Cullum, J.
1994-12-31
Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.
NASA Astrophysics Data System (ADS)
Perthame, Benoît; Schmeiser, Christian; Tang, Min; Vauchelet, Nicolas
2011-04-01
How can repulsive and attractive forces, acting on a conservative system, create stable travelling patterns or branching instabilities? We have proposed to study this question in the framework of the hyperbolic Keller-Segel system with logistic sensitivity. This is a model system motivated by experiments on cell communities auto-organization, a field which is also called socio-biology. We continue earlier modelling work, where we have shown numerically that branching patterns arise for this system and we have analysed this instability by formal asymptotics for small diffusivity of the chemo-repellent. Here we are interested in the more general situation, where the diffusivities of both the chemo-attractant and the chemo-repellent are positive. To do so, we develop an appropriate functional analysis framework. We apply our method to two cases. Firstly we analyse steady states. Secondly we analyse travelling waves when neglecting the degradation coefficient of the chemo-repellent; the unique wave speed appears through a singularity cancellation which is the main theoretical difficulty. This shows that in different situations the cell density takes the shape of a plateau. The existence of steady states and travelling plateaus are a symptom of how rich the system is and why branching instabilities can occur. Numerical tests show that large plateaus may split into smaller ones, which remain stable.
NASA Astrophysics Data System (ADS)
Capponi, Sylvain
2017-01-01
We present numerical evidence that the spin-1/2 Heisenberg model on the two-dimensional checkerboard lattice exhibits several magnetization plateaus for m =0 , 1 /4 , 1 /2 , and 3 /4 , where m is the magnetization normalized by its saturation value. These incompressible states correspond to somewhat similar valence-bond crystal phases that break lattice symmetries, though they are different from the already established plaquette phase for m =0 . Our results are based on exact diagonalization as well as density-matrix renormalization-group large-scale simulations and interpreted in terms of simple parameter-free trial wave functions.
A Numerical Study of Feathering Instability
NASA Astrophysics Data System (ADS)
Lee, Wing-Kit; Wang, Hsiang-Hsu
2016-06-01
The stability of a spiral shock of self-gravitating, magnetized interstellar medium is studied by performing two-dimensional numerical simulations of a local patch of tight-winding spiral arm. As previously suggested by the linear studies, two types of instabilities are identified, namely, wiggle instability and feathering instability. The former instability occurs in the hydrodynamics limit and results in short wavelength perturbations. On the other hand, the feathering instability requires both self-gravitating and magnetic fields and results in wider structures.
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris; Popov, Anton
2014-05-01
. We also address the question of how large topographic plateaus, such as the Tibetan Plateau, can form in an integrated lithospheric and upper-mantle scale model. Acknowledgements: Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on MOGON (ZDV Mainz computing center) and JUQUEEN (Jülich high-performance computing center).
Numerical Modelling Of Pumpkin Balloon Instability
NASA Astrophysics Data System (ADS)
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Numerical methods for large eddy simulation of acoustic combustion instabilities
NASA Astrophysics Data System (ADS)
Wall, Clifton T.
Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion
Numerical Simulations of Instabilities in Single-Hole Office Elements
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.
2013-01-01
An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.
Tube Feeding Transition Plateaus
ERIC Educational Resources Information Center
Klein, Marsha Dunn
2007-01-01
The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY
FRANCOIS, MARIANNE M.; DENDY, EDWARD D.; LOWRIE, ROBERT B.; LIVESCU, DANIEL; STEINKAMP, MICHAEL J.
2007-01-11
The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.
Numerical Simulation of Conductivity Gradient-Induced Electrokinetic Flow Instabilities
NASA Astrophysics Data System (ADS)
Bradford, Stephen; Meinhart, Carl
2006-03-01
This research is focused on the electrokinetic flow instabilities observed in long, thin microchannels with conductivity gradients orthogonal to the streamwise direction and applied potential. This situation often occurs in field amplified sample stacking (FASS) and isoelectric focusing, where control of the instabilities is imperative. Alternatively, the inherently chaotic flow patterns can be leveraged to fabricate an efficient micromixer under specific conditions. These instabilities arise from fluid body forces generated by the action of applied electric fields on electrolyte concentration-based conductivity gradients. A model is developed to describe the phenomena in general and applied specifically to thin microchannels with the conductivity gradient perpendicular to the applied field (both DC and AC). A higher-order, depth averaged correlation is proposed to account for the out of plane effects. Numerical simulations performed using COMSOL 3.2 are compared to 2-D and 3-D simulations as well as experimental data for multiple geometries with good agreement.
Numerical Investigation of Galloping Instabilities in Z-Shaped Profiles
Chavez, Miguel; Valero, Eusebio
2014-01-01
Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models. PMID:25054176
Numerical simulations of turbulence and mixing induced by submesoscale instabilities
NASA Astrophysics Data System (ADS)
Stamper, Megan; Taylor, John
2015-11-01
Submesoscale features in the upper ocean with horizontal scales between 1-10km have received significant attention in the oceanography community in recent years. Previous work has found that submesoscales play an important role in setting the stratification of the upper ocean, and these scales are associated with large vertical velocities that modify biological productivity. Submesoscales bridge the dynamical gap between the mesoscale (~100km) where the earth's rotation plays a major role, and turbulent overturning scales (~1-10m) where the earth's rotation is not directly felt. Here, we use very high resolution direct numerical simulations (DNS) to explore the interaction and feedbacks between submesoscales and small scale turbulence. In simulations with submesoscale motions generated via symmetric and baroclinic instability, we find that the emergence of secondary instabilities leads to significant small-scale turbulence and mixing, even in the absence of wind and convective forcing. From the DNS results, we quantify the additional mixing, dissipation, and vertical fluxes induced by small scale turbulence, and its feedback on the primary submesoscale instabilities.
A Numerical Instability in an ADI Algorithm for Gyrokinetics
E.A. Belli; G.W. Hammett
2004-12-17
We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.
Collisional plateaus. [in earth and Venus lithospheres
NASA Technical Reports Server (NTRS)
Morgan, P.; Burke, K.
1985-01-01
Aspects of the geology of collisional plateaus formed by the thickening of continental crust are briefly reviewed. The history of studies of collisional plateaus is summarized, and igneous activity in collisional plateaus is discussed. Isostatic considerations pertaining to these plateaus are addressed, developing models of isostatic support of topography which illustrate the importance of compressional tectonics in the creation of high altitude plateaus. Possible analogous environments on Venus are considered. Finally, the paradox of extension associated with compression in the plateaus is discussed.
Numerical and experimental analysis of instability phenomena in pump turbines
NASA Astrophysics Data System (ADS)
Gentner, Ch; Sallaberger, M.; Widmer, Ch; Braun, O.; Staubli, T.
2012-11-01
Today, utilities operating pump turbines require fast and frequent changes between pumping and generating modes as well as extended operation at off-design conditions. Operation of the units in unstable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. Two main features of unstable behaviour of pump turbines are known. One sometimes occurs in generating mode at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic) and the other one shows in pump operation as a drop in head as the flow is reduced (saddle-type pump instability of head curve). If the stability characteristics of a pump turbine need to be known already at the design stage of the runner, numerical flow simulation (computational fluid dynamics, CFD) is the most promising tool. As the characteristics of the flow near the stability limit are highly unsteady, steady state CFD, as it is usually applied for the runner design, does not deliver the necessary insight into the flow field. In order to analyse the flow field in runner and diffuser of a pump turbine in the unstable areas of operation, ANDRITZ HYDRO has evaluated several CFD procedures with different approaches for the calculation of the described instabilities in pump and turbine operation. The results of the unsteady flow calculation are compared with model test results.
A Cartesian parametrization for the numerical analysis of material instability
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; Ostien, Jakob T.; Lai, Zhengshou
2016-02-25
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, the performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.
A Cartesian parametrization for the numerical analysis of material instability
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; ...
2016-02-25
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less
Proposed Ozark Plateaus Province Hydrologic Observatory
NASA Astrophysics Data System (ADS)
Davis, R. K.; Brahana, J. V.; Matlock, M. D.; Chaubey, I.; Pavlowsky, R. T.; Gilzow, F.
2004-12-01
The Upper White River, which drains about 40 percent of the Ozarks Ecoregion, is the main drain for the Ozark Plateaus and is characteristic of rivers draining other karst areas within the United States and the world. The proposed Ozark Plateaus Hydrologic Observatory (OPHO) encompasses twelve 8-digit hydrologic units covering about 67,000 km2 in parts of three states (Arkansas, Missouri, and Oklahoma). Six major U.S. Army Corps of Engineers reservoirs are within the OPHO including four on the main stem of the White River and one on the Illinois River. Karst features are prominent in the Salem, Ozark, and Springfield Plateaus of the OPHO, and include numerous solutionally enlarged fractures, caves, sinkholes, and sinking streams. Within the basin are numerous and diverse biological communities, representing influences from 1) eastern deciduous forest, 2) Great Plains prairies, 3) arid southwest, and 4) relicts of northern species from the Pleistocene Ice Age. Also contain in the OPHO is a diverse and unique array of mussels, an imperiled river organism (38 species), and crayfish. In the extensive karst regions of the OPHO are found largely endemic subterranean organisms also dependent on good water quality: for example, the Ozark Cavefish, Bristly Cave Crayfish and the recently federally- listed Tumbling Creek Cave Snail. Mantled karst aquifers characteristic of the Ozark Plateaus Region represent a coupled atmospheric/surface water/groundwater system that is highly susceptible to external forcing. Little attenuation of contaminants occurs as water moves from surface sources into and through the mantled karst aquifer to discharge naturally at springs and streams throughout the Ozark Plateau Region, and to wells. Because of the very open character of the aquifer, extremely dynamic biogeochemical cycling of nutrients occurs. Upper White River Reservoir development, filling and operation historically have altered and continue to alter the hydrologic and ecosystems
Numerical Study of a Hydrodynamic Instability Driven by Evaporation
NASA Astrophysics Data System (ADS)
Hernandez-Zapata, Sergio; Romo-Cruz, Julio Cesar Ruben; Lopez-Sanchez, Erick Javier; Ruiz-Chavarria, Gerardo
2013-11-01
The study of hydrodynamic instabilities in liquid layers produced by evaporation has several applications on industry and technology. In this work we study numerically the conditions under which a liquid layer becomes unstable when evaporation in the vapor-liquid interphase is present. The evaporation process follows the Hertz-Knudsen law (the evaporation rate is proportional to the difference between the saturated vapor pressure at the liquid layer temperature and the vapor partial pressure in the environment). Additionally to the usual boundary conditions on solid walls (for example, the non-slip condition for the velocity), we analyze the boundary conditions in the vapor-liquid interphase where the momentum and energy balances have to be taken into account and where the evaporation plays a crucial role. To solve this problem the linear theory of stability is used; that is, a small perturbation around the basic solution is applied (flow at rest and a temperature stationary field). The equations are solved using the Chebyshev pseudo-spectral method. The results are compared with the more usual Rayleigh-Bénard and Marangoni mechanisms as well as with some experiments carried out by our team. Authors acknowledge DGAPA-UNAM by support under project IN116312, ``Vorticidad y Ondas no lineales en fluidos.''
Numerical investigation on Benard instability in a finite liquid layer
NASA Technical Reports Server (NTRS)
Duh, J. C.
1991-01-01
A numerical procedure for directly simulating the Benard-Marangoni instabilities (B-M-I) in a bounded liquid layer is presented in this paper. The procedure consists of applying a finite amplitude disturbance to the basic static state, and then integrating the Navier-Stokes equations to determine whether the disturbance will die down or will reach a state of finite-strength steady convection. The critical Marangoni number (Mac) for the onset of B-M-I can thus be determined and can be correlated as a function of the aspect ratio (Ar), Prandtl number (Pr), and Rayleigh number (Ra). The Biot number (B) between the liquid and the air is analyzed to approximate the heat transfer condition along the free surface. A 2D calculation is performed to investigate the effect of various initial disturbances, and the Mac is determined for Ar = 2, Ra = 0, and Pr = 0.7. Current results show that disturbances of different nature and amplitude have little effect on Mac. The Mac determined in this study also clearly demonstrates the dominant effect of the sidewalls.
Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.
2016-09-02
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Numerical investigation of the transverse instability on the radiation-pressure-driven foil.
Wang, W Q; Yin, Y; Yu, T P; Xu, H; Zou, D B; Shao, F Q
2015-12-01
The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a plane laser impinges on a foil with modulated surface, the transverse instability is incited, and periodic perturbations of the proton density develop. The growth rate of the transverse instability is numerically diagnosed. It is found that the linear growth of the transverse instability lasts only a few laser periods, then the instability gets saturated. In order to optimize the modulation wavelength of the target, a method of information entropy is put forward to describe the chaos degree of the transverse instability. With appropriate modulation, the transverse instability shows a low chaos degree, and a quasi-monoenergetic proton beam is produced.
NASA Astrophysics Data System (ADS)
Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.
2016-05-01
An investigation of compressible Rayleigh-Taylor instability (RTI) using Direct Numerical Simulations (DNS) requires efficient numerical methods, advanced boundary conditions, and consistent initialization in order to capture the wide range of scales and vortex dynamics present in the system, while reducing the computational impact associated with acoustic wave generation and the subsequent interaction with the flow. An advanced computational framework is presented that handles the challenges introduced by considering the compressive nature of RTI systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification dependent vorticity production. The foundation of the numerical methodology described here is the wavelet-based grid adaptivity of the Parallel Adaptive Wavelet Collocation Method (PAWCM) that maintains symmetry in single-mode RTI systems to extreme late-times. PAWCM is combined with a consistent initialization, which reduces the generation of acoustic disturbances, and effective boundary treatments, which prevent acoustic reflections. A dynamic time integration scheme that can handle highly nonlinear and potentially stiff systems, such as compressible RTI, completes the computational framework. The numerical methodology is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Numerical simulation of nonlinear development of instability waves
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1989-01-01
The nonlinear interactions of high amplitude instability waves in turbulent jets are described. In plane shear layers Riley and Metcalf (1980) and Monkewitz (1987) have shown that these interactions are dependent, among other parameters, on the phase-difference between the two instability waves. Therefore, here researchers consider the nonlinear development of both the amplitudes and the phase of the instability waves. The development of these waves are also coupled with the development of the mean flow and the background turbulence. In formulating this model it is assumed that each of the flow components can be characterized by conservation equations supplemented by closure models. Results for the interactions between the two instability waves under high-amplitude forcing at fundamental and subharmonic frequencies are presented here. Qualitative agreements are found between the present predictions and available experimental data.
Lessons Learned from Numerical Simulations of Interfacial Instabilities
NASA Astrophysics Data System (ADS)
Cook, Andrew
2015-11-01
Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
Numerical study of superradiant instability for charged stringy black hole-mirror system
NASA Astrophysics Data System (ADS)
Li, Ran; Zhao, Junkun
2015-01-01
We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the dependencies of this instability upon various values of black hole charge Q, scalar field charge q, and mirror radius rm. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge q rapidly.
NASA Astrophysics Data System (ADS)
Dordevic, Mladen; Georgen, Jennifer
2016-03-01
Mantle plumes rising in the vicinity of mid-ocean ridges often generate anomalies in melt production and seafloor depth. This study investigates the dynamical interactions between a mantle plume and a ridge-ridge-ridge triple junction, using a parameter space approach and a suite of steady state, three-dimensional finite element numerical models. The top domain boundary is composed of three diverging plates, with each assigned half-spreading rates with respect to a fixed triple junction point. The bottom boundary is kept at a constant temperature of 1350°C except where a two-dimensional, Gaussian-shaped thermal anomaly simulating a plume is imposed. Models vary plume diameter, plume location, the viscosity contrast between plume and ambient mantle material, and the use of dehydration rheology in calculating viscosity. Importantly, the model results quantify how plume-related anomalies in mantle temperature pattern, seafloor depth, and crustal thickness depend on the specific set of parameters. To provide an example, one way of assessing the effect of conduit position is to calculate normalized area, defined to be the spatial dispersion of a given plume at specific depth (here selected to be 50 km) divided by the area occupied by the same plume when it is located under the triple junction. For one particular case modeled where the plume is centered in an intraplate position 100 km from the triple junction, normalized area is just 55%. Overall, these models provide a framework for better understanding plateau formation at triple junctions in the natural setting and a tool for constraining subsurface geodynamical processes and plume properties.
The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip
2014-11-01
A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.
NASA Astrophysics Data System (ADS)
Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.
2016-06-01
We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.
Numerical simulations of evaporative instabilities in sessile drops of ethanol on heated substrates
NASA Astrophysics Data System (ADS)
Semenov, Sergey; Carle, Florian; Medale, Marc; Brutin, David
2015-11-01
The work is focussed on numerical simulations of thermo-convective instabilities in evaporating pinned sessile droplets of ethanol on heated substrates. Computed evaporation rate of a droplet is validated against parabolic flight experiments and semi-empirical theory presented here. To the best authors' knowledge, this is the first study which combines theoretical, experimental and computational approaches in convective evaporation of sessile droplets. The influence of gravity level on evaporation rate and contributions of different mechanisms of vapor transport (diffusion, Stefan flow, natural convection) are shown. The qualitative difference (in terms of developing thermo-convective instabilities) between steady-state and unsteady numerical approaches is demonstrated.
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.
2015-09-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
NASA Astrophysics Data System (ADS)
Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.
2015-09-01
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
Mortality plateaus and directionality theory.
Demetrius, L
2001-10-07
Recent large scale studies of senescence in animals and humans have revealed mortality rates that levelled off at advanced ages. These empirical findings are now known to be inconsistent with evolutionary theories of senescence based on the Malthusian parameter as a measure of fitness. This article analyses the incidence of mortality plateaus in terms of directionality theory, a new class of models based on evolutionary entropy as a measure of fitness. We show that the intensity of selection, in the context of directionality theory, is a convex function of age, and we invoke this property to predict that in populations evolving under bounded growth constraints, evolutionarily stable mortality patterns will be described by rates which abate with age at extreme ages. The explanatory power of directionality theory, in contrast with the limitations of the Malthusian model, accords with the claim that evolutionary entropy, rather than the Malthusian parameter, constitutes the operationally valid measure of Darwinian fitness.
Numerical analysis of Laser Driven Rayleigh-Tayor instability at short wavelength
NASA Astrophysics Data System (ADS)
Nagatomo, Hideo; Ohnishi, Naofumi; Mima, Kunioki; Nishihara, Katsunobu; Sawada, Keisuke; Takabe, Hideaki
2001-10-01
For the inertial confinement fusion, it is important to simulate and predict the hydrodynamic instabilities. An integrated implosion simulation code was developed in ILE Osaka for IFE and other application usage. This new 2-D implosion code is based on ALE algorithm extended from CIP method which is robust and less numerical dissipation. To validate the code, various simulations of implosion and planner target were performed. In this presentation, the analysis of Rayleigh-Taylor instability will be shown mainly. In recent experiment by GXII Laser, the growth of RT instability at the range of short wavelength of the perturbation below the 30μm were measured with precision. Numerical analysis of the same condition using the new code was performed. The detail result will be shown in this presentation.
Numerical study of self modulation instability of 1 nC electron bunch at ATF
Fang Yun; Mori, Warren; Muggli, Patric
2012-12-21
The development of self-modulation instability (SMI) is investigated numerically for the 1 nC electron bunch available at Accelerator Test Facility (ATF) of Brookhaven National Laboratory (BNL). Possible experiment based on the simulation results is proposed. All the simulations are performed with the 2D-cylindrically symmetric particle-in-cell code.
Sengupta, M.; Ganesh, R.
2015-07-15
Numerical experiments have been performed to investigate the linear and nonlinear dynamics, and energetics of the ion resonance instability in cylindrically confined nonneutral plasma. The instability is excited on a set of parametrically different unstable equilibria of a cylindrical nonneutral cloud, composed of electrons partially neutralized by a much heavier ion species of single ionization. A particle-in-cell code has been developed and employed to carry out these simulations. The results obtained from the initial exponential growth phase of the instability in these numerical experiments are in agreement with the linearised analytical model of the ion resonance instability. As the simulations delve much further in time beyond the exponential growth phase, very interesting nonlinear phenomena of the ion resonance instability are revealed, such as a process of simultaneous wave breaking of the excited poloidal mode on the ion cloud and pinching of the poloidal perturbations on the electron cloud. This simultaneous nonlinear dynamics of the two components is associated with an energy transfer process from the electrons to the ions. At later stages there is heating induced cross-field transport of the heavier ions and tearing across the pinches on the electron cloud followed by an inverse cascade of the torn sections.
Numerical study on Rayleigh-Taylor instabilities in the lightning return stroke
Chen, Qiang; Chen, Bin Shi, Lihua; Yi, Yun; Wang, Yangyang
2015-09-15
The Rayleigh-Taylor (R-T) instabilities are important hydrodynamics and magnetohydrodynamics (MHD) phenomena that are found in systems in high energy density physics and normal fluids. The formation and evolution of the R-T instability at channel boundary during back-flow of the lightning return stroke are analyzed using the linear perturbation theory and normal mode analysis methods, and the linear growth rate of the R-T instability in typical condition for lightning return stroke channel is obtained. Then, the R-T instability phenomena of lightning return stroke are simulated using a two-dimensional Eulerian finite volumes resistive radiation MHD code. The numerical results show that the evolution characteristics of the R-T instability in the early stage of back-flow are consistent with theoretical predictions obtained by linear analysis. The simulation also yields more evolution characteristics for the R-T instability beyond the linear theory. The results of this work apply to some observed features of the return stroke channel and further advance previous theoretical and experimental work.
Experimental and Numerical Investigations of Two Typical Richtmyer-Meshkov instabilities
NASA Astrophysics Data System (ADS)
Bai, Jingsong; Liu, Jinhong; Zou, Liyong; Wang, Tao
2011-06-01
Two typical Richtmyer-Meshkov instabilities are investigated by experiments and simulations. One is the instability with double perturbation interface in nonuniform flows, and the other is the shock-accelerated elliptic heavy gas cylinder instability. The two experiments are conducted in the LSD's horizontal shock tube with 5 m long, 5 ×5 cm2 square cross section and is numerical simulated by our LES code of MVFT. Good agreements have been obtained between simulations and experiment in which the visualizations of mixing interface is tracked by Schlieren photography and multiple dynamics images technology. The results illuminates that the initial nonuniform flow would have a significant effect on the RM instability, and the shape of cylinder also have a significant effect on the cylindrical RM instability. The model of shock-accelerating along the major axis has a stronger convergent effect than the one of shock-accelerating along the minor axis for elliptic gas cylinder instability. The works are supported by the National Science Foundation of China (Grant No. 11072228 and 11002129).
High order numerical simulations of the Richtmyer- Meshkov instability in a relativistic fluid
NASA Astrophysics Data System (ADS)
Zanotti, O.; Dumbser, M.
2015-07-01
We study the Richtmyer-Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme combines a finite volume reconstruction in space, a local space-time discontinuous Galerkin predictor method, a high order one-step time update scheme, and a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number A > 0) and for the case in which a heavy fluid penetrates into a lower density one (Atwood number A < 0). We find that for large Lorentz factors γs of the incident shock wave, the relativistic RM instability is substantially weakened and ultimately suppressed. More specifically, the growth rate of the RM instability in the linear phase has a local maximum which occurs at a critical value of γs ≈ [1.2, 2]. Moreover, we have also revealed a genuinely relativistic effect, absent in Newtonian hydrodynamics, which arises in three dimensional configurations with a non-zero velocity component tangent to the incident shock front. In particular, in A > 0 models, the tangential velocity has a net magnification effect, while in A < 0 models, the tangential velocity has a net suppression effect.
Numerical investigation of the influence of gravity on the Rayleigh-Plateau jet instability
NASA Astrophysics Data System (ADS)
Rosello, M.; Maîtrejean, G.; Roux, D. C. D.; Jay, P.
2016-12-01
Controlled jet breakup processes are commonly used in many fields of industrial applications, such as inkjet printing, spray painting, and fuel injection. Most of these applications rely on the accurate prediction of the size of droplets resulting from breakup. While many parameters influence the droplets’ size, the present study focuses on the influence of the Bond number. This dimensionless number measures the influence of body forces compared with surface tension, which usually drives the Rayleigh-Plateau instability. The present work uses numerical simulation to assess the influence of the Bond number on both main droplets and satellites issuing from the Rayleigh-Plateau instability jet.
Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves
NASA Astrophysics Data System (ADS)
Zhai, Xiang
This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and
NASA Technical Reports Server (NTRS)
1997-01-01
These two views of Io were acquired by NASA's Galileo spacecraft during its seventh orbit (G7) of Jupiter. The images were designed to view large features on Io at low sun angles when the lighting conditions emphasize the topography or relief of the volcanic satellite. Sun angles are low near the terminator which is the day-night boundary near the left side of the images. These images reveal that the topography is very flat near the active volcanic centers such as Loki Patera (the large dark horseshoe-shaped feature near the terminator in the left-hand image) and that a variety of mountains and plateaus exist elsewhere.
North is to the top of the picture. The resolution is about 6 kilometers per picture element (6.1 for the left hand image and 5.7 for the right). The images were taken on April 4th, 1997 at a ranges of 600,000 kilometers (left image) and 563,000 kilometers (right image) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.
The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.
This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo
Development of a computational testbed for numerical simulation of combustion instability
NASA Technical Reports Server (NTRS)
Grenda, Jeffrey; Venkateswaran, Sankaran; Merkle, Charles L.
1993-01-01
A synergistic hierarchy of analytical and computational fluid dynamic techniques is used to analyze three-dimensional combustion instabilities in liquid rocket engines. A mixed finite difference/spectral procedure is employed to study the effects of a distributed vaporization zone on standing and spinning instability modes within the chamber. Droplet atomization and vaporization are treated by a variety of classical models found in the literature. A multi-zone, linearized analytical solution is used to validate the accuracy of the numerical simulations at small amplitudes for a distributed vaporization region. This comparison indicates excellent amplitude and phase agreement under both stable and unstable operating conditions when amplitudes are small and proper grid resolution is used. As amplitudes get larger, expected nonlinearities are observed. The effect of liquid droplet temperature fluctuations was found to be of critical importance in driving the instabilities of the combustion chamber.
A semi-numerical algorithm for instability of compressible multilayered structures
NASA Astrophysics Data System (ADS)
Tang, Shan; Yang, Yang; Peng, Xiang He; Liu, Wing Kam; Huang, Xiao Xu; Elkhodary, Khalil
2015-07-01
A computational method is proposed for the analysis and prediction of instability (wrinkling or necking) of multilayered compressible plates and sheets made by metals or polymers under plane strain conditions. In previous works, a basic assumption (or a physical argument) that has been frequently made is that materials are incompressible to simplify mathematical derivations. To account for the compressibility of metals and polymers (the lower Poisson's ratio leads to the more compressible material), we propose a combined semi-numerical algorithm and finite element method for instability analysis. Our proposed algorithm is herein verified by comparing its predictions with published results in literature for thin films with polymer/metal substrates and for polymer/metal systems. The new combined method is then used to predict the effects of compressibility on instability behaviors. Results suggest potential utility for compressibility in the design of multilayered structures.
Experimental demonstration of bow-shock instability and its numerical analysis
NASA Astrophysics Data System (ADS)
Kikuchi, Y.; Ohnishi, N.; Ohtani, K.
2016-07-01
An experimental demonstration was carried out in a ballistic range at high Mach numbers with the low specific heat ratio gas hydrofluorocarbon HFC-134a to observe the unstable bow-shock wave generated in front of supersonic blunt objects. The shadowgraph images obtained from the experiments showed instability characteristics, in which the disturbances grow and flow downstream and the wake flow appears wavy because of the shock oscillation. Moreover, the influence of the body shape and specific heat ratio on the instability was investigated for various experimental conditions. Furthermore, the observed features, such as wave structure and disturbance amplitude, were captured by numerical simulations, and it was demonstrated that computational fluid dynamics could effectively simulate the physical instability. In addition, it was deduced that the shock instability is induced by sound emissions from the edge of the object. This inference supports the dependence of the instability on the specific heat ratio and Mach number because the shock stand-off distance is affected by these parameters and limits the sound wave propagation.
NASA Astrophysics Data System (ADS)
Brunetti, J.; Massi, F.; Saulot, A.; Renouf, M.; D`Ambrogio, W.
2015-06-01
Mechanical systems present several contact surfaces between deformable bodies. The contact interface can be either static (joints) or in sliding (active interfaces). The sliding interfaces can have several roles and according to their application they can be developed either for maximizing the friction coefficient and the energy dissipation (e.g. brakes) or rather to allow the relative displacement at joints with a maximum efficiency. In both cases the coupling between system and local contact dynamics can bring to system dynamics instabilities (e.g. brake squeal or squeaking of hip prostheses). This results in unstable vibrations of the system, induced by the oscillation of the contact forces. In the literature, a large number of works deal with such kind of instabilities and are mainly focused on applied problems such as brake squeal noise. This paper shows a more general numerical analysis of a simple system constituted by two bodies in sliding contact: a rigid cylinder rotating inside a deformable one. The parametrical Complex Eigenvalue Analysis and the transient numerical simulations show how the friction forces can give rise to in-plane dynamic instabilities due to the interaction between two system modes, even for such a simple system characterized by one deformable body. Results from transient simulations highlight the key role of realistic values of the material damping to have convergence of the model and, consequently, reliable physical results. To this aim an experimental estimation of the material damping has been carried out. Moreover, the simplicity of the system allows for a deeper analysis of the contact instability and a balance of the energy flux among friction, system vibrations and damping. The numerical results have been validated by comparison with experimental ones, obtained by a specific test bench developed to reproduce and analyze the contact friction instabilities.
Numerical Instability in a 2D Gyrokinetic Code Caused by Divergent E × B Flow
NASA Astrophysics Data System (ADS)
Byers, J. A.; Dimits, A. M.; Matsuda, Y.; Langdon, A. B.
1994-12-01
In this paper, a numerical instability first observed in a 2D electrostatic gyrokinetic code is described. The instability should also be present in some form in many versons of particle-in-cell simulation codes that employ guiding center drifts. A perturbation analysis of the instability is given and its results agree quantitatively with the observations from the gyrokinetic code in all respects. The basic mechanism is a false divergence of the E × B flow caused by the interpolation between the grid and the particles as coupled with the specific numerical method for calculating E - ∇φ. Stability or instability depends in detail on the specific choice of particle interpolation method and field method. One common interpolation method, subtracted dipole, is stable. Other commonly used interpolation methods, linear and quadratic, are unstable when combined with a finite difference for the electric field. Linear and quadratic interpolation can be rendered stable if combined with another method for the electric field, the analytic differential of the interpolated potential.
Underlying mechanism of numerical instability in large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Ida, Masato; Taniguchi, Nobuyuki
2004-04-01
This paper extends our recent theoretical work concerning the feasibility of stable and accurate computation of turbulence using a large eddy simulation [
Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube
NASA Astrophysics Data System (ADS)
Murawski, K.; Chmielewski, P.; Zaqarashvili, T. V.; Khomenko, E.
2016-07-01
The paper aims to study the response of a solar small-scale and weak magnetic flux tube to photospheric twisting motions. We numerically solve three-dimensional ideal magnetohydrodynamic equations to describe the evolution of the perturbation within the initially static flux tube, excited by twists in the azimuthal component of the velocity. These twists produce rotation of the magnetic field lines. Perturbation of magnetic field lines propagates upwardly, driving vertical and azimuthal flow as well as plasma compressions and rarefactions in the form of eddies. We conclude that these eddies result from the sheared azimuthal flow which seeds Kelvin-Helmholtz instability (KHI) between the flux tube and the ambient medium. Numerically obtained properties of the KHI confirm the analytical predictions for the occurrence of the instability.
NASA Technical Reports Server (NTRS)
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
NASA Astrophysics Data System (ADS)
Mahdaoui, O.; Agassant, J.-F.; Laure, P.; Valette, R.; Silva, L.
2007-04-01
The polymer coextrusion process is a new method of sheet metal lining. It allows to substitute lacquers for steel protection in food packaging industry. The coextrusion process may exhibit flow instabilities at the interface between the two polymer layers. The objective of this study is to check the influence of processing and rheology parameters on the instabilities. Finite elements numerical simulations of the coextrusion allow to investigate various stable and instable flow configurations.
NASA Astrophysics Data System (ADS)
Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong
2005-05-01
In neutral plasmas with a uniform magnetic field and strongly anisotropic distribution function (T∥/T⊥≪1) an electrostatic Harris-type collective instability may develop if the plasma is sufficiently dense. Such anisotropies develop naturally in accelerators, and a similar instability may lead to a deterioration of the beam quality in a one-component nonneutral charged particle beam. The instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the temperature anisotropy instability using the newly developed Beam Eigenmodes And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression (ν/ν0≪1). Such high-intensity beams are relevant to next-step experiments such as the Integrated Beam Experiment (IBX), which would serve as proof-of-principal experiment for heavy-ion fusion.
Bai, Jing-Song; Wang, Bing; Wang, Tao; Liu, Kun
2012-12-01
Based on previous instability experiments of the double mode perturbed interface in initially nonuniform flows, we numerically investigate the effect of the nonuniformity of flows on the evolution of instability in a nonlinear regime after reshock by adopting two different nonuniform coefficients (δ_{1} = 0.6162 and δ_{2} = 0.4961) in the Gaussian distribution of the initial nonuniform density. We obtain the evolution of the mixing zone width and vortex structure of the air-SF_{6} interface and compare the circulation discrepancies of the nonuniform and uniform flows before and after reshock. These results indicate that the nonuniformity of the initial flow has great effect on the evolution of instability in the linear regime and the weak nonlinear regime prior to reshock. However, the mixing layer has little dependence on the nonuniformity of the initial flow in the nonlinear regime after reshock; namely, the effect of the nonuniformity is reduced significantly as the instability enters the strongly nonlinear regime after reshock. Although the growth rate of the perturbations has a significant increase, the characteristics of the flow like the mixing width, vorticity, and circulation are close to those of a uniform flow.
Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability
Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.
2003-11-24
Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.
Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results
Kueny, C.S.; Morrison, P.J.
1995-05-01
In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.
Numerical simulations of thermal-chemical instabilities at the core-mantle boundary
NASA Technical Reports Server (NTRS)
Hansen, Ulrich; Yuen, David A.
1988-01-01
Numerical simulations of thermal-chemical instabilities in the D-double-prime layer at the core-mantle boundary are presented which show that strong lateral heterogeneities in the composition and density fields can be initiated and maintained dynamically if there is continuous replenishment of material from subduced slabs coming from the upper mantle. These chemical instabilities have a tendency to migrate laterally and may help to support core-mantle boundary topography with short and long wavelengths. The thermal-chemical flows produce a relatively stagnant D-double-prime layer with strong lateral and temporal variations in basal heat flux, which gives rise to thermal core-mantle interactions influencing the geodynamo.
NASA Technical Reports Server (NTRS)
Reale, F.; Rosner, R.; Malagoli, A.; Peres, G.; Serio, S.
1991-01-01
The temporal evolution of density perturbations in an initially hydrostatic isothermal atmosphere consisting of an optically thin radiating compressible plasma is studied. Numerical techniques are used to describe the nonlinear evolution of the perturbations, and the relative equilibrium between dynamic and thermal instabilities as governed by three independent control parameters are examined, namely, the initial density contrast of the perturbation, the ratio of the local buoyancy oscillation period to the local radiative cooling time, and the ratio of the perturbation radius to the local scaleheight. Four orders of magnitude of initial density contrasts and ratios of buoyancy and cooling times, and one order of magnitude of the bubble dimensions are explored. Well-defined oscillations were found to occur in a limited parameter range, and thermal instability to occur even within secondary condensations deriving from the bubble fragmentation.
Numerical approach to reproduce instabilities of partial cavitation in a Venturi 8° geometry
NASA Astrophysics Data System (ADS)
Charriere, Boris; Goncalves, Eric
2016-11-01
Unsteady partial cavitation is mainly formed by an attached cavity which present periodic oscillations. Under certain conditions, the instabilities are characterized by the formation of vapour clouds, convected downstream the cavity and which collapse in higher pressure region. In order to gain a better understanding of the complex physics involved, many experimental and numerical studies have been carried out. These identified two main mechanisms responsible for the break-off cycles. The development of a liquid re-entrant jet is the most common type of instabilities, but more recently, the role of pressure waves created by the cloud collapses has been highlighted. This paper presents a one-fluid compressible Reynolds- Averaged NavierStokes (RANS) solver closed by two different equations of state (EOS) for the mixture. Based on experimental data, we investigate the ability for our simulations to reproduce the instablities of a self-sustained oscillating cavitation pocket. Two cavitation models are firstly compared. The importance of considering a non-equilibrium state for the vapour phase is also exhibited. To finish, the role played by the added transport equation to compute void ratio is emphasised. In case of partially cavitating flows with detached cavitation clouds, the reproduction of convective mechanisms is clearly improved.
Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid
NASA Technical Reports Server (NTRS)
Furukawa, A.; Meyer, H.; Onuki, A.
2004-01-01
Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.
Numerical Investigation of Stratus Cloud Layer Breakup by Cloud Top Instabilities
NASA Astrophysics Data System (ADS)
Witting, Patrick Joseph
1995-01-01
Large scale atmospheric simulations rely on simple boundary layer models because of computational considerations. Cloud coverage predicted by these boundary layer models is greatly affected by their prediction of the entrainment rate, the rate at which the boundary layer rises. Through direct numerical simulations, this dissertation studies the impact that two cloud top instability mechanisms, cloud top entrainment instability and stratified shear layer instability, have on the entrainment rate. Cloud top entrainment instability, CTEI, is possible when mixtures of dry air from above and cloudy air from below the inversion become negatively buoyant due to evaporative cooling. High resolution two-dimensional simulations with grid spacing as small as 0.25m were used to investigate early CTEI development from small disturbances. Simulations revealed CTEI prefers small wavelengths, has an extended period of exponential growth, and establishes a nearly constant rate of global cloud loss during early nonlinear development which continues into the completely nonlinear phases. The growth rates and cloud loss rates were calculated over a wide range of parameter space. Three-dimensional simulations produced more mixing than their two-dimensional counterparts. Simulations also revealed that shear inhibits CTEI development. Shear often accompanies the jumps of density and moisture across the inversion. If enough shear is present relative to the stable stratification, then the shear layer will roll up into periodic arrays of billows, entraining fluid in the process. These billows are unstable to a pairing mechanism which further spreads the layer by entraining fluid and forming new, larger billows. The pairing process leads to an essentially linear spreading rate until the spreading eventually stops because of increased buoyancy effects. Shear layer simulations address the pairing instability being eventually overwhelmed by buoyancy forces, ending further spreading. The
NASA Astrophysics Data System (ADS)
Wei, Xing; Ji, Hantao; Goodman, Jeremy; Ebrahimi, Fatima; Gilson, Erik; Jenko, Frank; Lackner, Karl
2016-12-01
We investigate numerically the Princeton magnetorotational instability (MRI) experiment and the effect of conducting axial boundaries or endcaps. MRI is identified and found to reach a much higher saturation than for insulating endcaps. This is probably due to stronger driving of the base flow by the magnetically rather than viscously coupled boundaries. Although the computations are necessarily limited to lower Reynolds numbers (Re ) than their experimental counterparts, it appears that the saturation level becomes independent of Re when Re is sufficiently large, whereas it has been found previously to decrease roughly as Re-1 /4 with insulating endcaps. The much higher saturation levels will allow for the positive detection of MRI beyond its theoretical and numerical predictions.
NASA Astrophysics Data System (ADS)
Pham, Van Sang; Li, Zirui; Lim, Kian Meng; White, Jacob K.; Han, Jongyoon
2012-10-01
We present a systematic, multiscale, fully detailed numerical modeling for dynamics of fluid flow and ion transport covering Ohmic, limiting, and overlimiting current regimes in conductance of ion-selective membrane. By numerically solving the Poisson-Nernst-Planck-Navier-Stokes equations, it is demonstrated that the electroconvective instability, arising from the electric field acting upon the extended space charge layer, and the induced strong vortical fluid flow are the dominant factors of the overlimiting current in the planar membrane system. More importantly, at the transition between the limiting and the overlimiting current regimes, hysteresis of electric current is identified. The hysteresis demonstrates the important role of the electroconvective flow in enhancing of current in electrolyte systems with ion-selective membrane.
Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Attal, N.; Ramaprabhu, P.
2015-07-01
We report on high-resolution, numerical simulations of a single-mode, chemically reacting, Richtmyer-Meshkov (RM) instability, at different interface thicknesses. The gases on either side of the diffuse interface were Hydrogen (H and Oxygen (O, with a pre-shock Atwood number of 0.5. An incident shock with a Mach number of 1.2 is allowed to traverse from the light (H to the heavy (O medium in the 2D numerical shock tube. The simulations were performed using the astrophysical FLASH code developed at the University of Chicago, with extensive modifications implemented by the authors to describe detailed H-O chemistry, temperature-dependent specific heats, and multi-species equation of state. The interface thickness was systematically varied in the simulations to study the effect of the total mass of fuel burnt and heat added on the hydrodynamic instability growth rates. In the absence of an incident shock, burning results in the formation of so-called combustion waves, which spontaneously trigger RM and Rayleigh-Taylor like instability growth of the interface. We are able to obtain the resulting growth rates of an imposed sinusoidal perturbation, and compare them with the predictions of an impulsive model, with simple modifications to account for the finite thickness of the interface, density changes due to heat addition, and compression of the material line due to the combustion wave. When additionally an incident shock is present, we observe complex interactions between the shock and the aforementioned combustion waves, resulting in significant non-planar distortions of each. When the unstable interface is subjected to a reshock, significant mixing enhancement is observed, accompanied by a dramatic increase in combustion product formation, and combustion efficiency.
A numerical investigation of the barotropic instability on the equatorial β-plane
NASA Astrophysics Data System (ADS)
Kacimi, Abderrahim; Khouider, Boualem
2013-06-01
The barotropic instability of horizontal shear flows is investigated by using two numerical algorithms to solve the equatorial β-plane barotropic equations. The first is the Arakawa Jacobian method (Arakawa, in J Comput Phys 1:119-143, 1966), which is a second-order-centered finite differences scheme that conserves energy and enstrophy, and the second is the fourth-order essentially non-oscillatory scheme for non-linear PDE's of Osher and Shu (SIAM J Numer Anal 28:907-922, 1991), which is designed to track sharp fronts. We are interested in the performance of these two methods in tracking the long-time behavior of the instability, under the influence of the non-linearity, in the simple case of a Helmholtz shear layer. The associated linear problem is solved analytically, and the linear solution is used as an initial condition for the numerical simulations. We run a series of numerical simulations using both methods with various grid refinements and with two different amplitudes of the initial perturbation. A small viscosity term is added to the vorticity equation to damp the grid-scale waves for Arakawa's method. This is not necessary for the high-order ENO-4 scheme, which has its own grid-scale dissipation. At high resolution, the two methods are in good agreement; they yield qualitatively and quantitatively the same solution in the long run: for small disturbances, the total flow stabilizes into a steady-state meridional shear with a smooth profile near the equator, while strong disturbances merge together to form a single large-scale vortex that propagates westward, along the equator, consistent with the African easterly waves and the monsoons trough circulation. At coarse resolution, however, Arakawa's method seems to be much superior to the fourth-order ENO-4 scheme as it provides solutions that are more consistent with the fine resolution one.
Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain
NASA Astrophysics Data System (ADS)
Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu
2013-11-01
Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.
Numerical modeling of Kelvin-Helmholtz instability by using potential equation
NASA Astrophysics Data System (ADS)
Ahmadi, Somayeh
2012-11-01
This paper presents a potential flow numerical solution for the Kelvin-Helmholtz Instability (KHI) problem of an incompressible two-phase immiscible fluid in a stratified shear flow. As a problem: the two-fluid model becomes illposed when the slip velocity exceeds a critical value, and computations can be quite unstable before the flow reaches the ill-posed condition. In this work, computational stability of various convection schemes together with the potential equation method for the time derivatives in conjunction with the two-fluid model is analyzed. The normal stress balance (with the normal viscous stress) at the interface for the two-fluid model is carefully implemented to minimize its effect on numerical stability. Von Neumann stability analysis shows that: stability condition for two-fluid with equal kinematic viscosity ratio and inviscid flow, supply numerical stability. Excellent agreement has obtained according to analytical result that existing of imaginary part in solution which specialized this method. The numerical algorithm presented in this work can easily handle two-phase fluid flow with various density and viscosity ratios in rectangular channel. Simulation of this model has implemented by writing a code in FORTRAN programming.
Numerical prediction of low frequency combustion instability in a model ramjet combustor
Shang, H.M.; Chen, Y.S.; Shih, M.S.; Farmer, R.C.
1996-12-31
A numerical analysis has been conducted for low-frequency combustion instability in a model ramjet combustor. The facility is two-dimensional, and is comprised of a long inlet duct, a dump combustor chamber, and an exhaust nozzle. The experiments observed that the combustor pressure oscillation under the particular operating condition did not have much cycle-to-cycle variation. The main resonant frequency occurs at about 65 Hz for this case. In the numerical analysis, a time accurate Computational Fluid Dynamics (CFD) code with a pressure-correction algorithm is used, and the combustion process was modeled with a single step chemistry model and a modified eddy breakup model. A high-order upwind scheme with flux limiter is used for convection terms. The convergence of the linear algebraic equations is accelerated through a preconditioned conjugate gradient matrix solver. The numerical predictions show that the flame oscillates in the combustion chamber at the calculation condition and are justified by the experimental schlieren photographs. The numerical analyses correctly predict the chamber pressure oscillation frequency is over-predicted compared with the experimental data. The discrepancy can be explained by the simplified turbulence and combustion model used in this study, and the uncertainty of the inlet boundary conditions.
Direct numerical simulation of instabilities in parallel flow with spherical roughness elements
NASA Technical Reports Server (NTRS)
Deanna, R. G.
1992-01-01
Results from a direct numerical simulation of laminar flow over a flat surface with spherical roughness elements using a spectral-element method are given. The numerical simulation approximates roughness as a cellular pattern of identical spheres protruding from a smooth wall. Periodic boundary conditions on the domain's horizontal faces simulate an infinite array of roughness elements extending in the streamwise and spanwise directions, which implies the parallel-flow assumption, and results in a closed domain. A body force, designed to yield the horizontal Blasius velocity in the absence of roughness, sustains the flow. Instabilities above a critical Reynolds number reveal negligible oscillations in the recirculation regions behind each sphere and in the free stream, high-amplitude oscillations in the layer directly above the spheres, and a mean profile with an inflection point near the sphere's crest. The inflection point yields an unstable layer above the roughness (where U''(y) is less than 0) and a stable region within the roughness (where U''(y) is greater than 0). Evidently, the instability begins when the low-momentum or wake region behind an element, being the region most affected by disturbances (purely numerical in this case), goes unstable and moves. In compressible flow with periodic boundaries, this motion sends disturbances to all regions of the domain. In the unstable layer just above the inflection point, the disturbances grow while being carried downstream with a propagation speed equal to the local mean velocity; they do not grow amid the low energy region near the roughness patch. The most amplified disturbance eventually arrives at the next roughness element downstream, perturbing its wake and inducing a global response at a frequency governed by the streamwise spacing between spheres and the mean velocity of the most amplified layer.
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.
2013-12-15
A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; Umansky, Maxim V.; Baver, Derek A.
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summary that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less
Numerical Experiments with a Turbulent Single-Mode Rayleigh-Taylor Instability
Cloutman, L.D.
2000-04-01
Direct numerical simulation is a powerful tool for studying turbulent flows. Unfortunately, it is also computationally expensive and often beyond the reach of the largest, fastest computers. Consequently, a variety of turbulence models have been devised to allow tractable and affordable simulations of averaged flow fields. Unfortunately, these present a variety of practical difficulties, including the incorporation of varying degrees of empiricism and phenomenology, which leads to a lack of universality. This unsatisfactory state of affairs has led to the speculation that one can avoid the expense and bother of using a turbulence model by relying on the grid and numerical diffusion of the computational fluid dynamics algorithm to introduce a spectral cutoff on the flow field and to provide dissipation at the grid scale, thereby mimicking two main effects of a large eddy simulation model. This paper shows numerical examples of a single-mode Rayleigh-Taylor instability in which this procedure produces questionable results. We then show a dramatic improvement when two simple subgrid-scale models are employed. This study also illustrates the extreme sensitivity to initial conditions that is a common feature of turbulent flows.
Experimental and numerical study of plastic shear instability under high-speed loading conditions
Sokovikov, Mikhail E-mail: naimark@icmm.ru; Chudinov, Vasiliy E-mail: naimark@icmm.ru; Bilalov, Dmitry E-mail: naimark@icmm.ru; Oborin, Vladimir E-mail: naimark@icmm.ru; Uvarov, Sergey E-mail: naimark@icmm.ru; Plekhov, Oleg E-mail: naimark@icmm.ru; Terekhina, Alena E-mail: naimark@icmm.ru; Naimark, Oleg E-mail: naimark@icmm.ru
2014-11-14
The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.
Numerical analysis of gas-dynamic instabilities during the laser drilling process
NASA Astrophysics Data System (ADS)
Khan, A. H.; O'Neill, W.; Tunna, L.; Sutcliffe, C. J.
2006-08-01
The use of high-pressure gas jets in the laser-drilling process has significant influence on the melt ejection mechanism. These jets are highly unstable and this directly relates to the gas pressure and the geometry of the hole being drilled. The evolution of gas-dynamic instabilities during the laser-drilling process was investigated numerically. A minimum length nozzle (MLN) with a 300 μm throat diameter was modelled at various gas pressures, with the gas jet impinging on a range of simulated holes with different aspect ratios. The simulations predict the formation of surface pressure fluctuations that have a broad spectrum due to both the turbulent nature of the jet and the blunt shock oscillation on the surface. The surface pressure variations and the blunt shock oscillation govern the gas dynamic conditions inside the hole, which strongly influence the melt ejection phenomena during the laser-drilling process.
Zig-Zag Thermal-Chemical 3-D Instabilities in the Mantle Wedge: Numerical Study
NASA Astrophysics Data System (ADS)
Zhu, G.; Gerya, T. V.; Arcay, D.; Yuen, D. A.
2008-12-01
To understand the plume initiation and propagation it is important to understand whether small-scale convection is occurring under the back-arc in the Low Viscosity Wedge(LVW) and its implication on the island-arc volcanism. Honda et al. [Honda and Saito, 2003; Honda, et al., 2007]) already deployed small- scale convection in the Low Viscosity Wedge (LVW) above a subducting slab with kinematically imposed velocity boundary condition. They have suggested that a roll (finger)-like pattern of hot and cold anomalies emerges in the mantle wedge above the subducting slab. Here, we perform three-dimensional coupled petrological-thermomechanical numerical simulations of intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface by using multigrid approach combined with characteristics-based marker-in-cell method with conservative finite difference schemes[Gerya and Yuen, 2003a], to investigate the 3D instabilities above the slab and lateral variation along the arc. Our results show that water released from subducting slab through dehydration reactions may lower the viscosity of the mantle. It allows the existence of wave-like small-scale convection in the LVW, which is shown as roll-like structure in 2D petrological-thermomechanical numerical experiments [Gorczyk et al., 2006] using in-situ rock properties computed on the basis of Gibbs free energy minimization. However, in our 3D cases, the rolls aligning with the arc mainly occur earlier , while zig-zag small-scale thermal-chemical instabilities may episodically form above the slab at later stages, which is different from the aligning finger-like pattern in purely thermal models (Honda et al,2003;2007). Also in contrast to thermal convection chemically buoyant hydrated plumes rising from the slab in our models are actually colder then the mantle wedge [Gerya and Yuen 2003b] which also strongly modify both the convection pattern and the seismic structure in
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
Numerical simulation on macro-instability of coupling flow field structure in jet-stirred tank
NASA Astrophysics Data System (ADS)
Luan, D. Y.; Lu, J. P.; Bu, Q. X.; Zhang, S. F.; Zheng, S. X.
2016-05-01
The velocity field macro-instability (MI) can help to improve the mixing efficiency. In this work, the MI features of flow field induced by jet-stirred coupling action is studied by using computational fluid dynamics (CFD) simulations. The numerical simulation method of jet-stirred model was established based on standard turbulent equations, and the impeller rotation was modeled by means of the Sliding Mesh (SM) technology. The numerical results of test fluid (water) power consumption were compared with the data obtained by power test experiments. The effects of jet flow velocity and impeller speed on MI frequency were analyzed thoroughly. The results show that the calculated values of power consumption agree well with the experiment measured data, which validates the turbulent model, and the flow structure and MI frequency distribution are affected by both impeller speed and jet flow rate. The amplitude of MI frequency increases obviously with the increasing rotation speed of impeller and the eccentric jet rate, and it can be enhanced observably by eccentric jet rate, in condition of comparatively high impeller speed. At this time, the MI phenomenon disappears with the overall chaotic mixing.
Numerical Simulation of the Mechanisms Governing the Onset of the BÉNARD-VON KÁRMÁN Instability
NASA Astrophysics Data System (ADS)
Carte, Gilles; Duek, Jan; Fraunié, Philippe
1996-10-01
The onset of the Bénard-von Kármán instability consisting of the selective amplification of the linear unstable mode and yielding finally the well-known saturated state has been described many times on the basis of both numerical and experimental results in various configurations. However, neither the role of the harmonics and their coupling has been examined quantitatively, nor has the spatial structure of the instability been studied in detail. A recently developed numerical method of simulation of quasi-periodic flows makes it possible to integrate the investigation of linear and non-linear characteristics within a single numerical method. The simulation of the 2D afterbody wake presented in this paper allows us to follow the amplification of the instability over many orders of magnitude. It is shown that at all stages of its development the instability is characterized by a series of harmonics, each of them amplified with a multiple of the fundamental amplification rate during the linear regime. The amplification of harmonics results from an energy transfer from the mean flow to harmonics of increasingly higher order. Ultimately the energy losses compensate this transfer and an equilibrium, commonly called saturation of the instability, is reached. It is shown that the coupling between the fundamental harmonic and the mean flow is mainly responsible for the saturation. The convergence rate of the development of the instability into harmonics is investigated. A full description of the spatial structure of all significant harmonics both in the linear regime and at saturation is obtained. The results show that time and space characteristics of the instability can be investigated simultaneously in an efficient way. Such an approach might be particularly important in 3D wakes where the geometry has a strong influence on the behaviour of unstable flows.
NASA Astrophysics Data System (ADS)
Hallo, L.; Olazabal-Loumé, M.; Maire, P. H.; Breil, J.; Morse, R.-L.; Schurtz, G.
2006-06-01
This paper deals with ablation front instabilities simulations in the context of direct drive ICF. A simplified DT target, representative of realistic target on LIL is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our Bi-dimensional hydrodynamic code Chic. Numerical solutions are shown to converge, in good agreement with analytical models.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu
2016-08-01
In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.
Laboratory and numerical simulation of internal wave attractors and their instability.
NASA Astrophysics Data System (ADS)
Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias
2015-04-01
Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F
Tritschler, V K; Zubel, M; Hickel, S; Adams, N A
2014-12-01
In this study we present direct numerical simulation results of the Richtmyer-Meshkov instability (RMI) initiated by Ma=1.05,Ma=1.2, and Ma=1.5 shock waves interacting with a perturbed planar interface between air and SF(6). At the lowest shock Mach number the fluids slowly mix due to viscous diffusion, whereas at the highest shock Mach number the mixing zone becomes turbulent. When a minimum critical Taylor microscale Reynolds number is exceeded, an inertial range spectrum emerges, providing further evidence of transition to turbulence. The scales of turbulent motion, i.e., the Kolmogorov length scale, the Taylor microscale, and the integral length, scale are presented. The separation of these scales is found to increase as the Reynolds number is increased. Turbulence statistics, i.e., the probability density functions of the velocity and its longitudinal and transverse derivatives, show a self-similar decay and thus that turbulence evolving from RMI is not fundamentally different from isotropic turbulence, though nominally being only isotropic and homogeneous in the transverse directions.
Direct Numerical Simulation of Richtmeyer-Meshkov Instability Using pWAMR
NASA Astrophysics Data System (ADS)
Grenga, Temistocle; Paolucci, Samuel
2015-11-01
The parallel Wavelet Adaptive Multiresolution Representation (pWAMR) method is used to simulate the Richtmyer-Meshkov instability caused by a shock interacting with a density-stratified interface. The physical problem is studied in several configurations. We present results of numerical studies that investigate the influence of initial condition parameters (amplitude and wavelength of perturbations) on mixing and transition. In addition, the evaluation of turbulence statistics provides a measure of the mixing across the scales and the correlation with the initial condition parameters. The problem is modeled using the compressible reactive Navier-Stokes equations for a gas mixture, including multi-component diffusion, Soret and Dufour effects, and state dependent thermodynamic and transport properties. Since the amplitudes of wavelets provide a direct measure of the local error, the method is able to efficiently capture to any desired accuracy a wide range of spatial scales using a relatively small number of degrees of freedom by evolving the dynamically adaptive grid. In an effective fashion, the multilevel structure of the algorithm provides a simple way to adapt computational refinements to local demands of the solution, thus automatically producing verified solutions. Supported by C-SWARM through the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002377.
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Li, Fei; Dalichaouch, Thamine; Fiuza, Frederico; Decyk, Viktor; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank; Fonseca, Ricardo; Lu, Wei; Vieira, Jorge; Silva, Luis; Mori, Warren
2016-10-01
we present a finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm, which is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1& circ; direction). We show that this eliminates the main NCI modes with moderate | k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher | k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1& circ; which typically has many more cells than other directions for the problems of interest.
NASA Astrophysics Data System (ADS)
Xin, Bo; Sun, Dakun; Jing, Xiaodong; Sun, Xiaofeng
2016-07-01
Lined ducts are extensively applied to suppress noise emission from aero-engines and other turbomachines. The complex noise/flow interaction in a lined duct possibly leads to acoustic instability in certain conditions. To investigate the instability, the full linearized Navier-Stokes equations with eddy viscosity considered are solved in frequency domain using a Galerkin finite element method to compute the sound transmission in shear flow in the lined duct as well as the flow perturbation over the impedance wall. A good agreement between the numerical predictions and the published experimental results is obtained for the sound transmission, showing that a transmission peak occurs around the resonant frequency of the acoustic liner in the presence of shear flow. The eddy viscosity is an important influential factor that plays the roles of both providing destabilizing and making coupling between the acoustic and flow motions over the acoustic liner. Moreover, it is shown from the numerical investigation that the occurrence of the sound amplification and the magnitude of transmission coefficient are closely related to the realistic velocity profile, and we find it essential that the actual variation of the velocity profile in the axial direction over the liner surface be included in the computation. The simulation results of the periodic flow patterns possess the proper features of the convective instability over the liner, as observed in Marx et al.'s experiment. A quantitative comparison between numerical and experimental results of amplitude and phase of the instability is performed. The corresponding eigenvalues achieve great agreement.
Cloutman, L.D.
2000-07-10
Direct numerical simulation and large eddy simulations are powerful tools for studying turbulent flows. Unfortunately, they are computationally demanding in terms of run times, storage, and accuracy of the numerical method used. In particular, high order methods promise high accuracy on a given grid, but they often fail to deliver the expected accuracy due to dispersive truncation errors that appear as unphysical oscillations in the numerical solutions. This report describes a nonlinear flux limiter that has been applied to the second-order tensor viscosity method and markedly reduces the dispersive truncation errors. A Rayleigh-Taylor instability is simulated to show how well the flux limiter works.
NASA Astrophysics Data System (ADS)
Movahed, Pooya
High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments. To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores
NASA Astrophysics Data System (ADS)
Chou, Yi-Ju; Shao, Yun-Chuan
2016-04-01
In this study, we investigate Rayleigh-Taylor instability in which the density stratification is caused by the suspension of particles in liquid flows using the conventional single-phase model and Euler-Lagrange (EL) two-phase model. The single-phase model is valid only when the particles are small and number densities are large, such that the continuum approximation applies. The present single-phase results show that the constant settling of the particle concentration restricts the lateral development of the vortex ring, which results in a decrease of the rising speed of the Rayleigh-Taylor bubbles. The EL model enables the investigation of particle-flow interaction and the influence of particle entrainment, resulting from local non-uniformity in the particle distribution. We compare bubble dynamics in the single-phase and EL cases, and our results show that the deviation between the two cases becomes more pronounced when the particle size increases. The main mechanism responsible for the deviation is particle entrainment, which can only be resolved in the EL model. We provide a theoretical argument for the small-scale local entrainment resulting from the local velocity shear and non-uniformity of the particle concentration. The theoretical argument is supported by numerical evidence. Energy budget analysis is also performed and shows that potential energy is released due to the interphase drag and buoyant effect. The buoyant effect, which results in the transformation of potential energy into kinetic energy and shear dissipation, plays a key role in settling enhancement. We also find that particle entrainment increases the shear dissipation, which in turn enhances the release of potential energy.
NASA Astrophysics Data System (ADS)
Chang, Chih-Hao; Deng, Xiaolong; Theofanous, Theo G.
2013-06-01
We present a conservative and consistent numerical method for solving the Navier-Stokes equations in flow domains that may be separated by any number of material interfaces, at arbitrarily-high density/viscosity ratios and acoustic-impedance mismatches, subjected to strong shock waves and flow speeds that can range from highly supersonic to near-zero Mach numbers. A principal aim is prediction of interfacial instabilities under superposition of multiple potentially-active modes (Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov) as found for example with shock-driven, immersed fluid bodies (locally oblique shocks)—accordingly we emphasize fidelity supported by physics-based validation, including experiments. Consistency is achieved by satisfying the jump discontinuities at the interface within a conservative 2nd-order scheme that is coupled, in a conservative manner, to the bulk-fluid motions. The jump conditions are embedded into a Riemann problem, solved exactly to provide the pressures and velocities along the interface, which is tracked by a level set function to accuracy of O(Δx5, Δt4). Subgrid representation of the interface is achieved by allowing curvature of its constituent interfacial elements to obtain O(Δx3) accuracy in cut-cell volume, with attendant benefits in calculating cell- geometric features and interface curvature (O(Δx3)). Overall the computation converges at near-theoretical O(Δx2). Spurious-currents are down to machine error and there is no time-step restriction due to surface tension. Our method is built upon a quadtree-like adaptive mesh refinement infrastructure. When necessary, this is supplemented by body-fitted grids to enhance resolution of the gas dynamics, including flow separation, shear layers, slip lines, and critical layers. Comprehensive comparisons with exact solutions for the linearized Rayleigh-Taylor and Kelvin-Helmholtz problems demonstrate excellent performance. Sample simulations of liquid drops subjected to
NASA Astrophysics Data System (ADS)
Chicheportiche, Jérèmie; Merle, Xavier; Gloerfelt, Xavier; Robinet, Jean-Christophe
2008-07-01
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor-Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche et al., C. R. Mecanique 336 (2008).
A Numerical Investigation of the Criterion for Cloud-Top Entrainment Instability.
NASA Astrophysics Data System (ADS)
MacVean, M. K.
1993-08-01
An investigation of cloud-top entrainment instability (CTEI) has been carried out using a fine-resolution two-dimensional numerical model. Initial conditions having specified values of R = cpe/Lqt were used. Here, e, and qt, are the jumps in equivalent potential temperature and total water mixing ratio across cloud top. In order to isolate the effects of entrainment across cloud top, cloud microphysics and surface fluxes were excluded from all the integrations. Radiative processes were generally also excluded, although a number of runs with longwave radiative cooling were performed. Integrations were carried out for specified values of R, using various subgrid models, including several constant values of eddy viscosity. Because the crucial process underlying CTEI is small-scale mixing, which must be parameterized in this model, only those results that are not critically dependent on the precise form of the subgrid model are likely to have any general validity. Fortunately, significant conclusions can still be drawn from the study. At values of R greater than the critical value of about 0.7 recently derived by MacVean and Mason, the cloud layer breaks up and evaporates completely within 1-2 h. On the other hand, for values of R greater than and close to the critical value of about 0.23 derived by earlier authors, no tendency for rapid dissipation of the cloud is observed. The results from the integrations that included longwave cooling at cloud top suggest that the inclusion of this process does not fundamentally modify these conclusions. Furthermore, analysis suggests that the entrainment rate in the simulations is likely to be realistic. It is concluded that CTEI may be an important mechanism governing the rapid dissipation of stratocumulus, although only at much larger values of R than earlier theoretical work had suggested. This conclusion is shown to be consistent with most of the limited, available observational data. These simulations provide strong support
NASA Astrophysics Data System (ADS)
Rivera, Gustavo; Diamessis, Peter
2016-11-01
The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations based on a high-accuracy deformed spectral multidomain penalty method. As recently observed in the South China Sea, in high-amplitude shoaling ISWs, the along-wave current can exceed the wave celerity resulting in convective instabilities. If the slope is less than 3%, the wave does not disintegrate as in the case of steeper slope shoaling but, instead, maintains its symmetric shape; the above convective instability may drive the formation of a turbulent recirculating core. The sensitivity of convective instabilities in an ISW is examined as a function of the bathymetric slope and wave steepness. ISWs are simulated propagating over both idealized and realistic bathymetry. Emphasis is placed on the structure of the above instabilities, the persistence of trapped cores and their potential for particle entrainment and transport. Additionally, the role of the baroclinic background current on the development of convective instabilities is explored. A preliminary understanding is obtained of the transition to turbulence within a high-amplitude ISW shoaling over progressively varying bathymetry.
An Experimental and Numerical Study of Roughness-Induced Instabilities in a Mach 3.5 Boundary Layer
NASA Technical Reports Server (NTRS)
Kegerise, Michael A.; King, Rudolph A.; Owens, Lewis R.; Choudhari, Meelan M.; Norris, Andrew T.; Li, Fei; Chang, Chau-Layn
2012-01-01
Progress on a joint experimental and numerical study of laminar-to-turbulent transition induced by an isolated roughness element in a high-speed laminar boundary layer is reported in this paper. The numerical analysis suggests that transition is driven by the instability of high- and low-speed streaks embedded in the wake of the isolated roughness element. In addition, spatial stability analysis revealed that the wake flow supports multiple modes (even and odd) of convective instabilities that experience strong enough growth to cause transition. The experimental measurements, which included hot-wire and pitot-probe surveys, confirmed the existence of embedded high- and low-speed streaks in the roughness wake. Furthermore, the measurements indicate the presence of both even and odd modes of instability, although their relative magnitude depends on the specifics of the roughness geometry and flow conditions (e.g., the value of Re(sub kk) or k/delta. For the two test cases considered in the measurements (Re(sub kk) values of 462 and 319), the even mode and the odd mode were respectively dominant and appear to play a primary role in the transition process.
NASA Astrophysics Data System (ADS)
Lu, C.; Lichtner, P. C.
2007-07-01
CO2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena.
NASA Astrophysics Data System (ADS)
Schmidt, Patrick; Ausner, Ilja; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-11-01
The dynamics of vertical counter-current gas-liquid flows are largely determined by interfacial instability, which gives rise to a multitude of complex wave patterns and internal flows. To study the genesis and evolution of the instability in detail, we employ theoretical stability analysis, experiment and a newly developed level set method based in-house solver to carry out direct numerical simulations. Crucial results of these simulations, such as growth rate and phase velocity of interfacial waves, are rigorously compared against linear and weakly nonlinear theory; thereby showing remarkable agreement. The analysis also reveals the spatio-temporal character of the waves, depicting regimes of absolute and convective instability. Complementing the benchmark set by (non-)linear theory, we perform film thickness measurements of a real gas-liquid system (air-silicone oil) by means of a non-intrusive light-induced fluorescence technique to further validate the solver regarding its capability of capturing interfacial dynamics accurately. These measurements are in good agreement with the results of the nonlinear direct numerical simulations with respect to wavelength and wave shape of the most unstable mode.
NASA Astrophysics Data System (ADS)
Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.
2004-11-01
In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.
NASA Technical Reports Server (NTRS)
Matthews, D. A.
1978-01-01
The effects of mesoscale triggering on organized nonsevere convective cloud systems in the High Plains are considered. Two experiments were conducted to determine if a one-dimensional quasi-time dependent model could (1) detect soundings which were sensitive to mesoscale triggering, and (2) discriminate between cases which had mesoscale organized convection and those with no organized convection. The MESOCU model was used to analyze the available potential instability and thermodynamic potential for cloud growth. It is noted that lifting is a key factor in the release of available potential instability on the High Plains.
Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B; Maier, Andreas R; Vay, Jean-Luc
2016-11-01
Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.
2012-09-13
AFOSR – THEORETICAL, NUMERICAL , AND EXPERIMENTAL INVESTIGATIONS OF THE FUNDAMENTAL PROCESSES THAT DRIVE COMBUSTION INSTABILITIES IN LIQUID ROCKET ...access for optical diagnostics • Injector plate may be interchanged to allow investigation of the driving by different injection systems...Preliminary Results • The “Full scale” LRE tested to identify its instabilities (~170 Hz) • Investigated the acoustics of the ACLRES rig (~250 Hz) • The
NASA Astrophysics Data System (ADS)
Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; Maier, Andreas R.; Vay, Jean-Luc
2016-11-01
Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1984-01-01
The instability of a three dimensional attachment line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time dependent Navier-Stokes equations for the attachment line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment line boundary layer is also investigated.
NASA Astrophysics Data System (ADS)
Stelzer, Zacharias; Miralles, Sophie; Cébron, David; Noir, Jérôme; Vantieghem, Stijn; Jackson, Andrew
2015-08-01
We present an investigation of the stability of liquid metal flow under the influence of an imposed magnetic field by means of a laboratory experiment as well as a linear stability analysis of the setup using the finite element method. The experimental device ZUrich Cylindrical CHannel INstability Investigation is a modified cylindrical annulus with electrically driven flow of liquid GaInSn operating at Hartmann and Reynolds numbers up to M = 2022 and Re = 2.6 ṡ 105, respectively. The magnetic field gives rise to a free shear layer at the prominent inner electrode. We identify several flow regimes characterized by the nature of the instabilities. Above a critical current I c = O ( 0 . 1 A ) , the steady flow is destabilized by a Kelvin-Helmholtz mechanism at the free shear layer. The instability consists of counterrotating vortices traveling with the mean flow. For low forcing, the vortices are restricted to the free shear layer. Their azimuthal wave number m grows with M and decreases with Re. At Re/M ≈ 25, the instability becomes container-filling and energetically significant. It enhances the radial momentum transport which manifests itself in a broadening of the free shear layer width δS. We propose that this transition may be related to an unstable Hartmann layer. At R e / M 2 = O ( 1 ) , an abrupt change is observed in the mean azimuthal velocity < u ϕ ¯ > and the friction factor F, which we interpret as the transition between an inertialess and an inertial regime.
NASA Astrophysics Data System (ADS)
Keedy, Ryan; Aliseda, Alberto
2016-11-01
Laboratory experiments were performed to understand the effect of viscosity ratio on the development of the round jet when a miscible liquid is injected into another stagnant ambient liquid. Altering the viscosity of the injected liquid jet resulted in noticeable changes in the turbulent/non-turbulent interface in the jet's developing region, including the instability wavelength. The change in the formation of structures at the interface is apparent even when several key non-dimensional numbers (Pe , Re) associated with the flow are kept constant. Large, coherent structures in the turbulent jet resulting from the shear instability of the interface may affect the downstream development of the self-similar profile. Hence, it is important to examine and understand the characteristics of the shear layer instability in order to better understand the role that a viscosity gradient plays in turbulent jet development. The spatial stability equations for a flow in which viscosity varies arbitrarily as a function of scalar concentration are presented. These equations are evaluated at various viscosity ratios and the predicted instability frequencies are compared to experimental results in the range of μjet /μamb = 0 . 5 - 2 and Re 104 . Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.
Comprehensive experimental and numerical analysis of instability phenomena in pump turbines
NASA Astrophysics Data System (ADS)
Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.
2014-03-01
The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV
Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability
Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.
2004-01-12
A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.
Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca
2013-12-15
A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.
NASA Astrophysics Data System (ADS)
Langari, Mostafa; Yang, Zhiyin
2013-07-01
Numerical studies of laminar-to-turbulent transition in a separation bubble subjected to two free-stream turbulence levels (FST) have been performed using Large-Eddy Simulation (LES). Separation of the laminar boundary layer occurs at a curvature change over a plate with a semi-circular leading edge at Re = 3450 based on the plate thickness and the uniform inlet velocity. A numerical trip is used to produce the targeted free-stream turbulence levels and the decay of free-stream turbulence is well predicted. A dynamic sub-grid-scale model is employed in the current study and a good agreement has been obtained between the LES results and the experimental data. Detailed analysis of the LES data has been carried out to investigate the primary instability mechanism. The flow visualisations and spectral analysis of the separated shear layer reveal that the 2D Kelvin-Helmholtz instability mode, well known to occur at low FST levels, is bypassed at higher levels leading to earlier breakdown to turbulence.
NASA Astrophysics Data System (ADS)
Marxen, Olaf; Magin, Thierry; Iaccarino, Gianluca; Shaqfeh, Eric S. G.
2011-08-01
Prediction of laminar-turbulent transition is a key factor in the design of the heat shield of vehicles (re-)entering a planetary atmosphere. To investigate the transition by means of numerical simulation, accurate and efficient computational methods are necessary. Here, the compressible Navier-Stokes equations are solved for a gas where properties such as specific heat, thermal conductivity, viscosity, and specific gas constant depend on one or two thermodynamic variables. Our approach models a mixture of perfect gases in local thermodynamic equilibrium. The gas properties are provided either by means of direct calls to a library based on statistical mechanics and kinetic theory or indirectly in the form of look-up tables. In the first part of the paper, our method of handling a high-temperature gas in thermochemical equilibrium is described and verified. In the second part, the method is applied to the investigation of linear and non-linear boundary-layer instability. We carry out numerical simulations for a laminar flat-plate boundary layer at Mach 10 with a small, convectively amplified perturbation for both Earth and Martian atmospheres. Amplification of the perturbations shows favorable agreement with results obtained from linear theory. The secondary instability of the boundary layer in the presence of a large-amplitude two-dimensional wave is investigated. We observe that the non-linear mechanism of fundamental resonance becomes active and leads to a strong increase in amplification of three-dimensional disturbance waves.
Theoretical and numerical investigation of diffusive instabilities in multi-component alloys
NASA Astrophysics Data System (ADS)
Lahiri, Arka; Choudhury, Abhik
2017-02-01
Diffusive instabilities of the Mullins-Sekerka type are one of the principal mechanisms through which microstructures form during solidification. In this study, we perform a linear stability analysis for the perturbation of a planar interface, where we derive analytical expressions to characterize the dispersion behavior in multi-component alloys under directional and isothermal solidification conditions. Subsequently, we confirm our calculations using phase-field simulations for different choices of the inter-diffusivity matrices. Thereafter, we highlight the characteristics of the dispersion curves upon change of the diffusivity matrix and the velocity. Finally, we also depict conditions for absolute stability of a planar interface under directional solidification conditions.
Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.
Numerical simulation of bump-on-tail instability with source and sink
Berk, H.L.; Pekker, M.; Breizman, B.N. |
1995-02-01
This paper presents results of the simulations of the bump-on-tail instability with a weak source and sink. This problem has been posed as a paradigm for the important problem in controlled fusion, that of the unstable excitation of Alfven waves in a tokamak by resonant energetic alpha particles. The source of alpha particles is the controlled fusion reaction produced by the background plasma and the sink is the collisional transport processes that slow down or scatter the energetic particles. The mathematical techniques that are needed to address this applied problem can be demonstrated in the much simpler bump-on-tail problem, which is explained in this paper.
Kelley, M.C.; Seyler, C.E.; Zargham, S. )
1987-09-01
A two-dimensional model applicable to F region ionosphere plasma instabilities has been developed and described in a comparison paper. Here the authors apply the model to equatorial F region irregularities and in particular test the model against rocket and satellite data. As a diagnostic they create simulated data sets similar to the one-dimensional measurements of plasma density performed by space probes and take the Fourier transform of these data in the same manner and used by the space experimentors. To their knowledge this is the first attempt to directly relate a simulation to in situ data in this way, diagnostic technique which resolves the ambiguity inherent to one-dimensional measurements. The comparison is in excellent agreement with the in situ data. In particular, they have been able to resolve the apparent differences between satellite quasi-sinusoidal observations with the shocklike observations made on rockets. Unlike previous simulations of this phenomenon they find an inherent anisotropy in the instability development which is mirrored in the in situ data. They also present evidence that the shallow spectral slopes which often characterize spread F rocket spectra near the F peak may be due to a change in the angle between the rocket velocity vector and the characteristic directions in the medium.
Numerical simulations of Rayleigh-Taylor instability in non-premixed flames using detailed chemistry
NASA Astrophysics Data System (ADS)
Attal, Nitesh; Ramaprabhu, Praveen
2016-11-01
The Rayleigh-Taylor (RT) instability occurs at a perturbed interface separating fluids of different densities, when the lighter fluid accelerates the heavier fluid. We examine the occurrence of the RT instability, when the perturbed interface demarcates a light, fuel stream from a heavier air stream at elevated temperatures. The study is conducted using the FLASH code with modifications that include detailed chemistry, temperature-dependent EOS, and diffusive transport. The fuel-air interface is initialized at thermal equilibrium (Tfuel = Tair = 1000K) in a constant background acceleration (g). We vary the density difference across the interface by diluting the H2 fuel stream with inert N2. The non-premixed flame formed across a burning interface alters the underlying density (ρ) stratification, so that an initially RT unstable (stable) interface can be locally stabilized (destabilized). We observe this change in local stability for both single-wavelength and multimode perturbations, and draw some conclusions on the implications of these findings to applications such as ultra-compact combustors. We also make some comparisons of the reacting, non-premixed RT problem with the corresponding inert flow.
Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G W
2016-11-01
The influence of initial conditions on miscible incompressible baroclinically driven Rayleigh-Taylor instability undergoing nonuniform acceleration is explored computationally using an implicit large eddy simulation (ILES) technique. We consider the particular case of evolution during multiple reversals of acceleration direction, where the flow is alternately statically stable or unstable. In the unstable phase, the flow is driven by the baroclinic release of potential energy, whereas in the stable phase, work is done against the density stratification with the energy exchange taking place by wavelike mechanisms. These dynamics are fundamentally different; here, we track the evolution of volume-averaged turbulent statistics that are most sensitive to changes in the distribution of spectral power and bandwidth of the initial conditions as the flow alternates between dynamical regimes due to acceleration reversal.
NASA Astrophysics Data System (ADS)
Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.
2016-11-01
The influence of initial conditions on miscible incompressible baroclinically driven Rayleigh-Taylor instability undergoing nonuniform acceleration is explored computationally using an implicit large eddy simulation (ILES) technique. We consider the particular case of evolution during multiple reversals of acceleration direction, where the flow is alternately statically stable or unstable. In the unstable phase, the flow is driven by the baroclinic release of potential energy, whereas in the stable phase, work is done against the density stratification with the energy exchange taking place by wavelike mechanisms. These dynamics are fundamentally different; here, we track the evolution of volume-averaged turbulent statistics that are most sensitive to changes in the distribution of spectral power and bandwidth of the initial conditions as the flow alternates between dynamical regimes due to acceleration reversal.
A 3D Numerical Study of Gravitational Instabilities in Young Circumbinary Disks
NASA Astrophysics Data System (ADS)
Cai, Kai; Michael, Scott; Durisen, Richard
2013-07-01
Gravitational instabilities (GIs) in protoplanetary disks have been suggested as one of the major formation mechanisms of giant planets. Theoretical and computational studies have indicated that certain family of GIs can be excited in a circumbinary disk, which could lead to enhanced protoplanet formation (e.g., Sellwood & Lin 1989, Boss 2006). We have carried out a 3D simulation of a gravitationally unstable circumbinary disk around a young Sun-like star and a 0.02-Msun companion, both inside the central hole of the disk. Here we present a preliminary comparison between this simulation and a similarly simulated circumstellar disk around a solar-mass star but without the low-mass companion. The GIs stimulated by the binary and those that arise spontaneously are quite different in structure and strength. However, no fragmentation is observed, even after many orbital periods as measured in the outer disk.
Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara E-mail: chris@astro.umd.edu
2013-08-20
The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.
Ng, E Y; Sudharsan, N M
2001-01-01
The use of engineering in biomedical sciences has opened new facets in research. The present paper deals with problems arising from numerical simulation, in order to develop an expert system for the diagnosis of breast cancer using thermography. A female breast is modelled in three dimensions and the surface temperature pattern is obtained by solving the bioheat equation. This solution will be used in conjunction with a database of thermograms to develop an intelligent diagnostic tool. The focus of the present paper is to build and check the confidence level of the numerical scheme before proceeding to model the actual problem. The parametric study is done along with a check for mesh insensitivity and wiggle free isotherm contours. This process yielded a benchmark nodal distance, with which the 3D model is generated and isotherm pattern analysed. It can be seen that this enhances the accuracy of the surface temperature distribution. The use of this is tested in a close-to-actual numerical breast model and the results compared with the thermographic results. The outcome is very encouraging. Finally, a typical clinical protocol in conjunction with the use of numerical prediction for breast thermographic interpretation is outlined.
NASA Astrophysics Data System (ADS)
Nick, Faezeh M.; Hubbard, Alun; van der Veen, Kees; Vieli, Andreas
2010-05-01
Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modelling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.
NASA Astrophysics Data System (ADS)
Nick, F.; Hubbard, A.; Vieli, A.; van der Veen, C. J.; Box, J. E.; Bates, R.; Luckman, A. J.
2009-12-01
Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modeling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.
Numerical Simulation of Multi-Material Mixing in an Inclined Interface Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Subramaniam, Akshay; Lele, Sanjiva
2015-11-01
The Richtmyer-Meshkov instability arises when a shock wave interacts with an interface separating two fluids. In this work, high fidelity simulations of shock induced multi-material mixing between N2 and CO2 in a shock tube are performed for a Mach 1.55 shock interacting with a planar material interface that is inclined with respect to the shock propagation direction. In the current configuration, unlike the classical perturbed flat interface case, the evolution of the interface is non-linear from early time onwards. Our previous simulations of this problem at multiple spatial resolutions have shown that very small 3D perturbations have a large effect on vortex breakdown mechanisms and hence fine scale turbulence. We propose a comparison of our simulations to the experiments performed at the Georgia Tech Shock Tube and Advanced Mixing Laboratory (STAML). Results before and after reshock of the interface will be shown. Results from simulations of a second case with a more complex initial interface will also be presented. Simulations shown are conducted with an extended version of the Miranda solver developed by Cook et al. (2007) which combines high-order compact finite differences with localized non-linear artificial properties for shock and interface capturing. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois.
Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.
2016-01-01
We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.
Physical aquatic habitat assessment data, Ozark plateaus, Missouri and Arkansas
Jacobson, Robert B.; Johnson, Harold E.; Reuter, Joanna M.; Wright, Maria Panfil
2004-01-01
This report presents data from two related studies on physical habitat in small streams in the Ozark Plateaus Physiographic Province of Missouri and Arkansas. Seventy stream reaches and their contributing drainage basins were assessed using a physical habitat protocol designed to optimize understanding of how stream reach characteristics relate to drainage-basin characteristics. Drainage-basin characteristics were evaluated using geographic information system (GIS) techniques and datasets designed to evaluate the geologic, physiographic, and land-use characteristics of encompassing drainage basins. Reach characteristics were evaluated using a field-based geomorphology and habitat protocol. The data are intended to complement ecological studies on Ozark Plateaus streams.
NASA Astrophysics Data System (ADS)
Forbes, John C.
Using 0D, 1D, and 3D models of galaxies, I explore different problems in galaxy evolution most suited to each technique. In the simplest case, a galaxy is described by a few numbers integrated via coupled ordinary differential equations. By allowing the galaxies to respond to a stochastic accretion rate, I show a natural way of generating the finite scatter observed in several galaxy scaling relations: the correlation between a galaxy's stellar mass and its star formation rate or metallicity. By comparing this simple model to observations, we constrain the process by which gas accretes onto galaxies, which must occur, but is essentially impossible to observe directly. Adding an additional dimension to the models, we explore the structure of galactic disks as a function of radius. We find that turbulence driven by gravitational instability in the disks and the resulting migration of gas can explain a wide variety of phenomena, including the age-velocity dispersion correlation of stars in the solar neighborhood, the central quenching star formation in disk galaxies, rings of star formation, and the observed radial profile of gas column densities. Finally, we run a set of fully three-dimensional galaxy simulations to try to understand what physics is responsible for basic properties of galaxies, including the rate at which they form stars, and the rate at which they eject mass in large-scale winds. We find that supernovae are capable of driving moderate metal-enhanced winds, but surprisingly they have very little effect on the star formation rates of dwarf galaxies. Instead, ordinary photoelectric heating dominates the star formation law in low-mass galaxies.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Dong, Gang; Jiang, Hua
2017-03-01
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.
Numerical simulation of multi-material mixing in an inclined interface Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Subramaniam, Akshay; Lele, Sanjiva K.
