Ma. A previously unrecognized Oligocene unconformity is also defined by a 32-24 Ma cooling event. Tectonically, all the cooling episodes were regional, controlled by plate boundary stresses. We propose that Pacific dynamics influenced the wider part of eastern Asia during the Late Cretaceous until Cenozoic, whereas the far-field effects of the Neo-Tethys subduction and collision processes became another tectonic driver in the later Cenozoic.
Classifying seismic noise and sources from OBS data using unsupervised machine learning
NASA Astrophysics Data System (ADS)
Mosher, S. G.; Audet, P.
2017-12-01
The paradigm of plate tectonics was established mainly by recognizing the central role of oceanic plates in the production and destruction of tectonic plates at their boundaries. Since that realization, however, seismic studies of tectonic plates and their associated deformation have slowly shifted their attention toward continental plates due to the ease of installation and maintenance of high-quality seismic networks on land. The result has been a much more detailed understanding of the seismicity patterns associated with continental plate deformation in comparison with the low-magnitude deformation patterns within oceanic plates and at their boundaries. While the number of high-quality ocean-bottom seismometer (OBS) deployments within the past decade has demonstrated the potential to significantly increase our understanding of tectonic systems in oceanic settings, OBS data poses significant challenges to many of the traditional data processing techniques in seismology. In particular, problems involving the detection, location, and classification of seismic sources occurring within oceanic settings are much more difficult due to the extremely noisy seafloor environment in which data are recorded. However, classifying data without a priori constraints is a problem that is routinely pursued via unsupervised machine learning algorithms, which remain robust even in cases involving complicated datasets. In this research, we apply simple unsupervised machine learning algorithms (e.g., clustering) to OBS data from the Cascadia Initiative in an attempt to classify and detect a broad range of seismic sources, including various noise sources and tremor signals occurring within ocean settings.
Fictitious Supercontinent Cycles
NASA Astrophysics Data System (ADS)
Marvin Herndon, J.
2014-05-01
"Supercontinent cycles" or "Wilson cycles" is the idea that before Pangaea there were a series of supercontinents that each formed and then broke apart and separated before colliding again, re-aggregating, and suturing into a new supercontinent in a continuing sequence. I suggest that "supercontinent cycles" are artificial constructs, like planetary orbit epicycles, attempts to describe geological phenomena within the framework of problematic paradigms, namely, planetesimal Earth formation and plate tectonics' mantle convection. The so-called 'standard model of solar system formation' is problematic as it would lead to insufficiently massive planetary cores and necessitates additional ad hoc hypotheses such as the 'frost line' between Mars and Jupiter to explain planetary differences and whole-planet melting to explain core formation from essentially undifferentiated matter. The assumption of mantle convection is crucial for plate tectonics, not only for seafloor spreading, but also for continental movement; continent masses are assumed to ride atop convection cells. In plate tectonics, plate collisions are thought to be the sole mechanism for fold-mountain formation. Indeed, the occurrence of mountain chains characterized by folding which significantly predate the breakup of Pangaea is the primary basis for assuming the existence of supercontinent cycles with their respective periods of ancient mountain-forming plate collisions. Mantle convection is physically impossible. Rayleigh Number justification has been misapplied. The mantle bottom is too dense to float to the surface by thermal expansion. Sometimes attempts are made to obviate the 'bottom heavy' prohibition by adopting the tacit assumption that the mantle behaves as an ideal gas with no viscous losses, i.e., 'adiabatic'. But the mantle is a solid that does not behave as an ideal gas as evidenced by earthquakes occurring at depths as great as 660 km. Absent mantle convection, plate tectonics is not valid and there is no motive force for driving supercontinent cycles. The reasonable conclusion one must draw, as in the case of epicycles, is there must exist a new and fundamentally different geoscience paradigm which obviates the problems inherent in plate tectonics and in planetesimal Earth formation and yet better explains geological features. I have disclosed a new indivisible geoscience paradigm, called Whole-Earth Decompression Dynamics (WEDD), that begins with and is the consequence of our planet's early formation as a Jupiter-like gas giant and which permits deduction of: (1) Earth's internal composition and highly-reduced oxidation state; (2) Core formation without whole-planet melting; (3) Powerful new internal energy sources, protoplanetary energy of compression and georeactor nuclear fission energy; (4) Mechanism for heat emplacement at the base of the crust; (5) Georeactor geomagnetic field generation; (6) Decompression-driven geodynamics that accounts for the myriad of observations attributed to plate tectonics without requiring physically-impossible mantle convection, and; (7) A mechanism for fold-mountain formation that does not necessarily require plate collision. The latter obviates the necessity to assume supercontinent cycles. The fundamental basis of geodynamics is this: In response to decompression-driven Earth volume increases, cracks form to increase surface area and mountain ranges characterized by folding form to accommodate changes in curvature. Resources at NuclearPlanet.com .
Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska
NASA Technical Reports Server (NTRS)
SauberRosenberg, Jeanne M.; Molnia, Bruce F.
2003-01-01
Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.
Lithospheric Stress and Geodynamics: History, Accomplishments and Challenges
NASA Astrophysics Data System (ADS)
Richardson, R. M.
2016-12-01
The kinematics of plate tectonics was established in the 1960s, and shortly thereafter the Earth's stress field was recognized as an important constraint on the dynamics of plate tectonics. Forty years ago the 1976 Chapman Conference on the Stress in the Lithosphere, which I was fortunate to attend as a graduate student, and the ensuing 1977 PAGEOPH Stress in the Earth publication's 28 articles highlighted a range of datasets and approaches that established fertile ground for geodynamic research ever since. What are the most useful indicators of stress? Do they measure residual or tectonic stresses? Local or far field sources? What role does rheology play in concentrating deformation? Great progress was made with the first World Stress Map in 1991 by Zoback and Zoback, and the current version (2016 release with 42,348 indicators) remains a tremendous resource for geodynamic research. Modeling sophistication has seen significant progress over the past 40 years. Early applications of stress to dynamics involved simple lithospheric flexure, particularly at subduction zones, Hawaii, and continental foreland basin systems. We have progressed to full 3-D finite element models for calculating the flexure and stress associated with loads on a crust and mantle with realistic non-linear viscoelastic rheology, including frictional sliding, low-temperature plasticity, and high-temperature creep. Initial efforts to use lithospheric stresses to constrain plate driving forces focused on a "top-down" view of the lithosphere. Such efforts have evolved to better include asthenosphere-lithosphere interactions, have gone from simple to complicated rheologies, from 2-D to 3-D, and seek to obtain a fully thermo-mechanical model that avoids relying on artificial boundary conditions to model plate dynamics. Still, there are a number of important issues in geodynamics, from philosophy (when are more complicated models necessary? can one hope to identify "the" answer with modeling, or only possible/"impossible" solutions?), to better including realistic boundary conditions, to a fully thermo-mechanical model of the system, to including multiple data sets beyond stress. The 1976 Chapman Conference truly opened the door to a rich stress data set, and identified challenges, many of which remain 40 years later.
A Study of Undergraduate Students' Alternative Conceptions of Earth's Interior Using Drawing Tasks
ERIC Educational Resources Information Center
McAllister, Meredith L.
2014-01-01
Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience…
NASA Astrophysics Data System (ADS)
Löwe, Peter; Barmuta, Jan; Klump, Jens; Neumann, Janna; Plank, Margret
2014-05-01
The communication of advances in research to the common public for both education and decision making is an important aspect of scientific work. An even more crucial task is to gain recognition within the scientific community, which is judged by impact factor and citation counts. Recently, the latter concepts have been extended from textual publications to include data and software publications. This paper presents a case study for science communication and data citation. For this, tectonic models, Free and Open Source Software (FOSS), best practices for data citation and a multimedia online-portal for scientific content are combined. This approach creates mutual benefits for the stakeholders: Target audiences receive information on the latest research results, while the use of Digital Object Identifiers (DOI) increases the recognition and citation of underlying scientific data. This creates favourable conditions for every researcher as DOI names ensure citeability and long term availability of scientific research. In the developed application, the FOSS tool for tectonic modelling GPlates is used to visualise and manipulate plate-tectonic reconstructions and associated data through geological time. These capabilities are augmented by the Science on a Halfsphere project (SoaH) with a robust and intuitive visualisation hardware environment. The tectonic models used for science communication are provided by the AGH University of Science and Technology. They focus on the Silurian to Early Carboniferous evolution of Central Europe (Bohemian Massif) and were interpreted for the area of the Geopark Bergstraße Odenwald based on the GPlates/SoaH hardware- and software stack. As scientific story-telling is volatile by nature, recordings are a natural means of preservation for further use, reference and analysis. For this, the upcoming portal for audiovisual media of the German National Library of Science and Technology TIB is expected to become a critical service infrastructure. It allows complex search queries, including metadata such as DOI and media fragment identifiers (MFI), thereby linking data citation and science communication.
Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics
NASA Astrophysics Data System (ADS)
Reilinger, Robert; McClusky, Simon
2011-09-01
We use geodetic and plate tectonic observations to constrain the tectonic evolution of the Nubia-Arabia-Eurasia plate system. Two phases of slowing of Nubia-Eurasia convergence, each of which resulted in an ˜50 per cent decrease in the rate of convergence, coincided with the initiation of Nubia-Arabia continental rifting along the Red Sea and Somalia-Arabia rifting along the Gulf of Aden at 24 ± 4 Ma, and the initiation of oceanic rifting along the full extent of the Gulf of Aden at 11 ± 2 Ma. In addition, both the northern and southern Red Sea (Nubia-Arabia plate boundary) underwent changes in the configuration of extension at 11 ± 2 Ma, including the transfer of extension from the Suez Rift to the Gulf of Aqaba/Dead Sea fault system in the north, and from the central Red Sea Basin (Bab al Mandab) to the Afar volcanic zone in the south. While Nubia-Eurasia convergence slowed, the rate of Arabia-Eurasia convergence remained constant within the resolution of our observations, and is indistinguishable from the present-day global positioning system rate. The timing of the initial slowing of Nubia-Eurasia convergence (24 ± 4 Ma) corresponds to the initiation of extensional tectonics in the Mediterranean Basin, and the second phase of slowing to changes in the character of Mediterranean extension reported at ˜11 Ma. These observations are consistent with the hypothesis that changes in Nubia-Eurasia convergence, and associated Nubia-Arabia divergence, are the fundamental cause of both Mediterranean and Middle East post-Late Oligocene tectonics. We speculate about the implications of these kinematic relationships for the dynamics of Nubia-Arabia-Eurasia plate interactions, and favour the interpretation that slowing of Nubia-Eurasia convergence, and the resulting tectonic changes in the Mediterranean Basin and Middle East, resulted from a decrease in slab pull from the Arabia-subducted lithosphere across the Nubia-Arabia, evolving plate boundary.
How did Earth not End up like Venus?
NASA Astrophysics Data System (ADS)
Jellinek, M.; Lenardic, A.; Weller, M. B.
2017-12-01
Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).
NASA Astrophysics Data System (ADS)
Amireh, Belal S.
2018-04-01
Detrital framework modes of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan are determined employing the routine polarized light microscope. The lower part of this sequence constitutes a segment of the vast lower Paleozoic siliciclastic sheet flanking the northern Gondwana margin that was deposited over a regional unconformity truncating the outskirts of the East African orogen in the aftermath of the Neoproterozoic amalgamation of Gondwana. The research aims to evaluate the factors governing the detrital light mineral composition of this sandstone. The provenance terranes of the Arabian craton controlled by plate tectonics appear to be the primary factor in most of the formations, which could be either directly inferred employing Dickinson's compositional triangles or implied utilizing the petrographic data achieved and the available tectonic and geological data. The Arabian-Nubian Shield constitutes invariably the craton interior or the transitional provenance terrane within the NE Gondwana continental block that consistently supplied sandy detritus through northward-flowing braided rivers to all the lower Paleozoic formations. On the other hand, the Lower Cretaceous Series received siliciclastic debris, through braided-meandering rivers having same northward dispersal direction, additionally from the lower Paleozoic and lower-middle Mesozoic platform strata in the Arabian Craton. The formations making about 50% of the siliciclastic sequence represent a success for Dickinson's plate tectonics-provenance approach in attributing the detrital framework components primarily to the plate tectonic setting of the provenance terranes. However, even under this success, the varying effects of the other secondary sedimentological and paleoclimatological factors are important and could be crucial. The inapplicability of this approach to infer the appropriate provenance terranes of the remaining formations could be ascribed either to the special influence of local intracratonic syn-rift rhyolitic extrusions, where their plate tectonic setting is not represented by the standard plate tectonics-provenance diagrams, or to the rather unusual effect of the Late Ordovician glacial event.
History and evolution of Subduction in the Precambrium
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2013-12-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.
NASA Astrophysics Data System (ADS)
McCormack, Kimberly A.; Hesse, Marc A.
2018-04-01
We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.
Gravitational field models for study of Earth mantle dynamics
NASA Technical Reports Server (NTRS)
1979-01-01
The tectonic forces or stresses due to the small scale mantle flow under the South American plate are detected and determined by utilizing the harmonics of the geopotential field model. The high degree harmonics are assumed to describe the small scale mantle convection patterns. The input data used in the derivation of this model is made up of 840,000 optical, electronic, and laser observations and 1,656 5 deg x 5 deg mean free air anomalies. Although there remain some statistically questionable aspects of the high degree harmonics, it seems appropriate now to explore their implications for the tectonic forces or stress field under the crust.
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Tenzer, Robert
2017-07-01
In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).
Neotectonic deformation model of the Northern Algeria from Paleomagnetic data
NASA Astrophysics Data System (ADS)
Derder, M. E. M.; Henry, B.; Maouche, S.; Amenna, M.; Bayou, B.; Djellit, H.; Ymel, H.; Gharbi, S.; Abtout, A.; Ayache, M.
2012-04-01
The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it is shown by the strongest recent earthquakes of "Zemmouri" 21 May 2003 Mw=6.9 and the "El Asnam" 10 October 1980 Ms= 7.3. This seismicity is due to the tectonic activity related to the convergence between Africa and Eurasia plates since at least the Oligocene. The deformation is mostly compressional with associated folds, strike-slip faults and thrusts, and a direction of shortening between N-S and NNW-SSE. This convergence involves a tectonic transpression which is expressed by active deformation along the plate boundary. In northern Algeria, the seismicity is concentrated in a coastal E-W thin band zone (the Tell Atlas). Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. " Cheliff "basin, " Mitidja "basin, …). These reverse faults are associated with NW-SE to E-W strike-slips deep faults. The active tectonics could be explained by a simple blocks rotation kinematics model. In order to test the validity of this kinematic model, three different paleomagnetic studies have been conducted. The first one concerned the "Cheliff" basin where sedimentary Neogene formations were extensively sampled (66 sites). The second study was carried out on Miocene andesite and dacite rocks cropping out along the northern coastal zone of the "Cheliff" basin ("Beni Haoua" area, 19 sites). The third study has been carried out on the Miocene magmatic rocks (rhyolites and basalts) cropping out north-eastern part of the "Mitidja" basin ("Cap Djinet" - "Boumerdes" area, 23 sites). The obtained results show existence of paleomagnetic clockwise rotations in all the studied areas and then validates the kinematics block rotation model. Accordingly, the deformation related to the convergence between the Africa and Eurasia plates, is partly accommodated in northern Algeria by blocks rotation movements. It seems that the Tellian Atlas (northern Algeria) domain is organized as tectonic blocks with relative clockwise blocks rotation movement as in a "bookshelf" model.
Subsidence of the South Polar Terrain and global tectonic of Enceladus
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-04-01
Introduction: Enceladus is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of ˜200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust (like on Mercury). Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special dynamical process that could explain this paradox. Our hypothesis states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypothesis is presented in [2] and [3]. We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion includes: Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. Methods and results: The numerical model of the subsidence process is developed. It is based on the model of thermal convection in the mantle. Special boundary conditions are applied, that could simulate subsidence of SPT. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ˜0.05 mmṡyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is ˜0.02 mmṡyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be ˜0.02 mmṡyr-1 for the Newtonian rheology. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT is compressed, so "tiger stripes" could exist for long time. Only after significant subsidence (below 1200 m) the regime of stresses changes to compressional. We suppose that it means the end of activity in a given region. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.
A diffuse plate boundary model for Indian Ocean tectonics
NASA Technical Reports Server (NTRS)
Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.
1985-01-01
It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.
Andean tectonics: Implications for Satellite Geodesy
NASA Technical Reports Server (NTRS)
Allenby, R. J.
1984-01-01
Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.
NASA Technical Reports Server (NTRS)
Baltuck, M.; Dixon, T. H.
1984-01-01
The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.
Introduction of the Concepts of Plate Tectonics into Secondary-School Earth Science Textbooks.
ERIC Educational Resources Information Center
Glenn, William Harold
1992-01-01
Secondary school earth-science textbooks in print from 1960 through 1979 were examined to determine how rapidly concepts of plate tectonics were incorporated into those texts during the period when scientists' views about these concepts were evolving most rapidly. Suggests that delays were probably due to an unwillingness to engage in speculation…
ERIC Educational Resources Information Center
Seitov, Nassipkali; Tulegenova, Gulmira P.
2016-01-01
This article addresses the problems of tectonic zoning and determination of geodynamical nature of the formation of jointed tectonic structures within the North Caspian oil and gas basin, represented by Caspian Depression of Russian platform of East European Pre-Cambrian Craton and plate ancient Precambrian Platform stabilization and Turan…
Tectonic plates, difficulties for pupils to link models and scientific data.
NASA Astrophysics Data System (ADS)
David-Ameline, Jacques
2014-05-01
In a secondary school in the west of France, I teach Biology and Geology to young pupils from 12 to 15 years old. This poster deals with the difficulties that pupils have to link the scientific data concerning the plate tectonics and the models. I choose to reproduce for pupils some situations that faced some first scientific people as they discovered arguments for the plate tectonics. For example, they have to discover the thickness of the plates by studying the speed of the seismic waves regarding the deepness. That means that they have to construct a curve starting with a table and then to analyze it. The first step is linked to math lessons and is quite easy for them. But the second one needs to mix the curve with its signification. This point is particularly hard and as we correct it, it appears like one moment of « pure science » because they seem to discover something none did before, with the power of their brain ! The second work on this subject is to study the representations of the subduction at an oceanic trench and of the mid-ocean ridge. They first look for drawing explaining what happens for the plates in those places and then they look for proofs that permitted to create those drawings. They really need help to make the difference between scientific data (pictures, curves...) and other drawings similar to the one they choose. For this subject working with documents is not easy because pupils have to ask themselves « what kind of document is it ?» before going further into their thinking. Nevertheless, they often succeed in those works because the teacher helps them a little. Those subjects open their eyes on what science is for a geological theme. It's also a good method to make them having fun doing science and to make them being seduced by making science.
Seismology: tectonic strain in plate interiors?
Calais, E; Mattioli, G; DeMets, C; Nocquet, J-M; Stein, S; Newman, A; Rydelek, P
2005-12-15
It is not fully understood how or why the inner areas of tectonic plates deform, leading to large, although infrequent, earthquakes. Smalley et al. offer a potential breakthrough by suggesting that surface deformation in the central United States accumulates at rates comparable to those across plate boundaries. However, we find no statistically significant deformation in three independent analyses of the data set used by Smalley et al., and conclude therefore that only the upper bounds of magnitude and repeat time for large earthquakes can be inferred at present.
NASA Astrophysics Data System (ADS)
Porter, R. C.; van der Lee, S.
2017-12-01
One of the most significant products of the EarthScope experiment has been the development of new seismic tomography models that take advantage of the consistent station design, regular 70-km station spacing, and wide aperture of the EarthScope Transportable Array (TA) network. These models have led to the discovery and interpretation of additional compositional, thermal, and density anomalies throughout the continental US, especially within tectonically stable regions. The goal of this work is use data from the EarthScope experiment to better elucidate the temporal relationship between tectonic activity and seismic velocities. To accomplish this, we compile several upper-mantle seismic velocity models from the Incorporated Research Institute for Seismology (IRIS) Earth Model Collaboration (EMC) and compare these to a tectonic age model we compiled using geochemical ages from the Interdisciplinary Earth Data Alliance: EarthChem Database. Results from this work confirms quantitatively that the time elapsed since the most recent tectonic event is a dominant influence on seismic velocities within the upper mantle across North America. To further understand this relationship, we apply mineral-physics models for peridotite to estimate upper-mantle temperatures for the continental US from tomographically imaged shear velocities. This work shows that the relationship between the estimated temperatures and the time elapsed since the most recent tectonic event is broadly consistent with plate cooling models, yet shows intriguing scatter. Ultimately, this work constrains the long-term thermal evolution of continental mantle lithosphere.
