Science.gov

Sample records for plateaus numerical instabilities

  1. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    SciTech Connect

    Cullum, J.

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  2. Mountain growth, orographic precipitation, and the formation of high-plateaus. Insights from numerical modeling experiments

    NASA Astrophysics Data System (ADS)

    Garcia-Castellanos, D.

    2011-12-01

    Orographic precipitation is thought to exert a significant control on the growth of orogens, namely on the distribution of tectonic uplift and deformation in the multi-million-year time-scale. Computer tectonic models based on simple physical laws predict that the concentration of erosional surface mass removal in either side of an orogen can have a significant impact on the how tectonic deformation propagates within the orogenic building. Proxies or simple formulations of climatic processes such as precipitation and evaporation are key to such coupled tectonic/climatic models. Intramountain high plateaus are extreme cases of climatic control on sediment flow, because they often consist of internally-drained (endorheic) basins that trap most erosional products within the orogen. Such intramountain sediment accumulation leads to high-plateaus characterized by high topography and, in spite of the compressional tectonics, low relief. The development of high-plateaus has been extensively studied in relation to the tectonic setting and to inherited structures in the crust, but in this presentation I will concentrate on the potential climatic controls. Computer modeling results will be shown suggesting that a preexisting dry climate, through its effects on surface transport and orogenic evolution, may significantly modify tectonic deformation and contribute to the later formation of a high plateau. This is due to the following feedback: (1) dry climatic conditions at the early stages of orogenesis favor the tectonic defeat of rivers draining the orogen, promoting internal drainage (endorheism); (2) endorheism extends the life of intramountain basins maximizing the mass trapped within the orogen, rising lithostatic stress underneath and expelling fault deformation towards the flanks of the orogen; and (3) this propagation of deformation further isolates the central parts of the orogen from incoming precipitation, reinforcing sediment trapping and topographic leveling of

  3. A Numerical Study of Feathering Instability

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Wang, Hsiang-Hsu

    2016-06-01

    The stability of a spiral shock of self-gravitating, magnetized interstellar medium is studied by performing two-dimensional numerical simulations of a local patch of tight-winding spiral arm. As previously suggested by the linear studies, two types of instabilities are identified, namely, wiggle instability and feathering instability. The former instability occurs in the hydrodynamics limit and results in short wavelength perturbations. On the other hand, the feathering instability requires both self-gravitating and magnetic fields and results in wider structures.

  4. Numerical Modelling Of Pumpkin Balloon Instability

    NASA Astrophysics Data System (ADS)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  5. Numerical simulation of surface waves instability on a homogeneous grid

    NASA Astrophysics Data System (ADS)

    Korotkevich, Alexander O.; Dyachenko, Alexander I.; Zakharov, Vladimir E.

    2016-05-01

    We performed full-scale numerical simulation of instability of weakly nonlinear waves on the surface of deep fluid. We show that the instability development leads to chaotization and formation of wave turbulence. Instability of both propagating and standing waves was studied. We separately studied pure capillary wave, that was unstable due to three-wave interactions and pure gravity waves, that were unstable due to four-wave interactions. The theoretical description of instabilities in all cases is included in the article. The numerical algorithm used in these and many other previous simulations performed by the authors is described in detail.

  6. Spur-type instability observed on numerically simulated vortex filaments

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1988-01-01

    An instability observed on vortex filaments during numerical simulations of the three-dimensional, time-dependent dynamics of vortex wakes is studied to determine when and why it occurs. It is concluded that the observed instability is a consequence of the use of straight-line vortex segments of finite length to model continuously curving vortex filaments. The instability appears to occur only when the link length is a sizable fraction of the vortex span and, therefore, is not expected in an experiment. Guidelines are then given that help avoid numerical instabilities when vortex filaments are used in flow simulations.

  7. Numerical Simulations of Instabilities in Single-Hole Office Elements

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  8. Tube Feeding Transition Plateaus

    ERIC Educational Resources Information Center

    Klein, Marsha Dunn

    2007-01-01

    The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…

  9. EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY

    SciTech Connect

    FRANCOIS, MARIANNE M.; DENDY, EDWARD D.; LOWRIE, ROBERT B.; LIVESCU, DANIEL; STEINKAMP, MICHAEL J.

    2007-01-11

    The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.

  10. Numerical aspects of searching convective/absolute instability transition

    NASA Astrophysics Data System (ADS)

    Suslov, Sergey A.

    2006-02-01

    An overview of various numerical techniques used to determine the spatio-temporal character of instabilities in fluid flows is given. The advantageous features of various previously known individual techniques are discussed and a practical procedure combining them is suggested for a specific task of determining the complete boundary between linearly convectively and absolutely unstable regimes in a multi-parameter space in problems with a fully numerical dispersion relation. Special attention is paid to aspects of automatization of computations as this is a crucial condition for their efficiency. The suggested procedure is successfully used and is shown to provide a high degree of automatism in the physical example of non-Boussinesq mixed convection in a vertical channel. This example comprises most of the major numerical difficulties found in various spatio-temporal instability studies of two-dimensional fluid flows which previously could not be handled without frequent human intervention and visual inspection of intermediate results. This paper focuses on the general numerical aspects of the computations leaving the detailed discussion of the obtained physical results for a separate publication.

  11. Numerical Investigation of Galloping Instabilities in Z-Shaped Profiles

    PubMed Central

    Chavez, Miguel; Valero, Eusebio

    2014-01-01

    Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models. PMID:25054176

  12. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    SciTech Connect

    E.A. Belli; G.W. Hammett

    2004-12-17

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.

  13. Collisional plateaus. [in earth and Venus lithospheres

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Burke, K.

    1985-01-01

    Aspects of the geology of collisional plateaus formed by the thickening of continental crust are briefly reviewed. The history of studies of collisional plateaus is summarized, and igneous activity in collisional plateaus is discussed. Isostatic considerations pertaining to these plateaus are addressed, developing models of isostatic support of topography which illustrate the importance of compressional tectonics in the creation of high altitude plateaus. Possible analogous environments on Venus are considered. Finally, the paradox of extension associated with compression in the plateaus is discussed.

  14. A Cartesian parametrization for the numerical analysis of material instability

    DOE PAGES

    Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; Ostien, Jakob T.; Lai, Zhengshou

    2016-02-25

    We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less

  15. Proposed Ozark Plateaus Province Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Davis, R. K.; Brahana, J. V.; Matlock, M. D.; Chaubey, I.; Pavlowsky, R. T.; Gilzow, F.

    2004-12-01

    The Upper White River, which drains about 40 percent of the Ozarks Ecoregion, is the main drain for the Ozark Plateaus and is characteristic of rivers draining other karst areas within the United States and the world. The proposed Ozark Plateaus Hydrologic Observatory (OPHO) encompasses twelve 8-digit hydrologic units covering about 67,000 km2 in parts of three states (Arkansas, Missouri, and Oklahoma). Six major U.S. Army Corps of Engineers reservoirs are within the OPHO including four on the main stem of the White River and one on the Illinois River. Karst features are prominent in the Salem, Ozark, and Springfield Plateaus of the OPHO, and include numerous solutionally enlarged fractures, caves, sinkholes, and sinking streams. Within the basin are numerous and diverse biological communities, representing influences from 1) eastern deciduous forest, 2) Great Plains prairies, 3) arid southwest, and 4) relicts of northern species from the Pleistocene Ice Age. Also contain in the OPHO is a diverse and unique array of mussels, an imperiled river organism (38 species), and crayfish. In the extensive karst regions of the OPHO are found largely endemic subterranean organisms also dependent on good water quality: for example, the Ozark Cavefish, Bristly Cave Crayfish and the recently federally- listed Tumbling Creek Cave Snail. Mantled karst aquifers characteristic of the Ozark Plateaus Region represent a coupled atmospheric/surface water/groundwater system that is highly susceptible to external forcing. Little attenuation of contaminants occurs as water moves from surface sources into and through the mantled karst aquifer to discharge naturally at springs and streams throughout the Ozark Plateau Region, and to wells. Because of the very open character of the aquifer, extremely dynamic biogeochemical cycling of nutrients occurs. Upper White River Reservoir development, filling and operation historically have altered and continue to alter the hydrologic and ecosystems

  16. Convective instability in sedimentation: 3-D numerical study

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2014-11-01

    To provide a probable explanation on the field observed rapid sedimentation process near river mouths, we investigate the convective sedimentation in stably stratified saltwater using 3-D numerical simulations. Guided by the linear stability analysis, this study focuses on the nonlinear interactions of several mechanisms, which lead to various sediment finger patterns, and the effective settling velocity for sediment ranging from clay (single-particle settling velocity V0 = 0.0036 and 0.0144 mm/s, or particle diameter d = 2 and 4 μm) to silt (V0 = 0.36 mm/s, or d = 20 μm). For very fine sediment with V0 = 0.0036 mm/s, the convective instability is dominated by double diffusion, characterized by millimeter-scale fingers. Gravitational settling slightly increases the growth rate; however, it has notable effect on the downward development of vertical mixing shortly after the sediment interface migrates below the salt interface. For sediment with V0 = 0.0144 mm/s, Rayleigh-Taylor instabilities become dominant before double-diffusive modes grow sufficiently large. Centimeter-scale and highly asymmetric sediment fingers are obtained due to nonlinear interactions between different modes. For sediment with V0 = 0.36 mm/s, Rayleigh-Taylor mechanism dominates and the resulting centimeter-scale sediment fingers show a plume-like structure. The flow pattern is similar to that without ambient salt stratification. Rapid sedimentation with effective settling velocity on the order of 1 cm/s is likely driven by convective sedimentation for sediment with V0 greater than 0.1 mm/s at concentration greater than 10-20 g/L.

  17. Numerical Study of a Hydrodynamic Instability Driven by Evaporation

    NASA Astrophysics Data System (ADS)

    Hernandez-Zapata, Sergio; Romo-Cruz, Julio Cesar Ruben; Lopez-Sanchez, Erick Javier; Ruiz-Chavarria, Gerardo

    2013-11-01

    The study of hydrodynamic instabilities in liquid layers produced by evaporation has several applications on industry and technology. In this work we study numerically the conditions under which a liquid layer becomes unstable when evaporation in the vapor-liquid interphase is present. The evaporation process follows the Hertz-Knudsen law (the evaporation rate is proportional to the difference between the saturated vapor pressure at the liquid layer temperature and the vapor partial pressure in the environment). Additionally to the usual boundary conditions on solid walls (for example, the non-slip condition for the velocity), we analyze the boundary conditions in the vapor-liquid interphase where the momentum and energy balances have to be taken into account and where the evaporation plays a crucial role. To solve this problem the linear theory of stability is used; that is, a small perturbation around the basic solution is applied (flow at rest and a temperature stationary field). The equations are solved using the Chebyshev pseudo-spectral method. The results are compared with the more usual Rayleigh-Bénard and Marangoni mechanisms as well as with some experiments carried out by our team. Authors acknowledge DGAPA-UNAM by support under project IN116312, ``Vorticidad y Ondas no lineales en fluidos.''

  18. Direct Numerical Simulations of Immiscible Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Li, Zhaorui; Livescu, Daniel

    2015-11-01

    Accurate simulations of multi-mode immiscible Rayleigh-Taylor instability (RTI) are presented with the recently developed generalized Cahn-Hilliard Navier-Stokes (GCHNS) equations method. In immiscible turbulent flows, besides the viscous cut-off scale, there are two additional characteristic length scales, which also affect the flow. One is the so-called ``cut-off'' length scale caused by the presence of surface tension and the other is the physical interface thickness. While in some practical applications the interface thickness can be large, in many other cases this thickness approaches the molecular scales. Accurate results can be obtained for these cases if the interface thickness is maintained smaller than all the cut-off scales of the flow, but still much larger than the molecular scales (e.g. mean free path). Our study shows that, as long as the scale-separation (e.g. the ratio of Kolmogorov scale to the interface thickness) is above a certain value (4 to 6 for the RTI problem considered in this study), the numerical results are fully converged with respect to the interface thickness. The results are used to study the physics of multi-mode immiscible RTI and contrasted to those obtained for the miscible case.

  19. Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.

    2016-05-01

    An investigation of compressible Rayleigh-Taylor instability (RTI) using Direct Numerical Simulations (DNS) requires efficient numerical methods, advanced boundary conditions, and consistent initialization in order to capture the wide range of scales and vortex dynamics present in the system, while reducing the computational impact associated with acoustic wave generation and the subsequent interaction with the flow. An advanced computational framework is presented that handles the challenges introduced by considering the compressive nature of RTI systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification dependent vorticity production. The foundation of the numerical methodology described here is the wavelet-based grid adaptivity of the Parallel Adaptive Wavelet Collocation Method (PAWCM) that maintains symmetry in single-mode RTI systems to extreme late-times. PAWCM is combined with a consistent initialization, which reduces the generation of acoustic disturbances, and effective boundary treatments, which prevent acoustic reflections. A dynamic time integration scheme that can handle highly nonlinear and potentially stiff systems, such as compressible RTI, completes the computational framework. The numerical methodology is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.

  20. Lessons Learned from Numerical Simulations of Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Cook, Andrew

    2015-11-01

    Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    SciTech Connect

    Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  2. Dynamics of plume-triple junction interaction: Results from a series of three-dimensional numerical models and implications for the formation of oceanic plateaus

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen; Georgen, Jennifer

    2016-03-01

    Mantle plumes rising in the vicinity of mid-ocean ridges often generate anomalies in melt production and seafloor depth. This study investigates the dynamical interactions between a mantle plume and a ridge-ridge-ridge triple junction, using a parameter space approach and a suite of steady state, three-dimensional finite element numerical models. The top domain boundary is composed of three diverging plates, with each assigned half-spreading rates with respect to a fixed triple junction point. The bottom boundary is kept at a constant temperature of 1350°C except where a two-dimensional, Gaussian-shaped thermal anomaly simulating a plume is imposed. Models vary plume diameter, plume location, the viscosity contrast between plume and ambient mantle material, and the use of dehydration rheology in calculating viscosity. Importantly, the model results quantify how plume-related anomalies in mantle temperature pattern, seafloor depth, and crustal thickness depend on the specific set of parameters. To provide an example, one way of assessing the effect of conduit position is to calculate normalized area, defined to be the spatial dispersion of a given plume at specific depth (here selected to be 50 km) divided by the area occupied by the same plume when it is located under the triple junction. For one particular case modeled where the plume is centered in an intraplate position 100 km from the triple junction, normalized area is just 55%. Overall, these models provide a framework for better understanding plateau formation at triple junctions in the natural setting and a tool for constraining subsurface geodynamical processes and plume properties.

  3. The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip

    2014-11-01

    A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.

  4. Numerical simulations of multifrequency instability-wave growth and suppression in the Blasius boundary layer

    NASA Astrophysics Data System (ADS)

    Pal, A.; Bower, W. W.; Meyer, G. H.

    1991-02-01

    A mathematical model based on the Orr-Sommerfeld equation is developed to describe the growth and suppression of multifrequency, two-dimensional instability waves in the Blasius boundary layer over a flat place through localized perturbations at the surface caused by time-varying suction/blowing. It is shown for harmonic (single-frequency) perturbations that the instability wave can be decomposed into two components: an idealized Tollmien-Schlichting wave and a second perturbation that approximately cancels the first component upstream of the surface disturbance and becomes small downstream. Because the first component alone fully expresses the instability of the flow, the need to perform numerical Fourier transformation over the wave number is eliminated, permitting easy extension of the analysis to the more general case of arbitrary waveform of the perturbation. Numerical results are presented for examples of instability-wave generation and suppression in the boundary layer.

  5. Termination of the MRI via parasitic instabilities in core-collapse supernovae: influence of numerical methods

    NASA Astrophysics Data System (ADS)

    Rembiasz, T.; Obergaulinger, M.; Cerdá-Durán, P.; Aloy, M. Á.; Müller, E.

    2016-05-01

    We study the influence of numerical methods and grid resolution on the termination of the magnetorotational instability (MRI) by means of parasitic instabilities in threedimensional shearing-disc simulations reproducing typical conditions found in core-collapse supernovae. Whether or not the MRI is able to amplify weak magnetic fields in this context strongly depends, among other factors, on the amplitude at which its growth terminates. The qualitative results of our study do not depend on the numerical scheme. In all our models, MRI termination is caused by Kelvin-Helmholtz instabilities, consistent with theoretical predictions. Quantitatively, however, there are differences, but numerical convergence can be achieved even at relatively low grid resolutions if high-order reconstruction methods are used.

  6. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  7. Contact line instability: Comparison between experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Diez, J.; González, A. G.; Gomba, J.; Gratton, R.; Kondic, Lou

    2003-11-01

    We report results of experiments and numerical simulations of the spreading of fixed volumes of silicon oil on vertical substrates. The initial condition is generated from a filament of diameter 0.4 mm and cross section of 10-4 cm^2. By means of two optical techniques, the Schlieren method and the use of an anamorphic lens, we performed a systematic study for a range of cross sections. In particular, we measure the thickness during the early stable stage of the spreading, and analyze the spatial Fourier spectra of the shape of the contact line in the unstable stage, which leads to a finger shaped pattern. The experimental results are compared with numerical simulations within the framework of lubrication approximation. The good agreement found between experiments and simulations strongly supports the hypotheses of the theory and the methods employed in the numerical calculations. This comparison is essential to determine the realistic thickness of the precursor film that must be used in the simulations. Its value (≈ 40 nm) is consistent with measurements in the literature.

  8. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    SciTech Connect

    Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.

    2015-09-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  9. A numerical simulation of barotropic instability. II Wave-wave interaction

    NASA Technical Reports Server (NTRS)

    Nielsen, J. E.; Schoeberl, M. R.

    1984-01-01

    A fully nonlinear numerical model of the point jet barotropic instability is used to test and confirm the hypothesis that the magnitude of the wave vorticity does not exceed the magnitude of the initial shear. This result arises directly from the local conservation of vorticity following a parcel and the fact that unstable waves are principally confined to the region where the zonal mean vorticity can be smoothed by the wave so as to eliminate the instability. Comparisons are made between fully nonlinear and quasi-linear models of the point jet instability and their tracer transport properties. Differences become particularly evident after wave saturation. The most important effect neglected by the wave-mean flow model appears to be the advection of wave vorticity by the most unstable mode. However, as equilibration of the instability proceeds, the globally averaged properties of both models are found to be similar.

  10. Numerical Simulation of Laser-Driven Rayleigh-Taylor Instability using TVD MUSCL Scheme

    NASA Astrophysics Data System (ADS)

    Nagatomo, Hideo; Ohnishi, Naofumo; Takeuchi, Hajime; Takabe, Hideaki; Mima, Kunioki

    1996-11-01

    For the inertial confinement fusion, it is important to simulate and predict the hydrodynamic instabilities. The numerical simulation of the laser-driven Rayleigh-Taylor instability was performed by using a newly developed numerical code which include the two temperature plasma effect and the equation of state. This code is robust and less dissipative because the scheme is based on flux vector splitting method. Furthermore, this method is coupled with high-order MUSCL TVD scheme which enable to capture the shock, the vortices and the contact discontinuity clearly. In the two temperature model, the relaxation of the ion and electron temperature is considered. Cowan ion equation and Thomas-Fermi fitting formula for electron are applied to the equation of state. The dependence on the equation of state will be discussed in this presentation. Also, some numerical results which are solved by the other numerical codes will be shown for the comparison.

  11. Electron cloud buildup and instability: Numerical simulations for the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Giovannozzi, M.; Métral, E.; Métral, G.; Rumolo, G.; Zimmermann, F.

    2003-01-01

    Experimental observations on the electron cloud have been collected at the CERN Proton Synchrotron machine throughout the last two years. At the same time, an intense campaign of simulations has been carried out to understand the observed electron cloud buildup and the related instability. In this paper, the results of the numerical simulations are presented and discussed.

  12. Numerical study of self modulation instability of 1 nC electron bunch at ATF

    SciTech Connect

    Fang Yun; Mori, Warren; Muggli, Patric

    2012-12-21

    The development of self-modulation instability (SMI) is investigated numerically for the 1 nC electron bunch available at Accelerator Test Facility (ATF) of Brookhaven National Laboratory (BNL). Possible experiment based on the simulation results is proposed. All the simulations are performed with the 2D-cylindrically symmetric particle-in-cell code.

  13. Linear and nonlinear evolution of the ion resonance instability in cylindrical traps: A numerical study

    SciTech Connect

    Sengupta, M.; Ganesh, R.

    2015-07-15

    Numerical experiments have been performed to investigate the linear and nonlinear dynamics, and energetics of the ion resonance instability in cylindrically confined nonneutral plasma. The instability is excited on a set of parametrically different unstable equilibria of a cylindrical nonneutral cloud, composed of electrons partially neutralized by a much heavier ion species of single ionization. A particle-in-cell code has been developed and employed to carry out these simulations. The results obtained from the initial exponential growth phase of the instability in these numerical experiments are in agreement with the linearised analytical model of the ion resonance instability. As the simulations delve much further in time beyond the exponential growth phase, very interesting nonlinear phenomena of the ion resonance instability are revealed, such as a process of simultaneous wave breaking of the excited poloidal mode on the ion cloud and pinching of the poloidal perturbations on the electron cloud. This simultaneous nonlinear dynamics of the two components is associated with an energy transfer process from the electrons to the ions. At later stages there is heating induced cross-field transport of the heavier ions and tearing across the pinches on the electron cloud followed by an inverse cascade of the torn sections.

  14. Numerical study on Rayleigh-Taylor instabilities in the lightning return stroke

    SciTech Connect

    Chen, Qiang; Chen, Bin Shi, Lihua; Yi, Yun; Wang, Yangyang

    2015-09-15

    The Rayleigh-Taylor (R-T) instabilities are important hydrodynamics and magnetohydrodynamics (MHD) phenomena that are found in systems in high energy density physics and normal fluids. The formation and evolution of the R-T instability at channel boundary during back-flow of the lightning return stroke are analyzed using the linear perturbation theory and normal mode analysis methods, and the linear growth rate of the R-T instability in typical condition for lightning return stroke channel is obtained. Then, the R-T instability phenomena of lightning return stroke are simulated using a two-dimensional Eulerian finite volumes resistive radiation MHD code. The numerical results show that the evolution characteristics of the R-T instability in the early stage of back-flow are consistent with theoretical predictions obtained by linear analysis. The simulation also yields more evolution characteristics for the R-T instability beyond the linear theory. The results of this work apply to some observed features of the return stroke channel and further advance previous theoretical and experimental work.

  15. Mountains and Plateaus on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These two views of Io were acquired by NASA's Galileo spacecraft during its seventh orbit (G7) of Jupiter. The images were designed to view large features on Io at low sun angles when the lighting conditions emphasize the topography or relief of the volcanic satellite. Sun angles are low near the terminator which is the day-night boundary near the left side of the images. These images reveal that the topography is very flat near the active volcanic centers such as Loki Patera (the large dark horseshoe-shaped feature near the terminator in the left-hand image) and that a variety of mountains and plateaus exist elsewhere.

    North is to the top of the picture. The resolution is about 6 kilometers per picture element (6.1 for the left hand image and 5.7 for the right). The images were taken on April 4th, 1997 at a ranges of 600,000 kilometers (left image) and 563,000 kilometers (right image) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  16. Numerical investigation of the instability and nonlinear evolution of narrow-band directional ocean waves.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2010-07-01

    The instability and nonlinear evolution of directional ocean waves is investigated numerically by means of simulations of the governing kinetic equation for narrow-band surface waves. Our simulation results reveal the onset of the modulational instability for long-crested wave trains, which agrees well with recent large-scale experiments in wave basins, where it was found that narrower directional spectra lead to self-focusing of ocean waves and an enhanced probability of extreme events. We find that the modulational instability is nonlinearly saturated by a broadening of the wave spectrum, which leads to the stabilization of the water-wave system. Applications of our results to other fields of physics, such as nonlinear optics and plasma physics, are discussed.

  17. Shear-induced instability and arch filament eruption - A magnetohydrodynamic (MHD) numerical simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Song, M. T.; Martens, P. C. H.; Dryer, M.

    1991-01-01

    A situation wherein a bipolar magnetic field embedded in a stratified solar atmosphere undergoes symmetrical shear motion at the footpoints is investigated via a 2D (nonplanar) MHD simulation. It was found that the vertical plasma flow velocities grow exponentially, leading to a new type of global MHD instability. The growth rate increases almost linearly until it reaches the same order of magnitude as the Alfven speed. Then a nonlinear MHD instability occurs beyond this point. It was found that the central loops are pinched by opposing Lorentz forces, and the outer closed loops stretch upward with the vertically-rising mass flow. The nonlinear dynamical shearing instability is illustrated by a numerical example that is given for three different values of the plasma beta that span several orders of magnitude.

  18. Experimental demonstration of bow-shock instability and its numerical analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Ohnishi, N.; Ohtani, K.

    2016-07-01

    An experimental demonstration was carried out in a ballistic range at high Mach numbers with the low specific heat ratio gas hydrofluorocarbon HFC-134a to observe the unstable bow-shock wave generated in front of supersonic blunt objects. The shadowgraph images obtained from the experiments showed instability characteristics, in which the disturbances grow and flow downstream and the wake flow appears wavy because of the shock oscillation. Moreover, the influence of the body shape and specific heat ratio on the instability was investigated for various experimental conditions. Furthermore, the observed features, such as wave structure and disturbance amplitude, were captured by numerical simulations, and it was demonstrated that computational fluid dynamics could effectively simulate the physical instability. In addition, it was deduced that the shock instability is induced by sound emissions from the edge of the object. This inference supports the dependence of the instability on the specific heat ratio and Mach number because the shock stand-off distance is affected by these parameters and limits the sound wave propagation.

  19. System dynamic instabilities induced by sliding contact: A numerical analysis with experimental validation

    NASA Astrophysics Data System (ADS)

    Brunetti, J.; Massi, F.; Saulot, A.; Renouf, M.; D`Ambrogio, W.

    2015-06-01

    Mechanical systems present several contact surfaces between deformable bodies. The contact interface can be either static (joints) or in sliding (active interfaces). The sliding interfaces can have several roles and according to their application they can be developed either for maximizing the friction coefficient and the energy dissipation (e.g. brakes) or rather to allow the relative displacement at joints with a maximum efficiency. In both cases the coupling between system and local contact dynamics can bring to system dynamics instabilities (e.g. brake squeal or squeaking of hip prostheses). This results in unstable vibrations of the system, induced by the oscillation of the contact forces. In the literature, a large number of works deal with such kind of instabilities and are mainly focused on applied problems such as brake squeal noise. This paper shows a more general numerical analysis of a simple system constituted by two bodies in sliding contact: a rigid cylinder rotating inside a deformable one. The parametrical Complex Eigenvalue Analysis and the transient numerical simulations show how the friction forces can give rise to in-plane dynamic instabilities due to the interaction between two system modes, even for such a simple system characterized by one deformable body. Results from transient simulations highlight the key role of realistic values of the material damping to have convergence of the model and, consequently, reliable physical results. To this aim an experimental estimation of the material damping has been carried out. Moreover, the simplicity of the system allows for a deeper analysis of the contact instability and a balance of the energy flux among friction, system vibrations and damping. The numerical results have been validated by comparison with experimental ones, obtained by a specific test bench developed to reproduce and analyze the contact friction instabilities.

  20. Experimental and numerical investigations on flashing-induced instabilities in a single channel

    SciTech Connect

    Marcel, Christian P.; Rohde, M.; Van Der Hagen, T.H.J.J.

    2009-11-15

    During the start-up phase, natural circulation BWRs (NC-BWRs) need to be operated at low pressure conditions. Such conditions favor flashing-induced instabilities due to the large hydrostatic pressure drop induced by the tall chimney. Moreover, in novel NC-BWR designs the steam separation is performed in the steam separators which create large pressure drops at the chimney outlet, which effect on stability has not been investigated yet. In this work, flashing-induced oscillations occurring in a tall, bottom heated channel are numerically investigated by using a simple linear model with three regions and an accurate implementation for estimating the water properties. The model is used to investigate flashing-induced instabilities in a channel for different values of the core inlet friction value. The results are compared with experiments obtained by using the CIRCUS facility at the same conditions, showing a good agreement. In addition, the experiments on flashing-induced instabilities are presented in a novel manner allowing visualizing new details of the phenomenon numerical stability investigations on the effect of the friction distribution are also done. It is found that by increasing the total restriction in the channel the system is destabilized. In addition, the chimney outlet restriction has a stronger destabilizing effect than the core inlet restriction. A stable two-phase region is observed prior to the instabilities in the experiments and the numerical simulations which may help to pressurize the vessel of NC-BWRs and thus reducing the effects of flashing instabilities during start-up. (author)

  1. A numerical model for elliptical instability of the Earth's fluid outer core

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, Behnam; Henderson, Gary; Aldridge, Keith

    2000-01-01

    A dynamical model is proposed for the elliptical instability that has been reported by Aldridge et al. [Aldridge, K.D., Seyed-Mahmoud, B., Henderson, G.A., van Wijngaarden, W., 1997. Elliptical instability of the Earth's fluid core. Phys. Earth Planet. Inter., 103, 365-374] in connection with recent experiments on an ellipsoidal shell of rotating fluid. The frequencies and growth rates of the instability are obtained numerically by means of a Galerkin method that is based upon the normal modes of the contained fluid. A finite-element method has been employed to approximately solve the ill-posed Poincaré problem for the normal modes. The numerical results for a special case are compared with their analytical counterparts, and the agreement is to within 0.1% for shells of small ellipticity. Results are presented for other cases, including some where the boundary perturbation is allowed to rotate slowly with respect to the inertial frame. The conclusion is that such investigations are of geophysical interest, since tidal forcing might be sufficient to excite an elliptical instability of the fluid outer core of the Earth and thus contribute to the geomagnetic field.

  2. Instability of surface lenticular vortices: results from laboratory experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lahaye, Noé; Paci, Alexandre; Smith, Stefan Llewellyn

    2016-04-01

    We examine the instability of lenticular vortices -- or lenses -- in a stratified rotating fluid. The simplest configuration is one in which the lenses overlay a deep layer and have a free surface, and this can be studied using a two-layer rotating shallow water model. We report results from laboratory experiments and high-resolution direct numerical simulations of the destabilization of vortices with constant potential vorticity, and compare these to a linear stability analysis. The stability properties of the system are governed by two parameters: the typical upper-layer potential vorticity and the size (depth) of the vortex. Good agreement is found between analytical, numerical and experimental results for the growth rate and wavenumber of the instability. The nonlinear saturation of the instability is associated with conversion from potential to kinetic energy and weak emission of gravity waves, giving rise to the formation of coherent vortex multipoles with trapped waves. The impact of flow in the lower layer is examined. In particular, it is shown that the growth rate can be strongly affected and the instability can be suppressed for certain types of weak co-rotating flow.

  3. Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Chmielewski, P.; Zaqarashvili, T. V.; Khomenko, E.

    2016-07-01

    The paper aims to study the response of a solar small-scale and weak magnetic flux tube to photospheric twisting motions. We numerically solve three-dimensional ideal magnetohydrodynamic equations to describe the evolution of the perturbation within the initially static flux tube, excited by twists in the azimuthal component of the velocity. These twists produce rotation of the magnetic field lines. Perturbation of magnetic field lines propagates upwardly, driving vertical and azimuthal flow as well as plasma compressions and rarefactions in the form of eddies. We conclude that these eddies result from the sheared azimuthal flow which seeds Kelvin-Helmholtz instability (KHI) between the flux tube and the ambient medium. Numerically obtained properties of the KHI confirm the analytical predictions for the occurrence of the instability.

  4. The Rossby wave instability and planet formation: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Méheut, H.; Casse, F.; Varnière, P.; Tagger, M.

    2008-11-01

    Models of planet formation do not explain yet the growth of planetesimals as in certain ranges of grain size collisions are too slow compared to estimated planet formation time. The Rossby wave instability (RWI) may solve this problem by the formation of Rossby vortices in the accretion disc, speeding up the accumulation of grains in their centre ( te{Peggy} ). Up to now, only two dimensions numerical studies of the RWI have been done. In this proceeding we present the results of three dimensions numerical simulations of the non-linear evolution of the RWI in a non magnetized disc and its vertical structure.

  5. Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects

    NASA Astrophysics Data System (ADS)

    Khomenko, E.; Díaz, A.; de Vicente, A.; Collados, M.; Luna, M.

    2014-05-01

    We study the Rayleigh-Taylor instability (RTI) at a prominence-corona transition region in a non-linear regime. Our aim is to understand how the presence of neutral atoms in the prominence plasma influences the instability growth rate, as well as the evolution of velocity, magnetic field vector, and thermodynamic parameters of turbulent drops. We perform 2.5D numerical simulations of the instability initiated by a multi-mode perturbation at the corona-prominence interface using a single-fluid magnetohydrodynamic (MHD) approach including a generalized Ohm's law. The initial equilibrium configuration is purely hydrostatic and contains a homogeneous horizontal magnetic field forming an angle with the direction in which the plasma is perturbed. We analyze simulations with two different orientations of the magnetic field. For each field orientation we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in Ohm's law (AD case). Other than that, both simulations for each field orientation are identical. The numerical results in the initial stage of the instability are compared with the analytical linear calculations. We find that the configuration is always unstable in the AD case. The growth rate of the small-scale modes in the non-linear regime is up to 50% larger in the AD case than in the purely MHD case and the average velocities of flows are a few percentage points higher. Significant drift momenta are found at the interface between the coronal and the prominence material at all stages of the instability, produced by the faster downward motion of the neutral component with respect to the ionized component. The differences in temperature of the bubbles between the ideal and non-ideal case are also significant, reaching 30%. There is an asymmetry between large rising bubbles and small-scale down flowing fingers, favoring the detection of upward velocities in observations.

  6. Numerical simulation of polyester coextrusion: Influence of the thermal parameters and the die geometry on interfacial instabilities

    NASA Astrophysics Data System (ADS)

    Mahdaoui, O.; Agassant, J.-F.; Laure, P.; Valette, R.; Silva, L.

    2007-04-01

    The polymer coextrusion process is a new method of sheet metal lining. It allows to substitute lacquers for steel protection in food packaging industry. The coextrusion process may exhibit flow instabilities at the interface between the two polymer layers. The objective of this study is to check the influence of processing and rheology parameters on the instabilities. Finite elements numerical simulations of the coextrusion allow to investigate various stable and instable flow configurations.

  7. SRTM Anaglyph: Lava plateaus, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    All of the major landforms relate to volcanism and/or erosion in this Shuttle Radar Topography Mission scene of Patagonia, near La Esperanza, Argentina. The two prominent plateaus once formed a continuous surface that extended over much of this region. Younger volcanoes have grown through and atop the plateau, and one just south of this scene has sent a long, narrow flow down a stream channel (lower left). The topographic pattern shows that streams dominate the erosion processes in this arid environment even though wind is known to move substantial amounts of sediment here.

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 62.4 by 88.8 kilometers (38.7 by 55.1 miles) Location: 40.0 deg. South lat., 68.6 deg. West lon

  8. Three-dimensional numerical studies of the temperature anisotropy instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-05-01

    In neutral plasmas with a uniform magnetic field and strongly anisotropic distribution function (T∥/T⊥≪1) an electrostatic Harris-type collective instability may develop if the plasma is sufficiently dense. Such anisotropies develop naturally in accelerators, and a similar instability may lead to a deterioration of the beam quality in a one-component nonneutral charged particle beam. The instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the temperature anisotropy instability using the newly developed Beam Eigenmodes And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression (ν/ν0≪1). Such high-intensity beams are relevant to next-step experiments such as the Integrated Beam Experiment (IBX), which would serve as proof-of-principal experiment for heavy-ion fusion.

  9. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  10. Experimental and numerical study of the shear layer instability between two counter-rotating disks

    NASA Astrophysics Data System (ADS)

    Moisy, F.; Doaré, O.; Pasutto, T.; Daube, O.; Rabaud, M.

    2004-05-01

    The shear layer instability in the flow between two counter-rotating disks enclosed by a cylinder is investigated experimentally and numerically, for radius-to-height ratio Gamma {=} R/h between 2 and 21. For sufficiently large rotation ratio, the internal shear layer that separates two regions of opposite azimuthal velocities is prone to an azimuthal symmetry breaking, which is investigated experimentally by means of visualization and particle image velocimetry. The associated pattern is a combination of a sharp-cornered polygonal pattern, as observed by Lopez et al. (2002) for low aspect ratio, surrounded by a set of spiral arms, first described by Gauthier et al. (2002) for high aspect ratio. The spiral arms result from the interaction of the shear layer instability with the Ekman boundary layer over the faster rotating disk. Stability curves and critical modes are experimentally measured for the whole range of aspect ratios, and are found to compare well with numerical simulations of the three-dimensional time-dependent Navier Stokes equations over an extensive range of parameters. Measurements of a local Reynolds number based on the shear layer thickness confirm that a shear layer instability, with only weak curvature effect, is responsible for the observed patterns. This scenario is supported by the observed onset modes, which scale as the shear layer radius, and by the measured phase velocities.

  11. Genomic instability: Crossing pathways at the origin of structural and numerical chromosome changes.

    PubMed

    Russo, Antonella; Pacchierotti, Francesca; Cimini, Daniela; Ganem, Neil J; Genescà, Anna; Natarajan, Adayapalam T; Pavanello, Sofia; Valle, Giorgio; Degrassi, Francesca

    2015-08-01

    Genomic instability leads to a wide spectrum of genetic changes, including single nucleotide mutations, structural chromosome alterations, and numerical chromosome changes. The accepted view on how these events are generated predicts that separate cellular mechanisms and genetic events explain the occurrence of these types of genetic variation. Recently, new findings have shed light on the complexity of the mechanisms leading to structural and numerical chromosome aberrations, their intertwining pathways, and their dynamic evolution, in somatic as well as in germ cells. In this review, we present a critical analysis of these recent discoveries in this area, with the aim to contribute to a deeper knowledge of the molecular networks leading to adverse outcomes in humans following exposure to environmental factors. The review illustrates how several technological advances, including DNA sequencing methods, bioinformatics, and live-cell imaging approaches, have contributed to produce a renewed concept of the mechanisms causing genomic instability. Special attention is also given to the specific pathways causing genomic instability in mammalian germ cells. Remarkably, the same scenario emerged from some pioneering studies published in the 1980s to 1990s, when the evolution of polyploidy, the chromosomal effects of spindle poisons, the fate of micronuclei, were intuitively proposed to share mechanisms and pathways. Thus, an old working hypothesis has eventually found proper validation.

  12. Numerical Study for the Three-Dimensional Rayleigh Taylor Instability through the TVD/AC Scheme and Parallel Computation

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Jin, B. X.; Glimm, J.

    1996-07-01

    The Rayleigh-Taylor instability is a gravity driven instability of a contact surface between fluids of different densities. The growth of this instability is sensitive to numerical or physical mass diffusion. For this reason, high resolution of the contact discontinuity is particularly important. In this paper, we address this problem using a second-order TVD finite difference scheme with artificial compression. We describe our numerical simulations of the 3D Rayleigh-Taylor instability using this scheme. The numerical solutions are compared to (a) the exact 2D solution in the linear regime and (b) numerical solutions using the TVD scheme and the front tracking method. The computational program is used to study the evolution of a single bubble and 3D bubble merger, i.e., the nonlinear evolution of a single mode and the process of nonlinear mode-mode interaction.

  13. Numerical simulation of lowest-order short-crested wave instabilities

    NASA Astrophysics Data System (ADS)

    Fuhrman, David R.; Madsen, Per A.; Bingham, Harry B.

    2006-09-01

    A numerical study of doubly periodic deep-water short-crested wave instabilities, arising from various quartet resonant interactions, is conducted using a high-order Boussinesq-type model. The model is first verified through a series of simulations involving classical class I plane wave instabilities. These correctly lead to well-known (nearly symmetric) recurrence cycles below a previously established breaking threshold steepness, and to an asymmetric evolution (characterized by a permanent transfer of energy to the lower side-band) above this threshold, with dissipation from a smoothing filter promoting this behaviour in these cases. A series of class Ia short-crested wave instabilities, near the plane wave limit, are then considered, covering a wide range of incident wave steepness. A close match with theoretical growth rates is demonstrated near the inception. It is shown that the unstable evolution of these initially three-dimensional waves leads to an asymmetric evolution, even for weakly nonlinear cases presumably well below breaking. This is characterized by an energy transfer to the lower side-band, which is also accompanied by a similar transfer to more distant upper side-bands. At larger steepness, the evolution leads to a permanent downshift of both the mean and peak frequencies, driven in part by dissipation, effectively breaking the quasi-recurrence cycle. A single case involving a class Ib short-crested wave instability at relatively large steepness is also considered, which demonstrates a reasonably similar evolution. These simulations consider the simplest physical situations involving three-dimensional instabilities of genuinely three-dimensional progressive waves, revealing qualitative differences from classical two-dimensional descriptions. This study is therefore of fundamental importance in understanding the development of three-dimensional wave spectra.

  14. Quantum anomalous Hall effect with higher plateaus.

    PubMed

    Wang, Jing; Lian, Biao; Zhang, Haijun; Xu, Yong; Zhang, Shou-Cheng

    2013-09-27

    The quantum anomalous Hall (QAH) effect in magnetic topological insulators is driven by the combination of spontaneous magnetic moments and spin-orbit coupling. Its recent experimental discovery raises the question if higher plateaus can also be realized. Here, we present a general theory for a QAH effect with higher Chern numbers and show by first-principles calculations that a thin film magnetic topological insulator of Cr-doped Bi2(Se,Te)3 is a candidate for the C=2 QAH insulator. Remarkably, whereas a higher magnetic field leads to lower Hall conductance plateaus in the integer quantum Hall effect, a higher magnetic moment leads to higher Hall conductance plateaus in the QAH effect.

  15. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  16. Numerical simulations of the two-dimensional multimode Richtmyer-Meshkov instability

    SciTech Connect

    Thornber, B.; Zhou, Y.

    2015-03-15

    The two-dimensional Richtmyer-Meshkov instability occurs as shock waves pass through a perturbed material interface, triggering transition to an inhomogeneous turbulence variable density flow. This paper presents a series of large-eddy-simulations of the two dimensional turbulent RM instability and compares the results to the fully three dimensional simulations. There are two aims for this paper, the first is to explore what numerical resolution is required for a statistically converged solution for a two dimensional inhomogeneous flow field. The second aim is to elucidate the key differences in flow physics between the two dimensional and three dimensional Richtmyer-Meshkov instabilities, particularly their asymptotic self-similar regime. Convergence is achieved using 64 independent realisations and grid resolutions up to 4096{sup 2} in the plane. It is shown that for narrowband cases the growth rate θ = 0.48 which is substantially higher than the three-dimensional equivalent. Mix measures are consistently lower compared to three-dimensional, and the kinetic energy distribution is homogeneous at late time. The broadband case has a similar initial growth rate as the three-dimensional case, with a marginally lower θ = 0.63. Mix is similar in magnitude, but is reducing at late time. The spectra in both cases exhibit the dual-cascade expected from two-dimensional turbulence.

  17. Numerical analysis of instability processes in underground cavities and of the related effects at the surface

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Parise, Mario

    2010-05-01

    Natural and anthropogenic caves may represent a potential hazard for the built-up environment, due to the occurrence of underground instability processes, that may propagate upward and eventually reach the ground surface, thus inducing the occurrence of sinkholes. Especially when the caves are at shallow depth, the effects at the ground surface may result extremely severe. In the Apulia region of southern Italy, there are many sites where underground quarrying developed in the past, due to presence at a certain depth of rock of good quality for building purposes. Development of underground quarries, rather than open pit mines, was also favoured by the preservation of the terrains on the ground surface for agricultural practices. The Pliocene-Pleistocene calcarenite (a typical soft rock) was therefore quarried underground, by digging extensive networks of galleries in those levels within the local geological succession most suitable for the quarrying activity. With time, these underground activities have progressively been abandoned, and later on many quarries were used for other purposes, including illegal discharge of solid and liquid wastes. Many Apulian towns are nowadays located just above these caves, due to urban expansion in the last decades and loss of memory of the presence of the underground quarries. Thus, a serious risk exists for civil society, which should not be left uninvestigated. The present contribution deals with the analysis of the main factors at the origin of the instability processes described, also including those causing weathering of the soft rock wihich induces gradual decay of the physical and mechanical properties of the rock mass. Aimed at exploring the evolution with time of the stability conditions within the cavities, numerical analysis have been implemented by using finite element methods with respect to ideal situations which are representative of typical case studies in Apulia. Both the effects of local instability processes

  18. Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Attal, N.; Ramaprabhu, P.

    2015-07-01

    We report on high-resolution, numerical simulations of a single-mode, chemically reacting, Richtmyer-Meshkov (RM) instability, at different interface thicknesses. The gases on either side of the diffuse interface were Hydrogen (H and Oxygen (O, with a pre-shock Atwood number of 0.5. An incident shock with a Mach number of 1.2 is allowed to traverse from the light (H to the heavy (O medium in the 2D numerical shock tube. The simulations were performed using the astrophysical FLASH code developed at the University of Chicago, with extensive modifications implemented by the authors to describe detailed H-O chemistry, temperature-dependent specific heats, and multi-species equation of state. The interface thickness was systematically varied in the simulations to study the effect of the total mass of fuel burnt and heat added on the hydrodynamic instability growth rates. In the absence of an incident shock, burning results in the formation of so-called combustion waves, which spontaneously trigger RM and Rayleigh-Taylor like instability growth of the interface. We are able to obtain the resulting growth rates of an imposed sinusoidal perturbation, and compare them with the predictions of an impulsive model, with simple modifications to account for the finite thickness of the interface, density changes due to heat addition, and compression of the material line due to the combustion wave. When additionally an incident shock is present, we observe complex interactions between the shock and the aforementioned combustion waves, resulting in significant non-planar distortions of each. When the unstable interface is subjected to a reshock, significant mixing enhancement is observed, accompanied by a dramatic increase in combustion product formation, and combustion efficiency.

  19. Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain

    NASA Astrophysics Data System (ADS)

    Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu

    2013-11-01

    Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.

  20. Compressible magnetic Rayleigh-Taylor instability in stratified plasmas: Comparison of analytical and numerical results in the linear regime

    SciTech Connect

    Liberatore, S.; Jaouen, S.; Tabakhoff, E.; Canaud, B.

    2009-04-15

    Magnetic Rayleigh-Taylor instability is addressed in compressible hydrostatic media. A full model is presented and compared to numerical results from a linear perturbation code. A perfect agreement between both approaches is obtained in a wide range of parameters. Compressibility effects are examined and substantial deviations from classical Chandrasekhar growth rates are obtained and confirmed by the model and the numerical calculations.