2017-01-01
In this work, high fidelity simulations of shock induced multi-material mixing between air and SF6 in a shock tube are performed for a Mach 1.5 shock interacting with a planar material interface that is inclined with respect to the shock propagating direction. In the current configuration, unlike the classical perturbed flat interface case, the evolution of the interface is fully non-linear from early time. The simulations attempt to replicate an experiment conducted at the Georgia Tech STAML. Tight coupling between numerics and flow physics and the large range of spatial scales make this a challenging problem to simulate numerically. Often, two dimensional simulations are performed to reduce the computational cost of these simulations. We show here that the effect of small three dimensional perturbations likely to be present in an experimental setting is not negligible. Full 3D simulations would have to be performed to do a proper comparison with experiments. Effect of grid resolution is also studied in the present work. Simulations shown are conducted with an extended version of the Miranda solver developed by Cook et. al [1] which combines high-order compact finite differences [2] with localized non-linear artificial properties for shock and interface capturing [3].
Numerical Study of Three-dimensional Spatial Instability of a Supersonic Flat Plate Boundary Layer
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Bayliss, A.; Krishnan, R.
1989-01-01
The behavior of spatially growing three-dimensional waves in a supersonic boundary layer was studied numerically by solving the complete Navier-Stokes equations. Satisfactory comparison with linear parallel and non-parallel stability theories, and experiment are obtained when a small amplitude inflow disturbance is used. The three-dimensional unsteady Navier-Stokes equations are solved by a finite difference method which is fourth-order and second-order accurate in the convection and viscous terms respectively, and second-order accurate in time. Spanwise periodicity is assumed. The inflow disturbance is composed of eigenfunctions from linear stability theory. By increasing the amplitude of the inflow disturbance, nonlinear effects in the form of a relaxation type oscillation of the time signal of rho(u) are observed.
Numerical study of instability of nanofluids: the coagulation effect and sedimentation effect.
Ni, Yu; Fan, Jianren; Hu, Yacai
2011-02-28
This study is a numerical study on the coagulation as well as the sedimentation effect of nanofluids using the Brownian dynamics method. Three cases are simulated, focusing on the effects of the sizes, volume fraction, and ζ potentials of nano-particles on the formation of coagulation and sedimentation of nanofluids. The rms fluctuation of the particle number concentration, as well as the flatness factor of it, is employed to study the formation and variation of the coagulation process. The results indicate a superposition of coagulation and sedimentation effect of small nano-particles. Moreover, it is stable of nanofluids with the volume fraction of particles below the limit of "resolution" of the fluids. In addition, the effect of ζ potentials is against the formation of coagulation and positive to the stability of nanofluids.
NASA Astrophysics Data System (ADS)
Scerrato, Daria; Giorgio, Ivan; Rizzi, Nicola Luigi
2016-06-01
In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in Zeitschrift für angewandte Mathematik und Physik 66(5):2855-2870, 2015; Alibert et al. in Math Mech Solids 8(1):51-73, 2003; dell'Isola et al. in Int J Non-Linear Mech 80:200-208, 2016; Int J Solids Struct 81:1-12, 2016). The model that we employ here, developed by Steigmann and dell'Isola (Acta Mech Sin 31(3):373-382, 2015) and first investigated in Giorgio et al. (Comptes rendus Mecanique 2016, doi: 10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.
NASA Astrophysics Data System (ADS)
Taffetani, M.; Ciarletta, P.
2015-08-01
Soft cylindrical gels can develop a long-wavelength peristaltic pattern driven by a competition between surface tension and bulk elastic energy. In contrast to the Rayleigh-Plateau instability for viscous fluids, the macroscopic shape in soft solids evolves toward a stable beading, which strongly differs from the buckling arising in compressed elastic cylinders. This work proposes a novel theoretical and numerical approach for studying the onset and the non-linear development of the elasto-capillary beading in soft cylinders, made of neo-Hookean hyperelastic material with capillary energy at the free surface, subjected to axial stretch. Both a theoretical study, deriving the linear and the weakly non-linear stability analyses for the problem, and numerical simulations, investigating the fully non-linear evolution of the beaded morphology, are performed. The theoretical results prove that an axial elongation can not only favour the onset of beading, but also determine the nature of the elastic bifurcation. The fully non-linear phase diagrams of the beading are also derived from finite element numerical simulations, showing two peculiar morphological transitions when varying either the axial stretch or the material properties of the gel. Since the bifurcation is found to be subcritical for very slender cylinders, an imperfection sensitivity analysis is finally performed. In this case, it is shown that a surface sinusoidal imperfection can resonate with the corresponding marginally stable solution, thus selecting the emerging beading wavelength. In conclusion, the results of this study provide novel guidelines for controlling the beaded morphology in different experimental conditions, with important applications in micro-fabrication techniques, such as electrospun fibres.
Numerical study of chiral plasma instability within the classical statistical field theory approach
NASA Astrophysics Data System (ADS)
Buividovich, P. V.; Ulybyshev, M. V.
2016-07-01
We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.
NASA Astrophysics Data System (ADS)
Fernandez, Naiara; Kaus, Boris J. P.
2015-08-01
Many salt diapirs are thought to have formed as a result of down-building, which implies that the top of the diapir remained close to the surface during syn-halokinetic sediment deposition. Down-building is largely a 3-D process and in order to better understand what controls the patterns of the diapirs that form by this process, we here perform 3-D numerical models of down-built diapirs initiated by the gravity instability in linear viscous materials and compare the results with analytical models. We vary several parameters of the numerical models such as initial salt thickness, sedimentation rate, salt viscosity, salt-sediment viscosity ratio as well as the density of sediments. Down-building of 3-D diapirs only occurs for a certain range of parameters and is favoured by lower sediment/salt viscosity contrasts and sedimentation rates in agreement with analytical predictions and findings from previous 2-D models. However, the models show that the sedimentation rate has an additional effect on the formation and evolution of 3-D diapir patterns. At low sedimentation rates, salt ridges that form during early model stages remain preserved at later stages as well. For higher sedimentation rates, the initial salt ridges are covered up and finger-like diapirs form at their junctions, which results in different salt exposure patterns at the surface. Once the initial pattern of diapirs is formed, higher sedimentation rate can also result in covered diapirs if the diapir extrusion velocity is insufficiently large. We quantify the effect of sedimentation rate on the number of diapirs exposed at the surface as well as on their spacing and we explain the observations with analytical predictions using thick-plate analytical models. In some cases, this final pattern is distinctly different from the initial polygonal pattern.
NASA Astrophysics Data System (ADS)
Tritschler, V. K.; Hu, X. Y.; Hickel, S.; Adams, N. A.
2013-07-01
Two-dimensional simulations of the single-mode Richtmyer-Meshkov instability (RMI) are conducted and compared to experimental results of Jacobs and Krivets (2005 Phys. Fluids 17 034105). The employed adaptive central-upwind sixth-order weighted essentially non-oscillatory (WENO) scheme (Hu et al 2010 J. Comput. Phys. 229 8952-65) introduces only very small numerical dissipation while preserving the good shock-capturing properties of other standard WENO schemes. Hence, it is well suited for simulations with both small-scale features and strong gradients. A generalized Roe average is proposed to make the multicomponent model of Shyue (1998 J. Comput. Phys. 142 208-42) suitable for high-order accurate reconstruction schemes. A first sequence of single-fluid simulations is conducted and compared to the experiment. We find that the WENO-CU6 method better resolves small-scale structures, leading to earlier symmetry breaking and increased mixing. The first simulation, however, fails to correctly predict the global characteristic structures of the RMI. This is due to a mismatch of the post-shock parameters in single-fluid simulations when the pre-shock states are matched with the experiment. When the post-shock parameters are matched, much better agreement with the experimental data is achieved. In a sequence of multifluid simulations, the uncertainty in the density gradient associated with transition between the fluids is assessed. Thereby the multifluid simulations show a considerable improvement over the single-fluid simulations.
Continental accretion: From oceanic plateaus to allochthonous terranes
Ben-Avraham, Z.; Nur, A.; Jones, D.; Cox, A.
1981-01-01
Some of the regions of the anomalously high sea-floor topography in today's oceans may be modern allochthonous terranes moving with their oceanic plates. Fated to collide with and be accreted to adjacent continents, they may create complex volcanism, cut off and trap oceanic crust, and cause orogenic deformation. The accretion of plateaus during subduction of oceanic plates may be responsible for mountain building comparable to that produced by the collision of continents. Copyright ?? 1981 AAAS.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Buiter, S. J. H.
2012-08-01
Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.
Magnetization plateaus and jumps in a frustrated four-leg spin tube under a magnetic field
NASA Astrophysics Data System (ADS)
Gómez Albarracín, F. A.; Arlego, M.; Rosales, H. D.
2014-11-01
We study the ground state phase diagram of a frustrated spin-1/2 four-leg spin tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: analysis of low-energy effective Hamiltonian, a Hartree variational approach, and density matrix renormalization group for finite clusters. We find that in the limit of weakly interacting plaquettes, low-energy singlet, triplet, and quintuplet states play an important role in the formation of fractional magnetization plateaus. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by an X X Z spin-1/2 chain in a magnetic field; the second-order terms give corrections to the X X Z model. All techniques provide consistent results which allow us to predict the existence of fractional plateaus in an important region in the space of parameters of the model.
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Zalesak, Steve
2015-11-01
The ablative Rayleigh-Taylor (RT) instability is a key factor in the performance of directly-drive inertial-confinement-fusion (ICF) targets. Although this subject has been studied for quite some time, the accurate simulation of the ablative RT instability has proven to be a challenging task for many radiation hydrodynamics codes, particularly when it comes to capturing the ablatively-stabilized region of the linear dispersion spectrum and modeling ab initio perturbations. In this poster, we present results from recent two-dimensional numerical simulations of the ablative RT instability that were performed using the Eulerian code FastRad3D at the U.S. Naval Research Laboratory. We consider both planar and spherical geometries, low and moderate-Z target materials, different laser wavelengths and where possible, compare our findings with experiment data, linearized theory and/or results from other radiation hydrodynamics codes. Overall, we find that FastRad3D is capable of simulating the ablative RT instability quite accurately, although some uncertainties/discrepancies persist. We discuss these issues, as well as some of the numerical challenges associated with modeling this class of problems. Work supported by U.S. DOE/NNSA.
NASA Astrophysics Data System (ADS)
Pan, T. W.; Joseph, D. D.; Glowinski, R.
2001-05-01
In this paper we study the sedimentation of several thousand circular particles in two dimensions using the method of distributed Lagrange multipliers for solid liquid flow. The simulation gives rise to fingering which resembles Rayleigh Taylor instabilities. The waves have a well-defined wavelength and growth rate which can be modelled as a conventional Rayleigh Taylor instability of heavy fluid above light. The heavy fluid is modelled as a composite solid liquid fluid with an effective composite density and viscosity. Surface tension cannot enter this problem and the characteristic shortwave instability is regularized by the viscosity of the solid liquid dispersion. The dynamics of the Rayleigh Taylor instability are studied using viscous potential flow, generalizing work of Joseph, Belanger & Beavers (1999) to a rectangular domain bounded by solid walls; an exact solution is obtained.
The width of the plateaus of the quantum Hall effect
NASA Astrophysics Data System (ADS)
Groshev, Atanas; Scho¨n, Gerd
1994-02-01
We suggest that in high quality samples in the quantum Hall regime the interaction between localized states dominates over disorder effects. It leads to the formation of a Wigner crystal, which melts at a critical value ν c≈0.2 of the filling factor of the localized states. This leads to a finite width of the plateaus of the integer quantum Hall effect Δν=2ν c. This result describes well recent experimental data on single AlGaAs/GaAs heterojunctions (electron and hole gases) and double 2DEG systems.
Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system
Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.
2016-11-23
The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge
NASA Astrophysics Data System (ADS)
Shvydky, A.; Hohenberger, M.; Radha, P. B.; Rosenberg, M. J.; Craxton, R. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.
2015-11-01
Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical to the success of polar-direct-drive ignition at the National Ignition Facility (NIF). To develop a platform for laser-imprint studies, hydrodynamic instability growth experiments in laser-driven implosions were performed on the NIF. The experiments used cone-in-shell targets with sinusoidal modulations of various wavelengths and amplitudes machined on the surface. Throughshell x-ray radiography was used to measure optical depth variations, from which the amplitudes of the shell areal-density modulations were extracted. Results of DRACO simulations of the growth of preimposed modulations and imprint-seeded perturbations will be presented and compared with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS
Vay, J-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H,
2010-09-01
The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.
NASA Astrophysics Data System (ADS)
Bates, J. W.; Schmitt, A. J.; Karasik, M.; Zalesak, S. T.
2016-12-01
The ablative Rayleigh-Taylor (RT) instability is a central issue in the performance of laser-accelerated inertial-confinement-fusion targets. Historically, the accurate numerical simulation of this instability has been a challenging task for many radiation hydrodynamics codes, particularly when it comes to capturing the ablatively stabilized region of the linear dispersion spectrum and modeling ab initio perturbations. Here, we present recent results from two-dimensional numerical simulations of the ablative RT instability in planar laser-ablated foils that were performed using the Eulerian code FastRad3D. Our study considers polystyrene, (cryogenic) deuterium-tritium, and beryllium target materials, quarter- and third-micron laser light, and low and high laser intensities. An initial single-mode surface perturbation is modeled in our simulations as a small modulation to the target mass density and the ablative RT growth-rate is calculated from the time history of areal-mass variations once the target reaches a steady-state acceleration. By performing a sequence of such simulations with different perturbation wavelengths, we generate a discrete dispersion spectrum for each of our examples and find that in all cases the linear RT growth-rate γ is well described by an expression of the form γ = α [ k g / ( 1 + ɛ k L m ) ] 1 / 2 - β k V a , where k is the perturbation wavenumber, g is the acceleration of the target, Lm is the minimum density scale-length, Va is the ablation velocity, and ɛ is either one or zero. The dimensionless coefficients α and β in the above formula depend on the particular target and laser parameters and are determined from two-dimensional simulation results through the use of a nonlinear curve-fitting procedure. While our findings are generally consistent with those of Betti et al. (Phys. Plasmas 5, 1446 (1998)), the ablative RT growth-rates predicted in this investigation are somewhat smaller than the values previously reported for the
The presence of rapidly degrading permafrost plateaus in southcentral Alaska
Jones, Benjamin M.; Baughman, Carson; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E
2016-01-01
Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0°C. In this study, we document the presence of residual permafrost plateaus on the western Kenai Peninsula lowlands of southcentral Alaska, a region with a MAAT of 1.5 ± 1°C (1981 to 2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08°C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but was as shallow as 0.53 m. Late winter surveys (drilling, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to >6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60%, with lateral feature degradation accounting for 85% of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in
Quantum vs Classical Magnetization Plateaus of S=1/2 Frustrated Heisenberg Chains
NASA Astrophysics Data System (ADS)
Hida, Kazuo; Affleck, Ian
2005-06-01
The competition between quantum and classical magnetization plateaus of S=1/2 frustrated Heisenberg chains with modified exchange couplings is investigated. The conventional S=1/2 frustrated Heisenberg chain is known to exhibit a 3-fold degenerate \\uparrow\\downarrow\\uparrow-type classical plateau at 1/3 of the saturation magnetization accompanied by the spontaneous Z3 translational symmetry breakdown. The stability of this plateau phase against period 3 exchange modulation which favors the \\bullet\\hskip -1pt-\\hskip -1pt\\bullet \\uparrow-type quantum plateau state (\\bullet\\hskip -1pt-\\hskip -1pt\\bullet = singlet dimer) is studied by bosonization, renormalization group and numerical diagonalization methods. The ground state phase diagram and the spin configuration in each phase are numerically determined. The translationally invariant Valence Bond Solid-type model with 4-spin and third neighbor interactions, which has the exact \\bullet\\hskip -1pt-\\hskip -1pt\\bullet \\uparrow-type quantum plateau state, is also presented. The phase transition to the classical \\uparrow\\downarrow\\uparrow-type ground state is also observed by varying the strength of 4-spin and third neighbor interactions. The relation between these two types of models with quantum plateau states is discussed.
Direct Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS
Vay, J-L.; Furman, M.A.; Venturini, M.
2011-03-01
The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the buildup and interaction of electron clouds with a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons.
NASA Astrophysics Data System (ADS)
Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui
2015-05-01
In this paper, we propose energy-conserving Eulerian solvers for the two-species Vlasov-Ampère (VA) system and apply the methods to simulate current-driven ion-acoustic instability. The two-species VA systems are of practical importance in applications, and they conserve many physical quantities including the particle number of each species and the total energy that is comprised of kinetic energy for both species and the electric energy. The main goal of this paper is to generalize our previous work for the single-species VA system [9] and Vlasov-Maxwell (VM) system [8] to the two-species case. The methodologies proposed involve careful design of temporal discretization and the use of the discontinuous Galerkin (DG) spatial discretizations. We show that the energy-conserving time discretizations for single-species equations [9,8] can also work for the two-species case if extended properly. Compared to other high order schemes, we emphasize that our schemes can preserve the total particle number and total energy on the fully discrete level regardless of mesh size, making them very attractive for long time simulations. We benchmark our algorithms on a test example to check the one-species limit, and the current-driven ion-acoustic instability. To simulate the current-driven ion-acoustic instability, a slight modification for the implicit method is necessary to fully decouple the split equations. This is achieved by a Gauss-Seidel type iteration technique. Numerical results verified the conservation and performance of our methods. Finally, we remark that the schemes in this paper can be readily extended to applications when the models take more general form, such as the multi-species VM equations.
NASA Astrophysics Data System (ADS)
Fan, Zhengfeng; Zhu, Shaoping; Pei, Wenbing; Ye, Wenhua; Li, Meng; Xu, Xiaowen; Wu, Junfeng; Dai, Zhensheng; Wang, Lifeng
2012-09-01
Tritium-hydrogen-deuterium (THD) target is adopted in order to experimentally diagnose the properties of the ignition hot spot and the highly compressed main fusion fuel (Edwards M. J. et al., Phys. Plasmas, 18 (2011) 051003). As compared with deuterium-tritium (DT) target, the thermonuclear alpha particles which are needed to heat the fusion fuel, are much less in the THD target. In the present paper, the effect of alpha particle heating on the deceleration phase Rayleigh-Taylor instability (dp-RTI), which is one of the key problems in hot spot formation, is investigated systematically through numerical simulations. It is found that the mass ablation at the hot spot boundary is greatly increased due to the direct alpha particle heating. As a result, the dp-RTI growth rates are greatly reduced and the cut-off mode number decreases greatly from about 33 to 17. This explains why the hydrodynamic instability in the THD target grows more severely than in the DT ignition target.
Instability of rectangular jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Thies, Andrew T.
1992-01-01
The instability of rectangular jets is investigated using a vortex sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.
Generalities on combustion instabilities
NASA Astrophysics Data System (ADS)
Kuentzmann, Paul
The main manifestations of combustion instabilities are reviewed, and the specific characteristics of instabilities in solid-propellant rocket engines are analyzed, with the Minuteman III third-stage engine and the SRB engine of Titan 34 D considered as examples. The main approaches for predicting combustion instabilities are discussed, including the linear approach based on the acoustic balance, the nonlinear mode-coupling approach, and the nonlinear approach using numerical calculation. Projected directions for future research are also examined.
Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy
2016-07-25
Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating.
López Ortega, A; Lombardini, M; Pullin, D I; Meiron, D I
2014-03-01
The Richtmyer-Meshkov instability of interfaces separating elastic-plastic materials from vacuum (heavy-light configuration) is studied by means of computational techniques. A fully Eulerian multimaterial algorithm that solves consistently the Euler equations and the time evolution of the deformations in the material is applied to three distinct materials (copper, aluminum, and stainless steel). If a perfectly plastic constitutive relation is considered, an empirical law is computed that relates the long-term perturbation amplitude of the interface, its maximum growth rate, the initial density, and the yield stress of the material. It is shown that this linear relation can be extended to materials that follow more complex plastic behavior which can account for rate dependency, hardening, and thermal softening, and to situations in which small-perturbation theory is no longer valid. In effect, the yield stress computed from measurements of the long-term amplitude and maximum growth rate closely matches the von Mises stress found at the interface of solid materials for a wide range of cases with different initial parameters.
Crustal volumes of the continents and of oceanic and continental submarine plateaus
NASA Technical Reports Server (NTRS)
Schubert, G.; Sandwell, D.
1989-01-01
Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.
Clustering of cochlear oscillations in frequency plateaus as a tool to investigate SOAE generation
NASA Astrophysics Data System (ADS)
Epp, Bastian; Wit, Hero; van Dijk, Pim
2015-12-01
Spontonaeous otoacoustic emissions (SOAE) reflect the net effect of self-sustained activity in the cochlea, but do not directly provide information about the underlying mechanism and place of origin within the cochlea. The present study investigates if frequency plateaus as found in a linear array of coupled oscillators (OAM) [7] are also found in a transmission line model (TLM) which is able to generate realistic SOAEs [2] and if these frequency plateaus can be used to explain the formation of SOAEs. The simulations showed a clustering of oscillators along the simulated basilar membrane Both, the OAM and the TLM show traveling-wave like behavior along the oscillators coupled into one frequency plateau. While in the TLM roughness is required in order to produce SOAEs, no roughness is required to trigger frequency plateaus in the linear array of oscillators. The formation of frequency plateaus as a consequence of coupling between neighbored active oscillators might be the mechanism underlying SOAEs.
Were Oceanic Plateaus Instrumental for Calcareous Nannoplankton Evolution?
NASA Astrophysics Data System (ADS)
Erba, E.; Casellato, C.; Bottini, C.
2011-12-01
The history of calcareous nannoplankton shows a general increase in species richness through the Mesozoic. Fertility and chemistry of the oceans, climate and pCO2 seem instrumental for nannoplankton abundance, diversification and adaptation, but high-resolution chronology of paleobiological and geological events is crucial for the understanding of evolutionary processes relative to ecosystem perturbations. Natural variations in atmospheric CO2 are essentially triggered by igneous activity and the role of ocean crust production in the evolution of seawater composition, nutrient cycling, climate change and, consequently, in calcareous nannoplankton biodiversity, might be more relevant than generally thought. Indeed, two major steps in nannofloral Mesozoic evolution correlate with construction of gigantic oceanic plateaus, namely the Shatsky Rise (SR) (Tithonian/Berriasian boundary interval) and the Ontong Java Plateau (OJP) (Barremian/Aptian boundary interval). During the latest Jurassic calcareous nannoplankton experienced a rapid diversification and rise in abundance of several taxa including heavily calcified nannoliths with consequent major increase in biogenic calcite production. The Tithonian origination of coccoliths and nannoliths suggests ideal paleoecological conditions for calcareous nannoplankton, presumably thriving in stable, relatively oligotrophic and cool oceans under low pCO2. Recent data indicate that this speciation and calcification episode was interrupted during magnetochron CM19r, prior to massive diversification of nannoconids. In the late Barremian-early Aptian interval, the nannoconid decline and crisis are paralleled by a major nannoplankton (mainly coccolith) speciation episode. Such calcification failure and coccolith diversification might reflect disruption of the thermocline, increased fertility and warming under excess CO2 levels. These evolutionary steps show rapid speciation, but differ because nannoliths became dominant in the late
Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years
NASA Astrophysics Data System (ADS)
Borge, Amund F.; Westermann, Sebastian; Solheim, Ingvild; Etzelmüller, Bernd
2017-01-01
Palsas and peat plateaus are permafrost landforms occurring in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. Firstly, we have systematically mapped the occurrence of palsas and peat plateaus in the northernmost county of Norway (Finnmark, ˜ 50 000 km2) by manual interpretation of aerial images from 2005 to 2014 at a spatial resolution of 250 m. At this resolution, mires and wetlands with palsas or peat plateaus occur in about 850 km2 of Finnmark, with the actual palsas and peat plateaus underlain by permafrost covering a surface area of approximately 110 km2. Secondly, we have quantified the lateral changes of the extent of palsas and peat plateaus for four study areas located along a NW-SE transect through Finnmark by utilizing repeat aerial imagery from the 1950s to the 2010s. The results of the lateral changes reveal a total decrease of 33-71 % in the areal extent of palsas and peat plateaus during the study period, with the largest lateral change rates observed in the last decade. However, the results indicate that degradation of palsas and peat plateaus in northern Norway has been a consistent process during the second half of the 20th century and possibly even earlier. Significant rates of areal change are observed in all investigated time periods since the 1950s, and thermokarst landforms observed on aerial images from the 1950s suggest that lateral degradation was already an ongoing process at this time. The results of this study show that lateral erosion of palsas and peat plateaus is an important pathway for permafrost degradation in the sporadic permafrost zone in northern Scandinavia. While the environmental factors governing the rate of erosion are not yet fully understood, we note a moderate increase in air temperature, precipitation and snow depth during the last few decades in the region.
Plebuch, R.O.; Faust, R.J.; Townsend, M.A.
1985-01-01
The Mississippian Plateaus region is the outcrop area of rocks of Mississippian age which extends as a broad arcuate band around the Western Coal Field in westcentral Kentucky. Much of the area is characterized by plains of low relief containing numerous sinkholes, subsurface drainage, and a low density of surface streams. The principal aquifer consists of a thick sequence of limestones extending downward stratigraphically from the base of the Chesterian Series to the black shales at the top of the Devonian rocks. Well yields range from several gallons per minute to as much as 500 gallons per minute in some karst areas where secondary openings are well developed. The potentiometric map indicates that ground-water movement generally conforms to the surface drainage pattern. The actual direction of movement varies from river basin to river basin. Most water from the principal aquifer is a calcium magnesium bicarbonate type and is generally good relative to current drinking water standards. The lower St Louis Limestone, in places, yields a calcium magnesium sulfate water that is corrosive and has a strong hydrogen sulfide odor. The karst areas of the principal aquifer are vulnerable to contamination because of the well-developed subsurface drainage. Urban areas, industries, and agriculture are sources of contaminants that can be easily flushed into the ground-water system. (USGS)
Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia.
Antonini, Yasmine; Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson
2017-01-01
The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively.
[Voyage to Bahnars country, people living in the high plateaus of central Vietnam].
Rault, J P; Rioux, O; Bellier, L; Verbeek-Hyaoh, C
1995-01-01
Southeast Asia was born from the collision between the Indian subcontinent and mainland China. Vietnam owes its 54 ethnic groups and four languages to a succession of migrations over the milleniums. The high plateaus are inhabited by a multitude of small ethnic groups commonly referred to as the "Moi". Vietnamity and the Association for Aid to the Ethnic Minorities of Vietnam are dedicated to developing and implementing cooperative projects with Vietnam. Living in the remote hinterland, the now less than one million mountain people of the High Plateaus were untouched by Indian and Chinese influences and remained independent until French colonisation which had only minor effects on their culture. During an expedition to the high plateaus, a privileged group sent by Vietenamity encountered one of these peoples, the Bahnars. In the context of a village festival, the authors describe the traditional way of life and beliefs of the Bahnar people.
Plateaus, Dips, and Leaps: Where to Look for Inventions and Discoveries During Skilled Performance.
Gray, Wayne D; Lindstedt, John K
2016-10-20
The framework of plateaus, dips, and leaps shines light on periods when individuals may be inventing new methods of skilled performance. We begin with a review of the role performance plateaus have played in (a) experimental psychology, (b) human-computer interaction, and (c) cognitive science. We then reanalyze two classic studies of individual performance to show plateaus and dips which resulted in performance leaps. For a third study, we show how the statistical methods of Changepoint Analysis plus a few simple heuristics may direct our focus to periods of performance change for individuals. For the researcher, dips become the marker of exploration where performance suffers as new methods are invented and tested. Leaps mark the implementation of a successful new method and an incremental jump above the path plotted by smooth and steady log-log performance increments. The methods developed during these dips and leaps are the key to surpassing one's teachers and acquiring extreme expertise.
Franciscan complex calera limestones: Accreted remnants of farallon plate oceanic plateaus
Tarduno, J.A.; McWilliams, M.; Debiche, M.G.; Sliter, W.V.; Blake, M.C.
1985-01-01
The Calera Limestone, part of the Franciscan Complex of northern California, may have formed in a palaeoenvironment similar to Hess and Shatsky Rises of the present north-west Pacific1. We report here new palaeomagnetic results, palaeontological data and recent plate-motion models that reinforce this assertion. The Calera Limestone may have formed on Farallon Plate plateaus, north of the Pacific-Farallon spreading centre as a counterpart to Hess or Shatsky Rises. In one model2, the plateaus were formed by hotspots close to the Farallon_Pacific ridge axis. On accretion to North America, plateau dissection in the late Cretaceous to Eocene (50-70 Myr) could explain the occurrence of large volumes of pillow basalt and exotic blocks of limestone in the Franciscan Complex. Partial subduction of the plateaus could have contributed to Laramide (70-40 Myr) compressional events3. ?? 1985 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Soobbarayen, K.; Sinou, J.-J.; Besset, S.
2014-10-01
This paper presents a numerical study of the influence of loading conditions on the vibrational and acoustic responses of a disc brake system subjected to squeal. A simplified model composed of a circular disc and a pad is proposed. Nonlinear effects of contact and friction over the frictional interface are modelled with a cubic law and a classical Coulomb's law with a constant friction coefficient. The stability analysis of this system shows the presence of two instabilities with one and two unstable modes that lead to friction-induced nonlinear vibrations and squeal noise. Nonlinear time analysis by temporal integration is conducted for two cases of loadings and initial conditions: a static load near the associated sliding equilibrium and a slow and a fast ramp loading. The analysis of the time responses shows that a sufficiently fast ramp loading can destabilize a stable configuration and generate nonlinear vibrations. Moreover, the fast ramp loading applied for the two unstable cases generates higher amplitudes of velocity than for the static load cases. The frequency analysis shows that the fast ramp loading generates a more complex spectrum than for the static load with the appearance of new resonance peaks. The acoustic responses for these cases are estimated by applying the multi-frequency acoustic calculation method based on the Fourier series decomposition of the velocity and the Boundary Element Method. Squeal noise emissions for the fast ramp loading present lower or higher levels than for the static load due to the different amplitudes of velocities. Moreover, the directivity is more complex for the fast ramp loading due to the appearance of new harmonic components in the velocity spectrum. Finally, the sound pressure convergence study shows that only the first harmonic components are sufficient to well describe the acoustic response.
Burke, Brian C.; Freeman, Walter J.; Chang, Hung Jen
1998-04-01
-type power spectra transit earlier to limit cycle activity, usually well before 2000ms. The duration of stationarity is increased by randomizing the terminal bit of the 64-bit words representing the state variables. The 1/f-type solutions are also exquisitely sensitive to parameter truncation; parameter values must be saved in their full binary form for re-starting. The implications in terms of numerical instability, chaos, attractor crowding and the shadowing theorem are discussed.
NASA Astrophysics Data System (ADS)
Zhou, Qina; Mathews, John D.; Miller, Clark A.; Seker, Ilgin
2006-07-01
In recent years, all-sky camera airglow observations of evolving nighttime F-region structures have raised questions regarding the formation and apparent motion of these often wave-like structures. We address these issues using a pseudo-spectral method code developed to numerically solve the Perkins (1973. Spread F and ionospheric currents. J. Geophys. Res. 78, 218-226) moment equations modeling F-region electrodynamics. To aid in interpretation of the results, we utilize a Gaussian shape initial condition of the (geomagnetic field, B, parallel) integrated conductivity under the homogeneous TEC ( B-parallel total electron content) condition and a northeastward DC electric field (E-field). We find that the initial Gaussian shape conductivity structure gradually evolves into banded structures oriented along the northwest-southeast direction while the amplitude of the banded structures continues growing and the peak of the structure moves to the northwest due to the E× B drift. The potential distribution corresponding to the initial Gaussian conductivity distribution is more complex but also becomes banded with the same orientation and growing trend as the conductivity. Wave vector domain plots show structure growth in approximately the first and third quadrants and damping in the second and fourth quadrants for both the conductivity and potential, as Perkins predicts - this leads to the orientation of the structures. We note that the evolved banded structures in conductivity and potential are oriented perpendicular to the direction given by half the angle between the DC E-field and east - the direction of maximum instability growth rate predicted by Perkins. The polarization (perturbation) E-field is seen mainly perpendicular to the long axis of the banded structures - i.e., no obvious structure-parallel E-field is observed in the simulation. By tracking the maximum point of the conductivity as a function of time, it is found that the localized structures move
Erosion and tectonics at the margins of continental plateaus
NASA Technical Reports Server (NTRS)
Masek, Jeffrey G.; Isacks, Bryan L.; Gubbels, Timothy L.; Fielding, Eric J.
1994-01-01
We hypothesize that the steep frontal slope and high peaks of the Beni region and Himalayan front largely reflect the high orographic precipitation and high erosion rates occurring in these regions and that the more gentle topography of the semiarid Pilcomayo region reflects a tectonic landform only slightly modified by erosion. We propose that orographic precipitation impinging on a plateau margin will generally tend to drop moisture low on the slope, eroding back the plateau while enhancing or maintaining the steep long-wavelength slope. A numerical model coupling orographic precipitation, erosion, and tectonic uplift demonstrates the plausibility of this hypothesis. The erosional efflux in both the Beni and Nepal Himalaya have been considerable, and simple mass balance calculations for the Himalaya suggest that during the Neogene, the erosional mass efflux has generally outpaced the tectonic mass influx. This contrasts with the apparent prior domination of tectonic influx and may reflect a decrease in the rate of tectonic addition during the same period, and/or increased late Cenozoic erosion rates.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. I.; Firsov, A. A.
2016-11-01
Segments of an almost constant voltage (plateaus) on the V( I) curves of long quasi-one-dimensional superconducting aluminum wires placed in a magnetic field are found slightly below T c, which are unexpected at the parameters and geometry considered in this work. These plateaus are assumingly attributed to subharmonics of the superconducting gap and are due to multiple Andreev reflection and strong quasiparticle heating, which occur in the nonequilibrium region of a wire. The plateaus indicate the coexistence of superconductivity and dissipation in these wires. These results cannot be described by the existing theories.
Oceanic plateaus, the fragmentation of continents, and mountain building
NASA Astrophysics Data System (ADS)
Nur, Amos; Ben-Avraham, Zvi
1982-05-01
Many anomalous rises in today's oceans may be submerged continental fragments detached from previous continents, ancient island arcs, or basaltic piles formed by hot spots and spreading centers. These rises are embedded in their respective moving oceanic plates and are fated to be consumed at active margins. Where such rises are being consumed at present, e.g., the Nazca Ridge, they cause cessation of volcanism, disruption of the downgoing slab, and possible shifts in plate boundary configuration. Many past rises, including numerous continental fragments, have been recognized within mountain belts as allochthonous terranes. They constitute a large portion of the orogenic belts in the North Pacific from Mexico through western North America, Alaska, east Siberia, Japan and in New Zealand. The orogenic deformation in these belts is possibly the result of the accretion of the allochthonous terranes. Many terranes have been accreted with substantial deformation also in the Alpine chain, well before major continent-continent collisions. It is suggested, therefore, that the accretion of fragments may be the common process of the deformation phase of mountain building. Subduction of normal oceanic crust may be insufficient for deformation, whereas full continent-continent collision may not be necessary. The general validity of this conclusion depends critically on whether allochthonous terranes caused orogenic deformation in the Andes or not. Most of the accreted fragments with continental affinities in the Mesozoic-Cenozoic orogenic belts of the world can be traced back to the breakup of Gondwana, beginning with a Pacifica domain in the Permian through a larger India domain in the early Mesozoic and continuing through the separation of the Somalia plate in the near future. The reasons for this 250 million year breakup process are not known, but some kind of thermal process, possible of mantle-wide scale, is implied.
Oceanic plateaus, the fragmentation of continents, and mountain building
Nur, A.; Ben-Avraham, Z.
1982-05-10
Many anomalous rises in today's oceans may be submerged continental fragments detached from previous continents, ancient island arcs, or basaltic piles formed by hot spots and spreading centers. These rises are embedded in their respective moving oceanic plates and are fated to be consumed at active margins. Where such rises are being consumed at present, e.g., the Nazca Ridge, they cause cessation of volcanism, disruption of the downgoing slab, and possible shifts in plate boundary configuration. Many past rises, including numerous continental fragments have been recognized within mountain belts as allochthonous terranes. They constitute a large portion of the orogenic belts in the North Pacific from Mexico through western North America, Alaska, east Siberia, Japan and in New Zealand. The orogenic deformation in these belts is possibly the result of the accretion of the allochtronous terranes. Many terranes have been accreted with substantial deformation also in the Alpine chain, well before major continent-continent collisions. It is suggested, therefore, that the accretion of fragments may be the common process of the deformation phase of mountain building. Subduction of normal oceanic crust may be insufficient for deformation, whereas full continent-continent collision may be necessary. The general validity of this conclusion depends critically on whether allochthonous terranes caused orogenic deformation in the Andes or not. Most of the accreted fragments with continental affinites in the Mesozoic-Cenozoic orogenic belts of the world can be traced back to the breakup of Gondwana, beginning with a Pacifica domain in the Permian through a larger India domain in the early Mesozoic and continuing through the separation of the Somalia plate in the near future. The reasons for this 250 million year breakup process are not known, but some kind of thermal process, possible of mantle-wide scale, is implied.
K.Y. Ng
2003-08-25
The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.
Benoit, M H; Nyblade, A A; Pasyanos, M E
2006-01-17
The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.
Czarnecki, John B.; Bolyard, Susan E.; Hart, Rheannon M.; Clark, Jimmy M.
2014-01-01
Digital surfaces and thicknesses of nine hydrogeologic units of the Ozark Plateaus aquifer system from land surface to the top of the Gunter Sandstone in northwestern Arkansas were created using geophysical logs, drillers’ logs, geologist-interpreted formation tops, and previously published maps. The 6,040 square mile study area in the Ozark Plateaus Province includes Benton, Washington, Carroll, Madison, Boone, Newton, Marion, and Searcy Counties. The top of each hydrogeologic unit delineated on geophysical logs was based partly on previously published reports and maps and also from drillers’ logs. These logs were then used as a basis to contour digital surfaces showing the top and thickness of the Fayetteville Shale, the Boone Formation, the Chattanooga Shale, the Everton Formation, the Powell Dolomite, the Cotter Dolomite, the Roubidoux Formation, the Gasconade Dolomite, and the Gunter Sandstone.
NASA Technical Reports Server (NTRS)
Mart, Y.
1988-01-01
A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.
Identification and occurrence of uranium and vanadium minerals from the Colorado Plateaus
Weeks, A.D.; Thompson, M.E.
1954-01-01
This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descriptions of the physical properties, X-ray data, and in some instances results of chemical and spectrographic analysis of 48 uranium and vanadium minerals. Also included is a list of locations of mines from which the minerals have been identified.
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Yao, Tandong; Piao, Shilong; Bolch, Tobias; Xie, Hongjie; Chen, Deliang; Gao, Yanhong; O'Reilly, Catherine M.; Shum, C. K.; Yang, Kun; Yi, Shuang; Lei, Yanbin; Wang, Weicai; He, You; Shang, Kun; Yang, Xiankun; Zhang, Hongbo
2017-01-01
Asia's high plateaus are sensitive to climate change and have been experiencing rapid warming over the past few decades. We found 99 new lakes and extensive lake expansion on the Tibetan Plateau during the last four decades, 1970-2013, due to increased precipitation and cryospheric contributions to its water balance. This contrasts with disappearing lakes and drastic shrinkage of lake areas on the adjacent Mongolian Plateau: 208 lakes disappeared, and 75% of the remaining lakes have shrunk. We detected a statistically significant coincidental timing of lake area changes in both plateaus, associated with the climate regime shift that occurred during 1997/1998. This distinct change in 1997/1998 is thought to be driven by large-scale atmospheric circulation changes in response to climate warming. Our findings reveal that these two adjacent plateaus have been changing in opposite directions in response to climate change. These findings shed light on the complex role of the regional climate and water cycles and provide useful information for ecological and water resource planning in these fragile landscapes.
Detection of vertebral plateaus in lateral lumbar spinal X-ray images with Gabor filters.
Alvarez Ribeiro, Eduardo; Nogueira-Barbosa, Marcello Henrique; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M
2010-01-01
A few recent studies have proposed computed-aided methods for the detection and analysis of vertebral bodies in radiographic images. This paper presents a method based on Gabor filters. Forty-one lateral lumbar spinal X-ray images from different patients were included in the study. For each image, a radiologist manually delineated the vertebral plateaus of L1, L2, L3, and L4 using a software tool for image display and mark-up. Each original image was filtered with a bank of 180 Gabor filters. The angle of the Gabor filter with the highest response at each pixel was used to derive a measure of the strength of orientation or alignment. In order to limit the spatial extent of the image data and the derived features in further analysis, a semi-automated procedure was applied to the original image. A neural network utilizing the logistic sigmoid function was trained with pixel intensity from the original image, the result of manual delineation of the plateaus, the Gabor magnitude response, and the alignment image. The average overlap between the results of detection by image processing and manual delineation of the plateaus of L1-L4 in the 41 images tested was 0.917. The results are expected to be useful in the analysis of vertebral deformities and fractures.
NASA Astrophysics Data System (ADS)
Erwin, S. O.; Jacobson, R. B.; Eric, A. B.; Jones, J. C.; Anderson, B. W.
2015-12-01
Perturbations to sediment regimes due to anthropogenic activities may have long lasting effects, especially in systems dominated by coarse sediment where travel times are relatively long. Effectively evaluating management alternatives requires understanding the future trajectory of river response at both the river network and reach scales. The Ozark Plateaus physiographic province is a montane region in the interior US composed primarily of Paleozoic sedimentary rock. Historic land-use practices around the turn of the last century accelerated delivery of coarse sediment to river channels. Effects of this legacy sediment persist in two national parks, Ozark National Scenic Riverways, MO and Buffalo National River, AR, and are of special concern for management of native mussel fauna. These species require stable habitat, yet they occupy inherently dynamic environments: alluvial rivers. At the river-network scale, analysis of historical data reveals the signature of sediment waves moving through river networks in the Ozarks. Channel planform alternates between relatively stable, straight reaches, and wider, multithread reaches which have been more dynamic over the past several decades. These alternate planform configurations route and store sediment differently, and translate into different patterns of bed stability at the reach scale, which in turn affects the distribution and availability of habitat for native biota. Geomorphic mapping and hydrodynamic modeling reveal the complex relations between planform (in)stability, flow dynamics, bed mobility, and aquatic habitat in systems responding to increased sediment supply. Reaches that have a more dynamic planform may provide more hydraulic refugia and habitat heterogeneity compared to stable, homogeneous reaches. This research provides new insights that may inform management of sediment and mussel habitat in rivers subject to coarse legacy sediment.
Dislocation motion and instability
NASA Astrophysics Data System (ADS)
Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit
2013-08-01
The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.
Adamski, James C.; Petersen, James C.; Freiwald, David A.; Davis, Jerri V.