NASA Technical Reports Server (NTRS)
Toksoz, M. Nafi; Reilinger, Robert
1992-01-01
A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.
Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America
NASA Technical Reports Server (NTRS)
Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.
1988-01-01
The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.
A Geologist Reflects on a Long Career
NASA Astrophysics Data System (ADS)
McKenzie, Dan
2018-05-01
Fifty years ago Jason Morgan and I proposed what is now known as the theory of plate tectonics, which brought together the ideas of continental drift and sea floor spreading into what is probably their final form. I was twenty-five and had just finished my PhD. The success of the theory marked the beginning of a change of emphasis in the Earth sciences, which I have spent the rest of my career exploring. Previously geophysicists had principally been concerned with using ideas and techniques from physics to make measurements. But the success of plate tectonics showed that it could also be used to understand and model geological processes. This essay is concerned with a few such efforts in which I have been involved: determining the temperature structure and rheology of the oceanic and continental lithosphere, and with how mantle convection maintains the plate motions and the long-wavelength part of the Earth's gravity field. It is also concerned with how such research is supported.
NASA Astrophysics Data System (ADS)
Brown, M.
2006-12-01
Essene's contributions began pre-plate tectonics more than 40 years ago; they range from mineralogy to tectonics, from experiments and thermobarometry to elements and isotopes, and from the Phanerozoic to the Precambrian. Eric is a true polymath! Assessing the P-T conditions and age distribution of crustal metamorphism is an important step in evaluating secular change in tectonic regimes and geodynamics. In general, Archean rocks exhibit moderate-P - moderate-to-high-T facies series metamorphism (greenstone belts and granulite terranes); neither blueschists nor any record of deep continental subduction and return are documented and only one example of granulite facies ultrahigh-temperature metamorphism is reported. Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian, although G-UHTM facies series rocks may be inferred at depth in younger orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the formation and breakup of supercontinents, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those around the modern Pacific rim. Medium-temperature eclogite - high-pressure granulite metamorphism (E-HPGM) also is first recognized in the Neoarchean rock record, and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E- HPGM belts are complementary to G-UHTM belts, and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; lawsonite blueschists and eclogites (high-pressure metamorphism, HPM), and ultrahigh pressure metamorphism (UHPM) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts - reflecting a duality of thermal regimes - appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G- UHTM and E-HPGM belts since the Neoarchean manifests the onset of a `Proterozoic plate tectonics regime', although the style of tectonics likely involved differences from modern Earth. Although the style of Proterozoic subduction remains cryptic, the change in tectonic regime whereby interactions between discrete lithospheric plates generated tectonic settings with contrasting thermal regimes was a landmark event in Earth history. The `Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the `modern plate tectonics regime' characterized by colder subduction, and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of blueschists and HPM-UHPM in the rock record.
Structure and Dynamics of Cold Water Super-Earths: The Case of Occluded CH4 and Its Outgassing
NASA Astrophysics Data System (ADS)
Levi, A.; Sasselov, D.; Podolak, M.
2014-09-01
In this work, we study the transport of methane in the external water envelopes surrounding water-rich super-Earths. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice), resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to the lower ice mantle of relatively low-mass planets (~5 ME ) lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes which depend on the surface temperature and heat flux. We demonstrate that the planetary crust can be conductive throughout or partly confined to the dissociation curve of methane clathrate hydrate. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere, making modes of ice plate tectonics possible. The dynamic character of the tectonic plates is analyzed and the ability of this tectonic mode to cool the planet is estimated. The icy tectonic plates are found to be faster than those on a silicate super-Earth. A mid-layer of low viscosity is found to exist between the lithosphere and the lower mantle. Its existence results in a large difference between ice mantle overturn timescales and resurfacing timescales. Resurfacing timescales are found to be 1 Ma for fast plates and 100 Ma for sluggish plates, depending on the viscosity profile and ice mass fraction. Melting beneath spreading centers is required in order to account for the planetary radiogenic heating. The melt fraction is quantified for the various tectonic solutions explored, ranging from a few percent for the fast and thin plates to total melting of the upwelled material for the thick and sluggish plates. Ice mantle dynamics is found to be important for assessing the composition of the atmosphere. We propose a mechanism for methane release into the atmosphere, where freshly exposed reservoirs of methane clathrate hydrate at the ridge dissociate under surface conditions. We formulate the relation between the outgassing flux and the tectonic mode dynamical characteristics. We give numerical estimates for the global outgassing rate of methane into the atmosphere. We find, for example, that for a 2 ME planet outgassing can release 1027-1029 molecules s-1 of methane to the atmosphere. We suggest a qualitative explanation for how the same outgassing mechanism may result in either a stable or a runaway volatile release, depending on the specifics of a given planet. Finally, we integrate the global outgassing rate for a few cases and quantify how the surface atmospheric pressure of methane evolves over time. We find that methane is likely an important constituent of water planets' atmospheres.
Structure and dynamics of cold water super-Earths: the case of occluded CH{sub 4} and its outgassing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levi, A.; Podolak, M.; Sasselov, D., E-mail: amitlevi.planetphys@gmail.com
2014-09-10
In this work, we study the transport of methane in the external water envelopes surrounding water-rich super-Earths. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice), resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to the lower ice mantle of relatively low-mass planets (∼5 M{sub E} ) lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes which depend on the surfacemore » temperature and heat flux. We demonstrate that the planetary crust can be conductive throughout or partly confined to the dissociation curve of methane clathrate hydrate. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere, making modes of ice plate tectonics possible. The dynamic character of the tectonic plates is analyzed and the ability of this tectonic mode to cool the planet is estimated. The icy tectonic plates are found to be faster than those on a silicate super-Earth. A mid-layer of low viscosity is found to exist between the lithosphere and the lower mantle. Its existence results in a large difference between ice mantle overturn timescales and resurfacing timescales. Resurfacing timescales are found to be 1 Ma for fast plates and 100 Ma for sluggish plates, depending on the viscosity profile and ice mass fraction. Melting beneath spreading centers is required in order to account for the planetary radiogenic heating. The melt fraction is quantified for the various tectonic solutions explored, ranging from a few percent for the fast and thin plates to total melting of the upwelled material for the thick and sluggish plates. Ice mantle dynamics is found to be important for assessing the composition of the atmosphere. We propose a mechanism for methane release into the atmosphere, where freshly exposed reservoirs of methane clathrate hydrate at the ridge dissociate under surface conditions. We formulate the relation between the outgassing flux and the tectonic mode dynamical characteristics. We give numerical estimates for the global outgassing rate of methane into the atmosphere. We find, for example, that for a 2 M{sub E} planet outgassing can release 10{sup 27}-10{sup 29} molecules s{sup –1} of methane to the atmosphere. We suggest a qualitative explanation for how the same outgassing mechanism may result in either a stable or a runaway volatile release, depending on the specifics of a given planet. Finally, we integrate the global outgassing rate for a few cases and quantify how the surface atmospheric pressure of methane evolves over time. We find that methane is likely an important constituent of water planets' atmospheres.« less
On the Modes of Mantle Convection in Super-Earths (Invited)
NASA Astrophysics Data System (ADS)
Bercovici, D.
2010-12-01
The relatively recent discovery of larger-than-Earth extra-solar terrestrial planets has opened up many possibilities for different modes of interior dynamics, including mantle convection. A great deal of basic mineral physics is still needed to understand the state of matter and rheology of these super terrestrials, even assuming similar compositions to Earth (which is itself unlikely given the effect of singular events such as giant impacts and lunar formation). There has been speculation and debate as to whether the larger Rayleigh numbers of super-Earth's would promote plate tectonic style recycling, which is considered a crucial negative feedback for buffering atmospheric CO2 and stabilizing climate through weathering and mineral carbonation. However, models of plate generation through grainsize-reducing damage (see Foley & Bercovici this session) show that the effect of larger Rayleigh numbers is offset by an increase in the lithosphere-mantle viscosity contrast (due to a hotter mantle). Super-Earth's are therefore probably no more (or less) prone to plate tectonics than "normal" Earths; other conditions like surface temperature (and thus orbital position) are more important than size for facilitating plate tectonic cycling, which is of course more in keeping with observations in our own solar system (i.e., the disparity between Earth and Venus). Regardless, two major questions remain. First, what are the other modes of convective recycling that would possibly buffer CO2 and allow for a negative feedback that stabilizes climate? For example, subarial basaltic volcanism associated with plume or diapiric convection could potentially draw down CO2 because of the reactibility of mafic minerals; this mechanism possibly helped trigger Snow Ball events in the Proterozoic Earth during break-up of near-equatorial super-continents. Second, what observations of exo-planets provide tests for theories of tectonics or convective cycling? Spectroscopic techniques are most likely to reveal information about atmospheric composition, which ostensibly has the the signature of plate tectonics. As noted by Valencia et al., signs of CO2 or SO2 cycling and buffering could be interpretted as indicators of tectonic activity. The presence of aerosols (e.g., sulfates) would also imply active volcanism, although on Earth they are stabilized in the stratosphere, which itself depends on the existence of free oxygen. In the end, major questions remain concerning possible modes of mantle dynamics and overturn that are crucial for understanding planetary and atmospheric evolution, but which will require broad integration of astronomy, geophysics and atmoshperic sciences.
Kinematics of the Southwestern Caribbean from New Geodetic Observations
NASA Astrophysics Data System (ADS)
Ruiz, G.; La Femina, P. C.; Tapia, A.; Camacho, E.; Chichaco, E.; Mora-Paez, H.; Geirsson, H.
2014-12-01
The interaction of the Caribbean, Cocos, Nazca, and South American plates has resulted in a complex plate boundary zone and the formation of second order tectonic blocks (e.g., the North Andean, Choco and Central America Fore Arc blocks). The Panama Region [PR], which is bounded by these plates and blocks, has been interpreted and modeled as a single tectonic block or deformed plate boundary. Previous research has defined the main boundaries: 1) The Caribbean plate subducts beneath the isthmus along the North Panama Deformed Belt, 2) The Nazca plate converges at very high obliquity with the PR and motion is assumed along a left lateral transform fault and the South Panama Deformed Belt, 3) The collision of PR with NW South America (i.e., the N. Andean and Choco blocks) has resulted in the Eastern Panama Deformed Belt, and 4) collision of the Cocos Ridge in the west is accommodated by crustal shortening, Central American Fore Arc translation and deformation across the Central Costa Rican Deformed Belt. In addition, there are several models that suggest internal deformation of this region by cross-isthmus strike-slip faults. Recent GPS observations for the PR indicates movement to the northeast relative to a stable Caribbean plate at rates of 6.9±4.0 - 7.8±4.8 mm a-1 from southern Costa Rica to eastern Panama, respectively (Kobayashi et al., 2014 and references therein). However, the GPS network did not have enough spatial density to estimate elastic strain accumulation across these faults. Recent installation and expansion of geodetic networks in southwestern Caribbean (i.e., Costa Rica, Panama, and Colombia) combined with geological and geophysical observations provide a new input to investigate crustal deformation processes in this complex tectonic setting, specifically related to the PR. We use new and existing GPS data to calculate a new velocity field for the region and to investigate the kinematics of the PR, including elastic strain accumulation on the major plate boundaries. Expanding our GPS observations within these proposed small blocks could allow us to solve for Euler vectors and calculate their rotation, strain accumulation and slip rates on the major fault systems. Our results combined with the local seismicity could help authorities to reduce uncertainties in seismic risk evaluations.
NASA Astrophysics Data System (ADS)
Rangin, C.; Crespy, A.; Martinez-Reyes, J.
2013-05-01
The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.
Beyond plate tectonics - Looking at plate deformation with space geodesy
NASA Technical Reports Server (NTRS)
Jordan, Thomas H.; Minster, J. Bernard
1988-01-01
The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com
2012-08-20
A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less
Mechanical deformation model of the western United States instantaneous strain-rate field
Pollitz, F.F.; Vergnolle, M.
2006-01-01
We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. ?? 2006 The Authors Journal compilation ?? 2006 RAS.
NASA Astrophysics Data System (ADS)
Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.
2017-12-01
Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.
A seismic reflection image for the base of a tectonic plate.
Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T
2015-02-05
Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.
Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction
Wech, Aaron G.
2016-01-01
The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.
Judgment Research and the Dimensional Model of Personality
ERIC Educational Resources Information Center
Garb, Howard N.
2008-01-01
Comments on the original article "Plate tectonics in the classification of personality disorder: Shifting to a dimensional model," by T. A. Widiger and T. J. Trull. The purpose of this comment is to address (a) whether psychologists know how personality traits are currently assessed by clinicians and (b) the reliability and validity of those…
Plate Tectonics in the Classification of Personality Disorder: Shifting to a Dimensional Model
ERIC Educational Resources Information Center
Widiger, Thomas A.; Trull, Timothy J.
2007-01-01
The diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders were developed in the spirit of a traditional medical model that considers mental disorders to be qualitatively distinct conditions (see, e.g., American Psychiatric Association, 2000). Work is now beginning on the fifth edition…
NASA Astrophysics Data System (ADS)
Gaina, Carmen; Watson, Robin; Cirbus, Juraj
2015-04-01
Cretaceous extension that resulted in the formation of several sedimentary basins along the North American and western and southwestern Greenland margin was followed by seafloor spreading in the Labrador Sea and Baffin Bay. Controversy regarding the timing of the oldest oceanic crust in these basins spanned more than 25 years and it is still not resolved due to the complexity of the margins and non-uniqueness of potential field data interpretation. Here we revisit the geophysical data (in particular the magnetic and gravity data) available for the Labrador Sea and Baffin Bay in order to identify the age of oceanic crust and infer new parameters that can be used for quantitative kinematic reconstructions. We identify chrons 20 to 29 for the central part of the basin. For the crust formed near the extinct spreading ridge we have modelled chrons 19 to 15 assuming an ultraslow spreading rate. Oceanic crust older than chron 29 is uncertain and may be part of a transitional crust that possibly contains other type of crust or exhumed mantle. The new magnetic anomaly identifications were inverted using the Hellinger (1981) criterion of fit. In this method the magnetic data are regarded as points on two conjugate isochrons consisting of great circle segments. This method has been extensively used for kinematic reconstructions since Royer and Chang (1991) first implemented it for quantitative plate tectonics, and is now available as a new interactive tool in the open-source software GPlates (www.gplates.org). The GPlates Hellinger tool lets the user interactively generate a best-fit rotation pole to a series of segmented magnetic picks. The fitting and determination of uncertainties are based on the FORTRAN program hellinger1 (Chang, 1988; Hellinger, 1981; Hanna and Chang, 1990); Royer and Chang, 1991). Input data can be viewed and adjusted both tabularly and graphically, and the best fit can be viewed and tested on the GPlates globe. The new set of rotations and their uncertainties are combined with a regional model and used to infer the plate boundaries during the formation of Labrador Sea and Baffin Bay. Challenges for establishing the continuation of these plate boundaries the Arctic domain are also discussed. References Chang, T. (1988), Estimating the relative rotation of two tectonic plates from boundary crossings, J. Am. Stat. Assoc., 83, 1178-1183. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, J Geophys Res, 86, 9312-9318. Hanna, M.S and T. Chang (1990), On graphically representing the confidence region for an unknown rotation in three dimensions. Computers & Geosciences 16 (2), 163-194. Royer, J. Y., and T. Chang (1991), Evidence for Relative Motions between the Indian and Australian Plates during the Last 20 My from Plate Tectonic Reconstructions - Implications for the Deformation of the Indo-Australian Plate, J Geophys Res, 96(B7), 11779-11802.
NASA Technical Reports Server (NTRS)
Anderson-Fontana, S.; Larson, R. L.; Engein, J. F.; Lundgren, P.; Stein, S.
1986-01-01
Magnetic and bathymetric profiles derived from the R/V Endeavor survey and focal mechanism studies for earthquakes on two of the Juan Fernandez microplate boundaries are analyzed. It is observed that the Nazca-Juan Fernandez pole is in the northern end of the microplate since the magnetic lineation along the East Ridge of the microplate fans to the south. The calculation of the relative motion of the Juan Fernandez-Pacific-Nazca-Antarctic four-plate system using the algorithm of Minster et al. (1974) is described. The development of tectonic and evolutionary models of the region is examined. The tectonic model reveals that the northern boundary of the Juan Fernandez microplate is a zone of compression and that the West Ridge and southwestern boundary are spreading obliquely; the evolutionary model relates the formation of the Juan Fernandez microplate to differential spreading rates at the triple junction.
Driving forces: Slab subduction and mantle convection
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere
Qi, Chao; Warren, Jessica M.
2016-01-01
Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary. PMID:27606485
Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.
Hansen, Lars N; Qi, Chao; Warren, Jessica M
2016-09-20
Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.
Early impact basins and the onset of plate tectonics. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Frey, H.
1977-01-01
The fundamental crustal dichotomy of the Earth (high and low density crust) was established nearly 4 billion years ago. Therefore, subductable crust was concentrated at the surface of the Earth very early in its history, making possible an early onset for plate tectonics. Simple thermal history calculations spanning 1 billion years show that the basin forming impact thins the lithosphere by at least 25%, and increases the sublithosphere thermal gradients by roughly 20%. The corresponding increase in convective heat transport, combined with the highly fractured nature of the thinned basin lithosphere, suggest that lithospheric breakup or rifting occurred shortly after the formation of the basins. Conditions appropriate for early rifting persisted from some 100,000,000 years following impact. We suggest a very early stage of high temperature, fast spreading "microplate" tectonics, originating before 3.5 billion years ago, and gradually stabilizing over the Archaean into more modern large plate or Wilson Cycle tectonics.
NASA Technical Reports Server (NTRS)
Froidevaux, C.; Schubert, G.; Yuen, D. A.
1976-01-01
Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.
van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego
2010-01-01
Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.
Could plate tectonics on Venus be concealed by volcanic deposits
NASA Technical Reports Server (NTRS)
Kaula, W. M.; Muradian, L. M.
1982-01-01
The present investigation is supplementary to a study reported by Kaula and Phillips (1981). From an analysis of Pioneer Venus altimetry, Kaula and Phillips had inferred that any heat loss from the planet by plate tectonics must be small compared to that from the earth. However, it has been suggested by others that plate tectonic may exist on Venus, but that the expected 'square root of s' dependence of the topographic drop off is not observed because it is concealed by lava flows. The present investigation has the objective to conduct an examination whether this suggestion of concealment by lava flow is correct. On the basis of the performed analysis, it is concluded that the results obtained by Kaula and Phillips appear to be well justified.
Areas of Unsolved Problems in Caribbean Active Tectonics
NASA Astrophysics Data System (ADS)
Mann, P.
2015-12-01
I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.
Witter, Robert C.; LeWinter, Adam; Bender, Adrian M.; Glennie, Craig; Finnegan, David
2017-05-22
Within Glacier Bay National Park in southeastern Alaska, the Fairweather Fault represents the onshore boundary between two of Earth’s constantly moving tectonic plates: the North American Plate and the Yakutat microplate. Satellite measurements indicate that during the past few decades the Yakutat microplate has moved northwest at a rate of nearly 5 centimeters per year relative to the North American Plate. Motion between the tectonic plates results in earthquakes on the Fairweather Fault during time intervals spanning one or more centuries. For example, in 1958, a 260-kilometer section of the Fairweather Fault ruptured during a magnitude 7.8 earthquake, causing permanent horizontal (as much as 6.5 meters) and vertical (as much as 1 meter) displacement of the ground surface across the fault. Thousands to millions of years of tectonic plate motion, including earthquakes like the one in 1958, raised and shifted the ground surface across the Fairweather Fault, while rivers, glaciers, and ocean waves eroded and sculpted the surrounding landscape along the Gulf of Alaska coast in Glacier Bay National Park.
Quantitative tests for plate tectonics on Venus
NASA Technical Reports Server (NTRS)
Kaula, W. M.; Phillips, R. J.