  1. Numerical prediction of low frequency combustion instability in a model ramjet combustor

    SciTech Connect

    Shang, H.M.; Chen, Y.S.; Shih, M.S.; Farmer, R.C.

    1996-12-31

    A numerical analysis has been conducted for low-frequency combustion instability in a model ramjet combustor. The facility is two-dimensional, and is comprised of a long inlet duct, a dump combustor chamber, and an exhaust nozzle. The experiments observed that the combustor pressure oscillation under the particular operating condition did not have much cycle-to-cycle variation. The main resonant frequency occurs at about 65 Hz for this case. In the numerical analysis, a time accurate Computational Fluid Dynamics (CFD) code with a pressure-correction algorithm is used, and the combustion process was modeled with a single step chemistry model and a modified eddy breakup model. A high-order upwind scheme with flux limiter is used for convection terms. The convergence of the linear algebraic equations is accelerated through a preconditioned conjugate gradient matrix solver. The numerical predictions show that the flame oscillates in the combustion chamber at the calculation condition and are justified by the experimental schlieren photographs. The numerical analyses correctly predict the chamber pressure oscillation frequency is over-predicted compared with the experimental data. The discrepancy can be explained by the simplified turbulence and combustion model used in this study, and the uncertainty of the inlet boundary conditions.

  2. Numerical modeling of Kelvin-Helmholtz instability by using potential equation

    NASA Astrophysics Data System (ADS)

    Ahmadi, Somayeh

    2012-11-01

    This paper presents a potential flow numerical solution for the Kelvin-Helmholtz Instability (KHI) problem of an incompressible two-phase immiscible fluid in a stratified shear flow. As a problem: the two-fluid model becomes illposed when the slip velocity exceeds a critical value, and computations can be quite unstable before the flow reaches the ill-posed condition. In this work, computational stability of various convection schemes together with the potential equation method for the time derivatives in conjunction with the two-fluid model is analyzed. The normal stress balance (with the normal viscous stress) at the interface for the two-fluid model is carefully implemented to minimize its effect on numerical stability. Von Neumann stability analysis shows that: stability condition for two-fluid with equal kinematic viscosity ratio and inviscid flow, supply numerical stability. Excellent agreement has obtained according to analytical result that existing of imaginary part in solution which specialized this method. The numerical algorithm presented in this work can easily handle two-phase fluid flow with various density and viscosity ratios in rectangular channel. Simulation of this model has implemented by writing a code in FORTRAN programming.

  3. Direct numerical simulation of instabilities in parallel flow with spherical roughness elements

    NASA Technical Reports Server (NTRS)

    Deanna, R. G.

    1992-01-01

    Results from a direct numerical simulation of laminar flow over a flat surface with spherical roughness elements using a spectral-element method are given. The numerical simulation approximates roughness as a cellular pattern of identical spheres protruding from a smooth wall. Periodic boundary conditions on the domain's horizontal faces simulate an infinite array of roughness elements extending in the streamwise and spanwise directions, which implies the parallel-flow assumption, and results in a closed domain. A body force, designed to yield the horizontal Blasius velocity in the absence of roughness, sustains the flow. Instabilities above a critical Reynolds number reveal negligible oscillations in the recirculation regions behind each sphere and in the free stream, high-amplitude oscillations in the layer directly above the spheres, and a mean profile with an inflection point near the sphere's crest. The inflection point yields an unstable layer above the roughness (where U''(y) is less than 0) and a stable region within the roughness (where U''(y) is greater than 0). Evidently, the instability begins when the low-momentum or wake region behind an element, being the region most affected by disturbances (purely numerical in this case), goes unstable and moves. In compressible flow with periodic boundaries, this motion sends disturbances to all regions of the domain. In the unstable layer just above the inflection point, the disturbances grow while being carried downstream with a propagation speed equal to the local mean velocity; they do not grow amid the low energy region near the roughness patch. The most amplified disturbance eventually arrives at the next roughness element downstream, perturbing its wake and inducing a global response at a frequency governed by the streamwise spacing between spheres and the mean velocity of the most amplified layer.

  4. Direct numerical simulation of electrokinetic instability and transition to chaotic motion

    SciTech Connect

    Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.

    2013-12-15

    A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the

  5. Numerical simulations of interfacial instabilities on a rotating miscible magnetic droplet with effects of Korteweg stresses

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Yao; Wu, H.-J.

    2005-04-01

    Interfacial instability of a miscible magnetic droplet in a rotating Hele-Shaw cell is simulated numerically. The influence of magnetic strengths, the Korteweg stresses, and their coupled effects are first discussed qualitatively by fingering patterns and streamlines. Quantitative measurements are evaluated by interfacial length L, number of fingers n, and diameter of gyration Dg. The results confirm with coupling rotational effects more vigorous fingering instability occurs on stronger magnetic strengths and less effective surface tensions (Korteweg stresses). Without the effects of Korteweg stresses, significant nonlinear fingering merges occur which lead to reduction in fingering number, early decay of interfacial length and reversed plane trajectories. Before the occurrence of fingering merges, monotonic growths of interfacial lengths, constant fingering numbers, and nearly linear pattern trajectories are observed. If the significant Korteweg stresses are taken into account, the nonlinear merge is prevented and the features of fingering patterns resemble the immiscible situations remarkably. The fingering behavior can be approximated by a master line of dL /dDg≈0.386n+0.13 within the linear fingering region.

  6. Analytical and numerical study of the transverse Kelvin-Helmholtz instability in tokamak edge plasmas

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; Umansky, Maxim V.; Baver, Derek A.

    2016-04-11

    Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less

  7. Analytical and numerical study of the transverse Kelvin-Helmholtz instability in tokamak edge plasmas

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.; Umansky, M. V.; Baver, D. A.

    2015-11-01

    Sheared flows perpendicular to the magnetic field can be driven by Reynolds stresses or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin-Helmholtz (KH) instability. Here, we first review the linear theory of KH instabilities with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism, density gradients and parallel currents in a slab geometry, enabling a unified summary of some well-known results. Second, the important role of realistic toroidal geometry is explored numerically using the 2DX eigenvalue code for KH modes both inside and outside the separatrix. Preliminary results indicate that KH modes are often stable in edge tokamak plasmas, but can also be unstable in some interesting cases. Implications for reduced edge turbulence modeling codes will be discussed. Work supported by US DOE grant DE-FG02-97ER54392.

  8. Analytical and numerical study of the transverse Kelvin-Helmholtz instability in tokamak edge plasmas

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.; Umansky, M. V.; Baver, D. A.

    2016-04-01

    > Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin-Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summary that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at, and just outside of, the separatrix as a result of the distribution of magnetic shear. Finally implications for reduced edge turbulence modelling codes are discussed.

  9. A new numerical approach to dense polymer brushes and surface instabilities

    NASA Astrophysics Data System (ADS)

    Romeis, D.; Merlitz, H.; Sommer, J.-U.

    2012-01-01

    We present a numerical self-consistent field (SCF) method which describes freely jointed chains of spherical monomers applied to densely grafted polymer brushes. We discuss both the Flory-Huggins model and the Carnahan-Starling equation of state and show the latter being preferable within our model at polymer volume fractions above 10%. We compare the results of our numerical method with data from molecular dynamics (MD) simulations [G.-L. He, H. Merlitz, J.-U. Sommer, and C.-X. Wu, Macromolecules 40, 6721 (2007)] and analytical SCF calculations [P. M. Biesheuvel, W. M. de Vos, and V. M. Amoskov, Macromolecules 41, 6254 (2008)] and obtain close agreement between the density profiles up to high grafting densities. In contrast to prior numerical and analytical studies of densely grafted polymer brushes our method provides detailed information about chain configurations including fluctuation, depletion, and packing effects. Using our model we could study the recently discovered instability of densely grafted polymer brushes with respect to slight variations of individual chain lengths, driven by fluctuation effects [H. Merlitz, G.-L. He, C.-X. Wu, and J.-U. Sommer, Macromolecules 41, 5070 (2008)]. The obtained results are in very close agreement with corresponding MD simulations.

  10. Numerical Experiments with a Turbulent Single-Mode Rayleigh-Taylor Instability

    SciTech Connect

    Cloutman, L.D.

    2000-04-01

    Direct numerical simulation is a powerful tool for studying turbulent flows. Unfortunately, it is also computationally expensive and often beyond the reach of the largest, fastest computers. Consequently, a variety of turbulence models have been devised to allow tractable and affordable simulations of averaged flow fields. Unfortunately, these present a variety of practical difficulties, including the incorporation of varying degrees of empiricism and phenomenology, which leads to a lack of universality. This unsatisfactory state of affairs has led to the speculation that one can avoid the expense and bother of using a turbulence model by relying on the grid and numerical diffusion of the computational fluid dynamics algorithm to introduce a spectral cutoff on the flow field and to provide dissipation at the grid scale, thereby mimicking two main effects of a large eddy simulation model. This paper shows numerical examples of a single-mode Rayleigh-Taylor instability in which this procedure produces questionable results. We then show a dramatic improvement when two simple subgrid-scale models are employed. This study also illustrates the extreme sensitivity to initial conditions that is a common feature of turbulent flows.

  11. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    SciTech Connect

    Sokovikov, Mikhail E-mail: naimark@icmm.ru; Chudinov, Vasiliy E-mail: naimark@icmm.ru; Bilalov, Dmitry E-mail: naimark@icmm.ru; Oborin, Vladimir E-mail: naimark@icmm.ru; Uvarov, Sergey E-mail: naimark@icmm.ru; Plekhov, Oleg E-mail: naimark@icmm.ru; Terekhina, Alena E-mail: naimark@icmm.ru; Naimark, Oleg E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  12. Zig-Zag Thermal-Chemical 3-D Instabilities in the Mantle Wedge: Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T. V.; Arcay, D.; Yuen, D. A.

    2008-12-01

    To understand the plume initiation and propagation it is important to understand whether small-scale convection is occurring under the back-arc in the Low Viscosity Wedge(LVW) and its implication on the island-arc volcanism. Honda et al. [Honda and Saito, 2003; Honda, et al., 2007]) already deployed small- scale convection in the Low Viscosity Wedge (LVW) above a subducting slab with kinematically imposed velocity boundary condition. They have suggested that a roll (finger)-like pattern of hot and cold anomalies emerges in the mantle wedge above the subducting slab. Here, we perform three-dimensional coupled petrological-thermomechanical numerical simulations of intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface by using multigrid approach combined with characteristics-based marker-in-cell method with conservative finite difference schemes[Gerya and Yuen, 2003a], to investigate the 3D instabilities above the slab and lateral variation along the arc. Our results show that water released from subducting slab through dehydration reactions may lower the viscosity of the mantle. It allows the existence of wave-like small-scale convection in the LVW, which is shown as roll-like structure in 2D petrological-thermomechanical numerical experiments [Gorczyk et al., 2006] using in-situ rock properties computed on the basis of Gibbs free energy minimization. However, in our 3D cases, the rolls aligning with the arc mainly occur earlier , while zig-zag small-scale thermal-chemical instabilities may episodically form above the slab at later stages, which is different from the aligning finger-like pattern in purely thermal models (Honda et al,2003;2007). Also in contrast to thermal convection chemically buoyant hydrated plumes rising from the slab in our models are actually colder then the mantle wedge [Gerya and Yuen 2003b] which also strongly modify both the convection pattern and the seismic structure in

  13. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  14. High Order Numerical Methods for the Investigation of the Two Dimensional Richtmyer-Meshkov Instability

    SciTech Connect

    Don, W-S; Gotllieb, D; Shu, C-W; Jameson, L

    2001-11-26

    For flows that contain significant structure, high order schemes offer large advantages over low order schemes. Fundamentally, the reason comes from the truncation error of the differencing operators. If one examines carefully the expression for the truncation error, one will see that for a fixed computational cost that the error can be made much smaller by increasing the numerical order than by increasing the number of grid points. One can readily derive the following expression which holds for systems dominated by hyperbolic effects and advanced explicitly in time: flops = const * p{sup 2} * k{sup (d+1)(p+1)/p}/E{sup (d+1)/p} where flops denotes floating point operations, p denotes numerical order, d denotes spatial dimension, where E denotes the truncation error of the difference operator, and where k denotes the Fourier wavenumber. For flows that contain structure, such as turbulent flows or any calculation where, say, vortices are present, there will be significant energy in the high values of k. Thus, one can see that the rate of growth of the flops is very different for different values of p. Further, the constant in front of the expression is also very different. With a low order scheme, one quickly reaches the limit of the computer. With the high order scheme, one can obtain far more modes before the limit of the computer is reached. Here we examine the application of spectral methods and the Weighted Essentially Non-Oscillatory (WENO) scheme to the Richtmyer-Meshkov Instability. We show the intricate structure that these high order schemes can calculate and we show that the two methods, though very different, converge to the same numerical solution indicating that the numerical solution is very likely physically correct.

  15. Numerical simulation on macro-instability of coupling flow field structure in jet-stirred tank

    NASA Astrophysics Data System (ADS)

    Luan, D. Y.; Lu, J. P.; Bu, Q. X.; Zhang, S. F.; Zheng, S. X.

    2016-05-01

    The velocity field macro-instability (MI) can help to improve the mixing efficiency. In this work, the MI features of flow field induced by jet-stirred coupling action is studied by using computational fluid dynamics (CFD) simulations. The numerical simulation method of jet-stirred model was established based on standard turbulent equations, and the impeller rotation was modeled by means of the Sliding Mesh (SM) technology. The numerical results of test fluid (water) power consumption were compared with the data obtained by power test experiments. The effects of jet flow velocity and impeller speed on MI frequency were analyzed thoroughly. The results show that the calculated values of power consumption agree well with the experiment measured data, which validates the turbulent model, and the flow structure and MI frequency distribution are affected by both impeller speed and jet flow rate. The amplitude of MI frequency increases obviously with the increasing rotation speed of impeller and the eccentric jet rate, and it can be enhanced observably by eccentric jet rate, in condition of comparatively high impeller speed. At this time, the MI phenomenon disappears with the overall chaotic mixing.

  16. Numerical Simulations of Kelvin–Helmholtz Instability: A Two-dimensional Parametric Study

    NASA Astrophysics Data System (ADS)

    Tian, Chunlin; Chen, Yao

    2016-06-01

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirm that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.

  17. Adaptive Wavelet-Based Direct Numerical Simulations of Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott J.

    The compressible Rayleigh-Taylor instability (RTI) occurs when a fluid of low molar mass supports a fluid of higher molar mass against a gravity-like body force or in the presence of an accelerating front. Intrinsic to the problem are highly stratified background states, acoustic waves, and a wide range of physical scales. The objective of this thesis is to develop a specialized computational framework that addresses these challenges and to apply the advanced methodologies for direct numerical simulations of compressible RTI. Simulations are performed using the Parallel Adaptive Wavelet Collocation Method (PAWCM). Due to the physics-based adaptivity and direct error control of the method, PAWCM is ideal for resolving the wide range of scales present in RTI growth. Characteristics-based non-reflecting boundary conditions are developed for highly stratified systems to be used in conjunction with PAWCM. This combination allows for extremely long domains, which is necessary for observing the late time growth of compressible RTI. Initial conditions that minimize acoustic disturbances are also developed. The initialization is consistent with linear stability theory, where the background state consists of two diffusively mixed stratified fluids of differing molar masses. The compressibility effects on the departure from the linear growth, the onset of strong non-linear interactions, and the late-time behavior of the fluid structures are investigated. It is discovered that, for the thermal equilibrium case, the background stratification acts to suppress the instability growth when the molar mass difference is small. A reversal in this monotonic behavior is observed for large molar mass differences, where stratification enhances the bubble growth. Stratification also affects the vortex creation and the associated induced velocities. The enhancement and suppression of the RTI growth has important consequences for a detailed understanding of supernovae flame front

  18. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  19. Laboratory and numerical simulation of internal wave attractors and their instability.

    NASA Astrophysics Data System (ADS)

    Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias

    2015-04-01

    Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F

  20. Numerical simulations of the magnetorotational instability in protoneutron stars - I. Influence of buoyancy

    NASA Astrophysics Data System (ADS)

    Guilet, Jérôme; Müller, Ewald

    2015-06-01

    The magnetorotational instability (MRI) is considered to be a promising mechanism to amplify the magnetic field in fast-rotating protoneutron stars. In contrast to accretion discs, radial buoyancy driven by entropy and lepton fraction gradients is expected to have a dynamical role as important as rotation and shear. We investigate the poorly known impact of buoyancy on the non-linear phase of the MRI, by means of three-dimensional numerical simulations of a local model in the equatorial plane of a protoneutron star. The use of the Boussinesq approximation allows us to utilize a shearing box model with clean shearing periodic boundary conditions, while taking into account the buoyancy driven by radial entropy and composition gradients. We find significantly stronger turbulence and magnetic fields in buoyantly unstable flows. On the other hand, buoyancy has only a limited impact on the strength of turbulence and magnetic field amplification for buoyantly stable flows in the presence of a realistic thermal diffusion. The properties of the turbulence are, however, significantly affected in the latter case. In particular, the toroidal components of the magnetic field and of the velocity become even more dominant with respect to the poloidal ones. Furthermore, we observed in the regime of stable buoyancy the formation of long-lived coherent structures such as channel flows and zonal flows. Overall, our results support the ability of the MRI to amplify the magnetic field significantly even in stably stratified regions of protoneutron stars.

  1. Numerical simulations of Richtmyer{endash}Meshkov instabilities in finite-thickness fluid layers

    SciTech Connect

    Mikaelian, K.O.

    1996-05-01

    Direct numerical simulations of Richtmyer{endash}Meshkov instabilities in shocked fluid layers are reported and compared with analytic theory. To investigate new phenomena such as freeze-out, interface coupling, and feedthrough, several new configurations are simulated on a two-dimensional hydrocode. The basic system is an {ital A}/{ital B}/{ital A} combination, where {ital A} is air and {ital B} is a finite-thickness layer of freon, SF{sub 6}, or helium. The middle layer {ital B} has perturbations either on its upstream or downstream side, or on both sides, in which case the perturbations may be in phase (sinuous) or out of phase (varicose). The evolution of such perturbations under a Mach 1.5 shock is calculated, including the effect of a reshock. Recently reported gas curtain experiments [J. M. Budzinski {ital et} {ital al}., Phys. Fluids {bold 6}, 3510 (1994)] are also simulated and the code results are found to agree very well with the experiments. A new gas curtain configuration is also considered, involving an initially sinuous SF{sub 6} or helium layer and a new pattern, opposite mushrooms, is predicted to emerge. Upon reshock a relatively simple sinuous gas curtain is found to evolve into a highly complex pattern of nested mushrooms. {copyright} {ital 1996 American Institute of Physics.}

  2. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    SciTech Connect

    E.V. Belova; N.N. Gorelenkov; C.Z. Cheng; E.D. Fredrickson

    2003-07-07

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects.

  3. Numerical study of acoustic instability in a partly lined flow duct using the full linearized Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Xin, Bo; Sun, Dakun; Jing, Xiaodong; Sun, Xiaofeng

    2016-07-01

    Lined ducts are extensively applied to suppress noise emission from aero-engines and other turbomachines. The complex noise/flow interaction in a lined duct possibly leads to acoustic instability in certain conditions. To investigate the instability, the full linearized Navier-Stokes equations with eddy viscosity considered are solved in frequency domain using a Galerkin finite element method to compute the sound transmission in shear flow in the lined duct as well as the flow perturbation over the impedance wall. A good agreement between the numerical predictions and the published experimental results is obtained for the sound transmission, showing that a transmission peak occurs around the resonant frequency of the acoustic liner in the presence of shear flow. The eddy viscosity is an important influential factor that plays the roles of both providing destabilizing and making coupling between the acoustic and flow motions over the acoustic liner. Moreover, it is shown from the numerical investigation that the occurrence of the sound amplification and the magnitude of transmission coefficient are closely related to the realistic velocity profile, and we find it essential that the actual variation of the velocity profile in the axial direction over the liner surface be included in the computation. The simulation results of the periodic flow patterns possess the proper features of the convective instability over the liner, as observed in Marx et al.'s experiment. A quantitative comparison between numerical and experimental results of amplitude and phase of the instability is performed. The corresponding eigenvalues achieve great agreement.

  4. Numerical Experiments Using a Convective Flux Limiter on a Turbulent Single-Mode Rayleigh-Taylor Instability

    SciTech Connect

    Cloutman, L.D.

    2000-07-10

    Direct numerical simulation and large eddy simulations are powerful tools for studying turbulent flows. Unfortunately, they are computationally demanding in terms of run times, storage, and accuracy of the numerical method used. In particular, high order methods promise high accuracy on a given grid, but they often fail to deliver the expected accuracy due to dispersive truncation errors that appear as unphysical oscillations in the numerical solutions. This report describes a nonlinear flux limiter that has been applied to the second-order tensor viscosity method and markedly reduces the dispersive truncation errors. A Rayleigh-Taylor instability is simulated to show how well the flux limiter works.

  5. High-fidelity numerical simulations of compressible turbulence and mixing generated by hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya

    High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments. To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores

  6. The Nonlinear Evolution of Idealized, Unforced, Conditional Symmetric Instability: A Numerical Study.

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Warner, Thomas T.

    1995-10-01

    A two-dimensional version of the Penn State-NCAR mesoscale model (MM4) has been used to simulate the life cycle of conditional symmetric instability (CSI) under conditions of no deformational or planetary boundary layer forcing with the model starting from idealized initial conditions. Detailed diagnostics from the growth, decay, and post-CSI stages of the life cycle are presented, and some of these features are compared to expectations from linear theory.The life cycle features include local areas of potential and inertial instability and specific patterns of ageo-strophic zonal flow. Local areas of increased and decreased dry potential vorticity (q), including areas of negative q, develop from the initially everywhere-positive q field, principally because of the horizontally differential diabatic heating. Negative wet-bulb potential vorticity (qw) is principally advected into the upper troposphere by the CSI updraft, though some changes in qw do occur because of the diffusion of temperature. Model-output soundings along surfaces of constant absolute momentum (m) show that lower-tropospheric thermodynamic stabilization and a decrease in slantwise convective available potential energy occur during the simulation. Net changes produced by the CSI circulations include low-level frontogenesis, upper-level frontolysis, and local buoyant and inertial stabilization-destabilization.The modeled updraft slope is between that of the surfaces of constant wet-bulb potential temperature (w) and that of the surfaces of constant m, since the viscosity and finite grid spacing yield an unstable mode with a finite updraft width. Such a mode differs from the inviscid mode, which has an infinitely narrow updraft width and a slope along the w surfaces. The cessation of the CSI is not due to the removal of the area of negative moist potential vorticity. Instead, linear stability analysis suggests that the cessation is due to the stabilization of modes with resolvable updraft widths and

  7. Analysis of Stationary Crossflow Instability on HIFiRE-5 Using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Dinzl, Derek John

    Direct numerical simulation is performed on a 38.1% scale HIFiRE-5 forebody to study stationary crossflow instability. Computations use the US3D Navier-Stokes solver to simulate Mach 6 flow at Reynolds numbers of 8.1 x 10 6 /m and 11.8 x 106 /m, which are conditions used by quiet tunnel experiments at Purdue University. Distributed roughness with point-to-point height variation on the computational grid and maximum heights of 0.5-4.0 mum is used with the intent to emulate smooth-body transition and excite the naturally-occurring most unstable disturbance wavenumber. Cases at the low Reynolds number condition use three grid sizes, and hence three different roughness patterns of varying wavelength, and demonstrate that the final flow solution is extremely dependent on the particular roughness pattern. The same roughness pattern is interpolated onto each grid which yields similar solutions, indicating grid convergence. At the high Reynolds number condition, a steady physical mechanism is introduced which explains sharp increases seen in the wall heat flux for both computations and experiment. Namely, the sharp increase is caused by large streamwise velocity disturbances impinging on the wall. Evolution of disturbance spanwise wavelength is computed, and it is found that this wavelength is more sensitive to Reynolds number than roughness, indicating that the disturbance wavelength is primarily flow--selected for these cases. The calculation of disturbance growth rates shows the region over which crossflow disturbances behave linearly and where nonlinear effects become important. The effect of roughness height and nose sharpness are considered, and both were found to have a large effect on the resulting heating pattern. Crossflow vortex coalescence is observed and a possible cause is discussed.

  8. Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment

    NASA Astrophysics Data System (ADS)

    Chou, Yi-Ju; Shao, Yun-Chuan

    2016-04-01

    In this study, we investigate Rayleigh-Taylor instability in which the density stratification is caused by the suspension of particles in liquid flows using the conventional single-phase model and Euler-Lagrange (EL) two-phase model. The single-phase model is valid only when the particles are small and number densities are large, such that the continuum approximation applies. The present single-phase results show that the constant settling of the particle concentration restricts the lateral development of the vortex ring, which results in a decrease of the rising speed of the Rayleigh-Taylor bubbles. The EL model enables the investigation of particle-flow interaction and the influence of particle entrainment, resulting from local non-uniformity in the particle distribution. We compare bubble dynamics in the single-phase and EL cases, and our results show that the deviation between the two cases becomes more pronounced when the particle size increases. The main mechanism responsible for the deviation is particle entrainment, which can only be resolved in the EL model. We provide a theoretical argument for the small-scale local entrainment resulting from the local velocity shear and non-uniformity of the particle concentration. The theoretical argument is supported by numerical evidence. Energy budget analysis is also performed and shows that potential energy is released due to the interphase drag and buoyant effect. The buoyant effect, which results in the transformation of potential energy into kinetic energy and shear dissipation, plays a key role in settling enhancement. We also find that particle entrainment increases the shear dissipation, which in turn enhances the release of potential energy.

  9. A numerical simulation of barotropic instability. III - Wave-wave interaction in the presence of dissipation

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Nielsen, J. E.

    1986-01-01

    A fully nonlinear model of barotropic instability including dissipation is used to investigate the evolution of the integrated enstrophy and vorticity. The dissipation independent limits on the integrated enstrophy and the long period oscillation in the integrated enstrophy found by Schoeberl and Lindzen are verified. The enstrophy oscillations are similar to those previously noted for two-dimensional Kelvin-Helmholtz instabilities. They are produced by advection of the vorticity back and forth across the region of instability by the largest scale wave. A simple expression that accurately estimates the period of these oscillations is derived using the saturation theory.

  10. Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame

    SciTech Connect

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2011-07-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference has been shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups required mitigation of a high-frequency instability that otherwise limits effectiveness. In this paper, methods are presented which mitigated the observed instability, including an electromagnetic solver with tunable coefficients, its extension to accommodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is observed that choosing the frame of the wake as the frame of reference allows for higher levels of filtering or damping than is possible in other frames for the same accuracy. Detailed testing also revealed the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion. A combination of the techniques presented in this paper prove to be very efficient at controlling the instability, allowing for efficient direct modeling of 10 GeV class laser plasma accelerator stages. The methods developed in this paper may have broader application, to other Lorentz-boosted simulations and Particle-In-Cell simulations in general.

  11. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Lu, C.; Lichtner, P. C.

    2007-07-01

    CO2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena.

  12. Numerical studies of the Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.

    2004-11-01

    In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  13. Release of potential instability by mesoscale triggering - An objective model simulation. [in precipitation numerical weather forecasting

    NASA Technical Reports Server (NTRS)

    Matthews, D. A.

    1978-01-01

    The effects of mesoscale triggering on organized nonsevere convective cloud systems in the High Plains are considered. Two experiments were conducted to determine if a one-dimensional quasi-time dependent model could (1) detect soundings which were sensitive to mesoscale triggering, and (2) discriminate between cases which had mesoscale organized convection and those with no organized convection. The MESOCU model was used to analyze the available potential instability and thermodynamic potential for cloud growth. It is noted that lifting is a key factor in the release of available potential instability on the High Plains.

  14. Axisymmetric numerical and analytical studies of the magnetorotational instability in a magnetized Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2007-08-01

    The magnetorotational instability (MRI) is probably the main cause of turbulence and accretion in sufficiently ionized astrophysical disks. However, despite much theoretical and computational work, the nonlinear saturation of MRI is imperfectly understood. In Chap. 2 and Chap. 3 of this thesis we present non-ideal magnetohydrodynamic simulations of the Princeton MRI experiment. In vertically infinite or periodic cylinders, MRI saturates in a resistive current-sheet with a significant reduction of the mean shear, and with poloidal circulation scaling as the square root of resistivity. Angular momentum transport scales as the reciprocal square root of viscosity but only weakly depends on resistivity. For finite cylinders with insulating end caps, a method for implementing the fully insulating boundary condition is introduced. MRI grows with a clear linear phase from small amplitudes at rates in good agreement with linear analysis. In the final state one inflowing "jet" opposite to the usual Ekman "jet" is found near the inner cylinder. The MRI enhances the angular momentum transport at saturation. Under proper conditions, our experimental facility is a good platform to show that MRI could be suppressed by a strong magnetic field. Recently, Hollerbach and Rüdiger have reported that MRI modes may grow at much reduced magnetic Reynolds number ( Re m ) and Lundquist number S in the presence of a helical background field, a current-free combination of axial and toroidal field. We have investigated these helical MRI modes in Chap. 4 and Chap. 5. In vertically infinite or periodic cylinders, resistive HMRI is a weakly destabilized hydrodynamic inertial oscillation propagating axially along the background Poynting flux. Growth rates are small, however, and require large axial currents. Furthermore, finite cylinders with insulating endcaps were shown to reduce the growth rate and to stabilize highly resistive, inviscid flows entirely, and the new mode is stable in Keplerian

  15. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines

    NASA Astrophysics Data System (ADS)

    Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.

    2014-03-01

    The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV

  16. From Plateaus to Progress: A Model for Career Development.

    ERIC Educational Resources Information Center

    Geddie, Catherine; Strickland, Ben

    1984-01-01

    Reviews adult life-cycle research, particularly the stages outlined in Levinson's "Seasons of a Man's Life," as a framework for anticipating transitional life plateaus and identifying obstacles to career development. (SK)

  17. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    SciTech Connect

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-12

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

  18. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    SciTech Connect

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.

  19. Numerical aspects in modeling high Deborah number flow and elastic instability

    NASA Astrophysics Data System (ADS)

    Kwon, Youngdon

    2014-05-01

    Investigating highly nonlinear viscoelastic flow in 2D domain, we explore problem as well as property possibly inherent in the streamline upwinding technique (SUPG) and then present various results of elastic instability. The mathematically stable Leonov model written in tensor-logarithmic formulation is employed in the framework of finite element method for spatial discretization of several representative problem domains. For enhancement of computation speed, decoupled integration scheme is applied for shear thinning and Boger-type fluids. From the analysis of 4:1 contraction flow at low and moderate values of the Deborah number (De) the solution with SUPG method does not show noticeable difference from the one by the computation without upwinding. On the other hand, in the flow regime of high De, especially in the state of elastic instability the SUPG significantly distorts the flow field and the result differs considerably from the solution acquired straightforwardly. When the strength of elastic flow and thus the nonlinearity further increase, the computational scheme with upwinding fails to converge and evolutionary solution does not become available any more. All this result suggests that extreme care has to be taken on occasions where upwinding is applied, and one has to first of all prove validity of this algorithm in the case of high nonlinearity. On the contrary, the straightforward computation with no upwinding can efficiently model representative phenomena of elastic instability in such benchmark problems as 4:1 contraction flow, flow over a circular cylinder and flow over asymmetric array of cylinders. Asymmetry of the flow field occurring in the symmetric domain, enhanced spatial and temporal fluctuation of dynamic variables and flow effects caused by extension hardening are properly described in this study.

  20. Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1999-01-01

    In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.

  1. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    SciTech Connect

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara E-mail: chris@astro.umd.edu

    2013-08-20

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.

  2. Numerical, Dimensional, and Computational considerations in Large Eddy Simulations of the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Olson, Britton

    2015-11-01

    The shock induced mixing of two gases separated by a perturbed interface is investigated through Large Eddy Simulation using two different high-order numerical methods. Results from a recently published collaborative study are presented which show remarkable similarities between quantities and metrics representing mixing and turbulence. Small differences between the results, however, do elucidate the differences in the two numerical methods and their strengths and weaknesses. Results from two-dimensional calculations of the same problem are also shown to highlight differences from the three-dimensional case. Finally, the feasibility in a hybrid compressible/incompressible calculation is discussed, which shows considerable computational savings as compared to the fully compressible case. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344.

  3. Physical aquatic habitat assessment data, Ozark plateaus, Missouri and Arkansas

    USGS Publications Warehouse

    Jacobson, Robert B.; Johnson, Harold E.; Reuter, Joanna M.; Wright, Maria Panfil

    2004-01-01

    This report presents data from two related studies on physical habitat in small streams in the Ozark Plateaus Physiographic Province of Missouri and Arkansas. Seventy stream reaches and their contributing drainage basins were assessed using a physical habitat protocol designed to optimize understanding of how stream reach characteristics relate to drainage-basin characteristics. Drainage-basin characteristics were evaluated using geographic information system (GIS) techniques and datasets designed to evaluate the geologic, physiographic, and land-use characteristics of encompassing drainage basins. Reach characteristics were evaluated using a field-based geomorphology and habitat protocol. The data are intended to complement ecological studies on Ozark Plateaus streams.

  4. Numerical experiments in galactic disks: Gravitational instability, stochastic accretion, and galactic winds

    NASA Astrophysics Data System (ADS)

    Forbes, John C.

    Using 0D, 1D, and 3D models of galaxies, I explore different problems in galaxy evolution most suited to each technique. In the simplest case, a galaxy is described by a few numbers integrated via coupled ordinary differential equations. By allowing the galaxies to respond to a stochastic accretion rate, I show a natural way of generating the finite scatter observed in several galaxy scaling relations: the correlation between a galaxy's stellar mass and its star formation rate or metallicity. By comparing this simple model to observations, we constrain the process by which gas accretes onto galaxies, which must occur, but is essentially impossible to observe directly. Adding an additional dimension to the models, we explore the structure of galactic disks as a function of radius. We find that turbulence driven by gravitational instability in the disks and the resulting migration of gas can explain a wide variety of phenomena, including the age-velocity dispersion correlation of stars in the solar neighborhood, the central quenching star formation in disk galaxies, rings of star formation, and the observed radial profile of gas column densities. Finally, we run a set of fully three-dimensional galaxy simulations to try to understand what physics is responsible for basic properties of galaxies, including the rate at which they form stars, and the rate at which they eject mass in large-scale winds. We find that supernovae are capable of driving moderate metal-enhanced winds, but surprisingly they have very little effect on the star formation rates of dwarf galaxies. Instead, ordinary photoelectric heating dominates the star formation law in low-mass galaxies.

  5. Numerical and physical instabilities in massively parallel LES of reacting flows

    NASA Astrophysics Data System (ADS)

    Poinsot, Thierry

    LES of reacting flows is rapidly becoming mature and providing levels of precision which can not be reached with any RANS (Reynolds Averaged) technique. In addition to the multiple subgrid scale models required for such LES and to the questions raised by the required numerical accurcay of LES solvers, various issues related the reliability, mesh independence and repetitivity of LES must still be addressed, especially when LES is used on massively parallel machines. This talk discusses some of these issues: (1) the existence of non physical waves (known as `wiggles' by most LES practitioners) in LES, (2) the effects of mesh size on LES of reacting flows, (3) the growth of rounding errors in LES on massively parallel machines and more generally (4) the ability to qualify a LES code as `bug free' and `accurate'. Examples range from academic cases (minimum non-reacting turbulent channel) to applied configurations (a sector of an helicopter combustion chamber).

  6. Numerical study of instability of nanofluids: the coagulation effect and sedimentation effect

    PubMed Central

    2011-01-01

    This study is a numerical study on the coagulation as well as the sedimentation effect of nanofluids using the Brownian dynamics method. Three cases are simulated, focusing on the effects of the sizes, volume fraction, and ζ potentials of nano-particles on the formation of coagulation and sedimentation of nanofluids. The rms fluctuation of the particle number concentration, as well as the flatness factor of it, is employed to study the formation and variation of the coagulation process. The results indicate a superposition of coagulation and sedimentation effect of small nano-particles. Moreover, it is stable of nanofluids with the volume fraction of particles below the limit of "resolution" of the fluids. In addition, the effect of ζ potentials is against the formation of coagulation and positive to the stability of nanofluids. PMID:21711686

  7. Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations

    NASA Astrophysics Data System (ADS)

    Scerrato, Daria; Giorgio, Ivan; Rizzi, Nicola Luigi

    2016-06-01

    In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in Zeitschrift für angewandte Mathematik und Physik 66(5):2855-2870, 2015; Alibert et al. in Math Mech Solids 8(1):51-73, 2003; dell'Isola et al. in Int J Non-Linear Mech 80:200-208, 2016; Int J Solids Struct 81:1-12, 2016). The model that we employ here, developed by Steigmann and dell'Isola (Acta Mech Sin 31(3):373-382, 2015) and first investigated in Giorgio et al. (Comptes rendus Mecanique 2016, doi: 10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.

  8. Light-Toned Layers on Plateaus Above Valles Marineris (Mars)

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Bourgeois, O.; Le Mouélic, S.; Mège, D.; Combe, J.-Ph.; Sotin, C.; Massé, M.

    2008-03-01

    From HiRISE, CTX, HRSC and MOLA data, we perform a geological study of the sites where extensive covers of layered deposits crop out on plateaus above Valles Marineris in order to constrain their history and their relationship with ILDs.

  9. Beading instability in soft cylindrical gels with capillary energy: Weakly non-linear analysis and numerical simulations

    NASA Astrophysics Data System (ADS)

    Taffetani, M.; Ciarletta, P.

    2015-08-01

    Soft cylindrical gels can develop a long-wavelength peristaltic pattern driven by a competition between surface tension and bulk elastic energy. In contrast to the Rayleigh-Plateau instability for viscous fluids, the macroscopic shape in soft solids evolves toward a stable beading, which strongly differs from the buckling arising in compressed elastic cylinders. This work proposes a novel theoretical and numerical approach for studying the onset and the non-linear development of the elasto-capillary beading in soft cylinders, made of neo-Hookean hyperelastic material with capillary energy at the free surface, subjected to axial stretch. Both a theoretical study, deriving the linear and the weakly non-linear stability analyses for the problem, and numerical simulations, investigating the fully non-linear evolution of the beaded morphology, are performed. The theoretical results prove that an axial elongation can not only favour the onset of beading, but also determine the nature of the elastic bifurcation. The fully non-linear phase diagrams of the beading are also derived from finite element numerical simulations, showing two peculiar morphological transitions when varying either the axial stretch or the material properties of the gel. Since the bifurcation is found to be subcritical for very slender cylinders, an imperfection sensitivity analysis is finally performed. In this case, it is shown that a surface sinusoidal imperfection can resonate with the corresponding marginally stable solution, thus selecting the emerging beading wavelength. In conclusion, the results of this study provide novel guidelines for controlling the beaded morphology in different experimental conditions, with important applications in micro-fabrication techniques, such as electrospun fibres.

  10. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil

    NASA Astrophysics Data System (ADS)

    Leroux, Jean-Baptiste; Coutier-Delgosha, Olivier; Astolfi, Jacques André

    2005-05-01

    The present work was carried out in the scope of a numerical-experimental collaborative research program, whose main objective is to understand the mechanisms of instabilities in partial cavitating flow. Experiments were conducted in the configuration of a rectangular foil located in a cavitation tunnel. Partial cavitation was investigated by multipoint wall-pressure measurements together with lift and drag measurements and numerical videos. The computations were conducted on two-dimensional hydrofoil section and are based on a single fluid model of cavitation: the liquid/vapor mixture is considered as a homogeneous fluid whose composition is regulated by a barotropic state law. The algorithm of resolution is derived from the SIMPLE approach, modified to take into account the high compressibility of the medium. Several physical features were pointed out by this joint approach. Particularly two distinct cavity self-oscillation dynamics characterized by two different frequencies (dynamics 1 and dynamics 2) were obtained experimentally and numerically at the angles of incidence of 6° and 8°. In both cases, the reentrant jet was found to be mainly responsible for the cavity breakdown. Dynamics 2 corresponds to the "classical" cavity breakdown and resulting cloud cavitation. A more complex flow pattern was evidenced for dynamics 1. In this case the growth/breakdown cycle of the cavity was observed at a lower Strouhal number (˜0.07/0.09) than dynamics 2 (˜0.3). Moreover, the mechanism is composed of two successive steps: (i) an interaction between the reentrant jet and the cavity interface in the closure region leading to the periodic shedding of secondary cavitation clouds before the main cloud detachment occurs, and (ii) a shock wave induced by the collapse of the main cloud, which influences the growth of the residual cavity.

  11. Numerical study of chiral plasma instability within the classical statistical field theory approach

    NASA Astrophysics Data System (ADS)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  12. Continental accretion: From oceanic plateaus to allochthonous terranes

    USGS Publications Warehouse

    Ben-Avraham, Z.; Nur, A.; Jones, D.; Cox, A.

    1981-01-01

    Some of the regions of the anomalously high sea-floor topography in today's oceans may be modern allochthonous terranes moving with their oceanic plates. Fated to collide with and be accreted to adjacent continents, they may create complex volcanism, cut off and trap oceanic crust, and cause orogenic deformation. The accretion of plateaus during subduction of oceanic plates may be responsible for mountain building comparable to that produced by the collision of continents. Copyright ?? 1981 AAAS.

  13. Modelling Rayleigh Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Pan, T. W.; Joseph, D. D.; Glowinski, R.

    2001-05-01

    In this paper we study the sedimentation of several thousand circular particles in two dimensions using the method of distributed Lagrange multipliers for solid liquid flow. The simulation gives rise to fingering which resembles Rayleigh Taylor instabilities. The waves have a well-defined wavelength and growth rate which can be modelled as a conventional Rayleigh Taylor instability of heavy fluid above light. The heavy fluid is modelled as a composite solid liquid fluid with an effective composite density and viscosity. Surface tension cannot enter this problem and the characteristic shortwave instability is regularized by the viscosity of the solid liquid dispersion. The dynamics of the Rayleigh Taylor instability are studied using viscous potential flow, generalizing work of Joseph, Belanger & Beavers (1999) to a rectangular domain bounded by solid walls; an exact solution is obtained.

  14. Partition function zeros and magnetization plateaus of the spin-1 Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Ananikian, N. S.; Kenna, R.

    2016-07-01

    We study the properties of the generalized spin-1 Ising-Heisenberg model on a diamond chain, which can be considered as a theoretical model for the homometallic magnetic complex [Ni3(C4H2O4)2 -(μ3 - OH) 2(H2O)4 ] n ṡ(2H2 O) n. The model possesses a large variety of ground-state phases due to the presence of biquadratic and single-ion anisotropy parameters. Magnetization and quadrupole moment plateaus are observed at one- and two-thirds of the saturation value. The distributions of Yang-Lee and Fisher zeros are studied numerically for a variety of values of the model parameters. The usual value σ = -1/2 alongside an unusual value σ = -2/3 ​is determined for the Yang-Lee edge singularity exponents.

  15. TWO-DIMENSIONAL NUMERICAL STUDY FOR RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV INSTABILITIES IN RELATIVISTIC JETS

    SciTech Connect

    Matsumoto, Jin; Masada, Youhei

    2013-07-20

    We study the stability of a non-rotating single-component jet using two-dimensional special relativistic hydrodynamic simulations. By assuming translational invariance along the jet axis, we exclude the destabilization effect by Kelvin-Helmholtz mode. The nonlinear evolution of the transverse structure of the jet with a normal jet velocity is highlighted. An intriguing finding in our study is that Rayleigh-Taylor and Richtmyer-Meshkov type instabilities can destroy cylindrical jet configuration as a result of spontaneously induced radial oscillating motion. This is powered by in situ energy conversion between the thermal and bulk kinetic energies. The effective inertia ratio of the jet to the surrounding medium {eta} determines a threshold for the onset of instabilities. The condition {eta} < 1 should be satisfied for the transverse structure of the jet being persisted.

  16. Numerical Simulations of Hydrodynamic Instability Growth in Polar-Direct-Drive Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Shvydky, A.; Hohenberger, M.; Radha, P. B.; Rosenberg, M. J.; Craxton, R. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.

    2015-11-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical to the success of polar-direct-drive ignition at the National Ignition Facility (NIF). To develop a platform for laser-imprint studies, hydrodynamic instability growth experiments in laser-driven implosions were performed on the NIF. The experiments used cone-in-shell targets with sinusoidal modulations of various wavelengths and amplitudes machined on the surface. Throughshell x-ray radiography was used to measure optical depth variations, from which the amplitudes of the shell areal-density modulations were extracted. Results of DRACO simulations of the growth of preimposed modulations and imprint-seeded perturbations will be presented and compared with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Geoid height versus topography for oceanic plateaus and swells

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Mackenzie, Kevin R.

    1989-01-01

    Gridded geoid height data (Marsh et al.l, 1986) and gridded bathymetry data (Van Wykhouse, 1973) are used to estimate the average compensation depths of 53 oceanic swells and plateaus. The relationship between geoid height and topography is examined using Airy and thermal compensation models. It is shown that geoid height is linearly related to topography between wavelengths of 400 and 4000 m as predicted by isostatic compensation models. The geoid/topography ratio is dependent on the average depth of compensation. The intermediate geoid/topography ratios of most thermal swells are interpreted as a linear combination of the decaying thermal swell signature and that of the persisting Airy-compensated volcanic edifice.

  18. Dust settling in magnetorotationally driven turbulent discs - I. Numerical methods and evidence for a vigorous streaming instability

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Tilley, David A.; Rettig, Terrence; Brittain, Sean D.