1995-01-01
The environmental and hydrologic setting of the Ozark Plateaus National Water-Quality Assessment (NAWQA) study unit and the factors that affect water quality are described in this report. The primary natural and cultural features that affect water- quality characteristics and the potential for future water-quality problems are described. These environmental features include climate, physio- graphy, geology, soils, population, land use, water use, and surface- and ground-water flow systems. The study-unit area is approximately 47,600 square miles and includes most of the Ozark Plateaus Province and parts of the adjacent Osage Plains and Mississippi Alluvial Plain in parts of Arkansas, Kansas, Missouri, and Oklahoma. The geology is characterized by basement igneous rocks overlain by a thick sequence of dolomites, limestones, sandstones, and shales of Paleozoic age. Land use in the study unit is predominantly pasture and forest in the southeastern part, and pasture and cropland in the northwestern part. All or part of the White, Neosho-lllinois, Osage, Gasconade, Meramec, St. Francis, and Black River Basins are within the study unit. Streams in the Boston Mountains contain the least mineralized water, and those in the Osage Plains contain the most mineralized water. The study unit contains eight hydrogeologic units including three major aquifers--the Springfield Plateau, Ozark, and St. Francois aquifers. Streams and aquifers in the study unit generally contain calcium or calcium-magnesium bicarbonate waters. Ground- and surface-water interactions are greatest in the Salem and Springfield Plateaus and least in the Boston Mountains and Osage Plains. Geology, land use, and population probably are the most important environmental factors that affect water quality.
Water quality in the Ozark Plateaus, Arkansas, Kansas, Missouri, and Oklahoma, 1992-95
Petersen, James C.; Adamski, James C.; Bell, Richard W.; Davis, Jerri V.; Femmer, Suzanne R.; Freiwald, David A.; Joseph, Robert L.
1998-01-01
This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Ozark Plateaus Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.
Ground water in the Springfield-Salem plateaus of southern Missouri and northern Arkansas
Harvey, Edward Joseph
1980-01-01
Average ground-water conditions have not changed significantly in the Springfield-Salem plateaus section of southern Missouri and northern Arkansas in the past 25 years except in the vicinity of well fields. The amount of ground water pumped is approximately 200 cubic feet per second, which is about 5 percent of the total discharge at the 80 percent point on flow-duration curves for major streams. Ground-water recharge is variable and occurs through sinkholes by infiltration in upland areas of good permeability, and through streambeds that lose flow. Main waterbearing zones lie in the Potosi Dolomite and the lower dolomite and sandstone of the Gasconade Dolomite. Cavernous connections from ground surface to depths as great as 1,500 feet occur in the West Plains area, Mo., and result in deep circulation of water. Municipal well-water in the area often becomes turbid after rainstorms, despite well depths of 1 ,500 feet and 950 to 1,000 feet of pressure-grouted casing. Ground-water movement is generaly north and south from the crest of the Springfield-Salem plateaus, which extend across southern Missouri from the St. Francois Mountains to the southwest. Interbasin diversion of surface- and ground-water flow is common. (USGS)
Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin
Whiteman, C.D.; Allwine, K.J.
1992-06-01
In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona`s Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.
Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin
Whiteman, C.D.; Allwine, K.J.
1992-06-01
In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona's Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.
Gravitational Instabilities in Circumstellar Disks
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin; Lodato, Giuseppe
2016-09-01
Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular
NASA Astrophysics Data System (ADS)
Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi
2015-09-01
The quantum phase transitions induced by a magnetic field are theoretically studied in a frustrated two-leg spin ladder. Using the density-matrix renormalization-group method, we find some magnetic phase transitions and plateaus in two different cases of strong and weak rung couplings. With the strong rung coupling, the three magnetization plateaus are found at 1/3, 1/2, and 2/3 due to the frustration. Those can be understood in terms of a quasispinon reconstructed from the singlet and the triplets of spins on a rung. The plateau at 1/2 corresponds to the valence bond solid of the quasispinons, while the plateaus at 1/3 and 2/3 can be associated with the array of quasispinons such as the soliton lattice. This is different from the usual Bose-Einstein-condensation picture of triplons. Our results will be useful in understanding magnetization curves in BiCu2PO6 .
Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari; Berger, Thomas
2012-09-10
The launch of the Hinode satellite has allowed high-resolution observations of supersonic bright downflows in quiescent prominences, known as prominence knots. We present observations in the Ca II H spectral line using the Solar Optical Telescope on board the Hinode satellite of a descending plasma knot of size {approx}900 km. The knot initially undergoes ballistic motion before undergoing impulsive accelerations at the same time as experiencing increases in intensity. We also present a subset of our three-dimensional magnetohydrodynamic simulations, performed to investigate the nonlinear stability of the Kippenhahn-Shlueter prominence model to the magnetic Rayleigh-Taylor instability in which interchange reconnection occurs. The interchange reconnection in the model breaks the force balance along the field lines which initiates the downflows. The downflows propagate with a downward fluid velocity of {approx}15 km s{sup -1} and a characteristic size of {approx}700 km. We conclude that the observed plasma blob and the simulated downflow are driven by the breaking of the force balance along the magnetic field as a result of a change in magnetic topology caused by reconnection of the magnetic field.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Buiter, S. J. H.
2014-07-01
Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate during subduction by accretionary processes. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and have 3 distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. In addition many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. And other times we find evidence of collision leaving behind accreted terranes 25 to 40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Buiter, S. J. H.
2014-12-01
Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and three distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane-continent collision leaving behind accreted terranes 25-40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT
Electromagnetic ion beam instabilities
NASA Technical Reports Server (NTRS)
Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.
1984-01-01
The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.
DO CHILDREN WITH FRAGILE X SYNDROME SHOW DECLINES OR PLATEAUS IN ADAPTIVE BEHAVIOR?
Hahn, Laura J.; Brady, Nancy C.; Warren, Steven F.; Fleming, Kandace K.
2014-01-01
This study explores if children with fragile X syndrome (FXS) show advances, declines, or plateaus in adaptive behavior over time and the relationship of nonverbal cognitive abilities and autistic behavior on these trajectories. Parents of 55 children with FXS completed the Vineland Adaptive Behavior Scales between 3 and 6 times from 2 to 10 years of age. Using raw scores, results indicate that about half of the sample showed advances in adaptive behavior, while the other half showed declines, indicating a regression in skills. Children who were more cognitively advanced and had less autistic behaviors had higher trajectories. Understanding the developmental course of adaptive behavior in FXS has implications for educational planning and intervention, especially for those children showing declines. PMID:26322389
Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene
Alexander-Webber, J. A.; Huang, J.; Maude, D. K.; Janssen, T. J. B. M.; Tzalenchuk, A.; Antonov, V.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Nicholas, R. J.
2016-01-01
Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology. PMID:27456765
A mantle plume initiation model for the wrangellia flood basalt and other oceanic plateaus.
Richards, M A; Jones, D L; Duncan, R A; Depaolo, D J
1991-10-11
The vast Wrangellia terrane of Alaska and British Columbia is an accreted oceanic plateau with Triassic strata that contain a 3- to 6-kilometers thick flood basalt, bounded above and below by marine sedimentary rocks. This enormous outpouring of basalt was preceded by rapid uplift and was followed by gradual subsidence of the plateau. The uplift and basalt eruptions occurred in less than approximately 5 million years, and were not accompanied by significant extension or rifting of the lithosphere. This sequence of events is predicted by a mantle plume initiation, or plume head, model that has recently been developed to explain continental flood volcanism. Evidence suggests that other large oceanic basalt plateaus, such as the Ontong-Java, Kerguelen, and Caribbean, were formed as the initial outbursts of the Louisville Ridge, Kerguelen, and Galapagos hot spots, respectively. Such events may play an important role in the creation and development of both oceanic and continental crust.
Frey, H.; Semeniuk, A.M.
1985-01-01
The present-day boundary between the cratered highlands and northern lowland plains on Mars represent a major physiographic landform. In some regions there is clear evidence of a southward migration of this boundary. The authors have mapped features which may be relict pieces of highlands; flat-topped, angular mesas which we call detached plateaus, knobby terrain and partial craters to determine where ancient cratered terrain may have been in the past. Most of the detached plateaus and knobby terrain lie along or slightly north of the present-day highland boundary, but significant occurrences are also found at high northern latitudes in several locations. They have also identified, mapped and measured all symmetric knobs visible on the 1:2,000,000 controlled photomosaics with the long dimension greater than or equal to 10 km and classified them by shape. Between +65/sup 0/ and -45/sup 0/ there are 1634 such features, many of which are concentrated along the highland/lowland boundary or around the rims of major impact basins such as Isidis, Argyre and Hellas. The most common shape is elliptical (79%) followed by circular (11%) and triangular or wedge-shaped (6%). Globally, all types share a similar decrease in number with increasing size. Regionally, there are significant differences in the size-frequency distributions that seem to be related to their locations; whether the knobs are associated with impact basin rims, the highland/lowland boundary or volcanic plains. There are similar variations in the shape-size characteristics of the elliptical knobs.
A Three-Dimensional Seismic Velocity Model of the Arabian Plate, Iranian and Turkish Plateaus
NASA Astrophysics Data System (ADS)
Ghalib, Hafidh; Gritto, Roland; Sibol, Matthew; Herrmann, Robert; Aleqabi, Ghassan; Carron, Pierre; Wagner, Robert; Ali, Bakir; Ali, Ali
2010-05-01
Translational and rotational interaction between the Arabian, African and Eurasian plates over time has resulted in a challenging seismotectonic framework that is least understood in the Middle East region, in particular. Sea floor spreading along the Red Sea and Gulf of Aden, transform faulting along the Dead Sea and Own fracture zone, and compressional suture zones form the seismic and tectonic boundaries between the Arabian plate, the Iranian and Turkish plateaus. One objective of this effort is to map the three-dimensional shear-wave velocity variation using surface waves recorded by the broadband stations of North Iraq Seismographic Network (NISN), re-established Iraq Seismographic Network (ISN), and local stations of the Global Seismographic Network (GSN). Analysis of the seismograms netted a new seismicity map for the region consisting of about 2000 well located small to medium size earthquakes using all available phase arrivals including those published by the neighboring Syrian, Iranian and Turkish networks. Analysis of Rayleigh wave pure-path dispersion curves produced detailed maps showing the lateral and vertical variation of seismic velocities throughout the Middle East. These maps show a thick (10-15km) sedimentary layer that overlay the crystalline basement and a Conrad and Moho discontinuities at depths of 20-25km and 45-55km, respectively. The maps also show that the Arabian plate exhibits higher shear-wave velocities than found across the Turkish and Iranian plateaus; imprint of the Zagros Mountain roots extends down as deep as the Moho; and that the tectonic boundaries along the Dead Sea, Taurus and Zagros are more pronounced with depth describing a 60km or thicker Arabian plate. Future plans involving body wave velocity tomography modeling, high frequency wave attenuation, and moment tensor analysis to estimate the focal mechanism and magnitude of events are in preparation.
NASA Astrophysics Data System (ADS)
Deviren, Seyma Akkaya
2017-02-01
In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.
Clustering instability of focused swimmers
NASA Astrophysics Data System (ADS)
Lauga, Eric; Nadal, Francois
2016-12-01
One of the hallmarks of active matter is its rich nonlinear dynamics and instabilities. Recent numerical simulations of phototactic algae showed that a thin jet of swimmers, obtained from hydrodynamic focusing inside a Poiseuille flow, was unstable to longitudinal perturbations with swimmers dynamically clustering (Jibuti L. et al., Phys. Rev. E, 90, (2014) 063019). As a simple starting point to understand these instabilities, we consider in this paper an initially homogeneous one-dimensional line of aligned swimmers moving along the same direction, and characterise its instability using both a continuum framework and a discrete approach. In both cases, we show that hydrodynamic interactions between the swimmers lead to instabilities in density for which we compute the growth rate analytically. Lines of pusher-type swimmers are predicted to remain stable while lines of pullers (such as flagellated algae) are predicted to always be unstable.
Libration-driven multipolar instabilities
NASA Astrophysics Data System (ADS)
Cébron, D.; Vantieghem, S.; Herreman, W.
2014-01-01
We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that the LDMI results from a parametric resonance of inertial modes. Performing numerical simulations of this librating cylinder, we confirm that the basic flow is indeed established and report the first numerical evidence of the LDMI. Numerical results, in excellent agreement with the stability results, are used to explore the non-linear regime of the instability (amplitude and viscous dissipation of the driven flow). We finally provide an example of LDMI in a deformed spherical container to show that the instability mechanism is generic. Our results show that the previously studied libration driven elliptical instability simply corresponds to the particular case $n=2$ of a wider class of instabilities. Summarizing, this work shows that any oscillating non-axisymmetric container in rotation may excite intermittent, space-filling LDMI flows, and this instability should thus be easy to observe experimentally.
Magnetohydrodynamic instability
NASA Technical Reports Server (NTRS)
Priest, E. R.; Cargill, P.; Forbes, T. G.; Hood, A. W.; Steinolfson, R. S.
1986-01-01
There have been major advances in the theory of magnetic reconnection and of magnetic instability, with important implications for the observations, as follows: (1) Fast and slow magnetic shock waves are produced by the magnetohydrodynamics of reconnection and are potential particle accelerators. (2) The impulsive bursty regime of reconnection gives a rapid release of magnetic energy in a series of bursts. (3) The radiative tearing mode creates cool filamentary structures in the reconnection process. (4) The stability analyses imply that an arcade can become unstable when either its height or twist of plasma pressure become too great.
Groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010
Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.
2016-01-01
Groundwater is an often overlooked freshwater resource compared to surface water, but groundwater is used widely across the United States, especially during periods of drought. If groundwater models can successfully simulate past conditions, they may be used to evaluate potential future pumping scenarios or climate conditions, thus providing a valuable planning tool for water-resource managers. Quantifying the groundwater-use component for a groundwater model is a vital but often challenging endeavor. This dataset includes groundwater withdrawal rates modeled for the Ozark Plateaus aquifer system (Ozark system) from 1900 to 2010 by groundwater model cell (2.6 square kilometers) for five water-use divisions—agriculture (including irrigation and aquaculture), livestock, public supply (including municipal and rural water districts), and non-agriculture (including thermoelectric power generation, mining, commercial, and industrial)—and by country for domestic (self-supplied) use. Two child items are included with the dataset: “Domestic groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010” and “Public supply, non-agriculture, livestock, and agriculture groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010”. The Ozark system is located in the central United States and is composed of interbedded Cambrian to Pennsylvanian clastic and carbonate lithologies. In stratigraphic order, the Ozark system includes the Basement confining unit, St. Francois aquifer, St. Francois confining unit, Ozark aquifer, Ozark confining unit, Springfield Plateau aquifer, and Western Interior Plains confining system. Generally, the lower portion of the Ozark aquifer is the primary source of groundwater across much of Missouri and the Springfield Plateau aquifer is used across northern Arkansas. A full description of the methods used to model groundwater withdrawal rates from the Ozark system are available in Knierim et al., IN
Extensional instability in electro-osmotic microflows of polymer solutions
NASA Astrophysics Data System (ADS)
Bryce, R. M.; Freeman, M. R.
2010-03-01
Fluid transport in microfluidic systems typically is laminar due to the low Reynolds number characteristic of the flow. The inclusion of suspended polymers imparts elasticity to fluids, allowing instabilities to be excited when substantial polymer stretching occurs. For high molecular weight polymer chains we find that flow velocities achievable by standard electro-osmotic pumping are sufficient to excite extensional instabilities in dilute polymer solutions. We observe a dependence in measured fluctuations on polymer concentration which plateaus at a threshold corresponding to the onset of significant molecular crowding in macromolecular solutions; plateauing occurs well below the overlap concentration. Our results show that electro-osmotic flows of complex fluids are disturbed from the steady regime, suggesting potential for enhanced mixing and requiring care in modeling the flow of complex liquids such as biopolymer suspensions.
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
Presence of rapidly degrading permafrost plateaus in south-central Alaska
NASA Astrophysics Data System (ADS)
Jones, Benjamin M.; Baughman, Carson A.; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther L.; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E.
2016-11-01
Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5 ± 1 °C (1981-2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (-0.04 to -0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to > 6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0 % of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing
2014/2015 Investigations of the Ontong Java and Kerguelen Plateaus
NASA Astrophysics Data System (ADS)
Coffin, M. F.; Whittaker, J. M.
2013-12-01
The two largest oceanic plateaus, Ontong Java in the western Pacific, and Kerguelen in the southern Indian Ocean, will be the focus of scheduled multidisciplinary/interdisciplinary shipboard expeditions in 2014 and 2015. In mid-2014, scientists aboard the Schmidt Ocean Institute's RV Falkor will investigate the origin and evolution of two large atolls, Ontong Java and Nukumanu, surmounting the ca 122 Ma Ontong Java Plateau, as well how Kroenke Canyon, which deeply incises the plateau, formed and evolved. First-ever multibeam bathymetry and sub-bottom profiling data from the atolls and canyon will reveal their submarine and shallow sub-seafloor morphology, and, if combined with geochemical and geochronological analyses of potential igneous basement samples, will yield important information on their origin and evolution. The primary goals of this atoll and canyon project are: to test potential genetic relationships between a) the atolls and the OJP, and b) the atolls and Kroenke Canyon; to understand and model how atolls and canyons form and evolve on oceanic plateaus, isolated from terrestrial influences and subject to sea level fluctuations; and to contribute to understanding tsunami risk on low-lying atolls. In late 2014 and early 2015, researchers aboard Australia's new Marine National Facility, RV Investigator, will investigate active submarine hotspot volcanism on the Kerguelen Plateau and its consequences. The project's overall aim is to test the hypothesis that hydrothermal activity driven by active submarine magmatism fertilizes surface waters with iron that enhances primary biological productivity. Surmounting the Cretaceous plateau, Heard and McDonald Islands are among the world's most active hotspot volcanoes, and new multibeam bathymetry and sub-bottom profiling data will enable identification of candidate active submarine volcanoes, which we will sample. In the overlying water column, we will collect samples to test for the presence or absence of
The Occurrence of Anomalous Conductance Plateaus and Spin Textures in Quantum Point Contacts
NASA Astrophysics Data System (ADS)
Wan, J.; Cahay, M.; Debray, P.; Newrock, R.
2010-03-01
Recently, we used a NEGF formalism [1] to provide a theoretical explanation for the experimentally observed 0.5G0 (G0=2e^2/h) plateau in the conductance of side-gated quantum point contacts (QPCs) in the presence of lateral spin-orbit coupling (LSOC) [2]. We showed that the 0.5G0 plateau appears in the QPCs without any external magnetic field as a result of three ingredients: an asymmetric lateral confinement, a LSOC, and a strong electron-electron (e-e) interaction. In this report, we present the results of simulations for a wide range of QPC dimensions and biasing parameters showing that the same physics predicts the appearance of other anomalous plateaus at non-integer values of G0, including the well-known 0.7G0 anomaly. These features are related to a plethora of spin textures in the QPC that depend sensitively on material, device, biasing parameters, temperature, and the strength of the e-e interaction. [1] J. Wan, M. Cahay, P. Debray, and R.S. Newrock, Phys. Rev. B 80, 155440 (2009). [2] P. Debray, S.M. Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad, and M. Johnson, Nature Nanotech. 4, 759 (2009).
Gabli, Abdelhafid; Agabou, Amir; Gabli, Zahra
2015-08-01
A 31-months study was conducted to elucidate the prevalence of brucellosis in nomadic pastoralists and their goats in two provinces of the eastern Algerian high plateaus. Five hundred eight human and 4955 animal sera were screened with the Rose Bengal plate test and the complement fixation test for confirmation. Uterine fluids from aborting goats were subjected to microbiological analyses to determine the biovars responsible for abortions. The overall seroprevalence was 0.98% among animals and 15.84% among herds. A significant correlation was recorded between occurrence of brucellosis and herd size (r = 0.4046, P < 0.0001) as well as age (χ(2) = 5.809, P = 0.0159) and sex of animals (χ(2) = 20.09, P < 0.0001); 89.65% of human cases were related to positive herds and the infection rate was higher in men (7.6%) than in women (6%) and children (0.92%). Brucella melitensis biovar 3 was the only aetiology of brucellosis-associated abortion in goats of the studied region.
Topological incommensurate magnetization plateaus in quasi-periodic quantum spin chains.
Hu, Hai-Ping; Cheng, Chen; Luo, Hong-Gang; Chen, Shu
2015-02-13
Uncovering topologically nontrivial states in nature is an intriguing and important issue in recent years. While most studies are based on the topological band insulators, the topological state in strongly correlated low-dimensional systems has not been extensively explored due to the failure of direct explanation from the topological band insulator theory on such systems and the origin of the topological property is unclear. Here we report the theoretical discovery of strongly correlated topological states in quasi-periodic Heisenberg spin chain systems corresponding to a series of incommensurate magnetization plateaus under the presence of the magnetic field, which are uniquely determined by the quasi-periodic structure of exchange couplings. The topological features of plateau states are demonstrated by the existence of non-trivial spin-flip edge excitations, which can be well characterized by nonzero topological invariants defined in a two-dimensional parameter space. Furthermore, we demonstrate that the topological invariant of the plateau state can be read out from a generalized Streda formula and the spin-flip excitation spectrum exhibits a similar structure of the Hofstadter's butterfly spectrum for the two-dimensional quantum Hall system on a lattice.
Topological incommensurate magnetization plateaus in quasi-periodic quantum spin chains
Hu, Hai-Ping; Cheng, Chen; Luo, Hong-Gang; Chen, Shu
2015-01-01
Uncovering topologically nontrivial states in nature is an intriguing and important issue in recent years. While most studies are based on the topological band insulators, the topological state in strongly correlated low-dimensional systems has not been extensively explored due to the failure of direct explanation from the topological band insulator theory on such systems and the origin of the topological property is unclear. Here we report the theoretical discovery of strongly correlated topological states in quasi-periodic Heisenberg spin chain systems corresponding to a series of incommensurate magnetization plateaus under the presence of the magnetic field, which are uniquely determined by the quasi-periodic structure of exchange couplings. The topological features of plateau states are demonstrated by the existence of non-trivial spin-flip edge excitations, which can be well characterized by nonzero topological invariants defined in a two-dimensional parameter space. Furthermore, we demonstrate that the topological invariant of the plateau state can be read out from a generalized Streda formula and the spin-flip excitation spectrum exhibits a similar structure of the Hofstadter's butterfly spectrum for the two-dimensional quantum Hall system on a lattice. PMID:25678145
Regional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia
Messinger, Terence
2009-01-01
Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel characteristics were intermediate among those from surrounding states and regions where comparable studies have been done. The stream reaches that were surveyed were selected for apparent stability, and to represent gradients of drainage area, elevation, and mean annual precipitation. Profiles of high-water marks left by bankfull and near-bankfull peaks were surveyed, either as part of slope-area flow measurements at ungaged reaches, or to transfer known flow information to cross sections for gaged reaches. The slope-area measurements made it possible to include ungaged sites in the study, but still relate bankfull dimensions to peak flow and frequency.
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
NASA Astrophysics Data System (ADS)
Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Paz-Soldan, C.; Hollmann, E. M.; Moyer, R. A.
2016-10-01
Effective runaway electron (RE) mitigation strategies are essential for protecting ITER from the potential damage of a first wall strike. In DIII-D, shattered pellet injection (SPI) with large Ne pellets demonstrates the dissipation of post-disruption RE plateaus by collisions with high-Z impurities, while equivalently sized D2 pellets lead to a reduction of the impurity content of the background plasma, reducing RE dissipation. Varying the relative quantities of Ne /D2 in mixed species pellets shows that the effect of D2 may be dominant in determining the RE/pellet interaction. Compared with injection of the same quantity of Ne by massive gas injection, SPI achieves a similar initial RE current decay rate, but residual RE current remains after SPI. This may be due to the effects of a small quantity of D2 (used as a ``shell'' for firing of the Ne pellets) displacing high-Z impurities. These results will help guide the optimization of injection schemes and pellet compositions for the RE mitigation system in ITER. Work supported by the U.S. DOE under DE-FC02-04ER54698.
Changes in Pacific Absolute Plate Motion and Formation of Oceanic Flood Basalt Plateaus
NASA Astrophysics Data System (ADS)
Kroenke, L. W.; Wessel, P.
2006-12-01
The origin of the large oceanic flood basalt plateaus that are prominent features of the central western Pacific Basin remains unclear. Major changes in Pacific Absolute Plate Motion (APM) have been identified as occurring at 145, 125, 96, and 47 Ma. Formation of the Shatsky Rise (~145 Ma), the Ontong Java Plateau (122+ Ma), the Southern Hess Rise (95±5 Ma), and the Louisiade Plateau (~48 Ma) appear to coincide with these changes. A smaller, but still prominent change in Pacific APM also occurred at 110 Ma when the Northern Hess Rise formed. Although these concurrent events may simply be chance occurrences, initiation of plate tectonic reorganizations upon arrival of mantle plume heads also was proposed by Ratcliff et al. (1998), who suggested that the mantle plume head delivery of hot material to produce flood basalts also had the potential to trigger reorganizations of plate motions. It should be noted, however, that Pacific Rim subduction zone development also coincides with these APM changes, and that the actual cause and effect of each change in APM has yet to be clearly established. Here we present a modified Pacific APM model that uses several older seamount chains (Musicians, Ratak-Gilbert-Ellice, the Wake trails, and the Liliuokalani trails) to constrain the oldest Pacific plate motion using the hybrid technique of Wessel et al (2006).
Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.
2016-09-29
A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.
Direct numerical study of crossflow instability
NASA Astrophysics Data System (ADS)
Spalart, P. R.
Disturbances in the swept Hiemenz flow are calculated by solving the Navier-Stokes equations. The spatially-evolving base flow is treated exactly, allowing a check of the 'local' stability theories. Different types of disturbances such as random noise, waves, and wave packets, are input near the attachment line, develop in space, and exit through an outflow boundary. They all generate streamwise vortices. The effect of the Reynolds number, of the time-dependence of the noise, and of nonlinearity, are investigated.
Direct numerical study of crossflow instability
NASA Technical Reports Server (NTRS)
Spalart, P. R.
1990-01-01
Disturbances in the swept Hiemenz flow are calculated by solving the Navier-Stokes equations. The spatially-evolving base flow is treated exactly, allowing a check of the 'local' stability theories. Different types of disturbances such as random noise, waves, and wave packets, are input near the attachment line, develop in space, and exit through an outflow boundary. They all generate streamwise vortices. The effect of the Reynolds number, of the time-dependence of the noise, and of nonlinearity, are investigated.
Carbon Abundance Plateaus among Carbon-Enhanced Metal-Poor Stars
NASA Astrophysics Data System (ADS)
Yoon, Jinmi; He, Siyu; Placco, Vinicius; Carollo, Daniela; Beers, Timothy C.
2016-01-01
A substantial fraction of low-metallicity stars in the Milky Way, the Carbon-Enhanced Metal-Poor (CEMP) stars, exhibit enhancements of their carbon-to-iron relative to the solar value ([C/Fe] > +0.7). They can be divided into several sub-classes, depending on the nature and degree of the observed enhancements of their neutron-capture elements, providing information on their likely progenitors. CEMP-s stars (which exhibit enhanced s-process elements) are thought to be enhanced by mass transfer from an evolved AGB companion, while CEMP-no stars (which exhibit no over-abundances of neutron-capture elements) appear to be associated with explosions of the very first generations of stars. High-resolution spectroscopic analyses are generally required in order to make these sub-classifications.Several recent studies have suggested the existence of bimodality in the distribution of absolute carbon abundances among CEMP stars -- most CEMP-no stars belong to a low-C band ((A(C) ˜ 6.5), while most CEMP-s stars reside on a high-C band (A(C) ˜ 8.25). The number of CEMP stars considered by individual studies is, however, quite small, so we have compiled all available high-resolution spectroscopic data for CEMP stars, in order to further investigate the existence of the claimed carbon bi-modality, and to consider what can be learned about the progenitors of CEMP-s and CEMP-no stars based on the observed distribution of A(C) on the individual plateaus.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.
NASA Astrophysics Data System (ADS)
Verkholyak, Taras; Strečka, Jozef
2016-10-01
The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.
Gravitational instabilities in protostellar disks
NASA Technical Reports Server (NTRS)
Tohline, J. E.
1994-01-01
The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.
Simulation of the 'negative temperature' instability for line vortices.
NASA Technical Reports Server (NTRS)
Joyce, G.; Montgomery, D.
1972-01-01
In previous numerical solution to the continuum Navier-Stokes equations, a 'negative temperature' instability for the two-dimensional motions of interacting line vortices was observed. The experiment is repeated for a discrete vortex model, thus obtaining a numerical simulation of the 'negative temperature' instability for a large number of discrete line vortices. Typical results which are shown, are thought to lie above and below the energy threshold for negative temperature instability.
EXPLOSIVE INSTABILITY AND CORONAL HEATING
Dahlburg, R. B.; Liu, J.-H.; Klimchuk, J. A.; Nigro, G.
2009-10-20
The observed energy-loss rate from the solar corona implies that the coronal magnetic field has a critical angle at which energy is released. It has been hypothesized that at this critical angle an 'explosive instability' would occur, leading to an enhanced conversion of magnetic energy into heat. In earlier investigations, we have shown that a shear-dependent magnetohydrodynamic process called 'secondary instability' has many of the distinctive features of the hypothetical 'explosive instability'. In this paper, we give the first demonstration that this 'secondary instability' occurs in a system with line-tied magnetic fields and boundary shearing-basically the situation described by Parker. We also show that, as the disturbance due to secondary instability attains finite amplitude, there is a transition to turbulence which leads to enhanced dissipation of magnetic and kinetic energy. These results are obtained from numerical simulations performed with a new parallelized, viscoresistive, three-dimensional code that solves the cold plasma equations. The code employs a Fourier collocation-finite difference spatial discretization, and uses a third-order Runge-Kutta temporal discretization.
Interfacial Instabilities on a Droplet
NASA Astrophysics Data System (ADS)
Jalaal, Maziyar; Mehravaran, Kian
2013-11-01
The fragmentation of droplets is an essential stage of several natural and industrial applications such as fuel atomization and rain phenomena. In spite of its relatively long history, the mechanism of fragmentation is not clear yet. This is mainly due to small length and time scales as well as the non-linearity of the process. In the present study, two and three-dimensional numerical simulations have been performed to understand the early stages of the fragmentation of an initially spherical droplet. Simulations are performed for high Reynolds and a range of relatively high Weber numbers (shear breakup). To resolve the small-scale instabilities generated over the droplet, a second-order adaptive finite volume/volume of fluids (FV/VOF) method is employed, where the grid resolution is increased with the curvature of the gas-liquid interface as well as the vorticity magnitude. The study is focused on the onset and growth of interfacial instabilities. The role of Kelvin-Helmholtz instability (in surface wave formation) and Rayleigh-Taylor instability (in azimuthal transverse modulation) are shown and the obtained results are compared with the linear instability theories for zero and non-zero vorticity layers. Moreover, the analogy between the fragmentation of a single drop and a co-axial liquid jet is discussed. The current results can be used for the further development of the current secondary atomization models.
Adamski, James C.
1997-01-01
A total of 229 ground-water samples were collected from 215 sites as part of the Ozark Plateaus study unit of the National Water-Quality Assessment Program. These samples were collected from 1993 through 1995 using a network of springs and wells with three scale-dependent components. The first component, the study-unit survey, consisted of 99 randomly selected springs and domestic wells in the Springfield Plateau and Ozark aquifers. The second component, two land-use studies, consisted of 42 springs and domestic wells in a poultry-dominated agricultural area and 40 springs and domestic wells in a cattle-dominated agricultural area overlying the Springfield Plateau aquifer. The third component, the small-watershed study, consisted of 4 springs, 18 domestic wells, and 11 monitoring wells in a small basin within the poultry land-use study area. Samples were analyzed for major ions, nutrients, dissolved organic carbon, methylene blue active substances, tritium, and 88 pesticides and metabolites.The water-quality data from these samples were analyzed with descriptive and statistical methods. Nitrite plus nitrate, which was detected more often and in greater concentrations than any of the other nutrients, ranged from less than 0.05 to 25 milligrams per liter as nitrogen. Nitrite plus nitrate concentrations positively correlated to percent agricultural land use around each site. Median nitrite plus nitrate concentrations generally were greater in samples from springs than in samples from wells. Concentrations of nitrite, ammonia, and ammonia plus organic nitrogen were also affected by land use and also by concentrations of dissolved oxygen in the ground water. Concentrations of phosphorus and orthophosphate probably were affected by land use and also by phosphorus solubility. Pesticides were detected in 80 of 229 samples from 73 of 215 sites. A total of 20 pesticides were detected with a maximum of 5 pesticides detected in any 1 sample. The most commonly detected
Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus
NASA Astrophysics Data System (ADS)
Hoernle, Kaj; Hauff, Folkmar; van den Bogaard, Paul; Werner, Reinhard; Mortimer, Nick; Geldmacher, Jörg; Garbe-Schönberg, Dieter; Davy, Bryan
2010-12-01
Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/ 39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (˜52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ˜1% of the Earth's surface was covered with volcanism, resulted from a
Petersen, James C.; Femmer, Suzanne R.
2003-01-01
During August through September of 1993-95, 83 periphyton samples were collected at 51 stream sites in the Ozark Plateaus. These sites were categorized into six land-use categories (20 forest, 18 agriculture, 10 mining, 1 urban, 1 urban/mining, and 1 mix), based on land-use percentages in the basin upstream from the site. Results indicate that periphyton communities of riffles of Ozark streams are affected by natural and land-use related factors. These factors include nutrients, dissolved organic carbon, alkalinity, canopy shading, suspended sediment, embeddedness, stream morphometry, and velocity. For several measures of periphyton communities, statistically significant (p<0.05) differences were found among sites assigned to agriculture, forest, and mining categories. Blue-green algae biovolume, relative abundance of blue-green algae, relative biovolume of diatoms, relative abundance of oligotrophic algae, relative abundance of tolerant taxa, and condition index values were among the measures that differed among land-use categories. Although no environmental factors were significantly correlated with total biovolume, several factors were significantly correlated with biovolume of blue-green algae or biovolume of diatoms. Biovolume of blue-green algae was correlated with percent agriculture land use. Biovolume of diatoms was correlated with orthophosphate, total phosphorus, alkalinity, velocity, embeddedness, and dissolved organic carbon.Diatoms often composed the largest percentage of the biovolume (relative biovolume). Diatom relative biovolume was much higher at mining sites (generally 75 to 90 percent of the total biovolume) than at forest or agriculture sites (generally 15 to 80 percent) and was correlated with several factors, including many land-use related factors. The diatoms Cymbella affinis and Cymbella delicatula and the blue-green algae Calothrix often were the most common (relative abundance and relative biovolume) algae in samples
NASA Astrophysics Data System (ADS)
Sebe, Krisztina; Csillag, Gábor
2015-04-01
On some basalt plateaus of the western Pannonian Basin, Hungary, fields of circular depressions occur. They are traditionally called "basalt karst' and their formation has been attributed either to collapse over karstifying rocks or to anthropogenic action (quarrying); however, both of these theories are questionable. The depressions are situated between elevations of 350-500 m a.s.l. and are characteristically surrounded by circular raised rims or ramparts. They measure a few m-s (up to ~10 m) in diameter, the ramparts emerge 0.5-1.5 m above the surrounding level ground and encircle a depression of 1-2 (-3) m deep in the middle. Depressions cluster in well delineated, high-density groups, with individual fields containing several dozens of these forms. Neighbouring ramparts are tightly packed, often interfere and depressions can thus coalesce creating composite forms. The ramparts are composed of coarse (dm-sized) basalt blocks, whose material is identical to that of the surrounding terrain and seems to originate from the depression. Many of the depressions host ephemeral ponds. Raised rims exclude formation of these landforms by any karstic processes. The anthropogenic theory is opposed by the lack of the remains of any facilities (e.g. roads), of tools and by the very illogical distribution and geometry of depressions from the point of human use. On the contrary, we interpret these ramparted depressions as being of periglacial origin, remnants of cryogenic mounds. The central depression and the emergent rampart can be well explained by the ice core raising the overlying rock and by the radial downsliding of this material on the ice core to the margins. Within cryogenic mounds, clustering and size of the forms fits the characteristics of perennial frost mound without peat cover, i.e. lithalsas or minerogenic palsas. Cryogenic mounds are important paleoclimatic indicators. Based on modern analogs, these lithalsa scars indicate the former presence of discontinuous
Progressive Landslides in Uplifted Volcanic Plateaus: Persistent Loci of Channel Perturbation
NASA Astrophysics Data System (ADS)
Safran, E. B.; Anderson, S. W.; Mills-Novoa, M.; Othus, S.; Ely, L.; House, P. K.; O'Connor, J. E.; Grant, G.; Fenton, C.; Beebee, R. A.
2007-12-01
The semi-arid uplifted volcanic plateaus of the southern interior Columbia River basin contain over 300 large landslides or landslide complexes, ranging in area from several tenths of a km2 to several tens of km2. The distribution of these landslides is dominated by the outcropping of key stratigraphic contacts between coherent, volcanic cap rock atop weak sedimentary or volcaniclastic units in areas of >100 m local relief. The morphologies of many of these landslide complexes suggest a progressive mode of mass movement, with rubble-capped failure slices arrayed downslope at intervals of 10s to 100s of meters and deep tension cracks separating incipient failure blocks from the intact headscarp. Field evidence from the Owyhee River in southeastern Oregon indicates that individual landslide complexes can persist for millions of years. In one reach, for example, remnants of a 1.9 million year old intracanyon lava flow are inset against ancient landslide blocks. In the same location, cosmogenic isotope dating of boulders on a likely dam-burst flood deposit reveal a channel-blocking mass movement that may be as young as Holocene in age. The persistence of these landslide complexes has important implications for channel evolution, as it suggests that, in some environments, sediment supply may be chronically elevated at point sources. On the basis of GIS-based mapping of regional landslides and on field study of individual landslide complexes, we hypothesize that: 1) this sediment supply becomes increasingly dominated by fine-grained material as channels progressively incise into the weak units underlying coherent lava caps; and 2) the mass movements that impinge on the channels become correspondingly more earthflow-like. Loci of persistent landsliding are also subject to episodic variations in channel width due to physical constrictions caused by impinging failure masses. The discrete localization of large landslide complexes by particular stratigraphic and topographic
Combustion Instabilities Modeled
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1999-01-01
NASA Lewis Research Center's Advanced Controls and Dynamics Technology Branch is investigating active control strategies to mitigate or eliminate the combustion instabilities prevalent in lean-burning, low-emission combustors. These instabilities result from coupling between the heat-release mechanisms of the burning process and the acoustic flow field of the combustor. Control design and implementation require a simulation capability that is both fast and accurate. It must capture the essential physics of the system, yet be as simple as possible. A quasi-one-dimensional, computational fluid dynamics (CFD) based simulation has been developed which may meet these requirements. The Euler equations of mass, momentum, and energy have been used, along with a single reactive species transport equation to simulate coupled thermoacoustic oscillations. A very simple numerical integration scheme was chosen to reduce computing time. Robust boundary condition procedures were incorporated to simulate various flow conditions (e.g., valves, open ends, and choked inflow) as well as to accommodate flow reversals that may arise during large flow-field oscillations. The accompanying figure shows a sample simulation result. A combustor with an open inlet, a choked outlet, and a large constriction approximately two thirds of the way down the length is shown. The middle plot shows normalized, time-averaged distributions of the relevant flow quantities, and the bottom plot illustrates the acoustic mode shape of the resulting thermoacoustic oscillation. For this simulation, the limit cycle peak-to-peak pressure fluctuations were 13 percent of the mean. The simulation used 100 numerical cells. The total normalized simulation time was 50 units (approximately 15 oscillations), which took 26 sec on a Sun Ultra2.
Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.
2016-01-01
A hydrogeologic framework of the Ozark Plateaus aquifer system was constructed as the base for a groundwater flow model developed as part of the U.S. Geological Survey Water Availability and Use Science Program to aid in the understanding of groundwater availability in select aquifer systems of the United States. The Ozark Plateaus aquifer system study area (hereinafter referred to as the “Ozark system”) is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. A hydrogeologic framework was constructed to represent the altitudes and thicknesses of nine hydrogeologic units within the Ozark Plateaus aquifer system - . the Western Interior Plains confining system, Springfield Plateau aquifer, the Ozark confining unit, Ozark aquifer (divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties), the St. Francois confining unit, the St. Francois aquifer, and the Basement confining unit. The formations that make up the hydrogeologic units of the Ozark system range from Pennsylvanian to Cambrian age. The scope of effort included the compilation and interpretation of hydrogeologic altitudes from geophysical, lithologic driller description, and well cutting logs. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units. Shorthand names were used to identify points, extents, and raster surfaces corresponding to each hydrogeologic unit. WIPCS = Western Interior Plains confining system SPA = Springfield Plateau aquifer OCU = Ozark confining unit UOA = upper Ozark aquifer MOA = middle Ozark aquifer LOA = lower Ozark aquifer SFCU = St. Francois confining unit SFA = St. Francois aquifer BCU = Basement confining unit
Wang, Hongsheng; Chen, Tony; Torzilli, Peter; Warren, Russell; Maher, Suzanne
2014-01-01
The spatial distribution and pattern of local contact stresses within the knee joint during activities of daily living have not been fully investigated. The objective of this study was to determine if common contact stress patterns exist on the tibial plateaus of human knees during simulated gait. To test this hypothesis, we developed a novel normalized cross-correlation (NCC) algorithm and applied it to the contact stresses on the tibial plateaus of twelve human cadaveric knees subjected to multi-directional loads mimicking gait. The contact stress profiles at different locations on the tibial plateaus were compared, where regions with similar contact stress patterns were identified across specimens. Three consistent regional patterns were found, among them two most prominent contact stress patterns were shared by 9 to 12 of all the knees and the third pattern was shared by 6 to 8 knees. The first pattern was located at the posterior aspect of the medial tibial plateau and had a single peak stress that occurred during the early stance phase. The second pattern was located at the central-posterior aspects of the lateral plateau and consisted of two peak stresses coincident with the timing of peak axial force at early and late stance. The third pattern was found on the anterior aspect of cartilage-to-cartilage contact region on the medial plateau consisted of double peak stresses. The differences in the location and profile of the contact stress patterns suggest that the medial and lateral menisci function to carry load at different points in the gait cycle: with the posterior aspect of the medial meniscus consistently distributing load only during the early phase of stance, and the posterior aspect of the lateral meniscus consistently distributing load during both the early and late phases of stance. This novel approach can help identify abnormalities in knee contact mechanics and provide a better understanding of the mechanical pathways leading to post
Electrostatic ion cyclotron velocity shear instability
NASA Technical Reports Server (NTRS)
Lemons, D. S.; Winske, D.; Gary, S. P.
1992-01-01
A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).
Nonlinear Dynamics of Single Bunch Instability
Stupakov, G.V.; Breizman, B.N.; Pekker, M.S.; /Texas U.