1981-01-01
Quantitative comparisons are made between the characteristics of plate tectonics on the earth and those which are possible on Venus. Considerations of the factors influencing rise height and relating the decrease in rise height to plate velocity indicate that the rate of topographic dropoff from spreading centers should be about half that on earth due to greater rock-fluid density contrast and lower temperature differential between the surface and interior. Statistical analyses of Pioneer Venus radar altimetry data and global earth elevation data is used to identify 21,000 km of ridge on Venus and 33,000 km on earth, and reveal Venus ridges to have a less well-defined mode in crest heights and a greater concavity than earth ridges. Comparison of the Venus results with the spreading rates and associated heat flow on earth reveals plate creation rates on Venus to be 0.7 sq km/year or less and indicates that not more than 15% of Venus's energy is delivered to the surface by plate tectonics, in contrast to values of 2.9 sq km a year and 70% for earth.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Chen, Y. W.
2016-12-01
Seismic tomographic studies have revealed a swath of flat slab anomalies in the mantle transition zone at 410 to 660 km depths under Japan, Korea and NE China that continue northwards at deeper depths under the Russian Far East. These slab anomalies are remarkable because they appear to be continuous from their western edge far inland (>2000 km) under the NE Eurasian margin to the present-day NW Pacific subduction zones, which suggests they are Pacific slabs that were subducted in the Cenozoic. Other studies have proposed that some of these slabs were subducted at an ancient subduction zone during the Mesozoic or earlier. Here we discuss the fate of these slabs and their implications for the plate tectonic reconstruction of the NW Pacific margin along NE Asia and Alaska. We present both new and recently published slab mapping (Wu et al., 2016; JGR Solid Earth) including 30 major and minor slabs mapped in 3D from MITP08 global seismic tomography. We unfolded our mapped slabs to a spherical Earth model to estimate their pre-subduction size, shape and locations. The slab constraints were input into GPlates software to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic. Mapped slabs included the Marianas, Izu-Bonin, Japan and Kuril slabs, the Philippine Sea slabs and Aleutian slabs under the Bering Sea. Our mapped western Pacific slabs between the southernmost Izu-Bonin trench and the western Aleutians had unfolded E-W lengths of 3400 to 4900 km. Our plate model shows that these slabs are best reconstructed as Pacific slabs that were subducted in the Cenozoic and account for fast Pacific subduction along the NE Eurasian margin since plate reorganization at 50 Ma. Our mapped northern Kuril slab edge near the western Aleutians and a southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with the orientations of Pacific absolute motions since 50 Ma. We interpret these long E-W slab edges as STEP fault-type transforms (i.e. lithospheric tears that progressively formed during subduction). We further discuss our plate model against the opening of the NW Pacific marginal basins in the Cenozoic, including the Japan Sea, Kuril Basin and Okhotsk Sea.
Secular cooling of Earth as a source of intraplate stress
NASA Technical Reports Server (NTRS)
Solomon, Sean C.
1987-01-01
The once popular idea that changes in planetary volume play an important role in terrestrial orogeny and tectonics was generally discarded with the acceptance of plate tectonics. It is nonetheless likely that the Earth has been steadily cooling over the past 3-4 billion years, and the global contraction that accompanied such cooling would have led to a secular decrease in the radius of curvature of the plates. The implications of this global cooling and contraction are explored here for the intraplate stress field and the evolution of continental plates.
Furrow Topography and the Elastic Thickness of Ganymede's Dark Terrain Lithosphere
NASA Technical Reports Server (NTRS)
Pappalardo, Robert T.; Nimmo, Francis; Giese, Bernd; Bader, Christina E.; DeRemer, Lindsay C.; Prockter, Louise M.
2003-01-01
The effective elastic thickness of Ganymede's lithosphere tell of the satellite's thermal evolution through time. Generally it has been inferred that dark terrain, which is less tectonically deformed than grooved terrain, represents regions of cooler and thicker lithosphere [1]. The ancient dark terrain is cut by furrows, tectonic troughs about 5 to 20 km in width, which may have formed in response to large ancient impacts [1, 2]. We have applied the methods of [3] to estimate effective elastic thickness based on topographic profiles across tectonic furrows, extracted from a stereo-derived digital elevation model (DEM) of dark terrain in Galileo Regio [4]. Asymmetry in furrow topography and inferred flexure suggests asymmetric furrow fault geometry. We find effective elastic thicknesses 0.4 km, similar to analyzed areas alongside bright grooved terrain. Data and Analysis: A broken-plate elastic model.
A Regime Diagram for Subduction
NASA Astrophysics Data System (ADS)
Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.
2009-12-01
Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction regimes are generated primarily as a product of two mechanisms. The first mechanism is that of the competition between the weight of the slab and the strength of the plate, which can be understood in terms of the applied bending moment, and this competition results in a particular radius of curvature (for which we provide a simple scaling theory). The second mechanism is the interaction between the slab and the more viscous lower mantle, which produces each regime's distinct slab morphology. Thus, the emergence of five distinct styles of subduction is a direct consequence of the presence of the modest barrier to flow into the lower mantle. Although only 2 of these styles presently operate on Earth, the possibility exists that other modes may have been the predominant mode in the past. Based on these models, we propose that the lithosphere is the primary factor in describing key elements of the plate tectonics system over time, rather than the convecting mantle. We discuss the various factors that may have influenced secular changes in Earth's tectonic behavior, some of which may have interesting consequences for the geochemical evolution of the Earth.
NASA Astrophysics Data System (ADS)
Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik
2016-11-01
The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.
Refining plate reconstructions of the North Atlantic and Ellesmerian domains
NASA Astrophysics Data System (ADS)
Shephard, Grace E.; Abdelmalak, Mansour M.; Buiter, Susanne; Piepjohn, Karsten; Jones, Morgan; Torsvik, Trond; Faleide, Jan Inge; Gaina, Carmen
2017-04-01
Located at the intersection of major tectonic plates, the North Atlantic and western Arctic domains have experienced both widespread and localized deformation since the Paleozoic. In conventional tectonic reconstructions, the plates of Greenland, Eurasia and North America are assumed to be rigid. However, prior to the onset of seafloor spreading, rifting lithosphere experiences significant thinning that is usually not accounted for. This leads to significant (in excess of 300 km in places) over- and under-laps between conjugate continent-ocean boundaries, an incomplete history of basin evolution, and loose correlations between climatic, volcanic, oceanographic and, geologic events. Furthermore, a handful of alternative regional reconstructions now exist, which predict different timings, rates and locations of relative motion and associated deformation. Assumptions of reference crustal thicknesses and the nature of lower crustal bodies, as well as the location of basin hinge lines have to-date not yet been incorporated into a consistent regional kinematic model. Notably, the alternative models predict varying episodes of compression or quiescence, not just orthogonal or oblique rifting. Here, we present new temporal and spatial-dependent results related to (1) the dominant rifting episodes across the North Atlantic (Carboniferous, Late Permian, Late Jurassic-Early Cenozoic and Late Cretaceous-Paleogene), and (2) restoration of compression and strike-slip motion between northern Greenland, Ellesmere Island (North America) and Spitsbergen (Eurasia) related to the Eurekan Orogeny. We achieve this by integrating a series of conjugate seismic profiles, calculated stretching factors, dated volcanic events, structural mapping and mass-balanced restorations into a global plate motion model via GPlates software. We also test alternative models of rift velocities (as kinematic boundary conditions) with 2-D lithosphere and mantle numerical models, and explore the importance of rheology and initial model setup.
NASA Astrophysics Data System (ADS)
Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.
2016-12-01
The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.
Subsurface imaging, TAIGER experiments and tectonic models of Taiwan
NASA Astrophysics Data System (ADS)
Wu, Francis T.; Kuo-Chen, H.; McIntosh, K. D.
2014-08-01
The seismicity, deformation rates and associated erosion in the Taiwan region clearly demonstrate that plate tectonic and orogenic activities are at a high level. Major geologic units can be neatly placed in the plate tectonic context, albeit critical mapping in specific areas is still needed, but the key processes involved in the building of the island remain under discussion. Of the two plates in the vicinity of Taiwan, the Philippine Sea Plate (PSP) is oceanic in its origin while the Eurasian Plate (EUP) is comprised partly of the Asian continental lithosphere and partly of the transitional lithosphere of the South China Sea basin. It is unanimously agreed that the collision of PSP and EU is the cause of the Taiwan orogeny, but several models of the underlying geological processes have been proposed, each with its own evolutionary history and implied subsurface tectonics. TAIGER (TAiwan Integrated GEodynamics Research) crustal- and mantle-imaging experiments recently made possible a new round of testing and elucidation. The new seismic tomography resolved structures under and offshore of Taiwan to a depth of about 200 km. In the upper mantle, the steeply east-dipping high velocity anomalies from southern to central Taiwan are clear, but only the extreme southern part is associated with seismicity; toward the north the seismicity disappears. The crustal root under the Central Range is strongly asymmetrical; using 7.5 km/s as a guide, the steep west-dipping face on the east stands in sharp contrast to a gradual east-dipping face on the west. A smaller root exists under the Coastal Range or slightly to the east of it. Between these two roots lies a well delineated high velocity rise spanning the length from Hualien to Taitung. The 3-D variations in crustal and mantle structures parallel to the trend of the island are closely correlated with the plate tectonic framework of Taiwan. The crust is thickest in the central Taiwan collision zone, and although it thins toward the south, the crust is over 30 km thick over the subduction in the south; in northern Taiwan, the northward subducting PSP collides with Taiwan and the crust thins under northern Taiwan where the subducting indenter reaches 50 km in depth. The low Vp/Vs ratio of around 1.6 at a mid-crustal depth of 25 km in the Central Range indicates that current temperatures could exceed 700 °C. The remarkable thickening of the crust under the Central Range, its rapid uplift without significant seismicity, its deep exhumation and its thermal state contribute to make it the core of orogenic activities on Taiwan Island. The expanded network during the TAIGER deployment captured broadband seismic data yielding enhanced S-splitting results with mainly SKS/SKKS data. The polarization directions of the fast S-waves follow very closely the structural trends of the island, supporting the concept of a vertically coherent Taiwan orogeny in the outer few hundred kilometers of the Earth.
ERIC Educational Resources Information Center
Gobert, Janice D.; Clement, John J.
1999-01-01
Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…
Strike-slip tectonics during rift linkage
NASA Astrophysics Data System (ADS)
Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.
2017-12-01
The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.
NASA Technical Reports Server (NTRS)
Toksoz, M. Nafi; Reilinger, Robert E.
1990-01-01
During the past 6 months, efforts were concentrated on the following areas: (1) Continued development of realistic, finite element modeling of plate interactions and associated deformation in the Eastern Mediterranean; (2) Neotectonic field investigations of seismic faulting along the active fault systems in Turkey with emphasis on identifying seismic gaps along the North Anatolian fault; and (3) Establishment of a GPS regional monitoring network in the zone of ongoing continental collision in eastern Turkey (supported in part by NSF).
Reports on crustal movements and deformations
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Peck, T.
1981-01-01
Studies of tectonic plate motions, regional crustal deformations, strain accumulation and release, deformations associated with earthquakes and fault motion, and micro-plate motion, were collected and are summarized. To a limited extent, papers dealing with global models of current plate motions and crustal stress are included. The data base is restricted to articles appearing in reveiwed technical journals during the years 1970-1980. The major journals searched include: Journal of Geophysical Research (solid earth), Tectonophysics, Bulletin of the Seismological Society of America, Geological Society of America Bulletin, Geophysical Journal of the Royal Astronomical Society, and the Journal of Geology.
NASA Astrophysics Data System (ADS)
Brandon, M. T.; Willett, S.; Rahl, J. M.; Cowan, D. S.
2009-12-01
We propose a new model for the evolution of accreting wedges at retreating subduction zones. Advance and retreat refer to the polarity of the velocity of the overriding plate with respect to subduction zone. Advance indicates a velocity toward the subduction zone (e.g., Andes) and retreat, away from the subduction zone (e.g. Apennines, Crete). The tectonic mode of a subduction zone, whether advancing or retreating, is a result of both the rollback of the subducting plate and the absolute motion of the overriding plate. The Hellenic and Apenninic wedges are both associated with retreating subduction zones. The Hellenic wedge has been active for about 100 Ma, whereas the Apenninic wedge has been active for about 30 Ma. Comparison of maximum metamorphic pressures for exhumed rocks in these wedges (25 and 30 km, respectively) with the maximum thickness of the wedges at present (30 and 35 km, respectively) indicates that each wedge has maintained a relatively steady size during its evolution. This conclusion is based on the constraint that both frictional and viscous wedges are subject to the constraint of a steady wedge taper, so that thickness and width are strongly correlated. Both wedges show clear evidence of steady accretion during their full evolution, with accretionary fluxes of about 60 and 200 km2 Ma-1. These wedges also both show steady drift of material from the front to the rear of the wedge, with horizontal shortening dominating in the front of the wedge, and horizontal extension within the back of the wedge. We propose that these wedges represent two back-to-back wedges, with a convergent wedge on the leading side (proside), and a divergent wedge on the trailing side (retroside). In this sense, the wedges are bound by two plates. The subducting plate is familiar. It creates a thrust-sense traction beneath the proside of the wedge. The second plate is an “educting” plate, which is creates a normal-sense traction beneath the retroside of the wedge. The educting plate underlies the Tyrrenhian Sea west of the Apennines and the Cretean Sea north of Crete. The stretched crust that overlies this plate represents highly thinned wedge material that has been removed or decreted from the wedge. This decretion process accounts for the mean motion within the wedge, from pro to retro side, and the pervasive thinning within the retroside. It also explains how these wedges are able to maintain a steady wedge size with time. An important prediction of this model is that different deformational styles, involving thickening and thinning, can occur within the same tectonics setting. This is in contrast the widely cited idea that tectonic thinning is a late- or post-orogenic process.
The interior of Venus and Tectonic implications
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Malin, M. C.
1983-01-01
It is noted in the present consideration of the Venus lithosphere and its implications for plate tectonics that the major linear elevated regions of Venus, which are associated with Beta Regio and Aphrodite Terra, do not seem to have the shape required for sure interpretation as the divergent plate boundaries of seafloor spreading. Such tectonics instead appear to be confined to the median plains, and may not be resolvable in the Pioneer Venus altimetry data. The ratios of gravity anomalies to topographic heights indicate that surface load compensation occurs at depths greater than about 100 km under the western Aphrodite Terra and 400 km under Beta Regio, with at least some of this compensation probably being maintained by mantle convection. It is also found that the shape of Venus's hypsogram is very different from the ocean mode of the earth's hypsogram, and it is proposed that Venus tectonics resemble intraplate, basin-and-swell tectonics on earth.
NASA Astrophysics Data System (ADS)
Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola
2010-05-01
This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Dietmar Müller, R.
2014-02-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar
2014-05-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
Drew, L.J.
2003-01-01
A tectonic model useful in estimating the occurrence of undiscovered porphyry copper and polymetallic vein systems has been developed. This model is based on the manner in which magmatic and hydrothermal fluids flow and are trapped in fault systems as far-field stress is released in tectonic strain features above subducting plates (e.g. strike-slip fault systems). The structural traps include preferred locations for stock emplacement and tensional-shear fault meshes within the step-overs that localize porphyry- and vein-style deposits. The application of the model is illustrated for the porphyry copper and polymetallic vein deposits in the Central Slovakian Volcanic Field, Slovakia; the Ma??tra Mountains, Hungary; and the Apuseni Mountains, Romania.
ERIC Educational Resources Information Center
Dolphin, Glenn; Benoit, Wendy
2016-01-01
At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they…
Evolution of Subducted Oceanic Crust in Dynamic Mantle Models
NASA Astrophysics Data System (ADS)
Brandenburg, J.; van Keken, P. E.; Ballentine, C.; Hauri, E.
2006-12-01
Isotopic ratios measured in oceanic basalts indicate the persistence of a highly differentiated and ancient mantle component. The provenance and distribution of this component are the subject of much discussion. A number of geodynamic studies have focused on the preservation of a chemically dense layer in the deepest mantle, while a smaller set of studies have explored the possibilities for its generation. We present an evaluation of the hypothesis that such a layer may represent the accumulation of subducted oceanic crust, with critical examination of the role that plate tectonics plays in mantle differentiation. In geodynamic models the treatment of plate tectonics controls crust production, subduction, and modulates the remixing rate. We use two methods for approximating plates in our models; prescription of a velocity boundary condition, and the force-balance method [1]. Emphasis is placed on the force-balance method, in which a numerical solution for the conservation of momentum is constructed by superposition. The force balance method has a minimum of free parameters compared to complex rheological descriptions that yield plate like behavior, and does not have the potential to artificially drive or hinder convection introduced by prescribing velocity boundary conditions. The mixing properties of the various methods are examined by comparison of embedded geochemical models for the isotopic evolution of Pb,U,Sm,Nd,Re,Os, and the noble gases. We find that the incorporation of strong plates leads to a mantle with increased stratification of heterogeneity. Sequestration of old oceanic crust in dense pools in the lowermost mantle is observed. However, the size and longevity of these dense pools decline considerably as realistic convective vigor is approached. Parameter space analysis is used to quantify this variability within the selection of models that reproduce Earth-like heat flow and plate velocities, and for comparison with the work of other authors. The residence time of old crust in pools and other areas of the mantle is examined with respect to the constraints imposed by isotope ratios observed in oceanic basalts. [1] Gable, C.W., R.J. O'Connell, B.J. Travis (1991) "Convection in 3 dimensions with surface plates; generation of a toroidal flow," J. Geophys. Res., 89, 8391--8405
JaMBES: A "New" Way of Calculating Plate Tectonic Reconstruction
NASA Astrophysics Data System (ADS)
Chambord, A. I.; Smith, E. G. C.; Sutherland, R.
2014-12-01
Calculating the paleoposition of tectonic plates using marine geophysical data has been usually done by using the Hellinger criterion [Hellinger, 1981]. However, for the Hellinger software [Kirkwood et al., 1999] to produce stable results, we find that the input data must be abundant and spatially well distributed. Although magnetic anomalies and fracture zone data have been increasingly abundant since the 1960s, some parts of the globe remain too sparsely explored to provide enough data for the Hellinger code to provide satisfactory rotations. In this poster, we present new software to calculate the paleopositions of tectonic plates using magnetic anomalies and fracture zone data. Our method is based on the theory of plate tectonics as introduced by [Bullard et al., 1965] and [Morgan, 1968], which states that ridge segments (ie. magnetic lineations) and fracture zones are at right angles to each other. In order to test our software, we apply it to a region of the world where climatic conditions hinder the acquisition of magnetic data: the Southwest Pacific, between New Zealand and Antarctica from breakup time to chron 20 (c43Ma). Bullard, E., J. E. Everett, and A. G. Smith (1965), The fit of continents around the atlantic, Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 258(1088), 41-51. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, Journal of Geophysical Research, 86(B10), 9312-9318. Kirkwood, B. H., J. Y. Royer, T. C. Chang, and R. G. Gordon (1999), Statistical tools for estimating and combining finite rotations and their uncertainties, Geophysical Journal International, 137(2), 408-428. Morgan, W. J. (1968), Rises, trenches, great faults, and crustal blocks, Journal of Geophysical Research, 73(6), 1959-1982.
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Dunajecka, M. A.
2007-02-01
The recent development of the Lithosphere-Atmosphere-Ionosphere (LAI) coupling model and experimental data of remote sensing satellites on thermal anomalies before major strong earthquakes have demonstrated that radon emanations in the area of earthquake preparation can produce variations of the air temperature and relative humidity. Specific repeating pattern of humidity and air temperature variations was revealed as a result of analysis of the meteorological data for several tens of strong earthquakes all over the world. The main physical process responsible for the observed variations is the latent heat release due to water vapor condensation on ions produced as a result of air ionization by energetic α-particles emitted by 222Rn. The high effectiveness of this process was proved by the laboratory and field experiments; hence the specific variations of air humidity and temperature can be used as indicator of radon variations before earthquakes. We analyzed the historical meteorological data all over the Mexico around the time of one of the most destructive earthquakes (Michoacan earthquake M8.1) that affected the Mexico City on September 19, 1985. Several distinct zones of specific variations of the air temperature and relative humidity were revealed that may indicate the different character of radon variations in different parts of Mexico before the Michoacan earthquake. The most interesting result on the specific variations of atmosphere parameters was obtained at Baja California region close to the border of Cocos and Rivera tectonic plates. This result demonstrates the possibility of the increased radon variations not only in the vicinity of the earthquake source but also at the border of interacting tectonic plates. Recent results on Thermal InfraRed (TIR) anomalies registered by Meteosat 5 before the Gujarat earthquake M7.9 on 26 of January 2001 supports the idea on the possibility of thermal effects at the border of interacting tectonic plates.