    2009-07-01

    In this paper, we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas at specific radial locations in a vertically stratified protostellar accretion disc. The disc was modelled to have the density and temperature of a minimum mass solar nebula, and shearing box simulations at radii of 0.3 and 10 au are reported here. The disc was driven to a fully developed turbulence via the magnetorotational instability (MRI). The simulations span three gas scaleheights about the disc's midplane. We find that the inclusion of standard dust-to-gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust of all sizes reached a Gaussian profile within two scaleheights of the disc's midplane. The vertical scaleheights of these Gaussian profiles are shown to be proportional to the reciprocal of the square root of the dust radius when large spherical dust grains are considered. This result is consistent with theoretical expectation. The largest two families of dust in one of our simulations show a strong tendency to settle to the midplane of the accretion disc. The large dust tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high-density dust displays a reduced rms velocity dispersion. The velocity directions within the streams are also aligned relative to the mean shear, providing further evidence that we are witnessing a streaming instability. The densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for dust that participates in the streaming instability are reduced by almost two orders of magnitude relative to the

  19. The presence of rapidly degrading permafrost plateaus in southcentral Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Baughman, Carson; Romanovsky, V.adimir E; Parsekian, Andrew D.; Babcock, Esther; Jones, Miriam C.; Grosse, Guido; Berg, Edward E

    2016-01-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0°C. In this study, we document the presence of residual permafrost plateaus on the western Kenai Peninsula lowlands of southcentral Alaska, a region with a MAAT of 1.5 ± 1°C (1981 to 2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08°C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but was as shallow as 0.53 m. Late winter surveys (drilling, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to >6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60%, with lateral feature degradation accounting for 85% of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in

  20. Numerical study of the two-species Vlasov-Ampère system: Energy-conserving schemes and the current-driven ion-acoustic instability

    NASA Astrophysics Data System (ADS)

    Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui

    2015-05-01

    In this paper, we propose energy-conserving Eulerian solvers for the two-species Vlasov-Ampère (VA) system and apply the methods to simulate current-driven ion-acoustic instability. The two-species VA systems are of practical importance in applications, and they conserve many physical quantities including the particle number of each species and the total energy that is comprised of kinetic energy for both species and the electric energy. The main goal of this paper is to generalize our previous work for the single-species VA system [9] and Vlasov-Maxwell (VM) system [8] to the two-species case. The methodologies proposed involve careful design of temporal discretization and the use of the discontinuous Galerkin (DG) spatial discretizations. We show that the energy-conserving time discretizations for single-species equations [9,8] can also work for the two-species case if extended properly. Compared to other high order schemes, we emphasize that our schemes can preserve the total particle number and total energy on the fully discrete level regardless of mesh size, making them very attractive for long time simulations. We benchmark our algorithms on a test example to check the one-species limit, and the current-driven ion-acoustic instability. To simulate the current-driven ion-acoustic instability, a slight modification for the implicit method is necessary to fully decouple the split equations. This is achieved by a Gauss-Seidel type iteration technique. Numerical results verified the conservation and performance of our methods. Finally, we remark that the schemes in this paper can be readily extended to applications when the models take more general form, such as the multi-species VM equations.

  1. Line defects and quantum Hall plateaus in graphene

    NASA Astrophysics Data System (ADS)

    Dal Lago, V.; Foa Torres, L. E. F.

    2015-04-01

    Line defects in graphene can be either tailored-growth or arise naturally and are at the center of many discussions. Here we study the multiterminal conductance of graphene with an extended line defect in the quantum Hall regime analyzing the effects of the geometry of the setup, disorder and strain on the quantum Hall plateaus. We show that the defect turns out to affect the local and non-local conductance in very different ways depending on the geometrical configuration. When the defect is parallel to the sample edges one gets an equivalent circuit formed by parallel resistors. In contrast, when the defect bridges opposite edges, the Hall conductance may remain unaltered depending on the geometry of the voltage/current probes. The role of disorder, strain and the microscopic details of the defect in our results is also discussed. We show that the defect provides a realization of the electrical analog of an optical beam splitter. Its peculiar energy dependent inter-edge transmission allows it to be turned on or off at will and it may be used for routing the chiral edge states.

  2. Report on the geology of the high plateaus of Utah

    USGS Publications Warehouse

    Dutton, C.E.; Powell, John Wesley

    1880-01-01

    In the year 1874 my kind friend Prof. J.W. Powell proposed to me that I should undertake, under his direction, the study of a large volcanic tract in the Territory of Utah, provided the consent of proper authority could be entertained. Distrusting my own fitness for the work, I felt that it would be better for him if his proposals were thankfully declined. In 1875, however, he renewed the proposition in such a friendly and complimentary manner that a refusal seemed ungracious. He therefore laid the matter before the Secretary of War, the General of the Army, and the Chief of Ordnance, all of whom gave their cordial approbation; and by order of the Ward Department I was detailed for duty in connection with the survey of the Rocky Mountain Region in charge of Professor Powell. The field which he assigned me to study was the District of the High Plateaus, and the investigations were made during the summers of 1875, 1876, and 1877. The preparation of a report or monograph upon the district has several times between interrupted by the pressure of other official duties to which the writer has been assigned during the last three years.

  3. Karst morphology and groundwater vulnerability of high alpine karst plateaus

    NASA Astrophysics Data System (ADS)

    Plan, Lukas; Decker, Kurt; Faber, Robert; Wagreich, Michael; Grasemann, Bernhard

    2009-07-01

    High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.

  4. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating.

  5. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating. PMID:27464110

  6. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1992-01-01

    The instability of rectangular jets is investigated using a vortex sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  7. Crustal volumes of the continents and of oceanic and continental submarine plateaus

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Sandwell, D.

    1989-01-01

    Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.

  8. Potentiometric surface and water quality in the Principal Aquifer, Mississippian Plateaus region, Kentucky

    USGS Publications Warehouse

    Plebuch, R.O.; Faust, R.J.; Townsend, M.A.

    1985-01-01

    The Mississippian Plateaus region is the outcrop area of rocks of Mississippian age which extends as a broad arcuate band around the Western Coal Field in westcentral Kentucky. Much of the area is characterized by plains of low relief containing numerous sinkholes, subsurface drainage, and a low density of surface streams. The principal aquifer consists of a thick sequence of limestones extending downward stratigraphically from the base of the Chesterian Series to the black shales at the top of the Devonian rocks. Well yields range from several gallons per minute to as much as 500 gallons per minute in some karst areas where secondary openings are well developed. The potentiometric map indicates that ground-water movement generally conforms to the surface drainage pattern. The actual direction of movement varies from river basin to river basin. Most water from the principal aquifer is a calcium magnesium bicarbonate type and is generally good relative to current drinking water standards. The lower St Louis Limestone, in places, yields a calcium magnesium sulfate water that is corrosive and has a strong hydrogen sulfide odor. The karst areas of the principal aquifer are vulnerable to contamination because of the well-developed subsurface drainage. Urban areas, industries, and agriculture are sources of contaminants that can be easily flushed into the ground-water system. (USGS)

  9. Numerical simulation of a torrential rain event in the northeast of Huaihe Basin. Part II: Instability conditions and the mechanism of intensification and maintenance

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Pan, Yinong; Wang, Yuan

    2011-01-01

    Based on the simulation displayed in Part I of this study, the intensification and maintenance, the relationship between deep moist mesoscale convective system (DMMCS) and instability, convective vorticity vector (CVV) are analyzed in the present paper. Results show that: (1) middle-low level convective instability is the precondition of the occurrence of DMMCS. The convergence and merger enhancement of convection cells, as well as the convective instability energy transporting from the left-front of typhoon play an essential role in the re-establishment and enhancement of convective instability. (2) Baroclinic instability and conditional symmetric instability appear not only in the middle-low level, but also are distinct in the middle-upper level of DMMCS. (3) In DMMCS, there is an alternative distribution of inertial instability column and inertial stability column. In the west and south, there are negative CVV columns, which is favorable for the burst of deep moist convection. (4) The strong slantwise convection induced by inertial instability, baroclinic instability, and conditional symmetric instability enhance the upper-level southerly component. Due to the appearance of the compensated downdraft at the low level of south side of DMMCS, the low level southerly intensified, and the enhancement of upper- and low-level cores is in favor of the development of DMMCS, which will be beneficial to the reinforcement and maintenance of inertial instability, baroclinic instability, and conditional symmetric instability. It is a positive feedback process. (5) There is a downshear circulation to the east of rainfall cell. Shallow convections near this cell absorb the vapor and instability energy coming from the south. In the meanwhile, the mesoscale convergence line and meso- β-scale vortex organize and intensify convective cells. In DMMCS, there is an alternative distribution of convergence and divergence columns, and the couple between strong divergence and vorticity

  10. SRTM Colored Height and Shaded Relief: Lava plateaus in Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    All of the major landforms relate to volcanism and/or erosion in this Shuttle Radar Topography Mission scene of Patagonia, near La Esperanza, Argentina. The two prominent plateaus once formed a continuous surface that extended over much of this region. Younger volcanoes have grown through and atop the plateau, and one just south of this scene has sent a long, narrow flow down a stream channel (lower left). The topographic pattern shows that streams dominate the erosion processes in this arid environment even though wind is known to move substantial amounts of sediment here.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 62.4 by 88

  11. The Vasto Landslide (Adriatic coast, central Italy): geomorphological constraints and numerical modelling to reconstruct the evolution of a large instability affecting a coastal slope

    NASA Astrophysics Data System (ADS)

    Della Seta, M.; Martino, S.; Scarascia Mugnozza, G.

    2012-04-01

    The Vasto town (Abruzzi, central Italy) raises 143 m a.s.l., on the top of an uplifted Quaternary regressive sequence. The coastal slope is affected by large slope instability (Vasto Landslide) with evidence of present activity, as suggested by several geomorphic features. Well documented historical disruptive events affected the town and the coastal slope in 1816, 1942 and 1956, with deformation locally reaching the near offshore. Field morpho-stratigraphic evidences suggest that sea cliff retreat must have removed considerable volumes of rock before the first activation of the large slope instability. Thus, a morpho-evolutive model of the Vasto Landslide is proposed here, which takes into account the present landforms, the field geological evidences as well as borehole stratigraphy and the combined effect of Quaternary uplift and eustatic oscillations on the coastal slope, since the area started emerging (early Middle Pleistocene) and up to present. Some significant steps were identified, given the tectono-eustatic constraints, and slope stability was analysed with the method of slices (Fellenius) for the different steps. The analysis confirms the kinematic consistency of the first activation of two major roto-translational surfaces in the Middle Pleistocene, after considerable sea cliff retreat. Finite difference stress-strain numerical modelling (FDM) of the Vasto Landslide was then performed in order to output: 1) the landslide mechanism; 2) the style of activity of the landslide; 3) the cumulative deformations occurred during the morpho-evolutive steps. The numerical modelling was calibrated by considering the present landforms as well as the effects recorded during the historical events. The results obtained here confirm that the Vasto Lanslide was first activated in the Middle Pleistocene (~200 ka B.P.), as a consequence of wave cut erosion and progressive emersion of the coastal slope. Moreover, the landslide evolved as a retrogressive, single

  12. Magnetization plateaus in the antiferromagnetic Ising chain with single-ion anisotropy and quenched disorder.

    PubMed

    Neto, Minos A; de Sousa, J Ricardo; Branco, N S

    2015-05-01

    We have studied the presence of plateaus on the low-temperature magnetization of an antiferromagnetic spin-1 chain, as an external uniform magnetic field is varied. A crystal-field interaction is present in the model and the exchange constants follow a random quenched (Bernoulli or Gaussian) distribution. Using a transfer-matrix technique we calculate the largest Lyapunov exponent and, from it, the magnetization at low temperatures as a function of the magnetic field, for different values of the crystal field and the width of the distributions. For the Bernoulli distribution, the number of plateaus increases, with respect to the uniform case [Litaiff et al., Solid State Commun. 147, 494 (2008)] and their presence can be linked to different ground states, when the magnetic field is varied. For the Gaussian distributions, the uniform scenario is maintained, for small widths, but the plateaus structure disappears as the width increases. PMID:26066165

  13. Pressure dependence of the magnetization plateaus of SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Schneider, David A.; Coester, Kris; Mila, Frédéric; Schmidt, Kai Phillip

    2016-06-01

    We show that the critical fields of the magnetization plateaus of the Shastry-Sutherland model decrease significantly upon increasing the ratio of inter- to intradimer coupling and accordingly that the magnetization plateaus of SrCu2(BO3)2 shift to lower field under pressure, making the first two plateaus at 1 /8 and 2 /15 potentially accessible to neutron scattering experiments. These conclusions are based on the derivation of an effective classical model of interacting pinwheel-shaped spin-2 bound states using a combination of perturbative and graph-based continuous unitary transformations, showing that pinwheel crystals are indeed the lowest-energy plateau structures at low magnetization and that a simple model of intermediate-range two-body repulsion between pinwheels is able to account quantitatively for the plateau sequence.

  14. Crustal structure in the eastern Colorado Plateaus Provence from seismic-refraction measurements

    USGS Publications Warehouse

    Roller, John C.

    1964-01-01

    A reversed seismic-refraction profile was recorded in the Colorado Plateaus Province from Hanksville, Utah, to Chinle, Arizona, The velocity of Pg is 6.2 km/sec, and the true velocity of Pn is 7.8 km/sec, Waves identified as reflections indicate that an intermediate layer in the crust has a velocity of approximately 6.8 km/sec. Thickness of the crust is 43 km at Chinle and 40 km at Hanksville. The Pn velocity in the Colorado Plateaus Province is the same as that in the Basin and Range Province, but is significantly lower than Pn in the High Plains of Colorado.

  15. Numerical study of friction-induced instability and acoustic radiation - Effect of ramp loading on the squeal propensity for a simplified brake model

    NASA Astrophysics Data System (ADS)

    Soobbarayen, K.; Sinou, J.-J.; Besset, S.

    2014-10-01

    This paper presents a numerical study of the influence of loading conditions on the vibrational and acoustic responses of a disc brake system subjected to squeal. A simplified model composed of a circular disc and a pad is proposed. Nonlinear effects of contact and friction over the frictional interface are modelled with a cubic law and a classical Coulomb's law with a constant friction coefficient. The stability analysis of this system shows the presence of two instabilities with one and two unstable modes that lead to friction-induced nonlinear vibrations and squeal noise. Nonlinear time analysis by temporal integration is conducted for two cases of loadings and initial conditions: a static load near the associated sliding equilibrium and a slow and a fast ramp loading. The analysis of the time responses shows that a sufficiently fast ramp loading can destabilize a stable configuration and generate nonlinear vibrations. Moreover, the fast ramp loading applied for the two unstable cases generates higher amplitudes of velocity than for the static load cases. The frequency analysis shows that the fast ramp loading generates a more complex spectrum than for the static load with the appearance of new resonance peaks. The acoustic responses for these cases are estimated by applying the multi-frequency acoustic calculation method based on the Fourier series decomposition of the velocity and the Boundary Element Method. Squeal noise emissions for the fast ramp loading present lower or higher levels than for the static load due to the different amplitudes of velocities. Moreover, the directivity is more complex for the fast ramp loading due to the appearance of new harmonic components in the velocity spectrum. Finally, the sound pressure convergence study shows that only the first harmonic components are sufficient to well describe the acoustic response.

  16. Spurts and Plateaus in Brain Growth: A Critique of the Claims of Herman Epstein.

    ERIC Educational Resources Information Center

    McQueen, Richard

    1984-01-01

    Herman Epstein's theory correlating children's learning capacity with periodic spurts and plateaus in brain growth is predicated on inadequate data and questionable interpretations thereof, and it is discredited by highly respected scholars, including those he cites. Applying this theory to classroom practice is therefore irresponsible and…

  17. Erosion and tectonics at the margins of continental plateaus

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Isacks, Bryan L.; Gubbels, Timothy L.; Fielding, Eric J.

    1994-01-01

    We hypothesize that the steep frontal slope and high peaks of the Beni region and Himalayan front largely reflect the high orographic precipitation and high erosion rates occurring in these regions and that the more gentle topography of the semiarid Pilcomayo region reflects a tectonic landform only slightly modified by erosion. We propose that orographic precipitation impinging on a plateau margin will generally tend to drop moisture low on the slope, eroding back the plateau while enhancing or maintaining the steep long-wavelength slope. A numerical model coupling orographic precipitation, erosion, and tectonic uplift demonstrates the plausibility of this hypothesis. The erosional efflux in both the Beni and Nepal Himalaya have been considerable, and simple mass balance calculations for the Himalaya suggest that during the Neogene, the erosional mass efflux has generally outpaced the tectonic mass influx. This contrasts with the apparent prior domination of tectonic influx and may reflect a decrease in the rate of tectonic addition during the same period, and/or increased late Cenozoic erosion rates.

  18. Shilnikov instabilities in laser systems

    SciTech Connect

    Swetits, J.J.; Buoncristiani, A.M.

    1988-11-15

    Experiments on a CO/sub 2/ laser with feedback (F. T. Arecchi, R. Meucci, and W. Gadomski, Phys. Rev. Lett. 58, 2205 (1987)) displayed an extraordinary set of instabilities, identified as Shilnikov chaos. We have investigated the stability structure of a theoretical model developed to describe this laser system and carried out an extensive numerical search for the Shilnikov instability. No computational evidence to support the claim of a Shilnikov instability for model parameters corresponding to the experimental region can be found.

  19. Oceanic plateaus, the fragmentation of continents, and mountain building

    SciTech Connect

    Nur, A.; Ben-Avraham, Z.

    1982-05-10

    Many anomalous rises in today's oceans may be submerged continental fragments detached from previous continents, ancient island arcs, or basaltic piles formed by hot spots and spreading centers. These rises are embedded in their respective moving oceanic plates and are fated to be consumed at active margins. Where such rises are being consumed at present, e.g., the Nazca Ridge, they cause cessation of volcanism, disruption of the downgoing slab, and possible shifts in plate boundary configuration. Many past rises, including numerous continental fragments have been recognized within mountain belts as allochthonous terranes. They constitute a large portion of the orogenic belts in the North Pacific from Mexico through western North America, Alaska, east Siberia, Japan and in New Zealand. The orogenic deformation in these belts is possibly the result of the accretion of the allochtronous terranes. Many terranes have been accreted with substantial deformation also in the Alpine chain, well before major continent-continent collisions. It is suggested, therefore, that the accretion of fragments may be the common process of the deformation phase of mountain building. Subduction of normal oceanic crust may be insufficient for deformation, whereas full continent-continent collision may be necessary. The general validity of this conclusion depends critically on whether allochthonous terranes caused orogenic deformation in the Andes or not. Most of the accreted fragments with continental affinites in the Mesozoic-Cenozoic orogenic belts of the world can be traced back to the breakup of Gondwana, beginning with a Pacifica domain in the Permian through a larger India domain in the early Mesozoic and continuing through the separation of the Somalia plate in the near future. The reasons for this 250 million year breakup process are not known, but some kind of thermal process, possible of mantle-wide scale, is implied.

  20. Numerous Numerals.

    ERIC Educational Resources Information Center

    Henle, James M.

    This pamphlet consists of 17 brief chapters, each containing a discussion of a numeration system and a set of problems on the use of that system. The numeration systems used include Egyptian fractions, ordinary continued fractions and variants of that method, and systems using positive and negative bases. The book is informal and addressed to…

  1. Hip instability.

    PubMed

    Smith, Matthew V; Sekiya, Jon K

    2010-06-01

    Hip instability is becoming a more commonly recognized source of pain and disability in patients. Traumatic causes of hip instability are often clear. Appropriate treatment includes immediate reduction, early surgery for acetabular rim fractures greater than 25% or incarcerated fragments in the joint, and close follow-up to monitor for avascular necrosis. Late surgical intervention may be necessary for residual symptomatic hip instability. Atraumatic causes of hip instability include repetitive external rotation with axial loading, generalized ligamentous laxity, and collagen disorders like Ehlers-Danlos. Symptoms caused by atraumatic hip instability often have an insidious onset. Patients may have a wide array of hip symptoms while demonstrating only subtle findings suggestive of capsular laxity. Traction views of the affected hip can be helpful in diagnosing hip instability. Open and arthroscopic techniques can be used to treat capsular laxity. We describe an arthroscopic anterior hip capsular plication using a suture technique. PMID:20473129

  2. Distinguishing between yield advances and yield plateaus in historical crop production trends

    PubMed Central

    Grassini, Patricio; Eskridge, Kent M.; Cassman, Kenneth G.

    2013-01-01

    Food security and land required for food production largely depend on rate of yield gain of major cereal crops. Previous projections of food security are often more optimistic than what historical yield trends would support. Many econometric projections of future food production assume compound rates of yield gain, which are not consistent with historical yield trends. Here we provide a framework to characterize past yield trends and show that linear trajectories adequately describe past yield trends, which means the relative rate of gain decreases over time. Furthermore, there is evidence of yield plateaus or abrupt decreases in rate of yield gain, including rice in eastern Asia and wheat in northwest Europe, which account for 31% of total global rice, wheat and maize production. Estimating future food production capacity would benefit from an analysis of past crop yield trends based on a robust statistical analysis framework that evaluates historical yield trajectories and plateaus. PMID:24346131

  3. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  4. Digital surfaces and thicknesses of selected hydrogeologic units within the Ozark Plateaus aquifer system, northwestern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Bolyard, Susan E.; Hart, Rheannon M.; Clark, Jimmy M.

    2014-01-01

    Digital surfaces and thicknesses of nine hydrogeologic units of the Ozark Plateaus aquifer system from land surface to the top of the Gunter Sandstone in northwestern Arkansas were created using geophysical logs, drillers’ logs, geologist-interpreted formation tops, and previously published maps. The 6,040 square mile study area in the Ozark Plateaus Province includes Benton, Washington, Carroll, Madison, Boone, Newton, Marion, and Searcy Counties. The top of each hydrogeologic unit delineated on geophysical logs was based partly on previously published reports and maps and also from drillers’ logs. These logs were then used as a basis to contour digital surfaces showing the top and thickness of the Fayetteville Shale, the Boone Formation, the Chattanooga Shale, the Everton Formation, the Powell Dolomite, the Cotter Dolomite, the Roubidoux Formation, the Gasconade Dolomite, and the Gunter Sandstone.

  5. Crustal thinning between the Ethiopian and East African Plateaus from modeling Rayleigh wave dispersion

    SciTech Connect

    Benoit, M H; Nyblade, A A; Pasyanos, M E

    2006-01-17

    The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.

  6. Collective instabilities

    SciTech Connect

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  7. Identification and occurrence of uranium and vanadium minerals from the Colorado Plateaus

    USGS Publications Warehouse

    Weeks, A.D.; Thompson, M.E.

    1954-01-01

    This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descriptions of the physical properties, X-ray data, and in some instances results of chemical and spectrographic analysis of 48 uranium and vanadium minerals. Also included is a list of locations of mines from which the minerals have been identified.

  8. Retired flies, hidden plateaus, and the evolution of senescence in Drosophila melanogaster.

    PubMed

    Curtsinger, James W

    2016-06-01

    Late-life plateaus in age-specific mortality have been an evolutionary and biodemographic puzzle for decades. Although classic theory on the evolution of senescence predicts late-life walls of death, observations in experimental organisms document the opposite trend: a slowing in the rate of increase of mortality at advanced ages. Here, I analyze published life-history data on individual Drosophila melanogaster females and argue for a fundamental change in our understanding of mortality in this important model system. Mortality plateaus are not, as widely assumed, exclusive to late life, and are not explained by population heterogeneity-they are intimately connected to individual fecundity. Female flies begin adult life in the working stage, a period of active oviposition and low but accelerating mortality. Later they transition to the retired stage, a terminal period characterized by limited fecundity and relatively constant mortality. Because ages of transition differ between flies, age-synchronized cohorts contain a mix of working and retired flies. Early- and mid-life plateaus are obscured by the presence of working flies, but can be detected when cohorts are stratified by retirement status. Stage-specificity may be an important component of Drosophila life-history evolution. PMID:27166620

  9. Effects of Coarse Legacy Sediment on Rivers of the Ozark Plateaus and Implications for Native Mussel Fauna

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Eric, A. B.; Jones, J. C.; Anderson, B. W.

    2015-12-01

    Perturbations to sediment regimes due to anthropogenic activities may have long lasting effects, especially in systems dominated by coarse sediment where travel times are relatively long. Effectively evaluating management alternatives requires understanding the future trajectory of river response at both the river network and reach scales. The Ozark Plateaus physiographic province is a montane region in the interior US composed primarily of Paleozoic sedimentary rock. Historic land-use practices around the turn of the last century accelerated delivery of coarse sediment to river channels. Effects of this legacy sediment persist in two national parks, Ozark National Scenic Riverways, MO and Buffalo National River, AR, and are of special concern for management of native mussel fauna. These species require stable habitat, yet they occupy inherently dynamic environments: alluvial rivers. At the river-network scale, analysis of historical data reveals the signature of sediment waves moving through river networks in the Ozarks. Channel planform alternates between relatively stable, straight reaches, and wider, multithread reaches which have been more dynamic over the past several decades. These alternate planform configurations route and store sediment differently, and translate into different patterns of bed stability at the reach scale, which in turn affects the distribution and availability of habitat for native biota. Geomorphic mapping and hydrodynamic modeling reveal the complex relations between planform (in)stability, flow dynamics, bed mobility, and aquatic habitat in systems responding to increased sediment supply. Reaches that have a more dynamic planform may provide more hydraulic refugia and habitat heterogeneity compared to stable, homogeneous reaches. This research provides new insights that may inform management of sediment and mussel habitat in rivers subject to coarse legacy sediment.

  10. Geological History of a Light-toned Formation Draping the Plateaus in the Region of Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Bourgeois, O.; Mège, D.; Le Mouélic, S.; Massé, M.; Hauber, E.; Jaumann, R.; Bibring, J.-P.

    2009-03-01

    We perform a geological analysis of layered deposits cropping out on the plateaus around Valles Marineris in order to determine their possible formation scenario and the role of water in their geological history.

  11. Correlating Cordilleran Ice Sheet Collapse with North Atlantic Heinrich Events using Global Radiocarbon Plateaus.

    NASA Astrophysics Data System (ADS)

    Hendy, I. L.; Cosma, T.

    2006-12-01

    The small, ephemeral Cordilleran Ice Sheet, present in Alaska, British Columbia and northern Washington during the last glacial cycle is believed to have behaved differently than the larger Laurentice Ice Sheet to climate forcing. High quality chronology is required to understand the relationship between this ice sheet and global climate change. Presently MD02-2496 (48°58.47N: 127°02.14W; 1190m water depth) is the highest resolution paleoclimate record available for the last 50 Ka in the Pacific northwest and contains intervals of glacial-marine sedimentation. High resolution dating based on 36 radiocarbon dates provide a chronology that includes radiocarbon age plateaus, while planktonic foraminiferal stable isotopes offer a continuous record of climate change. Glacial-marine sediments collected from this site on the continental slope west of Vancouver Island, British Columbia, document three intervals of iceberg discharge during the last ~50 Ka. Gradually increasing quantities of ice rafted detritus (grains >250μm, g-1; IRD) followed by abrupt cessation within ~500 years is strongly suggestive of catastrophic iceberg discharge. The penultimate event is correlated to marine invasion of the Juan de Fuca Strait, and Puget Sound, while the final IRD event with that of Georgia Strait. We posit that these previously unknown IRD events represent repeated rapid iceberg discharge related to Cordilleran Ice Sheet collapse. The events occur near the end of radiocarbon plateaus at 13.35 ±90 and 14.05 ±70 14C Kyr BP (not reservoir corrected). If these plateaus correlate with the 12.2 and 13.3 14C Kyr BP plateaus recorded in Carriaco Basin and elsewhere, local reservoir ages can be calculated and vary between 1,150 and 1,550 years similar to those derived locally from glacial wood-shell pairs. Furthermore, if the plateaus result from reduced North Atlantic Deep Water export and consequently Heinrich Events, the Cordilleran IRD events are related to North Atlantic iceberg

  12. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  13. Relativistic electromagnetic ion cyclotron instabilities.

    PubMed

    Chen, K R; Huang, R D; Wang, J C; Chen, Y Y

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfve nic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions' first-order resonance and fast ions' second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfve n velocity is required to be low. This Alfve nic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability. PMID:15903591

  14. Ground water in the Springfield-Salem plateaus of southern Missouri and northern Arkansas

    USGS Publications Warehouse

    Harvey, Edward Joseph

    1980-01-01

    Average ground-water conditions have not changed significantly in the Springfield-Salem plateaus section of southern Missouri and northern Arkansas in the past 25 years except in the vicinity of well fields. The amount of ground water pumped is approximately 200 cubic feet per second, which is about 5 percent of the total discharge at the 80 percent point on flow-duration curves for major streams. Ground-water recharge is variable and occurs through sinkholes by infiltration in upland areas of good permeability, and through streambeds that lose flow. Main waterbearing zones lie in the Potosi Dolomite and the lower dolomite and sandstone of the Gasconade Dolomite. Cavernous connections from ground surface to depths as great as 1,500 feet occur in the West Plains area, Mo., and result in deep circulation of water. Municipal well-water in the area often becomes turbid after rainstorms, despite well depths of 1 ,500 feet and 950 to 1,000 feet of pressure-grouted casing. Ground-water movement is generaly north and south from the crest of the Springfield-Salem plateaus, which extend across southern Missouri from the St. Francois Mountains to the southwest. Interbasin diversion of surface- and ground-water flow is common. (USGS)

  15. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona's Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  16. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona`s Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  17. Instabilities of twisted strings

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád

    2009-12-01

    A linear stability analysis of twisted flux-tubes (strings) in an SU(2) semilocal theory — an Abelian-Higgs model with two charged scalar fields with a global SU(2) symmetry — is carried out. Here the twist refers to a relative phase between the two complex scalars (with linear dependence on, say, the z coordinate), and importantly it leads to a global current flowing along the the string. Such twisted strings bifurcate with the Abrikosov-Nielsen-Olesen (ANO) solution embedded in the semilocal theory. Our numerical investigations of the small fluctuation spectrum confirm previous results that twisted strings exhibit instabilities whose amplitudes grow exponentially in time. More precisely twisted strings with a single magnetic flux quantum admit a continuous family of unstable eigenmodes with harmonic z dependence, indexed by a wavenumber kin[-km, km]. Carrying out a perturbative semi-analytic analysis of the bifurcation, it is found that the purely numerical results are very well reproduced. This way one obtains not only a good qualitative description of the twisted solutions themselves as well as of their instabilities, but also a quantitative description of the numerical results. Our semi-analytic results indicate that in close analogy to the known instability of the embedded ANO vortex a twisted string is also likely to expand in size caused by the spreading out of its magnetic flux.

  18. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  19. Colorado Plateaus Ecoregion: Chapter 21 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Stier, Michael P.

    2012-01-01

    The Colorado Plateaus Ecoregion covers approximately 129,617 km2 (50,045 mi2) within southern and eastern Utah, western Colorado, and the extreme northern part of Arizona (fig. 1). The terrain of this ecoregion is characterized by broad plateaus, ancient volcanoes, and deeply dissected canyons (Booth and others, 1999; fig. 2). The ecoregion is bounded on the east by the Wyoming Basin and Southern Rockies Ecoregions in Colorado and on the northwest by the Wasatch and Uinta Mountains Ecoregion in northern and central Utah. To the south, the ecoregion borders the Arizona/New Mexico Plateau Ecoregion, which has a higher elevation and more grasslands than the Colorado Plateaus Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997).

  20. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene.

    PubMed

    Alexander-Webber, J A; Huang, J; Maude, D K; Janssen, T J B M; Tzalenchuk, A; Antonov, V; Yager, T; Lara-Avila, S; Kubatkin, S; Yakimova, R; Nicholas, R J

    2016-01-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  1. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene.

    PubMed

    Alexander-Webber, J A; Huang, J; Maude, D K; Janssen, T J B M; Tzalenchuk, A; Antonov, V; Yager, T; Lara-Avila, S; Kubatkin, S; Yakimova, R; Nicholas, R J

    2016-01-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology. PMID:27456765

  2. A mantle plume initiation model for the wrangellia flood basalt and other oceanic plateaus.

    PubMed

    Richards, M A; Jones, D L; Duncan, R A; Depaolo, D J

    1991-10-11

    The vast Wrangellia terrane of Alaska and British Columbia is an accreted oceanic plateau with Triassic strata that contain a 3- to 6-kilometers thick flood basalt, bounded above and below by marine sedimentary rocks. This enormous outpouring of basalt was preceded by rapid uplift and was followed by gradual subsidence of the plateau. The uplift and basalt eruptions occurred in less than approximately 5 million years, and were not accompanied by significant extension or rifting of the lithosphere. This sequence of events is predicted by a mantle plume initiation, or plume head, model that has recently been developed to explain continental flood volcanism. Evidence suggests that other large oceanic basalt plateaus, such as the Ontong-Java, Kerguelen, and Caribbean, were formed as the initial outbursts of the Louisville Ridge, Kerguelen, and Galapagos hot spots, respectively. Such events may play an important role in the creation and development of both oceanic and continental crust.

  3. Hydrologic budget and conditions of Permian, Pennsylvanian, and Mississippian aquifers in the Appalachian Plateaus physiographic province

    USGS Publications Warehouse

    McCoy, Kurt J.; Yager, Richard M.; Nelms, David L.; Ladd, David E.; Monti,, Jack; Kozar, Mark D.

    2015-08-13

    Hydrograph separation data from 849 streamflow gaging stations in the study area were used to assess trends in streamflow, base flow, surface runoff, and base-flow index, or ratio of base flow to streamflow, in the Appalachian Plateaus for the period from 1930 to 2011. Annual data anomalies for each of the four variables were individually defined as the annual standard deviation from the mean at all 849 streamflow gaging stations. Annual data anomalies confirm the close relation of annual precipitation to both base flow and runoff components of streamflow, and both components increased during the period of analysis. Around 1970, conditions shifted streamflow from values generally below to above long-term means. At a regional scale, increases in base flow account for most of these observed

  4. Landau-level dispersion and the quantum Hall plateaus in bilayer graphene

    SciTech Connect

    Zarenia, M.; Peeters, F. M.; Vasilopoulos, P.; Pourtolami, N.

    2013-12-04

    We study the quantum Hall effect (QHE) in bilayer graphene using the Kubo-Greenwood formula. At zero temperature the Hall conductivity σ{sub yx} is given by σ{sub yx} = 4(N+1)e{sup 2}/h with N the index of the highest occupied Landau level (LL). Including the dispersion of the LLs and their width, due to e.g. scattering by impurities, produces the plateau of the n = 0 LL in agreement with experimental results on doped samples and similar theoretical results on single-layer graphene plateaus widen with impurity concentration. Further, the evaluated resistivity ρ{sub xx} exhibits a strong, oscillatory dependence on the electron concentration. Explicit results are obtained for δ-function impurities.

  5. Do Children With Fragile X Syndrome Show Declines or Plateaus in Adaptive Behavior?

    PubMed

    Hahn, Laura J; Brady, Nancy C; Warren, Steven F; Fleming, Kandace K

    2015-09-01

    This study explores if children with fragile X syndrome (FXS) show advances, declines, or plateaus in adaptive behavior over time and the relationship of nonverbal cognitive abilities and autistic behavior on these trajectories. Parents of 55 children with FXS completed the Vineland Adaptive Behavior Scales ( Sparrow, Balla, & Cicchetti, 1984 ; Sparrow, Cicchetti, & Balla, 2005 ) between 3 and 6 times from 2 to 10 years of age. Using raw scores, results indicate that about half of the sample showed advances in adaptive behavior, whereas the other half showed declines, indicating a regression in skills. Children who were more cognitively advanced and had less autistic behaviors had higher trajectories. Understanding the developmental course of adaptive behavior in FXS has implications for educational planning and intervention, especially for those children showing declines. PMID:26322389

  6. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, J. A.; Huang, J.; Maude, D. K.; Janssen, T. J. B. M.; Tzalenchuk, A.; Antonov, V.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Nicholas, R. J.

    2016-07-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  7. A Fundamental Plane for Long Gamma-Ray Bursts with X-Ray Plateaus

    NASA Astrophysics Data System (ADS)

    Dainotti, M. G.; Postnikov, S.; Hernandez, X.; Ostrowski, M.

    2016-07-01

    A class of long gamma-ray bursts (GRBs) presenting light curves with an extended plateau phase in their X-ray afterglows obeys a correlation between the rest-frame end-time of the plateau, T a , and its corresponding X-ray luminosity, L a , (Dainotti et al). In this work we perform an analysis of a total sample of 176 Swift GRBs with known redshifts, exhibiting afterglow plateaus. By adding a third parameter that is the peak luminosity in the prompt emission, L peak, we discover the existence of a new three-parameter correlation. The scatter of data about this plane becomes smaller when a class-specific GRB sample is defined. This sample of 122 GRBs is selected from the total sample by excluding GRBs with associated supernovae (SNe), X-ray flashes and short GRBs with extended emission. With this sample the three-parameter correlation identifies a GRB “fundamental plane.” Moreover, we further limit our analysis to GRBs with light curves with good data coverage and almost flat plateaus, 40 GRBs forming our “gold sample.” The intrinsic scatter, {σ }{int}=0.27+/- 0.04, for the three-parameter correlation for this last sub-class is more than two times smaller than the value for the {L}a-{T}a one, making this the tightest three-parameter correlation that involves the afterglow plateau phase. Finally, we also show that a slightly less tight correlation is present between L peak and a proxy for the total energy emitted during the plateau phase, {L}a{T}a, confirming the existence of an energy scaling between the prompt and afterglow phases.

  8. 5-Volt and 4.6 V plateaus in LiMn{sub 2}O{sub 4} thin films

    SciTech Connect

    Bates, J.B.; Lubben, D.; Dudney, N.J.; Zuhr, R.A.; Hart, F.X.

    1996-01-01

    Additional plateaus with median voltages of {similar_to}4.6 V, and {similar_to}5 V have been observed on charging thin film lithium batteries with crystalline LiMn{sub 2}O{sub 4} cathodes to 5.3 V. Total charge extracted from the 4 V and the two additional plateaus corresponded to about 1Li/Mn{sub 2}O{sub 4}, but the distribution of capacity among the three plateaus varied from film to film. It is speculated that the additional plateaus result from formation of mixed spinel structures in which a fraction of the 8a sites areoccupied by Mn{sup 2+} or Mn{sup 4+} ions and a fraction of the Li{sup +} ions occupy the 16d sites. After charging to 5.3 V, the 4.6 V plateau disappeared, and the capacity of the 4 V plateau increased at the expense of that of the 5 V plateau. The latter change is attributed to movement of Mn{sup 3+} or Mn{sup 5+} ions from 8a to 16d sites.

  9. [Carpal instability].

    PubMed

    Redeker, J; Vogt, P M

    2011-01-01

    Carpal instability can be understood as a disturbed anatomical alignment between bones articulating in the carpus. This disturbed balance occurs either only dynamically (with movement) under the effect of physiological force or even statically at rest. The most common cause of carpal instability is wrist trauma with rupture of the stabilizing ligaments and adaptive misalignment following fractures of the radius or carpus. Carpal collapse plays a special role in this mechanism due to non-healed fracture of the scaphoid bone. In addition degenerative inflammatory alterations, such as chondrocalcinosis or gout, more rarely aseptic bone necrosis of the lunate or scaphoid bones or misalignment due to deposition (Madelung deformity) can lead to wrist instability. Under increased pressure the misaligned joint surfaces lead to bone arrosion with secondary arthritis of the wrist. In order to arrest or slow down this irreversible process, diagnosis must occur as early as possible. Many surgical methods have been thought out to regain stability ranging from direct reconstruction of the damaged ligaments, through ligament replacement to partial stiffening of the wrist joint.

  10. Superresonant instability of a compressible hydrodynamic vortex

    NASA Astrophysics Data System (ADS)

    Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.

    2016-06-01

    We show that a purely circulating and compressible system, in an adiabatic regime of acoustic propagation, presents superresonant instabilities. To show the existence these instabilities, we compute the quasinormal mode frequencies of this system numerically using two different frequency domain methods.

  11. Chemically Driven Hydrodynamic Instabilities

    NASA Astrophysics Data System (ADS)

    Almarcha, C.; Trevelyan, P. M. J.; Grosfils, P.; de Wit, A.

    2010-01-01

    In the gravity field, density changes triggered by a kinetic scheme as simple as A+B→C can induce or affect buoyancy-driven instabilities at a horizontal interface between two solutions containing initially the scalars A and B. On the basis of a general reaction-diffusion-convection model, we analyze to what extent the reaction can destabilize otherwise buoyantly stable density stratifications. We furthermore show that, even if the underlying nonreactive system is buoyantly unstable, the reaction breaks the symmetry of the developing patterns. This is demonstrated both numerically and experimentally on the specific example of a simple acid-base neutralization reaction.

  12. 2014/2015 Investigations of the Ontong Java and Kerguelen Plateaus

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Whittaker, J. M.

    2013-12-01

    The two largest oceanic plateaus, Ontong Java in the western Pacific, and Kerguelen in the southern Indian Ocean, will be the focus of scheduled multidisciplinary/interdisciplinary shipboard expeditions in 2014 and 2015. In mid-2014, scientists aboard the Schmidt Ocean Institute's RV Falkor will investigate the origin and evolution of two large atolls, Ontong Java and Nukumanu, surmounting the ca 122 Ma Ontong Java Plateau, as well how Kroenke Canyon, which deeply incises the plateau, formed and evolved. First-ever multibeam bathymetry and sub-bottom profiling data from the atolls and canyon will reveal their submarine and shallow sub-seafloor morphology, and, if combined with geochemical and geochronological analyses of potential igneous basement samples, will yield important information on their origin and evolution. The primary goals of this atoll and canyon project are: to test potential genetic relationships between a) the atolls and the OJP, and b) the atolls and Kroenke Canyon; to understand and model how atolls and canyons form and evolve on oceanic plateaus, isolated from terrestrial influences and subject to sea level fluctuations; and to contribute to understanding tsunami risk on low-lying atolls. In late 2014 and early 2015, researchers aboard Australia's new Marine National Facility, RV Investigator, will investigate active submarine hotspot volcanism on the Kerguelen Plateau and its consequences. The project's overall aim is to test the hypothesis that hydrothermal activity driven by active submarine magmatism fertilizes surface waters with iron that enhances primary biological productivity. Surmounting the Cretaceous plateau, Heard and McDonald Islands are among the world's most active hotspot volcanoes, and new multibeam bathymetry and sub-bottom profiling data will enable identification of candidate active submarine volcanoes, which we will sample. In the overlying water column, we will collect samples to test for the presence or absence of

  13. Finite element shell instability analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.

  14. Extensional instability in electro-osmotic microflows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Bryce, R. M.; Freeman, M. R.

    2010-03-01

    Fluid transport in microfluidic systems typically is laminar due to the low Reynolds number characteristic of the flow. The inclusion of suspended polymers imparts elasticity to fluids, allowing instabilities to be excited when substantial polymer stretching occurs. For high molecular weight polymer chains we find that flow velocities achievable by standard electro-osmotic pumping are sufficient to excite extensional instabilities in dilute polymer solutions. We observe a dependence in measured fluctuations on polymer concentration which plateaus at a threshold corresponding to the onset of significant molecular crowding in macromolecular solutions; plateauing occurs well below the overlap concentration. Our results show that electro-osmotic flows of complex fluids are disturbed from the steady regime, suggesting potential for enhanced mixing and requiring care in modeling the flow of complex liquids such as biopolymer suspensions.

  15. Topological incommensurate magnetization plateaus in quasi-periodic quantum spin chains.

    PubMed

    Hu, Hai-Ping; Cheng, Chen; Luo, Hong-Gang; Chen, Shu

    2015-02-13

    Uncovering topologically nontrivial states in nature is an intriguing and important issue in recent years. While most studies are based on the topological band insulators, the topological state in strongly correlated low-dimensional systems has not been extensively explored due to the failure of direct explanation from the topological band insulator theory on such systems and the origin of the topological property is unclear. Here we report the theoretical discovery of strongly correlated topological states in quasi-periodic Heisenberg spin chain systems corresponding to a series of incommensurate magnetization plateaus under the presence of the magnetic field, which are uniquely determined by the quasi-periodic structure of exchange couplings. The topological features of plateau states are demonstrated by the existence of non-trivial spin-flip edge excitations, which can be well characterized by nonzero topological invariants defined in a two-dimensional parameter space. Furthermore, we demonstrate that the topological invariant of the plateau state can be read out from a generalized Streda formula and the spin-flip excitation spectrum exhibits a similar structure of the Hofstadter's butterfly spectrum for the two-dimensional quantum Hall system on a lattice.

  16. Regional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia

    USGS Publications Warehouse

    Messinger, Terence

    2009-01-01

    Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel characteristics were intermediate among those from surrounding states and regions where comparable studies have been done. The stream reaches that were surveyed were selected for apparent stability, and to represent gradients of drainage area, elevation, and mean annual precipitation. Profiles of high-water marks left by bankfull and near-bankfull peaks were surveyed, either as part of slope-area flow measurements at ungaged reaches, or to transfer known flow information to cross sections for gaged reaches. The slope-area measurements made it possible to include ungaged sites in the study, but still relate bankfull dimensions to peak flow and frequency.

  17. Magnetization plateaus of an easy-axis kagome antiferromagnet with extended interactions

    NASA Astrophysics Data System (ADS)

    Plat, X.; Alet, F.; Capponi, S.; Totsuka, K.

    2015-11-01

    We investigate the properties in finite magnetic field of an extended anisotropic X X Z spin-1/2 model on the kagome lattice, originally introduced by Balents, Fisher, and Girvin [Phys. Rev. B 65, 224412 (2002), 10.1103/PhysRevB.65.224412]. The magnetization curve displays plateaus at magnetization m =1 /6 and 1 /3 when the anisotropy is large. Using low-energy effective constrained models (quantum loop and quantum dimer models), we discuss the nature of the plateau phases, found to be crystals that break discrete rotation and/or translation symmetries. Large-scale quantum Monte Carlo simulations were carried out in particular for the m =1 /6 plateau. We first map out the phase diagram of the effective quantum loop model with an additional loop-loop interaction to find stripe order around the point relevant for the original model as well as a topological Z2 spin liquid. The existence of a stripe crystalline phase is further evidenced by measuring both standard structure factor and entanglement entropy of the original microscopic model.

  18. New insights on lithospheric foundering from thermo-mechanically coupled numerical modelling

    NASA Astrophysics Data System (ADS)

    Pastor-Galán, Daniel; Thieulot, Cedric

    2015-04-01

    Earth's lithosphere is recycled into the mantle as required by global mass considerations. At least during the latest 1 G.y. the main mechanism of lithospheric foundering into the mantle has been subduction. Yet other mechanisms of mantle removal such as Rayleigh-Taylor-type instability or delamination have significant influence at present as revealed by mantle anomalies, and are considered to be likely candidates for the main recycling mechanisms of lithospheric during the Archean. Although lithospheric mantle removal has been geophysically imaged, e.g. Carpathians, Colorado Plateau, at many other locations geophysical and geological observations also seem to indicate that mantle lithosphere is anomalously thin or absent. Potential places where lithospheric mantle foundering processes took place are The Urals, the Variscides, underneath the Ibero Armorican Orocline in western Europe, and the Tibetan, Puna and Anatolian Plateaus. Lithospheric foundering has been blamed for, among others, cratonization processes, rapid surface uplift, generation of voluminous magmatism, changes in crustal stress from compression to extension and a long etc. However, its triggering mechanisms are not well studied, and a variety of possible explanations have been given for lithospheric foundering processes, including convective instability following orogenic thickening or some other perturbation of thermal boundary layers, development of eclogitic roots, erosion of the lithosphere by a flat-subducting slab or partial melting of the asthenosphere, and partial intruding pyroxenites into the base of lithosphere. To understand the mechanisms, causes and consequences of lithospheric foundering, we explored lithospheric foundering in an assortment of scenarios using the numerical code, ELEFANT, an user-friendly multipurpose geodynamics code. Preliminary results indicate that changes in geometry, thermal state and composition of the lithosphere, associated with mantle flow, can have a first

  19. Altitudes and thicknesses of hydrogeologic units of the Ozark Plateaus aquifer system in Arkansas, Kansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.