2011-09-09
A nonlinear equation is derived that governs the evolution of the amplitude of unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement with experimental observations. Microwave single bunch instability in circular accelerators has been observed in many machines. The instability usually arises when the number of particles in the bunch exceeds some critical value, Nc, which varies depending on the parameters of the accelerating regime. Recent observations on the SLC damping rings at SLAC with a new low-impedance vacuum chamber revealed new interesting features of the instability. In some cases, after initial exponential growth, the instability eventually saturated at a level that remained constant through the accumulation cycle. In other regimes, relaxation-type oscillations were measured in nonlinear phase of the instability. In many cases, the instability was characterized by a frequency close to the second harmonic of the synchrotron oscillations. Several attempts have been made to address the nonlinear stage of the instability based on either computer simulations or some specific assumptions regarding the structure of the unstable mode. An attempt of a more general consideration of the problem is carried out in this paper. We adopt an approach recently developed in plasma physics for analysis of nonlinear behavior of weakly unstable modes in dynamic systems. Assuming that the growth rate of the instability is much smaller than its frequency, we find a time dependent solution to Vlasov equation and derive an equation for the complex amplitude of the oscillations valid in the nonlinear regime. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement
MHD Instabilities in Simple Plasma Configuration
1984-01-01
cause the field lines to break and reconnect. . This work is divided into two parts. Chapters " describe linear theory and Chapters -XV- describe the...details in any non- linear theory can rapidly mushroom out of all proportion. For this reason much work in nonlinear MHD theory is done by numerical...99 IX. INSTABILITIES IN A TOROIDAL PLASMA ........................ 125 X. QUASI- LINEAR THEORY OF MHD INSTABILITIES ........... 133
Relativistically modulational instability by strong Langmuir waves
Liu, X. L.; Liu, S. Q.; Li, X. Q.
2012-09-15
Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.
Electron heat flux instability
NASA Astrophysics Data System (ADS)
Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.
2017-02-01
The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.
Combustion instability modeling and analysis
Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.
1995-12-31
It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.
Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia
Sheets, Charlynn J.; Kozar, Mark D.
2000-01-01
Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the
Turbine instabilities: Case histories
NASA Technical Reports Server (NTRS)
Laws, C. W.
1985-01-01
Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.
Kinesics of Affective Instability.
ERIC Educational Resources Information Center
Dil, Nasim
1979-01-01
Discusses the rationale of studying kinesics of affective instability, describes the phenonmenon of affective instability, examines the role of kinesics in the overall process of communication, and presents three case studies. (Author/AM)
On the convective-absolute nature of river bedform instabilities
NASA Astrophysics Data System (ADS)
Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc
2014-12-01
River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.
Ion-Hose Instability in Long Pulse Induction Accelerators
Caporaso, G J; McCarrick, J F
2000-08-02
The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions.
NASA Astrophysics Data System (ADS)
Margreth, Annina; Gosse, John C.; Dyke, Arthur S.
2016-02-01
Long-term rates of subaerial and episodic subglacial erosion by predominately cold-based ice cover are determined for tors on weathered plateaus on Cumberland Peninsula. By measuring terrestrial cosmogenic nuclide concentrations in differentially weathered surfaces on a given tor, we reconstruct the complex exposure and erosion history involving recurring cold-based ice cover. The style and rate of subaerial and subglacial erosion at multiple tor sites on Cumberland Peninsula are assessed with a Monte Carlo approach that computes plausible exposure histories based on a proxy record of global ice volume. Constant subaerial erosion rates by weathering are low (<2 mm ka-1), corroborated by nuclide concentrations measured on two tors located on coastal ridge crests that have likely never been glaciated. Summit plateaus intermittently covered by cold-based ice throughout the Quaternary have experienced episodic subglacial erosion by plucking of fractured bedrock with rates between 1 and 16 mm ka-1. Variation of episodic erosion rates is associated with topographic position of the sampled tors and bedrock fracture density. Most of the tors were last glacially plucked in pre-ultimate glaciations, not during the Wisconsinan glaciation. Furthermore, the new approach provides evidence for the extent of ice coverage during the late Wisconsinan, which is significant if no erratics are available for exposure dating. Despite late Pleistocene intervals of ice cover and glacial plucking, tor-studded landscapes of Cumberland Peninsula are of considerable antiquity.
NASA Astrophysics Data System (ADS)
Mega, Nabil; Medjerab, Abderrahmane
2016-10-01
The high plateaus of Algeria is a critical region to policymakers in terms of social, economic, and infrastructure development. The main goal of the present work was to monitor the climatic drought and its impact on vegetation health across the Algerian high plateaus using remote sensing techniques. Vegetation health index (VHI) showed a clear drought in the western region of the study area. The results show practically three periods of drought were evident: October to December 2006, November to December 2009, and December 2012. Agreeable correlations among the obtained results using standard precipitation index for 3 months (SPI-3) and other satellite indicators such as temperature vegetation dryness index (TVDI) and VHI were obtained. TVDI and VHI agreed well with the ground-based observations from SPI-3; thus, these may serve as key and easily accessible indicators of drought. The research shows motivating results that decision makers can use to take timely corrective measures to minimize the reduction in agricultural production in drought prone areas.
NASA Astrophysics Data System (ADS)
Morita, Katsuhiro; Shibata, Naokazu
2016-10-01
We study the ground state of the S =1/2 Heisenberg model on the checkerboard lattice in a magnetic field by the density matrix renormalization group method with the sine-square deformation. We obtain magnetization plateaus at M /Msat=0 ,1/4 ,3/8 ,1/2 , and 3/4 , where Msat is the saturated magnetization. The obtained 3/4 plateau state is consistent with the exact result, and the 1/2 plateau is found to have a four-spin resonating loop structure similar to the six-spin loop structure of the 1/3 plateau of the kagome lattice. Different four-spin loop structures are obtained in the 1/4 and 3/8 plateaus but no corresponding states exist in the kagome lattice. The 3/8 plateau has a unique magnetic structure of three types of four-spin local quantum states in a 4 √{2 }×2 √{2 } magnetic unit cell with a 16-fold degeneracy.
NASA Astrophysics Data System (ADS)
Baumgartner, Peter O.; Baumgartner-Mora, Claudia; Andjic, Goran
2016-04-01
The Late Cretaceous-Paleogene sedimentation pattern in space and time along the Middle American convergent margin was controlled by the accretion of Pacific plateaus and seamounts. The accretion of more voluminous plateaus must have caused the temporary extinction of the arc and tectonic uplift, resulting in short lived episodes of both pelagic and neritic biogenic sedimentation. By the Late Eocene, shallow carbonate environments became widespread on a supposed mature arc edifice, that is so far only documented in arc-derived sediments. In northern Costa Rica forearc sedimentation started during the Coniacian-Santonian on the Aptian-Turonian basement of the Manzanillo Terrane. The arrival and collision of the Nicoya Terrane (a CLIP-like, 139-83 Ma Pacific plateau) and the Santa Elena Terrane caused the extinction of the arc during late Campanian- Early Maastrichtian times, indicated by the change to pelagic limestone sedimentation (Piedras Blancas Formation) in deeper areas and shallow-water rudistid - Larger Benthic Foraminfera limestone on tectonically uplifted areas of all terranes. Arc-derived turbidite sedimentation resumed in the Late Maastrichtian and was again interrupted during the Late Paleocene - Early Eocene, perhaps due to the underplating of a yet unknown large seamount. The extinction of the arc resulted in the deposition of the siliceous pelagic Buenavista Formation, as well as the principally Thanetian Barra Honda carbonate platform on a deeply eroded structural high in the Tempisque area. In southern Costa Rica the basement is thought to be the western edge of the CLIP. It is Santonian-Campanian in age and is only exposed in the southwestern corner of Herradura. Cretaceous arc-forearc sequences are unknown, except for the Maastrichtian-Paleocene Golfito Terrane in southeastern Costa Rica. The distribution and age of shallow/pelagic carbonates vs. arc-derived detrital sediments is controlled by the history of accretion of Galápagos hot spot
Stier, A V; Ellis, C T; Kwon, J; Xing, H; Zhang, H; Eason, D; Strasser, G; Morimoto, T; Aoki, H; Zeng, H; McCombe, B D; Cerne, J
2015-12-11
We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency using highly sensitive Faraday rotation measurements. The sample is electrically gated, allowing the electron density to be changed continuously by more than a factor of 3. We observe clear plateaulike and steplike features in the Faraday rotation angle vs electron density and magnetic field (Landau-level filling factor) even at fields or frequencies very close to cyclotron resonance absorption. These features are the high frequency manifestation of quantum Hall plateaus-a signature of topologically protected edge states. We observe both odd and even filling factor plateaus and explore the temperature dependence of these plateaus. Although dynamical scaling theory begins to break down in the frequency region of our measurements, we find good agreement with theory.
Rogue Waves and Modulational Instability
NASA Astrophysics Data System (ADS)
Zakharov, V. E.; Dyachenko, A.
2015-12-01
The most plausible cause of rogue wave formation in a deep ocean is development of modulational instability of quasimonochromatic wave trains. An adequate model for study of this phenomenon is the Euler equation for potential flow of incompressible fluid with free surface in 2-D geometry. Numerical integration of these equations confirms completely the conjecture of rogue wave formation from modulational instability but the procedure is time consuming for determination of rogue wave appearance probability for a given shape of wave energy spectrum. This program can be realized in framework of simpler model using replacement of the exact interaction Hamiltonian by more compact Hamiltonian. There is a family of such models. The popular one is the Nonlinear Schrodinger equation (NLSE). This model is completely integrable and suitable for numerical simulation but we consider that it is oversimplified. It misses such important phenomenon as wave breaking. Recently, we elaborated much more reliable model that describes wave breaking but is as suitable as NLSE from the point of numerical modeling. This model allows to perform massive numerical experiments and study statistics of rogue wave formation in details.
Granular Rayleigh-Taylor instability
Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.; Maaloey, Knut Joergen; Toussaint, Renaud
2009-06-18
A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.
Circulation in blast driven instabilities
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc; Johnsen, Eric
2016-11-01
Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.
The plasmoid instability during asymmetric inflow magnetic reconnection
Murphy, Nicholas A.; Young, Aleida K.; Shen, Chengcai; Lin, Jun; Ni, Lei
2013-06-15
Theoretical studies of the plasmoid instability generally assume that the reconnecting magnetic fields are symmetric. We relax this assumption by performing two-dimensional resistive magnetohydrodynamic simulations of the plasmoid instability during asymmetric inflow magnetic reconnection. Magnetic asymmetry modifies the onset, scaling, and dynamics of this instability. Magnetic islands develop preferentially into the weak magnetic field upstream region. Outflow jets from individual X-points impact plasmoids obliquely rather than directly as in the symmetric case. Consequently, deposition of momentum by the outflow jets into the plasmoids is less efficient, the plasmoids develop net vorticity, and shear flow slows down secondary merging between islands. Secondary merging events have asymmetry along both the inflow and outflow directions. Downstream plasma is more turbulent in cases with magnetic asymmetry because islands are able to roll around each other after exiting the current sheet. As in the symmetric case, plasmoid formation facilitates faster reconnection for at least small and moderate magnetic asymmetries. However, when the upstream magnetic field strengths differ by a factor of 4, the reconnection rate plateaus at a lower value than expected from scaling the symmetric results. We perform a parameter study to investigate the onset of the plasmoid instability as a function of magnetic asymmetry and domain size. There exist domain sizes for which symmetric simulations are stable but asymmetric simulations are unstable, suggesting that moderate magnetic asymmetry is somewhat destabilizing. We discuss the implications for plasmoid and flux rope formation in solar eruptions, laboratory reconnection experiments, and space plasmas. The differences between symmetric and asymmetric simulations provide some hints regarding the nature of the three-dimensional plasmoid instability.
Baroclinic instability in stellar radiation zones
Kitchatinov, L. L.
2014-03-20
Surfaces of constant pressure and constant density do not coincide in differentially rotating stars. Stellar radiation zones with baroclinic stratification can be unstable. Instabilities in radiation zones are of crucial importance for angular momentum transport, mixing of chemical species, and, possibly, for magnetic field generation. This paper performs linear analysis of baroclinic instability in differentially rotating stars. Linear stability equations are formulated for differential rotation of arbitrary shape and then solved numerically for rotation nonuniform in radius. As the differential rotation increases, r- and g-modes of initially stable global oscillations transform smoothly into growing modes of baroclinic instability. The instability can therefore be interpreted as stability loss to r- and g-modes excitation. Regions of stellar parameters where r- or g-modes are preferentially excited are defined. Baroclinic instability onsets at a very small differential rotation of below 1%. The characteristic time of instability growth is about 1000 rotation periods. Growing disturbances possess kinetic helicity. Magnetic field generation by the turbulence resulting from baroclinic instability in differentially rotating radiation zones is therefore possible.
Engine-Level Simulation of Liquid Rocket Combustion Instabilities
2013-01-01
Chapter 3. DATES COVERED (From - To) January 2013-July 2013 4. TITLE AND SUBTITLE Engine -Level Simulation of Liquid Rocket Combustion Instabilities...ABSTRACT A numerical investigation into combustion instability in liquid rocket engines is undertaken using large eddy simulations (LES). HPCMP resources...have been applied to demonstrate the ability to simulate combustion instability in liquid rocket engines and to gain further understanding of these
Modulational instabilities of periodic traveling waves in deep water
NASA Astrophysics Data System (ADS)
Akers, Benjamin F.
2015-04-01
The spectrum of periodic traveling waves in deep water is discussed. A multi-scale method is used, expanding the spectral data and the Bloch parameter in wave amplitude, to compute the size and location of modulated instabilities. The role of these instabilities in limiting the spectrum's analyticity is explained. Both two-dimensional and three-dimensional instabilities are calculated. The asymptotic predictions are compared to numerical simulations.
Topographic-driven instabilities in terrestrial bodies
NASA Astrophysics Data System (ADS)
Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.
2013-12-01
Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.
Nguyen, T; de Jonge, L; Smith, S R; Bray, G A
2003-09-01
A robust algorithm for pull-calorimeters that provides a rapid response to changes in respiratory gas exchange has been implemented. Metabolic plateaus (over 20 min), such as that generated by steady treadmill exercise, can be measured accurately (< 2.0% error for an energy expenditure level of 16.7 kJ min(-1)). The time resolution for changes between plateaus can be accurately found with 1 min discrimination. Implementation required only software changes but no structural or instrumentation changes to the chamber. The algorithm was based on the one developed for the push-calorimeter at the Sahlgrenska Hospital in Sweden. The method utilises published equations for the rate of O2 consumption and CO2 production in the chamber, along with techniques for suppressing noise and identifying trends. Using the exact solution of the equations for steady state, the O2 concentrations from the preceding 30 min period are fitted to two connected exponential segments, of variable length, using the least-squares method. The smoothed O2 concentration and associated time derivative are then determined for the time point 15 min earlier and substituted into the respiration equations. The CO2 concentrations are subjected to the same analysis. The process is repeated every minute, and the newly computed rates of O2 consumption and CO2 production, as well as metabolic rate, are then presented. Gas injection tests proved that the chamber can respond instantaneously to a change from one steady state of respiration to another and correctly averages repeated changes in respiration with periods less than 15min (< 1.4% error for simulated, alternating O2 consumption levels of 0.81 min (-1) and 0.01 min). The successful integration of the algorithm into the Pennington chambers allows for traditional 24 h energy expenditure measurements and various metabolic experiments requiring rapid responses.
Symmetry breaking and wake instabilities
NASA Astrophysics Data System (ADS)
Sengupta, Raja
A numerical technique has been developed in the context of spatio-temporal stability analysis. The convective/absolute nature of instability determines the time-asymptotic response of a linearly unstable flow, either in the form an oscillator or in the form of a noise amplifier. This depends on the location of pinch point singularities of the dispersion relations obtained via linear stability analyses. A new and efficient approach to locate such singularities is presented. Local analyticity of the dispersion relations was exploited via the Cauchy-Riemann equations in a quasi-Newton's root- finding procedure employing numerical Jacobians. Initial guesses provided by temporal stability analyses have been shown to converge to the pinch points even in the presence of multiple saddle points for various Falkner- Skan wedge profiles. This effort was motivated by the phenomenon of spontaneous symmetry breaking in flow over a cone. At large enough incidence, a pair of vortices develop on the leeward side of the cone which eventually become asymmetric as the angle of attack is increased further. A conical, thin-layer Navier-Stokes solver was employed to investigate the effect of flowfield saddles in this process. The approximate factorization scheme incorporated in the solver was shown analytically to be symmetric to eliminate possible sources of asymmetry. Local grid resolution studies were performed to demonstrate the importance of correctly computing the leeside saddle point and the secondary separation and reattchment points. Topological studies of the flow field as it loses symmetry agreed well with previous qualitative experimental observations. However, the original goal of this study, to settle an ongoing controversy regarding the nature of the instability responsible for symmetry breaking, could not be realized due to computational inadequacy. It is conjectured that the process is governed by an absolute instability similar to that observed in a flow over a circular
Ordinary electromagnetic mode instability
NASA Technical Reports Server (NTRS)
Cheng, C. Z.
1974-01-01
The instability of the ordinary electromagnetic mode propagating perpendicular to an external magnetic field is studied for a single-species plasma with ring velocity distribution. The marginal instability boundaries for both the purely growing mode and the propagating growing modes are calculated from the instability criteria. The dispersion characteristics for various sets of plasma parameters are also given. The typical growth rates are of the order of the cyclotron frequency.
Instability in Rotating Machinery
NASA Technical Reports Server (NTRS)
1985-01-01
The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.
Dynamic Instability of Barlike Modes
NASA Astrophysics Data System (ADS)
Durisen, Richard H.; Pickett, Brian K.; Bate, Matthew R.; Imamura, James N.; Brandl, Andreas; Sterzik, Michael F.
Numerical simulations during the 1980's established that prompt binary formation (or ``fission'') through dynamic growth of barlike modes is aborted by gravitational torques. Because these instabilities may occur during star formation and because their outcome over long times is still uncertain, we have combined various linear analyses with simulations by hydrodynamics codes to refine our understanding. We show that it is in fact the torques which cause nonlinear saturation of the mode amplitude. Excellent agreement for the early nonlinear phase is obtained using radically different hydrodynamics codes. However, the ultimate outcome is sensitive to assumptions about dissipative heating and is also somewhat code-dependent.
Jacobson, Robert B.; Primm, Alexander T.
1994-01-01
Ozarks streams have been aggraded by substantial quantities of gravel beginning at or near the time of European settlement. Historical data illustrate multiple, significant changes in land use that may have contributed to stream disturbance. The earliest change was replacement of riparian forest with cultivated fields and pasture, followed by extensive harvesting of shortleaf pine and oak during 1870 to 1920. Selective cutting of timber, use of livestock for skidding logs, and avoidance of steep slopes minimized increases in runoff and sediment supply from logging of uplands. Expanded use of valley bottoms for agriculture and roads, and extreme regional floods from 1895 to 1915 probably initiated significant stream disturbance during this period. The period during 1920-60 included the institution of annual burning of uplands, increased open-range grazing, and increased use of marginal land for row crops. Models for land-use controls on runoff and erosion indicate that this period should have been the most effective in creating stream disturbance. Historical sources corroborate that upland erosion was severe on small areas used for row crops and moderate on large areas subjected to seasonal burning. The most severe effect on streams, however, probably occurred during this period as a result of destruction of riparian vegetation by open-range livestock. From 1960-93, cultivated fields and pasture decreased, while cattle populations increased. Whereas some riparian areas have reverted to bottomland forest, this stabilizing effect occurs on only a small portion of valley- bottom land. Recovery processes aided by riparian vegetation are limited by channel instability and frequent, large floods.
Gravitational instabilities in astrophysical fluids
NASA Astrophysics Data System (ADS)
Tohline, Joel E.
1990-01-01
Over the past decade, the significant advancements that have been made in the development of computational tools and numerical techniques have allowed astrophysicists to begin to model accurately the nonlinear growth of gravitational instabilities in a variety of physical systems. The fragmentation or rotationally driven fission of dynamically evolving, self-gravitating ``drops and bubbles'' is now routinely modeled in full three-dimensional generality as we attempt to understand the behavior of protostellar clouds, rotating stars, galaxies, and even the primordial soup that defined the birth of the universe. A brief review is presented here of the general insights that have been gained from studies of this type, followed by a somewhat more detailed description of work, currently underway, that is designed to explain the process of binary star formation. A short video animation sequence, developed in conjunction with some of the research being reviewed, illustrates the basic-nature of the fission instability in rotating stars and of an instability that can arise in a massive disk that forms in a protostellar cloud.
Soft Dielectrics: Heterogeneity and Instabilities
NASA Astrophysics Data System (ADS)
Rudykh, Stephan; Debotton, Gal; Bhattacharya, Kaushik
2012-02-01
Dielectric Elastomers are capable of large deformations in response to electrical stimuli. Heterogeneous soft dielectrics with proper microstructures demonstrate much stronger electromechanical coupling than their homogeneous constituents. In turn, the heterogeneity is an origin for instability developments leading to drastic change in the composite microstructure. In this talk, the electromechanical instabilities are considered. Stability of anisotropic soft dielectrics is analyzed. Ways to achieve giant deformations and manipulating extreme material properties are discussed. 1. S. Rudykh and G. deBotton, ``Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses.'' Journal of Elasticity, 2011. http://dx.doi.org/2010.1007/s10659-011-9313-x 2. S. Rudykh, K. Bhattacharya and G. deBotton, ``Snap-through actuation of thick-wall electroactive balloons.'' International Journal of Non-Linear Mechanics, 2011. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.006 3. S. Rudykh and G. deBotton, ``Stability of Anisotropic Electroactive Polymers with Application to Layered Media.'' Zeitschrift f"ur angewandte Mathematik und Physik, 2011. http://dx.doi.org/10.1007/s00033-011-0136-1 4. S. Rudykh, A. Lewinstein, G. Uner and G. deBotton, ``Giant Enhancement of the Electromechanical Coupling in Soft Heterogeneous Dielectrics.'' 2011 http://arxiv.org/abs/1105.4217v1
Roux, G; White, S R; Capponi, S; Poilblanc, D
2006-08-25
The effect of a parallel magnetic field on superconducting two-leg ladders is investigated numerically. The magnetization curve displays an irrational plateau at a magnetization equal to the hole density. Remarkably, its stability is fundamentally connected to the existence of a well-known magnetic resonant mode. Once the zero-field spin gap is suppressed by the field, pairs acquire a finite momentum characteristic of a Fulde-Ferrell-Larkin-Ovchinnikov phase. In addition, Sz = 0 triplet superconducting correlations coexist with singlet ones above the irrational plateau. This provides a simple mechanism in which the Pauli limit is exceeded as suggested by recent experiments.
Petersen, James C.
1998-01-01
Fish communities from 22 reaches at 18 stations in the Ozark Plateaus were sampled in 1993, 1994, and 1995. The 18 stations were chosen to represent selected combinations of major environmental factors (geology/physiographic area, land use, and basin size). Additional physical, chemical, and biological factors also were measured for each of the 22 reaches and the influence of these factors upon the fish communities was investigated. Fish community samples collected at the 22 reaches identified differences in these communities that can be attributed to differences in land use and related water-quality and habitat characteristics. Communities from agriculture reaches tended to have more species, increased relative abundance of stonerollers and members of the sucker family, and decreased relative abundance of members of the sunfish and darter families. Several groups of environmental factors (concentrations of nutrients, organic carbon, suspended sediment, and dissolved oxygen; measures related to ionic strength; measures related to riparian vegetation; measures related to substrate; and measures related to stream size) appear to be related to land-use differences and fish community differences. Three multivariate analysis techniques (two ordination techniques and a classification technique) yielded similar results when applied to the fish community data. Fish communities from reaches with more similar land use in their basins and with similar drainage areas generally were grouped closer together in the analysis. Water quality, substrate, stream morphology, and riparian measures appear to be affecting fish communities at these reaches. The relations between land use, stream size, and fish communities have implications for waterquality assessments of Ozark streams. Compared to other parts of the United States, many fish species live in the Ozark Plateaus. At least 19 of these species are endemic to the Ozarks area. Many of these species are intolerant of habitat or
Thermal instability of a radiative and resistive coronal plasma
NASA Technical Reports Server (NTRS)
Sparks, L.; Van Hoven, G.
1988-01-01
Thermal instability is believed to determine the evolution and formation of cool structures in the solar atmosphere such as the transition region and prominences (or filaments). The linear modes that arise in a sheared, force-free, magnetic field due to thermal instability are studied numerically. Previous studies have considered separately modes that arise due to the effects of radiation, compression, anisotropic thermal conduction, and ohmic heating. Here the results of such studies are integrated, first by presenting simple arguments that illustrate the essential physics of ideal, sheared-field, condensation modes, and second by showing numerically how finite resistivity affects the condensational instability in parameter regimes applicable to the solar corona.
Interplay of instabilities in mounded surface growth
Chakrabarti, Buddhapriya; Dasgupta, Chandan
2005-02-01
We numerically study a one-dimensional conserved growth equation with competing linear (Ehrlich-Schwoebel) and nonlinear instabilities. As a control parameter is varied, this model exhibits a nonequilibrium phase transition between two mounded states, one of which exhibits slope selection and the other does not. The coarsening behavior of the mounds in these two phases is studied in detail. In the absence of noise, the steady-state configuration depends crucially on which of the two instabilities dominates the early time behavior.
MHD thermal instabilities in cool inhomogeneous atmospheres
NASA Technical Reports Server (NTRS)
Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.
1983-01-01
The formation of a coronal state in a stellar atmosphere is investigated. A numerical code is used to study the effects of atmospheric gradients and finite loop dimension on the scale of unstable perturbations, solving for oscillatory perturbations as eigenfunctions of a boundary value problem. The atmosphere is considered as initially isothermal, with density and pressure having scale heights fixed by the hydrostatic equations. Joule mode instability is found to be an efficient mechanism for current filamentation and subsequent heating in initially cool atmospheres. This instability is mainly effective at the top of magnetic loops and is not suppressed by thermal conduction.
Azuma, Takehiro; Morita, Takeshi; Takeuchi, Shingo
2014-08-29
It is expected that the Gregory-Laflamme (GL) instability in the black string in gravity is related to the Rayleigh-Plateau instability in fluid mechanics. Especially, the orders of the phase transitions associated with these instabilities depend on the number of the transverse space dimensions, and they are of first and second order below and above the critical dimension. Through the gauge-gravity correspondence, the GL instability is conjectured to be thermodynamically related to the Hagedorn instability in large-N gauge theories, and it leads to a prediction that the order of the confinement-deconfinement transition associated with the Hagedorn instability may depend on the transverse dimension. We test this conjecture in the D-dimensional bosonic D0-brane model using numerical simulation and the 1/D expansion, and confirm the expected D dependence.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
NASA Astrophysics Data System (ADS)
Barminova, H. Y.; Chikhachev, A. S.
2016-02-01
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
Barminova, H. Y.; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Buckling instability in arteries.
Vandiver, Rebecca M
2015-04-21
Arteries can become tortuous in response to abnormal growth stimuli, genetic defects and aging. It is suggested that a buckling instability is a mechanism that might lead to artery tortuosity. Here, the buckling instability in arteries is studied by examining asymmetric modes of bifurcation of two-layer cylindrical structures that are residually stressed. These structures are loaded by an axial force, internal pressure and have nonlinear, anisotropic, hyperelastic responses to stresses. Strain-softening and reduced opening angle are shown to lower the critical internal pressure leading to buckling. In addition, the ratio of the media thickness to the adventitia thickness is shown to have a dramatic impact on arterial instability.
Taylor, Charles J.; Nelson, Hugh L.
2008-01-01
Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.
Turing instabilities on Cartesian product networks
Asllani, Malbor; Busiello, Daniel M.; Carletti, Timoteo; Fanelli, Duccio; Planchon, Gwendoline
2015-01-01
The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory. PMID:26245138
Oscillatory interfacial instability between miscible fluids
NASA Astrophysics Data System (ADS)
Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar
Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.
Multidimensional simulations of pair-instability supernovae
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Chardonnet, P.; Chechetkin, V. M.; Filina, A. A.; Popov, M. V.
2013-10-01
According to theoretical models, massive stars with masses within the 100-250 M⊙ range should explode as pair-instability supernovae (PISNe). Since the first stars of the Universe are believed to be very massive, these supernovae should play a significant role in the early stages of its history. But these stars represent the last unobserved population, owing to detection limits of current telescopes. In this work we analyze pair-instability supernovae explosions using various numerical codes. We evolve series of the configurations of oxygen cores to establish a range of masses and initial conditions where this type of explosion is possible. We also study the role of possible instabilities in the propagation of shockwaves during the last stage of the explosion. This investigation could help us to predict the observational properties of PISNe for future space and ground telescopes.
Crack instabilities of a heated glass strip
NASA Astrophysics Data System (ADS)
Adda-Bedia, Mokhtar; Pomeau, Yves
1995-10-01
Recently, Yuse and Sano [Nature (London) 362, 329 (1993)] have observed that a crack traveling in a glass strip submitted to a nonuniform thermal diffusion field undergoes numerous instabilities. We study two cases of quasistatic crack propagation. The crack extension condition in straight propagation is determined. An asymptotic analysis of the elastic free energy is introduced and scaling laws are derived. A linear stability analysis of the straight propagation is performed, based on the assumption that the crack tip propagation deviates from the centered straight one as soon as it is submitted to a ``physical'' singular shear stress. It is shown that a straight propagation can become unstable after which a wavy instability appears. The condition for instability as well as the selected wavelength is calculated quantitatively. The results are compared with experiments and the agreement is favorable.
The mirror and ion cyclotron anisotropy instabilities
NASA Technical Reports Server (NTRS)
Gary, S. P.
1992-01-01
The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.
Linear study of the precessional fishbone instability
NASA Astrophysics Data System (ADS)
Idouakass, M.; Faganello, M.; Berk, H. L.; Garbet, X.; Benkadda, S.
2016-10-01
The precessional fishbone instability is an m = n = 1 internal kink mode destabilized by a population of trapped energetic particles. The linear phase of this instability is studied here, analytically and numerically, with a simplified model. This model uses the reduced magneto-hydrodynamics equations for the bulk plasma and the Vlasov equation for a population of energetic particles with a radially decreasing density. A threshold condition for the instability is found, as well as a linear growth rate and frequency. It is shown that the mode frequency is given by the precession frequency of the deeply trapped energetic particles at the position of strongest radial gradient. The growth rate is shown to scale with the energetic particle density and particle energy while it is decreased by continuum damping.
Darmon, Elise
2014-01-01
SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039
Ladd, David E.
2016-01-01
As part of the U.S. Geological Survey Water Availability and Use Science Program study of Appalachian Plateaus aquifers, bottom elevations and thicknesses were determined for Permian, Upper Pennsylvanian, Lower Pennsylvanian, and Mississippian hydrogeologic framework units in the Appalachian Plateaus, covering parts of Pennsylvania, Maryland, Ohio, West Virginia, Kentucky, Virginia, Tennessee, Georgia, and Alabama. Thickness values for these units were compiled at point locations from available sources (Martens, 1945; McKee and Crosby, 1975; Craig and Connor, 1979; Ryder and others, 2008, 2009, 2012, 2015) and used to interpolate surfaces representing thicknesses, contact elevations, and outcrop elevations using earthVision software (Dynamic Graphics, Inc., 2014). Unit contact and outcrop elevations at cell centers from the earthVision rasters were used as the primary source to create geodatabase rasters representing bottom elevations and thicknesses of the Permian, Upper Pennsylvanian, Lower Pennsylvanian, and Mississippian framework units.
Distal Radioulnar Joint Instability
Mirghasemi, Ali R.; Lee, Daniel J.; Rahimi, Narges; Rashidinia, Shervin
2015-01-01
Distal radioulnar joint (DRUJ) instability is a common clinical condition but a frequently missed diagnosis. Both surgical and nonsurgical treatments are possible for chronic cases of DRUJ instability. Nonsurgical treatment can be considered as the primary therapy in less active patients, while surgery should be considered to recover bone and ligament injuries if nonsurgical treatment fails to restore forearm stability and function. The appropriate choice of treatment depends on the individual patient and specific derangement of the DRUJ PMID:26328241
Prediction of Algebraic Instabilities
NASA Astrophysics Data System (ADS)
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Equilibrium Electroconvective Instability
NASA Astrophysics Data System (ADS)
Rubinstein, I.; Zaltzman, B.
2015-03-01
Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.
Noise-induced instability in self-consistent Monte Carlo calculations
Lemons, D.S.; Lackman, J.; Jones, M.E.; Winske, D.
1995-12-01
We identify, analyze, and propose remedies for a numerical instability responsible for the growth or decay of sums that should be conserved in Monte Carlo simulations of stochastically interacting particles. ``Noisy`` sums with fluctuations proportional to 1/ {radical}{ital n} , where {ital n} is the number of particles in the simulation, provide feedback that drives the instability. Numerical illustrations of an energy loss or ``cooling`` instability in an Ornstein-Uhlenbeck process support our analysis. (c) 1995 The American Physical Society
Introduction to Numerical Methods
Schoonover, Joseph A.
2016-06-14
These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.
Propagating Instabilities in Solids
NASA Astrophysics Data System (ADS)
Kyriakides, Stelios
1998-03-01
Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this
On cooperative instabilities of parallel vortex pairs
NASA Astrophysics Data System (ADS)
Bristol, R. L.; Ortega, J. M.; Marcus, P. S.; Savas, Ö.
2004-10-01
We present a combined analytical and numerical study of the instabilities of a pair of parallel unequal-strength vortices. We extend the analyses of a vortex in an external strain field (Crow, AIAA J. vol. 8, 1970, p. 2172; Widnall et al., J. Fluid Mech. vol. 66, 1974, p. 35) to include the orbital motion of the vortex pair. For counter-rotating pairs, the classic Crow-type periodic displacement perturbations are unstable for all vortex strength ratios, with fastest-growing wavelengths several times the vortex spacing. For co-rotating pairs, the orbital motion acts to suppress instability due to displacement perturbations. Instabilities in this case arise for elliptic perturbations at wavelengths that scale with the vortex core size. We also examine the influence of a second vortex pair by extending Crouch's (J. Fluid Mech. vol. 350, 1997, p. 311) analysis. Numerical results from a spectral initial-value code with subgrid-scale modelling agree with the growth rates from the theoretical models. Computations reveal the nonlinear evolution at late times, including wrapping and ring-rejection behaviour observed in experiments. A pair of co-rotating Gaussian vortices perturbed by noise develops elliptic instabilities, leading to the formation of vorticity bridges between the two vortices. The bridging is a prelude to vortex merger. Analytic, computational and experimental results agree well at circulation Reynolds numbers of order 10(5) .
Collisionless shock waves mediated by Weibel Instability
NASA Astrophysics Data System (ADS)
Naseri, Neda; Ruan, Panpan; Zhang, Xi; Khudik, Vladimir; Shvets, Gennady
2015-11-01
Relativistic collisionless shocks are common events in astrophysical environments. They are thought to be responsible for generating ultra-high energy particles via the Fermi acceleration mechanism. It has been conjectured that the formation of collisionless shocks is mediated by the Weibel instability that takes place when two initially cold, unmagnetized plasma shells counter-propagate into each other with relativistic drift velocities. Using a PIC code, VLPL, which is modified to suppress numerical Cherenkov instabilities, we study the shock formation and evolution for asymmetric colliding shells with different densities in their own proper reference frame. Plasma instabilities in the region between the shock and the precursor are also investigated using a moving-window simulation that advances the computational domain at the shock's speed. This method helps both to save computation time and avoid severe numerical Cherenkov instabilities, and it allows us to study the shock evolution in a longer time period. Project is supported by US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.
Combustion instability modeling and analysis
Santoro, R.J.; Yang, V.; Santavicca, D.A.
1995-10-01
It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.
NASA Astrophysics Data System (ADS)
Le Deit, L.; Flahaut, J.; Quantin, C.; Allemand, P.
2009-12-01
The plateaus around Valles Marineris consist in series of mafic rocks suggested to be flood basalts (McEwen et al., 1998), lavas interbedded with sediments (Malin and Edgett, 2000), layered intrusive rocks (Williams et al., 2003), or lava flows dated from the Noachian to the late Hesperian epochs (Scott and Carr, 1978). Recent studies show the occurrence of light layered deposits of hundred meters thick cropping out on plateaus near Ius Chasma, Melas Chasma, Candor Chasma, Juventae Chasma and Ganges Chasma deposited during the Hesperian epoch by fluvio-lacustrine processes (Weitz et al., 2009), or by air-fall processes (Le Deit et al., 2009). These layered deposits are enriched in hydrated minerals including opaline silica (Milliken et al., 2008), hydroxylated ferric sulfates (Bishop et al., 2009), and possibly Al-rich phyllosilicates (Le Deit et al., 2009). We identified another type of formation corresponding to light-toned massive deposits cropping out around Valles Marineris. It appears that these light-toned deposits are associated to bright, rough, and highly cratered terrains, located beneath a dark and thin capping unit. Previous studies report the occurrence of phyllosilicates on few locations around Valles Marineris based on OMEGA data analyses (Gondet et al., 2007; Carter et al., 2009). The analysis of CRISM data show that the light-toned deposits are associated with spectra displaying absorption bands at 1.4 μm, 1.9 μm, and a narrow band at 2.2 μm. These spectral characteristics are consistent with the presence of Al-rich phyllosilicates such as montmorillonite, or illite in the light-toned deposits. They constitute dozens of outcrops located on the plateaus south and east of Coprates Chasma and Capri Chasma, and west of Ganges Chasma. All outcrops investigated so far are present over Noachian terrains mapped as the unit Npl2 by Scott and Tanaka (1986), and Witbeck et al. (1991). These light-toned deposits could result from in situ aqueous alteration
Abbas, Tarek; Keaton, Mignon A.; Dutta, Anindya
2013-01-01
One of the fundamental challenges facing the cell is to accurately copy its genetic material to daughter cells. When this process goes awry, genomic instability ensues in which genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Organisms have developed multiple mechanisms that can be classified into two major classes to ensure the fidelity of DNA replication. The first class includes mechanisms that prevent premature initiation of DNA replication and ensure that the genome is fully replicated once and only once during each division cycle. These include cyclin-dependent kinase (CDK)-dependent mechanisms and CDK-independent mechanisms. Although CDK-dependent mechanisms are largely conserved in eukaryotes, higher eukaryotes have evolved additional mechanisms that seem to play a larger role in preventing aberrant DNA replication and genome instability. The second class ensures that cells are able to respond to various cues that continuously threaten the integrity of the genome by initiating DNA-damage-dependent “checkpoints” and coordinating DNA damage repair mechanisms. Defects in the ability to safeguard against aberrant DNA replication and to respond to DNA damage contribute to genomic instability and the development of human malignancy. In this article, we summarize our current knowledge of how genomic instability arises, with a particular emphasis on how the DNA replication process can give rise to such instability. PMID:23335075
Scaling the Incompressible Richtmyer-Meshkov Instability
Cotrell, D; Cook, A
2007-01-09
We derive a scaling relation for Richtmyer-Meshkov instability of incompressible fluids. The relation is tested using both numerical simulations and experimental data. We obtain collapse of growth rates for a wide range of initial conditions by using vorticity and velocity scales associated with the interfacial perturbations and the acceleration impulse. A curve fit to the collapsed growth rates yields a fairly universal model for the mixing layer thickness versus time.
Generalized lower-hybrid-drift instability. [of plasma
NASA Technical Reports Server (NTRS)
Hsia, J. B.; Chiu, S. M.; Hsia, M. F.; Chou, R. L.; Wu, C. S.
1979-01-01
The theory of lower-hybrid-drift instability is extended to include a finite value of the component of wave vector parallel to the ambient magnetic field so that the analysis bridges the usual lower-hybrid-drift instability of flute modes and the modified-two-stream instability. The present theory also includes electromagnetic and ambient magnetic field-gradient effects. It is found that in the cold-electron limit the density and magnetic gradients can qualitatively modify the conclusion obtained in the early theory of the modified-two-stream instability. For example, even if the relative drift far exceeds the Alfven speed of the plasma, the instability may still persist. This result is in contrast to that established in the literature. When the electron temperature is finite, the problem is complicated. Numerical solutions are obtained for a number of cases.
Interfacial instabilities and fingering formation in Hele-Shaw flow
NASA Astrophysics Data System (ADS)
Xu, Jian-Jun
1996-10-01
The interfacial instability of Hele-Shaw flow has been a crucial issue for the understanding of the pattern formation of viscous fingers in a Hele-Shaw cell. By using a unified asymptotic approach, we derive two different types of instability mechanisms for slightly' time-dependent finger solutions; namely, (i) the global-trapped-wave (GTW) instability; and (ii) the zero-frequency (null-f) instability. On the basis of these instability mechanisms, the selection of viscous finger formation is clarified; the apparent contradiction between the previous linearstability analysis by Tanveer (1987, Phys. Fluid 30, 1589) and others and the numerical simulations by DeGregoria & Schwartz (1986, J. Fluid Mech. 164, 383)and the experimental evidence is reconciled.
Hydrodynamics of pedestrians' instability in floodwaters
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Oumeraci, Hocine; Castelli, Fabio
2017-01-01
People's safety is the first objective to be fulfilled by flood risk mitigation measures, and according to existing reports on the causes of casualties, most of the fatalities are due to inappropriate behaviour such as walking or driving in floodwaters. Currently available experimental data on people instability in floodwaters suffer from a large dispersion primarily depending on the large variability of the physical characteristics of the subjects. This paper introduces a dimensionless mobility parameter θP for people partly immersed in flood flows, which accounts for both flood and subject characteristics. The parameter θP is capable of identifying a unique threshold of instability depending on a Froude number, thus reducing the scatter of existing experimental data. Moreover, a three-dimensional (3-D) numerical model describing the detailed geometry of a human body and reproducing a selection of critical pairs of water depth and velocity is presented. The numerical results in terms of hydrodynamic forces and force coefficients are analysed and discussed. Both the mobility parameter θP and the numerical results hint at the crucial role of the Froude number and relative submergence as the most relevant dimensionless numbers to interpret the loss of stability. Finally, the mobility parameter θP is compared with an analogous dimensionless parameter for vehicles' instability in floodwaters, providing a new contribution to support flood risk management and educating people.
Linear analysis of incompressible Rayleigh-Taylor instability in solids
NASA Astrophysics Data System (ADS)
Piriz, A. R.; López Cela, J. J.; Tahir, N. A.