The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions
NASA Astrophysics Data System (ADS)
Lee, S. H.; Rhie, J.
2017-12-01
The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.
Tsunami Scenario in the Nankai Trough, Japan, Based on the GPS-A and GNSS Velocities
NASA Astrophysics Data System (ADS)
Bock, Y.; Watanabe, S. I.; Melgar, D.; Tadokoro, K.
2017-12-01
We present two local tsunami scenarios for the Nankai trough, Japan, an area of significant seismic risk, using GPS-A and GNSS velocities and two different plate interface geometries to better assess the slip deficit rate. We expand on the work of Yokota et al. [2016, Nature] by: (1) Adding seafloor data collected by Nagoya University [Tadokoro et al., 2012 GRL] at the Kumano basin, (2) Aligning the geodetic data to the Nankai block (forearc sliver) to the tectonic model of Loveless and Meade [2010 JGR] - the earlier work ignored block boundaries such as the Median Tectonic Line (MTL) and may have overestimated the slip deficit rate, (3) Considering two different plate interface geometries - it is essential to use the accurate depth of the plate interface, especially for the offshore region where the faults are located near the observation sites, (4) Estimating and correcting for the postseismic displacements of the 2004 southeastern off the Kii Peninsula earthquakes (MJMA 7.1, 7.4). Based upon the refined model, we calculate the coseismic displacements and tsunami wave propagation assuming that a hundred years of constant slip deficit accumulation is released instantaneously. We used the open source software GeoClaw v5.3.1, which solves the two-dimensional shallow water equations with the finite volume technique [LeVeque, 2002 Cambridge University Press], for the local tsunami scenarios. We present the expected tsunami propagation models and wave profiles based on the geodetically-derived distribution of slip, stressing the importance of identifying fault locations and geometries. The location of the downdip edge of the coseismic rupture is essential to assess whether the coastal area would subside or not. The sensitivity to the plate interface geometries is increased in the near-trough region. From the point of view of disaster prevention, subsidence at the southern coast would heighten the tsunami runup distance (e.g., at gauges in Shimotsu and Irago). Further understanding of the tectonic block boundaries in the frontal prism, through more detailed seafloor velocity profiles, will result in more realistic local tsunami propagation models.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, T. H.
1986-01-01
Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also used to provide constraints on deformation in the western U.S. using very long baseline interferometry observations over a two-year period.
Survey explores active tectonics in northeastern Caribbean
Carbó, A.; Córdoba, D.; Muñoz-Martín, A.; Granja, J.L.; Martín-Dávila, J.; Pazos, A.; Catalán, M.; Gómez, M.; ten Brink, Uri S.; von Hillebrandt, Christa; Payero, J.
2005-01-01
There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al., 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary.Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies.
Tectonic Terminology: Some Proposed Changes
ERIC Educational Resources Information Center
Hill, Mason L.
1978-01-01
Plate tectonics concepts require a definition of fault, a new term to compliment epeirogeny, and a clarification of transform fault characteristics. This article makes proposals for these changes. (Author/MA)
NASA Astrophysics Data System (ADS)
Šumanovac, Franjo; Markušić, Snježana; Engelsfeld, Tihomir; Jurković, Klaudia; Orešković, Jasna
2017-08-01
The study area covers the Dinarides and southwestern part of the Pannonian basin as the marginal zone between the Adriatic microplate (African plate) and the Pannonian tectonic segment (Eurasian plate). We created a three-dimensional seismic velocity model to 450 km depth using teleseismic tomography. Our travel-time dataset was collected by means of 40 seismic stations from the ORFEUS database and Croatian Seismological Survey database. A set of 90 teleseismic earthquakes were selected in the time range 2014-2015, and relative P-wave travel-time residuals were calculated. For the first time the seismic P-wave velocity model of a relatively high resolution on the entire Dinaridic mountain belt was obtained. Based on this model, a more reliable insight in the relations of the lithosphere plates has been achieved. We imaged a fast velocity anomaly extending underneath the entire Dinaridic mountain belt which indicates cold, rigid materials. The anomaly is steeply sloping towards the northeast and directly indicates the sinking of the Adriatic microplate underneath the Pannonian tectonic segment. In the Northern Dinarides the anomaly extends to the depth of 250 km, whereas in the Southern Dinarides it covers greater depths, up to 450 km. The shallow Adriatic slab extends along the External Dinarides, while the deep Adriatic slab extends beneath the Internal Dinarides and ophiolite zones in the area of central and southern Dinarides. Different slab depths are interpreted as the faster convergence of the plate in the southern Dinarides than in the northern, or the convergence of the plates had started in the southern part and systematically developed to the north.
NASA Astrophysics Data System (ADS)
Schellart, W. P.
2012-01-01
In a recent paper Booden et al. (2011) present new geochemical and petrological data of Early Miocene volcanics from the Northland region (Northland volcanic belt) in New Zealand, and interpret these data to support a particular regional tectonic model. This tectonic model involves Early Miocene westward subduction of Cretaceous Pacific oceanic lithosphere below the Northland volcanic belt and the authors interpret the volcanic belt as a continental magmatic arc. Although the new data are not in disagreement with such a tectonic model, they provide more support for an alternative interpretation that involves a northeast-dipping subduction zone. Furthermore, geometric and plate kinematic data show that the west-dipping subduction model is unviable, geological and geophysical data contradict the model, while geodynamic arguments indicate that the model is implausible. Here it will be shown that a subduction model, involving a northeast-dipping southwestward retreating slab (made of the Late Cretaceous-Paleocene South Loyalty backarc basin lithosphere) that subsequently detaches, is in agreement with the local geology, geophysics and geochemistry, is geometrically, kinematically and geodynamically viable, and fits within the regional Southwest Pacific tectonic framework.
Using thermal and compositional modeling to assess the role of water in Alaskan flat slab subduction
NASA Astrophysics Data System (ADS)
Robinson, S. E.; Porter, R. C.; Hoisch, T. D.
2017-12-01
Although plate tectonic theory is well established in the geosciences, the mechanisms and details of various plate-tectonics related phenomena are not always well understood. In some ( 10%) convergent plate boundaries, subduction of downgoing oceanic plates is characterized by low angle geometries and is termed "flat slab subduction." The mechanism(s) driving this form of subduction are not well understood. The goal of this study is to explore the role that water plays in these flat slab subduction settings. This is important for a better understanding of the behavior of these systems and for assessing volcanic hazards associated with subduction and slab rollback. In southern Alaska, the Pacific Plate is subducting beneath the North American plate at a shallow angle. This low-angle subduction within the region is often attributed to the subduction of the Yakutat block, a terrane accreting to the south-central coast of Alaska. This flat slab region is bounded by the Aleution arc to the west and the strike-slip Queen Charlotte fault to the east. Temperature and compositional models for a 500-km transect across this subduction zone in Alaska were run for ten million years (the length of time that flat slab subduction has been ongoing in Alaska) and allow for interpretation of present-day conditions at depth. This allows for an evaluation of two hypotheses regarding the role of water in flat-slab regions: (1) slab hydration and dehydration help control slab buoyancy which influences whether flat slab subduction will be maintained or ended. (2) slab hydration/dehydration of the overlying lithosphere impacts deformation within the upper plate as water encourages plate deformation. Preliminary results from thermal modeling using Thermod8 show that cooling of the mantle to 500 °C is predicted down to 100 km depth at 10 million years after the onset of low-angle subduction (representing present-day). Results from compositional modeling in Perple_X show the maximum amount of water that can be held in the system assuming crustal (basalt and metabasalt) and mantle (peridotite) compositions. These models will be compared with seismic velocity models created from EarthScope Transportable Array data in the region in order to determine amounts of serpentinite and other water-bearing rocks within the flat slab subduction system.
NASA Astrophysics Data System (ADS)
Toke, N.; Johnson, A.; Nelson, K.
2010-12-01
Earthquakes are one of the most widely covered geologic processes by the media. As a result students, even at the middle school level, arrive in the classroom with preconceptions about the importance and hazards posed by earthquakes. Therefore earthquakes represent not only an attractive topic to engage students when introducing tectonics, but also a means to help students understand the relationships between geologic processes, society, and engineering solutions. Facilitating understanding of the fundamental connections between science and society is important for the preparation of future scientists and engineers as well as informed citizens. Here, we present a week-long lesson designed to be implemented in five one hour sessions with classes of ~30 students. It consists of two inquiry-based mapping investigations, motivational presentations, and short readings that describe fundamental models of plate tectonics, faults, and earthquakes. The readings also provide examples of engineering solutions such as the Alaskan oil pipeline which withstood multi-meter surface offset in the 2002 Denali Earthquake. The first inquiry-based investigation is a lesson on tectonic plates. Working in small groups, each group receives a different world map plotting both topography and one of the following data sets: GPS plate motion vectors, the locations and types of volcanoes, the location of types of earthquakes. Using these maps and an accompanying explanation of the data each group’s task is to map plate boundary locations. Each group then presents a ~10 minute summary of the type of data they used and their interpretation of the tectonic plates with a poster and their mapping results. Finally, the instructor will facilitate a class discussion about how the data types could be combined to understand more about plate boundaries. Using student interpretations of real data allows student misconceptions to become apparent. Throughout the exercise we record student preconceptions and post them to a bulletin board. During the tectonics unit we use these preconceptions as teaching tools. We also archive the misconceptions via a website which will be available for use by the broader geoscience education community. The second student investigation focuses on understanding the impact earthquakes have on nearby cities. We use the example of the 2009 southern San Andreas Fault (SAF) shakeout scenario. Students again break into groups. Each group is given an aspect of urban infrastructure to study relative to the underlying geology and location of nearby faults. Their goal is to uncover potential urban infrastructure issues related to a major earthquake on the SAF. For example students will map transportation ways crossing the fault, the location of hospitals relative to forecasted shaking hazards, the location of poverty-stricken areas relative to shaking hazards, and utilities relative to fault crossings. Again, students are tasked with explaining their investigation and analyses to the class with ample time for discussion about potential ways to solve problems identified through their investigations.
Plate tectonics hiati as the cause of global glaciations: 2. The late Proterozoic 'Snowball Earth'
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2003-04-01
A fundamental reappraisal of the mechanisms that drive plate tectonics has yielded the remarkable conclusion that, for at least the past 130 Ma, the principal agent has not been ridge-push or slab-pull but a CW-directed torque (probably of electromagnetic origin at the CMB) reaching the deep (>600 km, e.g.[1]) tectospheric keel of the Antarctica craton. Major changes in spreading direction marked both ends of the 122--85 Ma Cretaceous Superchron and started by forming the Ontong Java Plateau. Action of MORs as gearlike linkages has driven Africa and India CCW since Gondwana breakup and continues to drive the Pacific plate CCW. In the Arctic there is now no cratonic keel to pick up any corresponding polar torque, so northern hemisphere plate tectonics is far less active. The thesis of this contribution is that in the Neoproterozoic the lack of cratons at high latitudes would have deprived plate tectonics of this motivation, causing MORs to die (see below) and a major fall in sea-level, leading to global glaciation as outlined in Part 1 for the Huronian events. Like that seen during that first hiatus, dyke-swarm volcanism could have arisen from thermal shrinkage of the global lithosphere, providing CO2 and ash-covering that interrrupted glacial episodes. In oceanic settings this volcanism would have lowered pH and supplied Fe2+ for shallow bio-oxygenic action to deposit as BIF. My multifacet studies of the subduction process convince me that the rapid development of "flat-slab" interface profiles involves the physical removal of hanging-wall material in front of the downbend by basal subduction tectonic erosion (STE). Historically this, and its inferred ubiquity in the Archaean as the precursor to PSM (Part 1), suggests that the required subducting-plate buoyancy is thermal. Accordingly, a redesign [2] of the MOR process has incorporated the heat-containing LVZ as an integral part of the plate and luckily provides a lot more ridge-push to ensure the subduction of buoyant plates. But its action is not indefinitely self-sustaining, so could die out if not "nudged" occasionally. Wholly untrumpeted by seismologists, this built-in ocean-plate-heat is indeed evident as slab-reheating during active subduction. Nearly 100 circum-Pacific tomographic transects kindly provided by E.R.Engdahl consistently show the "slab" high-Vp signature peters out at between 200 and 350 km (plate age-dependent and even at 130 Ma) and a second high-Vp signature then begins close to the top of the TZ and goes on into the lower mantle. This latter signature must be mineralogical, not thermal, and arguably is not mantle but is only a stream of dense stishovitic lumps derived from the TZ-depth partial melting of subducted oceanic crust. Where now is the slab-pull to sustain plate tectonics?
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.
Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions
Hanks, T.C.
1977-01-01
A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.
2008-09-01
part of the Atlantic Ocean for reference. The Moho depth result is broadly consistent with CRUST2.0, except in mid-northern Africa, where the crust...plate boundaries is shown by the pink line in Figure 1. The interaction of these five major tectonic plates with each other and with several microplates ...acquired from literatures. Artificial point constraints of 10 km depth are placed to the Atlantic and Indian Oceans where measurements are absent
Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Neese, D.; Carsten, G.
1995-08-01
Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less
Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data.
Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi
2017-11-17
The interactions of the lithospheric plates that form the Earth's outer shell provide much of the evidentiary basis for modern plate tectonic theory. Seismic discontinuities in the lithosphere arising from mantle convection and plate motion provide constraints on the physical and chemical properties of the mantle that contribute to the processes of formation and evolution of tectonic plates. Seismological studies during the past two decades have detected seismic discontinuities within the oceanic lithosphere in addition to that at the lithosphere-asthenosphere boundary (LAB). However, the depth, distribution, and physical properties of these discontinuities are not well constrained, which makes it difficult to use seismological data to examine their origin. Here we present new active-source seismic data acquired along a 1,130 km profile across an old Pacific plate (148-128 Ma) that show oceanic mid-lithosphere discontinuities (oceanic MLDs) distributed 37-59 km below the seafloor. The presence of the oceanic MLDs suggests that frozen melts that accumulated at past LABs have been preserved as low-velocity layers within the current mature lithosphere. These observations show that long-offset, high-frequency, active-source seismic data can be used to image mid-lithospheric structure, which is fundamental to understanding the formation and evolution of tectonic plates.
Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan
NASA Astrophysics Data System (ADS)
Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.
2012-12-01
The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being carried out to calculate slip-rates. Slip-rates estimation along this segment of this plate boundary will help in understanding of tectonic evolution of this plate boundary and seismic activity in the region.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Moore, T. E.; Plafker, G.; Brocher, T. M.; Fisher, M. A.; Mooney, W. D.; Nokleberg, W. J.; Page, R. A.; Beaudoin, B. C.; Christensen, N. I.; Levander, A.; Lutter, W. J.; Saltus, R. W.; Ruppert, N. A.
2010-12-01
We investigated the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980’s and early 1990’s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted to be remnants of the extinct Kula (or Resurrection) Plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by north-vergent, crustal-scale duplexes that overlie a ramp on autochthonous North Slope crust. There, Moho has been depressed to nearly 50-km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula- (or Resurrection-) Plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two widely separated regions include “flat-slab” subduction and an “orogenic-float” model. In the Neogene, the collision of the Yakutat terrane (YAK), in southern Alaska, correlates with renewed compression in northeast Alaska and northwest Canada, in a fashion somewhat similar to the tectonics in the Paleogene. The Yakutat terrane, riding atop the subducting Pacific oceanic lithosphere (POL), spans a newly interpreted tear in the POL. East of the tear, POL is interpreted to subduct steeply and alone beneath the Wrangell arc volcanoes because the overlying YAK has been left behind as tectonically underplated rocks beneath the rising St. Elias Range in the coastal region. West of the tear, the YAK and POL are interpreted to subduct together at a gentle angle (a few degrees from 0 to 400 km from the trench), and this thickened package inhibits arc volcanism.
1977-04-01
C. Sun and Ta-iang Teng Contractor: University of Southern California Principal Investigator: Professor Ta-liang Teng (213) 746-6124 Contract Number...83 i" I. INTRODUCTION Over the vast Chinese mainland, one of the most interesting and dynamic regions of the world, complex tectonics, coupled with...west Pacific and the Alpine- Himalaya tectonic belts, the multitude of Chinese tectonic com- plexities is evident from its enormous topographic relief
Global tectonic of Enceladus driven by subsidence of South Polar Terrain
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-07-01
Enceladus is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of ~200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. Our hypothesis states that this mass loss is the main driving mechanism of the tectonic processes. The hypothesis is presented in [2] and [3]. We find that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion includes: (i) Subsidence of the 'lithosphere' of SPT. (ii) Flow of the matter in the mantle. (iii) Motion of plates adjacent to SPT towards the active region. The numerical model of the subsidence process is developed. It is based on the model of thermal convection in the mantle. Special boundary conditions are applied that could simulate subsidence of SPT. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm per yr. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is ~0.02 mm per yr, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be ~0.02 mm per yr for the Newtonian rheology. The SPT is not compressed, so "tiger stripes" could exist for long time. Only after significant subsidence the regime of stresses changes to compression. It means the end of activity in a given region. The future region of activity is suggested. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.
NASA Astrophysics Data System (ADS)
Grobe, Arne; Virgo, Simon; von Hagke, Christoph; Ralf, Littke; Urai, Janos L.
2017-04-01
Ophiolite obduction is an integral part of mountain building in many orogens. However, because the obduction stage is usually overprinted by later tectonic events, obduction geodynamics and its influence on orogenesis are often elusive. The best-preserved ophiolite on Earth is the Semail Ophiolite, Oman Mountains. 350 km of ophiolite and the entire overthrusted margin sequence are exposed perpendicular to the direction of obduction along the northeastern coast of the Sultanate of Oman. Despite excellent exposure, it has been debated whether early stages of obduction included formation of a micro-plate, or if the Oman Mountains result from collision of two macro-plates (e.g. Breton et al., 2004). Furthermore, different tectonic models for the Oman Mountains exist, and it is unclear how structural and tectonic phases relate to geodynamic context. Here we present a multidisciplinary approach to constrain orogenesis of the Oman Mountains. To this end, we first restore the structural evolution of the carbonate platform in the footwall of the Semail ophiolite. Relative ages of nine structural generations can be distinguished, based on more than 1,500 vein and fault overprintings. Top-to-S overthrusting of the Semail ophiolite is witnessed by three different generations of bedding confined veins in an anticlockwise rotating stress field. Rapid burial induced the formation of overpressure cells, and generation and migration of hydrocarbons (Fink et al., 2015; Grobe et al., 2016). Subsequent tectonic thinning of the ophiolite took place above a top-to-NNE crustal scale, ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers. Ongoing extension formed normal- to oblique-slip faults and horst-graben structures. This was followed by NE-SW oriented ductile shortening, the formation of the Jebel Akhdar anticline, potentially controlled by the positions of the horst-graben structures. Exhumation in the Cenozoic was associated with low angle normal faults on the northern flank of the anticline. We link these results with the geodynamic framework of the area, constrained by plate tectonic reconstructions. Furthermore, we constrain the exhumation history of the mountain belt using zircon (U-Th-Sm)/He dating. Geodynamic and exhumation events can be linked to structural generations. This results in a new tectonic model of the Oman Mountains. We find a remarkable along-strike consistency of mountain building phases and argue involvement of a micro-plate is not required. Breton, J.P., Béchennec, F., Le Métour, J., Moen-Maurel, L., Razin, P., 2004. Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: Insights from a structural field study in Jabal Akhdar (Oman Mountains). GeoArabia 9, 41-58. Fink, R., Virgo, S., Arndt, M., Visser, W., Littke, R., Urai, J.L.L., 2015. Solid bitumen in calcite veins from the Natih Formation in the Oman Mountains: Multiple phases of petroleum migration in a changing stress field. Int. J. Coal Geol. 157, 39-51. doi:10.1016/j.coal.2015.07.012 Grobe, A., Urai, J.L.L., Littke, R., Lünsdorf, N.K.K., 2016. Hydrocarbon generation and migration under a large overthrust: The carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman. Int. J. Coal Geol. 1-17. doi:10.1016/j.coal.2016.02.007
ten Brink, Uri S.; Danforth, William W.; Polloni, Christopher F.