    2016-09-29

    A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.

  20. Carbon Abundance Plateaus among Carbon-Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Yoon, Jinmi; He, Siyu; Placco, Vinicius; Carollo, Daniela; Beers, Timothy C.

    2016-01-01

    A substantial fraction of low-metallicity stars in the Milky Way, the Carbon-Enhanced Metal-Poor (CEMP) stars, exhibit enhancements of their carbon-to-iron relative to the solar value ([C/Fe] > +0.7). They can be divided into several sub-classes, depending on the nature and degree of the observed enhancements of their neutron-capture elements, providing information on their likely progenitors. CEMP-s stars (which exhibit enhanced s-process elements) are thought to be enhanced by mass transfer from an evolved AGB companion, while CEMP-no stars (which exhibit no over-abundances of neutron-capture elements) appear to be associated with explosions of the very first generations of stars. High-resolution spectroscopic analyses are generally required in order to make these sub-classifications.Several recent studies have suggested the existence of bimodality in the distribution of absolute carbon abundances among CEMP stars -- most CEMP-no stars belong to a low-C band ((A(C) ˜ 6.5), while most CEMP-s stars reside on a high-C band (A(C) ˜ 8.25). The number of CEMP stars considered by individual studies is, however, quite small, so we have compiled all available high-resolution spectroscopic data for CEMP stars, in order to further investigate the existence of the claimed carbon bi-modality, and to consider what can be learned about the progenitors of CEMP-s and CEMP-no stars based on the observed distribution of A(C) on the individual plateaus.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  1. A fundamental plane for Gamma Ray Bursts with X-Ray plateaus

    NASA Astrophysics Data System (ADS)

    Dainotti, Maria; Petrosian, Vahe'; Postnikov, Sergey; Hernandez, Xavier; Ostrowski, Michal

    2016-06-01

    A class of long Gamma-ray bursts (GRBs) presenting light curves with an extended plateau phase in their X-ray afterglows obey a two parameter correlation (Dainotti et al. 2008) betweenthe rest frame end time of the plateau, T_a, and its corresponding X-ray luminosity, L_{a}. This correlation is a useful tool towards cosmological parameter inferences and yields important constraints on physical GRB models.We here show through an analysis of 122 Swift long GRBs with known redshifts and presentingafterglow plateaus, that including also the peak luminosity in the prompt emission, L_{peak}, as a third parameter, a fundamental plane appears. A careful statistical analysis excludes the possibility of this correlation being due to detection thresholds or observational selection biases. The correlation is tightest when a class-specific GRB sample is defined excluding GRB-SNe, X-ray flashes and short GRBs with extended emission, and required also to have a good data coverage and an almost flat plateau. The intrinsic scatter, σ_{int}=0.27 ± 0.04, for the three-parameter correlation for this specific subclass (40 GRBs) is 53.5% smaller than the (L_{a}, T_a) one,making this the tighest three parameter correlation involving the plateau phase. This result will hence enhance cosmological parameter determinations and GRB model constraints. Finally, we also show that a slightly noisier correlation is also present between L_{peak} and a proxy of the total energy emitted during the plateau phase, the product L_{a}T_{a}, hinting at the presence of an energy scaling between prompt and afterglow phases.

  2. Fractional magnetization plateaus of the spin-1/2 Heisenberg orthogonal-dimer chain: Strong-coupling approach developed from the exactly solved Ising-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Verkholyak, Taras; Strečka, Jozef

    2016-10-01

    The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.

  3. Instability of EDS maglev systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1993-09-01

    Instabilities of an EDS maglev suspension system with 3 D.O.F. and 5 D.O.F. vehicles traveling on a double L-shaped set of guideway conductors have been investigated with various experimentally measured magnetical force data incorporated into the theoretical models. Divergence and flutter are obtained from both analytical and numerical solutions for coupled vibration of the 3 D.O.F. maglev vehicle model. Instabilities of five direction motions (heave, slip, rill, pitch and yaw) are observed for the 4 D.O.F. vehicle model. It demonstrates that system parameters, such as, system damping, vehicle geometry and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

  4. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  5. Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian plateaus

    NASA Astrophysics Data System (ADS)

    Kadinsky-Cade, Katharine; Barazangi, Muawia; Oliver, Jack; Isacks, Bryan

    1981-10-01

    In this study we investigate crustal and uppermost mantle physical properties that characterize some of the continental plateaus of the Middle East. This is done as part of a larger effort to map and compare high-frequency wave propagation at regional distances across the earth's continental plateaus. Thousands of short-period WWSSN seismograms recorded at stations located in the Middle East and produced by earthquakes with epicentral distances less than about 20° were examined visually in an effort to study lateral variations of high-frequency (0.5-2 Hz) seismic wave propagation across this area, particularly to the north of the zone of continental collision between the Africa-Arabian and Eurasian plates. Variations of frequencies and amplitudes of Sn and Lg relative to P are examined and mapped throughout the region, and this work is supplemented by a study of velocities of Pn, Sn, and Lg. Sn amplitude variations are very striking in this area. An important observation of this study is that Sn propagates efficiently beneath a major part of the Turkish and Iranian plateaus. Sn is strongly attenuated, however, in the northernmost portion of the plateaus south of the Black and Caspian seas and in an area between the two seas. These regions are characterized, in general, by active tectonism, including volcanism, faulting, and folding. However, this active tectonism is not restricted to the areas of high Sn attenuation but appears to extend beneath other parts of the Iranian and Turkish plateaus. Patterns of lateral variations in the propagation of Lg are not as consistent as those for Sn. Lg propagates efficiently across Turkey, Iran, and adjacent regions, but the Lg waves that cross the Turkish and Iranian plateaus are weak and have relatively long predominant periods of about 2-5 s. The Lg phase is not observed when the path of propagation crosses the southern Caspian and the Black seas, consistent with the evidence of oceanic-type crustal structure beneath these

  6. Nutrients and pesticides in ground water of the Ozark Plateaus in Arkansas, Kansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Adamski, James C.

    1997-01-01

    A total of 229 ground-water samples were collected from 215 sites as part of the Ozark Plateaus study unit of the National Water-Quality Assessment Program. These samples were collected from 1993 through 1995 using a network of springs and wells with three scale-dependent components. The first component, the study-unit survey, consisted of 99 randomly selected springs and domestic wells in the Springfield Plateau and Ozark aquifers. The second component, two land-use studies, consisted of 42 springs and domestic wells in a poultry-dominated agricultural area and 40 springs and domestic wells in a cattle-dominated agricultural area overlying the Springfield Plateau aquifer. The third component, the small-watershed study, consisted of 4 springs, 18 domestic wells, and 11 monitoring wells in a small basin within the poultry land-use study area. Samples were analyzed for major ions, nutrients, dissolved organic carbon, methylene blue active substances, tritium, and 88 pesticides and metabolites.The water-quality data from these samples were analyzed with descriptive and statistical methods. Nitrite plus nitrate, which was detected more often and in greater concentrations than any of the other nutrients, ranged from less than 0.05 to 25 milligrams per liter as nitrogen. Nitrite plus nitrate concentrations positively correlated to percent agricultural land use around each site. Median nitrite plus nitrate concentrations generally were greater in samples from springs than in samples from wells. Concentrations of nitrite, ammonia, and ammonia plus organic nitrogen were also affected by land use and also by concentrations of dissolved oxygen in the ground water. Concentrations of phosphorus and orthophosphate probably were affected by land use and also by phosphorus solubility. Pesticides were detected in 80 of 229 samples from 73 of 215 sites. A total of 20 pesticides were detected with a maximum of 5 pesticides detected in any 1 sample. The most commonly detected

  7. Progressive Landslides in Uplifted Volcanic Plateaus: Persistent Loci of Channel Perturbation

    NASA Astrophysics Data System (ADS)

    Safran, E. B.; Anderson, S. W.; Mills-Novoa, M.; Othus, S.; Ely, L.; House, P. K.; O'Connor, J. E.; Grant, G.; Fenton, C.; Beebee, R. A.

    2007-12-01

    The semi-arid uplifted volcanic plateaus of the southern interior Columbia River basin contain over 300 large landslides or landslide complexes, ranging in area from several tenths of a km2 to several tens of km2. The distribution of these landslides is dominated by the outcropping of key stratigraphic contacts between coherent, volcanic cap rock atop weak sedimentary or volcaniclastic units in areas of >100 m local relief. The morphologies of many of these landslide complexes suggest a progressive mode of mass movement, with rubble-capped failure slices arrayed downslope at intervals of 10s to 100s of meters and deep tension cracks separating incipient failure blocks from the intact headscarp. Field evidence from the Owyhee River in southeastern Oregon indicates that individual landslide complexes can persist for millions of years. In one reach, for example, remnants of a 1.9 million year old intracanyon lava flow are inset against ancient landslide blocks. In the same location, cosmogenic isotope dating of boulders on a likely dam-burst flood deposit reveal a channel-blocking mass movement that may be as young as Holocene in age. The persistence of these landslide complexes has important implications for channel evolution, as it suggests that, in some environments, sediment supply may be chronically elevated at point sources. On the basis of GIS-based mapping of regional landslides and on field study of individual landslide complexes, we hypothesize that: 1) this sediment supply becomes increasingly dominated by fine-grained material as channels progressively incise into the weak units underlying coherent lava caps; and 2) the mass movements that impinge on the channels become correspondingly more earthflow-like. Loci of persistent landsliding are also subject to episodic variations in channel width due to physical constrictions caused by impinging failure masses. The discrete localization of large landslide complexes by particular stratigraphic and topographic

  8. Pleistocene periglacial cryogenic mounds (lithalsas) on basalt plateaus in the western Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Sebe, Krisztina; Csillag, Gábor

    2015-04-01

    On some basalt plateaus of the western Pannonian Basin, Hungary, fields of circular depressions occur. They are traditionally called "basalt karst' and their formation has been attributed either to collapse over karstifying rocks or to anthropogenic action (quarrying); however, both of these theories are questionable. The depressions are situated between elevations of 350-500 m a.s.l. and are characteristically surrounded by circular raised rims or ramparts. They measure a few m-s (up to ~10 m) in diameter, the ramparts emerge 0.5-1.5 m above the surrounding level ground and encircle a depression of 1-2 (-3) m deep in the middle. Depressions cluster in well delineated, high-density groups, with individual fields containing several dozens of these forms. Neighbouring ramparts are tightly packed, often interfere and depressions can thus coalesce creating composite forms. The ramparts are composed of coarse (dm-sized) basalt blocks, whose material is identical to that of the surrounding terrain and seems to originate from the depression. Many of the depressions host ephemeral ponds. Raised rims exclude formation of these landforms by any karstic processes. The anthropogenic theory is opposed by the lack of the remains of any facilities (e.g. roads), of tools and by the very illogical distribution and geometry of depressions from the point of human use. On the contrary, we interpret these ramparted depressions as being of periglacial origin, remnants of cryogenic mounds. The central depression and the emergent rampart can be well explained by the ice core raising the overlying rock and by the radial downsliding of this material on the ice core to the margins. Within cryogenic mounds, clustering and size of the forms fits the characteristics of perennial frost mound without peat cover, i.e. lithalsas or minerogenic palsas. Cryogenic mounds are important paleoclimatic indicators. Based on modern analogs, these lithalsa scars indicate the former presence of discontinuous

  9. Periphyton communities in streams of the Ozark Plateaus and their relations to selected environmental factors

    USGS Publications Warehouse

    Petersen, James C.; Femmer, Suzanne R.

    2003-01-01

    During August through September of 1993-95, 83 periphyton samples were collected at 51 stream sites in the Ozark Plateaus. These sites were categorized into six land-use categories (20 forest, 18 agriculture, 10 mining, 1 urban, 1 urban/mining, and 1 mix), based on land-use percentages in the basin upstream from the site. Results indicate that periphyton communities of riffles of Ozark streams are affected by natural and land-use related factors. These factors include nutrients, dissolved organic carbon, alkalinity, canopy shading, suspended sediment, embeddedness, stream morphometry, and velocity. For several measures of periphyton communities, statistically significant (p<0.05) differences were found among sites assigned to agriculture, forest, and mining categories. Blue-green algae biovolume, relative abundance of blue-green algae, relative biovolume of diatoms, relative abundance of oligotrophic algae, relative abundance of tolerant taxa, and condition index values were among the measures that differed among land-use categories. Although no environmental factors were significantly correlated with total biovolume, several factors were significantly correlated with biovolume of blue-green algae or biovolume of diatoms. Biovolume of blue-green algae was correlated with percent agriculture land use. Biovolume of diatoms was correlated with orthophosphate, total phosphorus, alkalinity, velocity, embeddedness, and dissolved organic carbon.Diatoms often composed the largest percentage of the biovolume (relative biovolume). Diatom relative biovolume was much higher at mining sites (generally 75 to 90 percent of the total biovolume) than at forest or agriculture sites (generally 15 to 80 percent) and was correlated with several factors, including many land-use related factors. The diatoms Cymbella affinis and Cymbella delicatula and the blue-green algae Calothrix often were the most common (relative abundance and relative biovolume) algae in samples

  10. Combustion Instabilities Modeled

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    NASA Lewis Research Center's Advanced Controls and Dynamics Technology Branch is investigating active control strategies to mitigate or eliminate the combustion instabilities prevalent in lean-burning, low-emission combustors. These instabilities result from coupling between the heat-release mechanisms of the burning process and the acoustic flow field of the combustor. Control design and implementation require a simulation capability that is both fast and accurate. It must capture the essential physics of the system, yet be as simple as possible. A quasi-one-dimensional, computational fluid dynamics (CFD) based simulation has been developed which may meet these requirements. The Euler equations of mass, momentum, and energy have been used, along with a single reactive species transport equation to simulate coupled thermoacoustic oscillations. A very simple numerical integration scheme was chosen to reduce computing time. Robust boundary condition procedures were incorporated to simulate various flow conditions (e.g., valves, open ends, and choked inflow) as well as to accommodate flow reversals that may arise during large flow-field oscillations. The accompanying figure shows a sample simulation result. A combustor with an open inlet, a choked outlet, and a large constriction approximately two thirds of the way down the length is shown. The middle plot shows normalized, time-averaged distributions of the relevant flow quantities, and the bottom plot illustrates the acoustic mode shape of the resulting thermoacoustic oscillation. For this simulation, the limit cycle peak-to-peak pressure fluctuations were 13 percent of the mean. The simulation used 100 numerical cells. The total normalized simulation time was 50 units (approximately 15 oscillations), which took 26 sec on a Sun Ultra2.

  11. Tidal instability in exoplanetary systems evolution

    NASA Astrophysics Data System (ADS)

    Cébron, D.; Moutou, C.; Le Bars, M.; Le Gal, P.; Farès, R.

    2011-02-01

    A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical) instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly) elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.

  12. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  13. Frequency-domain interpretation of the plateaus in laser-assisted recombination and high-order harmonic generation

    SciTech Connect

    Cheng, Taiwang; Li, Xiaofeng; Ao, Shuyan; Wu, Ling-An; Fu, Panming

    2003-09-01

    The plateaus in laser-assisted recombination and high-order harmonic generation are investigated in the frequency domain. It is found that the probability amplitude of finding an electron with a given energy is given by a generalized Bessel function, which can be represented as a coherent superposition of contributions from a few electronic quantum trajectories. This concept is illustrated by comparing the spectral density of the electron with the laser-assisted recombination spectrum. On the other hand, the plateau of high-order harmonic generation reflects the spectral density of the electron at the location of the nucleus after above-threshold ionization.

  14. Magnetization Plateaus of SrCu{sub 2}(BO{sub 3}){sub 2} from a Chern-Simons Theory

    SciTech Connect

    Misguich, G.; Jolicoeur, Th.; Girvin, S. M.

    2001-08-27

    The antiferromagnetic Heisenberg model on the frustrated Shastry-Sutherland lattice is studied by a mapping onto spinless fermions carrying one quantum of statistical flux. Using a mean-field approximation these fermions populate the bands of a generalized Hofstadter problem. Their filling leads to the magnetization curve. For SrCu{sub 2}(BO{sub 3}){sub 2} we reproduce plateaus at 1/3 and 1/4 of the saturation moment and predict a new one at 1/2 . Gaussian fluctuations of the gauge field are shown to be massive at these plateau values.

  15. Nonlinear Dynamics of Single Bunch Instability

    SciTech Connect

    Stupakov, G.V.; Breizman, B.N.; Pekker, M.S.; /Texas U.

    2011-09-09

    A nonlinear equation is derived that governs the evolution of the amplitude of unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement with experimental observations. Microwave single bunch instability in circular accelerators has been observed in many machines. The instability usually arises when the number of particles in the bunch exceeds some critical value, Nc, which varies depending on the parameters of the accelerating regime. Recent observations on the SLC damping rings at SLAC with a new low-impedance vacuum chamber revealed new interesting features of the instability. In some cases, after initial exponential growth, the instability eventually saturated at a level that remained constant through the accumulation cycle. In other regimes, relaxation-type oscillations were measured in nonlinear phase of the instability. In many cases, the instability was characterized by a frequency close to the second harmonic of the synchrotron oscillations. Several attempts have been made to address the nonlinear stage of the instability based on either computer simulations or some specific assumptions regarding the structure of the unstable mode. An attempt of a more general consideration of the problem is carried out in this paper. We adopt an approach recently developed in plasma physics for analysis of nonlinear behavior of weakly unstable modes in dynamic systems. Assuming that the growth rate of the instability is much smaller than its frequency, we find a time dependent solution to Vlasov equation and derive an equation for the complex amplitude of the oscillations valid in the nonlinear regime. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement

  16. Computational methods for probability of instability calculations

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Burnside, O. H.

    1990-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of a dynamic system than can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the roots of the characteristics equation or Routh-Hurwitz test functions are investigated. Computational methods based on system reliability analysis methods and importance sampling concepts are proposed to perform efficient probabilistic analysis. Numerical examples are provided to demonstrate the methods.

  17. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  18. Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Sheets, Charlynn J.; Kozar, Mark D.

    2000-01-01

    Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the

  19. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  20. Ion-Hose Instability in Long Pulse Induction Accelerators

    SciTech Connect

    Caporaso, G J; McCarrick, J F

    2000-08-02

    The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions.

  1. Combustion instability modeling and analysis

    SciTech Connect

    Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  2. Multiple magnetization plateaus and magnetic structures in the S =1/2 Heisenberg model on the checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Morita, Katsuhiro; Shibata, Naokazu

    2016-10-01

    We study the ground state of the S =1/2 Heisenberg model on the checkerboard lattice in a magnetic field by the density matrix renormalization group method with the sine-square deformation. We obtain magnetization plateaus at M /Msat=0 ,1/4 ,3/8 ,1/2 , and 3/4 , where Msat is the saturated magnetization. The obtained 3/4 plateau state is consistent with the exact result, and the 1/2 plateau is found to have a four-spin resonating loop structure similar to the six-spin loop structure of the 1/3 plateau of the kagome lattice. Different four-spin loop structures are obtained in the 1/4 and 3/8 plateaus but no corresponding states exist in the kagome lattice. The 3/8 plateau has a unique magnetic structure of three types of four-spin local quantum states in a 4 √{2 }×2 √{2 } magnetic unit cell with a 16-fold degeneracy.

  3. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    NASA Astrophysics Data System (ADS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-11-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve.

  4. Quantification of subaerial and episodic subglacial erosion rates on high latitude upland plateaus: Cumberland Peninsula, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Margreth, Annina; Gosse, John C.; Dyke, Arthur S.

    2016-02-01

    Long-term rates of subaerial and episodic subglacial erosion by predominately cold-based ice cover are determined for tors on weathered plateaus on Cumberland Peninsula. By measuring terrestrial cosmogenic nuclide concentrations in differentially weathered surfaces on a given tor, we reconstruct the complex exposure and erosion history involving recurring cold-based ice cover. The style and rate of subaerial and subglacial erosion at multiple tor sites on Cumberland Peninsula are assessed with a Monte Carlo approach that computes plausible exposure histories based on a proxy record of global ice volume. Constant subaerial erosion rates by weathering are low (<2 mm ka-1), corroborated by nuclide concentrations measured on two tors located on coastal ridge crests that have likely never been glaciated. Summit plateaus intermittently covered by cold-based ice throughout the Quaternary have experienced episodic subglacial erosion by plucking of fractured bedrock with rates between 1 and 16 mm ka-1. Variation of episodic erosion rates is associated with topographic position of the sampled tors and bedrock fracture density. Most of the tors were last glacially plucked in pre-ultimate glaciations, not during the Wisconsinan glaciation. Furthermore, the new approach provides evidence for the extent of ice coverage during the late Wisconsinan, which is significant if no erratics are available for exposure dating. Despite late Pleistocene intervals of ice cover and glacial plucking, tor-studded landscapes of Cumberland Peninsula are of considerable antiquity.

  5. Turbine instabilities: Case histories

    NASA Technical Reports Server (NTRS)

    Laws, C. W.

    1985-01-01

    Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.

  6. Late Cretaceous - Paleogene forearc sedimentation and accretion of oceanic plateaus and seamounts along the Middle American convergent margin (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.; Baumgartner-Mora, Claudia; Andjic, Goran

    2016-04-01

    The Late Cretaceous-Paleogene sedimentation pattern in space and time along the Middle American convergent margin was controlled by the accretion of Pacific plateaus and seamounts. The accretion of more voluminous plateaus must have caused the temporary extinction of the arc and tectonic uplift, resulting in short lived episodes of both pelagic and neritic biogenic sedimentation. By the Late Eocene, shallow carbonate environments became widespread on a supposed mature arc edifice, that is so far only documented in arc-derived sediments. In northern Costa Rica forearc sedimentation started during the Coniacian-Santonian on the Aptian-Turonian basement of the Manzanillo Terrane. The arrival and collision of the Nicoya Terrane (a CLIP-like, 139-83 Ma Pacific plateau) and the Santa Elena Terrane caused the extinction of the arc during late Campanian- Early Maastrichtian times, indicated by the change to pelagic limestone sedimentation (Piedras Blancas Formation) in deeper areas and shallow-water rudistid - Larger Benthic Foraminfera limestone on tectonically uplifted areas of all terranes. Arc-derived turbidite sedimentation resumed in the Late Maastrichtian and was again interrupted during the Late Paleocene - Early Eocene, perhaps due to the underplating of a yet unknown large seamount. The extinction of the arc resulted in the deposition of the siliceous pelagic Buenavista Formation, as well as the principally Thanetian Barra Honda carbonate platform on a deeply eroded structural high in the Tempisque area. In southern Costa Rica the basement is thought to be the western edge of the CLIP. It is Santonian-Campanian in age and is only exposed in the southwestern corner of Herradura. Cretaceous arc-forearc sequences are unknown, except for the Maastrichtian-Paleocene Golfito Terrane in southeastern Costa Rica. The distribution and age of shallow/pelagic carbonates vs. arc-derived detrital sediments is controlled by the history of accretion of Galápagos hot spot

  7. Terahertz Dynamics of a Topologically Protected State: Quantum Hall Effect Plateaus near the Cyclotron Resonance of a Two-Dimensional Electron Gas.

    PubMed

    Stier, A V; Ellis, C T; Kwon, J; Xing, H; Zhang, H; Eason, D; Strasser, G; Morimoto, T; Aoki, H; Zeng, H; McCombe, B D; Cerne, J

    2015-12-11

    We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency using highly sensitive Faraday rotation measurements. The sample is electrically gated, allowing the electron density to be changed continuously by more than a factor of 3. We observe clear plateaulike and steplike features in the Faraday rotation angle vs electron density and magnetic field (Landau-level filling factor) even at fields or frequencies very close to cyclotron resonance absorption. These features are the high frequency manifestation of quantum Hall plateaus-a signature of topologically protected edge states. We observe both odd and even filling factor plateaus and explore the temperature dependence of these plateaus. Although dynamical scaling theory begins to break down in the frequency region of our measurements, we find good agreement with theory. PMID:26705653

  8. Terahertz Dynamics of a Topologically Protected State: Quantum Hall Effect Plateaus near the Cyclotron Resonance of a Two-Dimensional Electron Gas.

    PubMed

    Stier, A V; Ellis, C T; Kwon, J; Xing, H; Zhang, H; Eason, D; Strasser, G; Morimoto, T; Aoki, H; Zeng, H; McCombe, B D; Cerne, J

    2015-12-11

    We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency using highly sensitive Faraday rotation measurements. The sample is electrically gated, allowing the electron density to be changed continuously by more than a factor of 3. We observe clear plateaulike and steplike features in the Faraday rotation angle vs electron density and magnetic field (Landau-level filling factor) even at fields or frequencies very close to cyclotron resonance absorption. These features are the high frequency manifestation of quantum Hall plateaus-a signature of topologically protected edge states. We observe both odd and even filling factor plateaus and explore the temperature dependence of these plateaus. Although dynamical scaling theory begins to break down in the frequency region of our measurements, we find good agreement with theory.

  9. Rogue Waves and Modulational Instability

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.; Dyachenko, A.

    2015-12-01

    The most plausible cause of rogue wave formation in a deep ocean is development of modulational instability of quasimonochromatic wave trains. An adequate model for study of this phenomenon is the Euler equation for potential flow of incompressible fluid with free surface in 2-D geometry. Numerical integration of these equations confirms completely the conjecture of rogue wave formation from modulational instability but the procedure is time consuming for determination of rogue wave appearance probability for a given shape of wave energy spectrum. This program can be realized in framework of simpler model using replacement of the exact interaction Hamiltonian by more compact Hamiltonian. There is a family of such models. The popular one is the Nonlinear Schrodinger equation (NLSE). This model is completely integrable and suitable for numerical simulation but we consider that it is oversimplified. It misses such important phenomenon as wave breaking. Recently, we elaborated much more reliable model that describes wave breaking but is as suitable as NLSE from the point of numerical modeling. This model allows to perform massive numerical experiments and study statistics of rogue wave formation in details.

  10. Granular Rayleigh-Taylor instability

    SciTech Connect

    Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.; Maaloey, Knut Joergen; Toussaint, Renaud

    2009-06-18

    A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.

  11. The internal structure of oceanic plateaus: inferences from obducted Cretaceous terranes in western Colombia and the Caribbean

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew C.; Tarney, John; Nivia, Alvaro; Marriner, Giselle F.; Saunders, Andrew D.

    1998-07-01

    Although the structure of mantle plume-derived oceanic plateaus has recently been assessed using remote geophysical techniques combined with petrological modelling, it is nevertheless desirable to test whether these (theoretical) rock types (dunites, gabbros and basalts) actually exist, and to establish their geochemical nature. Oceanic plateaus may have initially formed above or near sea level during a short vigorous pulse, and thereafter commonly subside to abyssal depths as the lithosphere cools, thus making sampling of their deeper levels extremely difficult. However, the Cretaceous-age Colombian-Caribbean oceanic plateau was partially accreted against the South American continent so making the imbricated segments available for study. During the process of plateau accretion and imbrication it is predominantly the basaltic layers which are obducted, but parts of the sequence down to layered and banded gabbros with associated pyroxenites and dunites (sometimes foliated) can be exposed where the imbricate thrusting brings up deeper levels. Most of the upper crustal sequence in western Colombia is composed of basaltic pillowed and massive flows and sills that are chemically uniform and `undepleted' relative to normal mid-ocean ridge basalts. Komatiites and (more abundant) picrites are found at intervals, and appear to occur near the base of the sequence. In these zones both `depleted' and moderately `enriched' basalt and komatiite compositions occur, and may result from dynamic partial melting and mixing processes associated with the high-temperature part of the plume. It is possible to integrate these compositional characteristics into a general model for oceanic plateau structure where the rate of magma supply is in excess of that which can be accommodated by normal spreading processes, thus leading to extrusion of flows and the emplacement of sills and high-level magma chambers (but relatively few dykes). The dense and chemically heterogeneous ultramafic magmas

  12. Front instability in stratified media

    NASA Astrophysics Data System (ADS)

    Beltrame, Philippe

    2013-04-01

    Preferential flow in unsaturated soil may due to local heterogeneities like worm burrows but also to front instability leading to unstable finger flow (fingered pattern) in sandy textured soils. This last spontaneous preferential flow cannot be described by the standard Richards equation. Cueto-Felgueroso and Juanes proposed recently a phase field model in order to take into account a macroscopic surface tension effect at the front [1]. Their model simulates successfully the interface instability of an advancing front. We aim at simulating and understanding front instability passing a textural soil discontinuity for which the finger flow is particularly visible. We consider sand layers with different characteristics such as granulometry. Moreover, the wettability is taken into account by adding a hydrophobic term in the free energy of the phase field model. The hydrophobicity part is not only relevant for repellent soil but also to model the ultra-thin films [2]. Therefore, in our framework, this may have an influence at the front because the water saturation is nearly zero. Such a wettability influence on infiltration in porous media has recently been measured in [3]. The governing equation is analogous to the lubrication equation for which we pointed out the specific numerical difficulties [4]. A numerical code to perform time integration and bifurcation analysis was developed in [4] allowing to determine the onset of instability and its resulting dynamics in the parameter space [5]. We compute the parameter range for which the front stops when reaching the layers interface. As in [4], there is two main mechanisms that allow water to cross over the discontinuity. A first mechanism, called «depinning», leads to an intermittent flow and the second one, to a front instability and then to a finger flow. There is a parameter domain where both instabilities are present leading to a complex spatio-temporal dynamics. Finally, it is noteworthy that the wettability

  13. Reduced modeling of the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Jamroz, Ben F.

    2009-06-01

    well understood. Many recent numerical investigations of this problem are performed in a local domain, where the global cylindrical background state is projected onto a local Cartesian domain. The resulting system is then numerically modeled within a "shearing box" framework to obtain estimates of angular momentum transport and therefore accretion. However, the simplified geometry of the local domain, and the projection of global quantities leads to a model where the instability is able to grow unboundedly. Utilizing disparate characteristic scales, this thesis presents a reduced asymptotic model for the magnetorotational instability that allows a large scale feedback of local stresses (Reynolds, Maxwell and mixed) onto the projected background state. This system is investigated numerically to determine the impact of allowing this feedback on the saturated level of angular momentum transport.

  14. Baroclinic instability in stellar radiation zones

    SciTech Connect

    Kitchatinov, L. L.

    2014-03-20

    Surfaces of constant pressure and constant density do not coincide in differentially rotating stars. Stellar radiation zones with baroclinic stratification can be unstable. Instabilities in radiation zones are of crucial importance for angular momentum transport, mixing of chemical species, and, possibly, for magnetic field generation. This paper performs linear analysis of baroclinic instability in differentially rotating stars. Linear stability equations are formulated for differential rotation of arbitrary shape and then solved numerically for rotation nonuniform in radius. As the differential rotation increases, r- and g-modes of initially stable global oscillations transform smoothly into growing modes of baroclinic instability. The instability can therefore be interpreted as stability loss to r- and g-modes excitation. Regions of stellar parameters where r- or g-modes are preferentially excited are defined. Baroclinic instability onsets at a very small differential rotation of below 1%. The characteristic time of instability growth is about 1000 rotation periods. Growing disturbances possess kinetic helicity. Magnetic field generation by the turbulence resulting from baroclinic instability in differentially rotating radiation zones is therefore possible.

  15. Secondary instabilities in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Ng, Lian; Erlebacher, Gordon

    1990-01-01

    Secondary instabilities are examined in compressible boundary layers at Mach numbers M(sub infinity) = 0, 0.8, 1.6, and 4.5. It is found that there is a broad-band of highly unstable 3-d secondary disturbances whose growth rates increase with increasing primary wave amplitude. At M(sub infinity) is less than or equal to 1.6, fundamental resonance dominates at relatively high (2-d) primary disturbance amplitude, while subharmonic resonance is characterized by a low (2-d) primary amplitude. At M(sub infinity) = 4.5, the subharmonic instability which arises from the second mode disturbance is the strongest type of secondary instability. The influence of the inclination, theta, of the primary wave with respect to the mean flow direction on secondary instability is investigated at M(sub infinity) = 1.6 for small to moderate values of theta. It is found that the strongest fundamental instability occurs when the primary wave is inclined at 10 deg to the mean flow direction, although a 2-d primary mode yields the most amplified subharmonic. The subharmonic instability at a high value of theta (namely, theta = 45 deg) is also discussed. Finally, a subset of the secondary instability results are compared against direct numerical simulations.

  16. Elliptical instability in the planetary fluid cores

    NASA Astrophysics Data System (ADS)

    Moradi, Ali

    Elliptical instability may be excited in any rotating flow with elliptically deformed streamlines. Investigating this instability in containers with spheroidal or ellipsoidal boundaries is of geophysical and astrophysical interest as many stars and planets are either rotating ellipsoidal fluid bodies or have substantial fluid cores which are either ellipsoidal, in the absence of a solid inner core, or ellipsoidal shells such as the Earth's fluid core; elliptical instability may be excited in these bodies as a result of the gravitational pull of a secondary body such as a moon or a large asteroid orbiting these bodies. In this thesis, the nonlinear evolution of elliptical instability in an inviscid incompressible rotating triaxial ellipsoid is numerically studied using the least-square finite element method. After validating the method by reproducing some known results, it is applied to other configurations in order to investigate some open questions on this subject, namely, the effects of the oblateness of the ellipsoid and the frequency ratio of the orbital speed of the secondary body on the evolution of the elliptical instability. We have found that if the parameters of the system, i.e. the flattening ratio and the frequency ratio of the background rotation, are in the range of the spin-over instability, a repetitive three-dimensional rigorous motion is maintained indefinitely; otherwise, instability may be excited initially, once the streamlines become elliptical, for certain ranges of the system parameters; however, as time elapses the motion becomes two dimensional with small displacement amplitudes in x- and y- directions.

  17. The plasmoid instability during asymmetric inflow magnetic reconnection

    SciTech Connect

    Murphy, Nicholas A.; Young, Aleida K.; Shen, Chengcai; Lin, Jun; Ni, Lei

    2013-06-15

    Theoretical studies of the plasmoid instability generally assume that the reconnecting magnetic fields are symmetric. We relax this assumption by performing two-dimensional resistive magnetohydrodynamic simulations of the plasmoid instability during asymmetric inflow magnetic reconnection. Magnetic asymmetry modifies the onset, scaling, and dynamics of this instability. Magnetic islands develop preferentially into the weak magnetic field upstream region. Outflow jets from individual X-points impact plasmoids obliquely rather than directly as in the symmetric case. Consequently, deposition of momentum by the outflow jets into the plasmoids is less efficient, the plasmoids develop net vorticity, and shear flow slows down secondary merging between islands. Secondary merging events have asymmetry along both the inflow and outflow directions. Downstream plasma is more turbulent in cases with magnetic asymmetry because islands are able to roll around each other after exiting the current sheet. As in the symmetric case, plasmoid formation facilitates faster reconnection for at least small and moderate magnetic asymmetries. However, when the upstream magnetic field strengths differ by a factor of 4, the reconnection rate plateaus at a lower value than expected from scaling the symmetric results. We perform a parameter study to investigate the onset of the plasmoid instability as a function of magnetic asymmetry and domain size. There exist domain sizes for which symmetric simulations are stable but asymmetric simulations are unstable, suggesting that moderate magnetic asymmetry is somewhat destabilizing. We discuss the implications for plasmoid and flux rope formation in solar eruptions, laboratory reconnection experiments, and space plasmas. The differences between symmetric and asymmetric simulations provide some hints regarding the nature of the three-dimensional plasmoid instability.

  18. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  19. Electrokinetic instability of isotachophoresis shocks

    NASA Astrophysics Data System (ADS)

    Garcia, Giancarlo; Santiago, Juan; Mani, Ali

    2013-11-01

    Isotachophoresis (ITP) is an electrokinetic focusing technique used in a variety of life science and analytical chemistry applications. In ITP, an electrokinetic shock wave forms at the interface between leading and trailing electrolytes with relatively high and low conductivities. The ITP interface is self-sharpening, as restoring electromigration fluxes counteract molecular diffusion. However, the large electric field gradient at the shock interface also gives rise to free charge and strong electrostatic body forces. At large applied currents, electrostatic forces cause recirculating flows which destabilize the ITP interface. We performed stability analysis and direct simulation of ITP shocks through numerical solutions to the coupled Nernst-Planck and Navier-Stokes equations using a quasi-electroneutral approximation. In both experiments and numerical simulations, we observe two modes of instability: 1) a distorted ITP interface which is steady in time, and 2) an oscillating perturbation which persists. In addition, at the highest simulated electric fields, we observe transition towards more chaotic oscillatory modes. We use our stability analysis and numerical simulations to characterize instability of ITP shocks using two dimensionless parameters.

  20. Flow instabilities in turbomachines

    NASA Astrophysics Data System (ADS)

    Greitzer, E. M.

    Instabilities occurring in systems involving the movement of a fluid through pipes, ducts, etc., by means of turbomachinery are discussed. While static instabilities may be inferred from system transient performance that is viewed as a sequence of quasi-steady states, such parameters as system interfaces and capacitances must be included in the prediction of dynamic instability, since they play an essential role in determining the transient response of the system to disturbances. A pumping system can be statically stable and still exhibit dynamic instability. Attention is given to rotating stall compressor instability, inlet distortion effects on axial compressor instability, the stability effects of downstream components, and the stability of centrifugal compressors and pumps.

  1. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  2. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  3. Dynamic Instability of Barlike Modes

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Pickett, Brian K.; Bate, Matthew R.; Imamura, James N.; Brandl, Andreas; Sterzik, Michael F.

    Numerical simulations during the 1980's established that prompt binary formation (or ``fission'') through dynamic growth of barlike modes is aborted by gravitational torques. Because these instabilities may occur during star formation and because their outcome over long times is still uncertain, we have combined various linear analyses with simulations by hydrodynamics codes to refine our understanding. We show that it is in fact the torques which cause nonlinear saturation of the mode amplitude. Excellent agreement for the early nonlinear phase is obtained using radically different hydrodynamics codes. However, the ultimate outcome is sensitive to assumptions about dissipative heating and is also somewhat code-dependent.

  4. Historical land-use changes and potential effects on stream disturbance in the Ozark Plateaus, Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.; Primm, Alexander T.

    1994-01-01

    Ozarks streams have been aggraded by substantial quantities of gravel beginning at or near the time of European settlement. Historical data illustrate multiple, significant changes in land use that may have contributed to stream disturbance. The earliest change was replacement of riparian forest with cultivated fields and pasture, followed by extensive harvesting of shortleaf pine and oak during 1870 to 1920. Selective cutting of timber, use of livestock for skidding logs, and avoidance of steep slopes minimized increases in runoff and sediment supply from logging of uplands. Expanded use of valley bottoms for agriculture and roads, and extreme regional floods from 1895 to 1915 probably initiated significant stream disturbance during this period. The period during 1920-60 included the institution of annual burning of uplands, increased open-range grazing, and increased use of marginal land for row crops. Models for land-use controls on runoff and erosion indicate that this period should have been the most effective in creating stream disturbance. Historical sources corroborate that upland erosion was severe on small areas used for row crops and moderate on large areas subjected to seasonal burning. The most severe effect on streams, however, probably occurred during this period as a result of destruction of riparian vegetation by open-range livestock. From 1960-93, cultivated fields and pasture decreased, while cattle populations increased. Whereas some riparian areas have reverted to bottomland forest, this stabilizing effect occurs on only a small portion of valley- bottom land. Recovery processes aided by riparian vegetation are limited by channel instability and frequent, large floods.

  5. Nonlocal magnetorotational instability

    SciTech Connect

    Mikhailovskii, A. B.; Erokhin, N. N.; Lominadze, J. G.; Galvao, R. M. O.; Churikov, A. P.; Kharshiladze, O. A.; Amador, C. H. S.

    2008-05-15

    An analytical theory of the nonlocal magnetorotational instability (MRI) is developed for the simplest astrophysical plasma model. It is assumed that the rotation frequency profile has a steplike character, so that there are two regions in which it has constant different values, separated by a narrow transition layer. The surface wave approach is employed to investigate the MRI in this configuration. It is shown that the main regularities of the nonlocal MRI are similar to those of the local instability and that driving the nonaxisymmetric MRI is less effective than the axisymmetric one, also for the case of the nonlocal instability. The existence of nonlocal instabilities in nonmagnetized plasma is predicted.

  6. Streaming instability of aggregating slime mold amoebae

    NASA Astrophysics Data System (ADS)

    Levine, Herbert; Reynolds, William

    1991-05-01

    We propose a new model of aggregation in the cellular slime mold D. Discoideum. Our approach couples the excitable signaling system to amoeba chemotaxis; the resultant system of equations is tractable to analytical and numerical approaches. Using our model, we derive the existence of a streaming instability for the concentric target aggregation pattern.

  7. Zeeman effect in superconducting two-leg ladders: irrational magnetization plateaus and exceeding the Pauli limit.

    PubMed

    Roux, G; White, S R; Capponi, S; Poilblanc, D

    2006-08-25

    The effect of a parallel magnetic field on superconducting two-leg ladders is investigated numerically. The magnetization curve displays an irrational plateau at a magnetization equal to the hole density. Remarkably, its stability is fundamentally connected to the existence of a well-known magnetic resonant mode. Once the zero-field spin gap is suppressed by the field, pairs acquire a finite momentum characteristic of a Fulde-Ferrell-Larkin-Ovchinnikov phase. In addition, Sz = 0 triplet superconducting correlations coexist with singlet ones above the irrational plateau. This provides a simple mechanism in which the Pauli limit is exceeded as suggested by recent experiments.

  8. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- fish communities in streams of the Ozark Plateaus and their relations to selected environmental factors

    USGS Publications Warehouse

    Petersen, James C.

    1998-01-01

    Fish communities from 22 reaches at 18 stations in the Ozark Plateaus were sampled in 1993, 1994, and 1995. The 18 stations were chosen to represent selected combinations of major environmental factors (geology/physiographic area, land use, and basin size). Additional physical, chemical, and biological factors also were measured for each of the 22 reaches and the influence of these factors upon the fish communities was investigated. Fish community samples collected at the 22 reaches identified differences in these communities that can be attributed to differences in land use and related water-quality and habitat characteristics. Communities from agriculture reaches tended to have more species, increased relative abundance of stonerollers and members of the sucker family, and decreased relative abundance of members of the sunfish and darter families. Several groups of environmental factors (concentrations of nutrients, organic carbon, suspended sediment, and dissolved oxygen; measures related to ionic strength; measures related to riparian vegetation; measures related to substrate; and measures related to stream size) appear to be related to land-use differences and fish community differences. Three multivariate analysis techniques (two ordination techniques and a classification technique) yielded similar results when applied to the fish community data. Fish communities from reaches with more similar land use in their basins and with similar drainage areas generally were grouped closer together in the analysis. Water quality, substrate, stream morphology, and riparian measures appear to be affecting fish communities at these reaches. The relations between land use, stream size, and fish communities have implications for waterquality assessments of Ozark streams. Compared to other parts of the United States, many fish species live in the Ozark Plateaus. At least 19 of these species are endemic to the Ozarks area. Many of these species are intolerant of habitat or

  9. Instabilities In The Flow Between Rotating Disks

    NASA Astrophysics Data System (ADS)

    Moisy, F.; Gauthier, G.; Gondret, P.; Rabaud, M.

    Instabilities in the flow between two close rotating disks enclosed by a cylinder are investigated experimentally. This flow undergoes a large gallery of instability patterns, presented in the plane of parameters (Reb, Ret) of the Reynolds numbers based on the velocity of each disk and the distance between them. The corotation case and the counter-rotation case with low counter-rotation ratio are very similar to the rotor-stator case: instabilities of the Bödewadt type boundary layer leads to axisymmetric vortices and positive spirals. The counter-rotation case with higher counter-rotation ratio is more complex: above a given rotation ratio, the radial recirculation flow gets organized in a two-cell structure with the apparition of a stagnation circle on the slower disk. A new kind of instability pattern is observed, called negative spirals, that may coexist with the positive spirals (Gauthier et al, subm. J. Fluid Mech. 2001). This new spiral pattern seems to arise from an azimuthal shear layer instability, rather than a boundary layer instability as for the two other patterns. Negative spirals are characterized for different aspect ratios (azimuthal mode, phase velocity), allowing comparisons with recent numerical simulations (Lopez et al, to appear in J. Fluid Mech. 2002).

  10. Transverse coherent instability of a bunch in a rectangular potential well

    SciTech Connect

    Balbekov, V.; /Fermilab

    2006-04-01

    Theory of transverse instability of a bunch in a rectangular potential well is developed. Series of equations adequately describing the instability is derived and solved both analytically and numerically. Dependence of the instability increment and threshold on bunch factor is investigated for various beam coupling impedances. The theory is applied to the Fermilab Recycler Ring.

  11. Plasma Instabilities in Heavy Ion Collisions

    SciTech Connect

    Attems, M.; Rebhan, A.; Strickland, M.

    2011-05-23

    Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly coupled quark-gluon plasma. The Chromo-Weibel instabilities have been proposed as a possible mechanism for the fast apparent thermalization of the quark-gluon plasma and have been extensively studied in stationary anisotropic plasmas using the so-called hard-loop approximation. The generalization to the hard-expanding-loop (HEL) formalism allows the (numerical) calculation of the time evolution of gluonic mean fields in the more realistic dynamical case of anisotropic expansion.

  12. Interplay of instabilities in mounded surface growth

    SciTech Connect

    Chakrabarti, Buddhapriya; Dasgupta, Chandan

    2005-02-01

    We numerically study a one-dimensional conserved growth equation with competing linear (Ehrlich-Schwoebel) and nonlinear instabilities. As a control parameter is varied, this model exhibits a nonequilibrium phase transition between two mounded states, one of which exhibits slope selection and the other does not. The coarsening behavior of the mounds in these two phases is studied in detail. In the absence of noise, the steady-state configuration depends crucially on which of the two instabilities dominates the early time behavior.