2009-10-01
The study of the linear stage of the incompressible Rayleigh-Taylor instability in elastic-plastic solids is performed by considering thick plates under a constant acceleration that is also uniform except for a small sinusoidal ripple in the horizontal plane. The analysis is carried out by using an analytical model based on the Newton second law and it is complemented with extensive two-dimensional numerical simulations. The conditions for marginal stability that determine the instability threshold are derived. Besides, the boundary for the transition from the elastic to the plastic regime is obtained and it is demonstrated that such a transition is not a sufficient condition for instability. The model yields complete analytical solutions for the perturbation amplitude evolution and reveals the main physical process that governs the instability. The theory is in general agreement with the numerical simulations and provides useful quantitative results. Implications for high-energy-density-physics experiments are also discussed.
Nonlinear spacial instability of a fluid sheet
NASA Technical Reports Server (NTRS)
Rangel, R. H.; Hess, C. F.
1990-01-01
The mechanism of nonlinear distortion of a fluid sheet leading to atomization is investigated numerically with the use of vortex dynamics and experimentally by means of holography. The configuration investigated consists of a planar fluid sheet emerging from a rectangular slit with and without coflowing air. The numerical model is two-dimensional, inviscid, and includes surface tension effects. The experimental results indicate the existence of well-defined three-dimensional structures. These are formed mainly by the nonlinear interaction of transverse and streamwise disturbances. The transverse disturbances are associated with the Kelvin-Helmholtz instability while the streamwise disturbances appear related to streamwise vortices possibly originating inside the nozzle.
Acoustic instability driven by cosmic-ray streaming
NASA Astrophysics Data System (ADS)
Begelman, Mitchell C.; Zweibel, Ellen G.
1994-08-01
We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) Pc. At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta PC/PC approximately (kL) -1 much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are
Acoustic instability driven by cosmic-ray streaming
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.; Zweibel, Ellen G.
1994-01-01
We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic
Torsional instability in suspension bridges: The Tacoma Narrows Bridge case
NASA Astrophysics Data System (ADS)
Arioli, Gianni; Gazzola, Filippo
2017-01-01
All attempts of aeroelastic explanations for the torsional instability of suspension bridges have been somehow criticised and none of them is unanimously accepted by the scientific community. We suggest a new nonlinear model for a suspension bridge and we perform numerical experiments with the parameters corresponding to the collapsed Tacoma Narrows Bridge. We show that the thresholds of instability are in line with those observed the day of the collapse. Our analysis enables us to give a new explanation for the torsional instability, only based on the nonlinear behavior of the structure.
Raising the mode instability thresholds of fiber amplifiers
NASA Astrophysics Data System (ADS)
Smith, Arlee V.; Smith, Jesse J.
2014-03-01
We use our numerical model of mode instability to analyze the influences of spontaneous thermal Rayleigh scattering (sTRS) and laser gain saturation on instability threshold powers. sTRS is stronger than the quantum noise used as the seed power for stimulated thermal Rayleigh scattering in previous studies, so the threshold is reduced by 15-25% with sTRS seeding. Gain saturation is strong in any efficient amplifier and we show how it can be exploited to raise instability thresholds be a factor of two or more while staying below the stimulated Brillouin threshold.
Electrokinetic instability near charge-selective hydrophobic surfaces.
Shelistov, V S; Demekhin, E A; Ganchenko, G S
2014-07-01
The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.
Electrokinetic instability near charge-selective hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Shelistov, V. S.; Demekhin, E. A.; Ganchenko, G. S.
2014-07-01
The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.
Control and simulation of thermoacoustic instabilities
NASA Astrophysics Data System (ADS)
Poinsot, Thierry
2014-11-01
Combustion instabilities (CI), due to thermoacoustic coupling between acoustic waves and chemical reaction, constitute a major danger for all combustion systems. They can drive the system to unstable states where the whole combustor can oscillate, vibrate, quench or in extreme cases explode or burn. Such phenomena are commonly observed in the final phases of development programs, leading to major difficulties and significant additional costs. One of the most famous examples of combustion instabilities is the F1 engine of the Apollo program which required more than 1000 engine tests to obtain a stable regime satisfying all other constraints (performance, ignition, etc). CIs constitute one of the most challenging problems in fluid mechanics: they combine turbulence, acoustics, chemistry, unsteady two-phase flow in complex geometries. Since combustion instabilities have been identified (more than hundred years ago), the combustion community has followed two paths: (1) improve our understanding of the phenomena controlling stability to build engines which would be ``stable by design'' and (2) give up on a detailed understanding of mechanisms and add control systems either in open or closed loop devices to inhibit unstable modes. Of course, understanding phenomena driving combustion instabilities to suppress them would be the most satisfying approach but there is no fully reliable theory or numerical method today which can predict whether a combustor will be stable or not before it is fired. This talk will present an overview of combustion instabilities phenomenology before focusing on: (1) active control methods for combustion instabilities and (2) recent methods to predict unstable modes in combustors. These methods are based on recent Large Eddy Simulation codes for compressible reacting flows on HPC systems but we will also describe recent fully analytical methods which provide new insights into unstable modes in annular combustion chambers. Support: European
Numerical calculations of flow fields
NASA Technical Reports Server (NTRS)
Anderson, D.; Vogel, J. M.
1973-01-01
Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.
NASA Astrophysics Data System (ADS)
Olmedo, Oscar; Zhang, J.
2010-05-01
Flux ropes are now generally accepted to be the magnetic configuration of Coronal Mass Ejections (CMEs), which may be formed prior or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its instability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, the partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches one, the critical index goes to a maximum value that depends on the distribution of the external magnetic field. We demonstrate that the partial torus instability helps us to understand the confinement, growth, and eventual eruption of a flux rope CME.
[Psychodynamics of childhood instability].
Flavigny, C
1988-01-01
This work focuses on the Anglo-Saxon idea concerning "hyperactivity" and "hyperkinesis" and the French-language idea of "child psycho-motor instability". The author's own personal study (having two separate parts, on the one hand studying the psychic functioning of parent and their interaction with their child, and on the other, studying material gathered on the individual psychotherapy of unstable children), goes along with the French school of thought, highlighting the extent of incestuous sexual advances toward children (especially boys) in the family unit and the sexual nature (in the sense of child sexuality) of this excitement as the source of their instability, justifying a comparison between the unstable child and a Don Juan-type of instability. What comes out is epistemological thinking on Anglo-Saxon and French-language ideas, in particular criticism of the pre-suppositions in the Anglo-Saxon way of seeing things, which seems only to envisage the characterization of a syndromic range, rather than an organic etiology, this being more often implicit; distanced by the idea of psychodynamics, which predominate in the French-language studies, integrating the symptom of "psycho-motor instability" in the general "wholeness" of the child and evaluating ways of parent-child interaction.
Pair instability supernovae of very massive population III stars
Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.
2014-09-01
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
Pair Instability Supernovae of Very Massive Population III Stars
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.
2014-09-01
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ⊙ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ~20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
Adamski, J.C.
2000-01-01
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate-rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field-measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water-rock interactions. Water from wells flow through small fractures, which restrict
Instabilities of volatile films and drops
NASA Astrophysics Data System (ADS)
Murisic, Nebojsa
2008-12-01
the focus to the gas phase, where the problem of vapor mass diffusion is to be solved, which invokes analogy with the problem of lens-shaped conductor from electrostatics. On the other hand, NEOS model assumes non-equilibrium at the liquid-gas interface and a reaction-limited regime of evaporation; the liquid and gas phases are decoupled using the one-sided assumption, and hence, the problem is to be solved in the liquid phase only. We use lubrication approximation and derive a single governing equation for the evolution of drop thickness, which includes both models. An experimental procedure is described next, which we use in order to estimate the volatility parameter corresponding to each model. We also describe the numerical code, which we use to solve the governing equation for drop thickness, and show how this equation can be used to predict which evaporation model is more appropriate for a particular physical problem. Next, we perform linear stability analysis (LSA) of perturbed thin film configuration. We find excellent agreement between our numerical results and LSA predictions. Furthermore, these results indicate that the IPA/Si configuration is the most unstable one, in direct agreement with experimental results. We perform numerical simulations in the simplified 2d geometry (cross section of the drop) for both planar and radial symmetry and show that our theoretical model reproduces the main features of the experiment, namely, the formation of "octopus"-like features ahead of the contact line of an evaporating drop. Finally, we perform quasi-3d numerical simulations of evaporating drops, where stability to azimuthal perturbations of the contact line is examined. We recover the "octopi" instability for IPA/Si configuration, similarly as seen in the experiments.
Radiation induced genomic instability in bystander cells
NASA Astrophysics Data System (ADS)
Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.
There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with
Study of Fast Instability in Fermilab Recycler
Antipov, Sergey; Adamson, Philip; Nagaitsev, Sergei; Yang, Ming-Jen
2016-06-01
One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. Various peculiar features of the instability: its occurrence only above a certain intensity threshold, and only in horizontal plane, as well as the rate of the instability, suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The findings suggest electron cloud trapping in Recycler combined function mag-nets. Bunch-by-bunch measurements of betatron tune show a tune shift towards the end of the bunch train and allow the estimation of the density of electron cloud and the rate of its build-up. The experimental results are in agreement with numerical simulations of electron cloud build-up and its interaction with the beam.
Tidal instability and magnetic field generation
NASA Astrophysics Data System (ADS)
Le Gal, Patrice; Cébron, David; Herreman, Wietze; Le Bars, Michael; Le Dizès, Stéphane
2010-11-01
We are interested in the interaction of the elliptical instability and magnetic fields in liquid metal flows both on laboratory and planetary scales. We first discuss an experimental set-up that realizes an elliptical flow of Galinstan under an imposed field. The presence of a magnetic field is here of double interest. Elliptically excited flows are monitored through the magnetic fields they induce and the instability may be controlled by Joule damping. This study provides some new insight in the nonlinear stages of the elliptical instability. In a planetary context, it is likely that elliptical instability under imposed field occurs in the tidally deformed moon Io of Jupiter. We show how tidally excited flows may significantly deform the imposed field of Jupiter through an induction process. Finally, we also study whether tidally driven flows can be capable of generating and sustaining magnetic fields through the dynamo effect. We present a first numerical study on the possibility of tidally driven dynamo action in triaxial spheroids.
Electrostatic ion cyclotron velocity shear instability
Lemons, D.S.; Winske, D.; Gary, S.P. )
1992-12-01
An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.
NASA Astrophysics Data System (ADS)
Rembiasz, T.; Obergaulinger, M.; Cerdá-Durán, P.; Müller, E.; Aloy, M. A.
2016-03-01
The magnetorotational instability (MRI) can be a powerful mechanism amplifying the magnetic field in core-collapse supernovae. Whether initially weak magnetic fields can be amplified by this instability to dynamically relevant strengths is still a matter of debate. One of the main uncertainties concerns the process that terminates the growth of the instability. Parasitic instabilities of both Kelvin-Helmholtz and tearing-mode type have been suggested to play a crucial role in this process, disrupting MRI channel flows and quenching magnetic field amplification. We perform two-dimensional and three-dimensional sheering-disc simulations of a differentially rotating protoneutron star layer in non-ideal magnetohydrodynamics with unprecedented high numerical accuracy, finding that Kelvin-Helmholtz parasitic modes dominate tearing modes in the regime of large hydrodynamic and magnetic Reynolds numbers, as encountered close to the surface of protoneutron stars. They also determine the maximum magnetic field stress achievable during the exponential growth of the MRI. Our results are consistent with the theory of parasitic instabilities based on a local stability analysis. To simulate the Kelvin-Helmholtz instabilities properly, a very high numerical resolution is necessary. Using ninth-order spatial reconstruction schemes, we find that at least eight grid zones per MRI channel are necessary to simulate the growth phase of the MRI and reach an accuracy of ˜10 per cent in the growth rate, while more than ˜60 zones per channel are required to achieve convergent results for the value of the magnetic stress at MRI termination.
NASA Astrophysics Data System (ADS)
Dublenych, Yu. I.
2014-11-01
A method for the study of the ground states of lattice-gas models or equivalent spin models with extended-range interactions is proposed. It is shown that effect of longer-range interactions can be studied in terms of the solution of the ground-state problem for a model with short-range interactions. The method is applied to explain the emergence of fractional magnetization plateaus in TmB 4 regarded as a strong Ising magnet on the Shastry-Sutherland lattice with long-range interactions.
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
Testing the gravitational instability hypothesis?
NASA Technical Reports Server (NTRS)
Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.
1994-01-01
We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests
Electric field induced lateral instability in a simple autocatalytic front
NASA Astrophysics Data System (ADS)
Horváth, Dezsö; Tóth, Ágota; Yoshikawa, Kenichi
1999-07-01
The effect of ionic drift caused by small constant electric field on autocatalytic reaction fronts of ionic species is studied both theoretically and numerically. Besides varying the velocity of propagation, the electric field parallel to the direction of propagation may induce lateral instability in planar fronts resulting in the emergence of cellular structures. The difference in the diffusivities at the onset of instability are lowered when the electric field tends to separate the species spatially. The predictions of the linear stability analysis based on a thin-front approximation are confirmed by the numerical integration of the full two-dimensional system.
On the transient phase of the Faraday instability
NASA Astrophysics Data System (ADS)
Garih, H.; Estivalezes, J. L.; Casalis, G.
2013-12-01
This study pertains to the three-dimensional direct numerical simulation (DNS) of a vertically oscillating vessel containing an incompressible Newtonian liquid, surrounded by air at rest and ambient conditions. Squire's theorem was extended and shown to apply in this case, allowing for the theory of linear stability to be implemented and a comparison to be made with the DNS results. It was further discovered that the method by which a fluid instability is initiated in the numerical simulation affects the initial development of the instability. This phenomenon was confirmed through an optimal perturbations analysis. A possible physical explanation of this effect is also presented.
Instability in poroelastic media
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2016-11-01
Fluid flow in deformable porous materials, which play significant role in different biological and geological systems of wide range of scales, is a highly nonlinear problem. Feedback from the elastic deformation of the solid skeleton on the fluid flow and vice-versa gives rise to pattern formation in the porosity structure of the skeleton. We view some of these patterns as instabilities of the coupled fluid-solid system. Due to highly nonlinear nature of the problem, very little has been understood about this instability. Here, we use a minimal poroelastic theory to understand the pattern formation in a fluid-saturated poroelastic material and discuss the similarities/differences with viscous fingering in non-deformable porous media.
[Orthostatic tremor inducing instability].
Manrique-Huarte, Raquel; Arcocha, Juan; Pérez-Fernández, Nicolás
2012-01-01
Orthostatic tremor (OT) is a neurological disease of unknown aetiology. It is defined by the presence of a 10-20 Hz tremor in the legs while standing still. Symptoms described are dizziness and instability that diminish if the patient sits down or leans on something; drinking small amounts of alcohol significantly reduces OT. Due to the dizziness and/or unsteadiness, these patients are usually referred to the neuro-otology department. We report 4 cases diagnosed with OT. The diagnosis of OT should be considered for patients with instability. The clinical history is a key factor to suspect this entity, and the diagnosis is given by the register of 10-20 Hz contractions on limb electromyography. Treatment for this disease consists of medical treatment; the first option is clonazepam.
Wrist Instability After Injury
Muminagic, Sahib; Kapidzic, Tarik
2012-01-01
Fractures of the bones that make the wrist joint together with injury to the ligaments and joint capsules are frequent traumas. It can cause besides limited movement also the pathological mobility. These mild injuries often do not provide the degree of recognizable symptoms and signs. They are diagnosed by X-ray imaging, stress images. Before arthrography was an important method, but nowadays arthroscopy has the advantage. Fresh bone and ligament injuries can be and should be repaired in the early posttraumatic period. Unrecognized and undiagnosed injuries are leading to instability of the wrist, to motion abnormalities or impingement overload syndrome. In the treatment of instability important place have reconstruction of the ligaments and arthrodesis of the wrist. PMID:23678318
Modulation instability: The beginning
NASA Astrophysics Data System (ADS)
Noskov, Roman; Belov, Pavel; Kivshar, Yuri
2012-11-01
The study of metal nanoparticles plays a central role in the emerging novel technologies employing optics beyond the diffraction limit. Combining strong surface plasmon resonances, high intrinsic nonlinearities and deeply subwavelength scales, arrays of metal nanoparticles offer a unique playground to develop novel concepts for light manipulation at the nanoscale. Here we suggest a novel principle to control localized optical energy in chains of nonlinear subwavelength metal nanoparticles based on the fundamental nonlinear phenomenon of modulation instability. In particular, we demonstrate that modulation instability can lead to the formation of long-lived standing and moving nonlinear localized modes of several distinct types such as bright and dark solitons, oscillons, and domain walls. We analyze the properties of these nonlinear localized modes and reveal different scenarios of their dynamics including transformation of one type of mode to another. We believe this work paves a way towards the development of nonlinear nanophotonics circuitry.
Instabilities in sensory processes
NASA Astrophysics Data System (ADS)
Balakrishnan, J.
2014-07-01
In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.
Open field lines instabilities
Pozzoli, R. |
1995-09-01
The results of some recent theoretical papers dealing with flute-like instabilities in the scrape-off layer of a tokamak with limiter configuration, where the magnetic field intersects conducting walls, are briefly recalled. Attention is then paid to the instability driven by the electron temperature gradient across the field in conjunction with the formation of the Debye sheath at the boundary, and to the effects due to the inclination of the end walls with respect to the magnetic field. When a divertor configuration is considered, important modifications are found owing to the strong deformations of the flux tubes passing near the {ital x}-point, which contrast the onset of flute-like perturbations, and to the stochasticity of field lines that can be excited by magnetic field perturbations. {copyright} {ital 1995 American Institute of Physics.}
Modulation instability: The beginning
NASA Astrophysics Data System (ADS)
Zakharov, V. E.; Ostrovsky, L. A.
2009-03-01
We discuss the early history of an important field of “sturm and drang” in modern theory of nonlinear waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous publications by many different authors on modulation instability, a phenomenon resulting in a variety of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples from water wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.
Chronic ankle instability: Current perspectives
Al-Mohrej, Omar A.; Al-Kenani, Nader S.
2016-01-01
Ankle sprain is reported to be among the most common recurrent injuries. About 20% of acute ankle sprain patients develop chronic ankle instability. The failure of functional rehabilitation after acute ankle sprain leads to the development of chronic ankle instability. Differentiation between functional and anatomical ankle instability is very essential to guide the proper treatment. Stability testing by varus stress test and anterior drawer test should be carried out. Subtalar instability is an important pathology that is commonly by passed during the assessment of chronic ankle instability. Unlike acute ankle sprain, chronic ankle instability might require surgical intervention. The surgical and conservative management options can be very much developed by in-depth knowledge of the ankle anatomy, biomechanics, and pathology. Anatomical repair, augmentation by tendon, or both are the basic methods of surgical intervention. Arthroscopy is becoming more popular in the management of chronic ankle instability. PMID:27843798
Combustion instability analysis
NASA Technical Reports Server (NTRS)
Chung, T. J.
1990-01-01
A theory and computer program for combustion instability analysis are presented. The basic theoretical foundation resides in the concept of entropy-controlled energy growth or decay. Third order perturbation expansion is performed on the entropy-controlled acoustic energy equation to obtain the first order integrodifferential equation for the energy growth factor in terms of the linear, second, and third order energy growth parameters. These parameters are calculated from Navier-Stokes solutions with time averages performed on as many Navier-Stokes time steps as required to cover at least one peak wave period. Applications are made for a 1-D Navier-Stokes solution for the Space Shuttle Main Engine (SSME) thrust chamber with cross section area variations taken into account. It is shown that instability occurs when the mean pressure is set at 2000 psi with 30 percent disturbances. Instability also arises when the mean pressure is set at 2935 psi with 20 percent disturbances. The system with mean pressures and disturbances more adverse that these cases were shown to be unstable.
Streak instability in viscoelastic Couette flow
NASA Astrophysics Data System (ADS)
Biancofiore, Luca; Brandt, Luca; Zaki, Tamer
2015-11-01
The secondary instability of streaks and transition to turbulence in viscoelastic Couette flow are studied using direct numerical simulations (DNS). Viscoelasticity is modeled using the FENE-P constitutive equations, and both the polymer concentration and Weissenberg number are varied in order to assess their effect on transition at moderate Reynolds number, Re = 400 .The base streaks are obtained from nonlinear simulations of the Couette flow response to a streamwise vortex, and can be classified as quasi-Newtonian streaks according to the terminology introduced by Page & Zaki (2014). At every streak amplitude of interest, harmonic forcing is introduced to trigger the secondary instability and breakdown to turbulence. The critical amplitude of this forcing decreases at higher Weissenberg number and also with increasing polymer concentration. The results demonstrate the destabilizing effect of elasticity at moderate Reynolds numbers.
Deployment Instabilities of Lobed-Pumpkin Balloon
NASA Astrophysics Data System (ADS)
Nakashino, Kyoichi
A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.
Patterns and instability of grannular flow
Ecke, Robert E; Borzsonyi, Tamas; Mcelwaine, Jim N
2009-01-01
Dense granular flows are often observed to become unstable and form inhomogeneous structures in nature or industry. Although recently significant advances have been made in understanding simple flows, instabilities are often not understood in detail. We present experimental and numerical results that show the formation of longitudinal stripes. These arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high density that consists of fast sliding plug-like regions (stripes) on top of highly agitated boiling material -- a configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering above a hot surface.
Fluctuations and correlations in modulation instability
NASA Astrophysics Data System (ADS)
Solli, D. R.; Herink, G.; Jalali, B.; Ropers, C.
2012-07-01
Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms. Technologically, a type of such self-amplification drives free-electron lasers and optical supercontinuum sources whose radiation qualities, however, suffer from the stochastic origins. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.
NASA Astrophysics Data System (ADS)
Forte, A. M.; Cowgill, E.
2012-12-01
The mechanisms by which orogenic systems and plateaus develop inherently cannibalize stratigraphic records of early orogenic processes within marginal basins. Understanding initial stages of structural growth and feedbacks with surface processes is essential, because these determine subsequent evolution of an orogeny. The Greater Caucasus (GC) form the northern margin of the Arabia-Eurasia collision from 40° to 50°E and are the main locus of ~15 mm/yr NE-SW shortening. Rapid exhumation of the GC starting at 5 Ma and initiation of foreland thrust belts along their southern margin at 1.5 Ma make the GC ideal to investigate early stages of orogeny. Synthesis of our recent structural, stratigraphic, and provenance work in the GC highlight two mechanisms that played primary roles in both the structural evolution of the range and the stratigraphic record of tectonic processes: 1) disruption of the southern, pro-wedge of the GC bivergent orogenic wedge via collision with the Lesser Caucasus (LC) Mountains to the south and 2) extremely high amplitude base-level variations in the large, internally-drained Caspian Sea controlling the stratigraphy of the GC foreland basin. The first order structure of the GC is consistent with bivergent orogenic wedge models, however, the symmetric morphology of the GC and locations of actively propagating fold-thrust belts are inconsistent with these standard models. We suggest that collision between the southern GC and the LC has effectively increased basal friction within the central GC pro-wedge, causing spatially variable accretion of material into both the pro- and retro-wedges. Provenance of sediments within the foreland Kura Basin, southeast of the GC, suggest that wedge disruption in the GC coincides with a large drainage reorganization event in the main range, driven by initiation of new, south-directed thrust systems. While provenance of late Cenozoic Kura Basin sediments indicate a GC source, the stratigraphic architecture is
The helical decomposition and the instability assumption
NASA Technical Reports Server (NTRS)
Waleffe, Fabian A.
1993-01-01
Direct numerical simulations show that the triadic transfer function T(k,p,q) peaks sharply when q (or p) is much smaller than k. The triadic transfer function T(k,p,q) gives the rate of energy input into wave number k from all interactions with modes of wave number p and q, where k, p, q form a triangle. This observation was thought to suggest that energy is cascaded downscale through non-local interactions with local transfer and that there was a strong connection between large and small scales. Both suggestions were in contradiction with the classical Kolmogorov picture of the energy cascade. The helical decomposition was found useful in distinguishing between kinematically independent interactions. That analysis has gone beyond the question of non-local interaction with local transfer. In particular, an assumption about the statistical direction of triadic energy transfer in any kinematically independent interaction was introduced (the instability assumption). That assumption is not necessary for the conclusions about non-local interactions with local transfer recalled above. In the case of turbulence under rapid rotation, the instability assumption leads to the prediction that energy is transferred in spectral space from the poles of the rotation axis toward the equator. The instability assumption is thought to be of general validity for any type of triad interactions (e.g. internal waves). The helical decomposition and the instability assumption offer detailed information about the homogeneous statistical dynamics of the Navier-Stokes equations. The objective was to explore the validity of the instability assumption and to study the contributions of the various types of helical interactions to the energy cascade and the subgrid-scale eddy-viscosity. This was done in the context of spectral closures of the Direct Interaction or Quasi-Normal type.
Planetesimal Formation through the Streaming Instability
NASA Astrophysics Data System (ADS)
Yang, Chao-Chin; Johansen, Anders; Schäfer, Urs
2015-12-01
The streaming instability is a promising mechanism to circumvent the barriers in direct dust growth and lead to the formation of planetesimals, as demonstrated by many previous studies. In order to resolve the thin layer of solids, however, most of these studies were focused on a local region of a protoplanetary disk with a limited simulation domain. It remains uncertain how the streaming instability is affected by the disk gas on large scales, and models that have sufficient dynamical range to capture both the thin particle layer and the large-scale disk dynamics are required.We hereby systematically push the limits of the computational domain up to more than the gas scale height, and study the particle-gas interaction on large scales in the saturated state of the streaming instability and the initial mass function of the resulting planetesimals. To overcome the numerical challenges posed by this kind of models, we have developed a new technique to simultaneously relieve the stringent time step constraints due to small-sized particles and strong local solid concentrations. Using these models, we demonstrate that the streaming instability can drive multiple radial, filamentary concentrations of solids, implying that planetesimals are born in well separated belt-like structures. We also find that the initial mass function of planetesimals via the streaming instability has a characteristic exponential form, which is robust against computational domain as well as resolution. These findings will help us further constrain the cosmochemical history of the Solar system as well as the planet formation theory in general.
Lattice Boltzmann methods for global linear instability analysis
NASA Astrophysics Data System (ADS)
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2016-11-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Fast Instability Caused by Electron Cloud in Combined Function Magnets
Antipov, S. A.; Adamson, P.; Burov, A.; Nagaitsev, S.; Yang, M. J.
2016-12-12
One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.
Multidimensional Instability and Dynamics of Spin Avalanches in Crystals of Nanomagnets
NASA Astrophysics Data System (ADS)
Jukimenko, O.; Dion, C. M.; Marklund, M.; Bychkov, V.
2014-11-01
We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.
Multidimensional instability and dynamics of spin avalanches in crystals of nanomagnets.
Jukimenko, O; Dion, C M; Marklund, M; Bychkov, V
2014-11-21
We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.
Davis, Jerri V.; Bell, Richard W.
1998-01-01
Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not
Parametric instabilities in an electron beam plasma system
NASA Astrophysics Data System (ADS)
Nakach, R.; Cuperman, S.; Gell, Y.; Levush, B.
1981-08-01
The excitation of low-frequency parametric instabilities by a finite wavelength pump, in a system consisting of a warm electron plasma traversed by a warm electron beam, is investigated in a fluid dissipationless model. The appropriate dispersion relation is derived for the three-dimensional problem in a magnetized plasma with arbitrary directions for the waves, and the one-dimensional case is analyzed numerically. It is shown that when the plasma-electron Debye length is larger than the beam-electron Debye length, two low frequency electrostatic instabilities may exist simultaneously. For this case, their growth rates might differ by more than one order of magnitude and the effect of the pump field on the larger growth rate instability is not very significant. For the opposite case, only one instability can be excited which reduces to the parametric instability discussed by Fried et al. (1976), when the beam is switched off. Attention is given to the case corresponding to equal Debye lengths where, in addition to the previously mentioned parametric instability, a large growth rate instability can be excited, which, however, depends on the amplitude of the pump field.
Ionization Front Instabilities in Primordial H II Regions
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Norman, Michael L.
2008-02-01
Radiative cooling by metals in shocked gas mediates the formation of ionization front instabilities in the galaxy today that are responsible for a variety of phenomena in the interstellar medium, from the morphologies of nebulae to triggered star formation in molecular clouds. An important question in early reionization and chemical enrichment of the intergalactic medium is whether such instabilities arose in the H II regions of the first stars and primeval galaxies, which were devoid of metals. We present three-dimensional numerical simulations that reveal both shadow and thin-shell instabilities readily formed in primordial gas. We find that the hard UV spectra of Population III stars broadened primordial ionization fronts, causing H2 formation capable of inciting violent thin-shell instabilities in D-type fronts, even in the presence of intense Lyman-Werner flux. The high postfront gas temperatures associated with He ionization sustained and exacerbated shadow instabilities, unaided by molecular hydrogen cooling. Our models indicate that metals eclipsed H2 cooling in I-front instabilities at modest concentrations, from 1 × 10-3 to 1 × 10-2 Z⊙. We conclude that ionization front instabilities were prominent in the H II regions of the first stars and galaxies, influencing the escape of ionizing radiation and metals into the early universe.
Baroclinic mixed layer instability in the presence of convection
NASA Astrophysics Data System (ADS)
Callies, Joern; Ferrari, Raffaele
2015-11-01
It has recently been discovered that geostrophic turbulence in the upper ocean undergoes a seasonal cycle at submesoscales, the scales smaller than the most energetic mesoscale eddies. Observations and theory suggest that baroclinic mixed layer instabilities release potential energy stored in deep mixed layers, energizing the submesoscales in winter. In shallow summer mixed layers, there is no such energization. The oceanic mixed layer, besides being prone to baroclinic instabilities, is subject to atmospheric forcing, which drives convective overturns. We here study how this forced convection interacts with baroclinic instabilities in a set of idealized numerical simulations resolving both processes. A major question is whether baroclinic instabilities can be damped out by convection. Implications for the seasonal cycle in submesoscale turbulence will be discussed.
Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids
NASA Astrophysics Data System (ADS)
Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun
We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves.
A study of short wave instability on vortex filaments
Wang, Hong Yun
1996-12-01
The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.
Suppressing shape instabilities to discover the Bjerknes force instability (L).
Alibakhshi, Mohammad A; Holt, R Glynn
2011-11-01
For sufficiently strong acoustic forcing in a standing wave field, subresonant size bubbles are predicted to be repelled from the pressure antinode. Single bubble sonoluminescence (SBSL) conditions in water do not allow the observation of this instability. This study investigates the possibility that increasing the viscosity of the host liquid can preferentially suppress shape instabilities of a bubble and allow SBSL experiments to be limited by the Bjerknes force instability.
Radiation Induced Genomic Instability
Morgan, William F.
2011-03-01
Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend
Radiative-convective instability
NASA Astrophysics Data System (ADS)
Emanuel, Kerry; Wing, Allison A.; Vincent, Emmanuel M.
2014-03-01
equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given solar forcing and long-lived greenhouse gas concentration, such a state would be unique, but recent work suggests that more than one stable equilibrium may be possible. Here we show that above a critical specified sea surface temperature, the ordinary RCE state becomes linearly unstable to large-scale overturning circulations. The instability migrates the RCE state toward one of the two stable equilibria first found by Raymond and Zeng (2000). It occurs when the clear-sky infrared opacity of the lower troposphere becomes so large, owing to high water vapor concentration, that variations of the radiative cooling of the lower troposphere are governed principally by variations in upper tropospheric water vapor. We show that the instability represents a subcritical bifurcation of the ordinary RCE state, leading to either a dry state with large-scale descent, or to a moist state with mean ascent; these states may be accessed by finite amplitude perturbations to ordinary RCE in the subcritical state, or spontaneously in the supercritical state. As first suggested by Raymond (2000) and Sobel et al. (2007), the latter corresponds to the phenomenon of self-aggregation of moist convection, taking the form of cloud clusters or tropical cyclones. We argue that the nonrobustness of self-aggregation in cloud system resolving models may be an artifact of running such models close to the critical temperature for instability.
Chromosome instability syndromes
1993-12-31
Chapter 11, discusses chromosome instability syndromes. The focus is on the most extensively studied genotypic chromosomal aberrations which include Bloom syndrome, Fanconi anemia, ataxia telangiectasia, and xeroderma pigmentosum. The great interest in these syndromes is out of proportion to their rare occurrence; however, studies of genotypic chromosome breakage have been inspired by the hope of throwing light on chromosome structure and behavior. A table is given which relates chromosomal aberrations in Bloom syndrome which may cause or promote cancer. 34 refs., 3 figs., 1 tab.
THE MAGNETOVISCOUS-THERMAL INSTABILITY
Islam, Tanim
2012-02-10
Accretion flows onto underluminous black holes, such as Sagittarius A* at the center of our galaxy, are dilute (mildly collisional to highly collisionless), optically thin, and radiatively inefficient. Therefore, the accretion properties of such dilute flows are expected to be modified by their large viscosities and thermal conductivities. Second, turbulence within these systems needs to transport angular momentum as well as thermal energy generated through gravitational infall outward in order to allow accretion to occur. This is in contrast to classical accretion flows, in which the energy generated through accretion down a gravitational well is locally radiated. In this paper, using an incompressible fluid treatment of an ionized gas, we expand on previous research by considering the stability properties of a magnetized rotating plasma wherein the thermal conductivity and viscosity are not negligible and may be dynamically important. We find a class of MHD instabilities that can transport angular momentum and thermal energy outward. They are plausible candidates to describe accretion in radiatively inefficient accretion flows. We finish by discussing the implications for analytic models and numerical MHD simulations of mildly dilute or collisionless astrophysical plasmas, and immediate directions for further research.
Ion sound instability driven by the ion flows
Koshkarov, O.; Smolyakov, A. I.; Kaganovich, I. D.; Ilgisonis, V. I.
2015-05-15
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instability is studied analytically and the results are compared with direct, initial value numerical simulations.
Study of kinetic effects arising in simulations of Farley-Buneman instability
Kovalev, D. V.; Smirnov, A. P.; Dimant, Ya. S.
2009-05-15
The Farley-Buneman instability, which has been observed in the E region of the Earth's ionosphere, is studied using fluid equations for electrons, a four-dimensional (in coordinate-velocity space) kinetic equation for ions, and Poisson's equation. Numerical simulations with allowance for Landau damping show that the Farley-Buneman instability results in anisotropy of the ion velocity distribution function.
Non-conventional Fishbone Instabilities
Ya.I. Kolesnichenko; V.V. Lutsenko; V.S. Marchenko; R.B. White
2004-11-10
New instabilities of fishbone type are predicted. First, a trapped-particle-induced m = n = 1 instability with the mode structure having nothing to do with the conventional rigid kink displacement. This instability takes place when the magnetic field is weak, so that the precession frequency of the energetic ions is not small as compared to the frequency of the corresponding Alfven continuum at r = 0 and the magnetic shear is small inside the q = 1 radius [the case relevant to spherical tori]. Second, an Energetic Particle Mode fishbone instability driven by circulating particles. Third, a double-kink-mode instability driven by the circulating energetic ions. In particular, the latter can have two frequencies simultaneously: we refer to it as ''doublet'' fishbones. This instability can occur when the radial profile of the energetic ions has an off-axis maximum inside the region of the mode localization.
Axisymmetric MHD Instabilities in Solar/Stellar Tachoclines
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; Gilman, Peter A.; Cally, Paul S.; Miesch, Mark S.
2009-02-01
Extensive studies over the past decade showed that HD and MHD nonaxisymmetric instabilities exist in the solar tachocline for a wide range of toroidal field profiles, amplitudes, and latitude locations. Axisymmetric instabilities (m = 0) do not exist in two dimensions, and are excited in quasi-three-dimensional shallow-water systems only for very high field strengths (2 mG). We investigate here MHD axisymmetric instabilities in a three-dimensional thin-shell model of the solar/stellar tachocline, employing a hydrostatic, non-Boussinesq system of equations. We deduce a number of general properties of the instability by use of an integral theorem, as well as finding detailed numerical solutions for unstable modes. Toroidal bands become unstable to axisymmetric perturbations for solar-like field strengths (100 kG). The e-folding time can be months down to a few hours if the field strength is 1 mG or higher, which might occur in the solar core, white dwarfs, or neutron stars. These instabilities exist without rotation, with rotation, and with differential rotation, although both rotation and differential rotation have stabilizing effects. Broad toroidal fields are stable. The instability for modes with m = 0 is driven from the poleward shoulder of banded profiles by a perturbation magnetic curvature stress that overcomes the stabilizing Coriolis force. The nonaxisymmetric instability tips or deforms a band; with axisymmetric instability, the fluid can roll in latitude and radius, and can convert bands into tubes stacked in radius. The velocity produced by this instability in the case of low-latitude bands crosses the equator, and hence can provide a mechanism for interhemispheric coupling.
Predictability of Rayleigh-Taylor instability
Viecelli, J.A.
1986-03-27
Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs.
Rarefaction solitons initiated by sheath instability
Levko, Dmitry
2015-09-15
The instability of the cathode sheath initiated by the cold energetic electron beam is studied by the one-dimensional fluid model. Numerical simulations show the generation of travelling rarefaction solitons at the cathode. It is obtained that the parameters of these solitons strongly depend on the parameters of electron beam. The “stretched” variables are derived using the small-amplitude analysis. These variables are used in order to obtain the Korteweg-de Vries equation describing the propagation of the rarefaction solitons through the plasma with cold energetic electron beam.
Linear instability of curved free shear layers
NASA Technical Reports Server (NTRS)
Liou, William W.
1993-01-01
The linear inviscid hydrodynamic stability of slightly curved free mixing layers is studied in this paper. The disturbance equation is solved numerically using a shooting technique. Two mean velocity profiles that represent stably and unstably curved free mixing layers are considered. Results are shown for cases of five curvature Richardson numbers. The stability characteristics of the shear layer are found to vary significantly with the introduction of the curvature effects. The results also indicate that, in a manner similar to the Goertler vortices observed in a boundary layer along a concave wall, instability modes of spatially developing streamwise vortex pairs may appear in centrifugally unstable curved mixing layers.
Novel Cauchy-horizon instability
Maeda, Hideki; Torii, Takashi; Harada, Tomohiro
2005-03-15
The evolution of weak discontinuity is investigated on horizons in the n-dimensional static solutions in the Einstein-Maxwell-scalar-{lambda} system, including the Reissner-Nordstroem-(anti) de Sitter black hole. The analysis is essentially local and nonlinear. We find that the Cauchy horizon is unstable, whereas both the black hole event horizon and the cosmological event horizon are stable. This new instability, the so-called kink instability, of the Cauchy horizon is completely different from the well-known 'infinite-blueshift' instability. The kink instability makes the analytic continuation beyond the Cauchy horizon unstable.
Study of cavitating inducer instabilities
NASA Technical Reports Server (NTRS)
Young, W. E.; Murphy, R.; Reddecliff, J. M.
1972-01-01
An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.
NASA Astrophysics Data System (ADS)
Le Deit, L.; Bourgeois, O.; Mège, D.; Hauber, E.; Le Mouélic, S.; Massé, M.; Jaumann, R.; Bibring, J.-P.
2010-08-01
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ˜42,300 km 2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ˜1.4 μm, and ˜1.9 μm and a large deep band between ˜2.21 and ˜2.26 μm that are consistent with previous spectral analysis in other regions
Chen, X.; Liu, S.; Zhu, Z.; Vogelmann, J.; Li, Z.; Ohlen, D.
2011-01-01
The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High
Olmedo, Oscar; Zhang Jie
2010-07-20
Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.
NASA Astrophysics Data System (ADS)
Olmedo, Oscar; Zhang, Jie
2010-07-01
Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.
[Genomic instability in atherosclerosis].
Dzhokhadze, T A; Buadze, T Zh; Gaiozishvili, M N; Kakauridze, N G; Lezhava, T A
2014-11-01
A comparative study of the level of genomic instability, parameters of quantitative and structural mutations of chromosomes (aberration, aneuploidy, polyploidy) in lymphocyte cultures from patients with atherosclerosis of age 80 years and older (control group - 30-35 years old) was conducted. The possibility of correction of disturbed genomic indicators by peptide bioregulators - Livagen (Lys-Glu-Asp-Ala) and cobalt ions with separate application or in combination was also studied. Control was lymphocyte culture of two healthy respective age groups. It was also shown that patients with atherosclerosis exhibit high level of genomic instability in all studied parameters, regardless of age, which may suggest that there is marked increase in chromatin condensation in atherosclerosis. It was also shown that Livagen (characterized by modifying influence on chromatin) separately and in combination with cobalt ions, promotes normalization of altered genomic indicators of atherosclerosis in both age groups. The results show that Livagen separately and in combination with cobalt ions has impact on chromatin of patients with atherosclerosis. The identified protective action of Livagen proves its efficacy in prevention of atherosclerosis.
Microtearing instability in ITER*
NASA Astrophysics Data System (ADS)
Wong, King-Lap; Mikkelsen, David; Budny, Robert; Breslau, Joshua
2010-11-01
Microtearing modes are found to be unstable in some regions of a simulated ITER H-mode plasma [1] with the GS2 code [2]. Modes with kρs>1 are in the interior (r/a˜0.65-0.85) while longer wavelength modes are in the pedestal region. This instability may keep the pedestal within the peeling-ballooning stability boundary [3]. Microtearing modes can produce stochastic magnetic field similar to RMP coils; they may have similar effects on ELMs by increasing the pedestal width. The possibility of using this technique for ELM mitigation in ITER is explored. We propose to use a deuterium gas jet to control the microtearing instability and the Chirikov parameter at the edge. Preliminary evaluation of its effectiveness will be presented and the limitations of the GS2 code will be discussed based on our understanding from NSTX [4]. *This work is supported by USDoE contract DE-AC02-09CH11466. [4pt] [1] R. V. Budny, Nucl. Fusion (2009)[0pt] [2] W. Dorland et al., Phys. Rev. Lett. (2000).[0pt] [3] P. B. Snyder et al.,Nucl. Fusion (2009).[0pt] [4] K. L. Wong et al., Phys. Rev. Lett. (2007).
Czarnecki, John B.; Gillip, Jonathan A.; Jones, Perry M.; Yeatts, Daniel S.