2013-01-01
In 2002 and 2003, the U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises that mapped for the first time the morphology of the entire tectonic plate boundary stretching from the Dominican Republic in the west to the Lesser Antilles in the east, a distance of approximately 700 kilometers (430 miles). Observations from these three exploration cruises, coupled with computer modeling and published Global Positioning System (GPS) results and earthquake focal mechanisms, have provided new information that is changing the evaluation of the seismic and tsunami hazard from this plate boundary. The observations collected during these cruises also contributed to the basic understanding of the mechanisms that govern plate tectonics, in this case, the creation of the island of Puerto Rico and the deep trench north of it. Results of the sea floor mapping have been an important component of the study of tsunami and earthquake hazards to the northeastern Caribbean and the U.S. Atlantic coast off the United States.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro M.
2016-06-01
The 3-D distribution of buoyancy in the convecting mantle drives a suite of convection-related manifestations. Although seismic tomography is providing increasingly resolved images of the present-day mantle heterogeneity, the distribution of mantle density variations in the geological past is unknown, and, by implication, this is true for the convection-related observables. The one major exception is tectonic plate motions, since geologic data are available to estimate their history and they currently provide the only available constraints on the evolution of 3-D mantle buoyancy in the past. We developed a new back-and-forth iterative method for time-reversed convection modeling with a procedure for matching plate velocity data at different instants in the past. The crucial aspect of this reconstruction methodology is to ensure that at all times plates are driven by buoyancy forces in the mantle and not vice versa. Employing tomography-based retrodictions over the Cenozoic, we estimate the global amplitude of the following observables: dynamic surface topography, the core-mantle boundary ellipticity, the free-air gravity anomalies, and the global divergence rates of tectonic plates. One of the major benefits of the new data assimilation method is the stable recovery of much shorter wavelength changes in heterogeneity than was possible in our previous work. We now resolve what appears to be two-stage subduction of the Farallon plate under the western U.S. and a deeply rooted East African Plume that is active under the Ethiopian volcanic fields during the Early Eocene.
NASA Astrophysics Data System (ADS)
Gohl, Karsten; Denk, Astrid; Eagles, Graeme; Wobbe, Florian
2013-02-01
The Amundsen Sea Embayment (ASE), with Pine Island Bay (PIB) in the eastern embayment, is a key location to understanding tectonic processes of the Pacific margin of West Antarctica. PIB has for a long time been suggested to contain the crustal boundary between the Thurston Island block and the Marie Byrd Land block. Plate tectonic reconstructions have shown that the initial rifting and breakup of New Zealand from West Antarctica occurred between Chatham Rise and the eastern Marie Byrd Land at the ASE. Recent concepts have discussed the possibility of PIB being the site of one of the eastern branches of the West Antarctic Rift System (WARS). About 30,000 km of aeromagnetic data - collected opportunistically by ship-based helicopter flights - and tracks of ship-borne magnetics were recorded over the ASE shelf during two RV Polarstern expeditions in 2006 and 2010. Grid processing, Euler deconvolution and 2D modelling were applied for the analysis of magnetic anomaly patterns, identification of structural lineaments and characterisation of magnetic source bodies. The grid clearly outlines the boundary zone between the inner shelf with outcropping basement rocks and the sedimentary basins of the middle to outer shelf. Distinct zones of anomaly patterns and lineaments can be associated with at least three tectonic phases from (1) magmatic emplacement zones of Cretaceous rifting and breakup (100-85 Ma), to (2) a southern distributed plate boundary zone of the Bellingshausen Plate (80-61 Ma) and (3) activities of the WARS indicated by NNE-SSW trending lineaments (55-30 Ma?). The analysis and interpretation are also used for constraining the directions of some of the flow paths of past grounded ice streams across the shelf.
The Sunda-Banda Arc Transition: New Insights From Marine Wide-Angle Seismic Data
NASA Astrophysics Data System (ADS)
Planert, L.; Shulgin, A.; Kopp, H.; Mueller, C.; Flueh, E.; Lueschen, E.; Engels, M.; Dayuf Jusuf, M.
2007-12-01
End of 2006, RV SONNE cruise SO190 SINDBAD (Seismic and Geoacoustic Investigations along the Sunda- Banda Arc Transition) went south of the Indonesian archipelago to acquire various geophysical datasets between 112 °E and 122 °E. The main goal of the project is to investigate the modifications of the lower plate (variability in the plate roughness, transition from oceanic to continental lower plate) and their effects on the tectonics of the upper plate (development of an outer high and forearc basin, accretionary and erosive processes). The tectonic style changes in neighboring margin segments from an oceanic plate-island arc subduction along the eastern Sunda margin to a continental plate-island arc collision along the Banda margin. Moreover, the character of the incoming oceanic plate varies from the rough topography in the area where the Roo Rise is subducting off eastern Java, to the smooth oceanic seafloor of the Argo- Abyssal Plain subducting off Bali, Lombok, and Sumbawa. In order to cover the entire variations of the lower plate, seven seismic refraction profiles were conducted along four major north-south oriented corridors of the margin, at 113 °E, 116 °E, 119 °E, and 121 °E, as well as three profiles running perpendicular to the major corridors. A total of 239 ocean bottom hydrophone and seismometer deployments were successfully recovered. Shooting was conducted along 1020 nm of seismic profiles using a G-gun cluster of 64 l. Here, we present velocity models obtained by applying a tomographic approach which jointly inverts for refracted and reflected phases. Additional geometry and velocity information for the uppermost layers, obtained by prestack depth migration of multichannel seismic reflection data (see poster of Mueller et al. in this session), is incorporated into our models and held fixed during the iterations. geomar.de/index.php?id=sindbad
Dynamics of double-polarity subduction: application to the Western Mediterranean
NASA Astrophysics Data System (ADS)
Peral, Mireia; Zlotnik, Sergio; Fernandez, Manel; Vergés, Jaume; Jiménez-Munt, Ivone; Torne, Montserrat
2016-04-01
The evolution of the Western Mediterranean is a highly debated question by geologists and geophysicists. Even though most scientists agree in considering slab roll-back to be the driving mechanism of the tectonic evolution of this area, there is still no consensus about the initial setup and its time evolution. A recent model suggests a lateral change in subduction polarity of the Ligurian-Thetys oceanic domain to explain the formation and evolution of the Betic-Rif orogenic system and the associated Alboran back-arc basin. Such geodynamic scenario is also proposed for different converging regions. The aim of this study is to analyze the dynamic evolution of a double-polarity subduction process and its consequences in order to test the physical feasibility of this interaction and provide geometries and evolutions comparable to those proposed for the Western Mediterranean. The 3D numerical model is carried out via the Underworld framework. Tectonic plate behavior is described by equations of fluid dynamics in the presence of several different phases. Underworld solves a non-linear Stokes flow problem using Finite Elements combined with particle-in-cell approach, thus the discretization combines a standard Eulerian Finite Element mesh with Lagrangian particles to track the location of the phases. The final model consists of two oceanic plates with viscoplastic rheology subducting into the upper mantle in opposite direction and the problem is driven by Rayleigh-Taylor instability. We study the influence of the boundary conditions in the model evolution, and the slab deformation produced by the proximity between both plates. Moreover the case of asymmetric friction on the lateral sides of slabs is also considered. Simulations of single subduction models are used as a reference, to compare results and understand the influence of the second plate. We observe slight differences in the trench retreat velocity and the slab morphology near the contact area when plates are spaced less than 100 km.
Crustal deformation in great California earthquake cycles
NASA Technical Reports Server (NTRS)
Li, Victor C.; Rice, James R.
1986-01-01
Periodic crustal deformation associated with repeated strike slip earthquakes is computed for the following model: A depth L (less than or similiar to H) extending downward from the Earth's surface at a transform boundary between uniform elastic lithospheric plates of thickness H is locked between earthquakes. It slips an amount consistent with remote plate velocity V sub pl after each lapse of earthquake cycle time T sub cy. Lower portions of the fault zone at the boundary slip continuously so as to maintain constant resistive shear stress. The plates are coupled at their base to a Maxwellian viscoelastic asthenosphere through which steady deep seated mantle motions, compatible with plate velocity, are transmitted to the surface plates. The coupling is described approximately through a generalized Elsasser model. It is argued that the model gives a more realistic physical description of tectonic loading, including the time dependence of deep slip and crustal stress build up throughout the earthquake cycle, than do simpler kinematic models in which loading is represented as imposed uniform dislocation slip on the fault below the locked zone.
A Design Model of Distributed Scaffolding for Inquiry-Based Learning
ERIC Educational Resources Information Center
Hsu, Ying-Shao; Lai, Ting-Ling; Hsu, Wei-Hsiu
2015-01-01
This study presents a series of three experiments that focus on how distributed scaffolding influences learners' conceptual understanding and reasoning from combined levels of triangulation, at the interactive level (discourses within a focus group) and the collective level (class). Three inquiry lessons on plate tectonics (LPT) were designed,…
NASA Astrophysics Data System (ADS)
Mittelstaedt, E.; Soule, S.; Harpp, K.; Fornari, D.; McKee, C.; Tivey, M.; Geist, D.; Kurz, M. D.; Sinton, C.; Mello, C.
2012-05-01
Anomalous volcanism and tectonics between near-ridge mantle plumes and mid-ocean ridges provide important insights into the mechanics of plume-lithosphere interaction. We present new observations and analysis of multibeam, side scan sonar, sub-bottom chirp, and total magnetic field data collected during the R/V Melville FLAMINGO cruise (MV1007; May-June, 2010) to the Northern Galápagos Volcanic Province (NGVP), the region between the Galápagos Archipelago and the Galápagos Spreading Center (GSC) on the Nazca Plate, and to the region east of the Galápagos Transform Fault (GTF) on the Cocos Plate. The NGVP exhibits pervasive off-axis volcanism related to the nearby Galápagos hot spot, which has dominated the tectonic evolution of the region. Observations indicate that ˜94% of the excess volcanism in our survey area occurs on the Nazca Plate in three volcanic lineaments. Identified faults in the NGVP are consistent with normal ridge spreading except for those within a ˜60 km wide swath of transform-oblique faults centered on the GTF. These transform-oblique faults are sub-parallel to the elongation direction of larger lineament volcanoes, suggesting that lineament formation is influenced by the lithospheric stress field. We evaluate current models for lineament formation using existing and new observations as well as numerical models of mantle upwelling and melting. The data support a model where the lithospheric stress field controls the location of volcanism along the lineaments while several processes likely supply melt to these eruptions. Synthetic magnetic models and an inversion for crustal magnetization are used to determine the tectonic history of the study area. Results are consistent with creation of the GTF by two southward ridge jumps, part of a series of jumps that have maintained a plume-ridge separation distance of 145 km to 215 km since ˜5 Ma.
Constraining Initiation and Onset Time of Plate Tectonics on Earth
NASA Astrophysics Data System (ADS)
Roller, G.
2014-12-01
The onset time for modern-style plate tectonics is still heavily debated among geoscientists. Proposed timings range from the Phanerozoic to the Hadean. Here I present a new theoretical approach to tackle this question. I combine ideas of nuclear astrophysics and geochronology and apply the concept of sudden nucleosynthesis to calculate so-called nucleogeochronometric Rhenium-Osmium model ages. Sudden nucleosynthesis has been suggested by nuclear theory [1-2] as a possible mechanism for the creation of the heavy isotopes. Hence, this concept may generally be used to identify rapid (r-) neutron-capture process events. For Earth, nucleogeochronometric model age calculations based upon published pyroxenite and komatiite data [3-5] point to an r-process event around 3 Ga. Since the r-process requires high neutron densities and temperatures within seconds, a gravitational core collapse forming at least a part of the inner core is discussed as a possible cause, thus initiating modern-style plate tectonics at that time. This age is in line with an earlier proposed value of 2.7 Ga for an inner core forming event [6], pronounced changes in the magnitude of the geomagnetic field and geological evidence like the onset of extensive plutonism and crust formation starting around the Archean-Proterozoic transition. Besides, results from nucleogeochronometric age calculations for published peridotitic pentlandites [7] lead to corrections as to their previously inconsistent model ages: These are now in good agreement with their Proterozoic 1.43 Ga isochronous regression line, supporting the model. [1] Burbidge et al. (1957) Revs. Mod. Phys. 29, 547 - 650. [2] Hoyle et al. (1960) ApJ 132, 565 - 590. [3] Reisberg et al. (1991) Earth Planet. Sci. Lett. 105, 196 - 213. [4] Roy-Barman et al. (1996) Chem. Geol. 130, 55 - 64. [5] Luck et al. (1984) Earth Planet Sci. Lett. 68, 205 - 208. [6] Hale (1987) Nature 329, 233 -237. [7] Smit et al. (2010) Geochim. Cosmochim. Acta 74, 3292 - 3306.
Gaina, Carmen; Medvedev, Sergei; Torsvik, Trond H; Koulakov, Ivan; Werner, Stephanie C
Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic's crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic's lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous-Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha-Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province-HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.
The magma ocean as an impediment to lunar plate tectonics
NASA Technical Reports Server (NTRS)
Warren, Paul H.
1993-01-01
The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.
Post-Jurassic tectonic evolution of Southeast Asia
NASA Astrophysics Data System (ADS)
Zahirovic, Sabin; Seton, Maria; Dietmar Müller, R.; Flament, Nicolas
2014-05-01
The accretionary growth of Asia, linked to long-term convergence between Eurasia, Gondwana-derived blocks and the Pacific, resulted in a mosaic of terranes for which conflicting tectonic interpretations exist. Here, we propose solutions to a number of controversies related to the evolution of Sundaland through a synthesis of published geological data and plate reconstructions that reconcile both geological and geophysical constraints with plate driving forces. We propose that West Sulawesi, East Java and easternmost Borneo rifted from northern Gondwana in the latest Jurassic, collided with an intra-oceanic arc at ~115 Ma and subsequently sutured to Sundaland by 80 Ma. Although recent models argue that the Southwest Borneo core accreted to Sundaland at this time, we use volcanic and biogeographic constraints to show that the core of Borneo was on the Asian margin since at least the mid Jurassic. This northward transfer of Gondwana-derived continental fragments required a convergent plate boundary in the easternmost Tethys that we propose gave rise to the Philippine Archipelago based on the formation of latest Jurassic-Early Cretaceous supra-subduction zone ophiolites on Halmahera, Obi Island and Luzon. The Late Cretaceous marks the shift from Andean-style subduction to back-arc opening on the east Asian margin. Arc volcanism along South China ceased by ~60 Ma due to the rollback of the Izanagi slab, leading to the oceanward migration of the volcanic arc and the opening of the Proto South China Sea (PSCS). We use the Apennines-Tyrrhenian system in the Mediterranean as an analogue to model this back-arc. Continued rollback detaches South Palawan, Mindoro and the Semitau continental blocks from the stable east Asian margin and transfers them onto Sundaland in the Eocene to produce the Sarawak Orogeny. The extrusion of Indochina and subduction polarity reversal along northern Borneo opens the South China Sea and transfers the Dangerous Grounds-Reed Bank southward to terminate PSCS south-dipping subduction and culminates in the Sarawak Orogeny on Borneo and ophiolite obduction on Palawan. We account for the regional plate reorganizations related to the initiation of Pacific subduction along the Izu-Bonin-Mariana Arc, the extrusion tectonics resulting from the India-Eurasia collision, and the shift from basin extension to inversion on Sundaland as an indicator of collision between the Australian continent and the active Asian margin. We generate continuously closing and evolving plate boundaries, seafloor age-grids and global plate velocity fields using the open-source and cross-platform GPlates plate reconstruction software. We link our plate motions to numerical mantle flow models in order to predict mantle structure at present-day that can be qualitatively compared to P- and S- wave seismic tomography models. This method allows us to analyse the evolution of the mantle related to Tethyan and Pacific subduction and to test alternative plate reconstructions. This iterative approach can be used to improve plate reconstructions in the absence of preserved seafloor and conjugate passive margins of continental blocks, which may have been destroyed or highly deformed by multiple episodes of accretion along the Asian margins.
Rapid biological speciation driven by tectonic evolution in New Zealand
NASA Astrophysics Data System (ADS)
Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.
2016-02-01
Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.
Prototypical Concepts and Misconceptions of Plate Tectonic Boundaries
NASA Astrophysics Data System (ADS)
Sibley, D. F.; Patino, L. C.
2003-12-01
Students of geology encounter many prototypical/exemplar concepts* that include representative, but not necessarily defining, features and characteristics. This study of students' prototypical representations of plate tectonic boundaries indicates that their representations are rich sources of information about their misconceptions about plate tectonics. After lectures in plate tectonics and mountain building, 353 students in a general education geology class were asked to draw a continent-continent convergent boundary. For this study, a correct answer is defined as having the major features in correct proportions as depicted in the plate boundary diagrams on the USGS web. Fifty-two percent of the drawings were either incorrect or incomplete such that they could not be interpreted. Only 48% were readily interpretable, and of these 22% drew the boundary correctly, showing a thickening of crust where two continents collide. Thirty-three percent drew the boundary showing concave slabs of continental crust as one might imagine two pieces of firm rubber pushed together on a rigid surface and 45% depicted mountains as one might imagine inverted ice cream cones on a rigid plank. Twenty-one senior class geology majors and graduate students were given the same assignment. Forty-eight percent rendered a correct drawing, whereas 38% drew the same ice cream cone on a plank type picture that 45% of the general education students drew. In a second class of 12 geology majors, only 1 student drew a cross section of a continent-ocean boundary similar to standard representation. Four of 12 drew mountains on the top of continental crust over a subduction zone but did not draw a compensating mass within the crust or lithosphere. Prototypical drawings provide more information about students' concepts than do most multiple-choice questions. For example, sixty-two percent of theses students who drew mountains similar to foam rubber pads pushed together on a desk or ice cream cones on a plank correctly answered a multiple-choice question that would appear to indicate a better understanding than the drawings reveal. Furthermore, 12 interviewed students made statements that could be interpreted to indicate that they understood the concept of mountain building at plate tectonic boundaries better than their drawings suggest. Incoherence of multiple-choice responses, verbal statements and drawings may be common in novice learners. If cognitive scientists are correct in their model of multiple types of mental representations for the same term, then the fact that novices may hold inconsistent representations is not surprising. The fact that students at various academic levels draw very similar prototypes that are incorrect is evidence that students have distinct and persistent prototype misconceptions. * Cognitive scientists define a prototypical/exemplar concept as a mental representation of the best examples or central tendencies of a term.
NASA Astrophysics Data System (ADS)
Mouthereau, FréDéRic; Petit, Carole
2003-11-01
Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of ˜15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.
Edge-driven microplate kinematics
Schouten, Hans; Klitgord, Kim D.; Gallo, David G.
1993-01-01
It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.
Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions
NASA Technical Reports Server (NTRS)
Farr, Tom G.; Peltzer, Gilles F.
1993-01-01
In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.
Galapagos Tectonics and Evolution (Invited)
NASA Astrophysics Data System (ADS)
Hey, R. N.
2010-12-01
Galapagos is now considered one of the type-examples of hotspot-ridge interaction, although in the early years of plate tectonics it was generally thought that this interpretation was demonstrably wrong, with two influential groups insisting that non-hotspot models were required for this area. The key to understanding Galapagos tectonic evolution was the recognition that small ridge axis jumps toward the hotspot had occurred, producing complicated magnetic anomalies and asymmetric lithospheric accretion. My dissertation work, guided by Jason Morgan, showed that this simple modification to plate tectonic theory could resolve the seemingly compelling geometric arguments against the Cocos and Carnegie aseismic ridges being Galapagos hotspot tracks, and further that if Galapagos were a hotspot near Fernandina, fixed with respect to the Hawaii hotspot, there should be aseismic ridges on the Cocos and Nazca plates with the observed Cocos and Carnegie ridge geometry, both aseismic ridges forming when the hotspot was ridge-centered, but only the Carnegie ridge since the plate boundary migrated north of the hotspot. A great deal of subsequent research has shown that some areas are considerably more complicated than originally thought, but the following basic model still appears to hold. The Farallon plate split apart along the Grijalva scarp, possibly a preexisting Pacific-Farallon FZ that intersected the hotspot at this time (although alternative interpretations exist), probably in response to tensional stress caused by slab pull in different directions at the Mid-America and Peru-Chile trenches. This break-up allowed more orthogonal subduction of independent Cocos and Nazca plates beginning shortly after 25 Ma. The original Cocos-Nazca ridge trended E-NE, but soon reorganized into N-S spreading segments. The subsequent evolution involved substantial northward ridge migration and ridge jumps, mostly toward the Galapagos hotspot. Recent ridge jumps have occurred in systematic patterns as a result of new rifts almost always propagating “downhill” away from the hotspot, as shown by the characteristic patterns of pseudofaults, failed rifts (sometimes grabens, sometimes abandoned ridges), and zones of transferred lithosphere, with Galapagos 95.5W the type-example propagator. These propagators are probably driven by gravity sliding stresses due to the shallow lithosphere near the hotspot (although alternative interpretations exist). The origin of many propagation sequences appears to involve discrete southward jumps forming new segments near the hotspot. The observed petrological and geochemical variations are interpreted as consistent with mantle plume and propagating rift effects. However, the speculation of Schilling et al. (1982) that, in analogy to Iceland (the other type-example of hotspot-ridge interaction), Galapagos might be a pulsing plume, and that plume pulses might drive the Galapagos propagators, hasn’t received much support. It is interesting that the Galapagos and Iceland hotspots have produced such apparently different effects along the ridge segments they so obviously strongly influence.