  13. Mixed Pierce-two-stream instability development in an extraction system of a negative ion source.

    PubMed

    Barminova, H Y; Chikhachev, A S

    2016-02-01

    Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions. PMID:26931917

  14. Buckling instability in arteries.

    PubMed

    Vandiver, Rebecca M

    2015-04-21

    Arteries can become tortuous in response to abnormal growth stimuli, genetic defects and aging. It is suggested that a buckling instability is a mechanism that might lead to artery tortuosity. Here, the buckling instability in arteries is studied by examining asymmetric modes of bifurcation of two-layer cylindrical structures that are residually stressed. These structures are loaded by an axial force, internal pressure and have nonlinear, anisotropic, hyperelastic responses to stresses. Strain-softening and reduced opening angle are shown to lower the critical internal pressure leading to buckling. In addition, the ratio of the media thickness to the adventitia thickness is shown to have a dramatic impact on arterial instability.

  15. A Compilation of Provisional Karst Geospatial Data for the Interior Low Plateaus Physiographic Region, Central United States

    USGS Publications Warehouse

    Taylor, Charles J.; Nelson, Hugh L.

    2008-01-01

    Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.

  16. Turing instabilities on Cartesian product networks

    PubMed Central

    Asllani, Malbor; Busiello, Daniel M.; Carletti, Timoteo; Fanelli, Duccio; Planchon, Gwendoline

    2015-01-01

    The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory. PMID:26245138

  17. Turing instabilities on Cartesian product networks.

    PubMed

    Asllani, Malbor; Busiello, Daniel M; Carletti, Timoteo; Fanelli, Duccio; Planchon, Gwendoline

    2015-01-01

    The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory. PMID:26245138

  18. Oscillatory interfacial instability between miscible fluids

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar

    Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.

  19. Filtering of non-linear instabilities

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1978-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.

  20. Turing instabilities on Cartesian product networks

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Busiello, Daniel M.; Carletti, Timoteo; Fanelli, Duccio; Planchon, Gwendoline

    2015-08-01

    The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory.

  1. Imaging in carpal instability.

    PubMed

    Ramamurthy, N K; Chojnowski, A J; Toms, A P

    2016-01-01

    Carpal instability is a complex and heterogeneous clinical condition. Management requires accurate identification of structural injury with an understanding of the resultant movement (kinematic) and load transfer (kinetic) failure. Static imaging techniques, such as plain film radiography, stress views, ultrasound, magnetic resonance, MR arthrography and computerized tomography arthrography, may accurately depict major wrist ligamentous injury. Dynamic ultrasound and videofluoroscopy may demonstrate dynamic instability and kinematic dysfunction. There is a growing evidence base for the diagnostic accuracy of these techniques in detecting intrinsic ligament tears, but there are limitations. Evidence of their efficacy and relevance in detection of non-dissociative carpal instability and extrinsic ligament tears is weak. Further research into the accuracy of existing imaging modalities is still required. Novel techniques, including four-dimensional computerized tomography and magnetic resonance, can evaluate both cross-sectional and functional carpal anatomy. This is a narrative review of level-III studies evaluating the role of imaging in carpal instability. PMID:26586689

  2. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  3. Influence of surface scattering on the anomalous conductance plateaus in an asymmetrically biased InAs/In(0.52)Al(0.48)As quantum point contact.

    PubMed

    Das, Partha P; Bhandari, Nikhil K; Wan, Junjun; Charles, James; Cahay, Marc; Chetry, Krishna B; Newrock, Richard S; Herbert, Steven T

    2012-06-01

    We study of the appearance and evolution of several anomalous (i.e., G < G(0) D 2e(2)/h) conductance plateaus in an In(0.52)Al(0.48)As/InAs quantum point contact (QPC). This work was performed at T = 4:2 K as a function of the offset bias ΔV(G) between the two in-plane gates of the QPC. The number and location of the anomalous conductance plateaus strongly depend on the polarity of the offset bias. The anomalous plateaus appear only over an intermediate range of offset bias of several volts. They are quite robust, being observed over a maximum range of nearly 1 V for the common sweep voltage applied to the two gates. These results are interpreted as evidence for the sensitivity of the QPC spin polarization to defects (surface roughness and impurity (dangling bond) scattering) generated during the etching process that forms the QPC side walls. This assertion is supported by non-equilibrium Green function simulations of the conductance of a single QPC in the presence of dangling bonds on its walls. Our simulations show that a spin conductance polarization as high as 98% can be achieved despite the presence of dangling bonds. The maximum in is not necessarily reached where the conductance of the channel is equal to 0:5G(0).

  4. Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains.

    PubMed

    Zauner, V; Ganahl, M; Evertz, H G; Nishino, T

    2015-10-28

    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S  =  1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetisation plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalised difference to the magnetisation of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalised excess magnetisation. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalised excess longitudinal magnetisation agrees exactly with the particle density of TB fermions. PMID:26444495

  5. Baroclinic instability of a buoyant coastal current

    NASA Astrophysics Data System (ADS)

    Hetland, Robert

    2014-05-01

    Classic models of baroclinic instability, notably the Eady model, depend on the Rossby (or Richardson) number as the sole non-dimensional parameter. Inclusion of a sloping bottom requires an additional parameter, the slope Burger number, Bu = αNf-1, where α is the bottom slope. Numerical simulations of the evolution of instabilities along the edge of a coastally trapped buoyant flow suggest that the slope may help to stabilize the flow when the deformation radius is similar to or larger than the with of the buoyant flow, that is, the flow is stable when the slope Burger number is larger than about 0.3. In unstable cases, Bu < 0.3, baroclinic instabilities in the flow cause the isopycnals to relax, thereby increasing the local Burger number until the critical condition, Bu ≃ 0.3, is met. At this point the instabilities no longer grow in time, preventing further offshore buoyancy flux by the eddies. This final state corresponds approximately to the case where the slope of the ground is similar to the slope of the mean isopycnal surfaces. The nonlinear, three-dimensional numerical simulations are in basic agreement with one-dimensional linear stability analysis, with a few key exceptions. Notably, numerical simulations suggest that cross-shelf buoyancy fluxes are strongest in within the bottom boundary layer, showing a similar pattern to continental shelf waves in the vertical structure of current and tracer variability. Idealized simulations show a marked similarity to instabilities along the Mississippi/Atchafalaya plume front, as seen in observations and realistic regional models. These eddies have been shown to be important in Lagrangian transport of surface particles, notably oil spill trajectory prediction, and create patchiness in bottom dissolved oxygen distributions during periods of summertime seasonal hypoxia.

  6. Combustion instability modeling and analysis

    SciTech Connect

    Santoro, R.J.; Yang, V.; Santavicca, D.A.

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  7. Linking Slab Break-Off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Yildirim, C.; Cosentino, D.; Strecker, M. R.

    2015-12-01

    The Central and Eastern Anatolian plateaus are integral parts of the world's third largest orogenic plateau. Geophysical surveys that have provided insights into the crust, lithosphere, and mantle beneath Eastern Anatolia are now accompanied by recent work in Central Anatolia constraining uplift along its northern and southern margins. Together with predictions from geodynamic models, the observations can be integrated to identify probable mechanisms of plateau growth. A changeover from shortening to extension along the southern margin of Central Anatolia coeval with the start of uplift in the latest Miocene is likely associated with oceanic slab break-off following Arabia-Eurasia collision. This interpretation is supported by tomography, seismicity, and the pattern of uplift. Based on geological observations and model predictions, slab break-off likely occurred first beneath Eastern Anatolia in middle Miocene time and propagated westward toward Cyprus by the latest Miocene. Uplift at the northern margin of Central Anatolia appears to result from crustal shortening starting in the late Miocene, which has been linked to the broad restraining bend of the North Anatolian Fault (NAF). The uplift history of the Central Anatolian interior is unclear, although shortening was superseded by extension in the late Miocene. This change in the deformation style coincides with faster retreat of the Hellenic trench as well as uplift of the northern and southern margins of Central Anatolia. These different events may be linked, as faster retreat of the Hellenic trench has been predicted to occur after slab break-off, which could have induced extension of Central Anatolia and helped to form the NAF through accelerated westward escape of Anatolia. Overall, geochronologic evidence supports the hypothesis that tectonic and geodynamic plateau-forming activity throughout the Aegean-Anatolian domain in the Miocene defines a series of events that may all be linked to slab break-off.

  8. Identification and spatial distribution of light-toned deposits enriched in Al-phyllosilicates on the plateaus around Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Flahaut, J.; Quantin, C.; Allemand, P.

    2009-12-01

    The plateaus around Valles Marineris consist in series of mafic rocks suggested to be flood basalts (McEwen et al., 1998), lavas interbedded with sediments (Malin and Edgett, 2000), layered intrusive rocks (Williams et al., 2003), or lava flows dated from the Noachian to the late Hesperian epochs (Scott and Carr, 1978). Recent studies show the occurrence of light layered deposits of hundred meters thick cropping out on plateaus near Ius Chasma, Melas Chasma, Candor Chasma, Juventae Chasma and Ganges Chasma deposited during the Hesperian epoch by fluvio-lacustrine processes (Weitz et al., 2009), or by air-fall processes (Le Deit et al., 2009). These layered deposits are enriched in hydrated minerals including opaline silica (Milliken et al., 2008), hydroxylated ferric sulfates (Bishop et al., 2009), and possibly Al-rich phyllosilicates (Le Deit et al., 2009). We identified another type of formation corresponding to light-toned massive deposits cropping out around Valles Marineris. It appears that these light-toned deposits are associated to bright, rough, and highly cratered terrains, located beneath a dark and thin capping unit. Previous studies report the occurrence of phyllosilicates on few locations around Valles Marineris based on OMEGA data analyses (Gondet et al., 2007; Carter et al., 2009). The analysis of CRISM data show that the light-toned deposits are associated with spectra displaying absorption bands at 1.4 μm, 1.9 μm, and a narrow band at 2.2 μm. These spectral characteristics are consistent with the presence of Al-rich phyllosilicates such as montmorillonite, or illite in the light-toned deposits. They constitute dozens of outcrops located on the plateaus south and east of Coprates Chasma and Capri Chasma, and west of Ganges Chasma. All outcrops investigated so far are present over Noachian terrains mapped as the unit Npl2 by Scott and Tanaka (1986), and Witbeck et al. (1991). These light-toned deposits could result from in situ aqueous alteration

  9. Scaling the Incompressible Richtmyer-Meshkov Instability

    SciTech Connect

    Cotrell, D; Cook, A

    2007-01-09

    We derive a scaling relation for Richtmyer-Meshkov instability of incompressible fluids. The relation is tested using both numerical simulations and experimental data. We obtain collapse of growth rates for a wide range of initial conditions by using vorticity and velocity scales associated with the interfacial perturbations and the acceleration impulse. A curve fit to the collapsed growth rates yields a fairly universal model for the mixing layer thickness versus time.

  10. Relativistic fluid model of the resistive hose instability

    SciTech Connect

    Siambis, J.G. )

    1992-10-01

    A systematic analysis of the hose instability using the relativistic fluid formulation is reported. In its basic nature, the hose instability is a macroscopic, low-frequency instability, hence a fluid model should, in principle, give an accurate account of the hose instability. It has been found that for zeroth-order beam displacements, giving rise to rigid beam displacements, the fluid wave equation and resulting dispersion relation are identical to the spread-mass model and the energy-group model results. When first-order fluid displacements are included as well, giving rise to compressible, nonfrozen displacements in the axial direction and beam cross-section distortion in the radial direction, then there is obtained a wave equation similar, but not identical to the multicomponent model. The dispersion relation is solved for numerically. The hose instability growth rate is found to be similar to the multicomponent model result, over part of the beam frame, real hose frequency range.

  11. Generalized lower-hybrid-drift instability. [of plasma

    NASA Technical Reports Server (NTRS)

    Hsia, J. B.; Chiu, S. M.; Hsia, M. F.; Chou, R. L.; Wu, C. S.

    1979-01-01

    The theory of lower-hybrid-drift instability is extended to include a finite value of the component of wave vector parallel to the ambient magnetic field so that the analysis bridges the usual lower-hybrid-drift instability of flute modes and the modified-two-stream instability. The present theory also includes electromagnetic and ambient magnetic field-gradient effects. It is found that in the cold-electron limit the density and magnetic gradients can qualitatively modify the conclusion obtained in the early theory of the modified-two-stream instability. For example, even if the relative drift far exceeds the Alfven speed of the plasma, the instability may still persist. This result is in contrast to that established in the literature. When the electron temperature is finite, the problem is complicated. Numerical solutions are obtained for a number of cases.

  12. Streaming instability of slime mold amoebae: An analytical model

    NASA Astrophysics Data System (ADS)

    Höfer, Thomas; Maini, Philip K.

    1997-08-01

    During the aggregation of amoebae of the cellular slime mould Dictyostelium, the interaction of chemical waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming instability. A simple, analytically tractable, model of Dictyostelium aggregation is developed to test this idea. The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynamics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and dispersion relation for cell streaming with the previous findings of model simulations and numerical stability analyses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is proposed.

  13. Linear analysis of incompressible Rayleigh-Taylor instability in solids.

    PubMed

    Piriz, A R; Cela, J J López; Tahir, N A

    2009-10-01

    The study of the linear stage of the incompressible Rayleigh-Taylor instability in elastic-plastic solids is performed by considering thick plates under a constant acceleration that is also uniform except for a small sinusoidal ripple in the horizontal plane. The analysis is carried out by using an analytical model based on the Newton second law and it is complemented with extensive two-dimensional numerical simulations. The conditions for marginal stability that determine the instability threshold are derived. Besides, the boundary for the transition from the elastic to the plastic regime is obtained and it is demonstrated that such a transition is not a sufficient condition for instability. The model yields complete analytical solutions for the perturbation amplitude evolution and reveals the main physical process that governs the instability. The theory is in general agreement with the numerical simulations and provides useful quantitative results. Implications for high-energy-density-physics experiments are also discussed.

  14. Linear analysis of incompressible Rayleigh-Taylor instability in solids

    SciTech Connect

    Piriz, A. R.; Lopez Cela, J. J.; Tahir, N. A.

    2009-10-15

    The study of the linear stage of the incompressible Rayleigh-Taylor instability in elastic-plastic solids is performed by considering thick plates under a constant acceleration that is also uniform except for a small sinusoidal ripple in the horizontal plane. The analysis is carried out by using an analytical model based on the Newton second law and it is complemented with extensive two-dimensional numerical simulations. The conditions for marginal stability that determine the instability threshold are derived. Besides, the boundary for the transition from the elastic to the plastic regime is obtained and it is demonstrated that such a transition is not a sufficient condition for instability. The model yields complete analytical solutions for the perturbation amplitude evolution and reveals the main physical process that governs the instability. The theory is in general agreement with the numerical simulations and provides useful quantitative results. Implications for high-energy-density-physics experiments are also discussed.

  15. Instabilities of spiral shocks - I. Onset of wiggle instability and its mechanism

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi; Koda, Jin

    2004-03-01

    We found that loosely wound spiral shocks in an isothermal gas disc caused by a non-axisymmetric potential are hydrodynamically unstable, if the shocks are strong enough. High-resolution, global hydrodynamical simulations using three different numerical schemes, i.e. Advection Upstream Splitting Method (AUSM), Cubic Interpolated Propagation (CIP) and Smoothed Particle Hydrodynamics (SPH), show similarly that trailing spiral shocks with the pitch angle of larger than ~10° wiggle, and clumps are developed in the shock-compressed layer. The numerical simulations also show clear wave crests that are associated with ripples of the spiral shocks. The spiral shocks tend to be more unstable in a rigidly rotating disc than in a flat rotation. This instability could be an origin of the secondary structures of spiral arms, i.e. the spurs/fins, observed in spiral galaxies. In spite of this local instability, the global spiral morphology of the gas is maintained over many rotational periods. The Kelvin-Helmholtz (K-H) instability in a shear layer behind the shock is a possible mechanism for the wiggle instability. The Richardson criterion for the K-H stability is expressed as a function of the Mach number, the pitch angle and the strength of the background spiral potential. The criterion suggests that spiral shocks with smaller pitch angles and smaller Mach numbers would be more stable, and this is consistent with the numerical results.

  16. Gauging magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Herron, Isom; Goodman, Jeremy

    2010-08-01

    Previously (Z. Angew. Math. Phys. 57:615-622, 2006), we examined the axisymmetric stability of viscous resistive magnetized Couette flow with emphasis on flows that would be hydrodynamically stable according to Rayleigh’s criterion: opposing gradients of angular velocity and specific angular momentum. A uniform axial magnetic field permeates the fluid. In this regime, magnetorotational instability (MRI) may occur. It was proved that MRI is suppressed, in fact no instability at all occurs, with insulating boundary conditions, when a term multipling the magnetic Prandtl number is neglected. Likewise, in the current work, including this term, when the magnetic resistivity is sufficiently large, MRI is suppressed. This shows conclusively that small magnetic dissipation is a feature of this instability for all magnetic Prandtl numbers. A criterion is provided for the onset of MRI.

  17. The Walking Droplet Instability

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Steen, Paul

    2013-11-01

    A droplet of liquid that partially wets a solid substrate assumes a spherical-cap equilibrium shape. We show that the spherical-cap with a mobile contact-line is unstable to a non-axisymmetric disturbance and we characterize the instability mechanism, as it depends upon the wetting properties of the substrate. We then solve the hydrodynamic problem for inviscid motions showing that the flow associated with the instability correlates with horizontal motion of the droplet's center-of-mass. We calculate the resulting ``walking speed.'' A novel feature is that the energy conversion mechanism is not unique, so long as the contact-line is mobilized. Hence, the walking droplet instability is potentially significant to a number of industrial applications, such as self-cleansing surfaces or energy harvesting devices.

  18. Career Plateaus among Managers.

    ERIC Educational Resources Information Center

    Chao, Georgia T.; Gardner, Philip D.

    Data from managers were used to compare a perceptually based measure of career plateau with the traditional measure based on job tenure. Subjects were 1,253 alumni from 10 graduation classes who received baccalaureate degrees between the years 1952 and 1985 from a large public university in the Midwest. On a questionnaire, perceptions of a career…

  19. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Vogel, J. M.

    1973-01-01

    Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

  20. [Oncovirus-induced permanent genetic instability in Drosophila melanogaster].

    PubMed

    Mit', N V; Dzhansugurova, L B; Bersimbaev, R I

    2000-08-01

    Mutant alleles of a system of genetic instability induced by oncoviral DNAs were shown to demonstrate an unstable manifestation 500 generations after their emergence. A cytogenetic analysis of oncovirus-induced unstable lines has revealed numerous chromosome rearrangements. For the Lobe alleles of this system, a specific chromosome rearrangement, Df(2L) = 35C-36B, was found on the left arm of chromosome 2. We used recessive lethal mutations involving DNA rearrangements in a successful construction of cross systems for "explosive" instability.

  1. The subcritical baroclinic instability in local accretion disc models

    NASA Astrophysics Data System (ADS)

    Lesur, G.; Papaloizou, J. C. B.

    2010-04-01

    Context. The presence of vortices in accretion discs has been debated for more than a decade. Baroclinic instabilities might be a way to generate these vortices in the presence of a radial entropy gradient. However, the nature of these instabilities is still unclear and 3D parametric instabilities can lead to the rapid destruction of these vortices. Aims: We present new results exhibiting a subcritical baroclinic instability (SBI) in local shearing box models. We describe the 2D and 3D behaviour of this instability using numerical simulations and we present a simple analytical model describing the underlying physical process. Methods: We investigate the SBI in local shearing boxes, using either the incompressible Boussinesq approximation or a fully compressible model. We explore the parameter space varying several local dimensionless parameters and we isolate the regime relevant for the SBI. 3D shearing boxes are also investigated using high resolution spectral methods to resolve both the SBI and 3D parametric instabilities. Results: A subcritical baroclinic instability is observed in flows stable for the Solberg-Hoïland criterion using local simulations. This instability is found to be a nonlinear (or subcritical) instability, which cannot be described by ordinary linear approaches. It requires a radial entropy gradient weakly unstable for the Schwartzchild criterion and a strong thermal diffusivity (or equivalently a short cooling time). In compressible simulations, the instability produces density waves which transport angular momentum outward with typically α ⪉ 3 × 10-3, the exact value depending on the background temperature profile. Finally, the instability survives in 3D, vortex cores becoming turbulent due to parametric instabilities. Conclusions: The subcritical baroclinic instability is a robust phenomenon, which can be captured using local simulations. The instability survives in 3D thanks to a balance between the 2D SBI and 3D parametric

  2. Instability of charged anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho

    2016-10-01

    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  3. Electrokinetic instability near charge-selective hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Shelistov, V. S.; Demekhin, E. A.; Ganchenko, G. S.

    2014-07-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  4. Control and simulation of thermoacoustic instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, Thierry

    2014-11-01

    Combustion instabilities (CI), due to thermoacoustic coupling between acoustic waves and chemical reaction, constitute a major danger for all combustion systems. They can drive the system to unstable states where the whole combustor can oscillate, vibrate, quench or in extreme cases explode or burn. Such phenomena are commonly observed in the final phases of development programs, leading to major difficulties and significant additional costs. One of the most famous examples of combustion instabilities is the F1 engine of the Apollo program which required more than 1000 engine tests to obtain a stable regime satisfying all other constraints (performance, ignition, etc). CIs constitute one of the most challenging problems in fluid mechanics: they combine turbulence, acoustics, chemistry, unsteady two-phase flow in complex geometries. Since combustion instabilities have been identified (more than hundred years ago), the combustion community has followed two paths: (1) improve our understanding of the phenomena controlling stability to build engines which would be ``stable by design'' and (2) give up on a detailed understanding of mechanisms and add control systems either in open or closed loop devices to inhibit unstable modes. Of course, understanding phenomena driving combustion instabilities to suppress them would be the most satisfying approach but there is no fully reliable theory or numerical method today which can predict whether a combustor will be stable or not before it is fired. This talk will present an overview of combustion instabilities phenomenology before focusing on: (1) active control methods for combustion instabilities and (2) recent methods to predict unstable modes in combustors. These methods are based on recent Large Eddy Simulation codes for compressible reacting flows on HPC systems but we will also describe recent fully analytical methods which provide new insights into unstable modes in annular combustion chambers. Support: European

  5. Acoustic instability driven by cosmic-ray streaming

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-08-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) Pc. At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta PC/PC approximately (kL) -1 much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are

  6. Geochemistry of the Springfield Plateau aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA

    USGS Publications Warehouse

    Adamski, J.C.

    2000-01-01

    Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate-rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field-measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water-rock interactions. Water from wells flow through small fractures, which restrict

  7. Magnetic Richtmyer-Meshkov instability in a two-component Bose-Einstein condensate

    SciTech Connect

    Bezett, A.; Bychkov, V.; Lundh, E.; Kobyakov, D.; Marklund, M.

    2010-10-15

    The magnetically induced Richtmyer-Meshkov (RM) instability in a two-component Bose-Einstein condensate (BEC) is investigated. We construct and study analytical models describing the development of the instability at both the linear and nonlinear stages. The models indicate interesting features of the instability: surface tension implies departure from the linear growth of modes and separation of droplets, which are qualitatively different from the traditional RM case of classical gases, and the trapping potential affects the later stages of the instability. We perform numerical simulations of the instability in a trapped BEC using the Gross-Pitaevskii equation and compare the simulation results to the model predictions.

  8. Pair instability supernovae of very massive population III stars

    SciTech Connect

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  9. Pair Instability Supernovae of Very Massive Population III Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ⊙ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ~20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  10. Global Linear Instability

    NASA Astrophysics Data System (ADS)

    Theofilis, Vassilios

    2011-01-01

    This article reviews linear instability analysis of flows over or through complex two-dimensional (2D) and 3D geometries. In the three decades since it first appeared in the literature, global instability analysis, based on the solution of the multidimensional eigenvalue and/or initial value problem, is continuously broadening both in scope and in depth. To date it has dealt successfully with a wide range of applications arising in aerospace engineering, physiological flows, food processing, and nuclear-reactor safety. In recent years, nonmodal analysis has complemented the more traditional modal approach and increased knowledge of flow instability physics. Recent highlights delivered by the application of either modal or nonmodal global analysis are briefly discussed. A conscious effort is made to demystify both the tools currently utilized and the jargon employed to describe them, demonstrating the simplicity of the analysis. Hopefully this will provide new impulses for the creation of next-generation algorithms capable of coping with the main open research areas in which step-change progress can be expected by the application of the theory: instability analysis of fully inhomogeneous, 3D flows and control thereof.

  11. Capillary instability of jets

    NASA Astrophysics Data System (ADS)

    Chauhan, Anuj

    This thesis studies the capillary instability of a compound jet. A compound jet comprises an inner core of a primary fluid surrounded by an annulus of an immiscible secondary fluid. The compound jet is unstable due to capillarity. A compound jet finds applications in a variety of fields, such as, ink jet printing, particle sorting, extrusion, molding, particle production etc. In some of these applications such as molding, the disturbances that could cause the jet breakup start as periodic spatial disturbances of Fourier wave number k and grow in time. This is the temporal instability. In some other applications, such as, ink-jet printing, the disturbances initiate at the edge of the nozzle from which the jet issues out. These disturbances grow in space. This is the spatial instability. At small velocities, even if the initial disturbances are periodic in time, they grow exponentially in time. This is the absolute instability. We perform the temporal, spatial and the absolute stability analysis of an inviscid compound jet in a unified framework using the theory of transforms. Further, we solve the temporal instability problem for a viscous jet to understand the effect of viscosity on breakup dynamics. In the temporal analysis, we show that each interface of the compound jet contributes one mode to the instability. The modes contributed by the inner and outer interfaces grow for waves longer than the inner and the outer circumference of the undisturbed jet, respectively. The inner interface mode has a higher growth rate and hence dominates the breakup. The two interfaces grow exactly in phase in this mode and hence it is refereed to as the stretching mode. The other mode is the squeezing mode because the two interfaces grow exactly out of phase. The same two modes are also present in the spatial analysis. At high Weber numbers the predictions of the spatial theory reduce to those of the temporal theory because the waves simply convect with the jet velocity and there

  12. Instabilities of volatile films and drops

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa

    2008-12-01

    the focus to the gas phase, where the problem of vapor mass diffusion is to be solved, which invokes analogy with the problem of lens-shaped conductor from electrostatics. On the other hand, NEOS model assumes non-equilibrium at the liquid-gas interface and a reaction-limited regime of evaporation; the liquid and gas phases are decoupled using the one-sided assumption, and hence, the problem is to be solved in the liquid phase only. We use lubrication approximation and derive a single governing equation for the evolution of drop thickness, which includes both models. An experimental procedure is described next, which we use in order to estimate the volatility parameter corresponding to each model. We also describe the numerical code, which we use to solve the governing equation for drop thickness, and show how this equation can be used to predict which evaporation model is more appropriate for a particular physical problem. Next, we perform linear stability analysis (LSA) of perturbed thin film configuration. We find excellent agreement between our numerical results and LSA predictions. Furthermore, these results indicate that the IPA/Si configuration is the most unstable one, in direct agreement with experimental results. We perform numerical simulations in the simplified 2d geometry (cross section of the drop) for both planar and radial symmetry and show that our theoretical model reproduces the main features of the experiment, namely, the formation of "octopus"-like features ahead of the contact line of an evaporating drop. Finally, we perform quasi-3d numerical simulations of evaporating drops, where stability to azimuthal perturbations of the contact line is examined. We recover the "octopi" instability for IPA/Si configuration, similarly as seen in the experiments.

  13. Flow Instability Past A Rounded Cylinder

    NASA Astrophysics Data System (ADS)

    Park, Doohyun; Yang, Kyung-Soo

    2014-11-01

    Numerical simulation of flow past a rounded cylinder has been performed to study the effects of rounding corners of an angulated cylinder on the primary (2D) and the secondary (3D) instabilities associated with the corresponding flow configuration. We consider the rounded cylinders ranging from a square cylinder of height D to a circular cylinder of diameter D by rounding the four corners of a square cylinder with a quarter circle of fixed radius (r) . An immersed boundary method was adopted for implementation of the cylinder cross-sections in a Cartesian grid system. The key parameters are Reynolds number (Re) and corner radius of curvature (r) . Firstly, the characteristics of the primary instability such as critical Reynolds number (Rec) , force coefficients, and Strouhal number for vortex shedding are reported against r. It was found that Rec is maximum at r / D = 0.25, meaning that this flow is more stable than the two extreme cases of the square and circular cylinders. Furthermore, there are the optimal values of r / D for force coefficients, which vary with Re. Secondly, we studied the onset of 3D instabilities by using Floquet stability analysis. It turned out that the criticalities of 3D instability modes are significantly affected by r. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012R1A2A2A01013019).

  14. Ultraspinning instability of rotating black holes

    SciTech Connect

    Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.

    2010-11-15

    Rapidly rotating Myers-Perry black holes in d{>=}6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.

  15. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  16. Traveling wave instability in helical coil flow

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Humphrey, J. A. C.

    1997-02-01

    Complementary flow visualization photographs and numerical calculations are presented for the transitional state between the laminar and turbulent flow regimes in a helically coiled pipe. The flow visualization covers a Reynolds number range from 3800 to 8650 (890instability are made from photographs and video recordings at Re=5060 and 5480 (De=1190 and 1280). The unsteady three-dimensional finite difference approximations of the Navier-Stokes equations formulated for the toroidal coordinate system are solved numerically. The calculations are performed in a curved pipe with a radius of curvature to pipe radius ratio equal to 18.2 and Re=5480 (De=1280). These test conditions match the flow visualization and previously reported laser Doppler velocimetry measurements. The calculations reveal a complex interaction between the centrifugal force and the cross-stream velocity, hence explaining the mechanism for maintaining the traveling wave. An analogy is made with known centrifugal instabilities to explain the character of the motion observed in the inner half of the pipe along planes defined by the radial and streamwise coordinate directions. Simple considerations show that the cross-stream flow has the potential for a centrifugal instability.

  17. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.

  18. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  19. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  20. A trickle instability

    NASA Astrophysics Data System (ADS)

    Bossa, Benjamin

    2005-11-01

    We address the problem of the free fall of a long, horizontal and narrow liquid layer squeezed in a vertical open Hele-Shaw cell. The layer destabilizes as it falls down, evolving into a series of liquid blobs linked together by thin bridges, which ultimately break, leaving the initially connex fluid layer as a set a disjointed drops. The mechanism of this instability is the onset of a vertical pressure gradient due to the curvature difference of the moving contact line between the advancing interface and the rear interface. This instability, whose growth rate scales with a non-trivial power of the capillary number, amplifies indifferently a broad band of wavenumbers because of the flat shape of its dispersion relation in the thin layer limit. We will finally comment on the nature of the final fragmentation process and drop size distributions.

  1. Sessile Rayleigh drop instability

    NASA Astrophysics Data System (ADS)

    Steen, Paul; Bostwick, Josh

    2012-11-01

    Rayleigh (1879) determined the mode shapes and frequencies of the inviscid motion of a free drop held by surface tension. We study the inviscid motions of a sessile Rayleigh drop - a drop which rests on a planar solid and whose contact-line is free to move. Linear stability analysis gives the modes and frequencies of the droplet motions. In this talk, we focus on the ``walking instability,'' an unstable mode wherein the drop moves across a planar substrate in an inviscid rocking-like motion. The mode shape is non-axisymmetric. Although the experimental literature has hinted at such a mode, this is the first prediction from linear stability analysis, as far as we are aware. The ``walking instability'' of the drop converts energy stored in the liquid shape into the energy of liquid motion - which represents a heretofore unknown pathway of energy conversion of potentially wide significance for a broad range of applications.

  2. Open field lines instabilities

    SciTech Connect

    Pozzoli, R. |

    1995-09-01

    The results of some recent theoretical papers dealing with flute-like instabilities in the scrape-off layer of a tokamak with limiter configuration, where the magnetic field intersects conducting walls, are briefly recalled. Attention is then paid to the instability driven by the electron temperature gradient across the field in conjunction with the formation of the Debye sheath at the boundary, and to the effects due to the inclination of the end walls with respect to the magnetic field. When a divertor configuration is considered, important modifications are found owing to the strong deformations of the flux tubes passing near the {ital x}-point, which contrast the onset of flute-like perturbations, and to the stochasticity of field lines that can be excited by magnetic field perturbations. {copyright} {ital 1995 American Institute of Physics.}

  3. Instabilities in sensory processes

    NASA Astrophysics Data System (ADS)

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  4. Modulation instability: The beginning

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.; Ostrovsky, L. A.

    2009-03-01

    We discuss the early history of an important field of “sturm and drang” in modern theory of nonlinear waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous publications by many different authors on modulation instability, a phenomenon resulting in a variety of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples from water wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.

  5. Before They Were Plateaus: Views of Early Orogenesis from the Greater Caucasus in the Arabia-Eurasia Collision

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Cowgill, E.

    2012-12-01

    The mechanisms by which orogenic systems and plateaus develop inherently cannibalize stratigraphic records of early orogenic processes within marginal basins. Understanding initial stages of structural growth and feedbacks with surface processes is essential, because these determine subsequent evolution of an orogeny. The Greater Caucasus (GC) form the northern margin of the Arabia-Eurasia collision from 40° to 50°E and are the main locus of ~15 mm/yr NE-SW shortening. Rapid exhumation of the GC starting at 5 Ma and initiation of foreland thrust belts along their southern margin at 1.5 Ma make the GC ideal to investigate early stages of orogeny. Synthesis of our recent structural, stratigraphic, and provenance work in the GC highlight two mechanisms that played primary roles in both the structural evolution of the range and the stratigraphic record of tectonic processes: 1) disruption of the southern, pro-wedge of the GC bivergent orogenic wedge via collision with the Lesser Caucasus (LC) Mountains to the south and 2) extremely high amplitude base-level variations in the large, internally-drained Caspian Sea controlling the stratigraphy of the GC foreland basin. The first order structure of the GC is consistent with bivergent orogenic wedge models, however, the symmetric morphology of the GC and locations of actively propagating fold-thrust belts are inconsistent with these standard models. We suggest that collision between the southern GC and the LC has effectively increased basal friction within the central GC pro-wedge, causing spatially variable accretion of material into both the pro- and retro-wedges. Provenance of sediments within the foreland Kura Basin, southeast of the GC, suggest that wedge disruption in the GC coincides with a large drainage reorganization event in the main range, driven by initiation of new, south-directed thrust systems. While provenance of late Cenozoic Kura Basin sediments indicate a GC source, the stratigraphic architecture is

  6. Robust dynamic mitigation of instabilities

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Karino, T.

    2015-04-01

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.

  7. Robust dynamic mitigation of instabilities

    SciTech Connect

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.

  8. Combustion instability analysis

    NASA Technical Reports Server (NTRS)

    Chung, T. J.

    1990-01-01

    A theory and computer program for combustion instability analysis are presented. The basic theoretical foundation resides in the concept of entropy-controlled energy growth or decay. Third order perturbation expansion is performed on the entropy-controlled acoustic energy equation to obtain the first order integrodifferential equation for the energy growth factor in terms of the linear, second, and third order energy growth parameters. These parameters are calculated from Navier-Stokes solutions with time averages performed on as many Navier-Stokes time steps as required to cover at least one peak wave period. Applications are made for a 1-D Navier-Stokes solution for the Space Shuttle Main Engine (SSME) thrust chamber with cross section area variations taken into account. It is shown that instability occurs when the mean pressure is set at 2000 psi with 30 percent disturbances. Instability also arises when the mean pressure is set at 2935 psi with 20 percent disturbances. The system with mean pressures and disturbances more adverse that these cases were shown to be unstable.

  9. Instabilities and constitutive modelling.

    PubMed

    Wilson, Helen J

    2006-12-15

    The plastics industry today sees huge wastage through product defects caused by unstable flows during the manufacturing process. In addition, many production lines are throughput-limited by a flow speed threshold above which the process becomes unstable. Therefore, it is critically important to understand the mechanisms behind these instabilities. In order to investigate the flow of a molten plastic, the first step is a model of the liquid itself, a relation between its current stress and its flow history called a constitutive relation. These are derived in many ways and tested on several benchmark flows, but rarely is the stability of the model used as a criterion for selection. The relationship between the constitutive model and the stability properties of even simple flows is not yet well understood. We show that in one case a small change to the model, which does not affect the steady flow behaviour, entirely removes a known instability. In another, a change that makes a qualitative difference to the steady flow makes only tiny changes to the stability.The long-term vision of this research is to exactly quantify what are the important properties of a constitutive relation as far as stability is concerned. If we could understand that, not only could very simple stability experiments be used to choose the best constitutive models for a particular material, but our ability to predict and avoid wasteful industrial instabilities would also be vastly improved.

  10. Carpal instability nondissociative.

    PubMed

    Wolfe, Scott W; Garcia-Elias, Marc; Kitay, Alison

    2012-09-01

    Carpal instability nondissociative (CIND) represents a spectrum of conditions characterized by kinematic dysfunction of the proximal carpal row, often associated with a clinical "clunk." CIND is manifested at the midcarpal and/or radiocarpal joints, and it is distinguished from carpal instability dissociative (CID) by the lack of disruption between bones within the same carpal row. There are four major subcategories of CIND: palmar, dorsal, combined, and adaptive. In palmar CIND, instability occurs across the entire proximal carpal row. When nonsurgical management fails, surgical options include arthroscopic thermal capsulorrhaphy, soft-tissue reconstruction, or limited radiocarpal or intercarpal fusions. In dorsal CIND, the capitate subluxates dorsally from its reduced resting position. Dorsal CIND usually responds to nonsurgical management; refractory cases respond to palmar ligament reefing and/or dorsal intercarpal capsulodesis. Combined CIND demonstrates signs of both palmar and dorsal CIND and can be treated with soft-tissue or bony procedures. In adaptive CIND, the volar carpal ligaments are slackened and are less capable of inducing the physiologic shift of the proximal carpal row from flexion into extension as the wrist ulnarly deviates. Treatment of choice is a corrective osteotomy to restore the normal volar tilt of the distal radius.

  11. Deployment Instabilities of Lobed-Pumpkin Balloon

    NASA Astrophysics Data System (ADS)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  12. Instability in electromagnetically driven flows. I

    NASA Astrophysics Data System (ADS)

    Gissinger, Christophe; Rodriguez Imazio, Paola; Fauve, Stephan

    2016-03-01

    The magnetohydrodynamic flow driven by a travelling magnetic field in an annular channel is investigated numerically. For sufficiently large magnetic Reynolds number Rm, or if a large enough pressure gradient is externally applied, the system undergoes an instability in which the flow rate in the channel dramatically drops from synchronism with the wave to much smaller velocities. This transition takes the form of a saddle-node bifurcation for the time-averaged quantities. In this first paper, we characterize the bifurcation and study the stability of the flow as a function of several parameters. We show that the bifurcation of the flow involves a bistability between Poiseuille-like and Hartman-like regimes and relies on magnetic flux expulsion. Based on this observation, new predictions are made for the occurrence of this stalling instability.

  13. Instabilities of wrinkled membranes with pressure loadings

    NASA Astrophysics Data System (ADS)

    Patil, Amit; Nordmark, Arne; Eriksson, Anders

    2016-09-01

    Wrinkling can affect the functionality of thin membranes subjected to various loadings or boundary conditions. The concept of relaxed strain energy was studied for isotropic, hyperelastic, axisymmetric membranes pressurized by gas or fluid. Non-intuitive instabilities were observed when axisymmetric wrinkled membranes were perturbed with angle dependent displacement fields. A linearized theory showed that static equilibrium states of pressurized membranes, modelled by a relaxed strain energy formulation, are unstable, when the wrinkled surface is subjected to pressure loadings. The theory is extended to the non-axisymmetric membranes and it is shown that these instabilities are local phenomena. Simulations for the pressurized cylindrical membranes with non-uniform thickness and hemispherical membranes support the claims in both theoretical and numerical contexts including finite element simulations.

  14. Patterns and instability of grannular flow

    SciTech Connect

    Ecke, Robert E; Borzsonyi, Tamas; Mcelwaine, Jim N

    2009-01-01

    Dense granular flows are often observed to become unstable and form inhomogeneous structures in nature or industry. Although recently significant advances have been made in understanding simple flows, instabilities are often not understood in detail. We present experimental and numerical results that show the formation of longitudinal stripes. These arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high density that consists of fast sliding plug-like regions (stripes) on top of highly agitated boiling material -- a configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering above a hot surface.

  15. The optomechanical instability in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ludwig, Max; Kubala, Björn; Marquardt, Florian

    2008-09-01

    We consider a generic optomechanical system, consisting of a driven optical cavity and a movable mirror attached to a cantilever. Systems of this kind (and analogues) have been realized in many recent experiments. It is well known that these systems can exhibit an instability towards a regime where the cantilever settles into self-sustained oscillations. In this paper, we briefly review the classical theory of the optomechanical instability, and then discuss the features arising in the quantum regime. We solve numerically a full quantum master equation for the coupled system, and use it to analyze the photon number, the cantilever's mechanical energy, the phonon probability distribution and the mechanical Wigner density, as a function of experimentally accessible control parameters. When a suitable dimensionless 'quantum parameter' is sent to zero, the results of the quantum mechanical model converge towards the classical predictions. We discuss this quantum-to-classical transition in some detail.

  16. The helical decomposition and the instability assumption

    NASA Technical Reports Server (NTRS)

    Waleffe, Fabian A.

    1993-01-01

    Direct numerical simulations show that the triadic transfer function T(k,p,q) peaks sharply when q (or p) is much smaller than k. The triadic transfer function T(k,p,q) gives the rate of energy input into wave number k from all interactions with modes of wave number p and q, where k, p, q form a triangle. This observation was thought to suggest that energy is cascaded downscale through non-local interactions with local transfer and that there was a strong connection between large and small scales. Both suggestions were in contradiction with the classical Kolmogorov picture of the energy cascade. The helical decomposition was found useful in distinguishing between kinematically independent interactions. That analysis has gone beyond the question of non-local interaction with local transfer. In particular, an assumption about the statistical direction of triadic energy transfer in any kinematically independent interaction was introduced (the instability assumption). That assumption is not necessary for the conclusions about non-local interactions with local transfer recalled above. In the case of turbulence under rapid rotation, the instability assumption leads to the prediction that energy is transferred in spectral space from the poles of the rotation axis toward the equator. The instability assumption is thought to be of general validity for any type of triad interactions (e.g. internal waves). The helical decomposition and the instability assumption offer detailed information about the homogeneous statistical dynamics of the Navier-Stokes equations. The objective was to explore the validity of the instability assumption and to study the contributions of the various types of helical interactions to the energy cascade and the subgrid-scale eddy-viscosity. This was done in the context of spectral closures of the Direct Interaction or Quasi-Normal type.

  17. Planetesimal Formation through the Streaming Instability

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Johansen, Anders; Schäfer, Urs

    2015-12-01

    The streaming instability is a promising mechanism to circumvent the barriers in direct dust growth and lead to the formation of planetesimals, as demonstrated by many previous studies. In order to resolve the thin layer of solids, however, most of these studies were focused on a local region of a protoplanetary disk with a limited simulation domain. It remains uncertain how the streaming instability is affected by the disk gas on large scales, and models that have sufficient dynamical range to capture both the thin particle layer and the large-scale disk dynamics are required.We hereby systematically push the limits of the computational domain up to more than the gas scale height, and study the particle-gas interaction on large scales in the saturated state of the streaming instability and the initial mass function of the resulting planetesimals. To overcome the numerical challenges posed by this kind of models, we have developed a new technique to simultaneously relieve the stringent time step constraints due to small-sized particles and strong local solid concentrations. Using these models, we demonstrate that the streaming instability can drive multiple radial, filamentary concentrations of solids, implying that planetesimals are born in well separated belt-like structures. We also find that the initial mass function of planetesimals via the streaming instability has a characteristic exponential form, which is robust against computational domain as well as resolution. These findings will help us further constrain the cosmochemical history of the Solar system as well as the planet formation theory in general.

  18. Instabilities around a rotating ellipsoid in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin; Meunier, Patrice; Le Dizes, Stephane

    2014-11-01

    Geosismic observations have revealed the stacking of horizontal layers of water with different densities in the ocean, particularly above and beneath lens-shaped eddies. We present a simplified model together with an experimental setup to reproduce and identify the mechanism responsible for this layering phenomenon: we consider the stably stratified flow around a rotating, solid ellipsoid. Experimentally, a flat oblate rotating ellipsoid reproduces faithfully the boundary condition of an oceanic eddy, whereas the case of a rotating sphere provides an analytically tractable base flow, suitable for a numerical linear analysis. Two instabilities are witnessed experimentally and numerically. The first instability is the classical, inviscid, strato-inertial instability that tends to develop at the equator of the ellipsoid independently of the value of the Schmidt number. The second instability is localised in the vicinity of the poles and appears only if the Schmidt number differs from one. Hence, this instability is reminiscent of the double-diffusive McIntyre instability, a valuable candidate to explain layering in oceanic eddies. Funded by ANR OLA.

  19. Transverse instabilities in chemical Turing patterns of stripes.

    PubMed

    Peña, B; Pérez-García, C; Sanz-Anchelergues, A; Míguez, D G; Muñuzuri, A P

    2003-11-01

    We present a theoretical and experimental study of the sideband instabilities in Turing patterns of stripes. We compare numerical computations of the Brusselator model with experiments in a chlorine dioxide-iodine-malonic acid (CDIMA) reaction in a thin gel layer reactor in contact with a continuously refreshed reservoir of reagents. Spontaneously evolving Turing structures in both systems typically exhibit many defects that break the symmetry of the pattern. Therefore, the study of sideband instabilities requires a method of forcing perfect, spatially periodic Turing patterns with the desired wave number. This is easily achieved in numerical simulations. In experiments, the photosensitivity of the CDIMA reaction permits control and modulation of Turing structures by periodic spatial illumination with a wave number outside the stability region. When a too big wave number is imposed on the pattern, the Eckhaus instability may arise, while for too small wave numbers an instability sets in forming zigzags. By means of the amplitude equation formalism we show that, close to the hexagon-stripe transitions, these sideband instabilities may be preceded by an amplitude instability that grows transient spots locally before reconnecting with stripes. This prediction is tested in both the reaction-diffusion model and the experiment. PMID:14682870

  20. Transverse instabilities in chemical Turing patterns of stripes

    NASA Astrophysics Data System (ADS)

    Peña, B.; Pérez-García, C.; Sanz-Anchelergues, A.; Míguez, D. G.; Muñuzuri, A. P.