2009-01-01
To assess the effect that increased water use is having on the long-term availability of groundwater within the Ozark Plateaus aquifer system, a groundwater-flow model was developed using MODFLOW 2000 for a model area covering 7,340 square miles for parts of Arkansas, Kansas, Missouri, and Oklahoma. Vertically the model is divided into five units. From top to bottom these units of variable thickness are: the Western Interior Plains confining unit, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, and the St. Francois confining unit. Large mined zones contained within the Springfield Plateau aquifer are represented in the model as extensive voids with orders-of-magnitude larger hydraulic conductivity than the adjacent nonmined zones. Water-use data were compiled for the period 1960 to 2006, with the most complete data sets available for the period 1985 to 2006. In 2006, total water use from the Ozark aquifer for Missouri was 87 percent (8,531,520 cubic feet per day) of the total pumped from the Ozark aquifer, with Kansas at 7 percent (727,452 cubic feet per day), and Oklahoma at 6 percent (551,408 cubic feet per day); water use for Arkansas within the model area was minor. Water use in the model from the Springfield Plateau aquifer in 2005 was specified from reported and estimated values as 569,047 cubic feet per day. Calibration of the model was made against average water-level altitudes in the Ozark aquifer for the period 1980 to 1989 and against waterlevel altitudes obtained in 2006 for the Springfield Plateau and Ozark aquifers. Error in simulating water-level altitudes was largest where water-level altitude gradients were largest, particularly near large cones of depression. Groundwater flow within the model area occurs generally from the highlands of the Springfield Plateau in southwestern Missouri toward the west, with localized flow occurring towards rivers and pumping centers including the five largest pumping centers near Joplin
RNA polymerase backtracking in gene regulation and genome instability.
Nudler, Evgeny
2012-06-22
RNA polymerase is a ratchet machine that oscillates between productive and backtracked states at numerous DNA positions. Since its first description 15 years ago, backtracking--the reversible sliding of RNA polymerase along DNA and RNA--has been implicated in many critical processes in bacteria and eukaryotes, including the control of transcription elongation, pausing, termination, fidelity, and genome instability.
THE PARKER INSTABILITY IN DISK GALAXIES
Rodrigues, L. F. S.; Sarson, G. R.; Shukurov, A.; Bushby, P. J.; Fletcher, A. E-mail: graeme.sarson@newcastle.ac.uk E-mail: paul.bushby@newcastle.ac.uk
2016-01-01
We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields, and cosmic rays are all initially in a magnetohydrostatic equilibrium. This is done for different choices of initial cosmic-ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this nonideal instability develops a multimodal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step toward such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure (RM) maps, and the associated structure functions of the latter, from our simulations; these suggest that the correlation scales inferred from RM maps are a possible probe for the cosmic-ray content of a given galaxy. Our calculations highlight the importance of cosmic rays in these measures, making them an essential ingredient of realistic models of the interstellar medium.
Digital instability of a confined elastic meniscus.
Biggins, John S; Saintyves, Baudouin; Wei, Zhiyan; Bouchaud, Elisabeth; Mahadevan, L
2013-07-30
Thin soft elastic layers serving as joints between relatively rigid bodies may function as sealants, thermal, electrical, or mechanical insulators, bearings, or adhesives. When such a joint is stressed, even though perfect adhesion is maintained, the exposed free meniscus in the thin elastic layer becomes unstable, leading to the formation of spatially periodic digits of air that invade the elastic layer, reminiscent of viscous fingering in a thin fluid layer. However, the elastic instability is reversible and rate-independent, disappearing when the joint is unstressed. We use theory, experiments, and numerical simulations to show that the transition to the digital state is sudden (first-order), the wavelength and amplitude of the fingers are proportional to the thickness of the elastic layer, and the required separation to trigger the instability is inversely proportional to the in-plane dimension of the layer. Our study reveals the energetic origin of this instability and has implications for the strength of polymeric adhesives; it also suggests a method for patterning thin films reversibly with any arrangement of localized fingers in a digital elastic memory, which we confirm experimentally.
Precessionaly driven instability in the Lunar core.
NASA Astrophysics Data System (ADS)
Noir, J.; Lin, Y.
2015-12-01
Since Yoder 1981, the large dissipation at the period of precession associated with the misalignment of the lunar rotation axis with respect to the Cassini plan has been attributed to turbulent mixing in a liquid outer core. However, no precession driven instability mechanism supported this scenario without invoking unrealistic Core-Mantle boundary ellipticity. Meanwhile, recent numerical simulations (Lin et al., PoF 2014) and experiments (Goto et al., JFM 2014) have shown that internal shear layers spawned by the viscous boundary in a precessing spherical liquid shell can generate parametric-like instabilities. Based on the consistent scaling laws proposed in these two studies, we show that the present Lunar core is highly super critical, hence supporting the idea of turbulent dissipation. In my presentation I will briefly review the observations suggesting the presence of a large dissipation at the period of precession in the lunar core and present the shear driven instability mechanism, showing that precession driven turbulence is indeed plausible.
MHD edge instabilities in toroidal plasmas
NASA Astrophysics Data System (ADS)
Sugiyama, Linda
2015-11-01
Different types of MHD edge instabilities in different toroidal magnetically confined plasmas are compared. Large scale numerical simulations show that the nonlinear evolution of an unstable edge mode in a shaped plasma with a single X-point and a surrounding open field line region has a number of common features in the full resistive MHD model for strongly unstable and weaker instabilities. These include the relation of the nonlinear mode structure and dominant toroidal harmonics to the linear eigenmode spectrum, the effects of the mode on reducing the edge pressure or density gradient, the inward penetration of a ballooning-type perturbation into the plasma interior, and the potential to drive a coherent axisymmetric poloidal rotation of the outer part of the plasma, exhibited at different strengths. The results can be compared to experiment to estimate the usefulness and validity of the MHD model for predicting edge stability and instability properties. Work supported by the U.S. DOE OFES under Awards DE-SC-0007883, DE-FG02-04ER54802, and DE-SC-0008737. Some computation carried out at NERSC.
Magnetic reconnection from a multiscale instability cascade
NASA Astrophysics Data System (ADS)
Moser, Auna L.; Bellan, Paul M.
2012-02-01
Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the `microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas.
Thermoelectrokinetic instability in micro/nanoscales
NASA Astrophysics Data System (ADS)
Ganchenko, Georgy; Ganchenko, Natalia
2016-11-01
A novel sophisticated type of electro-hydrodynamic instability in an electrolyte solution near ion-selective surfaces in an external electric field is discovered theoretically. The key mechanism of the instability is caused by Joule heating but dramatically differs from the well-known Raleigh-Benard convection. The investigation is based on the Nernst-Planck-Poisson-Navier-Stokes system along with the energy equation and corresponding BCs. The 1D quiescent steady state in microscales can be unstable with respect to either short-wave Rubinstein-Zaltzman or long-wave thermoelectokinenetic instability. The last one prevails in long microchannels and good enough thermal insulation of the system. In addition to the linear stability analysis a direct numerical simulation of the full 3D nonlinear system is fulfilled using a parallel computing. In the final coherent structures salt concentration, temperature and electric current are localized in narrow long fingers normal to the ion-selective surface while space charge forms crown-like micro-patterns. The investigation results can be useful in desalination problem.
Instability vaccination: A structural design to reduce Rayleigh Taylor instability
NASA Astrophysics Data System (ADS)
Esmaeili, Amin
2013-10-01
Instability vaccination can be defined as designing a structure to stimulate the system in order to develop immunity against its instability. In this work we have tried to do this stabilization by a new technique. Previously some suppression of R-M instability was done by insertion of magnetic field, but in this work we have tried to do this suppression by proposing a configuration similar to the shape of instability, we call it instability vaccination. This design will reduce the rotations (mostly rotations of Rayleigh Taylor instability) in the fluids that cause more mixing and instabilities. In this paper, we consider the evolution of the interface between two ideal semi-infinite fluid surfaces, using two-dimensional Riemann solver, to solve the Euler equations. First, we performed evolution of a rectangular disorder between the 2 surfaces using two-dimensional Riemann problem for the equations of Euler. Next, the interface was replaced with a perturbation that was part rectangular and part semi-circular (like a mushroom). The simulation was continued till some time steps using the HLL method. We have seen that the rotations of Rayleigh Taylor (R-T) instability were decreased in the second case. Email: amin@cavelab.cs.tsukuba.ac.jp
Numerical instabilities and three-dimensional electromagnetic articulography.
Stella, Massimo; Bernardini, Paolo; Sigona, Francesco; Stella, Antonio; Grimaldi, Mirko; Fivela, Barbara Gili
2012-12-01
The AG500 electromagnetic articulograph is widely used to reconstruct the movements of the articulatory organs. Nevertheless, some anomalies in its performance have been observed. It is well known that accuracy of the device is affected by electromagnetic interference and possible hardware failures or damage to the sensors. In this study, after eliminating any hardware or electromagnetic source of disturbance, a set of trials was carried out. The tests prove that anomalies in sensor position tracking are systematic in certain regions within the recording volume and, more importantly, show a specific pattern that can be clearly attributed to a wrong convergence of the calculation method.
Numerical Modelling of Vortex Flow Instabilities and Interactions
2003-03-01
shape of an evolving vortex sheet. Proc.R.Soc.Lond. A 365 , 105-119. [7] Caflisch, R. E. and Orellana , O.F. (1989) Singular solutions and ill-posedness...for the evolution of vortex sheets. SIAM J.Math.Anal. 20, 293-307. [8] Caflisch, R.E. and Orellana , O.F. (1986) Long time existence for slightly
Numerical Analysis of Modal Instability Onset in Fiber Amplifiers
2014-03-11
uniform radial grids paves the way for future analysis of fibers with more complicated structures such as large pitch photonic crystal fibers and...profile of the fiber thus significantly changing the guided mode properties even to the point of changing an anti- guiding core into a guiding one [6...weakly- guiding large mode area fibers justifies the use of the scalar approximation to the electromagnetic wave equation governing the evolution of
Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.
2015-05-15
The evolution of the runaway electron (RE) energy distribution function f{sub ε} during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f{sub ε} is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.
Hollmann, E. M.; Parks, P. B.; Commaux, N.; Eidietis, N. W.; Moyer, R. A.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.; Paz-Soldan, C.; Rudakov, D. L.
2015-05-01
The evolution of the runaway electron (RE) energy distribution function fεfε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, fεfε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.
Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration
NASA Astrophysics Data System (ADS)
Piriz, A. R.; Sun, Y. B.; Tahir, N. A.
2015-03-01
A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.
Linear Instability of a Uni-Directional Transversely Sheared Mean Flow
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.
THE THERMAL INSTABILITY OF SOLAR PROMINENCE THREADS
Soler, R.; Goossens, M.; Ballester, J. L.
2011-04-10
The fine structure of solar prominences and filaments appears as thin and long threads in high-resolution images. In H{alpha} observations of filaments, some threads can be observed for only 5-20 minutes before they seem to fade and eventually disappear, suggesting that these threads may have very short lifetimes. The presence of an instability might be the cause of this quick disappearance. Here, we study the thermal instability of prominence threads as an explanation of their sudden disappearance from H{alpha} observations. We model a prominence thread as a magnetic tube with prominence conditions embedded in a coronal environment. We assume a variation of the physical properties in the transverse direction so that the temperature and density continuously change from internal to external values in an inhomogeneous transitional layer representing the particular prominence-corona transition region (PCTR) of the thread. We use the nonadiabatic and resistive magnetohydrodynamic equations, which include terms due to thermal conduction parallel and perpendicular to the magnetic field, radiative losses, heating, and magnetic diffusion. We combine both analytical and numerical methods to study linear perturbations from the equilibrium state, focusing on unstable thermal solutions. We find that thermal modes are unstable in the PCTR for temperatures higher than 80,000 K, approximately. These modes are related to temperature disturbances that can lead to changes in the equilibrium due to rapid plasma heating or cooling. For typical prominence parameters, the instability timescale is of the order of a few minutes and is independent of the form of the temperature profile within the PCTR of the thread. This result indicates that thermal instability may play an important role for the short lifetimes of threads in the observations.
Large-scale instabilities of helical flows
NASA Astrophysics Data System (ADS)
Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne
2016-10-01
Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number K are investigated using three-dimensional Floquet numerical computations. In the Floquet formalism the unstable field is expanded in modes of different spacial periodicity. This allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study modes of wave number q of arbitrarily large-scale separation q ≪K . Different flows are examined including flows that exhibit small-scale turbulence. The growth rate σ of the most unstable mode is measured as a function of the scale separation q /K ≪1 and the Reynolds number Re. It is shown that the growth rate follows the scaling σ ∝q if an AKA effect [Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987), 10.1016/0167-2789(87)90026-1] is present or a negative eddy viscosity scaling σ ∝q2 in its absence. This holds both for the Re≪1 regime where previously derived asymptotic results are verified but also for Re=O (1 ) that is beyond their range of validity. Furthermore, for values of Re above a critical value ReSc beyond which small-scale instabilities are present, the growth rate becomes independent of q and the energy of the perturbation at large scales decreases with scale separation. The nonlinear behavior of these large-scale instabilities is also examined in the nonlinear regime where the largest scales of the system are found to be the most dominant energetically. These results are interpreted by low-order models.
Numerical simulation of Ulysses nutation
NASA Technical Reports Server (NTRS)
Marirrodriga, C. Garcia; Zeischka, J.; Boslooper, E. C.
1993-01-01
A numerical simulation has been performed on the in-orbit instability of the Ulysses Spacecraft. The thermal excitation from the solar flux, the flexible axial boom and its deployment mechanism have been modeled and analyzed. The simulation shows that the nutation build-up has been originated by the solar input on the axial boom coupled with the system nutation frequency of the spacecraft. The results agree with the observed behavior.
Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Velasco, Ali Mauricio; Muñoz, José Daniel
2015-10-01
Rayleigh-Taylor and Kelvin-Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil-water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γ ∝√{ A} between the growing rate γ of the Rayleigh-Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.
Liquid propellant rocket combustion instability
NASA Technical Reports Server (NTRS)
Harrje, D. T.
1972-01-01
The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.
Research on aviation fuel instability
NASA Technical Reports Server (NTRS)
Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.
1983-01-01
The underlying causes of fuel thermal degradation are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.
Bony instability of the shoulder.
Bushnell, Brandon D; Creighton, R Alexander; Herring, Marion M
2008-09-01
Instability of the shoulder is a common problem treated by many orthopaedists. Instability can result from baseline intrinsic ligamentous laxity or a traumatic event-often a dislocation that injures the stabilizing structures of the glenohumeral joint. Many cases involve soft-tissue injury only and can be treated successfully with repair of the labrum and ligamentous tissues. Both open and arthroscopic approaches have been well described, with recent studies of arthroscopic soft-tissue techniques reporting results equal to those of the more traditional open techniques. Over the last decade, attention has focused on the concept of instability of the shoulder mediated by bony pathology such as a large bony Bankart lesion or an engaging Hill-Sachs lesion. Recent literature has identified unrecognized large bony lesions as a primary cause of failure of arthroscopic reconstruction for instability, a major cause of recurrent instability, and a difficult diagnosis to make. Thus, although such bony lesions may be relatively rare compared with soft-tissue pathology, they constitute a critically important entity in the management of shoulder instability. Smaller bony lesions may be amenable to arthroscopic treatment, but larger lesions often require open surgery to prevent recurrent instability. This article reviews recent developments in the diagnosis and treatment of bony instability.
Instabilities in uranium plasma.
NASA Technical Reports Server (NTRS)
Tidman, D. A.
1971-01-01
The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P equal to about .00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.
Marital instability after midlife.
Wu, Z; Penning, M J
1997-09-01
"Divorce in later life has been shown to produce dramatic declines in the economic, psychological, and physical well-being of marital partners. This study examines the prevalence and determinants of marital disruption after midlife using Becker's theory of marital instability. Using recent Canadian national data, the marital outcomes of women and men who were married as of age 40 are tracked across the remaining years of the marriage. Cox proportional hazard regression models indicate stabilizing effects of the duration of the marriage, the age at first marriage, the presence of young children, as well as of remarriage for middle-aged and older persons. Other significant risk factors include education, heterogamous marital status, premarital cohabitation, number of siblings, and region."
Neurocardiovascular Instability and Cognition
O’Callaghan, Susan; Kenny, Rose Anne
2016-01-01
Neurocardiovascular instability (NCVI) refers to abnormal neural control of the cardiovascular system affecting blood pressure and heart rate behavior. Autonomic dysfunction and impaired cerebral autoregulation in aging contribute to this phenomenon characterized by hypotension and bradyarrhythmia. Ultimately, this increases the risk of falls and syncope in older people. NCVI is common in patients with neurodegenerative disorders including dementia. This review discusses the various syndromes that characterize NCVI icluding hypotension, carotid sinus hypersensitivity, postprandial hypotension and vasovagal syncope and how they may contribute to the aetiology of cognitive decline. Conversely, they may also be a consequence of a common neurodegenerative process. Regardless, recognition of their association is paramount in optimizing management of these patients. PMID:27505017
Internal rotor friction instability
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Explosive magnetorotational instability in Keplerian disks
NASA Astrophysics Data System (ADS)
Shtemler, Yu.; Liverts, E.; Mond, M.
2016-06-01
Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén-Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.
Linear instability of supersonic plane wakes
NASA Technical Reports Server (NTRS)
Papageorgiou, D. T.
1989-01-01
In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.
The dynamic fission instability and the origin of the Moon
NASA Technical Reports Server (NTRS)
Boss, A. P.; Mizuno, H.
1984-01-01
A theory for the formation of the Moon which involves the dynamic fission of a rapidly rotating protoplanet, which might then result in the formation of the Earth and the Moon is discussed. The fission hypothesis was originally based on analytic, linearized models of the growth of asymmetry in homogenous bodies. The fully nonlinear evolution of the dynamic instability in inviscid, compressible bodies was calculated by numerical techniques. It was found that the dynamic instability degenerates into the ejection of a ring of matter with a substantial fraction of the mass, leaving behind a central body with most of the mass. The linearized analytical approach and the numerical approach were used to show that dynamic fission probably does not occur in rocky protoplanets. The numerical calculations are performed with a fully three dimensional hydrodynamical code, which allows the nonlinear, time evolution of the instability to be followed. Sequences of uniformly rotating equilibria were constructed and are used as the initial models for the fission calculations. An initially imposed asymmetry consisting of a 10% binary perturbation in the density was found to disappear on the rotational period time scale. No dynamic instability occurred. This result are verified by including the velocity dissipation terms in the linearized analysis of the stability of a Maclaurin spheroid: the dynamic instability disappears when the simulated viscous dissipation terms are included. It is concluded that any rocky body, even with considerable partial melt or a molten core, should be stable to dynamic fission; any rotational instability that occurs can only result in equatorial mass loss.
Dynamic instability of shallow shells in three-dimensional incompressible inviscid potential flow
NASA Astrophysics Data System (ADS)
Avramov, K. V.; Papazov, S. V.; Breslavsky, I. D.
2017-04-01
The system of the hypersingular integral equations with respect to the aerodynamic derivatives of the shell pressure drop is obtained to analyze the interaction of the shallow shell with three-dimensional incompressible potential air flow. This system of the integral equations is very applicable to analyze aeroelastic vibrations of thin-walled structures. The numerical approach based on the discrete vortices method is suggested to solve the system of the hypersingular integral equations. Using the assumed-mode method, the finite degrees of freedom dynamical system is derived to analyze the shallow shell dynamic instability. The dynamic instability of the shallow shell equilibrium in the subsonic air flow is analyzed numerically. This type of instability results in flutter. The influence of the structure parameters on the dynamic instability is analyzed. The parameters of the dynamic instability are compared with the data, which are calculated by the software ANSYS.
A process-based approach to estimate point snow instability
NASA Astrophysics Data System (ADS)
Reuter, B.; Schweizer, J.; van Herwijnen, A.
2015-05-01
Snow instability data provide information about the mechanical state of the snow cover and are essential for forecasting snow avalanches. So far, direct observations of instability (recent avalanches, shooting cracks or whumpf sounds) are complemented with field tests such as the rutschblock test, since no measurement method for instability exists. We propose a new approach based on snow mechanical properties derived from the snow micro-penetrometer that takes into account the two essential processes during dry-snow avalanche release: failure initiation and crack propagation. To estimate the propensity of failure initiation we define a stress-based failure criterion, whereas the propensity of crack propagation is described by the critical cut length as obtained with a propagation saw test. The input parameters include layer thickness, snow density, effective elastic modulus, strength and specific fracture energy of the weak layer - all derived from the penetration-force signal acquired with the snow micro-penetrometer. Both instability measures were validated with independent field data and correlated well with results from field tests. Comparisons with observed signs of instability clearly indicated that a snowpack is only prone to avalanche if the two separate conditions for failure initiation and crack propagation are fulfilled. To our knowledge, this is the first time that an objective method for estimating snow instability has been proposed. The approach can either be used directly based on field measurements with the snow micro-penetrometer, or be implemented in numerical snow cover models. With an objective measure of instability at hand, the problem of spatial variations of instability and its causes can now be tackled.
Quantitative study of the trapped particle bunching instability in Langmuir waves
Hara, Kentaro Boyd, Iain D.; Chapman, Thomas; Joseph, Ilon; Berger, Richard L.; Banks, Jeffrey W.; Brunner, Stephan
2015-02-15
The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
A hydrodynamic linear instability in a system of confined colloidal rollers
NASA Astrophysics Data System (ADS)
Donev, Aleksandar; Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul
2016-11-01
In a typical flow instability, the fastest growing wavelength is selected by two or more competing stresses. In this talk I will discuss a very different kind of instability, controlled by a single geometric parameter. We study theoretically a new instability which has been observed experimentally and numerically: the fingering of a front of suspended microrollers near a floor. Our continuum model shows that this instability is linear and that the size scale selection arises only from hydrodynamic interactions between the particles and the wall, independently of the driving forces and viscosity. We believe that this instability mechanism is quite generic and selects the instability length scale in a number of suspension/colloid systems near a wall. This work was supported primarily by the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation under Award Number DMR-1420073.
Gigayear Instabilities in Planetary Systems
NASA Astrophysics Data System (ADS)
Fabrycky, Daniel
One of the biggest modern discoveries about the Solar System is that it is chaotic (Laskar 1989, 1994). On million-year timescales, nearby trajectories exponentially diverge; on billion-year timescales, planets can develop large eccentricities and even collide. This is possible because our planets interact with enough energy and with the right (secular) timescales. This has the potential to put the planet Mercury on an unstable orbit in the future, before the Sun exhausts its fuel. Currently, as a standard step in the analysis, exoplanet observing teams check whether the planetary systems they are discovering are stable. This usually involves a few-Megayear numerical integration, and the system usually passes that test. However, the signatures of continuing instability have not been looked for in the exoplanet population, nor has its implications for planetary formation and evolution been fully recognized. We will study several specific evolutionary scenarios in which instability may manifest only on gigayear timescales, i.e. midway through the lives of the host stars. This is relevant to the solicitation in that it characterizes the dynamics of exoplanetary systems. In the first project, we will compare N-body, numerically-calculated secular, and Fourier-expansion secular theories to determine what essential ingredients go into the conclusion that a general planetary system is chaotic. We will apply these tools to specific realizations of Kepler-discovered close-in planetary systems consisting of three or more Neptunes or super-Earths, which is the most populous known exoplanet population. We will thus find the common ailments afflicting middle-age planetary systems. In the second project, we will consider how planets might get stranded in their Kuiper and Oort clouds during early system evolution, only to destabilize the inner system later on. Various investigators have wondered whether the Solar System is accompanied by a massive planetary companion, including a
Shear flow effects on the nonlinear evolution of thermal instabilities
Leboeuf, J.; Charlton, L.A.; Carreras, B.A. )
1993-08-01
In the weak radiation drive regime, the coupling between the thermal instability driven by impurity radiation and the self-consistent flow profile modification leads to a simple dynamical system that can be approximated by the Volterra--Lotka equations. In this system the shear flow acts as a predator and the temperature fluctuations act as prey. The solutions are oscillatory, and their behavior resembles that of edge-localized modes (ELM's). The solutions of the simplified model are compared with the three-dimensional and two-dimensional nonlinear numerical results for this instability.
Interchange instability in finite conductivity accelerated plasma arcs
NASA Astrophysics Data System (ADS)
Bourouis, M.; Huerta, M. A.; Rodriguez-Trelles, F.
1993-01-01
A first order perturbation expansion of the MHD equations is used to study the growth of the Rayleigh-Taylor or interchange instability in accelerated plasma arcs. The mode equation is fourth-order, due to the inclusion of finite conductivity. It is solved numerically to yield results that are an improvement over previous work. The growth rates are less than in the infinite conductivity model. As in previous work the growth rates in typical rail launcher situations are large enough to permit full development of the instability.
Streaming instability in bounded three-component quantum plasmas
Zhang Kezhi; Xue Jukui
2010-03-15
By employing a quantum hydrodynamic model for bounded three-component quantum plasmas, two kinds of streaming instabilities due to ion-streaming and dust-streaming are studied. For this purpose, the dispersion relation for the bounded wave in quantum electron-ion-dust plasmas is obtained by carrying out a normal mode analysis. The results of theoretical analysis and numerical simulation show that the streaming speeds, the boundary conditions, and the quantum parameters strongly influence the instabilities. In particular, it is found that the boundary effect and the quantum effect are closely coupled, i.e., the quantum effect depends on the geometry parameters.
Radiative Instabilities in Three-Dimensional Astrophysical Masers
NASA Technical Reports Server (NTRS)
Scappaticci, Gerardo A.; Watson, William D.
1995-01-01
Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for spherical and elongated (rectangular parallelepiped) geometries.
Solar wind driven dust acoustic instability with Lorentzian kappa distribution
Arshad, Kashif; Ehsan, Zahida; Khan, S. A.; Mahmood, S.
2014-02-15
In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.
Lower-hybrid drift and Buneman instabilities in current sheets with guide field
Yoon, P. H.; Lui, A. T. Y.
2008-11-15
Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k{center_dot}B=0 and k{center_dot}{nabla}n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and {nabla}n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by kxB=0 and k{center_dot}{nabla}n=0, rather than being a beam-aligned instability.
Lower-hybrid drift and Buneman instabilities in current sheets with guide field
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Lui, A. T. Y.
2008-11-01
Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k ṡB=0 and k ṡ∇n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and ∇n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by k ×B=0 and k ṡ∇n=0, rather than being a beam-aligned instability.
Cross-shelf transport and dispersion due to baroclinic instabilities
NASA Astrophysics Data System (ADS)
Thyng, Kristen; Hetland, Robert
2014-05-01
The dominant forcing mechanisms for the circulation in the northwestern Gulf of Mexico are largely determined by location relative to the shelf break. On the inner shelf, the flow is mostly controlled by the wind and on the outer shelf is affected by the mesoscale loop-current eddies. However, in the summer, baroclinic instabilities can develop along the boundary of the mid-shelf river plume front, leading to large eddies (~50 km length scale) that can reach across the entire shelf and strongly affect the local flow field. These instabilities advect fresher water toward the shelf edge and pull denser water back toward the coast. The details of how the flow crosses between these two regimes is of interest because it controls the flux of river-borne biogeochemical properties to the deep ocean, as well as for the potential onshore transport of oil from offshore spills. We approach this problem using a high resolution numerical model of the Texas-Louisiana shelf run using the Regional Ocean Modeling System (ROMS) and a Lagrangian particle tracking model (TRACMASS). By initializing drifters at the sources of fresh water (the Atchafalaya and Mississippi rivers) in the numerical model, we are able to explicitly track its trajectory through the numerical domain in time. These trajectories can then be used to characterize the cross-shelf transport and lateral dispersion due to the instabilities caused by the presence of the fresher water. We expect the transport and dispersion to be enhanced when compared with these quantities at other times of the year when the instabilities are not present, as well as with other regions of the shelf break that are farther from the plume edge area. Additionally, an idealized numerical model of a shelf break with both horizontal and vertical density gradients has been run through relevant parameter spaces to examine the range of baroclinic instabilities. Drifters are run in these simulations for comparison of transport and dispersion with
ERIC Educational Resources Information Center
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
ERIC Educational Resources Information Center
Bright, William
In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…
Phase Instability in Semiconductor Lasers
NASA Astrophysics Data System (ADS)
Gil, L.; Lippi, G. L.
2014-11-01
For many years, the apparent absence of a phase instability has characterized lasers as peculiar nonlinear oscillators. We show that this unusual feature is solely due to the approximations used in writing the standard models. A new, careful derivation of the fundamental equations, based on codimension 2 bifurcation theory, shows the possible existence of dynamical regimes displaying either a pure phase instability, or mixed phase-amplitude turbulence. A comparison to existing experimental results convincingly shows that the Benjamin-Feir instability, common to all nonlinear wave problems, is a fundamental, satisfactory interpretation for their deterministic multimode dynamics.
Analysis of structures causing instabilities.
Wilhelm, Thomas
2007-07-01
We present a simple new method to systematically identify all topological structures (e.g., positive feedback loops) potentially leading to locally unstable steady states: ICSA-The instability causing structure analysis. Systems without any instability causing structure (i.e., not fulfilling the necessary topological condition for instabilities) cannot have unstable steady states. It follows that common bistability or multistability and Hopf bifurcations are excluded and sustained oscillations and deterministic chaos are most unlikely. The ICSA leads to new insights into the topological organization of chemical and biochemical systems, such as metabolic, gene regulatory, and signal transduction networks.
Resistive instabilities in tokamaks
Rutherford, P.H.
1985-10-01
Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.
Gerstner Garces, Juan Bernardo
2012-09-01
Chronic instability of the ankle and anterolateral impingement syndrome are abnormalities that present as a result of inversion and forced plantar-flexion traumas of the foot, despite strict conservative management in the ER and in rehabilitation. A conservative approach is always the first choice of treatment, including anti-inflammatory medications, rehabilitation and proprioception, infiltration with steroids in impingement cases, and use of orthotics, whose true effectiveness is the subject of multiple studies and much debate. Good to excellent results can be obtained surgically with a minimally invasive approach, such as the arthroscopic technique presented herein. Such an approach is useful in managing a combination of conditions such as anterolateral impingement, synovitis, and osteochondral lesions of the talus. The method is easily reproducible, its learning curve is rapid, and it has the advantage of not preventing the use other arthroscopic methods, or open anatomic or nonanatomic methods (tendon transfers), in the case of failure. No nerve lesion was recorded, probably owing to the use of the security zone, and neither was there any arthrofibrosis, possibly related to the use of nonsteroidal anti-inflammatory medications in the immediate postsurgical period coupled with aggressive rehabilitation from the fourth week. The success of the technique is due to multidisciplinary team work leading to the ultimate achievement of patient satisfaction. This technique is not indicated for patients with a high sports demand or for sport professionals, until further biomechanical studies on its use and success are completed.
Carroll, Sean M.; Dulaney, Timothy R.; Gresham, Moira I.; Tam, Heywood
2009-03-15
We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector 'aether' fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model ({partial_derivative}{sub {mu}}A{sub {nu}}){sup 2}, the Maxwell Lagrangian F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}}, and a scalar Lagrangian ({partial_derivative}{sub {mu}}A{sup {mu}}){sup 2}. The timelike sigma-model case is well defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.
Feedback control of subcritical Turing instability with zero mode.
Golovin, A A; Kanevsky, Y; Nepomnyashchy, A A
2009-04-01
A global feedback control of a system that exhibits a subcritical monotonic instability at a nonzero wave number (short-wave or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. This system is studied analytically and numerically. It is shown that feedback control, based on measuring the maximum of the pattern amplitude over the domain, can stabilize the system and lead to the formation of localized unipulse stationary states or traveling solitary waves. It is found that the unipulse traveling structures result from an instability of the stationary unipulse structures when one of the parameters characterizing the coupling between the periodic pattern and the zero mode exceeds a critical value that is determined by the zero mode damping coefficient.
Effect of bone loss in anterior shoulder instability
Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S
2015-01-01
Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984
Shock Instability and Pattern Emergence in Oscillated Granular Media
NASA Astrophysics Data System (ADS)
Stuck, Justin; Anderson, Sarah; Skrzypek, Barbara; Bougie, Jon
2016-11-01
We study shocks formed in vertically oscillated layers of granular media and how shock instability relates to resultant pattern formation. Layers of granular media oscillated vertically on a plate at accelerational amplitudes greater than gravity are tossed off the plate, and shocks are formed upon the layers' return to the plate. Previous studies have shown that the emergence of standing-wave patterns is dependent on the plate's accelerational amplitude and oscillation frequency. We numerically solve continuum equations to Navier-Stokes order using forward-time, centered space (FTCS) differencing on a three-dimensional spatial grid. We employ variable timesteps and parallelization for efficiency. These simulations demonstrate shock instability before and after the onset of patterns. We use data from these simulations to investigate the connection between shock instability and pattern emergence. This research is supported by the Loyola Undergraduate Research Opportunities Program.
Hydrodynamic ion sound instability in systems of a finite length
NASA Astrophysics Data System (ADS)
Koshkarov, O.; Chapurin, O.; Smolyakov, A.; Kaganovich, I.; Ilgisonis, V.
2016-09-01
Plasmas permeated by an energetic ion beam is prone to the kinetic ion-sound instability that occurs as a result of the inverse Landau damping for ion velocity. It is shown here that in a finite length system there exists another type of the ion sound instability which occurs for v02
Global Instability on Laminar Separation Bubbles-Revisited
NASA Technical Reports Server (NTRS)
Theofilis, Vassilis; Rodriquez, Daniel; Smith, Douglas
2010-01-01
In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms. Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes. Major achievements: World-largest numerical solutions of global eigenvalue problems are routinely performed. Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results. Theoretical foundation for control of LSB flows has been laid. Global mode of LSB at the origin of observable phenomena. U-separation on semi-infinite plate. Stall cells on (stalled) airfoil. Receptivity/Sensitivity/AFC feasible (practical?) via: Adjoint EVP solution. Direct/adjoint coupling (the Crete connection). Minor effect of compressibility on global instability in the subsonic compressible regime. Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon.
Richtmyer-Meshkov instability of shocked gaseous interfaces
Benjamin, R.F. ); Besnard, D.; Haas, J.F. )
1991-01-01
The instability of shocked and reshocked perturbed interface between gases of different densities is analyzed by comparing flow visualization from 2D and 3D shock-tube experiments with 2D numerical simulations and theory. The shadowgraphs and calculations show similar large scales of mixing by fluid interpenetration induced by the Richtmyer-Meshkhov instability. In 2D, experimental instability growth following acceleration by the initial shock is less than calculated by linear theory or simulated. The 3D experiments are approximately simulated by 2D calculations with an increased initial amplitude of the interface. The kinetic energy of the interpenetrating velocity field from the simulations are also compared to a theoretical estimate derived from the linear theory. 2 refs., 10 figs.
The role of plasma rotation on MHD instabilities in tokamaks
Varadarajan, V.; Miley, G.H.
1993-06-01
An improved analysis of the linear stage of the internal kink mode has been developed to include plasma rotation and finite aspect ratio effects. The linear instabiliy growth rates are increased by the plasma rotation. A pseudo-variational, bilinear formalism is used to discretize the linear instability equations; Fourier decomposition is used in the periodic coordinate, and a mixed-finite element procedure is adopted in the radial direction. The numerical studies with the resulting PEST-like code can be used to predict the complex plasma eigenfrequencies. The finite aspect ratio results are similar to the large aspect ratio results for flow instability. The complex instability frequencies found in the ``fishbone`` and TAE modes would be strong determined by the large plasma rotation velocities observed in present-day tokamak devices. These effects could be studied by using the computationally convenient bilinear form derived from the Frieman-Rotenberg equation.
The role of plasma rotation on MHD instabilities in tokamaks
Varadarajan, V.; Miley, G.H.
1993-01-01
An improved analysis of the linear stage of the internal kink mode has been developed to include plasma rotation and finite aspect ratio effects. The linear instabiliy growth rates are increased by the plasma rotation. A pseudo-variational, bilinear formalism is used to discretize the linear instability equations; Fourier decomposition is used in the periodic coordinate, and a mixed-finite element procedure is adopted in the radial direction. The numerical studies with the resulting PEST-like code can be used to predict the complex plasma eigenfrequencies. The finite aspect ratio results are similar to the large aspect ratio results for flow instability. The complex instability frequencies found in the fishbone'' and TAE modes would be strong determined by the large plasma rotation velocities observed in present-day tokamak devices. These effects could be studied by using the computationally convenient bilinear form derived from the Frieman-Rotenberg equation.
Fluid Instabilities inside Astrophysical Explosions
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Zheng, Weiqun
2014-11-01
We present our results from the simulations of fluid instabilities inside supernovae with a new radiation-hydrodynamic code, CASTRO. Massive stars are ten times more massive than Sun. Observational and theoretical studies suggest that these massive stars tend to end their lives with energetic explosions, so-called supernovae. Many fluid instabilities occur during the supernova explosions. The fluid instabilities can be driven by hydrodynamics, nuclear burning, or radiation. In this talk, we discuss about the possible physics of fluid instabilities found in our simulations and how the resulting mixing affects the observational signatures of supernovae. This work was supported by the DOE HEP Program under contract DE-SC0010676; the National Science Foundation (AST 0909129) and the NASA Theory Program (NNX14AH34G).
Evaporative instabilities in climbing films
NASA Astrophysics Data System (ADS)
Hosoi, A. E.; Bush, John W. M.
2001-09-01
We consider flow in a thin film generated by partially submerging an inclined rigid plate in a reservoir of ethanol or methanol water solution and wetting its surface. Evaporation leads to concentration and surface tension gradients that drive flow up the plate. An experimental study indicates that the climbing film is subject to two distinct instabilities. The first is a convective instability characterized by flattened convection rolls aligned in the direction of flow and accompanied by free-surface deformations; in the meniscus region, this instability gives rise to pronounced ridge structures aligned with the mean flow. The second instability, evident when the plate is nearly vertical, takes the form of transverse surface waves propagating up the plate.
Bell, Richard W.; Davis, Jerri V.; Femmer, Suzanne R.; Joseph, Robert L.
1997-01-01
Organic-compound samples, including pesticides and semi-volatiles, were collected from 1992-95 at 43 surface-water and 27 bed-sediment and biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Most surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus. At most surface-water sampling sites, one to three pesticide samples were collected in the spring and early summer of 1994 and 1995; two sites had additional samples collected either weekly, biweekly, or monthly from February 1994 through December 1994. At most bed-sediment and biological-tissue sampling sites, a single organic-compounds sample was collected. Agricultural pesticide use was approximately 4.9 million pounds of active ingredients per year from 1987-91 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Atrazine was the second most frequently applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 85 percent of the pesticides applied within the study unit. The highest pesticide application rate occurred on these crops in the Mississippi Alluvial and Osage Plains. Pastureland was the crop type that received the greatest amount of pesticides in 53 of the 96 counties in the study unit. The most commonly detected herbicide (63 samples) in surface water was atrazine. Five other pesticides--desethylatrazine, tebuthiuron, prometon, metolachlor, and simazine--were detected in 15 or more samples. The most commonly detected insecticide (13 samples) was p,p'-DDE. Two other insecticides, diazinon and cis-permethrin, were detected in seven or more samples. Pesticides were detected at 39 surface-water sites; samples collected at Yocum Creek near Oak Grove, Ark. had the most
Waves and instabilities in plasmas
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Instability following total knee arthroplasty.
Rodriguez-Merchan, E Carlos
2011-10-01
Background Knee prosthesis instability (KPI) is a frequent cause of failure of total knee arthroplasty. Moreover, the degree of constraint required to achieve immediate and long-term stability in total knee arthroplasty (TKA) is frequently debated. Questions This review aims to define the problem, analyze risk factors, and review strategies for prevention and treatment of KPI. Methods A PubMed (MEDLINE) search of the years 2000 to 2010 was performed using two key words: TKA and instability. One hundred and sixty-five initial articles were identified. The most important (17) articles as judged by the author were selected for this review. The main criteria for selection were that the articles addressed and provided solutions to the diagnosis and treatment of KPI. Results Patient-related risk factors predisposing to post-operative instability include deformity requiring a large surgical correction and aggressive ligament release, general or regional neuromuscular pathology, and hip or foot deformities. KPI can be prevented in most cases with appropriate selection of implants and good surgical technique. When ligament instability is anticipated post-operatively, the need for implants with a greater degree of constraint should be anticipated. In patients without significant varus or valgus malalignment and without significant flexion contracture, the posterior cruciate ligament (PCL) can be retained. However, the PCL should be sacrificed when deformity exists particularly in patients with rheumatoid arthritis, previous patellectomy, previous high tibial osteotomy or distal femoral osteotomy, and posttraumatic osteoarthritis with disruption of the PCL. In most cases, KPI requires revision surgery. Successful outcomes can only be obtained if the cause of KPI is identified and addressed. Conclusions Instability following TKA is a common cause of the need for revision. Typically, knees with deformity, rheumatoid arthritis, previous patellectomy or high tibial osteotomy, and
Magnetothermal instability in cooling flows
NASA Technical Reports Server (NTRS)
Loewenstein, Michael
1990-01-01
The effect of magnetic fields on thermal instability in cooling flows is investigated using linear, Eulerian perturbation analysis. As contrasted with the zero magnetic-field case, hydromagnetic stresses support perturbations against acceleration caused by buoyancy - comoving evolution results and global growth rates are straightforward to obtain for a given cooling flow entropy distribution. In addition, background and induced magnetic fields ensure that conductive damping of thermal instability is greatly reduced.
Material Instabilities in Particulate Systems
NASA Technical Reports Server (NTRS)
Goddard, J. D.
1999-01-01
Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.
Instability of enclosed horizons
NASA Astrophysics Data System (ADS)
Kay, Bernard S.
2015-03-01
We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.
Elastic instabilities in rubber
NASA Astrophysics Data System (ADS)
Gent, Alan
2009-03-01
Materials that undergo large elastic deformations can exhibit novel instabilities. Several examples are described: development of an aneurysm on inflating a rubber tube; non-uniform stretching on inflating a spherical balloon; formation of internal cracks in rubber blocks at a critical level of triaxial tension or when supersaturated with a dissolved gas; surface wrinkling of a block at a critical amount of compression; debonding or fracture of constrained films on swelling, and formation of ``knots'' on twisting stretched cylindrical rods. These various deformations are analyzed in terms of a simple strain energy function, using Rivlin's theory of large elastic deformations, and the results are compared with experimental measurements of the onset of unstable states. Such comparisons provide new tests of Rivlin's theory and, at least in principle, critical tests of proposed strain energy functions for rubber. Moreover the onset of highly non-uniform deformations has serious implications for the fatigue life and fracture resistance of rubber components. [4pt] References: [0pt] R. S. Rivlin, Philos. Trans. Roy. Soc. Lond. Ser. A241 (1948) 379--397. [0pt] A. Mallock, Proc. Roy. Soc. Lond. 49 (1890--1891) 458--463. [0pt] M. A. Biot, ``Mechanics of Incremental Deformations'', Wiley, New York, 1965. [0pt] A. N. Gent and P. B. Lindley, Proc. Roy. Soc. Lond. A 249 (1958) 195--205. [0pt] A. N. Gent, W. J. Hung and M. F. Tse, Rubb. Chem. Technol. 74 (2001) 89--99. [0pt] A. N. Gent, Internatl. J. Non-Linear Mech. 40 (2005) 165--175.
Vector-Resonance-Multimode Instability
NASA Astrophysics Data System (ADS)
Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.
2017-01-01
The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.
Vertical Instability at IPNS RCS.