Present-day Kinematics of Papua New Guinea from GPS campaign measurements
NASA Astrophysics Data System (ADS)
Koulali Idrissi, A.; McClusky, S.; Tregoning, P.
2013-12-01
Papua New Guinea (PNG) is a complex tectonic region located in the convergence zone between the Australian and Pacific Plate. It occupies arguably one of the most tectonically complicated regions of the world, and its geodynamic evolution involves micro-plate rotation, lithospheric rupture forming ocean basins, arc-continent collision, subduction polarity reversal, collisional orogenesis, ophiolite obduction, and exhumation of high-pressure metamorphic (ultramafic) rocks. In this study we present a GPS derived velocity field based on 1993-2008 survey mode observations at 30 GPS sites. We combine our results with previously published GPS velocities to investigate the deformation in northern and northwestern Papua New Guinea. We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for poles of rotation of several micro-plates. The micro-plate block boundary fault geometry is based on geological mapping and regional seismicity. The results show that fault system north of the Highlands fold and thrust belt is the major boundary between the rigid Australian Plate and the north Highlands block, with convergence occurring at rates of between ~ 6 and 11.5 mm/yr. The relative motion across the northern Highlands block increases to the north to ~ 21-24 mm/yr, meaning that the New Guinea trench is likely accumulating elastic strain and confirming that the new Guinea Trench is an active inter-plate boundary. Our results also show, that the north New Guinea Highlands and the Papuan peninsula are best modelled as two blocks separated by a boundary through the Aure Fold belt Belt complex. This block boundary today is accommodating an estimated 4-5 mm/yr dextral motion. Our model also confirms previous results showing that the Ramu-Markham fault accommodates the deformation associated with the Finisterre arc-continent collision. This new GPS velocity field provides fresh insights into the details of the kinematics of the PNG present-day deformation.
Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia
NASA Astrophysics Data System (ADS)
Ryu, In-Chang; Lee, Changyeol
2017-12-01
A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the Cretaceous and that the mantle plume was entrained into the mantle wedge as a channel-like flow. An intracontinental mantle plume can explain the adakitic rocks, A-type granitoids, high-Mg basalts, and basin-and-range-type fault basins distributed in eastern China. Thus, the mantle plume and its interaction with the overlying continent and subducting slab through time plausibly explain the Cretaceous tectonic history of East Asia.
Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanic arc
NASA Astrophysics Data System (ADS)
Samuel, Vinod O.; Kwon, Sanghoon; Santosh, M.; Sajeev, K.
2018-06-01
Southern peninsular India preserves records of Late Neoarchean-Early Paleoproterozoic continental building and cratonization. A transect from the Paleoarchean Dharwar Craton to the Neoarchean arc magmatic complex in the Nilgiri Block across the intervening Moyar Suture Zone reveals an arc-accretionary complex composed of banded iron formation (BIF), amphibolite, metatuff, garnet-kyanite schist, metagabbro, pyroxenite and charnockite. Here we investigate the petrology, geochronology and petrogenesis of the pyroxenite and garnet-clinopyroxenite. The pyroxenite is mainly composed of orthopyroxene and clinopyroxene with local domains/pockets enriched in a clinopyroxene-garnet assemblage. Thermobarometric calculations and phase equilibria modeling suggest that the orthopyroxene- and clinopyroxene-rich domains formed at 900-1000 °C, 1-1.2 GPa whereas the garnet- and clinopyroxene-rich domains record higher pressure of about 1.8-2 GPa at similar temperature conditions (900-1000 °C). Zircon U-Pb SHRIMP dating show weighted mean 207Pb-206Pb age of 2532 ± 22 Ma, with metamorphic overgrowth at 2520 ± 27 Ma and 2478 ± 27 Ma. We propose a tectonic model involving decoupling and break-off of the oceanic plate along the southern flanks of the Dharwar Craton, which initiated oceanic plate subduction. Slab melting eventually built the Nilgiri volcanic arc on top of the over-riding plate along the flanks of the Dharwar Craton. Our study supports an active plate tectonic regime at the end of the Archean Era, aiding in the growth of paleo-continents and their assembly into stable cratons.
NASA Astrophysics Data System (ADS)
Van Kranendonk, M. J.
2012-04-01
Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.
NASA Astrophysics Data System (ADS)
Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.
2017-12-01
The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.
Newly velocity field of Sulawesi Island from GPS observation
NASA Astrophysics Data System (ADS)
Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.
2017-07-01
Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.
Present tectonics of the southeast of Russia as seen from GPS observations
NASA Astrophysics Data System (ADS)
Shestakov, N. V.; Gerasimenko, M. D.; Takahashi, H.; Kasahara, M.; Bormotov, V. A.; Bykov, V. G.; Kolomiets, A. G.; Gerasimov, G. N.; Vasilenko, N. F.; Prytkov, A. S.; Timofeev, V. Yu.; Ardyukov, D. G.; Kato, T.
2011-02-01
The present tectonics of Northeast Asia has been extensively investigated during the last 12 yr by using GPS techniques. Nevertheless, crustal velocity field of the southeast of Russia near the northeastern boundaries of the hypothesized Amurian microplate has not been defined yet. The GPS data collected between 1997 February and 2009 April at sites of the regional geodynamic network were used to estimate the recent geodynamic activity of this area. The calculated GPS velocities indicate almost internal (between network sites) and external (with respect to the Eurasian tectonic plate) stability of the investigated region. We have not found clear evidences of any notable present-day tectonic activity of the Central Sikhote-Alin Fault as a whole. This fault is the main tectonic unit that determines the geological structure of the investigated region. The obtained results speak in favour of the existence of a few separate blocks and a more sophisticated structure of the proposed Amurian microplate in comparison with an indivisible plate approach.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
A global earthquake discrimination scheme to optimize ground-motion prediction equation selection
Garcia, Daniel; Wald, David J.; Hearne, Michael
2012-01-01
We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.
NASA Astrophysics Data System (ADS)
Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.
2017-09-01
Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.
Post-caldera faulting of the Late Quaternary Menengai caldera, Central Kenya Rift (0.20°S, 36.07°E)
NASA Astrophysics Data System (ADS)
Riedl, Simon; Melnick, Daniel; Mibei, Geoffrey K.; Njue, Lucy; Strecker, Manfred R.
2015-04-01
A structural geological analysis of young caldera volcanoes is necessary to characterize their volcanic activity, assess their geothermal potential, and decipher the spatio-temporal relationships of faults on a larger tectonic scale. Menengai caldera is one of several major Quaternary trachytic caldera volcanoes that are aligned along the volcano-tectonic axis of the Kenya Rift, the archetypal active magmatic rift and nascent plate boundary between the Nubia and Somalia plates. The caldera covers an area of approximately 80 km² and is among the youngest and also largest calderas in the East African Rift, situated close to Nakuru - a densely populated urban area. There is an increasing interest in caldera volcanoes in the Kenya Rift, because these are sites of relatively young volcanic and tectonic activity, and they are considered important sites for geothermal exploration and future use for the generation of geothermal power. Previous studies of Menengai showed that the caldera collapsed in a multi-event, multiple-block style, possibly as early as 29 ka. In an attempt to characterize the youngest tectonic activity along the volcano-tectonic axis in the transition between the Central and Northern Kenya rifts we first used a high-resolution digital surface model, which we derived by structure-from-motion from an unmanned aerial vehicle campaign. This enabled us to identify previously unrecognized normal faults, associated dyke intrusions and volcanic eruptive centers, and transfer faults with strike-slip kinematics in the caldera interior and its vicinity. In a second step we verified these structures at outcrop scale, assessed their relationship with known stratigraphic horizons and dated units, and performed detailed fault measurements, which we subsequently used for fault-kinematic analysis. The most important structures that we mapped are a series of north-northeast striking normal faults, which cross-cut both the caldera walls and early Holocene lake shorelines outside the caldera. These faults have similar strikes as Pleistocene faults that define the left-stepping, north-northeast oriented segments of the volcano-tectonic axis of the inner trough of the Central Kenya Rift. In the center of the caldera, these faults are kinematically linked with oblique-slip and strike-slip transfer faults, similar to other sectors in the Central Kenya Rift. The structural setup of Menengai and the faults to the north and south of the eruptive center is thus compatible with tectono-magmatic activity in an oblique extensional tectonic regime, which reflects the tectonic and seismic activity along a nascent plate boundary.
Full-waveform inversion for the Iranian plateau
NASA Astrophysics Data System (ADS)
Masouminia, N.; Fichtner, A.; Rahimi, H.
2017-12-01
We aim to obtain a detailed tomographic model for the Iranian plateau facilitated by full-waveform inversion. By using this method, we intend to better constrain the 3-D structure of the crust and the upper mantle in the region. The Iranian plateau is a complex tectonic area resulting from the collision of the Arabian and Eurasian tectonic plates. This region is subject to complex tectonic processes such as Makran subduction zone, which runs along the southeastern coast of Iran, and the convergence of the Arabian and- Eurasian plates, which itself led to another subduction under Central Iran. This continent-continent collision has also caused shortening and crustal thickening, which can be seen today as Zagros mountain range in the south and Kopeh Dagh mountain range in the northeast. As a result of such a tectonic activity, the crust and the mantle beneath the region are expected to be highly heterogeneous. To further our understanding of the region and its tectonic history, a detailed 3-D velocity model is required.To construct a 3-D model, we propose to use full-waveform inversion, which allows us to incorporate all types of waves recorded in the seismogram, including body waves as well as fundamental- and higher-mode surface waves. Exploiting more information from the observed data using this approach is likely to constrain features which have not been found by classical tomography studies so far. We address the forward problem using Salvus - a numerical wave propagation solver, based on spectral-element method and run on high-performance computers. The solver allows us to simulate wave field propagating in highly heterogeneous, attenuating and anisotropic media, respecting the surface topography. To improve the model, we solve the optimization problem. Solution of this optimization problem is based on an iterative approach which employs adjoint methods to calculate the gradient and uses steepest descent and conjugate-gradient methods to minimize the objective function. Each iteration of such an approach is expected to bring the model closer to the true model.Our model domain extends between 25°N and 40°N in latitude and 42°E and 63°E in longitude. To constrain the 3-D structure of the area we use 83 broadband seismic stations and 146 earthquakes with magnitude Mw>4.5 -that occurred in the region between 2012 and 2017.
NASA Astrophysics Data System (ADS)
Gürer, Derya; van Hinsbergen, Douwe J. J.; Matenco, Liviu; Corfu, Fernando; Cascella, Antonio
2016-10-01
Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first-order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted to (former) overriding plates, combined with the kinematic analysis of overriding plate extension and shortening. In Cretaceous-Paleogene times, most of Anatolia formed a separate tectonic plate—here termed "Anadolu Plate"—that floored part of the Neotethyan oceanic realm, separated from Eurasia and Africa by subduction zones. We study the sedimentary and structural history of the Ulukışla basin (Turkey); overlying relics of this plate to reconstruct the tectonic history of the oceanic plate and its surrounding trenches, relative to Africa and Eurasia. Our results show that Upper Cretaceous-Oligocene sediments were deposited on the newly dated suprasubduction zone ophiolites ( 92 Ma), which are underlain by mélanges, metamorphosed and nonmetamorphosed oceanic and continental rocks derived from the African Plate. The Ulukışla basin underwent latest Cretaceous-Paleocene N-S and E-W extension until 56 Ma. Following a short period of tectonic quiescence, Eo-Oligocene N-S contraction formed the folded structure of the Bolkar Mountains, as well as subordinate contractional structures within the basin. We conceptually explain the transition from extension, to quiescence, to shortening as slowdown of the Anadolu Plate relative to the northward advancing Africa-Anadolu trench resulting from collision of continental rocks accreted to Anadolu with Eurasia, until the gradual demise of the Anadolu-Eurasia subduction zone.
NASA Astrophysics Data System (ADS)
Rosas, F. M.; Tomas, R.; Duarte, J. C.; Schellart, W. P.; Terrinha, P.
2014-12-01
The intersection between the Gloria Fault (GF) and the Tore-Madeira rise (TMR) in NE Atlantic marks a transition from a discrete to a diffuse nature along a critical segment of the Eurasia/Africa plate boundary. To the West of such intersection, approximately since the Azores triple junction, this plate boundary is mostly characterized by a set of closely aligned and continuous strike-slip faults that make up the narrow active dextral transcurrent system of the GF (with high magnitude M>7 historical earthquakes). While intersecting the TMR the closely E-W trending trace of the GF system is slightly deflected (changing to WNW-ESE), and splays into several fault branches that often coincide with aligned (TMR related?) active volcanic plugs. The segment of the plate boundary between the TMR and the Gorringe Bank (further to the East) corresponds to a more complex (less discrete) tectonic configuration, within which the tectonic connection between the Gloria Fault and another major dextral transcurrent system (the so called SWIM system) occurs. This SWIM fault system has been described to extend even further to the East (almost until the Straits of Gibraltar) across the Gulf of Cadiz domain. In this domain the relative movement between the Eurasian and the African plates is thought to be accommodated through a diffuse manner, involving large scale strain partition between a dextral transcurrent fault-system (the SWIM system), and a set of active west-directed én-échelon major thrusts extending to the North along the SW Iberian margin. We present new analog modeling results, in which we employed different experimental settings to address (namely) the following main questions (as a first step to gain new insight on the tectonic evolution of the TRM-GF critical intersection area): Could the observed morphotectonic configuration of such intersection be simply caused by a bathymetric anomaly determined by a postulated thickened oceanic crust, or is it more compatible with a crustal rheological (viscous) anomaly, possibly related with the active volcanism in the intersection zone? What could cause the observed deflection and splaying of the GF in the intersection with the TMR? Is the GF cutting across the TMR, or is it ending against a morpho-rheological anomaly through waning lateral propagation?
NASA Astrophysics Data System (ADS)
Ellis, Andria P.
Northern Central America is a tectonically complicated region prone to hazardous earthquakes due to the confluence of the Motagua-Polochic fault zone with the Middle America trench and strike-slip faults in the Central America volcanic arc. These three major fault zones converge at the western end of the Caribbean plate where the Cocos plate subducts under the North America and Caribbean plates. Literature from the 1970s and 1980s focused on whether a discrete North America-Caribbean-Cocos plate triple junction existed, and how the relative motions of the upper North America and Caribbean plates were accommodated. The discovery of a fourth major crustal block, the Central America forearc sliver, from seismic and geodetic observations made a three-plate triple junction geometrically impossible and introduced a new set of questions related to how deformation of the upper plate accommodates relative movements between the Caribbean plate, North America plate, and Central America forearc sliver where they intersect in the upper plate. My dissertation uses GPS and numerical modeling to measure and quantify earthquake transients and crustal deformation related to fault interactions in northern Central America and consists of three related chapters. The first chapter of my dissertation is a geodetic study of a M w = 7.4 subduction zone earthquake that occurred in 2012 offshore from our Guatemala GPS (Global Positioning System) network. For this study, I inverted coseismic site offsets and postseismic amplitudes to determine best-fitting coseismic and afterslip rupture distributions on the Middle America trench. I also determined the maximum likely viscoelastic deformation for the earthquake to test whether the transient postseismic deformation was dominated by fault afterslip or viscoelastic flow. This work was published in Geophysical Journal International in January 2015. The second chapter of my dissertation derives a new 200+ site GPS velocity field for northern Central America. Doing so was complicated by the occurrence of four M > 7 earthquakes since 2009, which perturbed the velocities of many of the GPS sites. To extract the interseismic velocity field from position time-series, we use TDEFNODE software to simultaneously model source parameters for coseismic rupture and transient afterslip from the 2012 El Salvador (M w = 7.3), 2012 Guatemala (Mw = 7.4), and 2009 Swan Islands (Mw = 7.3) earthquakes. The resulting, corrected best-fitting GPS site velocities are used in my third and final chapter. Finally, I address a variety of questions regarding several major faults that are the root of natural hazard studies in northern Central America. The 200+ site GPS velocity field derived in Chapter 2 far exceeds any previous velocity field for this region and represents a new standard for studying the tectonics of northern Central America. An inversion of the new velocity field using an eight-block elastic model gives the following unique or improved results with respect to previous work: 1) First evidence for a nearly rigid Chortis block south of the Motagua fault; 2) Evidence for southward transfer of slip from the western Motagua fault into the Guatemala City graben and other nearby normal faults; 3) A well-bounded estimate on partitioning of plate boundary slip on the Motagua and Polochic faults; 4) A first plate tectonic estimate of Cocos plate subduction below the Central America forearc sliver; 5) The first geodetic estimate of slip rate variations along the Central America volcanic arc, including the first slip rate estimate for the poorly-understood Jalpatagua fault in southern Guatemala; 6) The first geodetic estimate of distributed deformation in the Chiapas Tectonic Province; 7) Evidence for stronger locking offshore southern Mexico and even weaker shallow locking offshore Guatemala and El Salvador than previously estimated; 8) A refined estimate of how extension is distributed across the grabens of western Honduras and southern Guatemala; 9) Strain-rate tensors consistent with no significant deformation of the elongate Central America forearc sliver, but extension within the Gulf of Fonseca step-over in the Central America volcanic arc; 10) Evidence for slower slip along the Motagua fault than any previous estimate and a well-determined geodetic estimate for the long-term slip rate of the Polochic fault.
Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation
NASA Astrophysics Data System (ADS)
Gerault, M.; Coltice, N.
2017-12-01
Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the presence of continental material, the most substantial variations in amplitude and direction of rotation occur over a few tenth of millions of years. It suggests that, to first order, the net rotation is closely related to the tectonic make-up of the surface, evolving with the nature of plate boundaries and the physical arrangement of the plates.
Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin
2016-11-22
Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.
Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin
2016-01-01
Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence. PMID:27821756
NEPTUNE: an under-sea plate scale observatory
NASA Technical Reports Server (NTRS)
Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.
2002-01-01
The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones
2004-05-01
The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.
Convection pattern and stress system under the African plate
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1977-01-01
Studies on tectonic forces from satellite-derived gravity data have revealed a subcrustal stress system which provides a unifying mechanism for uplift, depression, rifting, plate motion and ore formation in Africa. The subcrustal stresses are due to mantle convection. Seismicity, volcanicity and kimberlite magmatism in Africa and the development of the African tectonic and magnetic features are explained in terms of this single stress system. The tensional stress fields in the crust exerted by the upwelling mantle flows are shown to be regions of structural kinship characterized by major concentration of mineral deposits. It is probable that the space techniques are capable of detecting and determining the tectonic forces in the crust of Africa.
3D Thermal/Mechanical Evolution Of The Plate Boundary Corner In SE Alaska
NASA Astrophysics Data System (ADS)
Barker, A.; Koons, P.; Upton, P.; Pavlis, T.; Chapman, J.