    2003-11-01

    We present a theoretical and experimental study of the sideband instabilities in Turing patterns of stripes. We compare numerical computations of the Brusselator model with experiments in a chlorine dioxide iodine malonic acid (CDIMA) reaction in a thin gel layer reactor in contact with a continuously refreshed reservoir of reagents. Spontaneously evolving Turing structures in both systems typically exhibit many defects that break the symmetry of the pattern. Therefore, the study of sideband instabilities requires a method of forcing perfect, spatially periodic Turing patterns with the desired wave number. This is easily achieved in numerical simulations. In experiments, the photosensitivity of the CDIMA reaction permits control and modulation of Turing structures by periodic spatial illumination with a wave number outside the stability region. When a too big wave number is imposed on the pattern, the Eckhaus instability may arise, while for too small wave numbers an instability sets in forming zigzags. By means of the amplitude equation formalism we show that, close to the hexagon-stripe transitions, these sideband instabilities may be preceded by an amplitude instability that grows transient spots locally before reconnecting with stripes. This prediction is tested in both the reaction-diffusion model and the experiment.

  1. Three-dimensional simulations of compressible tearing instability

    SciTech Connect

    Landi, Simone; Londrillo, Pasquale; Velli, Marco; Bettarini, Lapo

    2008-01-15

    Three-dimensional numerical simulations of the tearing instability in the framework of compressible and resistive magnetohydrodynamics are presented. Simulations have been performed with a novel Eulerian conservative high order code, including an explicit resistivity, which uses implicit high order numerical schemes having higher spectral resolution than classical schemes. The linear and non linear evolution of the tearing instability has been followed for force-free and pressure-balanced initial equilibrium configurations. Pressure equilibrium configurations are subject to a secondary instability which drives the system toward a quasi two dimensional structure oriented perpendicularly to the initial configuration. The development of secondary instabilities is suppressed by a guide field allowing the coalescence instability to fully develop in the system. Force-free initial configurations follow an intermediate path with respect the previous cases: Strong coalescence of magnetic islands, due to the non linear evolution of the tearing instability, is observed before the system enters in a phase dominated by 3D modes. The histories of the differing initial current-sheet equilibria have counterparts in the energy spectra that, for all three cases, are observed to be strongly anisotropic.

  2. Modeling of dielectric viscoelastomers with application to electromechanical instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Shuolun; Decker, Martina; Henann, David L.; Chester, Shawn A.

    2016-10-01

    Soft dielectrics are electrically-insulating elastomeric materials, which are capable of large deformation and electrical polarization, and are used as smart transducers for converting between mechanical and electrical energy. While much theoretical and computational modeling effort has gone into describing the ideal, time-independent behavior of these materials, viscoelasticity is a crucial component of the observed mechanical response and hence has a significant effect on electromechanical actuation. In this paper, we report on a constitutive theory and numerical modeling capability for dielectric viscoelastomers, able to describe electromechanical coupling, large-deformations, large-stretch chain-locking, and a time-dependent mechanical response. Our approach is calibrated to the widely-used soft dielectric VHB 4910, and the finite-element implementation of the model is used to study the role of viscoelasticity in instabilities in soft dielectrics, namely (1) the pull-in instability, (2) electrocreasing, (3) electrocavitation, and (4) wrinkling of a pretensioned three-dimensional diaphragm actuator. Our results show that viscoelastic effects delay the onset of instability under monotonic electrical loading and can even suppress instabilities under cyclic loading. Furthermore, quantitative agreement is obtained between experimentally measured and numerically simulated instability thresholds. Our finite-element implementation will be useful as a modeling platform for further study of electromechanical instabilities and for harnessing them in design and is provided as online supplemental material to aid other researchers in the field.

  3. Barotropic Instability of Planetary-Scale Flows.

    NASA Astrophysics Data System (ADS)

    Haarsma, R. J.; Opsteegh, J. D.

    1988-10-01

    The relevance of barotropic instability for the observed low-frequency variability in the atmosphere is investigated. The stability properties of the shallow-water equations on a sphere are computed for small values of Lamb's parameter (F = 22/gHe) where a is the earth's radius, its angular velocity, g gravity and He the equivalent depth. For small values of F these equations describe the horizontal structure of external and deep internal modes that are basically barotropic in the troposphere.The stability of simple zonal flows, as well as free and forced planetary Rossby waves, has been computed as a function of F. This is done numerically using a hemispheric spectral model with a T13 truncation. For F = 0 we have tried to interpret the numerical results by analytically computing the stability properties of the flow when only one triad is considered. The results show that for increasing F the critical amplitudes for instability decrease slightly, but in the area of instability both growth rate and frequency of the perturbations decrease with increasing F. The horizontal structure of the perturbations changes only slightly. In most cases the instability process occurs within one triad which is the triad closest to resonance. An analysis in terms of unstable triads stems equally relevant for zonal and for nonzonal flows. The stability properties of the observed 400 mb Northern Hemisphere winter climatological flow show the same dependence on F as found for simple flow patterns: both growth rate and frequency of the perturbations decrease for increasing F.

  4. Episodic Instabilities of Thick Continental Lithosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Jaupart, C. P.; Fourel, L.; Farnetani, C. G.

    2009-12-01

    Although continental interiors are commonly described as stable, many have been subjected to major perturbations. The North American continent, for example, saw the formation or reactivation of four intracratonic basins (Williston, Hudson Bay, Illinois and Michigan) in the Paleozoic about 500 million years ago. These events occurred far from ocean basins and are not related to other tectonic events, and hence have usually been explained as late consequences of earlier orogenies or of mantle plumes impinging the base of the lithosphere. Why and how subsidence affected four neighbouring basins simultaneously in the Paleozoic has not been explained, however. Other important observations are that intracratonic basins and subsidence events tend to recur at the same locations, and that subsidence is rarely preceded by domal uplift. These observations can be explained by the behaviour of thick compositionally buoyant lithosphere that becomes unstable because it is being cooled from above. Laboratory analog experiments, stability theory and numerical simulations in 2-D and 3-D have been conducted to specify the necessary conditions for instability and to illustrate how flow develops and deforms the lithosphere. Numerical solutions accounting for temperature-dependent viscosity show that the compositional viscosity contrast between the lithospheric mantle and the underlying asthenosphere has only a weak effect on flow and deformation. Lithosphere behaviour depends on the Rayleigh number and the buoyancy ratio, which is equal to the ratio of compositional density contrast over the thermal density contrast through the unstable part of the lithosphere. Episodic instabilities are generated at small buoyancy numbers appropriate for geological conditions. Scaling laws for temperature-dependent viscosity fluids will be presented. Little uplift is generated by the instability because the hot upwelling asthenospheric mantle displaces compositionally buoyant colder lithospheric

  5. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; nutrients, bacteria, organic carbon, and suspended sediment in surface water, 1993-95

    USGS Publications Warehouse

    Davis, Jerri V.; Bell, Richard W.

    1998-01-01

    Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not

  6. Multidimensional instability and dynamics of spin avalanches in crystals of nanomagnets.

    PubMed

    Jukimenko, O; Dion, C M; Marklund, M; Bychkov, V

    2014-11-21

    We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors. PMID:25479521

  7. Multidimensional Instability and Dynamics of Spin Avalanches in Crystals of Nanomagnets

    NASA Astrophysics Data System (ADS)

    Jukimenko, O.; Dion, C. M.; Marklund, M.; Bychkov, V.

    2014-11-01

    We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.

  8. Utilizing the Plateau-Rayleigh Instability with Heat-Driven Nano-Biosensing Systems.

    PubMed

    Liu, Dan-dan; Xu, Yu-mei; Ding, Xian-ting; Yang, Jian; Ma, Zhi-jun

    2015-08-01

    Plateau-Rayleigh instability describes the infinite falling stream of fluid breaks into smaller droplets. With the development of nanotechnology, more and more attention is being drawn to Plateau-Rayleigh instability. This surface tension-driven instability performs well in the preparation of the nanoparticles, especially in photonics applications, such as optical micro-resonators in nano-biosensing systems. In this article, we mainly adopt the thermal fluid coupling method. The effect of temperature field on instability is studied with the aid of numerical simulation. In addition, the radius of the inner fluid column, the thickness of the outer fluid, and the temperature gradient are also studied to explore how the factors influence the Plateau-Rayleigh instability. The wavelength of the instability is characterized by droplet diameter, which is formed through the process caused by Plateau-Rayleigh instability. PMID:25770095

  9. Multidimensional instability and dynamics of spin avalanches in crystals of nanomagnets.

    PubMed

    Jukimenko, O; Dion, C M; Marklund, M; Bychkov, V

    2014-11-21

    We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.

  10. Turing Instability and Pattern Formation in a Semi-Discrete Brusselator Model

    NASA Astrophysics Data System (ADS)

    Xu, L.; Zhao, L. J.; Chang, Z. X.; Feng, J. T.; Zhang, G.

    2013-01-01

    In this paper, a semi-discrete Brusselator system is considered. The Turing instability theory analysis will be given for the model, then Turing instability conditions can be deduced combining linearization method and inner product technique. A series of numerical simulations of the system are performed in the Turing instability region, various patterns such as square, labyrinthine, spotlike patterns, can be exhibited. The impact of the system parameters and diffusion coefficients on patterns can also observed visually.

  11. Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun

    We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.

  12. The role of plasma rotation on MHD instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Varadarajan, V.; Miley, G. H.

    An improved analysis of the linear stage of the internal kink mode has been developed to include plasma rotation and finite aspect ratio effects. The linear instability growth rates are increased by the plasma rotation. A pseudo-variational, bilinear formalism is used to discretize the linear instability equations; Fourier decomposition is used in the periodic coordinate, and a mixed-finite element procedure is adopted in the radial direction. The numerical studies with the resulting PEST-like code can be used to predict the complex plasma eigenfrequencies. The finite aspect ratio results are similar to the large aspect ratio results for flow instability. The complex instability frequencies found in the 'fishbone' and TAE modes would be strong determined by the large plasma rotation velocities observed in present-day tokamak devices. These effects could be studied by using the computationally convenient bilinear form derived from the Frieman-Rotenberg equation.

  13. A study of short wave instability on vortex filaments

    SciTech Connect

    Wang, Hong Yun

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall`s instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  14. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  15. Radiative-convective instability

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry; Wing, Allison A.; Vincent, Emmanuel M.

    2014-03-01

    equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given solar forcing and long-lived greenhouse gas concentration, such a state would be unique, but recent work suggests that more than one stable equilibrium may be possible. Here we show that above a critical specified sea surface temperature, the ordinary RCE state becomes linearly unstable to large-scale overturning circulations. The instability migrates the RCE state toward one of the two stable equilibria first found by Raymond and Zeng (2000). It occurs when the clear-sky infrared opacity of the lower troposphere becomes so large, owing to high water vapor concentration, that variations of the radiative cooling of the lower troposphere are governed principally by variations in upper tropospheric water vapor. We show that the instability represents a subcritical bifurcation of the ordinary RCE state, leading to either a dry state with large-scale descent, or to a moist state with mean ascent; these states may be accessed by finite amplitude perturbations to ordinary RCE in the subcritical state, or spontaneously in the supercritical state. As first suggested by Raymond (2000) and Sobel et al. (2007), the latter corresponds to the phenomenon of self-aggregation of moist convection, taking the form of cloud clusters or tropical cyclones. We argue that the nonrobustness of self-aggregation in cloud system resolving models may be an artifact of running such models close to the critical temperature for instability.

  16. THE SATURATION LIMIT OF THE MAGNETOROTATIONAL INSTABILITY

    SciTech Connect

    Vishniac, Ethan T.

    2009-05-01

    Simulations of the magnetorotational instability (MRI) in a homogeneous shearing box have shown that the asymptotic strength of the magnetic field declines steeply with increasing resolution. Here I model the MRI-driven dynamo as a large-scale dynamo driven by the vertical magnetic helicity flux. This growth is balanced by large-scale mixing driven by a secondary instability. The saturated magnetic energy density depends almost linearly on the vertical height of the typical eddies. The MRI can drive eddies with arbitrarily large vertical wavenumber, so the eddy thickness is either set by diffusive effects, by the magnetic tension of a large-scale vertical field component, or by magnetic buoyancy effects. In homogeneous, zero magnetic flux simulations, only the first effect applies and the saturated limit of the dynamo is determined by explicit or numerical diffusion. The exact result depends on the numerical details, but is consistent with previous work, including the claim that the saturated field energy scales as the gas pressure to the one quarter power (which we interpret as an artifact of numerical dissipation). The magnetic energy density in a homogeneous shearing box will tend to zero as the resolution of the simulation increases, but this has no consequences for the dynamo or for angular momentum transport in real accretion disks. The claim that the saturated state depends on the magnetic Prandtl number may also be an artifact of simulations in which microphysical transport coefficients set the MRI eddy thickness. Finally, the efficiency of the MRI dynamo is a function of the ratio of the Alfven velocity to the product of the pressure scale height and the local shear. As this approaches unity from below, the dynamo reaches maximum efficiency. Farther from the disk midplane, the Parker instability will dominate the local dynamics and the dynamo process.

  17. Ion sound instability driven by the ion flows

    SciTech Connect

    Koshkarov, O.; Smolyakov, A. I.; Kaganovich, I. D.; Ilgisonis, V. I.

    2015-05-15

    Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instability is studied analytically and the results are compared with direct, initial value numerical simulations.

  18. The cosmic Doppler instability

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1993-01-01

    The equations governing the behavior of perturbations of a mixture of nearly homogeneous and isotropic matter and radiation are derived, using a diffusion approximation where spatial perturbations in the radiation spectrum are allowed to vary with frequency. A simple model of line opacity leads to dispersion relations which display a new bulk instability. The model is used to derive an approximate dispersion relation for radiation interacting via resonance scattering opacity in atomic hydrogen at low density and low temperature. Possible applications to cosmology are briefly discussed.

  19. Gas turbine combustion instability

    SciTech Connect

    Richards, G.A.; Lee, G.T.

    1996-09-01

    Combustion oscillations are a common problem in development of LPM (lean premix) combustors. Unlike earlier, diffusion style combustors, LPM combustors are especially susceptible to oscillations because acoustic losses are smaller and operation near lean blowoff produces a greater combustion response to disturbances in reactant supply, mixing, etc. In ongoing tests at METC, five instability mechanisms have been identified in subscale and commercial scale nozzle tests. Changes to fuel nozzle geometry showed that it is possible to stabilize combustion by altering the timing of the feedback between acoustic waves and the variation in heat release.

  20. Booming Dune Instability

    NASA Astrophysics Data System (ADS)

    Andreotti, B.; Bonneau, L.

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well-defined frequency, a phenomenon called the “song of dunes.” Here, we show through theory that a homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band forms at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field measurements.

  1. Booming dune instability.

    PubMed

    Andreotti, B; Bonneau, L

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well-defined frequency, a phenomenon called the "song of dunes." Here, we show through theory that a homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band forms at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field measurements. PMID:20366176

  2. THE MAGNETOVISCOUS-THERMAL INSTABILITY

    SciTech Connect

    Islam, Tanim

    2012-02-10

    Accretion flows onto underluminous black holes, such as Sagittarius A* at the center of our galaxy, are dilute (mildly collisional to highly collisionless), optically thin, and radiatively inefficient. Therefore, the accretion properties of such dilute flows are expected to be modified by their large viscosities and thermal conductivities. Second, turbulence within these systems needs to transport angular momentum as well as thermal energy generated through gravitational infall outward in order to allow accretion to occur. This is in contrast to classical accretion flows, in which the energy generated through accretion down a gravitational well is locally radiated. In this paper, using an incompressible fluid treatment of an ionized gas, we expand on previous research by considering the stability properties of a magnetized rotating plasma wherein the thermal conductivity and viscosity are not negligible and may be dynamically important. We find a class of MHD instabilities that can transport angular momentum and thermal energy outward. They are plausible candidates to describe accretion in radiatively inefficient accretion flows. We finish by discussing the implications for analytic models and numerical MHD simulations of mildly dilute or collisionless astrophysical plasmas, and immediate directions for further research.

  3. Axisymmetric MHD Instabilities in Solar/Stellar Tachoclines

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.; Cally, Paul S.; Miesch, Mark S.

    2009-02-01

    Extensive studies over the past decade showed that HD and MHD nonaxisymmetric instabilities exist in the solar tachocline for a wide range of toroidal field profiles, amplitudes, and latitude locations. Axisymmetric instabilities (m = 0) do not exist in two dimensions, and are excited in quasi-three-dimensional shallow-water systems only for very high field strengths (2 mG). We investigate here MHD axisymmetric instabilities in a three-dimensional thin-shell model of the solar/stellar tachocline, employing a hydrostatic, non-Boussinesq system of equations. We deduce a number of general properties of the instability by use of an integral theorem, as well as finding detailed numerical solutions for unstable modes. Toroidal bands become unstable to axisymmetric perturbations for solar-like field strengths (100 kG). The e-folding time can be months down to a few hours if the field strength is 1 mG or higher, which might occur in the solar core, white dwarfs, or neutron stars. These instabilities exist without rotation, with rotation, and with differential rotation, although both rotation and differential rotation have stabilizing effects. Broad toroidal fields are stable. The instability for modes with m = 0 is driven from the poleward shoulder of banded profiles by a perturbation magnetic curvature stress that overcomes the stabilizing Coriolis force. The nonaxisymmetric instability tips or deforms a band; with axisymmetric instability, the fluid can roll in latitude and radius, and can convert bands into tubes stacked in radius. The velocity produced by this instability in the case of low-latitude bands crosses the equator, and hence can provide a mechanism for interhemispheric coupling.

  4. Dynamic fission instability of dissipative protoplanets

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Mizuno, H.

    1985-01-01

    Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.

  5. CSR instability in a Bunch Compressor

    NASA Astrophysics Data System (ADS)

    Stupakov, G. V.

    2002-03-01

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and nite emittance of the beam. Numerical solution of this equatierenton for the LCLS (Linac Coherent Light Source) bunch compressor gives the amplication factor for different wavelengths of the beam microbunching.

  6. Rarefaction solitons initiated by sheath instability

    SciTech Connect

    Levko, Dmitry

    2015-09-15

    The instability of the cathode sheath initiated by the cold energetic electron beam is studied by the one-dimensional fluid model. Numerical simulations show the generation of travelling rarefaction solitons at the cathode. It is obtained that the parameters of these solitons strongly depend on the parameters of electron beam. The “stretched” variables are derived using the small-amplitude analysis. These variables are used in order to obtain the Korteweg-de Vries equation describing the propagation of the rarefaction solitons through the plasma with cold energetic electron beam.

  7. Dynamic fission instability of dissipative protoplanets

    NASA Astrophysics Data System (ADS)

    Boss, A. P.; Mizuno, H.

    1985-07-01

    Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.

  8. CSR instability in a Bunch Compressor

    SciTech Connect

    Stupakov, Gennady V.

    2002-03-19

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and finite emittance of the beam. Numerical solution of this equation for the LCLS bunch compressor gives the amplification factor for different wavelengths of the beam microbunching.

  9. Groundwater-Flow Model of the Ozark Plateaus Aquifer System, Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma

    USGS Publications Warehouse

    Czarnecki, John B.; Gillip, Jonathan A.; Jones, Perry M.; Yeatts, Daniel S.

    2009-01-01

    To assess the effect that increased water use is having on the long-term availability of groundwater within the Ozark Plateaus aquifer system, a groundwater-flow model was developed using MODFLOW 2000 for a model area covering 7,340 square miles for parts of Arkansas, Kansas, Missouri, and Oklahoma. Vertically the model is divided into five units. From top to bottom these units of variable thickness are: the Western Interior Plains confining unit, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, and the St. Francois confining unit. Large mined zones contained within the Springfield Plateau aquifer are represented in the model as extensive voids with orders-of-magnitude larger hydraulic conductivity than the adjacent nonmined zones. Water-use data were compiled for the period 1960 to 2006, with the most complete data sets available for the period 1985 to 2006. In 2006, total water use from the Ozark aquifer for Missouri was 87 percent (8,531,520 cubic feet per day) of the total pumped from the Ozark aquifer, with Kansas at 7 percent (727,452 cubic feet per day), and Oklahoma at 6 percent (551,408 cubic feet per day); water use for Arkansas within the model area was minor. Water use in the model from the Springfield Plateau aquifer in 2005 was specified from reported and estimated values as 569,047 cubic feet per day. Calibration of the model was made against average water-level altitudes in the Ozark aquifer for the period 1980 to 1989 and against waterlevel altitudes obtained in 2006 for the Springfield Plateau and Ozark aquifers. Error in simulating water-level altitudes was largest where water-level altitude gradients were largest, particularly near large cones of depression. Groundwater flow within the model area occurs generally from the highlands of the Springfield Plateau in southwestern Missouri toward the west, with localized flow occurring towards rivers and pumping centers including the five largest pumping centers near Joplin

  10. Morphology, stratigraphy, and mineralogical composition of a layered formation covering the plateaus around Valles Marineris, Mars: Implications for its geological history

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Bourgeois, O.; Mège, D.; Hauber, E.; Le Mouélic, S.; Massé, M.; Jaumann, R.; Bibring, J.-P.

    2010-08-01

    An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ˜42,300 km 2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ˜1.4 μm, and ˜1.9 μm and a large deep band between ˜2.21 and ˜2.26 μm that are consistent with previous spectral analysis in other regions

  11. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    USGS Publications Warehouse

    Chen, X.; Liu, S.; Zhu, Z.; Vogelmann, J.; Li, Z.; Ohlen, D.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fireinduced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High

  12. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  13. A signature for the Lorenz instability in quantum optics

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Selker, M. David; Lee, Kayee

    1987-01-01

    The time averaged output power of a Lorenz laser in the self-pulsing and chaotic regime has been numerically examined. The results indicate that the change in average power when unstable behavior occurs are of the order of 1-5 percent. This negligible change could serve as an additional signature of the Lorenz instability in quantum optics.

  14. Computational fluid dynamic analysis of liquid rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Sankaran; Grenda, Jeffrey; Merkle, Charles L.

    1991-01-01

    The paper presents a computational analysis of liquid rocket combustion instability. Consideration is given to both a fully nonlinear unsteady calculation as well as a new CFD-based linearized stability analysis. An analytical solution for the linear stability problem in a constant area combustion chamber with uniform mean flow is developed to verify the numerical analyses.

  15. Turbulence and instabilities

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, Oleg

    2001-06-01

    The main principles for constructing of mathematical models for fully developed free shear turbulence and hydrodynamic instabilities are considered in the report. Such a “rational” modeling is applied for a variety of unsteady multidimensional problems. For the wide class of phenomena, by the large Reynolds numbers within the low-frequency and inertial intervals of turbulent motion, the effect of molecular viscosity and of the small elements of flow in the largest part of perturbation domain are not practically essential neither for the general characteristics of macroscopic structures of the flow developed, nor the flow pattern as a whole. This makes it possible not to take into consideration the effects of molecular viscosity when studying the dynamics of large vortices, and to implement the study of those on the basis of models of the ideal gas (using the methods of “rational” averaging, but without application of semi-empirical models of turbulence). Among the problems, which have been studied by such a way, there are those of the jet-type flow in the wake behind the body, the motions of ship frames with stern shearing, the formation of anterior stalling zones by the flow about blunted bodies with jets or needles directed to meet the flow, etc. As applications the problems of instability development and of spreading of smoke cloud from large-scale source of the fire are considered.

  16. [Aspirin suppresses microsatellite instability].

    PubMed

    Wallinger, S; Dietmaier, W; Beyser, K; Bocker, T; Hofstädter, F; Fishel, R; Rüschoff, J

    1999-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit cancer preventive effects and have been shown to induce regression of adenomas in FAP patients. In order to elucidate the probable underlying mechanism, the effect of NSAIDs on mismatch repair related microsatellite instability was investigated. Six colorectal cancer cell lines all but one deficient for human mismatch repair (MMR) genes were examined for microsatellite instability (MSI) prior and after treatment with Aspirin or Sulindac. For rapid in vitro analysis of MSI a microcloning assay was developed by combining Laser microdissection and random (PEP-) PCR prior to specific MSI-PCR. Effects of NSAIDs on cell cycle and apoptosis were systematically investigated by using flow cytometry and cell-sorting. MSI frequency in cells deficient of MMR genes (hMSH2, hMLH1, hMSH6) was markedly reduced after long-term (> 10 weeks) NSAID treatment. This effect was reversible, time- and concentration dependent. However, in the hPMS2 deficient endometrial cancer cell line (HEC-1-A) the MSI phenotype kept unchanged. According to cell sorting, non-apoptotic cells were stable and apoptotic cells were unstable. These results suggest that aspirin/sulindac induces a genetic selection for microsatellite stability in a subset of MMR-deficient cells and may thus provide an effective prophylactic therapy for HNPCC related colorectal carcinomas.

  17. Numerical instabilities and three-dimensional electromagnetic articulography.

    PubMed

    Stella, Massimo; Bernardini, Paolo; Sigona, Francesco; Stella, Antonio; Grimaldi, Mirko; Fivela, Barbara Gili

    2012-12-01

    The AG500 electromagnetic articulograph is widely used to reconstruct the movements of the articulatory organs. Nevertheless, some anomalies in its performance have been observed. It is well known that accuracy of the device is affected by electromagnetic interference and possible hardware failures or damage to the sensors. In this study, after eliminating any hardware or electromagnetic source of disturbance, a set of trials was carried out. The tests prove that anomalies in sensor position tracking are systematic in certain regions within the recording volume and, more importantly, show a specific pattern that can be clearly attributed to a wrong convergence of the calculation method. PMID:23231124

  18. THE PARKER INSTABILITY IN DISK GALAXIES

    SciTech Connect

    Rodrigues, L. F. S.; Sarson, G. R.; Shukurov, A.; Bushby, P. J.; Fletcher, A. E-mail: graeme.sarson@newcastle.ac.uk E-mail: paul.bushby@newcastle.ac.uk

    2016-01-01

    We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields, and cosmic rays are all initially in a magnetohydrostatic equilibrium. This is done for different choices of initial cosmic-ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this nonideal instability develops a multimodal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step toward such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure (RM) maps, and the associated structure functions of the latter, from our simulations; these suggest that the correlation scales inferred from RM maps are a possible probe for the cosmic-ray content of a given galaxy. Our calculations highlight the importance of cosmic rays in these measures, making them an essential ingredient of realistic models of the interstellar medium.

  19. The Parker Instability in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. F. S.; Sarson, G. R.; Shukurov, A.; Bushby, P. J.; Fletcher, A.

    2016-01-01

    We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields, and cosmic rays are all initially in a magnetohydrostatic equilibrium. This is done for different choices of initial cosmic-ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this nonideal instability develops a multimodal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step toward such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure (RM) maps, and the associated structure functions of the latter, from our simulations; these suggest that the correlation scales inferred from RM maps are a possible probe for the cosmic-ray content of a given galaxy. Our calculations highlight the importance of cosmic rays in these measures, making them an essential ingredient of realistic models of the interstellar medium.

  20. Instability and Electroconvection at a Electrodialysis Membrane

    NASA Astrophysics Data System (ADS)

    Shapar, Elena; Demekhin, Eugeny; Lapchenko, Vladimir

    2006-11-01

    Electrolyte layer covered electrodialysis membrane under constant drop of potensial is considered. Self-similar solution of one-dimensional problem for second kind elecroosmosis (overlimitiny current) is found. Using special decomposition method analytical asymptotic solution of the problem is obtained; limiting current for the self-similar solution [ j*=4/√π 2.25. ] Hydrodinamic instability of this solution with respect to linear 2D-perturbations is studied for the full system of equations. In contract to the works of Rubinstein is found that the region of instability is finite with respect to the wavenumber α, growth rate λ(α) has maximum at some α=αm and 1D-solution is stable for sufficiently short perturbations. Direct numerical simulation of the full system of equations with a special non-uniform finite-differential grid shows that filtering mechanism of the linear stability singles out from the initial white-noise perturbations the maximum growth rate mode with α=αm. Secondary instability leads to chaostic flow.

  1. Magnetorotational instability in proto-neutron stars

    NASA Astrophysics Data System (ADS)

    Urpin, V.

    2010-01-01

    Context. Magneto-rotational instability (MRI) has been suggested to lead to a rapid growth of the magnetic field in core collapse supernovae and produce departures from spherical symmetry that are important in determining the explosion mechanism. Aims: We address the problem of stability in differentially rotating magnetized proto-neutron stars at the beginning of their evolution. Methods: To do this, we consider a linear stability taking into account non-linear effects of the magnetic field and strong gravity. Results: Criteria for MRI are derived without simplifying assumptions about a weak magnetic field. In proto-neutron stars, these criteria differ qualitatively from the standard condition dΩ/d s <0 where Ω is the angular velocity and s the cylindrical radius. If the magnetic field is strong, the MRI can occur only in the neighbourhood of the regions where the spherical radial component of the magnetic field vanishes. The growth rate of the MRI is relatively low except for perturbations with very small scales which usually are not detected in numerical simulations. We find that MRI in proto-neutron stars grows more slowly than the double diffusive instability analogous the Goldreich-Schubert-Fricke instability in ordinary stars.

  2. Benjamin - Feir instability on the variable current.

    NASA Astrophysics Data System (ADS)

    Shugan, Igor; Hwung, Hwung-Hweng; Yang, Ray-Yeng

    2013-04-01

    Modulational instability (Benjamin-Feir instability) is one of fundamental principles of nonlinear water wave dynamics. This phenomenon is of the utmost importance for description of dynamics and downshifting of energy spectrum among sea surface waves, formation of freak (or giant) waves in oceans and wave breaking. As for surface gravity waves on deep water resonant interactions occur at the third order, BF-instability can be described at early stages of the process as interaction of three monochromatic wave trains: carrier, upper and lower side-band waves with a small differences in frequencies and wave numbers from carrier wave which form a resonant quartet. Side band instability of the initially monochromatic wave gives a rise of super- and sub- harmonics of the carrier Stokes wave. The latter stages of this process are much less investigated and many observed experimentally physical phenomena still need the extended theoretical analysis. How modulation instability develops on the variable adverse or following current? This problem merges with another fundamental phenomenon which is still a big challenge in physical oceanography - interaction of waves with current. In spite of numerous numbers of papers devoting to the analysis of the phenomenon some very strong effects are still waiting for its clear description. For example, modulated waves in linear theory will be blocked by strong enough adverse current. Nevertheless, experiments show something different: waves can be blocked only partly and overpass the opposite current barrier at the lower side band resonance frequency. This effect until now has no satisfactory theoretical description. We derived the set of modulation equations to describe the resonance interaction of surface waves in the presence of the variable current. Analytical research of wave dynamics on adverse and following currents with horizontal-velocity gradient was conducted. We describe the surface wave overpass the opposite current

  3. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    SciTech Connect

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-05-15

    The evolution of the runaway electron (RE) energy distribution function f{sub ε} during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f{sub ε} is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  4. GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR?

    SciTech Connect

    Corsi, Alessandra; Meszaros, Peter E-mail: nnp@astro.psu.edu

    2009-09-10

    The existence of a shallow decay phase in the early X-ray afterglows of gamma-ray bursts is a common feature. Here we investigate the possibility that this is connected to the formation of a highly magnetized millisecond pulsar, pumping energy into the fireball on timescales longer than the prompt emission. In this scenario, the nascent neutron star could undergo a secular bar-mode instability, leading to gravitational wave losses which would affect the neutron star spin-down. In this case, nearby gamma-ray bursts with isotropic energies of the order of 10{sup 50} ergs would produce a detectable gravitational wave signal emitted in association with an observed X-ray light-curve plateau, over relatively long timescales of minutes to about an hour. The peak amplitude of the gravitational wave signal would be delayed with respect to the gamma-ray burst trigger, offering gravitational wave interferometers such as the advanced LIGO and Virgo the challenging possibility of catching its signature on the fly.

  5. Large-scale instabilities of helical flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2016-10-01

    Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number K are investigated using three-dimensional Floquet numerical computations. In the Floquet formalism the unstable field is expanded in modes of different spacial periodicity. This allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study modes of wave number q of arbitrarily large-scale separation q ≪K . Different flows are examined including flows that exhibit small-scale turbulence. The growth rate σ of the most unstable mode is measured as a function of the scale separation q /K ≪1 and the Reynolds number Re. It is shown that the growth rate follows the scaling σ ∝q if an AKA effect [Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987), 10.1016/0167-2789(87)90026-1] is present or a negative eddy viscosity scaling σ ∝q2 in its absence. This holds both for the Re≪1 regime where previously derived asymptotic results are verified but also for Re=O (1 ) that is beyond their range of validity. Furthermore, for values of Re above a critical value ReSc beyond which small-scale instabilities are present, the growth rate becomes independent of q and the energy of the perturbation at large scales decreases with scale separation. The nonlinear behavior of these large-scale instabilities is also examined in the nonlinear regime where the largest scales of the system are found to be the most dominant energetically. These results are interpreted by low-order models.

  6. Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Velasco, Ali Mauricio; Muñoz, José Daniel

    2015-10-01

    Rayleigh-Taylor and Kelvin-Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil-water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γ ∝√{ A} between the growing rate γ of the Rayleigh-Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.

  7. Research on aviation fuel instability

    NASA Technical Reports Server (NTRS)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1983-01-01

    The underlying causes of fuel thermal degradation are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.

  8. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  9. Cohabitation and Children's Family Instability

    ERIC Educational Resources Information Center

    Kelly Raley, R.; Wildsmith, Elizabeth

    2004-01-01

    This study estimates how much children's family instability is missed when we do not count transitions into and out of cohabitation, and examines early life course trajectories of children to see whether children who experience maternal cohabitation face more family instability than children who do not. Using data from the 1995 National Survey of…

  10. Neurocardiovascular Instability and Cognition

    PubMed Central

    O’Callaghan, Susan; Kenny, Rose Anne

    2016-01-01

    Neurocardiovascular instability (NCVI) refers to abnormal neural control of the cardiovascular system affecting blood pressure and heart rate behavior. Autonomic dysfunction and impaired cerebral autoregulation in aging contribute to this phenomenon characterized by hypotension and bradyarrhythmia. Ultimately, this increases the risk of falls and syncope in older people. NCVI is common in patients with neurodegenerative disorders including dementia. This review discusses the various syndromes that characterize NCVI icluding hypotension, carotid sinus hypersensitivity, postprandial hypotension and vasovagal syncope and how they may contribute to the aetiology of cognitive decline. Conversely, they may also be a consequence of a common neurodegenerative process. Regardless, recognition of their association is paramount in optimizing management of these patients. PMID:27505017

  11. The booming dune instability

    NASA Astrophysics Data System (ADS)

    Andreotti, B.; Bonneau, L.

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well defined frequency, a phenomenon called the "song of dunes". Here, we show theoretically that an homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band form at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field records performed in the Atlantic Sahara. We finally show that several characteristics predicted by the model and observed in the field allow to dismiss former hypothesis based on resonances or the synchronisation of sand grain collisions.

  12. Instability of canopy flows

    NASA Astrophysics Data System (ADS)

    Zampogna, Giuseppe A.; Pluvinage, Franck; Kourta, Azeddine; Bottaro, Alessandro

    2016-07-01

    Honami and monami waves are caused by large-scale coherent vortex structures which form in shear layers generated by canopies. In order to reach new insights on the onset of such waves, the instability of these shear layers is studied. Two different approaches are used. In the first approach, the presence of the canopy is modeled via a drag coefficient, taken to vary along the canopy as by experimental indications. The second approach considers the canopy as a porous medium and different governing equations for the fluid flow are deduced. In this second case, the anisotropy of the canopy, composed by rigid cylindrical elements, is accounted for via an apparent permeability tensor. The results obtained with the latter approach approximate better experimental correlations for the synchronous oscillations of the canopy.

  13. Explosive magnetorotational instability in Keplerian disks

    NASA Astrophysics Data System (ADS)

    Shtemler, Yu.; Liverts, E.; Mond, M.

    2016-06-01

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén-Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.

  14. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  15. Compressible inviscid instability of rapidly expanding spherical material interfaces

    NASA Astrophysics Data System (ADS)

    Mankbadi, Mina R.; Balachandar, S.

    2012-03-01

    A high-order weighted essentially non-oscillatory scheme is employed to investigate the stability of a rapidly expanding material interface produced by a spherical shock tube. The flow structure is characterized by a forward moving primary shock, a backward moving secondary shock, and a spherical contact interface in-between. We consider herein the linear inviscid regime and focus on the development of the three-dimensional perturbations around the contact interface by solving a one-dimensional system of partial differential equations. Numerical simulations are performed to illustrate the effects of the contact interface's density discontinuity on the growth of the disturbances for various spherical wave numbers. In a spherical shock tube the instability is influenced by various mechanisms which include classical Rayleigh-Taylor (RT) effects, Bell-Plesset or geometry/curvature effects, the effects of impulsively accelerating the interface, and compressibility effects. Henceforth, the present instability will be referred to as non-classical RT instability to distinguish it from classical RT instability. For an extended intermediate time period, it can be shown that the small disturbances grow exponentially as in the classical RT instability. During this stage, the exponential growth rate increases with the spherical wave number, until it saturates for very large wave numbers due to the finite thickness limitation of the numerical representation of the contact interface. The results compare favorably with previous theoretical models; but indicate that in addition to compressibility, the space-time evolution of the contact interface's thickness plays a significant role. A parametric study is performed that varies the pressure and density ratios of the initial spherical container. The characteristics of the contact interface and the applicability of various instability theories is investigated for these regimes. Furthermore, varying the pressure and density ratios aids

  16. Linear instability of supersonic plane wakes

    NASA Technical Reports Server (NTRS)

    Papageorgiou, D. T.

    1989-01-01

    In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.

  17. Transverse instability and its long-term development for solitary waves of the (2+1)-dimensional Boussinesq equation.

    PubMed

    Blyuss, K B; Bridges, T J; Derks, G

    2003-05-01

    The stability properties of line solitary wave solutions of the (2+1)-dimensional Boussinesq equation with respect to transverse perturbations and their consequences are considered. A geometric condition arising from a multisymplectic formulation of this equation gives an explicit relation between the parameters for transverse instability when the transverse wave number is small. The Evans function is then computed explicitly, giving the eigenvalues for the transverse instability for all transverse wave numbers. To determine the nonlinear and long-time implications of the transverse instability, numerical simulations are performed using pseudospectral discretization. The numerics confirm the analytic results, and in all cases studied, the transverse instability leads to collapse.

  18. The dynamic fission instability and the origin of the Moon

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Mizuno, H.

    1984-01-01

    A theory for the formation of the Moon which involves the dynamic fission of a rapidly rotating protoplanet, which might then result in the formation of the Earth and the Moon is discussed. The fission hypothesis was originally based on analytic, linearized models of the growth of asymmetry in homogenous bodies. The fully nonlinear evolution of the dynamic instability in inviscid, compressible bodies was calculated by numerical techniques. It was found that the dynamic instability degenerates into the ejection of a ring of matter with a substantial fraction of the mass, leaving behind a central body with most of the mass. The linearized analytical approach and the numerical approach were used to show that dynamic fission probably does not occur in rocky protoplanets. The numerical calculations are performed with a fully three dimensional hydrodynamical code, which allows the nonlinear, time evolution of the instability to be followed. Sequences of uniformly rotating equilibria were constructed and are used as the initial models for the fission calculations. An initially imposed asymmetry consisting of a 10% binary perturbation in the density was found to disappear on the rotational period time scale. No dynamic instability occurred. This result are verified by including the velocity dissipation terms in the linearized analysis of the stability of a Maclaurin spheroid: the dynamic instability disappears when the simulated viscous dissipation terms are included. It is concluded that any rocky body, even with considerable partial melt or a molten core, should be stable to dynamic fission; any rotational instability that occurs can only result in equatorial mass loss.

  19. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  20. Quantitative study of the trapped particle bunching instability in Langmuir waves

    SciTech Connect

    Hara, Kentaro Boyd, Iain D.; Chapman, Thomas; Joseph, Ilon; Berger, Richard L.; Banks, Jeffrey W.; Brunner, Stephan

    2015-02-15

    The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.

  1. Instability in Three-Dimensional Magnetohydrodynamic Flows of an Electrically Conducting Fluid

    NASA Astrophysics Data System (ADS)

    Zakir, Hussain; Liu, Chan; Zhang, Nianmei; Ni, Mingjiu

    2013-12-01

    The three-dimensional instability of an electrically conducting fluid between two parallel plates affected by an imposed transversal magnetic field is numerically investigated by a Chebyshev collocation method. The QZ method is utilized to obtain neutral curves of the linear instability. The details of instability are analyzed by solving the generalized Orr-Sommerfeld equation. The critical Reynolds number Rec, the stream-wise and span-wise critical wave numbers αc and βc are obtained for a wide range of Hartmann number Ha. The effects of Lorentz force and span-wise perturbation on three-dimensional instability are investigated. The results show that magnetic field would suppress the instability and critical Reynolds number tends to be larger than that for two-dimensional instability.

  2. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    SciTech Connect

    Arshad, Kashif; Ehsan, Zahida; Khan, S. A.; Mahmood, S.

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  3. Transverse Resistive Wall Instability in the Two-Beam Accelerator

    SciTech Connect

    Whittum, D.H.; Sessler, Andrew M.; Neil, V.K.

    1990-06-01

    The transverse resistive wall instability in the Two-Beam Accelerator (TBA) is investigated analytically and numerically. Without any damping mechanism, we find one to four e-folds in 100 m, depending on the design. It is found that Landau damping, due to energy spread within a beam slice, is not effective, due to rapid synchrotron oscillations in the FEL ponderomotive well. Damping due to an energy sweep along the beam is also considered and it is found that a small variation in energy along the beam, decreasing from head to tail, can significantly reduce growth. We conclude that the resistive wall instability is not a severe design constraint on a TBA.

  4. Shear flow effects on the nonlinear evolution of thermal instabilities

    SciTech Connect

    Leboeuf, J.; Charlton, L.A.; Carreras, B.A. )

    1993-08-01

    In the weak radiation drive regime, the coupling between the thermal instability driven by impurity radiation and the self-consistent flow profile modification leads to a simple dynamical system that can be approximated by the Volterra--Lotka equations. In this system the shear flow acts as a predator and the temperature fluctuations act as prey. The solutions are oscillatory, and their behavior resembles that of edge-localized modes (ELM's). The solutions of the simplified model are compared with the three-dimensional and two-dimensional nonlinear numerical results for this instability.

  5. Electron-Hose Instability in an Annular Plasma Sheath

    SciTech Connect

    Whittum, David H.

    1999-07-08

    A relativistic electron beam propagating through an annular plasma sheath is subject to a transverse plasma-electron coupled electrostatic instability. From the linearized fluid equations, the beam-sheath interaction is resolved into three coupled equations. The corresponding wakefield is computed and the asymptotic linear evolution is noted. For illustration, numerical examples are given for a plasma accelerator employing such a sheath. While the coasting beam scalings are quite severe at low energy, single-bunch instability growth can in fact be reduced to nil, for a very high-gradient accelerator.

  6. Nonlinear Rayleigh-Taylor instabilities in fast Z pinches

    SciTech Connect

    Miles, Aaron R.

    2009-03-15

    A simplified analytic model is presented to describe the implosion of a plasma column by an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the plasma. This model is employed together with buoyancy-drag-based models of nonlinear single-mode and turbulent multimode Rayleigh-Taylor growth to investigate the mixing process in such fast Z pinches. These models give predictions that characterize limitations the instability can impose on the implosion in terms of maximum convergence ratios attainable for an axially coherent pinch. Both the implosion and instability models are validated with results from high-resolution numerical simulations.

  7. Interchange instability in finite conductivity accelerated plasma arcs

    NASA Astrophysics Data System (ADS)

    Bourouis, M.; Huerta, M. A.; Rodriguez-Trelles, F.

    1993-01-01

    A first order perturbation expansion of the MHD equations is used to study the growth of the Rayleigh-Taylor or interchange instability in accelerated plasma arcs. The mode equation is fourth-order, due to the inclusion of finite conductivity. It is solved numerically to yield results that are an improvement over previous work. The growth rates are less than in the infinite conductivity model. As in previous work the growth rates in typical rail launcher situations are large enough to permit full development of the instability.

  8. Lower-hybrid drift and Buneman instabilities in current sheets with guide field

    SciTech Connect

    Yoon, P. H.; Lui, A. T. Y.

    2008-11-15

    Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k{center_dot}B=0 and k{center_dot}{nabla}n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and {nabla}n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by kxB=0 and k{center_dot}{nabla}n=0, rather than being a beam-aligned instability.

  9. Temperature anisotropy and beam type whistler instabilities

    NASA Technical Reports Server (NTRS)

    Hashimoto, K.; Matsumoto, H.

    1976-01-01

    Whistler instabilities have been investigated for two different types; i.e., a temperature-anisotropy type instability and a beam-type instability. A comparison between the two types of whistler instabilities is made within the framework of linear theory. A transition from one type to the other is also discussed, which is an extension of the work on electrostatic beam and Landau instabilities performed by O'Neil and Malmberg (1968) for electromagnetic whistler instabilities. It is clarified that the essential source of the whistler instability is not beam kinetic energy but a temperature anisotropy, even for the beam-type whistler instability.

  10. Yet another instability in glasma

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shoichiro; Iida, Hideaki; Kunihiro, Teiji; Ohnishi, Akira

    2014-09-01

    In relativistic heavy ion collisions (HIC), hydrodynamic models can describe many experimental data and suggest that the quark-gluon plasma formed at RHIC and LHC is almost perfect fluid. We need very short thermalization time and far-from-equilibrium dynamics may be important in thermalization processes of HIC. In the earliest stages of HIC, classical gluon dynamics is dominant and many types of instabilities emerge there. These instabilities may strongly affect the later stages of dynamics; realization of chaoticity and field-particle conversions. We investigate instabilities of classical gluon fields under the homogeneous, but time dependent background color magnetic fields. The background field become periodic function of time and we can analyze the stability of fluctuations based on the Floquet theory which consists the basis of the Bloch theory. As a result, we get the complete structure of instability bands for physical degrees of freedom appearing from parametric resonance. We also find that the parametric instabilities considered here have different natures from the several known instabilities; Weibel and Nielsen-Olesen instabilities. We also discuss some implications of parametric resonance to the particle productions in HIC.