Wang, S.; Brumwell, F. R.; Dooling, J. C.; Harkay, K. C.; Kustom, R.; McMichael, G. E.; Middendorf, M. E.; Nassiri, A.; Accelerator Systems Division
2008-01-01
The rapid cycling synchrotron (RCS) of the intense pulsed neutron source (IPNS) at ANL accelerates > 3.0 times 10{sup 12} protons from 50 MeV to 450 MeV with 30-Hz repetition frequency. During the acceleration cycle, the rf frequency varies from 2.21 MHz to 5.14 MHz. Presently, the beam current is limited by a vertical instability. By analyzing turn-by-turn beam position monitor (BPM) data, large- amplitude mode 0 and mode 1 vertical beam centroid oscillations were observed in the later part of the acceleration cycle. The oscillations start in the tail of the bunch, build up, and remain localized in the tail half of the bunch. This vertical instability was compared with a head-tail instability that was intentionally induced in the RCS by adjusting the trim sextupoles. It appears that our vertical instability is not a classical head-tail instability [1]. More data analysis and experiments were performed to characterize the instability.
Thin-tube vortex simulations for sinusoidal instability in a counter-rotating vortex pair
NASA Astrophysics Data System (ADS)
Zheng, Z. C.
2002-06-01
A thin-tube vortex method is developed to investigate the intrinsic instability within a counter-rotating vortex pair system and the effects from the core size and the wavenumbers (or wavelengths). The numerical accuracy and the advantages of the scheme are theoretically estimated. A nearest-neighbour-image method is employed in this three-dimensional vortex simulation. Agreement with Crow's instability analysis has been achieved numerically for the long-wave cases. A short-wave instability for the zeroth radial mode of bending instability has also been found using the thin-tube vortex simulations. Then, the combinations of long- and short-wave instability are investigated to elucidate the non-linear effects due to the interactions of two different modes. It is shown that instability is enhanced if both long- and short-wave instabilities occur simultaneously. Although the method used in the paper is not capable of including effects such as axial flow, vortex core deformation and other complicated viscous effects, it effectively predicts and clarifies the first-order factor that dominates the sinusoidal instability behaviour in a vortex pair. Copyright
Segregation induced fingering instabilities in granular avalanches
NASA Astrophysics Data System (ADS)
Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico
2013-04-01
It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that
Suppressing the numerical Cherenkov radiation in the Yee numerical scheme
Nuter, Rachel Tikhonchuk, Vladimir
2016-01-15
The next generation of laser facilities will routinely produce relativistic particle beams from the interaction of intense laser pulses with solids and/or gases. Their modeling with Particle-In-Cell (PIC) codes needs dispersion-free Maxwell solvers in order to properly describe the interaction of electromagnetic waves with relativistic particles. A particular attention is devoted to the suppression of the numerical Cherenkov instability, responsible for the noise generation. It occurs when the electromagnetic wave is artificially slowed down because of the finite mesh size, thus allowing for the high energy particles to propagate with super-luminous velocities. In the present paper, we show how a slight increase of the light velocity in the Maxwell's equations enables to suppress this instability while keeping a good overall precision of calculations.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.
2008-01-01
This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.
Analysis and suppression of instabilities in viscoelastic flows
NASA Astrophysics Data System (ADS)
Kumar, Karkala Arun
2001-10-01
The viscoelastic character of polymer solutions and melts gives rise to instabilities not seen in the flows of Newtonian liquids. In this thesis, we computationally study four such instabilities. The first instability we discuss is melt fracture, which takes the form of gross distortions of the polymer surface during extrusion. This instability is linked to multiplicity in the slip curve. We show here that when the dependence of slip velocity on pressure is taken into account, multiplicity in the slip law does not necessarily imply a multi-valued flow curve or melt fracture. Next, we study the ``filament-stretching'' instability, which takes the form of non-axisymmetric deviations of the free surface of a polymeric liquid bridge being extended between two parallel plates. We model the portion of the filament near the endplates as an elastic membrane enclosing an incompressible fluid and show that this is unstable to non-axisymmetric disturbances. The third instability we discuss is the purely elastic instability in Dean flow. This instability is linked to elastic instabilities in more complicated and industrially important coating flows with curved streamlines. We show how the addition of a small secondary axial flow in a steady or periodic fashion can significantly delay the onset of the instability. Recent experimental observations by Groisman and Steinberg ( Phys. Rev. Lett. 78(8), 1460-1463, 1997) and Baumert and Muller (Phys. Fluids, 9(3), 566-586, 1999) have shown the formation of spatially isolated, stationary, axisymmetric patterns in the nonlinear regime of circular Couette flow, termed ``diwhirls'' or ``flame patterns.'' Modeling these patterns is complicated by the absence of a stationary bifurcation in isothermal circular Couette flow. We show here how these solutions may be accessed by numerical continuation from stationary bifurcations in Couette-Dean flows. Although the solutions we compute are unstable, they show qualitative and quantitative
Numerical tokamak turbulence project (OFES grand challenge)
Beer, M; Cohen, B I; Crotinger, J; Dawson, J; Decyk, V; Dimits, A M; Dorland, W D; Hammett, G W; Kerbel, G D; Leboeuf, J N; Lee, W W; Lin, Z; Nevins, W M; Reynders, J; Shumaker, D E; Smith, S; Sydora, R; Waltz, R E; Williams, T
1999-08-27
The primary research objective of the Numerical Tokamak Turbulence Project (NTTP) is to develop a predictive ability in modeling turbulent transport due to drift-type instabilities in the core of tokamak fusion experiments, through the use of three-dimensional kinetic and fluid simulations and the derivation of reduced models.
Secondary fast reconnecting instability in the sawtooth crash
NASA Astrophysics Data System (ADS)
Del Sarto, Daniele; Ottaviani, Maurizio
2016-10-01
We consider magnetic reconnection in thin current sheets with both resistive and electron inertia effects. By analysis of secondary instabilities we show that, when the current sheet is produced by a primary instability of the internal kink type (large Δ'), reconnection proceeds on a time scale much shorter than the primary instability characteristic time. We find that in the purely resistive regime our estimates agree with the numerical results obtained by for the internal kink instability in a cylindrical tokamak. We also find that, in the case of a sawtooth crash, non-collisional physics becomes important above a value of the Lundquist number which scales like S (R /de)12/5 , in terms of the tokamak major radius R and of the electron skin depth de. This value is commonly achieved in present day devices. As collisionality is further reduced, the characteristic rate increases, approaching Alfvenic values when the primary instability approaches the collisionless regime. All these results have been recently discussed in Ref..
A coupled "AB" system: Rogue waves and modulation instabilities.
Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N
2015-10-01
Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.
Transverse instability of dunes.
Parteli, Eric J R; Andrade, José S; Herrmann, Hans J
2011-10-28
The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.
A mathematical biologist's guide to absolute and convective instability.
Sherratt, Jonathan A; Dagbovie, Ayawoa S; Hilker, Frank M
2014-01-01
Mathematical models have been highly successful at reproducing the complex spatiotemporal phenomena seen in many biological systems. However, the ability to numerically simulate such phenomena currently far outstrips detailed mathematical understanding. This paper reviews the theory of absolute and convective instability, which has the potential to redress this inbalance in some cases. In spatiotemporal systems, unstable steady states subdivide into two categories. Those that are absolutely unstable are not relevant in applications except as generators of spatial or spatiotemporal patterns, but convectively unstable steady states can occur as persistent features of solutions. The authors explain the concepts of absolute and convective instability, and also the related concepts of remnant and transient instability. They give examples of their use in explaining qualitative transitions in solution behaviour. They then describe how to distinguish different types of instability, focussing on the relatively new approach of the absolute spectrum. They also discuss the use of the theory for making quantitative predictions on how spatiotemporal solutions change with model parameters. The discussion is illustrated throughout by numerical simulations of a model for river-based predator-prey systems.
Looking at the Gregory-Laflamme instability through quasinormal modes
Konoplya, R. A.; Murata, Keiju; Soda, Jiro; Zhidenko, A.
2008-10-15
We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
Various regimes of instability and formation of coastal eddies along the shelf bathymetry
NASA Astrophysics Data System (ADS)
Cimoli, Laura; Stegner, Alexandre; Roullet, Guillaume
2016-04-01
The impact of shelf slope on the stability of coastal currents and the nonlinear formation of coastal meanders and eddies are investigated by linear analysis and numerical simulations using an idealized channel configuration of the ROMS model. The impact of the shelf bathymetry leads to different regimes of instability of coastal currents that can both enhance or prevent the cross-shore transport. While keeping unchanged a coastal jet, we tested its unstable evolution for various depth and topographic slopes. Unlike standard linear stability analysis devoted to the very first stage of instability we focus on the non-linear end state, i.e. the formation of coastal eddies or meanders, to classify the various dynamical regimes. Two dimensionless numbers are used to quantify the parameter space of theses various regimes: the vertical aspect ratio gamma and the topographic parameter Tp, which is defined as the ratio of the topographic Rossby waves speed over the jet speed and is proportional to the shelf slope. We found four distinct regimes of instability, namely: standard baroclinic instability, horizontal shear instability, trapped coastal instability and quasi-stable jet. Our results show that Tp is the key parameter that controls the non-linear saturation of the coastal current, while gamma controls the transition from the standard baroclinic instability to the horizontal shear instability. Moreover, our analysis exhibit a new regime of formation of submeso-scale eddies. Contrary to the standard baroclinic instability regime, these eddies are trapped over the slope and never escape off-shore.
Instabilities of vibroequilibria in rectangular containers
NASA Astrophysics Data System (ADS)
Fernández, J.; Tinao, I.; Porter, J.; Laverón-Simavilla, A.
2017-02-01
Vibroequilibria theory, based on minimizing an averaged energy functional, predicts the quasi-equilibrium shape that a fluid volume will take when subjected to high-frequency vibrations. Here we present a detailed comparison of the predictions of vibroequilibria theory with the results of direct numerical simulations in horizontally vibrated rectangular containers, finding very good agreement over a range of parameters. The calculations also reveal an important difference in the behavior between small and large fluid volumes. With dimensionless volume larger than about 0.36, the symmetric vibroequilibria solution suffers a saddle-node instability prior to contact with the container bottom. This saddle-node bifurcation is analyzed using a simplified family of surfaces and shown to persist when gravity is included. Finally, an investigation of dynamic effects is presented, where a strong correlation is found between modulated subharmonic surface waves and the first odd sloshing mode. At large enough amplitude, this sloshing destroys the underlying vibroequilibria state and thus represents a possible instability for vibroequilibria in low viscosity fluids.
A Reduced Model for the Magnetorotational Instability
NASA Astrophysics Data System (ADS)
Jamroz, Ben; Julien, Keith; Knobloch, Edgar
2008-11-01
The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.
Instabilities in Lean Gas-Phase Combustion
NASA Astrophysics Data System (ADS)
Schneider, K.; Bockhorn, H.; Eigenbrod, Ch.; Emerson, D.; Haldenwang, P.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.
2005-06-01
Lean burning is the burning of fuel-air mixtures with less than the chemically- balanced (stoichiometric) mixture. It produces a significant increase in fuel efficiency and reduction in pollution. However, the limits and control of lean burning are still not well understood.This is the motivation behind the study of instabilities in lean gas-phase combustion under microgravity conditions via direct numerical simulations and comparison of the results with experimental data.The goal is to gain fundamental insights in order to identify and understand the intrinsic chemical and fluid dynamical mechanisms responsible for these instabilities.The potential of this microgravity combustion research includes the development of technology that would reduce pollution and fire and explosion hazards, improve hazardous waste incineration and increase efficiency of the conversion of chemical energy to electric power or motive force.The results from this fundamental research will thus benefit chemical engineering and power generation. Its wide range of applications in industry includes lean-burning car engines.
Nelms, David L.; Messinger, Terence; McCoy, Kurt J.
2015-07-14
As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.
Numerical Simulation of Black Holes
NASA Astrophysics Data System (ADS)
Teukolsky, Saul
2003-04-01
Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.
Rayleigh-Taylor instability simulations with CRASH
NASA Astrophysics Data System (ADS)
Chou, C.-C.; Fryxell, B.; Drake, R. P.
2012-03-01
CRASH is a code package developed for the predictive study of radiative shocks. It is based on the BATSRUS MHD code used extensively for space-weather research. We desire to extend the applications of this code to the study of hydrodynamically unstable systems. We report here the results of Rayleigh-Taylor instability (RTI) simulations with CRASH, as a necessary step toward the study of such systems. Our goal, motivated by the previous comparison of simulations and experiment, is to be able to simulate the magnetic RTI with self-generated magnetic fields produced by the Biermann Battery effect. Here we show results for hydrodynamic RTI, comparing the effects of different solvers and numerical parameters. We find that the early-time behavior converges to the analytical result of the linear theory. We observe that the late-time morphology is sensitive to the numerical scheme and limiter beta. At low-resolution limit, the growth of RTI is highly dependent on the setup and resolution, which we attribute to the large numerical viscosity at low resolution.
Modulational instability and pattern formation in discrete dissipative systems.
Mohamadou, Alidou; Kofané, Timoléon Crépin
2006-04-01
We report in this paper the study of modulated wave trains in the one-dimensional (1D) discrete Ginzburg-Landau model. The full linear stability analysis of the nonlinear plane wave solutions is performed by considering both the wave vector (q) of the basic states and the wave vector (Q) of the perturbations as free parameters. In particular, it is shown that a threshold exists for the amplitude and above this threshold, the induced modulational instability leads to the formation of ordered and disordered patterns. The theoretical findings have been numerically tested through direct simulations and have been found to be in agreement with the theoretical prediction. We show numerically that modulational instability is also an indicator of the presence of discrete solitons as were early predicted to exist in Ginzburg-Landau lattices.
Measurements of entropy-layer instabilities over cone-ogive-cylinders at Mach 6
NASA Astrophysics Data System (ADS)
Greenwood, Roger T.
. Results show a smooth variation of the location of this instability descent with nosetip angle. As the angle increases, the instability approaches the model further upstream. Cross-correlations between the surface transducer and hot-wire anemometry measurements confirm that the same instability is being measured at both locations. Cross-correlations between axially-displaced surface sensors were used to calculate an instability convection velocity that is approximately equal to the numerically-calculated flow velocity. And cross-correlations between azimuthally-displaced sensors show that the instability is primarily axisymmetric. The model angle of attack for all measurements was nominally zero. However, the actual angle of attack may vary by up to 0.1 degrees. The experimental results were also compared with mean-flow computations for several of the model configurations.
Physical diffusion suppresses the carbuncle instability
NASA Astrophysics Data System (ADS)
Shi, Ke; Jemcov, Aleksander; Powers, Joseph
2015-11-01
We demonstrate a simple antidote exists to the numerical carbuncle instability predicted by some shock-capturing schemes: inclusion of physical momentum and energy diffusion via a compressible Navier-Stokes solution to the supersonic flow of a calorically perfect ideal gas past a circular cylinder. We demonstrate the carbuncle phenomenon and its rectification by solving two problems. Both employ the same geometry, initial conditions, computational grid, time step size, advective flux model of a Roe-based scheme without an entropy fix, and time-advancement scheme. For the first problem, we neglect physical diffusion, while for the second we include it. When physical diffusion is neglected, we predict a carbuncle phenomenon; however, when it is included and sufficiently resolved, no carbuncle is predicted, in agreement with experiment.
Dynamo generated by the centrifugal instability
NASA Astrophysics Data System (ADS)
Marcotte, Florence; Gissinger, Christophe
2016-10-01
We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.
Thermal instability of stagnation point boundary layers
NASA Astrophysics Data System (ADS)
Chen, M. M.; Chen, K.; Sohn, C. W.
1980-07-01
An analysis of thermal instability for the two-dimensional stagnation flow with respect to the longitudinal cell mode is presented. This mode represents a three-dimensional buoyancy-drive motion consisting of a row of cells with axes parallel to the direction of the velocity vector near the surface; it is the least stable mode in the presence of shear. The analysis results in an eighth-order eigenvalue problem for the general case, and a sixth-order eigenvalue problem for the limiting case of infinite Prandtl number. The problem was solved by a numerical shooting method for a finite domain and determination of the asymptotic value of the eigenvalue as the limit of the domain approach infinity. It was found that the Grashof number based on the viscous length scale is a more convenient parameter to present the stability results than the Rayleigh number.
Instabilities of a rotating helical rod
NASA Astrophysics Data System (ADS)
Park, Yunyoung; Ko, William; Kim, Yongsam; Lim, Sookkyung
2016-11-01
Bacteria such as Escherichia coli and Vibrio alginolyticus have helical flagellar filament. By rotating a motor, which is located at the bottom end of the flagellar filament embedded in the cell body, CCW or CW, they swim forward or backward. We model a left-handed helix by the Kirchhoff rod theory and use regularized Stokes formulation to study an interaction between the surrounding fluid and the flagellar filament. We perform numerical studies focusing on relations between physical parameters and critical angular frequency of the motor, which separates overwhiring from twirling. We are also interested in the buckling instability of the hook, which is very flexible elastic rod. By measuring buckling angle, which is an angle between rotational axis and helical axis, we observe the effects of physical parameters on buckling of the hook.
Helical vortices: viscous dynamics and instability
NASA Astrophysics Data System (ADS)
Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team
2014-11-01
Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.
Propulsion and instability of flexible helical flagella
NASA Astrophysics Data System (ADS)
Khouri, Noor; Jawed, Mohammad; da, Fang; Grinspun, Eitan; Reis, Pedro
2015-03-01
We consider a macroscopic analogue model for the locomotion of uni-flagellar bacteria in a viscous fluid. The rescaling from the original micron-scale onto the desktop-scale is made possible by the prominence of geometry in the deformation process. As a model for the flagellum, we fabricate elastomeric filaments with fully customizable geometric and material properties, and rotate them at low Reynolds number conditions in a glycerin bath. Using digital imaging, we analyze the dynamics of the geometrically nonlinear deformed configurations. Our precision experiments are compared against numerical simulations that employ the Discrete Elastic Rods (DER) method, with an emphasis on quantifying the generated propulsive force. A novel mechanical instability is uncovered, whereby the filament buckles above a critical rotation frequency and we quantify its dependence on the physical and control parameters of the system. A scaling analysis allows us to rationalize the underlying physical mechanism and informs the original biological system that motivated the study.
Vortex ring instability and its sound
NASA Technical Reports Server (NTRS)
Verzicco, R.; Shariff, K.
1994-01-01
This work carries earlier finite-difference calculations of the Widnall instability of vortex rings into the late non-linear stage. Plots of energy in azimuthal Fourier modes indicate that low-order modes dominate at large times; their structure and dynamics remain unexplored, however. An attempt was made to calculate the acoustic signal using the theory of Mohring (1978), valid for unbounded flow. This theory shows that only low-order azimuthal modes contribute to the sound. As a check on the effects of axial periodicity and a slip wall at large radius imposed by the numerical scheme, the acoustic integrals were also computed in a truncated region. Half of the terms contributing to the sound have large differences between the two regions, and the results are therefore unreliable. The error is less severe for a contribution involving only the m = 2 mode, and its low frequency is consistent with a free elliptic bending wave on a thin ring.
MIX and Instability Growth from Oblique Shock
Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W
2011-07-22
We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.
Instability in electromagnetically driven flows. II
NASA Astrophysics Data System (ADS)
Rodriguez Imazio, Paola; Gissinger, Christophe
2016-03-01
In a previous paper, we have reported numerical simulations of the magnetohydrodynamic flow driven by a travelling magnetic field in an annular channel, at low Reynolds number. It was shown that the stalling of such induction pump is strongly related to magnetic flux expulsion. In the present article, we show that for larger hydrodynamic Reynolds number, and with more realistic boundary conditions, this instability takes the form of a large axisymmetric vortex flow in the (r, z)-plane, in which the fluid is locally pumped in the direction opposite to the one of the magnetic field. Close to the marginal stability of this vortex flow, a low-frequency pulsation is generated. Finally, these results are compared to theoretical predictions and are discussed within the framework of experimental annular linear induction electromagnetic pumps.
Machida, Mami; Nakamura, Kenji E.; Kudoh, Takahiro; Akahori, Takuya; Sofue, Yoshiaki; Matsumoto, Ryoji
2013-02-10
We carried out global three-dimensional magnetohydrodynamic simulations of dynamo activities in galactic gaseous disks without assuming equatorial symmetry. Numerical results indicate the growth of azimuthal magnetic fields non-symmetric to the equatorial plane. As the magnetorotational instability (MRI) grows, the mean strength of magnetic fields is amplified until the magnetic pressure becomes as large as 10% of the gas pressure. When the local plasma {beta} (=p {sub gas}/p {sub mag}) becomes less than 5 near the disk surface, magnetic flux escapes from the disk by the Parker instability within one rotation period of the disk. The buoyant escape of coherent magnetic fields drives dynamo activities by generating disk magnetic fields with opposite polarity to satisfy the magnetic flux conservation. The flotation of the azimuthal magnetic flux from the disk and the subsequent amplification of disk magnetic field by the MRI drive quasi-periodic reversal of azimuthal magnetic fields on a timescale of 10 rotation periods. Since the rotation speed decreases with radius, the interval between the reversal of azimuthal magnetic fields increases with radius. The rotation measure computed from the numerical results shows symmetry corresponding to a dipole field.
Weakly turbulent instability of anti-de Sitter spacetime.
Bizoń, Piotr; Rostworowski, Andrzej
2011-07-15
We study the nonlinear evolution of a weakly perturbed anti-de Sitter (AdS) space by solving numerically the four-dimensional spherically symmetric Einstein-massless-scalar field equations with negative cosmological constant. Our results suggest that AdS space is unstable under arbitrarily small generic perturbations. We conjecture that this instability is triggered by a resonant mode mixing which gives rise to diffusion of energy from low to high frequencies.
Viscous Rayleigh-Taylor instability in spherical geometry
Mikaelian, Karnig O.
2016-02-08
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.
Low-frequency flute instabilities of self-pinched ion beams
Uhm, Han S.; Davidson, Ronald C.
2005-12-15
The stability properties of the low-frequency flute instabilities in a self-pinched ion beam propagating through a preformed plasma channel are investigated for long-wavelength and low-frequency perturbations. Consistent with the flute instabilities, the stability analysis is restricted to the surface perturbations on the ion beam. A closed algebraic dispersion relation of the flute instabilities for Bennett [Phys. Rev. 45, 890 (1934)] density profile is obtained, by making use of the energy group model. From the analytical and numerical calculations of the dispersion relation for highly collisional plasma, we find the necessary condition for instability in terms of the fractional current neutralization f. Threshold values of the fractional current neutralization for instability are tabulated for each azimuthal mode number l.
Secondary instability analysis of pre-transitional streaks in boundary layers
NASA Astrophysics Data System (ADS)
Hack, M. J. Philipp; Zaki, Tamer
2011-11-01
In the presence of free-stream vortical disturbances, laminar boundary layers develop streamwise-elongated perturbations of high amplitude, commonly known as Klebanoff streaks. The regions of shear surrounding these primary structures provide the potential for the growth of secondary instabilities which ultimately initiate bypass transition. By means of linear analysis, we examine the secondary instability which precedes the formation of turbulent spots. The base state is extracted from direct numerical simulations of the bypass process. The simulation setup is similar to the work of Jacobs & Durbin (2001), where transition is triggered by broadband free-stream vortical forcing. The velocity field therefore includes a spectrum of streaks with different structures and amplitudes. The stability analysis can nevertheless identify the streaks which indeed develop secondary instabilities and break down to turbulence. The predictions of linear theory, in particular the instability wavelength and phase speed, are compared to the streak instabilities recorded in the DNS of the full bypass process.
Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow
W. Liu
2009-02-20
The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.
ERIC Educational Resources Information Center
Sozio, Gerry
2009-01-01
Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…
NASA Technical Reports Server (NTRS)
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
Chondral Injury in Patellofemoral Instability
Lustig, Sébastien; Servien, Elvire; Neyret, Philippe
2014-01-01
Objective: Patellofemoral instability is common and affects a predominantly young age group. Chondral injury occurs in up to 95%, and includes osteochondral fractures and loose bodies acutely and secondary degenerative changes in recurrent cases. Biomechanical abnormalities, such as trochlear dysplasia, patella alta, and increased tibial tuberosity-trochlear groove distance, predispose to both recurrent dislocations and patellofemoral arthrosis. Design: In this article, we review the mechanisms of chondral injury in patellofemoral instability, diagnostic modalities, the distribution of lesions seen in acute and episodic dislocation, and treatments for articular cartilage lesions of the patellofemoral joint. Results: Little specific evidence exists for cartilage treatments in patellofemoral instability. In general, the results of reparative and restorative procedures in the patellofemoral joint are inferior to those observed in other compartments of the knee. Conclusion: Given the increased severity of chondral lesions and progression to osteoarthritis seen with recurrent dislocations, careful consideration should be given to early stabilisation in patients with predisposing factors. PMID:26069693
Hydrodynamick instabilities on ICF capsules
Haan, S.W.
1991-06-07
This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs.
Compressive Instability Phenomena During Springback
NASA Astrophysics Data System (ADS)
Kim, J.-B.; Yoon, J. W.; Yang, D. Y.
2007-05-01
Springback in sheet metal product makes difficulties in die design because small strain causes large displacement. Especially for the sheet metal product having small geometric constraints, springback displacement may become severe. After first stage of stamping of outer case of washing machine, a large amount of springback is observed. The stamping depth of the outer case is small while stamping area is very large compared to the stamping depth, and therefore, there exists small geometric constraints in the formed part. Also, a compressive instability during the elastic recovery takes place and this instability enlarged the elastic recovery and dimensional error. In this paper, the compressive instability during the elastic recovery is analyzed using bifurcation theory. The final deformed shape after springback is obtained by bifurcating the solution path from primary to secondary. The deformed shapes obtained by the finite element analysis are in good agreement with the experimental data. The bifurcation behavior and the springback displacement for different forming depth are investigated.
Compressive Instability Phenomena During Springback
Kim, J.-B.; Yoon, J. W.; Yang, D. Y.
2007-05-17
Springback in sheet metal product makes difficulties in die design because small strain causes large displacement. Especially for the sheet metal product having small geometric constraints, springback displacement may become severe. After first stage of stamping of outer case of washing machine, a large amount of springback is observed. The stamping depth of the outer case is small while stamping area is very large compared to the stamping depth, and therefore, there exists small geometric constraints in the formed part. Also, a compressive instability during the elastic recovery takes place and this instability enlarged the elastic recovery and dimensional error. In this paper, the compressive instability during the elastic recovery is analyzed using bifurcation theory. The final deformed shape after springback is obtained by bifurcating the solution path from primary to secondary. The deformed shapes obtained by the finite element analysis are in good agreement with the experimental data. The bifurcation behavior and the springback displacement for different forming depth are investigated.
Interfacial Instability during Granular Erosion.
Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre
2016-02-12
The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.
Faraday instability in deformable domains
NASA Astrophysics Data System (ADS)
Pucci, Giuseppe; Ben Amar, Martine; Couder, Yves
2014-11-01
We investigate the Faraday instability in floating liquid lenses, as an example of hydrodynamic instability that develops in a domain with flexible boundaries. We show that a mutual adaptation of the instability pattern and the domain shape occurs, as a result of the competition between the wave radiation pressure and the capillary response of the lens border. Two archetypes of behaviour are observed. In the first, stable shapes are obtained experimentally and predicted theoretically as the exact solutions of a Riccati equation, and they result from the equilibrium between wave radiation pressure and capillarity. In the second, the radiation pressure exceeds the capillary response of the lens border and leads to non-equilibrium behaviours, with breaking into smaller domains that have a complex dynamics including spontaneous propagation. The authors are grateful to Université Franco-Italienne (UFI) for financial support.
SURGICAL TREATMENT OF PATELLOFEMORAL INSTABILITY
de Andrade, Marco Antônio Percope; de Abreu e Silva, Guilherme Moreira; Freire, Marcelo Machado; Teixeira, Luiz Eduardo Moreira
2015-01-01
Objective: To describe functional outcomes following surgical treatment of patients with patellofemoral instability submitted to patellar realignment. Methods: This was a retrospective study evaluating 34 operated knees for patellofemoral instability between 1989 and 2004. The patients were evaluated in the late postoperative period when a functional questionnaire was applied. Results: After a mean follow-up time of 6 years and 5 months, the mean score was 82.94 in the surgical group (p=0.00037). The results of this investigation showed pain relief in 97.05% and low rate of recurrent dislocation (5.88%), although lower scores were seen in intense articular activities (squatting, running and jumping). No patient developed osteoarthritis while being followed up. Conclusion: The procedure for joint described in this paper was shown to be effective for treating patients with recurrent patellofemoral instability. PMID:27077065
Analysis of thermodiffusive cellular instabilities in continuum combustion fronts.
Azizi, Hossein; Gurevich, Sebastian; Provatas, Nikolas
2017-01-01
We explore numerically the morphological patterns of thermodiffusive instabilities in combustion fronts with a continuum fuel source, within a range of Lewis numbers and ignition temperatures, focusing on the cellular regime. For this purpose, we generalize the recent model of Brailovsky et al. to include distinct process kinetics and reactant heterogeneity. The generalized model is derived analytically and validated with other established models in the limit of infinite Lewis number for zero-order and first-order kinetics. Cellular and dendritic instabilities are found at low Lewis numbers. These are studied using a dynamic adaptive mesh refinement technique that allows very large computational domains, thus allowing us to reduce finite-size effects that can affect or even preclude the emergence of these patterns. Our numerical linear stability analysis is consistent with the analytical results of Brailovsky et al. The distinct types of dynamics found in the vicinity of the critical Lewis number, ranging from steady-state cells to continued tip splitting and cell merging, are well described within the framework of thermodiffusive instabilities and are consistent with previous numerical studies. These types of dynamics are classified as "quasilinear" and characterized by low-amplitude cells that may be strongly affected by the mode selection mechanism and growth prescribed by the linear theory. Below this range of Lewis number, highly nonlinear effects become prominent and large-amplitude, complex cellular and seaweed dendritic morphologies emerge.
Analysis of thermodiffusive cellular instabilities in continuum combustion fronts
NASA Astrophysics Data System (ADS)
Azizi, Hossein; Gurevich, Sebastian; Provatas, Nikolas
2017-01-01
We explore numerically the morphological patterns of thermodiffusive instabilities in combustion fronts with a continuum fuel source, within a range of Lewis numbers and ignition temperatures, focusing on the cellular regime. For this purpose, we generalize the recent model of Brailovsky et al. to include distinct process kinetics and reactant heterogeneity. The generalized model is derived analytically and validated with other established models in the limit of infinite Lewis number for zero-order and first-order kinetics. Cellular and dendritic instabilities are found at low Lewis numbers. These are studied using a dynamic adaptive mesh refinement technique that allows very large computational domains, thus allowing us to reduce finite-size effects that can affect or even preclude the emergence of these patterns. Our numerical linear stability analysis is consistent with the analytical results of Brailovsky et al. The distinct types of dynamics found in the vicinity of the critical Lewis number, ranging from steady-state cells to continued tip splitting and cell merging, are well described within the framework of thermodiffusive instabilities and are consistent with previous numerical studies. These types of dynamics are classified as "quasilinear" and characterized by low-amplitude cells that may be strongly affected by the mode selection mechanism and growth prescribed by the linear theory. Below this range of Lewis number, highly nonlinear effects become prominent and large-amplitude, complex cellular and seaweed dendritic morphologies emerge.
Vlasov models for kinetic Weibel-type instabilities
NASA Astrophysics Data System (ADS)
Ghizzo, A.; Sarrat, M.; Del Sarto, D.
2017-02-01
The Weibel instability, driven by a temperature anisotropy, is investigated within different kinetic descriptions based on the semi-Lagrangian full kinetic and relativistic Vlasov-Maxwell model, on the multi-stream approach, which is based on a Hamiltonian reduction technique, and finally, with the full pressure tensor fluid-type description. Dispersion relations of the Weibel instability are derived using the three different models. A qualitatively different regime is observed in Vlasov numerical experiments depending on the excitation of a longitudinal plasma electric field driven initially by the combined action of the stream symmetry breaking and weak relativistic effects, in contrast with the existing theories of the Weibel instability based on their purely transverse characters. The multi-stream model offers an alternate way to simulate easily the coupling with the longitudinal electric field and particularly the nonlinear regime of saturation, making numerical experiments more tractable, when only a few moments of the distribution are considered. Thus a numerical comparison between the reduced Hamiltonian model (the multi-stream model) and full kinetic (relativistic) Vlasov simulations has been investigated in that regime. Although nonlinear simulations of the fluid model, including the dynamics of the pressure tensor, have not been carried out here, the model is strongly relevant even in the three-dimensional case.
Theoretical Studies of Low Frequency Instabilities in the Ionosphere. Final Report
Dimant, Y. S.
2003-08-20
The objective of the current project is to provide a theoretical basis for better understanding of numerous radar and rocket observations of density irregularities and related effects in the lower equatorial and high-latitude ionospheres. The research focused on: (1) continuing efforts to develop a theory of nonlinear saturation of the Farley-Buneman instability; (2) revision of the kinetic theory of electron-thermal instability at low altitudes; (3) studying the effects of strong anomalous electron heating in the high-latitude electrojet; (4) analytical and numerical studies of the combined Farley-Bunemadion-thermal instabilities in the E-region ionosphere; (5) studying the effect of dust charging in Polar Mesospheric Clouds. Revision of the kinetic theory of electron thermal instability at low altitudes.
Political instability and illegal immigration.
Campos, J E; Lien, D
1995-01-01
"Economic theory suggests that transnational migration results from the push-pull effect of wage differentials between host and source countries. In this paper, we argue that political instability exacerbates the migration flow, with greater instability leading to relatively larger flows. We conclude then that an optimal solution to the illegal immigration problem requires proper coordination of immigration and foreign policies by the host country. A narrow preoccupation with tougher immigration laws is wasteful and may be marginally effective." Emphasis is on the United States as a host country.
Beam instabilities in hadron synchrotrons
Metral, E.; T. Argyropoulos; Bartosik, H.; ...
2016-04-01
Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. Furthermore, the aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.
Mechanical Instabilities of Biological Tubes
NASA Astrophysics Data System (ADS)
Hannezo, Edouard; Prost, Jacques; Joanny, Jean-François
2012-07-01
We study theoretically the morphologies of biological tubes affected by various pathologies. When epithelial cells grow, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated: varicose, dilated, sinuous, or sausagelike. They are all found in pathologies of tracheal, renal tubes, or arteries. The final shape depends crucially on the mechanical parameters of the tissues: Young’s modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.
Research on aviation fuel instability
NASA Technical Reports Server (NTRS)
Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.
1984-01-01
The problems associated with aircraft fuel instability are discussed. What is currently known about the problem is reviewed and a research program to identify those areas where more research is needed is discussed. The term fuel instability generally refers to the gums, sediments, or deposits which can form as a result of a set of complex chemical reactions when a fuel is stored for a long period at ambient conditions or when the fuel is thermally stressed inside the fuel system of an aircraft.
Fingering instability and mixing of a blob in porous media
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Mishra, Manoranjan
2016-10-01
The curvature of the unstable part of the miscible interface between a circular blob and the ambient fluid in two-dimensional homogeneous porous media depends on the viscosity of the fluids. The influence of the interface curvature on the fingering instability and mixing of a miscible blob within a rectilinear displacement is investigated numerically. The fluid velocity in porous media is governed by Darcy's law, coupled with a convection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity of the fluids. Numerical simulations are performed using a Fourier pseudospectral method to determine the dynamics of a miscible blob (circular or square). It is shown that for a less viscous circular blob, there exist three different instability regions without any finite R -window for viscous fingering, unlike the case of a more viscous circular blob. Critical blob radius for the onset of instability is smaller for a less viscous blob as compared to its more viscous counterpart. Fingering enhances spreading and mixing of miscible fluids. Hence a less viscous blob mixes with the ambient fluid quicker than the more viscous one. Furthermore, we show that mixing increases with the viscosity contrast for a less viscous blob, while for a more viscous one mixing depends nonmonotonically on the viscosity contrast. For a more viscous blob mixing depends nonmonotonically on the dispersion anisotropy, while it decreases monotonically with the anisotropic dispersion coefficient for a less viscous blob. We also show that the dynamics of a more viscous square blob is qualitatively similar to that of a circular one, except the existence of the lump-shaped instability region in the R -Pe plane. We have shown that the Rayleigh-Taylor instability in a circular blob (heavier or lighter than the ambient fluid) is independent of the interface curvature.
Identification of streaming instabilities in the presheath of plasmas with two ion species
NASA Astrophysics Data System (ADS)
Baalrud, Scott; Lafleur, Trevor
2013-09-01
A recent theory proposes that ion-ion two-stream instabilities can arise in the presheath of plasmas with two ion species under certain conditions, and that these instabilities rapidly enhance the frictional coupling between the ion species. The threshold condition for instability onset along with the multi-species Bohm criterion allowed prediction of the speed of each ion species at the sheath edge. These predictions were later confirmed experimentally. However, recent work has questioned the validity of this theory based on PIC simulations that did not observe instabilities under conditions similar to the experiment. Using numerical solutions for the dispersion relation, we show that this discrepancy is due to a lower electron temperature in the simulations. This identifies an inaccuracy with an approximate instability criterion that predicted instability for the simulation parameters. We thoroughly test this numerically. Additionally, for the first time we identify the ion-ion two-stream instabilities in the presheath using PIC simulations. Baalrud, Hegna and Callen, Phys. Rev. Lett. 103, 205002 (2009)
One-armed spiral instability in neutron star mergers and its detectability in gravitational waves
NASA Astrophysics Data System (ADS)
Radice, David; Bernuzzi, Sebastiano; Ott, Christian D.
2016-09-01
We study the development and saturation of the m =1 one-armed spiral instability in remnants of binary neutron star mergers by means of high-resolution long-term numerical relativity simulations. Our results suggest that this instability is a generic outcome of neutron star mergers in astrophysically relevant configurations, including both "stiff" and "soft" nuclear equations of state. We find that, once seeded at merger, the m =1 mode saturates within ˜10 ms and persists over secular time scales. Gravitational waves emitted by the m =1 instability have a peak frequency around 1-2 kHz and, if detected, they could be used to constrain the equation of state of neutron stars. We construct hybrid waveforms spanning the entire Advanced LIGO band by combining our high-resolution numerical data with state-of-the-art effective-one-body waveforms including tidal effects. We use the complete hybrid waveforms to study the detectability of the one-armed spiral instability for both Advanced LIGO and the Einstein Telescope. We conclude that the one-armed spiral instability is not an efficient gravitational wave emitter. Even under very optimistic assumptions, Advanced LIGO will only be able to detect the one-armed instability up to ˜3 Mpc , which corresponds to an event rate of 10-7 yr-1 to 10-4 yr-1 . Third-generation detectors or better will likely be required to observe the one-armed instability.
The Nature of Low T/|W| Dynamical Instabilities in Differentially Rotating Stars
NASA Technical Reports Server (NTRS)
Watts, A. L.; Anderson, N.; Jones, D. I.
2004-01-01
Recent numerical simulations indicate the presence of dynamical instabilities of the f-mode in differentially rotating stars even at very low values of T/|W|, the ratio of kinetic to potential energy. In this Letter we argue that these are shear instabilities which occur when the degree of differential rotation exceeds a critical value and the f-mode develops a corotation point associated with the presence of a continuous spectrum. Our explanation, which is supported by detailed studies of a simple shell model, offers a straightforward way of understanding all of the key features of these instabilities.
Damping of the Transverse Head-Tail Instability by Periodic Modulation of the Chromaticity
Cheng, W.; Wurtele, J.S.; Sessler, A.M.; Wurtele, J.S.
1997-06-01
An analytical and numerical study of the suppression of the transverse head-tail instability by modulating the chromaticity over a synchrotron period is presented. We find that a threshold can be developed, and it can be increased to a value larger than the strong head-tail instability threshold. The stability criterion derived agrees very well with the simulations. The underlying physical mechanisms of the damping scheme are rotation of the head-tail phase such that the instability does not occur, and Landau damping due to the incoherent betatron tune spread generated by the varying chromaticity. {copyright} {ital 1997} {ital The American Physical Society}
Catching the First Cosmic Explosions: Explosion and Mixing of Pair-Instability Supernovae
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Woosley, Stan
2014-03-01
We present multidimensional simulations of the thermonuclear supernovae from massive primordial stars. Numerical and theoretical study of the primordial star formation in the early Universe suggest that these stars could have been very massive. Primordial stars with initial masses of 150-260 solar masses may have died as energetic thermonuclear supernovae, so-called pair-instability supernovae (PSNe). We model the explosion of PSNe by using a new radiation-hydro code, CASTRO and find the fluid instabilities driven by nuclear burning and hydrodynamics during the explosion. For red supergiant models, amplitudes of these instabilities are sufficient to break down the spherical symmetry of the supernova ejecta.
Zhao, Yao; Zheng, Jun; Chen, Min; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming E-mail: zhengming.sheng@strath.ac.uk
2014-11-15
Effects of relativistic electron temperature on stimulated Raman scattering and stimulated Brillouin scattering instabilities for high intensity lasers propagating in underdense plasma are studied theoretically and numerically. The dispersion relations for these instabilities are derived from the relativistic fluid equation. For a wide range of laser intensity and electron temperature, it is found that the maximum growth rate and the instability region in k-space can be reduced at relativistic electron temperature. Particle-in-cell simulations are carried out, which confirm the theoretical analysis.
Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2015-11-01
Analog systems have recently been used in several experiments in the context of convective mixing of C O2 . We generalize the nonmonotonic density dependence of the growth of instabilities and provide a scaling relation for the onset of instability. The results of linear stability analysis and direct numerical simulations show that these fluids do not resemble the dynamics of C O2 -water convective instabilities. A typical analog system, such as water-propylene glycol, is found to be less unstable than C O2 -water. These results provide a basis for further research and proper selection of analog systems and are essential to the interpretation of experiments.
DOUBLE-DIFFUSIVE INSTABILITIES OF A SHEAR-GENERATED MAGNETIC LAYER
Silvers, Lara J.; Proctor, Michael R. E.; Vasil, Geoffrey M.; Brummell, Nicholas H.
2009-09-01
Previous theoretical work has speculated about the existence of double-diffusive magnetic buoyancy instabilities of a dynamically evolving horizontal magnetic layer generated by the interaction of forced vertically sheared velocity and a background vertical magnetic field. Here, we confirm numerically that if the ratio of the magnetic to thermal diffusivities is sufficiently low then such instabilities can indeed exist, even for high Richardson number shear flows. Magnetic buoyancy may therefore occur via this mechanism for parameters that are likely to be relevant to the solar tachocline, where regular magnetic buoyancy instabilities are unlikely.
Jain, Shweta Sharma, Prerana; Chhajlani, R. K.
2015-07-31
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.