2007-12-01
The St Elias orogen of southeast Alaska forms part of an actively deforming plate boundary corner. The corner accommodates the transition from a strike-slip lateral boundary to a convergent normal boundary. Oblique convergence of the Yakutat microplate into the corner generates early stage tectonic characteristics associated with other corner systems (e.g. Himalayan Eastern Syntaxis). In combination with the high relief, the extreme erosive processes of the region redistribute crustal material, partition tectonic strain, and influence the advection of deep crustal material. The evolution of the convergent corner is investigated using 3D numerical models and sandbox analog models. Preliminary model results indicate the deformation partitions into a narrow two-sided orogen along the lateral boundary. The pattern transitions into a wider zone of shortening bounded by inboard and outboard directed thrusts along the frontal boundary. The inclusion of erosion boundary conditions leads to nascent tectonic aneurysm behavior, involving increased strain localization and focused vertical advection of deep crustal material. Thermal models, using the 3D velocity field from these mechanical solutions, show a vertical deflection (towards the surface) of isotherms beneath the eroding region. Sensitivity of the aneurysm behavior is related to the efficiency of the imposed erosion rate (i.e. greater erosion rates led to greater bedrock uplift rates). Higher erosion rates are localized within zones containing major glacier systems in SE Alaska: Bering Glacier, Bagley Icefield, Malaspina Glacier, and Seward Glacier. Combined thermal/mechanical solutions identify the glacier valleys as rheological weakspots, defined by localized strain and differential advection of deep crustal material.
Plate tectonics from VLBI and SLR global data
NASA Technical Reports Server (NTRS)
Harrison, Christopher G. A.; Robaudo, Stefano
1992-01-01
This study is based on data derived from fifteen years of observations of the SLR (side-looking radar) network and six years of the VLBI (very long baseline interferometry) network. In order to use all available information VLBI and SLR global data sets were combined in a least squares fashion to calculate station horizontal velocities. All significant data pertaining to a single site contribute to the station horizontal motion. The only constraint on the solution is that no vertical motion is allowed. This restriction does not greatly affect the precision of the overall solution given the fact that the expected vertical motion for most stations, even those experiencing post glacial uplift, is well under 1 cm/yr. Since the average baseline is under 4,000 km, only a small fraction of the station vertical velocity is translated into baseline rates so that the error introduced in the solution by restricting up-down station movement is minimal. As a reference, station velocities were then compared to the ones predicted by the NUVEL-1 geological model of DeMets et al. (1990). The focus of the study is on analyzing these discrepancies for global plate tectonics as well as regional tectonic settings. The method used also allows us not only to derive horizontal motion for individual stations but also to calculate Euler vectors for those plates that have enough stations located on the stable interior like North America, Pacific, Eurasia, and Australia.
Global water cycle and the coevolution of the Earth's interior and surface environment.
Korenaga, Jun; Planavsky, Noah J; Evans, David A D
2017-05-28
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 14 g yr -1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).
Global water cycle and the coevolution of the Earth’s interior and surface environment
Planavsky, Noah J.; Evans, David A. D.
2017-01-01
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416728
Time dependent deformation and stress in the lithosphere. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Yang, M.
1980-01-01
Efficient computer programs incorporating frontal solution and time stepping procedure were developed for the modelling of geodynamic problems. This scheme allows for investigating the quasi static phenomena including the effects of the rheological structure of a tectonically active region. From three dimensional models of strike slip earthquakes, it was found that lateral variation of viscosity affects the characteristics of surface deformations. The vertical deformation is especially informative about the viscosity structure in a strike slip fault zone. A three dimensional viscoelastic model of a thrust earthquake indicated that the transient disturbance on plate velocity due to a great plate boundary earthquake is significant at intermediate distances, but becomes barely measurable 1000 km away from the source.
Scattered wave imaging of the oceanic plate in Cascadia
Rychert, Catherine A.; Harmon, Nicholas; Tharimena, Saikiran
2018-01-01
Fifty years after plate tectonic theory was developed, the defining mechanism of the plate is still widely debated. The relatively short, simple history of young ocean lithosphere makes it an ideal place to determine the property that defines a plate, yet the remoteness and harshness of the seafloor have made precise imaging challenging. We use S-to-P receiver functions to image discontinuities beneath newly formed lithosphere at the Juan de Fuca and Gorda Ridges. We image a strong negative discontinuity at the base of the plate increasing from 20 to 45 km depth beneath the 0- to 10-million-year-old seafloor and a positive discontinuity at the onset of melting at 90 to 130 km depth. Comparison with geodynamic models and experimental constraints indicates that the observed discontinuities cannot easily be reconciled with subsolidus mechanisms. Instead, partial melt may be required, which would decrease mantle viscosity and define the young oceanic plate. PMID:29457132
Workshop on the Tectonic Evolution of Greenstone Belts
NASA Technical Reports Server (NTRS)
1986-01-01
The Workshop on the Tectonic Evolution of Greenstone Belts, which is part of the Universities Space Research Association, Lunar and Planetary Institute, of Houston, Texas, met there on Jan. 16-18, 1986. A number of plate tectonic hypotheses have been proposed to explain the origin of Archean and Phanerozoic greenstone/ophiolite terranes. These hypotheses are explored in the abstracts.
Stability of active mantle upwelling revealed by net characteristics of plate tectonics.
Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H
2013-06-27
Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.
NASA Astrophysics Data System (ADS)
Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.
2014-10-01
We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.
NASA Astrophysics Data System (ADS)
Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.
2015-02-01
We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.
New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data
NASA Astrophysics Data System (ADS)
Janiszewski, Helen Anne
A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.
Global evaluation of erosion rates in relation to tectonics
NASA Astrophysics Data System (ADS)
Hecht, Hagar; Oguchi, Takashi
2017-12-01
Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.
Using Google Earth to Teach Plate Tectonics and Science Explanations
ERIC Educational Resources Information Center
Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen
2012-01-01
"A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…
Systems Thinking in Action: A District Perspective
ERIC Educational Resources Information Center
Ford, Leslie Goldring
2008-01-01
Research on the enduring contribution of leadership to student achievement can be integrated as part of a system planning model. This article offers a formative sample in the convergence of two dissimilar forces: (1) the stability of school culture, whose rock-solid nature resembles a tectonic plate; and (2) the flowing energy of administrators…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, W.
1982-08-10
Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating atmore » the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.« less
Regional Crustal Velocity Models for Northern Arabian Platform and Turkish-Iranian Plateau
NASA Astrophysics Data System (ADS)
Aleqabi, G.; Wysession, M.; Ghalib, H.
2008-12-01
The geological structure of the Northern Arabian platform and surrounding mountains is dominated by the collision and suturing of the Arabian plate with the Eurasian plate and the formation of the Turkish-Iranian plateau. The structure of the Northern Arabian platform and surrounding region is poorly constrained. A recent deployment of 10 broadband seismometers in northern and central Iraq provides an opportunity to refine velocity models of the region. We have applied the Niching Genetic Algorithm waveform inversion technique to Rayleigh and Love waves traversing the Northern Arabian platform, the Zagros fold belt, the southern Turkish Plateau, the Iranian Plateau. Results show variations in crustal thickness and shear wave velocity between the Northern Arabian platform and the Turkish-Iranian plateau. In general the shear wave velocities are higher in the Northern Arabian platform than in the Plateaus. Variation of shear velocities within each of the provinces reflects the diversity in tectonic environment across the Zagros fold belt and the complex tectonic history of the region. Crustal thickness results show little crustal thickening has occurred due to collision.
NASA Astrophysics Data System (ADS)
Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume
2014-05-01
Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system, which can be correlated by the income of paleo-Tigris and paleo-Eufrates rivers transporting sediments from north-westernmost areas.
Oil prospection using the tectonic plate model
NASA Astrophysics Data System (ADS)
Pointu, Agnès
2015-04-01
Tectonic plate models are an intellectual setting to understand why oil deposits are so uncommon and unequally distributed and how models can be used in actual oil and gas prospection. In this case, we use the example of the Ghawar deposit (Saudi Arabia), one of the largest producing well in the world. In the first step, physical properties of rocks composing the oil accumulation are studied by laboratory experiments. Students estimate the porosity of limestone and clay by comparing their mass before and after water impregnation. Results are compared to microscopic observations. Thus, students come to the conclusion that oil accumulations are characterized by superposition of rocks with very different properties: a rich organic source rock (clays of the Hanifa formation), a porous reservoir rock to store the petroleum in (limestones of the Arab formation) and above an impermeable rock with very low porosity (evaporites of the Tithonien). In previous lessons, students have seen that organic matter is usually mineralized by bacteria and that this preservation requires particular conditions. The aim is to explain why biomass production has been so important during the deposit of the clays of the Hanifa formation. Tectonic plate models make it possible to estimate the location of the Arabian Peninsula during Jurassic times (age of Hanifa formation). In order to understand why the paleo-location of the Arabian Peninsula is important to preserve organic matter, students have different documents showing: - That primary production of biomass by phytoplankton is favored by climatic conditions, - That the position of continents determinate the ocean currents and the positions of upwelling zones and zones where organic matter will be able to be preserved, - That north of the peninsula there was a passive margin during Jurassic times. An actual seismic line is studied in order to highlight that this extensive area allowed thick sedimentary deposits to accumulate and that fast sedimentation rate is necessary to bury organic matter and to restrict the mineralization. Consequences of crustal extension are also studied by using an experimental sand box model. The creation of faults is related to the subsidence of the margin. This subsidence allows the crossing of the oil window, leading to pyrolysis of organic matter and its transformation into oil. Afterwards, students compare the structures obtained after extension in their sand box to the actual organization of the Ghawar oil accumulation (seismic line). They can see that faults created by extension forces have not been preserved and can assume that compression forces have caused formation of the traps. An animation of paleo-location of continents during the upper Jurassic helps them to think that compression forces are linked to the closure of the Tethys Sea. A model using gravel and clay is used to show the principle of oil trapping. This way, students understand how the tectonic plate models explain the actual location of oil deposits and then how it can be used to look for new deposits.
Oceanic ridges and transform faults: Their intersection angles and resistance to plate motion
Lachenbruch, A.H.; Thompson, G.A.
1972-01-01
The persistent near-orthogonal pattern formed by oceanic ridges and transform faults defies explanation in terms of rigid plates because it probably depends on the energy associated with deformation. For passive spreading, it is likely that the ridges and transforms adjust to a configuration offering minimum resistance to plate separation. This leads to a simple geometric model which yields conditions for the occurrence of transform faults and an aid to interpretation of structural patterns in the sea floor. Under reasonable assumptions, it is much more difficult for diverging plates to spread a kilometer of ridge than to slip a kilometer of transform fault, and the patterns observed at spreading centers might extend to lithospheric depths. Under these conditions, the resisting force at spreading centers could play a significant role in the dynamics of plate-tectonic systems. ?? 1972.
Lithosperic rheology controls on oceanic spreading patterns
NASA Astrophysics Data System (ADS)
Gerya, T.
2012-04-01
Mid-ocean ridges sectioned by transform faults represent one of the most prominent surface expressions of terrestrial plate tectonics. A fundamental long standing problem of plate tectonics is how and why ridge-transform spreading patterns are formed and maintained. On the one hand, geometrical correspondence between mid-ocean ridges and respective rifted margins apparently suggests that many oceanic transform faults are inherited structures that persisted throughout the entire history of oceanic spreading. On the other hand, data from incipient oceanic spreading regions show that transform faults are not directly inherited from transverse rift structures and start to develop as or after oceanic spreading nucleate. Based on self-consistent 3D thermomechanical numerical model of oceanic spreading we demonstrate that only limited range of oceanic lithosphere rheologies can reproduce natural spreading patterns. In particular, spontaneous formation and long-term stability of orthogonal ridge-transform spreading pattern requires visco-brittle/plastic rheology of plates with strong dynamic weakening of spontaneously forming faults. Our, numerical models of incipient oceanic spreading demonstrate that one or several oceanic transform faults can form gradually within broad non-transform accommodation zones connecting initially offset spreading centers. Orientation of transform faults and spreading centers changes exponentially with time as the result of new oceanic crust growth. The resulting orthogonal ridge-transform system is established within few millions of years after the beginning of oceanic spreading. By its fundamental physical origin, this system is a crustal growth pattern governed by space accommodation and not a plate breakup pattern governed by stress distribution. It is demonstrated that the characteristic extension-parallel orientation of oceanic transform faults can be obtained from space accommodation criteria as a steady state orientation of a strike-slip fault sustaining in between simultaneously growing offset crustal segments. Numerical models also suggest that transform faults can develop at single straight ridge as the result of dynamical instability of constructive plate boundaries caused by weakening of forming brittle/plastic fractures. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. Degree of asymmetric plate accretion increases with increasing degree of brittle/plastic weakening. It is also strongly dependent on the brittle/plastic yielding criterion and is notably reduced in models with pressure-dependent brittle/plastic plate strength compared to models with pressure-independent strength.
NASA Technical Reports Server (NTRS)
Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.
1987-01-01
Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.
NASA Astrophysics Data System (ADS)
Suppe, J.; Wu, J.; Chen, Y. W.
2016-12-01
Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea nucleated as a small trench back-arc system along the East Asian Sea/Pacific boundary, adjacent to the Manus plume, somewhat analogous to the more recent nucleation of the Bismark Sea at the same Manus plume.
Compressional intracontinental orogens: Ancient and modern perspectives
NASA Astrophysics Data System (ADS)
Raimondo, Tom; Hand, Martin; Collins, William J.
2014-03-01
Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary histories strongly reminiscent of typical collisional belts, suggesting that the deformational response of continental crust is remarkably similar in different tectonic settings.
NASA Astrophysics Data System (ADS)
Polat, Ali; Wang, Lu; Appel, Peter W. U.
2015-11-01
The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West Greenland and the Mesozoic Sulu orogenic belt of eastern China are similar, consistent with the formation of Archean continental crust by subduction zone processes.
NASA Astrophysics Data System (ADS)
Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Mitrovica, J. X.
2011-12-01
The enigmatic origin of large-magnitude earthquakes far from active plate boundaries, especially those occurring in so-called "stable" continental interiors, is a source of continuing controversy that has eluded a satisfactory explanation using past geophysical models of intraplate deformation and faulting. One outstanding case of such major intraplate earthquakes is the 1811-1812 series of events in the New Madrid Seismic Zone (NMSZ). We contend that the origin of some of these enigmatic intraplate events is due to regional variations in the pattern of tectonic stress generated by mantle convective flow acting on the overlying lithosphere and crust. Mantle convection affects the entire surface of the planet, irrespective of the current configuration of surface plate boundaries. In addition, it must be appreciated that plate tectonics is not a 2-D process, because the convective flow that drives the observed horizontal motions of the tectonic plates also drives vertical displacements of the crust across distances as great as 2 to 3 km. This dynamic topography is directly correlated with convection-driven stress field variations in the crust and lithosphere and these stresses can be locally focussed if the mantle rheology below the lithosphere is characterised by sufficiently low viscosities. We have developed global models of convection-driven mantle flow [Forte et al. 2009,2010] that are based on recent high-resolution 3-D tomography models derived from joint inversions of seismic, geodynamic and mineral physics data [Simmons et al. 2007,2008,2010]. These tomography-based mantle convection models also include a full suite of surface geodynamic (postglacial rebound and convection) constraints on the depth-dependent average viscosity of the mantle [Mitrovica & Forte 2004]. Our latest tomography-based and geodynamically-constrained convection calculations reveal that mantle flow under the central US are driven by density anomalies within the lower mantle associated with the descent of the ancient Farallon plate and shallow buoyant anomalies in the upper mantle under the eastern US coastal margin. The viscous coupling of this mantle flow to the overlying crust and lithosphere gives rise to a focussed, convergent stress pattern below the NMSZ which is favourably oriented with respect the local fault geometry. In summary, mantle-flow induced surface depression and associated bending stress may be an important and long-lived contributor to (clustered, migrating) seismic activity in the Mississippi Basin, extending from the Great Lakes to the Gulf of Mexico.
Present-day stress field of Southeast Asia
NASA Astrophysics Data System (ADS)
Tingay, Mark; Morley, Chris; King, Rosalind; Hillis, Richard; Coblentz, David; Hall, Robert
2010-02-01
It is now well established that ridge push forces provide a major control on the plate-scale stress field in most of the Earth's tectonic plates. However, the Sunda plate that comprises much of Southeast Asia is one of only two plates not bounded by a major spreading centre and thus provides an opportunity to evaluate other forces that control the intraplate stress field. The Cenozoic tectonic evolution of the Sunda plate is usually considered to be controlled by escape tectonics associated with India-Eurasia collision. However, the Sunda plate is bounded by a poorly understood and complex range of convergent and strike-slip zones and little is known about the effect of these other plate boundaries on the intraplate stress field in the region. We compile the first extensive stress dataset for Southeast Asia, containing 275 A-D quality (177 A-C) horizontal stress orientations, consisting of 72 stress indicators from earthquakes (located mostly on the periphery of the plate), 202 stress indicators from breakouts and drilling-induced fractures and one hydraulic fracture test within 14 provinces in the plate interior. This data reveals that a variable stress pattern exists throughout Southeast Asia that is largely inconsistent with the Sunda plate's approximately ESE absolute motion direction. The present-day maximum horizontal stress in Thailand, Vietnam and the Malay Basin is predominately north-south, consistent with the radiating stress patterns arising from the eastern Himalayan syntaxis. However, the present-day maximum horizontal stress is primarily oriented NW-SE in Borneo, a direction that may reflect plate-boundary forces or topographic stresses exerted by the central Borneo highlands. Furthermore, the South and Central Sumatra Basins exhibit a NE-SW maximum horizontal stress direction that is perpendicular to the Indo-Australian subduction front. Hence, the plate-scale stress field in Southeast Asia appears to be controlled by a combination of Himalayan orogeny-related deformation, forces related to subduction (primarily trench suction and collision) and intraplate sources of stress such as topography and basin geometry.
Grain-damage hysteresis and plate tectonic states
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2016-04-01
Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that deforms at a given stress can acquire two stable deformation regimes indicative of plate-like flows, i.e., it permits the coexistence of both slowly deforming plate interiors, and rapidly deforming plate boundaries. Earth seems to exist squarely inside the hysteresis loop and thus can have coexisting deformation states, while Venus appears to straddle the end of the loop where only the weakly deforming branch exists.
Rebalance to the Pacific: Resourcing the Strategy
2013-03-01
concern is the geophysical stability of the ocean floor. Plate tectonics are shifting the sea floor daily, creating constant seismic activity. Known...countriesandterritories/northkorea/ index.html. 13 The Pacific Plate is unstable and always shifting, causing plates to slide underneath each other thus creating energy
NASA Astrophysics Data System (ADS)
Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.
2016-04-01
The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.
McCrory, P.A.
2000-01-01
Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.
Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup
NASA Astrophysics Data System (ADS)
Müller, R. Dietmar; Seton, Maria; Zahirovic, Sabin; Williams, Simon E.; Matthews, Kara J.; Wright, Nicky M.; Shephard, Grace E.; Maloney, Kayla T.; Barnett-Moore, Nicholas; Hosseinpour, Maral; Bower, Dan J.; Cannon, John
2016-06-01
We present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences among alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates of approximately 9-10 cm yr-1 between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. An event at ˜100 Ma is most clearly expressed in the Indian Ocean and may reflect the initiation of Andean-style subduction along southern continental Eurasia, whereas an acceleration at ˜80 Ma of mean rates from 6 to 8 cm yr-1 reflects the initial northward acceleration of India and simultaneous speedups of plates in the Pacific. An event at ˜50 Ma expressed in relative, and some absolute, plate motion changes around the globe and in a reduction of global mean plate speeds from about 6 to 4-5 cm yr-1 indicates that an increase in collisional forces (such as the India-Eurasia collision) and ridge subduction events in the Pacific (such as the Izanagi-Pacific Ridge) play a significant role in modulating plate velocities.
Melting-induced crustal production helps plate tectonics on Earth-like planets
NASA Astrophysics Data System (ADS)
Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.
2016-04-01
Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical annulus simulations (Hernlund and Tackley, PEPI 2008) using StagYY (Tackley, PEPI 2008), which uses a finite-volume scheme for advection of temperature, a multigrid solver to obtain a velocity-pressure solution at each timestep, tracers to track composition, and a treatment of partial melting and crustal formation. We address the question of whether melting-induced crustal production changes the critical yield stress needed to obtain mobile-lid behaviour (plate tectonics). Our results show that melting-induced crustal production strongly influences plate tectonics on Earth-like planets by strongly enhancing the mobility of the lid, replacing a stagnant lid with an episodic lid, or greatly extending the time in which a smoothly evolving mobile lid is present in a planet. Finally, we show that our results are consistent with analytically predicted critical yield stress obtained with boundary layer theory, whether melting-induced crustal production is considered or not.
Triple Junction Reorganizations: A Mechanism for the Initiation of the Great Pacific Fractures Zones
NASA Astrophysics Data System (ADS)
Pockalny, R. A.; Larson, R. L.; Grindlay, N. R.