  11. Cross-shelf transport and dispersion due to baroclinic instabilities

    NASA Astrophysics Data System (ADS)

    Thyng, Kristen; Hetland, Robert

    2014-05-01

    The dominant forcing mechanisms for the circulation in the northwestern Gulf of Mexico are largely determined by location relative to the shelf break. On the inner shelf, the flow is mostly controlled by the wind and on the outer shelf is affected by the mesoscale loop-current eddies. However, in the summer, baroclinic instabilities can develop along the boundary of the mid-shelf river plume front, leading to large eddies (~50 km length scale) that can reach across the entire shelf and strongly affect the local flow field. These instabilities advect fresher water toward the shelf edge and pull denser water back toward the coast. The details of how the flow crosses between these two regimes is of interest because it controls the flux of river-borne biogeochemical properties to the deep ocean, as well as for the potential onshore transport of oil from offshore spills. We approach this problem using a high resolution numerical model of the Texas-Louisiana shelf run using the Regional Ocean Modeling System (ROMS) and a Lagrangian particle tracking model (TRACMASS). By initializing drifters at the sources of fresh water (the Atchafalaya and Mississippi rivers) in the numerical model, we are able to explicitly track its trajectory through the numerical domain in time. These trajectories can then be used to characterize the cross-shelf transport and lateral dispersion due to the instabilities caused by the presence of the fresher water. We expect the transport and dispersion to be enhanced when compared with these quantities at other times of the year when the instabilities are not present, as well as with other regions of the shelf break that are farther from the plume edge area. Additionally, an idealized numerical model of a shelf break with both horizontal and vertical density gradients has been run through relevant parameter spaces to examine the range of baroclinic instabilities. Drifters are run in these simulations for comparison of transport and dispersion with

  12. Microbunching Instability in Velocity Bunching

    SciTech Connect

    Xiang, D; Wu, J.; /SLAC

    2009-05-26

    Microbunching instability is one of the most challenging threats to FEL performances. The most effective ways to cure the microbunching instability include suppression of the density modulation sources and suppression of the amplification process. In this paper we study the microbunching instability in velocity bunching. Our simulations show that the initial current and energy modulations are suppressed in velocity bunching process, which may be attributed to the strong plasma oscillation and Landau damping from the relatively low beam energy and large relative slice energy spread. A heating effect that may be present in a long solenoid is also preliminarily analyzed.

  13. Longitudinal instability of the forearm.

    PubMed

    Phadnis, J; Watts, A C

    2016-10-01

    The Essex Lopresti lesion is a rare triad of injury to the radial head, interosseous membrane of the forearm and distal radio-ulnar joint, which results in longitudinal instability of the radius. If unrecognized this leads to chronic pain and disability which is difficult to salvage. Early recognition and appropriate treatment is therefore desirable to prevent long-term problems. The aim of this article is to review the pathoanatomy of longitudinal radius instability and use the existing literature and authors' experience to provide recommendations for recognition and treatment of acute and chronic forearm instability, including description of the author's technique for interosseous membrane reconstruction. PMID:27628434

  14. Hydrodynamic instability modeling for ICF

    SciTech Connect

    Haan, S.W.

    1993-03-31

    The intent of this paper is to review how instability growth is modeled in ICF targets, and to identify the principal issues. Most of the material has been published previously, but is not familiar to a wide audience. Hydrodynamic instabilities are a key issue in ICF. Along with laser-plasma instabilities, they determine the regime in which ignition is possible. At higher laser energies, the same issues determine the achievable gain. Quantitative predictions are therefore of the utmost importance to planning the ICF program, as well as to understanding current Nova results. The key fact that underlies all this work is the stabilization of short wavelengths.

  15. New instability of Saturn's ring

    SciTech Connect

    Goertz, C.K.; Morfill, G.

    1988-05-01

    Perturbations in the Saturn ring's mass density are noted to be prone to instabilities through the sporadic elevation of submicron-size dust particles above the rings, which furnishes an effective angular momentum exchange between the rings and Saturn. The dust thus elevated from the ring settles back onto it at a different radial distance. The range of wavelength instability is determinable in light of the dust charge, the average radial displacement of the dust, and the fluctuation of these quantities. It is suggested that at least some of the B-ring's ringlets may arise from the instability.

  16. Observations of a tropical instability vortex

    NASA Astrophysics Data System (ADS)

    Kennan, Sean Christopher

    1997-11-01

    Observations of an upper ocean vortex associated with tropical instabilities in the tropical Pacific were made in the vicinity of the South Equatorial Current and North Equatorial Counter Current (SEC-NECC) shear at 140oW during November-December of 1990. The dynamic and thermohaline structure of the observed vortex is mapped in three dimensions using a suite of measurements from shipboard, hydrographic, and satellite sensors and drifting buoys. Evidence that the sampled flow field is steady in a frame of reference moving with the disturbance is used to study the underlying dynamical balances and the effects on heat, fresh water, and eddy energy fluxes in the region. The vortex translated westward at 30 cm/s (0.24o/day), less than half the speed of westward propagating meridional oscillations of the Equatorial Undercurrent (EUC) and SEC system. The associated flow deformed the North Equatorial Front through northward advection of cold equatorial water and southward entrainment of warmer tropical water, giving the surface temperature field the cusp-like pattern which is commonly associated with tropical instabilities. A dipole of convergence and divergence had magnitudes comparable to the local inertial frequency and confirms predictions by various numerical models. Relative vorticity advection balanced convergence at the front, allowing northward moving cold water to subduct beneath the warmer tropical water. The growth of the vortex appears to have been limited by the inertial frequency via a vortex instability mechanism. The same features are present in shear vortices in a general circulation model. The vortex transported heat and fresh water equatorward at rates of about 0.2 MW/m2 and 5 g/(m2s), respectively. The heat flux agrees with previous estimates from observations and models. The region from 2-5oN gained heat and fresh water at 2-5 W/m3 and 0.1 μg/(m3s). Eddy kinetic energy increased via barotropic instability at a rate of 0.15 mW/m3 and via baroclinic

  17. Instabilities in counterstreaming plasmas

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook

    2013-10-01

    We are performing high power laser experiments showing large, stable, reproducible electromagnetic field structures that arise in counter-streaming interpenetrating supersonic plasma flows in the laboratory. Self organization, whereby energy progressively transfers from smaller to larger scales in an inverse cascade, is widely observed in fluid flows, such as in the nonlinear evolution of multimode Rayleigh-Taylor and Kelvin-Helmholtz instabilities. There are many scenarios in astrophysics where self organization involving magnetic or electric fields in collisionless settings is observed. These surprising structures, predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales, and persist for much longer than the plasma kinetic timescales. Their origin may be magnetic field advection from the recompression of the Biermann battery fields in the midplane. Understanding interactions of high velocity plasma flows is interests to the ICF and astrophysics. This paper will present experimental results and interpretation of these counterstreaming plasma experiments. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  18. Resistive instabilities in tokamaks

    SciTech Connect

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.

  19. Instabilities in the aether

    SciTech Connect

    Carroll, Sean M.; Dulaney, Timothy R.; Gresham, Moira I.; Tam, Heywood

    2009-03-15

    We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector 'aether' fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model ({partial_derivative}{sub {mu}}A{sub {nu}}){sup 2}, the Maxwell Lagrangian F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}}, and a scalar Lagrangian ({partial_derivative}{sub {mu}}A{sup {mu}}){sup 2}. The timelike sigma-model case is well defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.

  20. Suppression of microbunching instability via a transverse gradient undulator

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Huang, Dazhang; Deng, Haixiao; Gu, Qiang; Zhao, Zhentang

    2015-07-01

    The microbunching instability in the linear accelerator (linac) of a free-electron laser facility has always been a problem that degrades the electron beam quality. In this paper, a quite simple and inexpensive technique is proposed to smooth the electron beam current profile to suppress the instability. By directly adding a short undulator with a transverse gradient field right after the injector to couple the transverse spread into the longitudinal direction, additional density mixing in the electron beam is introduced to smooth the current profile, which results in the reduction of the gain of the microbunching instability. The magnitude of the density mixing can be easily controlled by varying the strength of the undulator magnetic field. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the accelerator of an x-ray free-electron laser.

  1. Global Instability on Laminar Separation Bubbles-Revisited

    NASA Technical Reports Server (NTRS)

    Theofilis, Vassilis; Rodriquez, Daniel; Smith, Douglas

    2010-01-01

    In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms. Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes. Major achievements: World-largest numerical solutions of global eigenvalue problems are routinely performed. Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results. Theoretical foundation for control of LSB flows has been laid. Global mode of LSB at the origin of observable phenomena. U-separation on semi-infinite plate. Stall cells on (stalled) airfoil. Receptivity/Sensitivity/AFC feasible (practical?) via: Adjoint EVP solution. Direct/adjoint coupling (the Crete connection). Minor effect of compressibility on global instability in the subsonic compressible regime. Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon.

  2. Richtmyer-Meshkov instability of shocked gaseous interfaces

    SciTech Connect

    Benjamin, R.F. ); Besnard, D.; Haas, J.F. )

    1991-01-01

    The instability of shocked and reshocked perturbed interface between gases of different densities is analyzed by comparing flow visualization from 2D and 3D shock-tube experiments with 2D numerical simulations and theory. The shadowgraphs and calculations show similar large scales of mixing by fluid interpenetration induced by the Richtmyer-Meshkhov instability. In 2D, experimental instability growth following acceleration by the initial shock is less than calculated by linear theory or simulated. The 3D experiments are approximately simulated by 2D calculations with an increased initial amplitude of the interface. The kinetic energy of the interpenetrating velocity field from the simulations are also compared to a theoretical estimate derived from the linear theory. 2 refs., 10 figs.

  3. Effect of bone loss in anterior shoulder instability

    PubMed Central

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  4. LINEAR ELECTROSTATIC INSTABILITY OF THE ELECTRON BEAM ION SOURCE

    SciTech Connect

    Litwin, C.; Vella, M.C.; Sessler, A.

    1981-12-01

    Linear plasma fluid theory is used to study the stability of a cold electron beam in Brillouin equilibrium which passes through a stationary cold ion background, with particular interest in stability for parameters relevant to EBIS devices. Dispersion is studied both analytically and numerically. For {ell}=0, the usual infinite medium two stream instability condition is shown to correspond to a requirement that beam perveance exceed a minimum value, P>33 {micro}pervs; hence, this mode is stable for EBIS (P {approx} l{micro}perv). The Brillouin equilibrium rotation is shown to cause an electron-ion rotating stream instability, which is convectively unstable. The {ell}=1 mode is also found to be unstable. Higher modes numbers, {ell}>1, are unstable, but have reduced growth. Instability is only weakly affected by finite beam radius and boundary conditions.

  5. Coupling of Kelvin-Helmholtz instability and buoyancy instability in a thermally laminar plasma

    SciTech Connect

    Ren Haijun; Wu Zhengwei; Cao Jintao; Dong Chao; Chu, Paul K.

    2011-02-15

    Thermal convective instability is investigated in a thermally stratified plasma in the presence of shear flow, which is known to give rise to the Kelvin-Helmholtz (KH) instability. We examine how the KH instability and magnetothermal instability (MTI) affect each other. Based on the sharp boundary model, the KH instability coupled with the MTI is studied. We present the growth rate and instability criteria. The shear flow is shown to significantly alter the critical condition for the occurrence of thermal convective instability.

  6. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; organic compounds in surface water, bed sediment, and biological tissue, 1992-95

    USGS Publications Warehouse

    Bell, Richard W.; Davis, Jerri V.; Femmer, Suzanne R.; Joseph, Robert L.

    1997-01-01

    Organic-compound samples, including pesticides and semi-volatiles, were collected from 1992-95 at 43 surface-water and 27 bed-sediment and biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Most surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus. At most surface-water sampling sites, one to three pesticide samples were collected in the spring and early summer of 1994 and 1995; two sites had additional samples collected either weekly, biweekly, or monthly from February 1994 through December 1994. At most bed-sediment and biological-tissue sampling sites, a single organic-compounds sample was collected. Agricultural pesticide use was approximately 4.9 million pounds of active ingredients per year from 1987-91 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Atrazine was the second most frequently applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 85 percent of the pesticides applied within the study unit. The highest pesticide application rate occurred on these crops in the Mississippi Alluvial and Osage Plains. Pastureland was the crop type that received the greatest amount of pesticides in 53 of the 96 counties in the study unit. The most commonly detected herbicide (63 samples) in surface water was atrazine. Five other pesticides--desethylatrazine, tebuthiuron, prometon, metolachlor, and simazine--were detected in 15 or more samples. The most commonly detected insecticide (13 samples) was p,p'-DDE. Two other insecticides, diazinon and cis-permethrin, were detected in seven or more samples. Pesticides were detected at 39 surface-water sites; samples collected at Yocum Creek near Oak Grove, Ark. had the most

  7. Cosmic instability from radiation pressure

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1990-01-01

    The Cosmic Background Explorer has recently confirmed the blackbody character of the microwave background to high accuracy (Mather et al., 1990), and will have the capability to detect other cosmic backgrounds throughout the infrared. A detection of cosmic background radiation dating from the pregalactic era would have important consequences for theories of cosmic structure. During the creation of such a background the pressure of the radiation itself causes an instability which leads inevitably to the growth of large-scale structure in the matter distribution. In contrast to conventional gravitational-instability models, the statistical properties of this structure are determined primarily by the self-organizing dynamics of the instability rather than details of cosmological initial conditions. The behavior of the instability is described here.

  8. Instabilities of High Temperature Superconductors

    PubMed Central

    Matthias, B. T.; Corenzwit, E.; Cooper, A. S.; Longinotti, L. D.

    1971-01-01

    We have observed the transition temperature of both the cubic and tetragonal phases of several high-temperature β-W superconductors. The instability of the cubic lattice appears to be characteristic of high-temperature superconductors. PMID:16591897

  9. Instability-driven quantum dots

    NASA Astrophysics Data System (ADS)

    Aqua, Jean-Noël; Frisch, Thomas

    2015-10-01

    When a film is strained in two dimensions, it can relax by developing a corrugation in the third dimension. We review here the resulting morphological instability that occurs by surface diffusion, called the Asaro-Tiller-Grinfel'd instability (ATG), especially on the paradigmatic silicon/germanium system. The instability is dictated by the balance between the elastic relaxation induced by the morphological evolution, and its surface energy cost. We focus here on its development at the nanoscales in epitaxial systems when a crystal film is coherently deposited on a substrate with a different lattice parameter, thence inducing epitaxial stresses. It eventually leads to the self-organization of quantum dots whose localization is dictated by the instability long-time dynamics. In these systems, new effects, such as film/substrate wetting or crystalline anisotropy, come into play and lead to a variety of behaviors. xml:lang="fr"

  10. Fluid Instabilities inside Astrophysical Explosions

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Zheng, Weiqun

    2014-11-01

    We present our results from the simulations of fluid instabilities inside supernovae with a new radiation-hydrodynamic code, CASTRO. Massive stars are ten times more massive than Sun. Observational and theoretical studies suggest that these massive stars tend to end their lives with energetic explosions, so-called supernovae. Many fluid instabilities occur during the supernova explosions. The fluid instabilities can be driven by hydrodynamics, nuclear burning, or radiation. In this talk, we discuss about the possible physics of fluid instabilities found in our simulations and how the resulting mixing affects the observational signatures of supernovae. This work was supported by the DOE HEP Program under contract DE-SC0010676; the National Science Foundation (AST 0909129) and the NASA Theory Program (NNX14AH34G).

  11. Waves and instabilities in plasmas

    SciTech Connect

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  12. Material Instabilities in Particulate Systems

    NASA Technical Reports Server (NTRS)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  13. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  14. Pattern Formation in Convective Instabilities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Bestehorn, M.; Haken, H.

    The present article reviews recent progress in the study of pattern formation in convective instabilities. After a brief discussion of the relevant basic hydrodynamic equations as well as a short outline of the mathematical treatment of pattern formation in complex systems the self-organization of spatial and spatio-temporal structures due to convective instabilities is considered. The formation of various forms of convective patterns arising in the Bénard experiment, i.e. in a horizontal fluid layer heated from below, is discussed. Then the review considers pattern formation in the Bénard instability in spherical geometries. In that case it can be demonstrated how the interaction among several convective cells may lead to time dependent as well as chaotic evolution of the spatial structures. Finally, the convective instability in a binary fluid mixture is discussed. In contrast to the instability in a single component fluid the instability may be oscillatory. In that case convection sets in in the form of travelling wave patterns which in addition to a complicated and chaotic temporal behaviour exhibit more or less spatial irregularity already close to threshold.

  15. Instability of enclosed horizons

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  16. Spatially Developing Secondary Instabilities and Attachment Line Instability in Supersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.

    2008-01-01

    This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.

  17. The Role of Thermal Instability in Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Inutsuka, Shu-Ichiro; Koyama, Hiroshi; Inoue, Tsuyoshi

    2005-09-01

    Our understanding on the physical processes in the transition between warm neutral medium (WNM) and cold neutral medium (CNM) is dramatically increased in the last few years. This article reviews the role of thermal instability in interstellar medium. First we explain the basic property of thermal instability in terms of linear stability analysis. Then we analyze the propagation of a shock wave into WNM or CNM by taking into account radiative heating/cooling, thermal conduction, and physical viscosity, in one-, two-, and three-dimensional magnetohydrodynamical simulations. The results show that the thermal instability in the post-shock gas produces high-density molecular cloudlets embedded in warm neutral medium. The molecular cloudlets have velocity dispersion which is supersonic with respect to the sound speed of the cold medium but is sub-sonic with respect to the warm medium. The dynamical evolution driven by thermal instability in the post-shock layer is an important basic process for the transition from warm gases to cold molecular gases, because the shock waves are frequently generated by supernovae in the Galaxy. The mechanism for maintaining the turbulent motion in two-phase medium is analyzed further by identifying the dynamical instability of the transition layer between WNM and CNM, that has analogy to Darrieus-Landau Instability of flame fronts and the corrugation instability of MHD slow shocks. Once the total column density of the ensemble of cold clouds becomes larger than the critical value (~ 1021cm-2), the two-phase medium is expected to become one phase medium with the cooling timescale. This process is not well understood and remains to be studied. Attempts to compare the numerical results of dynamical calculations with observation are suggested.

  18. Approaches to Numerical Relativity

    NASA Astrophysics Data System (ADS)

    d'Inverno, Ray

    2005-07-01

    Introduction Ray d'Inverno; Preface C. J. S. Clarke; Part I. Theoretical Approaches: 1. Numerical relativity on a transputer array Ray d'Inverno; 2. Some aspects of the characteristic initial value problem in numerical relativity Nigel Bishop; 3. The characteristic initial value problem in general relativity J. M. Stewart; 4. Algebraic approachs to the characteristic initial value problem in general relativity Jõrg Frauendiener; 5. On hyperboidal hypersurfaces Helmut Friedrich; 6. The initial value problem on null cones J. A. Vickers; 7. Introduction to dual-null dynamics S. A. Hayward; 8. On colliding plane wave space-times J. B. Griffiths; 9. Boundary conditions for the momentum constraint Niall O Murchadha; 10. On the choice of matter model in general relativity A. D. Rendall; 11. A mathematical approach to numerical relativity J. W. Barrett; 12. Making sense of the effects of rotation in general relativity J. C. Miller; 13. Stability of charged boson stars and catastrophe theory Franz E. Schunck, Fjodor V. Kusmartsev and Eckehard W. Mielke; Part II. Practical Approaches: 14. Numerical asymptotics R. Gómez and J. Winicour; 15. Instabilities in rapidly rotating polytropes Scott C. Smith and Joan M. Centrella; 16. Gravitational radiation from coalescing binary neutron stars Ken-Ichi Oohara and Takashi Nakamura; 17. 'Critical' behaviour in massless scalar field collapse M. W. Choptuik; 18. Goudunov-type methods applied to general relativistic gravitational collapse José Ma. Ibánez, José Ma. Martí, Juan A. Miralles and J. V. Romero; 19. Astrophysical sources of gravitational waves and neutrinos Silvano Bonazzola, Eric Gourgoulhon, Pawel Haensel and Jean-Alain Marck; 20. Gravitational radiation from triaxial core collapse Jean-Alain Marck and Silvano Bonazzola; 21. A vacuum fully relativistic 3D numerical code C. Bona and J. Massó; 22. Solution of elliptic equations in numerical relativity using multiquadrics M. R. Dubal, S. R. Oliveira and R. A. Matzner; 23

  19. Numerical nebulae

    NASA Astrophysics Data System (ADS)

    Rijkhorst, Erik-Jan

    2005-12-01

    The late stages of evolution of stars like our Sun are dominated by several episodes of violent mass loss. Space based observations of the resulting objects, known as Planetary Nebulae, show a bewildering array of highly symmetric shapes. The interplay between gasdynamics and radiative processes determines the morphological outcome of these objects, and numerical models for astrophysical gasdynamics have to incorporate these effects. This thesis presents new numerical techniques for carrying out high-resolution three-dimensional radiation hydrodynamical simulations. Such calculations require parallelization of computer codes, and the use of state-of-the-art supercomputer technology. Numerical models in the context of the shaping of Planetary Nebulae are presented, providing insight into their origin and fate.

  20. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Astrophysics Data System (ADS)

    Kirk, Lindsay Christine

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature for an axisymmetric cone geometry were examined separately to determine the individual effects on the first mode amplification. The DAKOTA optimization software package was then used to optimize the geometry to maximize the amplification of waves at first mode frequencies and to minimize the amplification of the waves at second mode frequencies, as computed by the 2D STABL hypersonic boundary layer stability analysis tool. This was accomplished by allowing all geometric parameters in the sensitivity study to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. During this process, boundary layer edge properties were recorded to investigate any correlations. Results of the sensitivity analysis indicate that an axisymmetric cone with a sharp nose or an axisymmetric cone with a high degree of concave curvature under the Mach 6 freestream conditions used here will cause the largest amplification of first mode instability waves.

  1. A coupled "AB" system: Rogue waves and modulation instabilities.

    PubMed

    Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N

    2015-10-01

    Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

  2. A coupled "AB" system: Rogue waves and modulation instabilities

    NASA Astrophysics Data System (ADS)

    Wu, C. F.; Grimshaw, R. H. J.; Chow, K. W.; Chan, H. N.

    2015-10-01

    Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

  3. Self-gravity driven instabilities at accelerated interfaces.

    PubMed

    Hueckstaedt, Robert M; Hunter, James H; Lovelace, Richard V E

    2005-06-01

    Nonlinear hydrodynamic flows are ubiquitous in the interstellar medium (ISM). Such flows play an important role in shaping atomic and molecular clouds and determining the initial conditions for star formation. One mechanism by which nonlinear flows arise is the onset and growth of interfacial instabilities. Any interface of discontinuous density is subject to a host of instabilities, including Rayleigh-Taylor, Kelvin-Helmholtz, and Richtmyer-Meshkov. As part of an ongoing study of structure formation in the ISM, Hunter, Whitaker, and Lovelace discovered an additional density interface instability. This instability is driven by self-gravity and termed the self-gravity interfacial instability (SGI). The SGI causes any displacement of the interface to grow on roughly a free-fall time scale, even when the perturbation wavelength is much less than the Jeans length. Numerical simulations have confirmed the expectations of linear theory, including the near scale invariance of the growth rate. Here, we build upon previous work by considering an initial condition in which the acceleration due to self-gravity is non-zero at the interface.

  4. Protostellar Disk Instabilities and the Formation of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Pickett, Brian K.; Durisen, Richard H.; Cassen, Patrick; Mejia, Annie C.

    2000-09-01

    Recent numerical simulations of self-gravitating protostellar disks have suggested that gravitational instabilities can lead to the production of substellar companions. In these simulations, the disk is typically assumed to be locally isothermal; i.e., the initial, axisymmetric temperature in the disk remains everywhere unchanged. Such an idealized condition implies extremely efficient cooling for outwardly moving parcels of gas. While we have seen disk disruption in our own locally isothermal simulations of a small, massive protostellar disk, no long-lived companions formed as a result of the instabilities. Instead, thermal and tidal effects and the complex interactions of the disk material prevented permanent condensations from forming, despite the vigorous growth of spiral instabilities. In order to compare our results more directly with those of other authors, we here present three-dimensional evolutions of an older, larger, but less massive protostellar disk. We show that potentially long-lived condensations form only for the extreme of local isothermality, and then only when severe restrictions are placed on the natural tendency of the protostellar disk to expand in response to gravitational instabilities. A more realistic adiabatic evolution leads to vertical and radial expansion of the disk but no clump formation. We conclude that isothermal disk calculations cannot demonstrate companion formation by disk fragmentation but only suggest it at best. It will be necessary in future numerical work on this problem to treat the disk thermodynamics more realistically.

  5. Studies of the microwave instability in the small isochronous ring

    NASA Astrophysics Data System (ADS)

    Li, Yingjie

    This dissertation is devoted to deepening our knowledge and understanding of the hidden physics regarding the microwave instability of the space-charge dominated beams in the small isochronous ring, which was observed in our previous numerical and experimental studies. The dissertation attempts to provide a further exploration and more accurate description of the microwave instability by focusing on the following topics: (a) Derivations of the full-spectrum longitudinal space charge (LSC) impedance formula, which reflects the realistic configurations of the beam-chamber system more closely than the existing ones. (b) Landau damping effect. A two-dimensional (2D) dispersion relation is derived in the dissertation, by which the microwave instability growth rates of a coasting beam with any energy spread and emittance in the isochronous regime can be predicted theoretically. (c) Evolution of the beam profiles in the nonlinear regime of the microwave instability. For this purpose, various numerical, experimental and theoretical approaches have been employed in the research, including the simulation and measurement of the energy spread evolution, simulated corotation of the two-macroparticle and two-bunch models together with their comparisons with the theoretical predictions. The simulations, experiments and theoretical predictions on the above three topics all reach good agreements.

  6. Looking at the Gregory-Laflamme instability through quasinormal modes

    SciTech Connect

    Konoplya, R. A.; Murata, Keiju; Soda, Jiro; Zhidenko, A.

    2008-10-15

    We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.

  7. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  8. Various regimes of instability and formation of coastal eddies along the shelf bathymetry

    NASA Astrophysics Data System (ADS)

    Cimoli, Laura; Stegner, Alexandre; Roullet, Guillaume

    2016-04-01

    The impact of shelf slope on the stability of coastal currents and the nonlinear formation of coastal meanders and eddies are investigated by linear analysis and numerical simulations using an idealized channel configuration of the ROMS model. The impact of the shelf bathymetry leads to different regimes of instability of coastal currents that can both enhance or prevent the cross-shore transport. While keeping unchanged a coastal jet, we tested its unstable evolution for various depth and topographic slopes. Unlike standard linear stability analysis devoted to the very first stage of instability we focus on the non-linear end state, i.e. the formation of coastal eddies or meanders, to classify the various dynamical regimes. Two dimensionless numbers are used to quantify the parameter space of theses various regimes: the vertical aspect ratio gamma and the topographic parameter Tp, which is defined as the ratio of the topographic Rossby waves speed over the jet speed and is proportional to the shelf slope. We found four distinct regimes of instability, namely: standard baroclinic instability, horizontal shear instability, trapped coastal instability and quasi-stable jet. Our results show that Tp is the key parameter that controls the non-linear saturation of the coastal current, while gamma controls the transition from the standard baroclinic instability to the horizontal shear instability. Moreover, our analysis exhibit a new regime of formation of submeso-scale eddies. Contrary to the standard baroclinic instability regime, these eddies are trapped over the slope and never escape off-shore.

  9. Annual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011

    USGS Publications Warehouse

    Nelms, David L.; Messinger, Terence; McCoy, Kurt J.

    2015-01-01

    As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.

  10. Annual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011

    USGS Publications Warehouse

    Nelms, David L.; Messinger, Terence; McCoy, Kurt J.

    2015-07-14

    As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.

  11. Orbital Instability of the Peregrine Soliton

    NASA Astrophysics Data System (ADS)

    Van Gorder, Robert A.

    2014-05-01

    The Peregrine soliton is one possible model of a rogue wave. Importantly, this type of soliton corresponds nicely to rogue waves recently observed experimentally in a water tank [A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)] and in optical fiber [B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010)]. Starting with a family of Peregrine solitons indexed by their spectral parameter, we analytically demonstrate a type of instability in the Peregrine soliton through a concise orbital stability analysis. This analysis is completely analytical, and to verify the approach we also discuss a numerical linear instability analysis. We give the growth/decay rate for these solitons as a function of the initial amplitude, which for each soliton shall depend on the spectral parameter.

  12. A Reduced Model for the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Jamroz, Ben; Julien, Keith; Knobloch, Edgar

    2008-11-01

    The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.

  13. Onset of oscillatory instabilities under stochastic modulation

    SciTech Connect

    Drolet, F.; Vinals, J.; Vinals, J.

    1997-09-01

    We study the effect of external stochastic modulation on a system with O(2) symmetry that exhibits a Hopf or oscillatory instability in the absence of modulation. The study includes a random component in both the control parameter of the bifurcation and in the modulation amplitude. Stability boundaries are computed by either solving the stationary Fokker-Planck equation on the center manifold of the underlying deterministic system whenever possible, or by direct numerical solution otherwise. If the modulation amplitude has a stochastic component, the primary bifurcation is always to standing waves at a value of the control parameter that depends on the intensity of the fluctuations. More precisely, and to contrast our results with the case of a deterministic periodic forcing, the onset of instability in the standing-wave regime is shifted from its deterministic location, and the region of primary bifurcation to traveling waves disappears, yielding instead standing waves at negative values of the control parameter. {copyright} {ital 1997} {ital The American Physical Society}

  14. Instabilities of diffusion flames near extinction

    NASA Astrophysics Data System (ADS)

    Papas, Paul; Rais, Redha M.; Monkewitz, Peter A.; Tomboulides, Ananias G.

    2003-12-01

    The linear spatio-temporal stability of a diffusion flame, represented by a simplified one-dimensional model, located in a mixing layer is investigated. The analysis focuses on recently discovered `heat release' or combustion modes reported for flames near the extinction limit, i.e. for low Damköhler number. Numerical simulations of the two-dimensional linearized impulse response are performed to uncover the convective versus absolute nature of these combustion modes. To complement these two-dimensional simulations, the convective absolute transitions of these modes are confirmed with spatio-temporal linear stability calculations. The effects of initial reactant temperature, flow shear Reynolds number, as well as low fuel Lewis number, are explored. In addition to the Kelvin Helmholtz mode, the generalized model predicts a variety of instabilities near the extinction state, such as travelling and stationary cellular modes, zero wavenumber instabilities or `pulsations', and coupled hydrodynamic-combustion modes. The results elucidate the fundamental destabilizing mechanisms for these near-extinction flames and their relationship to previous work.

  15. Mitotic Stress and Chromosomal Instability in Cancer

    PubMed Central

    Malumbres, Marcos

    2012-01-01

    Cell cycle deregulation is a common motif in human cancer, and multiple therapeutic strategies are aimed to prevent tumor cell proliferation. Whereas most current therapies are designed to arrest cell cycle progression either in G1/S or in mitosis, new proposals include targeting the intrinsic chromosomal instability (CIN, an increased rate of gain or losses of chromosomes during cell division) or aneuploidy (a genomic composition that differs from diploid) that many tumor cells display. Why tumors cells are chromosomally unstable or aneuploid and what are the consequences of these alterations are not completely clear at present. Several mitotic regulators are overexpressed as a consequence of oncogenic alterations, and they are likely to alter the proper regulation of chromosome segregation in cancer cells. In this review, we propose the relevance of TPX2, a mitotic regulator involved in the formation of the mitotic spindle, in oncogene-induced mitotic stress. This protein, as well as its partner Aurora-A, is frequently overexpressed in human cancer, and its deregulation may participate not only in chromosome numeric aberrations but also in other forms of genomic instability in cancer cells. PMID:23634259

  16. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  17. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  18. Rayleigh-Taylor instability simulations with CRASH

    NASA Astrophysics Data System (ADS)

    Chou, C.-C.; Fryxell, B.; Drake, R. P.

    2012-03-01

    CRASH is a code package developed for the predictive study of radiative shocks. It is based on the BATSRUS MHD code used extensively for space-weather research. We desire to extend the applications of this code to the study of hydrodynamically unstable systems. We report here the results of Rayleigh-Taylor instability (RTI) simulations with CRASH, as a necessary step toward the study of such systems. Our goal, motivated by the previous comparison of simulations and experiment, is to be able to simulate the magnetic RTI with self-generated magnetic fields produced by the Biermann Battery effect. Here we show results for hydrodynamic RTI, comparing the effects of different solvers and numerical parameters. We find that the early-time behavior converges to the analytical result of the linear theory. We observe that the late-time morphology is sensitive to the numerical scheme and limiter beta. At low-resolution limit, the growth of RTI is highly dependent on the setup and resolution, which we attribute to the large numerical viscosity at low resolution.

  19. Measurements of entropy-layer instabilities over cone-ogive-cylinders at Mach 6

    NASA Astrophysics Data System (ADS)

    Greenwood, Roger T.

    . Results show a smooth variation of the location of this instability descent with nosetip angle. As the angle increases, the instability approaches the model further upstream. Cross-correlations between the surface transducer and hot-wire anemometry measurements confirm that the same instability is being measured at both locations. Cross-correlations between axially-displaced surface sensors were used to calculate an instability convection velocity that is approximately equal to the numerically-calculated flow velocity. And cross-correlations between azimuthally-displaced sensors show that the instability is primarily axisymmetric. The model angle of attack for all measurements was nominally zero. However, the actual angle of attack may vary by up to 0.1 degrees. The experimental results were also compared with mean-flow computations for several of the model configurations.

  20. Multi-Layered Cancer Chromosomal Instability Phenotype

    PubMed Central

    Roschke, Anna V.; Rozenblum, Ester

    2013-01-01

    Whole-chromosomal instability (W-CIN) – unequal chromosome distribution during cell division – is a characteristic feature of a majority of cancer cells distinguishing them from their normal counterparts. The precise molecular mechanisms that may cause mis-segregation of chromosomes in tumor cells just recently became more evident. The consequences of W-CIN are numerous and play a critical role in carcinogenesis. W-CIN mediates evolution of cancer cell population under selective pressure and can facilitate the accumulation of genetic changes that promote malignancy. It has both tumor-promoting and tumor-suppressive effects, and their balance could be beneficial or detrimental for carcinogenesis. The characterization of W-CIN as a complex multi-layered adaptive phenotype highlights the intra- and extracellular adaptations to the consequences of genome reshuffling. It also provides a framework for targeting aggressive chromosomally unstable cancers. PMID:24377086

  1. MIX and Instability Growth from Oblique Shock

    SciTech Connect

    Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W

    2011-07-22

    We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.

  2. Analysis of the electron cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Cheo, B. R.

    1984-07-01

    The nonlinear evolution of the electron cyclotron maser instability is investigated analytically, with a focus on the saturation due to phase trapping of gyrating particles in the wave. The equations of motion of a single electron moving in the wave are solved; the collective response of electrons to wave fields is obtained by averaging over the initial random phase distribution; and a single nonlinear equation governing the time evolution of the amplitude is derived self-consistently. Numerical results are presented in graphs and shown to be in good agreement with those of a particle simulation, at a significant savings in computational effort. The results are applicable to the improvement of high-power gyrotron-type mm and sub-mm emitters for radar communications or plasma heating in controlled-fusion devices.

  3. Vortex ring instability and its sound

    NASA Technical Reports Server (NTRS)

    Verzicco, R.; Shariff, K.

    1994-01-01

    This work carries earlier finite-difference calculations of the Widnall instability of vortex rings into the late non-linear stage. Plots of energy in azimuthal Fourier modes indicate that low-order modes dominate at large times; their structure and dynamics remain unexplored, however. An attempt was made to calculate the acoustic signal using the theory of Mohring (1978), valid for unbounded flow. This theory shows that only low-order azimuthal modes contribute to the sound. As a check on the effects of axial periodicity and a slip wall at large radius imposed by the numerical scheme, the acoustic integrals were also computed in a truncated region. Half of the terms contributing to the sound have large differences between the two regions, and the results are therefore unreliable. The error is less severe for a contribution involving only the m = 2 mode, and its low frequency is consistent with a free elliptic bending wave on a thin ring.

  4. ISM turbulence driven by the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Piontek, Robert A.; Ostriker, Eve C.

    We have performed numerical simulations which were designed to further our understanding of the turbulent interstellar medium (ISM). Our simulations include a multi-phase thermodynamic treatment of the ISM, magnetic fields, and sheared rotation, allowing us to study the effects of the magnetoroational instability (MRI) in an environment containing high density cold clouds embedded in a warm, low density, ambient medium. These models have shown that the MRI is indeed a significant source of turbulence, particularly at low mean densities typical of the outer regions of the Milkyway, where star formation rates are low, but high levels of turbulence persist. Here, we present results from our most recent models which include vertical stratification, allowing us to self-consistently model the vertical distribution of material in the disk.

  5. Financial instability from local market measures

    NASA Astrophysics Data System (ADS)

    Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo

    2012-08-01

    We study the emergence of instabilities in a stylized model of a financial market, when different market actors calculate prices according to different (local) market measures. We derive typical properties for ensembles of large random markets using techniques borrowed from statistical mechanics of disordered systems. We show that, depending on the number of financial instruments available and on the heterogeneity of local measures, the market moves from an arbitrage-free phase to an unstable one, where the complexity of the market—as measured by the diversity of financial instruments—increases, and arbitrage opportunities arise. A sharp transition separates the two phases. Focusing on two different classes of local measures inspired by real market strategies, we are able to analytically compute the critical lines, corroborating our findings with numerical simulations.

  6. Dynamo generated by the centrifugal instability

    NASA Astrophysics Data System (ADS)

    Marcotte, Florence; Gissinger, Christophe

    2016-10-01

    We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.

  7. Physical diffusion suppresses the carbuncle instability

    NASA Astrophysics Data System (ADS)

    Shi, Ke; Jemcov, Aleksander; Powers, Joseph

    2015-11-01

    We demonstrate a simple antidote exists to the numerical carbuncle instability predicted by some shock-capturing schemes: inclusion of physical momentum and energy diffusion via a compressible Navier-Stokes solution to the supersonic flow of a calorically perfect ideal gas past a circular cylinder. We demonstrate the carbuncle phenomenon and its rectification by solving two problems. Both employ the same geometry, initial conditions, computational grid, time step size, advective flux model of a Roe-based scheme without an entropy fix, and time-advancement scheme. For the first problem, we neglect physical diffusion, while for the second we include it. When physical diffusion is neglected, we predict a carbuncle phenomenon; however, when it is included and sufficiently resolved, no carbuncle is predicted, in agreement with experiment.

  8. Instability in electromagnetically driven flows. II

    NASA Astrophysics Data System (ADS)

    Rodriguez Imazio, Paola; Gissinger, Christophe

    2016-03-01

    In a previous paper, we have reported numerical simulations of the magnetohydrodynamic flow driven by a travelling magnetic field in an annular channel, at low Reynolds number. It was shown that the stalling of such induction pump is strongly related to magnetic flux expulsion. In the present article, we show that for larger hydrodynamic Reynolds number, and with more realistic boundary conditions, this instability takes the form of a large axisymmetric vortex flow in the (r, z)-plane, in which the fluid is locally pumped in the direction opposite to the one of the magnetic field. Close to the marginal stability of this vortex flow, a low-frequency pulsation is generated. Finally, these results are compared to theoretical predictions and are discussed within the framework of experimental annular linear induction electromagnetic pumps.

  9. The Energetics of Centrifugal Instability

    NASA Astrophysics Data System (ADS)

    Dewar, W. K.; Jiao, Y.

    2014-12-01

    A recent study has argued that the California Undercurrent, and poleward eastern boundary currents in general, generate mixing events through centrifugal instability (CI). Conditions favorable for CI are created by the strong horizontal shears developed in turbulent bottom layers of currents flowing in the direction of topographic waves. At points of abrupt topographic change, like promontories and capes, the coastal current separates from the boundary and injects gravitationally stable but dynamically unstable flow into the interior. The resulting finite amplitude development of the instability involves overturnings and diabatic mixing. The purpose of this study is to examine the energetics of CI in order to characterize it as has been done for other instabilities and develop a framework in which to estimate its regional and global impacts. We argue that CI is roughly twice as efficient at mixing as is Kelvin-Helmholtz instability, and that roughly 10% of the initial energy in a CUC-like current is lost to either local mixing or the generation of unbalanced flows. The latter probably leads to non-local mixing. Thus centrifugal instability is an effective process by which energy is lost from the balanced flow and spent in mixing neighboring water masses. We argue the importance of the mixing is regional in nature, but of less importance to the global budgets given its regional specificity.

  10. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  11. Comet-solar wind interaction through ion-proton beam instability

    SciTech Connect

    Price, C.P.; Lee, L.C.

    1988-01-01

    The acceleration of cometary ions in the distant cometary tail by an electromagnetic beam instability, which is caused by the relative drift velocity between the cometary ions and solar protons is studied. The linear phase of the instability is analyzed by numerical evaluation of the Vlasov dispersion relation. A particle simulation is used to study the nonlinear phase of the instability. Right-hand polarized cyclotron waves are made unstable by the presence of ion beams. The cometary tail ions are accelerated mainly during the reduced-growth phase of the instability. The cyclotron waves cause momentum transfer from solar wind protons to cometary tail ions. The acceleration of cometary ions through the electromagnetic beam instability is found to be 500-5000 cm/s-squared. 35 references.

  12. Noise-sustained convective instability in a magnetized Taylor-Couette flow

    SciTech Connect

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  13. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    SciTech Connect

    W. Liu

    2009-02-20

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  14. Low-frequency flute instabilities of self-pinched ion beams

    SciTech Connect

    Uhm, Han S.; Davidson, Ronald C.

    2005-12-15

    The stability properties of the low-frequency flute instabilities in a self-pinched ion beam propagating through a preformed plasma channel are investigated for long-wavelength and low-frequency perturbations. Consistent with the flute instabilities, the stability analysis is restricted to the surface perturbations on the ion beam. A closed algebraic dispersion relation of the flute instabilities for Bennett [Phys. Rev. 45, 890 (1934)] density profile is obtained, by making use of the energy group model. From the analytical and numerical calculations of the dispersion relation for highly collisional plasma, we find the necessary condition for instability in terms of the fractional current neutralization f. Threshold values of the fractional current neutralization for instability are tabulated for each azimuthal mode number l.

  15. Comet-solar wind interaction through ion-proton beam instability

    NASA Astrophysics Data System (ADS)

    Price, C. P.; Lee, L. C.

    1988-01-01

    The acceleration of cometary ions in the distant cometary tail by an electromagnetic beam instability, which is caused by the relative drift velocity between the cometary ions and solar protons is studied. The linear phase of the instability is analyzed by numerical evaluation of the Vlasov dispersion relation. A particle simulation is used to study the nonlinear phase of the instability. Right-hand polarized cyclotron waves are made unstable by the presence of ion beams. The cometary tail ions are accelerated mainly during the reduced-growth phase of the instability. The cyclotron waves cause momentum transfer from solar wind protons to cometary tail ions. The acceleration of cometary ions through the electromagnetic beam instability is found to be 500-5000 cm/s-squared.

  16. Numerical simulation of Ulysses nutation

    NASA Astrophysics Data System (ADS)

    Garciamarirrodriga, C.; Zeischka, J.; Boslooper, E. C.

    1993-04-01

    The in-orbit instability of the Ulysses spacecraft was numerically simulated. The thermal excitation from the solar flux, the flexible axial boom, and the deployment mechanism were modeled and analyzed. In order to model a non-isolated mechanical system, the link between thermal, structural, and multibody dynamics packages is considered. The simulation shows that the nutation build-up was originated by the solar input on the axial boom coupled with the nutational frequency of the spacecraft. The results agree with the observed behavior.

  17. Theoretical Studies of Low Frequency Instabilities in the Ionosphere. Final Report

    SciTech Connect

    Dimant, Y. S.

    2003-08-20

    The objective of the current project is to provide a theoretical basis for better understanding of numerous radar and rocket observations of density irregularities and related effects in the lower equatorial and high-latitude ionospheres. The research focused on: (1) continuing efforts to develop a theory of nonlinear saturation of the Farley-Buneman instability; (2) revision of the kinetic theory of electron-thermal instability at low altitudes; (3) studying the effects of strong anomalous electron heating in the high-latitude electrojet; (4) analytical and numerical studies of the combined Farley-Bunemadion-thermal instabilities in the E-region ionosphere; (5) studying the effect of dust charging in Polar Mesospheric Clouds. Revision of the kinetic theory of electron thermal instability at low altitudes.

  18. Cumulative hose instabilities of a magnetically self-focused slab electron beam

    SciTech Connect

    Whittum, D.H. , 1-1 Oho, Tsukuba, Ibaraki, 305 )

    1993-12-01

    Transverse instabilities are investigated for the slab analog of the Bennett equilibrium of a magnetically self-focused relativistic electron beam propagating through a plasma. Two kinds of plasma are considered: a channel matched to the beam and a broad uniform plasma. The high-frequency electrostatic transverse two-stream instability and the lower-frequency resistive-hose instability are treated analytically with a distributed tune ( mass'') model. Asymptotic growth is computed for each instability in various regimes, and analytic results are benchmarked against numerical solutions of the linearized system and particle-in-cell simulations. It is found that in the limit of large collisionless skin depth the electrostatic hose is the more virulent mode of beam breakup. Numerical examples are discussed for parameters in the range considered for plasma focusing of the asymmetric beams of interest in high-energy physics.

  19. The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows.

    PubMed

    Casanellas, Laura; Alves, Manuel A; Poole, Robert J; Lerouge, Sandra; Lindner, Anke

    2016-07-20

    We determine both experimentally and numerically the onset of elastic flow instabilities in viscoelastic polymer solutions with different levels of shear thinning. Previous experiments realized in microfluidic serpentine channels using dilute polymeric solutions showed that the onset of elastic instabilities strongly depends on the channel curvature. The scaling dependence is well captured by the general instability scaling criterion proposed by Pakdel and McKinley [Phys. Rev. Lett., 1996, 76, 2459:1-4]. We determine here the influence of fluid shear thinning on the onset of such purely-elastic flow instabilities. By testing a set of polyethylene oxide solutions of high molecular weight at different polymer concentrations in microfluidic serpentine channels we observe that shear thinning has a stabilizing effect on the microfluidic flow. Three-dimensional numerical simulations performed using the White-Metzner model predict similar trends, which are not captured by a simple scaling analysis using the Pakdel-McKinley criterion. PMID:27265240

  20. Interfacial Instability during Granular Erosion

    NASA Astrophysics Data System (ADS)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-01

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  1. Hydrodynamick instabilities on ICF capsules

    SciTech Connect

    Haan, S.W.

    1991-06-07

    This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs.

  2. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  3. Faraday instability in deformable domains

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Ben Amar, Martine; Couder, Yves

    2014-11-01

    We investigate the Faraday instability in floating liquid lenses, as an example of hydrodynamic instability that develops in a domain with flexible boundaries. We show that a mutual adaptation of the instability pattern and the domain shape occurs, as a result of the competition between the wave radiation pressure and the capillary response of the lens border. Two archetypes of behaviour are observed. In the first, stable shapes are obtained experimentally and predicted theoretically as the exact solutions of a Riccati equation, and they result from the equilibrium between wave radiation pressure and capillarity. In the second, the radiation pressure exceeds the capillary response of the lens border and leads to non-equilibrium behaviours, with breaking into smaller domains that have a complex dynamics including spontaneous propagation. The authors are grateful to Université Franco-Italienne (UFI) for financial support.

  4. Interfacial instabilities and Kapitsa pendula

    NASA Astrophysics Data System (ADS)

    Krieger, Madison

    2015-11-01

    Determining the critera for onset and amplitude growth of instabilities is one of the central problems of fluid mechanics. We develop a parallel between the Kapitsa effect, in which a pendulum subject to high-frequency low-amplitude vibrations becomes stable in the inverted position, and interfaces separating fluids of different density. It has long been known that such interfaces can be stabilized by vibrations, even when the denser fluid is on top. We demonstrate that the stability diagram for these fluid interfaces is identical to the stability diagram for an appopriate Kapitsa pendulum. We expand the robust, ``dictionary''-type relationship between Kapitsa pendula and interfacial instabilities by considering the classical Rayleigh-Taylor, Kelvin-Helmholtz and Plateau instabilities, as well as less-canonical examples ranging in scale from the micron to the width of a galaxy.

  5. Stellar explosions, instabilities, and turbulence

    SciTech Connect

    Drake, R. P.; Kuranz, C. C.; Miles, A. R.; Muthsam, H. J.; Plewa, T.

    2009-04-15

    It has become very clear that the evolution of structure during supernovae is centrally dependent on the pre-existing structure in the star. Modeling of the pre-existing structure has advanced significantly, leading to improved understanding and to a physically based assessment of the structure that will be present when a star explodes. It remains an open question whether low-mode asymmetries in the explosion process can produce the observed effects or whether the explosion mechanism somehow produces jets of material. In any event, the workhorse processes that produce structure in an exploding star are blast-wave driven instabilities. Laboratory experiments have explored these blast-wave-driven instabilities and specifically their dependence on initial conditions. Theoretical work has shown that the relative importance of Richtmyer-Meshkov and Rayleigh-Taylor instabilities varies with the initial conditions and does so in ways that can make sense of a range of astrophysical observations.

  6. Interfacial Instability during Granular Erosion.

    PubMed

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results. PMID:26919014

  7. Chondral Injury in Patellofemoral Instability

    PubMed Central

    Lustig, Sébastien; Servien, Elvire; Neyret, Philippe

    2014-01-01

    Objective: Patellofemoral instability is common and affects a predominantly young age group. Chondral injury occurs in up to 95%, and includes osteochondral fractures and loose bodies acutely and secondary degenerative changes in recurrent cases. Biomechanical abnormalities, such as trochlear dysplasia, patella alta, and increased tibial tuberosity-trochlear groove distance, predispose to both recurrent dislocations and patellofemoral arthrosis. Design: In this article, we review the mechanisms of chondral injury in patellofemoral instability, diagnostic modalities, the distribution of lesions seen in acute and episodic dislocation, and treatments for articular cartilage lesions of the patellofemoral joint. Results: Little specific evidence exists for cartilage treatments in patellofemoral instability. In general, the results of reparative and restorative procedures in the patellofemoral joint are inferior to those observed in other compartments of the knee. Conclusion: Given the increased severity of chondral lesions and progression to osteoarthritis seen with recurrent dislocations, careful consideration should be given to early stabilisation in patients with predisposing factors. PMID:26069693

  8. Laboratory blast wave driven instabilities

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  9. Beam instabilities in hadron synchrotrons

    DOE PAGES

    Metral, E.; T. Argyropoulos; Bartosik, H.; Biancacci, N.; Buffat, X.; Esteban Muller, J. F.; Herr, W.; Iadarola, G.; Lasheen, A.; Li, K.; et al

    2016-04-01

    Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. Furthermore, the aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.

  10. Hopf bifurcation and plasma instabilities

    SciTech Connect

    Crawford, J.D.

    1983-11-01

    Center manifold theory and the theory of normal forms are applied to examples of Hopf bifurcation in two models of plasma dynamics. A finite dimensional model of a 3-wave system with quadratic nonlinearities provides a simple example of both supercritical and subcritical Hopf bifurcation. In the second model, the electrostatic instabilities of a collisional plasma correspond to Hopf bifurcations. In this problem, the Vlasov-Poisson equations with a Krook collision term describe the electron dynamics in a weakly ionized gas. The one mode in instability is analyzed in detail; near criticality it always saturates in a small amplitude nonlinear oscillation.

  11. Undulation Instability of Epithelial Tissues

    NASA Astrophysics Data System (ADS)

    Basan, Markus; Joanny, Jean-François; Prost, Jacques; Risler, Thomas

    2011-04-01

    Treating the epithelium as an incompressible fluid adjacent to a viscoelastic stroma, we find a novel hydrodynamic instability that leads to the formation of protrusions of the epithelium into the stroma. This instability is a candidate for epithelial fingering observed in vivo. It occurs for sufficiently large viscosity, cell-division rate and thickness of the dividing region in the epithelium. Our work provides physical insight into a potential mechanism by which interfaces between epithelia and stromas undulate and potentially by which tissue dysplasia leads to cancerous invasion.

  12. Numerical models of extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Norman, Michael L.; Clarke, David A.

    1991-01-01

    When supercomputer-implemented numerical simulations analyzing the nonlinear physics inherent in the hydrodynamic and MHD equations are applied to extragalactic radio sources, many of the complex structures observed on telescopic images are reproduced. Attention is presently given to recently obtained results from 2D and 3D numerical simulations of the formation and evolution of extended radio morphologies; these numerical models allow the exploration of such physical phenomena as the role of magnetic fields in the dynamics and emissivity of extended radio galaxies, intermittent outflow from the cores of active galaxies, fluid-jet instabilities, and the bending of collimated outflows by motion through the intergalactic medium.

  13. Kelvin-Helmholtz instability in a rotating ideally conducting inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Srivastava, K. M.; Kumar, Nagendra; Sikka, Himanshu

    2004-04-01

    The Kelvin--Helmholtz instability in sheared magnetohydrodynamic flow of an ideally conducting rotating inhomogeneous compressible plasma is investigated. The asymptotic behaviour in x of the Kelvin--Helmholtz eigenfunctions for the case of finite compressibility in the presence of rotation is discussed and instability condition is derived. In the incompressible limit, a dispersion relation is derived which has been solved numerically and discussed in detail. It is found that the inhomogeneous system is unstable in an incompressible plasma.

  14. Fingering instability and mixing of a blob in porous media

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-10-01

    The curvature of the unstable part of the miscible interface between a circular blob and the ambient fluid in two-dimensional homogeneous porous media depends on the viscosity of the fluids. The influence of the interface curvature on the fingering instability and mixing of a miscible blob within a rectilinear displacement is investigated numerically. The fluid velocity in porous media is governed by Darcy's law, coupled with a convection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity of the fluids. Numerical simulations are performed using a Fourier pseudospectral method to determine the dynamics of a miscible blob (circular or square). It is shown that for a less viscous circular blob, there exist three different instability regions without any finite R -window for viscous fingering, unlike the case of a more viscous circular blob. Critical blob radius for the onset of instability is smaller for a less viscous blob as compared to its more viscous counterpart. Fingering enhances spreading and mixing of miscible fluids. Hence a less viscous blob mixes with the ambient fluid quicker than the more viscous one. Furthermore, we show that mixing increases with the viscosity contrast for a less viscous blob, while for a more viscous one mixing depends nonmonotonically on the viscosity contrast. For a more viscous blob mixing depends nonmonotonically on the dispersion anisotropy, while it decreases monotonically with the anisotropic dispersion coefficient for a less viscous blob. We also show that the dynamics of a more viscous square blob is qualitatively similar to that of a circular one, except the existence of the lump-shaped instability region in the R -Pe plane. We have shown that the Rayleigh-Taylor instability in a circular blob (heavier or lighter than the ambient fluid) is independent of the interface curvature.

  15. Interacting Tilt and Kink Instabilities in Repelling Current Channels

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Xia, C.

    2014-11-01

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.

  16. One-armed spiral instability in neutron star mergers and its detectability in gravitational waves

    NASA Astrophysics Data System (ADS)

    Radice, David; Bernuzzi, Sebastiano; Ott, Christian D.

    2016-09-01

    We study the development and saturation of the m =1 one-armed spiral instability in remnants of binary neutron star mergers by means of high-resolution long-term numerical relativity simulations. Our results suggest that this instability is a generic outcome of neutron star mergers in astrophysically relevant configurations, including both "stiff" and "soft" nuclear equations of state. We find that, once seeded at merger, the m =1 mode saturates within ˜10 ms and persists over secular time scales. Gravitational waves emitted by the m =1 instability have a peak frequency around 1-2 kHz and, if detected, they could be used to constrain the equation of state of neutron stars. We construct hybrid waveforms spanning the entire Advanced LIGO band by combining our high-resolution numerical data with state-of-the-art effective-one-body waveforms including tidal effects. We use the complete hybrid waveforms to study the detectability of the one-armed spiral instability for both Advanced LIGO and the Einstein Telescope. We conclude that the one-armed spiral instability is not an efficient gravitational wave emitter. Even under very optimistic assumptions, Advanced LIGO will only be able to detect the one-armed instability up to ˜3 Mpc , which corresponds to an event rate of 10-7 yr-1 to 10-4 yr-1 . Third-generation detectors or better will likely be required to observe the one-armed instability.

  17. Skew-varicose instability in two-dimensional generalized Swift-Hohenberg equations.

    PubMed

    Weliwita, J A; Rucklidge, A M; Tobias, S M

    2011-09-01

    We apply analytical and numerical methods to study the linear stability of stripe patterns in two generalizations of the two-dimensional Swift-Hohenberg equation that include coupling to a mean flow. A projection operator is included in our models to allow exact stripe solutions. In the generalized models, stripes become unstable to the skew-varicose, oscillatory skew-varicose, and cross-roll instabilities, in addition to the usual Eckhaus and zigzag instabilities. We analytically derive stability boundaries for the skew-varicose instability in various cases, including several asymptotic limits. We also use numerical techniques to determine eigenvalues and hence stability boundaries of other instabilities. We extend our analysis to both stress-free and no-slip boundary conditions and we note a crossover from the behavior characteristic of no-slip to that of stress-free boundaries as the coupling to the mean flow increases or as the Prandtl number decreases. Close to the critical value of the bifurcation parameter, the skew-varicose instability has the same curvature as the Eckhaus instability provided the coupling to the mean flow is greater than a critical value. The region of stable stripes is completely eliminated by the cross-roll instability for large coupling to the mean flow.

  18. Stabilization of Rayleigh-Taylor instability in a non-Newtonian incompressible complex plasma

    NASA Astrophysics Data System (ADS)

    Garai, S.; Banerjee, D.; Janaki, M. S.; Chakrabarti, N.

    2015-03-01

    The stabilization of Rayleigh-Taylor (RT) instability is investigated in a non-Newtonian unmagnetized dusty plasma with an experimentally verified model of shear flow rate dependent viscosity. It has been found that non-Newtonian property has also a significant role in stabilization of RT instability along with velocity shear stabilization in the short wavelength regime. The effect of the non-Newtonian parameters is more profound in the higher velocity shear rate regime. A detailed study is reported on the role of non-Newtonian effect on RT instability with conventional dust fluid equations using standard numerical eigenvalue analysis.

  19. Stabilization of Rayleigh-Taylor instability in a non-Newtonian incompressible complex plasma

    SciTech Connect

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2015-03-15

    The stabilization of Rayleigh-Taylor (RT) instability is investigated in a non-Newtonian unmagnetized dusty plasma with an experimentally verified model of shear flow rate dependent viscosity. It has been found that non-Newtonian property has also a significant role in stabilization of RT instability along with velocity shear stabilization in the short wavelength regime. The effect of the non-Newtonian parameters is more profound in the higher velocity shear rate regime. A detailed study is reported on the role of non-Newtonian effect on RT instability with conventional dust fluid equations using standard numerical eigenvalue analysis.

  20. Modulation instability of the ground state of the nonlinear wave equation: optical machine gun.

    PubMed

    Akhmediev, N N; Korneev, V I; Nabiev, R F

    1992-03-15

    The nonstationary (time-dependent) problem of longitudinal modulation instability of a self-focusing beam in a nonlinear medium with and without saturation is solved for the first time, to our knowledge, by using numerical methods. We present the dependence of instability growth rates on the modulation frequency for different saturation parameters. The radial profile of the complex perturbation function is also calculated. The result of modulation instability in the problem considered is the separation of the beam into a periodic sequence of light clumps (light bullets). PMID:19784338

  1. The Nature of Low T/|W| Dynamical Instabilities in Differentially Rotating Stars

    NASA Technical Reports Server (NTRS)

    Watts, A. L.; Anderson, N.; Jones, D. I.

    2004-01-01

    Recent numerical simulations indicate the presence of dynamical instabilities of the f-mode in differentially rotating stars even at very low values of T/|W|, the ratio of kinetic to potential energy. In this Letter we argue that these are shear instabilities which occur when the degree of differential rotation exceeds a critical value and the f-mode develops a corotation point associated with the presence of a continuous spectrum. Our explanation, which is supported by detailed studies of a simple shell model, offers a straightforward way of understanding all of the key features of these instabilities.

  2. Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile.

    PubMed

    Raad, Seyed Mostafa Jafari; Hassanzadeh, Hassan

    2015-11-01

    Analog systems have recently been used in several experiments in the context of convective mixing of CO(2). We generalize the nonmonotonic density dependence of the growth of instabilities and provide a scaling relation for the onset of instability. The results of linear stability analysis and direct numerical simulations show that these fluids do not resemble the dynamics of CO(2)-water convective instabilities. A typical analog system, such as water-propylene glycol, is found to be less unstable than CO(2)-water. These results provide a basis for further research and proper selection of analog systems and are essential to the interpretation of experiments. PMID:26651795

  3. DOUBLE-DIFFUSIVE INSTABILITIES OF A SHEAR-GENERATED MAGNETIC LAYER

    SciTech Connect

    Silvers, Lara J.; Proctor, Michael R. E.; Vasil, Geoffrey M.; Brummell, Nicholas H.

    2009-09-01

    Previous theoretical work has speculated about the existence of double-diffusive magnetic buoyancy instabilities of a dynamically evolving horizontal magnetic layer generated by the interaction of forced vertically sheared velocity and a background vertical magnetic field. Here, we confirm numerically that if the ratio of the magnetic to thermal diffusivities is sufficiently low then such instabilities can indeed exist, even for high Richardson number shear flows. Magnetic buoyancy may therefore occur via this mechanism for parameters that are likely to be relevant to the solar tachocline, where regular magnetic buoyancy instabilities are unlikely.

  4. Development of invasive colon cancer with microsatellite instability in a patient with hyperplastic polyposis syndrome.

    PubMed

    Horii, Joichiro; Kato, Jun; Nagasaka, Takeshi; Hiraoka, Sakiko; Sun, Dong-Sheng; Watanabe, Kazuo; Fujita, Isao; Toyokawa, Tatsuya; Tomoda, Jun; Yamamoto, Kazuhide

    2012-05-01

    The serrated pathway has recently been proposed as a route for the development of colorectal cancer with microsatellite instability. Hyperplastic polyposis syndrome is a rare syndrome defined by the presence of numerous serrated polyps, with a high risk of developing into colorectal cancer. We present here a case of hyperplastic polyposis syndrome developing into colorectal cancer with microsatellite instability from a serrated polyp. BRAF mutation and the loss of MLH1 protein were observed in the colorectal cancer, but not in the other serrated polyps around the colorectal cancer, suggesting that colorectal cancer with microsatellite instability develops rapidly from a specific serrated polyp with distinct molecular properties.

  5. On the acceleration of the auroral plasma of the Earth due to conic instability

    NASA Technical Reports Server (NTRS)

    Churayev, R. S.

    1979-01-01

    The role of electrostatic conic instability in the diffusion of spilled particles and the acceleration of the auroral plasma of the Earth are numerically investigated by means of quasi-linear equations. Linear increments to the conic instability under magnetospheric conditions are introduced. The quasi-linear equation is averaged along tubes of force taking into account the drift across the magnetic field lines. It is shown that the existence of a conic instability leads to small spills and isotropic distribution of particles, but is also accompanied by significant acceleration of electrons.

  6. Magnetic-field-induced dynamical instabilities in an antiferromagnetic spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Pu, Zhengguo; Zhang, Jun; Yi, Su; Wang, Dajun; Zhang, Wenxian

    2016-05-01

    We theoretically investigate four types of dynamical instability, in particular the periodic and oscillatory type IO, in an antiferromagnetic spin-1 Bose-Einstein condensate in a nonzero magnetic field, by employing the coupled-mode theory and numerical method. This is in sharp contrast to the dynamical stability of the same system in zero field. Remarkably, a pattern transition from a periodic dynamical instability IO to a uniform one IIIO occurs at a critical magnetic field. All four types of dynamical instability and the pattern transition are ready to be detected in 23Na condensates within the availability of the current experimental techniques.

  7. Catching the First Cosmic Explosions: Explosion and Mixing of Pair-Instability Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan

    2014-03-01

    We present multidimensional simulations of the thermonuclear supernovae from massive primordial stars. Numerical and theoretical study of the primordial star formation in the early Universe suggest that these stars could have been very massive. Primordial stars with initial masses of 150-260 solar masses may have died as energetic thermonuclear supernovae, so-called pair-instability supernovae (PSNe). We model the explosion of PSNe by using a new radiation-hydro code, CASTRO and find the fluid instabilities driven by nuclear burning and hydrodynamics during the explosion. For red supergiant models, amplitudes of these instabilities are sufficient to break down the spherical symmetry of the supernova ejecta.

  8. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    SciTech Connect

    Jain, Shweta Sharma, Prerana; Chhajlani, R. K.

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  9. Varying chromaticity: A damping mechanism for the transverse head-tail instability

    SciTech Connect

    Cheng, W.; Wurtele, J.S.; Sessler, A.M.; Wurtele, J.S.

    1997-10-01

    A detailed analytical and numerical study of the suppression of the transverse head-tail instability by modulating the chromaticity over a synchrotron period is presented. We find that a threshold can be developed, and it can be increased to a value larger than the strong head-tail instability threshold. The stability criterion derived agrees very well with the simulations. The underlying physical mechanisms of the damping scheme are rotation of the head-tail phase such that the instability does not occur, and Landau damping due to the incoherent betatron tune spread generated by the varying chromaticity. {copyright} {ital 1997} {ital The American Physical Society}

  10. Prediction and suppression of beam breakup instability in multicell superconducting cavities

    NASA Astrophysics Data System (ADS)

    Volkov, V.

    2009-01-01

    Beam breakup instability in superconducting cavities is a serious problem. In this work, a four-cell LEP cavity installed in the KAERI linear accelerator is considered as an example. Dependence of the breakup instability threshold currents on the characteristics of a dipole mode was determined both analytically and numerically. An efficient technique to suppress breakup instability using rf beam focusing within a cavity is suggested. The technique involves applying TE-type monopole higher-order modes and is useful for multicell superconducting cavities with many trapped high-Q dipole modes.

  11. Tectonic and magmatic evolution of the northwestern Basin and Range and its transition to unextended volcanic plateaus: Black Rock Range, Nevada

    USGS Publications Warehouse

    Lerch, D.W.; Miller, E.; McWilliams, M.; Colgan, J.

    2008-01-01

    The seismically active eastern and western margins of the northern Basin and Range have been extensively studied, yet the northwestern margin of the province remains incompletely understood. The Black Rock Range of northwestern Nevada straddles the transition from the Basin and Range province to the south and east, and flat-lying volcanic plateaus to the west. This poorly understood range preserves a remarkably complete record of Cenozoic magmatism and provides an important window into the pre-Miocene history of the unextended volcanic plateaus of northeastern California and southern Oregon. Geologic mapping and 40Ar/39Ar geochronology from the northern Black Rock Range document three significant episodes of Eocene to middle Miocene volcanism. Eocene (35 Ma) basalts directly overlie Mesozoic granites and arc-related volcanic and sedimentary rocks. Locally erupted Oligocene to early Miocene (27-21 Ma) bimodal volcanic rocks comprise the bulk of the Cenozoic section and conformably overlie the Eocene basalt flows. These bimodal units include rhyolitic lavas, variably welded rhyolitic ash flows, unwelded ash-fall deposits, and thin basalt flows. In the neighboring Pine Forest Range ???20 km to the north, similar Oligocene to early Miocene units are overlain by more than 500 m of ca. 16.4 Ma Steens-equivalent basalt flows and are capped by ca. 16 Ma rhyolitic ash-flow tuffs. In the northern Black Rock Range, the ca. 16.4 Ma middle Miocene basalts are absent from the section, and a 16.2 Ma rhyolitic ash-flow tuff directly overlies the early Miocene flows. Basaltic and rhyolitic volcanic products in the northern Black Rock Range span 35-16 Ma, with many of the Oligocene volcanic units derived from local vents and dikes. Despite the map-scale complexities of locally derived lava flows, the Cenozoic section is broadly conformable and dips gently (???5??-10??) to the northwest. The region experienced no significant tilting between 35 and 16 Ma, with moderate tilting (???5

  12. Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species

    PubMed Central

    Mays, Charles E.; van der Merwe, Jacques; Kim, Chae; Haldiman, Tracy; McKenzie, Debbie; Safar, Jiri G.

    2015-01-01

    ABSTRACT In lethal prion neurodegenerative diseases, misfolded prion proteins (PrPSc) replicate by redirecting the folding of the cellular prion glycoprotein (PrPC). Infections of different durations can have a subclinical phase with constant levels of infectious particles, but the mechanisms underlying this plateau and a subsequent exit to overt clinical disease are unknown. Using tandem biophysical techniques, we show that attenuated accumulation of infectious particles in presymptomatic disease is preceded by a progressive fall in PrPC level, which constricts replication rate and thereby causes the plateau effect. Furthermore, disease symptoms occurred at the threshold associated with increasing levels of small, relatively less protease-resistant oligomeric prion particles (oPrPSc). Although a hypothetical lethal isoform of PrP cannot be excluded, our data argue that diminishing residual PrPC levels and continuously increasing levels of oPrPSc are crucial determinants in the transition from presymptomatic to symptomatic prion disease. IMPORTANCE Prions are infectious agents that cause lethal brain diseases; they arise from misfolding of a cell surface protein, PrPC to a form called PrPSc. Prion infections can have long latencies even though there is no protective immune response. Accumulation of infectious prion particles has been suggested to always reach the same plateau in the brain during latent periods, with clinical disease only occurring when hypothetical toxic forms (called PrPL or TPrP) begin to accumulate. We show here that infectivity plateaus arise because PrPC precursor levels become downregulated and that the duration of latent periods can be accounted for by the level of residual PrPC, which transduces a toxic effect, along with the amount of oligomeric forms of PrPSc. PMID:26423957

  13. Methods for Monitoring Fish Communities of Buffalo National River and Ozark National Scenic Riverways in the Ozark Plateaus of Arkansas and Missouri: Version 1.0

    USGS Publications Warehouse

    Petersen, James C.; Justus, B.G.; Dodd, H.R.; Bowles, D.E.; Morrison, L.W.; Williams, M.H.; Rowell, G.A.

    2008-01-01

    Buffalo National River located in north-central Arkansas, and Ozark National Scenic Riverways, located in southeastern Missouri, are the two largest units of the National Park Service in the Ozark Plateaus physiographic province. The purpose of this report is to provide a protocol that will be used by the National Park Service to sample fish communities and collect related water-quality, habitat, and stream discharge data of Buffalo National River and Ozark National Scenic Riverways to meet inventory and long-term monitoring objectives. The protocol includes (1) a protocol narrative, (2) several standard operating procedures, and (3) supplemental information helpful for implementation of the protocol. The protocol narrative provides background information about the protocol such as the rationale of why a particular resource or resource issue was selected for monitoring, information concerning the resource or resource issue of interest, a description of how monitoring results will inform management decisions, and a discussion of the linkages between this and other monitoring projects. The standard operating procedures cover preparation, training, reach selection, water-quality sampling, fish community sampling, physical habitat collection, measuring stream discharge, equipment maintenance and storage, data management and analysis, reporting, and protocol revision procedures. Much of the information in the standard operating procedures was gathered from existing protocols of the U.S. Geological Survey National Water Quality Assessment program or other sources. Supplemental information that would be helpful for implementing the protocol is included. This information includes information on fish species known or suspected to occur in the parks, sample sites, sample design, fish species traits, index of biotic integrity metrics, sampling equipment, and field forms.

  14. Stationary Crossflow Breakdown due to Mixed Mode Spectra of Secondary Instabilities

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian

    2016-01-01

    Numerical simulations are used to study laminar breakdown characteristics associated with stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. Previous work involving the linear and nonlinear development of individual, fundamental modes of secondary instability waves is extended by considering the role of more complex, yet controlled, spectra of the secondary instability modes. Direct numerical simulations target a mixed mode transition scenario involving the simultaneous presence of Y and Z modes of secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation prior to transition. Analysis of the numerical simulations shows that this rather surprising finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, secondary instability calculations reveal that subharmonic modes of secondary instability have substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play an important role during the breakdown process involving complex initial spectra.

  15. Finite-wavelength surface-tension-driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid.

    PubMed

    Xuan, Chen; Biggins, John

    2016-08-01

    We deploy linear stability analysis to find the threshold wavelength (λ) and surface tension (γ) of Rayleigh-Plateau type "peristaltic" instabilities in incompressible neo-Hookean solids in a range of cylindrical geometries with radius R_{0}. First we consider a solid cylinder, and recover the well-known, infinite-wavelength instability for γ≥6μR_{0}, where μ is the solid's shear modulus. Second, we consider a volume-conserving (e.g., fluid filled and sealed) cylindrical cavity through an infinite solid, and demonstrate infinite-wavelength instability for γ≥2μR_{0}. Third, we consider a solid cylinder embedded in a different infinite solid, and find a finite-wavelength instability with λ∝R_{0}, at surface tension γ∝μR_{0}, where the constants depend on the two solids' modulus ratio. Finally, we consider an empty cylindrical channel (or filled with expellable fluid) through an infinite solid, and find an instability with finite wavelength, λ≈2R_{0}, for γ≥2.543...μR_{0}. Using finite-strain numerics, we show such a channel jumps at instability to a highly peristaltic state, likely precipitating it's blockage or failure. We argue that finite wavelengths are generic for elastocapillary instabilities, with the simple cylinder's infinite wavelength being the exception rather than the rule. PMID:27627392

  16. Finite-wavelength surface-tension-driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid.

    PubMed

    Xuan, Chen; Biggins, John

    2016-08-01

    We deploy linear stability analysis to find the threshold wavelength (λ) and surface tension (γ) of Rayleigh-Plateau type "peristaltic" instabilities in incompressible neo-Hookean solids in a range of cylindrical geometries with radius R_{0}. First we consider a solid cylinder, and recover the well-known, infinite-wavelength instability for γ≥6μR_{0}, where μ is the solid's shear modulus. Second, we consider a volume-conserving (e.g., fluid filled and sealed) cylindrical cavity through an infinite solid, and demonstrate infinite-wavelength instability for γ≥2μR_{0}. Third, we consider a solid cylinder embedded in a different infinite solid, and find a finite-wavelength instability with λ∝R_{0}, at surface tension γ∝μR_{0}, where the constants depend on the two solids' modulus ratio. Finally, we consider an empty cylindrical channel (or filled with expellable fluid) through an infinite solid, and find an instability with finite wavelength, λ≈2R_{0}, for γ≥2.543...μR_{0}. Using finite-strain numerics, we show such a channel jumps at instability to a highly peristaltic state, likely precipitating it's blockage or failure. We argue that finite wavelengths are generic for elastocapillary instabilities, with the simple cylinder's infinite wavelength being the exception rather than the rule.

  17. Finite-wavelength surface-tension-driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid

    NASA Astrophysics Data System (ADS)

    Xuan, Chen; Biggins, John

    2016-08-01

    We deploy linear stability analysis to find the threshold wavelength (λ ) and surface tension (γ ) of Rayleigh-Plateau type "peristaltic" instabilities in incompressible neo-Hookean solids in a range of cylindrical geometries with radius R0. First we consider a solid cylinder, and recover the well-known, infinite-wavelength instability for γ ≥6 μ R0 , where μ is the solid's shear modulus. Second, we consider a volume-conserving (e.g., fluid filled and sealed) cylindrical cavity through an infinite solid, and demonstrate infinite-wavelength instability for γ ≥2 μ R0 . Third, we consider a solid cylinder embedded in a different infinite solid, and find a finite-wavelength instability with λ ∝R0 , at surface tension γ ∝μ R0 , where the constants depend on the two solids' modulus ratio. Finally, we consider an empty cylindrical channel (or filled with expellable fluid) through an infinite solid, and find an instability with finite wavelength, λ ≈2 R0 , for γ ≥2.543 ...μ R0 . Using finite-strain numerics, we show such a channel jumps at instability to a highly peristaltic state, likely precipitating it's blockage or failure. We argue that finite wavelengths are generic for elastocapillary instabilities, with the simple cylinder's infinite wavelength being the exception rather than the rule.

  18. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- summary of information on pesticides, 1970-90

    USGS Publications Warehouse

    Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.

    1996-01-01

    Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground

  19. Parallel and oblique firehose instability thresholds for bi-kappa distributed protons

    NASA Astrophysics Data System (ADS)

    Astfalk, Patrick; Jenko, Frank

    2016-04-01

    The parallel and the oblique firehose instability are generally accepted as the leading mechanisms shaping the boundaries of the protons' pressure anisotropies observed in the solar wind for p∥>p⊥. However, it is still an open question which instability dominates this process. Only recently, first attempts were made to study the linear growth of the parallel firehose assuming more realistic bi-kappa velocity distributions instead of traditionally used bi-Maxwellians. We apply a newly developed, fully kinetic dispersion solver to numerically derive the instability thresholds for both firehose instabilities. In contrast to former findings, we observe that the presence of suprathermal populations yields a growth amplification which lowers the instability threshold of the parallel firehose. This is due to enhanced cyclotron resonance. For the first time, we also look at the oblique firehose threshold and find a contrary picture. Here the presence of suprathermal particles leads to an increase of the instability threshold. The enhancement of the parallel firehose and the suppression of the oblique firehose are expected to be of relevance in the solar wind and may alter the competition between both instabilities. Based on our findings, we propose a method how solar wind data could be used to identify the instability mechanism dominating this competition and shaping the observed anisotropy boundary.

  20. Magnetic dipole discharges. III. Instabilities

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  1. Lending sociodynamics and economic instability

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.

    2011-11-01

    We show how the dynamics of economic instability and financial crises articulated by Keynes in the General Theory and developed by Minsky as the Financial Instability Hypothesis can be formalized using Weidlich’s sociodynamics of opinion formation. The model addresses both the lending sentiment of a lender in isolation as well as the impact on that lending sentiment of the behavior of other lenders. The risk associated with lending is incorporated through a stochastic treatment of loan dynamics that treats prepayment and default as competing risks. With this model we are able to generate endogenously the rapid changes in lending opinion that attend slow changes in lending profitability and find these dynamics to be consistent with the rise and collapse of the non-Agency mortgage-backed securities market in 2007/2008. As the parameters of this model correspond to well-known phenomena in cognitive and social psychology, we can both explain why economic instability has proved robust to advances in risk measurement and suggest how policy for reducing economic instability might be formulated in an experimentally sound manner.

  2. The Chemistry of Beer Instability

    ERIC Educational Resources Information Center

    Stewart, Graham G.

    2004-01-01

    Brewing of beer, one of the oldest biotechnology industries was one of the earliest processes to be undertaken on commercial basis. Biological instability involves contamination of bacteria, yeast, or mycelia fungi and there is always a risk in brewing that beer can become contaminated by micro-organisms.

  3. Urge incontinence and detrusor instability.

    PubMed

    Jabs, C F; Stanton, S L

    2001-01-01

    Detrusor instability is a syndrome of urinary frequency, urgency and urge incontinence which can be demonstrated using urodynamic studies to document uninhibited bladder contractions. Idiopathic cases account for 90% and 10% are related to neurologic disorders. Several different treatment modalities are available, including bladder training/drill, electrical stimulation, medical and surgical therapies.

  4. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  5. Weathering instability and landscape evolution

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2005-04-01

    The argument in this paper is that the fundamental control on landscape evolution in erosional landscapes is weathering. The possibility of and evidence for instability in weathering at four scales is examined. The four scales are concerned with weathering processes, allocation of weathered products, the interrelations of weathering and denudation, and the topographic and isostatic responses to weathering-limited denudation (the regolith, hillslope, landscape unit, and landscape scales, respectively). The stability conditions for each model, and the circumstances under which the models themselves are relevant, are used to identify scale-related domains of stability and instability. At the regolith scale, the interactions among weathering rates, resistance, and moisture are unstable, but there are circumstances—over long timescales and where weathering is well advanced—under which the instability is irrelevant. At the hillslope scale, the system is stable when denudation is transport rather than weathering limited and where no renewal of exposure via regolith stripping occurs. At the level of landscape units, the stability model is based entirely on the mutual reinforcements of weathering and erosion. While this should generally lead to instability, the model would be stable where other, external controls of both weathering and erosion rates are stronger than the weathering-erosion feedbacks. At the broadest landscape scale, the inclusion of isostatic responses destabilizes erosion-topography-uplift relationships. Thus, if the spatial or temporal scale is such that isostatic responses are not relevant, the system may be stable. Essentially, instability is prevalent at local spatial scales at all but the longest timescales. Stability at intermediate spatial scales is contingent on whether weathering-erosion feedbacks are strong or weak, with stability being more likely at shorter and less likely at longer timescales. At the broadest spatial scales, instability is

  6. Nonlinear instabilities driven by coherent phase-space structures

    NASA Astrophysics Data System (ADS)

    Lesur, Maxime

    2012-10-01

    Coherent phase-space (PS) structures are an important feature of plasma turbulence. They can drive nonlinear instabilities [1], intermittency in drift-wave turbulence [2], and transport [3]. We aim at a comprehensive understanding of turbulence, not just as an ensemble of waves, as quasilinear theory implies, but as a mixture of coupled waves and localized structures. This work, which focuses on isolated PS structures, is a fundamental advance in this direction. We analyze the effects of self-binding negative fluctuations (PS holes) on stability, intermittency and anomalous resistivity, both analytically and numerically. We present a new theory which describes the growth of a hole or clump [4]. We find that PS holes grow nonlinearly, independently of linear stability. Numerical simulations clarify the physics of nonlinear instabilities in both subcritical and supercritical conditions. When many resonances are unstable, several holes can coalesce into one main macro-scale structure, which survives much longer than a quasilinear diffusion time, suggesting that it may be crucial to resolve phase-space turbulence in analytical and numerical studies of transport. These findings are applied to two fundamental paradigms of plasma physics: bump-on-tail instabilities in 1D electronic plasma and current-driven ion-acoustic instabilities electron-ion plasma. Our results expose important limits of routinely-used linear and quasilinear theories.[4pt] [1] T.H. Dupree, Phys. Fluids 15, 334 (1972); R.H. Berman et al., Phys. Rev. Lett. 48, 1249 (1982).[0pt] [2] P.W. Terry, P.H. Diamond, and T.S. Hahm, Phys. Fluids B 2, 2048 (1990).[0pt] [3] H. Biglari et al., Phys. Fluids 31, 2644 (1988); Y. Kosuga et al., Phys. Plasmas 18, 122305 (2011).[0pt] [4] M. Lesur, P.H. Diamond, submitted to Phys. Rev. Lett.

  7. Block-slider model for ductile instabilities in subducting slabs

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2003-04-01

    It has been suggested that the occurence of ductile (or plastic) instabilities in the deeper portion of subducting slabs is the dominating mechanism for the generation of intermediate-depth and deep-focus earthquakes. Heat generated during viscous deformation provides a positive feedback to creep and eventually faulting under high pressure. Recent detailed receiver function images of the structure of the Japan subduction zone seem to provide support for this notion. First, there is no indication of an existing metastable olivine wedge. Second, the intermediate-depth seismicity seems to be located in the strong and colder portions of the downgoing slab, about 30 km below the oceanic Moho. This suggests that instead of dehydration or phase transformation triggered events, ductile faulting is its predominating cause. In a recent paper, we have discussed the necessary conditions for ductile instabilities to develop in the bended subducting mantle lithosphere, based on the available experimental data on viscous creep of olivine resp. spinel (*). The present paper aims at a numerical study of the time evolution of a nucleated instability. For this purpose, we develop a cellular block-slider model for ductile instabilities in the mantle lithosphere, in analogy to the frequently used and highly successful block-slider models for brittle fracture of the crust. The block-slider approach is numerically much less demanding than solutions based on the corresponding, thermal-mechanically coupled continuum equations. Furthermore, it allows a straightforward inclusion of possible non-equilibrium effects associated with mineral phase transformations in a subducting slab (kinetic overshoot, grainsize reduction). The obtained numerical results are compared with seismological observation. It is shown, e.g., that the existence of metastable olivine in the deeper portion of a slab (below 500 km) is not a necessary condition for the generation of deep-focus earthquakes. (*) S. Karato, M

  8. Influence of liquid density on the parametric shape instability of sonoluminescence bubbles in water and sulfuric acid.

    PubMed

    Godínez, F A; Navarrete, M

    2011-07-01

    Parametric shape instability of sonoluminescing argon bubbles in water and aqueous H(2)SO(4) was numerically analyzed considering gas and liquid density variations. The employed model couples Gilmore, Tait (liquid) and van der Waals (gas) equations to simulate radial dynamics and density changes, respectively. Shape stability-instability zones in the P(a)-R(0) space resulted from a linear stability analysis. For the argon-water and argon-water-acid systems, numerical results indicate a rapid rise in both gas and liquid densities during final stages of bubble implosion which result in a stabilizing effect on the parametric instability.

  9. Singlet and triplet instability theorems

    SciTech Connect

    Yamada, Tomonori; Hirata, So

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree–Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree–Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree–Fock-theory-based explanations of Hund’s rule, a singlet instability in Jahn–Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  10. Singlet and triplet instability theorems

    NASA Astrophysics Data System (ADS)

    Yamada, Tomonori; Hirata, So

    2015-09-01

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree-Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree-Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree-Fock-theory-based explanations of Hund's rule, a singlet instability in Jahn-Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  11. Singlet and triplet instability theorems.

    PubMed

    Yamada, Tomonori; Hirata, So

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree-Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree-Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree-Fock-theory-based explanations of Hund's rule, a singlet instability in Jahn-Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions. PMID:26395692

  12. Measurements of fast transition instability in RHIC

    SciTech Connect

    Ptitsyn, V.; Blaskiewicz, M.; Fischer, W.; Lee, R.; Zhang, S.Y.

    2010-05-23

    A fast transition instability presents a limiting factor for ion beam intensity in RHIC. Several pieces of evidence show that electron clouds play an important role in establishing the threshold of this instability. In RHIC Runs8 the measurements of the instability, using a button BPM, were done in order to observe details of the instability development on the scale over hundreds and thousands turns. The paper presents and discusses the results of those measurements in time and frequency domains.

  13. Longitudinal Single-Bunch Instability in the ILC Damping Rings: Estimate of Current Threshold

    SciTech Connect

    Venturini, Marco; Venturini, Marco

    2008-06-25

    Characterization of single-bunch instabilities in the International Linear Collider (ILC) damping rings (DRs) has been indicated as a high-priority activity toward completion of an engineering design. In this paper we report on a first estimate ofthe current thresholds for the instability using numerical and analytical models of the wake potentials associated with the various machine components. The numerical models were derived (upon appropriate scaling) from designs of the correspondingcomponents installed in existing machines. The current thresholds for instabilities were determined by numerical solution of the Vlasov equation for the longitudinal dynamics. For the DR baseline lattice as of Feb. 2007 we find the critical current forinstability to be safely above the design specifications leaving room for further optimization of the choice of the momentum compaction.

  14. The Linear Instability of Astrophysical Flames in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Dursi, L. J.

    2004-05-01

    Supernovae of Type Ia are used as standard candles for cosmological observations despite the as yet incomplete understanding of their explosion mechanism. In one model, these events are thought to result from subsonic burning in the core of an accreting carbon/oxygen white dwarf that is accelerated through flame wrinkling and flame instabilities. Many such white dwarfs have significant magnetic fields. Here we derive the linear effects of such magnetic fields on one flame instability, the well-known Landau-Darrieus instability. When the magnetic field is strong enough that the flame is everywhere sub-Alfvénic, the instability can be greatly suppressed. Super-Alfvénic flames are much less affected by the field, with flames propagating parallel to the field somewhat destabilized and flames propagating perpendicular to the field somewhat stabilized. Trans-Alfvénic parallel flames, however, like trans-Alfvénic parallel shocks, are seen to be nonevolutionary; understanding the behavior of these flames will require careful numerical simulation.

  15. Turing-like instabilities from a limit cycle.

    PubMed

    Challenger, Joseph D; Burioni, Raffaella; Fanelli, Duccio

    2015-08-01

    The Turing instability is a paradigmatic route to pattern formation in reaction-diffusion systems. Following a diffusion-driven instability, homogeneous fixed points can become unstable when subject to external perturbation. As a consequence, the system evolves towards a stationary, nonhomogeneous attractor. Stable patterns can be also obtained via oscillation quenching of an initially synchronous state of diffusively coupled oscillators. In the literature this is known as the oscillation death phenomenon. Here, we show that oscillation death is nothing but a Turing instability for the first return map of the system in its synchronous periodic state. In particular, we obtain a set of approximated closed conditions for identifying the domain in the parameter space that yields the instability. This is a natural generalization of the original Turing relations, to the case where the homogeneous solution of the examined system is a periodic function of time. The obtained framework applies to systems embedded in continuum space, as well as those defined on a networklike support. The predictive ability of the theory is tested numerically, using different reaction schemes.

  16. The Inhibition of the Rayleigh-Taylor Instability by Rotation

    PubMed Central

    Baldwin, Kyle A.; Scase, Matthew M.; Hill, Richard J. A.

    2015-01-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode. PMID:26130005

  17. The Inhibition of the Rayleigh-Taylor Instability by Rotation.

    PubMed

    Baldwin, Kyle A; Scase, Matthew M; Hill, Richard J A

    2015-01-01

    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode. PMID:26130005

  18. Irradiation Instability at the Inner Edges of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Artymowicz, Pawel

    2014-07-01

    An instability can potentially operate in highly irradiated disks where the disk sharply transitions from being radially transparent to opaque (the "transition region"). Such conditions may exist at the inner edges of transitional disks around T Tauri stars and accretion disks around active galactic nuclei. We derive the criterion for this instability, which we term the "irradiation instability," or IRI. We also present the linear growth rate as a function of β, the ratio between radiation force and gravity, and c s, the sound speed of the disk, obtained using two methods: a semi-analytic analysis of the linearized equations and a numerical simulation using the GPU-accelerated hydrodynamical code PEnGUIn. In particular, we find that IRI occurs at β ~ 0.1 if the transition region extends as wide as ~0.05r, and at higher β values if it is wider. This threshold value applies to c s ranging from 3% of the Keplerian orbital speed to 5%, and becomes higher if c s is lower. Furthermore, in the nonlinear evolution of the instability, disks with a large β and small c s exhibit "clumping," extreme local surface density enhancements that can reach over 10 times the initial disk surface density.

  19. The Thermomagnetic Instability in Superconducting Films with Adjacent Metal Layer

    NASA Astrophysics Data System (ADS)

    Vestgården, J. I.; Galperin, Y. M.; Johansen, T. H.

    2013-12-01

    Dendritic flux avalanches is a frequently encountered consequence of the thermomagnetic instability in type-II superconducting films. The avalanches, which are potentially harmful for superconductor-based devices, can be suppressed by an adjacent normal metal layer, even when the two layers are not in thermal contact. The suppression of the avalanches in this case is due to so-called magnetic braking, caused by eddy currents generated in the metal layer by propagating magnetic flux. We develop a theory of magnetic braking by analyzing coupled electrodynamics and heat flow in a superconductor-normal metal bilayer. The equations are solved by linearization and by numerical simulation of the avalanche dynamics. We find that in an uncoated superconductor, even a uniform thermomagnetic instability can develop into a dendritic flux avalanche. The mechanism is that a small non-uniformity caused by the electromagnetic non-locality induces a flux-flow hot spot at a random position. The hot spot quickly develops into a finger, which at high speeds penetrates into the superconductor, forming a branching structure. Magnetic braking slows the avalanches, and if the normal metal conductivity is sufficiently high, it can suppress the formation of the dendritic structure. During avalanches, the braking by the normal metal layer prevents the temperature from exceeding the transition temperature of the superconductor. Analytical criteria for the instability threshold are developed using the linear stability analysis. The criteria are found to match quantitatively the instability onsets obtained in simulations.

  20. Electron temperature anisotropy instabilities represented by superposition of streams

    SciTech Connect

    Inglebert, A.; Ghizzo, A.; Reveille, T.; Bertrand, P.; Califano, F.

    2012-12-15

    The generation of magnetic field, together with the electrostatic activity met in the saturation regime of the Weibel instability (WI), is investigated by means of an analytical multi-stream model in a Hamiltonian framework. Taking advantage from the invariance of the generalized canonical momentum, the model allows to reduce the full kinetic 1D2V Vlasov equation into several 1D1V equations while keeping its kinetic character. The multi-stream model provides a more complete and accurate picture of the Weibel instability, because it is possible to separate the specific contribution of each stream during the development of the Weibel instability. An interesting result for the multi-stream mode is a lower cost in the perpendicular treatment of the p{sub y} momentum component since no differential operator associated with some approximate numerical scheme has to be carried out on this variable. Indeed, a small number of streams or particle classes are sufficient to correctly describe the magnetic field generation and the mixed electrostatic- electromagnetic nature of the instability.