2001-12-01
There are two general explanations for the initiation of oceanic transform faults that eventually evolve into fracture zones: transforms inherited from continental break-up and transforms acquired in response to a change in plate motions. These models are sufficient to explain the fracture zones in oceans formed by continental break-up. However, neither model accounts for the initiation of the large-offset, great Pacific fracture zones that characterized the Pacific-Farallon plate boundary prior to 25 Ma. Primarily, these models are unable to explain why the initial age of these fracture zones becomes progressively younger from the Mendocino fracture zone (\\~{ } 160 Ma) southward down to the Resolution FZ (\\~{ }84 Ma). We propose a new transform initiation mechanism for the great Pacific fracture zones, which is intimately tied to tectonic processes at triple junctions and directly related to the growth of the Pacific Plate. Recently acquired multibeam bathymetry and marine geophysics data collected along Pandora's Escarpment in the southwestern Pacific have identified the escarpment as the trace of the Pacific-Farallon-Phoenix triple junction on the Pacific Plate. Regional changes in the trend of the triple junction trace between 84-121 Ma roughly coincide with the initiation of the Marquesas, Austral and Resolution fracture zones. Bathymetry and backscatter data from the projected intersections of these fracture zones with the triple junction trace identify several anomalous structures that suggest tectonic reorganizations of the triple junction. We believe this reorganization created the initial transform fault(s) that ultimately became the large-offset, great Pacific fracture zones. Several possible mechanisms for initiating the transform faults are explored including microplate formation, ridge-tip propagation, and spontaneous transform fault formation.
NASA Images Topography of Quake-Stricken Eastern Turkey
2011-10-25
On Oct. 23, 2011, a magnitude 7.2 earthquake struck eastern Turkey, near the city of Van, the result of the collision between the Arabian and Eurasian tectonic plates. Turkey is a tectonically active country, experiencing frequent devastating earthquakes.
Pangea with a twist of paleomagnetism. Easy as ABC?
NASA Astrophysics Data System (ADS)
Pastor-Galan, D.
2017-12-01
Most tectonic reconstructions assume supercontinents to be single and stable super-plates, for example the majority of the reconstructions show Pangea as a quasi-stable superplate from 320 to 180 Ma. Although we know to a first order the pre-break-up configuration of Pangea, its configuration during amalgamation (Pangea A, B, C… hypotheses) and therefore its tectonic evolution during the Late Carboniferous and Permian are largely unknown and controversial. As a consequence, we do not know how and why Pangea became a supercontinent nor the processes responsible for its break-up. Paleomagnetic evidence seems contradictory supporting differnt configurations and large-scale vertical axis rotations in the core of Pangea implying >>1500km of shortening/extension, not easily explained by the preserved geologic record or by the reconstructions derived from it. Synchronously and maybe related, two major and enigmatic events occurred within the Pangean supercontinent: (1) extensive magmatism whose link to crustal and/or mantle dynamics is unclear and (2) widespread development of extensional basins containing the bulk of the Earth oil/gas reserves. The geodynamic consequences of these processes happening in the core of Pangea involve processes such as intra-continental subduction, delamination, rifting, megashear motion and development of major basins. Finally, Pangea did not break along the sutures of the Iapetus/Rheic oceans whose consumption in the Late Paleozoic gave rise to the supercontinent. Intraplate deformation has never considered in tectonic models for the supercontinent cycle and however may be key to understand the large vertical axis rotations, the role of lithospheric weaknesses leading to supercontinent break-up, and the formation of intraplate basins. Together with plate non rigidity, crustal loss and growth are crucial geological problems that are generally ignored in plate reconstructions. The assumptions of plate rigidity and conservation of continental lithosphere introduce errors that we are propagating into the past, making our reconstructions less precise in Paleozoic and pre-Cambrian times. A newer reconstruction of the late Palaeozoic tectonic evolution of Pangea including all those parameters will solve the Pangea A, B or C conundrum.
NASA Technical Reports Server (NTRS)
1975-01-01
A procedure for obtaining a parameterization of the marine geoid for suitable orthogonality properties in altimetry data is discussed. The application of the technique to the Puerto Rico trench is explained and a map of the data is developed. The Goddard Earth Model (GEM-6) is described to show the method for determining the earth gravity field using data obtained from satellite tracking stations. The derivation of a global ocean tide model from satellite data is explained. The influence of solid earth and ocean tides on the inclination of GEOS-1 is plotted. The delineation of the geographical fracture pattern and boundary system of the tectonic plates using ERTS satellite is shown.
Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.
Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L
2010-07-16
Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.
Tectonic evolution and mantle structure of the Caribbean
NASA Astrophysics Data System (ADS)
van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus
2013-06-01
investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past 45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge, and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an "Intra-Americas origin" and a "Pacific origin" of the Caribbean plate.
Tectonic evolution and mantle structure of the Caribbean
NASA Astrophysics Data System (ADS)
Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus
2013-06-01
investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge, and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an "Intra-Americas origin" and a "Pacific origin" of the Caribbean plate.
NASA Astrophysics Data System (ADS)
Conrad, Clinton P.; Steinberger, Bernhard; Torsvik, Trond H.
2017-04-01
Earth's surface is deflected vertically by stresses associated with convective mantle flow. Although dynamic topography is important for both sea level change and continental uplift and subsidence, the time history of dynamic topography is difficult to constrain because the time-dependence of mantle flow is not known. However, the motions of the tectonic plates contain information about the mantle flow patterns that drive them. In particular, we show that the longest wavelengths of mantle flow are tightly linked to the dipole and quadrupole moments (harmonic degrees 1 and 2) of plate motions. This coupling allows us to infer patterns of long-wavelength mantle flow, and the associated dynamic topography, from tectonic plate motions. After calibrating this linkage using models of present-day mantle flow, we can use reconstructions of global plate motions to infer the basic patterns of long-wavelength dynamic topography back to 250 Ma. We find relatively stable dynamic uplift persists above large-scale mantle upwelling beneath Africa and the Central Pacific. Regions of major downwelling encircled the periphery of these stable upwellings, alternating between primarily east-west and north-south orientations. The amplitude of long-wavelength dynamic topography was likely largest in the Cretaceous, when global plate motions were fastest. Continental motions over this time-evolving dynamic topography predict patterns of continental uplift and subsidence that are confirmed by geological observations of continental surfaces relative to sea level. Net uplift or subsidence of the global seafloor can also induce eustatic sea level changes. We infer that dispersal of the Pangean supercontinent away from stable upwelling beneath Africa may have exposed the seafloor to an increasingly larger area of growing positive dynamic topography during the Mesozoic. This net uplift of the seafloor caused 60 m of sea level rise during the Triassic and Jurassic, ceasing in the Cenozoic once continents fully override degree-2 downwellings. These sea level changes represent a significant component of the estimated 200 m of sea level variations during the Phanerozoic, which exhibit a similar temporal pattern.
SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results
NASA Astrophysics Data System (ADS)
Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.
2009-12-01
We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in this work seems to agree with geological evidences (eg. the Pacific plate, South America volcanoes activity and so on). However a detailed analysis of numerical correlation pointed out in this work and geological implication requires a lot of effort and is still running. Thus this work represents preliminary contribution to better understand and clarify, from a geophysical point of view, the nature of planetary correlations among active volcanoes. Further work is still needed.
NASA Astrophysics Data System (ADS)
Gaina, C.; Van Hinsbergen, D. J.; Spakman, W.
2012-12-01
As part of the gradual Gondwana dispersion that started in the Jurassic, the Indian tectonic block was rifted away from the Antarctica-Australian margins, probably in the Early-Mid Cretaceous and started its long journey to the north until it collided with Eurasia in the Tertiary. In this contribution first we will revise geophysical and geological evidences for the formation of oceanic crust between India and Antarctica, India and Madagascar, and India and Somali/Arabian margins. This information and possible oceanic basin age interpretation are placed into regional kinematic models. Three important compressional events NW and W of the Indian plate are the result of the opening of the Enderby Basin from 132 to 124 Ma, the first phase of seafloor spreading in the Mascarene basin approximately from 84 to 80 Ma, and the incipient opening of the Arabian Sea and the Seychelles microplate formation around 65 to 60 Ma. Based on retrodeformation of the Afghan-Pakistan part of the India-Asia collision zone and the eastern Oman margin, the ages of regional ophiolite emplacement and crystallization of its oceanic crust, as well as the plate tectonic setting of these ophiolites inferred from its geochemistry, we evaluate possible scenarios for the formation of intra-oceanic subduction zones and their evolution until ophiolite emplacement time. Our kinematic scenarios are constructed for several regional models and are discussed in the light of global tomographic models that may image some of the subducted Cretaceous oceanic lithosphere.
Metamorphism, Plate Tectonics, and the Supercontinent Cycle
NASA Astrophysics Data System (ADS)
Brown, Michael
Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).
Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.
Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel
2017-09-22
Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Fernàndez, Manel; Torne, Montserrat; Vergés, Jaume; Casciello, Emilio
2016-04-01
Diffuse plate-boundary regions are characterized by non-well defined contacts between tectonic plates thus making difficult their reconstruction through time. The Western Mediterranean is one of these regions, where the convergence between the African and Iberian plates since Late Cretaceous resulted in the Betic-Rif arcuate orogen, the Gulf of Cadiz imbricate wedge, and the Alboran back-arc basin. Whereas the Iberia-Africa plate boundary is well defined west to the Gorringe Bank and along the Gloria Fault, it becomes much more diffuse eastwards with seismicity spreading over both the south-Iberian and north-African margins. Gravity data, when filtered for short wavelengths, show conspicuous positive Bouguer anomalies associated with the Gorringe Bank, the Gulf of Cadiz High and the Ronda/Beni-Bousera peridotitic massifs reflecting an inherited Jurassic margin segmentation. The subsequent Alpine convergence between Africa and Iberia reactivated these domains, producing crustal-scale thrusting in the Atlantic segments and eventually subduction in the proto-Mediterranean segments. The Jurassic segmentation of the Iberia-Africa margins substantiates the double-polarity subduction model proposed for the region characterized by a change from SE-dipping polarity in the Gorringe, Gulf of Cadiz and Betic-Rif domains, to NW-dipping polarity in the proto-Algerian domain. Therefore, the Algerian and Tyrrhenian basins in the east and the Alboran basin in the west are the result of SSE-E and NW-W retreating slabs of oceanic and/or hyper-extended Tethyan domains, respectively.
NASA Astrophysics Data System (ADS)
Nishikawa, T.; Ide, S.
2017-07-01
Earthquake swarms are characterized by an increase in seismicity rate that lacks a distinguished main shock and does not obey Omori's law. At subduction zones, they are thought to be related to slow-slip events (SSEs) on the plate interface. Earthquake swarms in subduction zones can therefore be used as potential indicators of slow-slip events. However, the global distribution of earthquake swarms at subduction zones remains unclear. Here we present a method for detecting such earthquake sequences using the space-time epidemic-type aftershock-sequence model. We applied this method to seismicity (M ≥ 4.5) recorded in the Advanced National Seismic System catalog at subduction zones during the period of 1995-2009. We detected 453 swarms, which is about 6.7 times the number observed in a previous catalog. Foreshocks of some large earthquakes are also detected as earthquake swarms. In some subduction zones, such as at Ibaraki-Oki, Japan, swarm-like foreshocks and ordinary swarms repeatedly occur at the same location. Given that both foreshocks and swarms are related to SSEs on the plate interface, these regions may have experienced recurring SSEs. We then compare the swarm activity and tectonic properties of subduction zones, finding that swarm activity is positively correlated with curvature of the incoming plate before subduction. This result implies that swarm activity is controlled either by hydration of the incoming plate or by heterogeneity on the plate interface due to fracturing related to slab bending.
Numerical simulation of present day tectonic stress across the Indian subcontinent
NASA Astrophysics Data System (ADS)
Yadav, R.; Tiwari, V. M.
2018-04-01
In situ measurements of maximum horizontal stress (S Hmax) in the Indian subcontinent are limited and do not present regional trends of intraplate stress orientation. The observed orientations of S Hmax vary considerably and often differ from the plate velocity direction. We have simulated orientation and magnitude of S Hmax through finite element modeling incorporating heterogeneities in elastic property of the Indian continent and plain stress approximation to understand the variability of S Hmax. Four different scenarios are tested in simulation: (1) homogeneous plate with fixed plate boundary (2) homogeneous plate with boundary forces (3) heterogeneous plate with fixed boundary (4) heterogeneous plate with boundary forces. The estimated orientation and magnitude of S Hmax with a heterogeneous plate with boundary forces in the Himalayan region and an eastern plate boundary comprising the Indo-Burmese arc and Andaman subduction zone are consistent with measured maximum horizontal stress. This study suggests that plate boundary force varies along the northern Indian plate margin and also provides a constraint on the intraplate stress field in the Indian subcontinent.
NASA Astrophysics Data System (ADS)
Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé
2000-11-01
High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies that an important tectonic coupling may exist between the upper and the lower plates leading to the partitioning of the continental lithosphere and to the tectonic underplating of very young oceanic lithosphere below the continental wedge. We assume that in the case of the CTJ, the uncommon situation of three successive ridge segments entering the trench at 2-3 Ma intervals only resulted in a strong and finally long-lived thermal anomaly. This anomaly caused remelting of underplated portions of very young, still hot oceanic lithosphere. Only particular geometrical RTT configurations are able to produce such features. These include linear continental margin, short ridge segments slightly oblique to the trench and short transform faults. Finally, the CTJ example shows that a possible scenario for the origin of calc-alkaline acidic rocks in the near-trench region involves coeval tectonic coupling and repeated passage of thermal anomalies due to successive subduction of short ridge segments. Therefore, the local abundance of calc-alkaline acidic rocks, associated with MORB-type lavas in ancient series, could be the tracer of plate tectonic configurations involving the subduction of short ridge segments in a relatively short duration.
NASA Astrophysics Data System (ADS)
Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.
2017-12-01
The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing the history of plate motion and subduction and tracing the geological and deformation records in continents play a significant role in revealing the effects of complex plate motions and the interactions of plate boundary forces on plate-mantle coupling and plate motion-intracontinental deformation coupling.
Birth of an oceanic spreading center at a magma-poor rift system.
Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto
2017-11-08
Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.
The Geology of the Persian Gulf-Gulf of Oman Region: A Synthesis (Paper 6R0118)
NASA Astrophysics Data System (ADS)
Ross, David A.; Uchupi, Elazar; White, Robert S.
1986-08-01
During the Mesozoic most of the Arabian Peninsula, Persian Gulf, south-western Iran, and eastern Iraq constituted the Arabian platform. Deformation of the Musandam Peninsula in the Late Cretaceous and mid-Tertiary by compression (subduction) from the east and southwest, collision of the Arabian platform and Eurasian plate along the Zagros Crush zone during the Oligocene or early Miocene, and emplacement of the Zagros Mountains by gravitational sliding during the Neogene and Pleistocene have reduced the platform area to the Persian Gulf. Other factors that contributed to the reduction of the Arabian platform include the uplift of the Arabian Peninsula during the opening of the Red Sea in the Tertiary, tectonism of the Infracambrian Hormuz salt, upwarp of the platform sediment cover by basement uplift and/or salt tectonics, and a 600- to 400-m drop in sea level since the Cretaceous. At present, tectonism in the region is restricted to the northern edge of the Gulf of Oman where the Arabian plate is subducting the Eurasian plate from the south and to the Zagros Crush zone where the Arabian and Eurasian plates are colliding with one another.
NASA Astrophysics Data System (ADS)
Bernardino, M. J.; Hayes, G. P.; Dannemann, F.; Benz, H.
2012-12-01
One of the main missions of the United States Geological Survey (USGS) National Earthquake Information Center (NEIC) is the dissemination of information to national and international agencies, scientists, and the general public through various products such as ShakeMap and earthquake summary posters. During the summer of 2012, undergraduate and graduate student interns helped to update and improve our series of regional seismicity posters and regional tectonic summaries. The "Seismicity of the Earth (1900-2007)" poster placed over a century's worth of global seismicity data in the context of plate tectonics, highlighting regions that have experienced great (M+8.0) earthquakes, and the tectonic settings of those events. This endeavor became the basis for a series of more regionalized seismotectonic posters that focus on major subduction zones and their associated seismicity, including the Aleutian and Caribbean arcs. The first round of these posters were inclusive of events through 2007, and were made with the intent of being continually updated. Each poster includes a regional tectonic summary, a seismic hazard map, focal depth cross-sections, and a main map that illustrates the following: the main subduction zone and other physiographic features, seismicity, and rupture zones of historic great earthquakes. Many of the existing regional seismotectonic posters have been updated and new posters highlighting regions of current seismological interest have been created, including the Sumatra and Java arcs, the Middle East region and the Himalayas (all of which are currently in review). These new editions include updated lists of earthquakes, expanded tectonic summaries, updated relative plate motion vectors, and major crustal faults. These posters thus improve upon previous editions that included only brief tectonic discussions of the most prominent features and historic earthquakes, and which did not systematically represent non-plate boundary faults. Regional tectonic summaries provide the public with immediate background information useful for teaching and media related purposes and are an essential component to many NEIC products. As part of the NEIC's earthquake response, rapid earthquake summary posters are created in the hours following a significant global earthquake. These regional tectonic summaries are included in each earthquake summary poster along with a discussion of the event, written by research scientists at the NEIC, often with help from regional experts. Now, through the efforts of this and related studies, event webpages will automatically contain a regional tectonic summary immediately after an event has been posted. These new summaries include information about plate boundary interactions and other associated tectonic elements, trends in seismicity and brief descriptions of significant earthquakes that have occurred in a region. The tectonic summaries for the following regions have been updated as part of this work: South America, the Caribbean, Alaska and the Aleutians, Kuril-Kamchatka, Japan and vicinity, and Central America, with newly created summaries for Sumatra and Java, the Mediterranean, Middle East, and the Himalayas. The NEIC is currently planning to integrate concise stylized maps with each tectonic summary for display on the USGS website.
NASA Astrophysics Data System (ADS)
Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid
2007-10-01
The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.
NASA Astrophysics Data System (ADS)
Sleep, N. H.
1994-03-01
The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses about Mars plate tectonics.
DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin
NASA Astrophysics Data System (ADS)
Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).
ERIC Educational Resources Information Center
Ruscio, Ayelet Meron
2008-01-01
Comments on the original article "Plate tectonics in the classification of personality disorder: Shifting to a dimensional model," by T. A. Widiger and T. J. Trull (2007). Widiger and Trull raised important nosological issues that warrant serious consideration not only for the personality disorders but for all mental disorders as the Diagnostic…
Further Comments toward a Dimensional Classification of Personality Disorder
ERIC Educational Resources Information Center
Widiger, Thomas A.; Trull, Timothy J.
2008-01-01
Responds to the comments by H. N. Garb (2007) and A. M. Ruscio (2007) on the current authors' original article "Plate tectonics in the classification of personality disorder: Shifting to a dimensional model" (2007). Unable to respond to all of Garb's and Ruscio's concerns given space limitations, the current authors attempt to respond to key…
NASA Astrophysics Data System (ADS)
Currie, C. A.; Beaumont, C.
2009-05-01
The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (<25° dip). Thermal-mechanical numerical models demonstrate that rapid Cretaceous plate convergence rates and enhanced westward velocity of North America result in shallow-angle subduction that places the Farallon Plate beneath the western edge of the cratonic interior of North America. This geometry is consistent with the observed continental dynamic subsidence that lead to the development of the Western Interior Seaway. The models also show that the subducting plate has a cool thermal structure, and subducted hydrous minerals (serpentine, phengite and phlogopite) remain stable to more than 1200 km from the trench, where they may break down and release fluids that infiltrate the overlying craton lithosphere. This is supported by geochemical studies that indicate metasomatism of the Colorado Plateau and Wyoming craton mantle lithosphere by an aqueous fluid and/or silicate melt with a subduction signature. Through Cretaceous shallow-angle subduction, the Farallon Plate was in a position to mechanically and chemically interact with North American craton lithosphere at the time of kimberlite-lamproite magmatism, making the subduction hypothesis a viable mechanism for the genesis of these magmas. REFERENCES: McCandless, T.E., Proceedings of the 7th International Kimberlite Conference, v.2, pp.545-549, 1999; Sharp, W.E., Earth Planet. Sci. Lett., v.21, pp.351-354, 1974.