Sample records for platelet activating factor

  1. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    PubMed

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  2. Acetylsalicylic Acid Produces Different Effects on the Production of Active Oxygen Species by Activated Platelets in Different Inflammatory Diseases.

    PubMed

    Gabbasov, Z A; Kogan-Yasny, V V; Lakhno, D A; Kagan, L G; Ryzhkova, E V; Vasilieva, E Yu; Shpektor, A V

    2017-11-01

    We studied the effect of acetylsalicylic acid on ROS generation by platelets in patients after surgical interventions and in patients with bronchial asthma was studied. Platelets stimulated with platelet-activating factor are characterized by weak luminol-enhanced chemiluminescence in healthy people and patients after operations with laparoscopic incisions. Addition of platelet activation factor to platelet samples from patients after open abdominal surgery caused intensive chemiluminescence that was suppressed after platelet incubation with acetylsalicylic acid. At the same time, platelets of patients with aspirin-sensitive asthma did not respond to addition of platelet activating factor, but after incubation with acetylsalicylic acid, an intensive burst of chemiluminescence was detected with a maximum in 5-10 sec after the addition of a platelet-activating factor. In patients with bronchial asthma tolerant to aspirin, platelet activation factor did not induce chemiluminescence irrespective of incubation with acetylsalicylic acid.

  3. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  4. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Yacoub, Daniel; Hachem, Ahmed; Théorêt, Jean-François; Gillis, Marc-Antoine; Mourad, Walid; Merhi, Yahye

    2010-12-01

    CD40 ligand is a thromboinflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40 ligand (sCD40L), which has been shown to influence platelet activation, although its exact functional impact on platelets and the underlying mechanisms remain undefined. We aimed to determine the impact and the signaling mechanisms of sCD40L on platelets. sCD40L strongly enhances platelet activation and aggregation. Human platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40(-/-) mouse platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Notably, sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target p38 mitogen-activated protein kinase, which leads to platelet shape change and actin polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in wild-type mice but not in CD40(-/-) mice. sCD40L enhances agonist-induced platelet activation and aggregation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing platelets to enhanced thrombus formation in response to vascular injury. This may explain the link between circulating levels of sCD40L and cardiovascular diseases.

  5. Role of platelet activating factor in pathogenesis of acute pancreatitis in rats.

    PubMed Central

    Konturek, S J; Dembinski, A; Konturek, P J; Warzecha, Z; Jaworek, J; Gustaw, P; Tomaszewska, R; Stachura, J

    1992-01-01

    The importance of platelet activating factor in acute pancreatitis was examined by determining the tissue content of endogenous platelet activating factor and the protective effects of TCV-309, a highly selective platelet activating factor blocker, against caerulein induced pancreatitis in rats. Infusion of caerulein (10 micrograms/kg/h) for five hours resulted in about 70% increase in pancreatic weight, 22% rise in protein content, 50% reduction in tissue blood flow, nine fold increase in tissue level of platelet activating factor and 165% rise in plasma amylase as well as histological evidence of acute pancreatitis. Such infusion of caerulein in chronic pancreatic fistula rats caused a marked increase in protein output from basal secretion of 10 mg/30 minutes to 40 mg/30 minutes in the first hour of infusion followed by a decline in protein output to 15-20 mg/30 minutes in the following hours of the experiment. Exogenous platelet activating factor (50 micrograms/kg) injected ip produced similar alterations in weight, protein content, blood flow, and histology of the pancreas but the increment in serum amylase was significantly smaller and pancreatic secretion was reduced below the basal level. TCV-309 (50 micrograms/kg) given ip before caerulein or platelet activating factor administration significantly reduced the biochemical and morphological alterations caused by caerulein and abolished those induced by exogenous platelet activating factor. These results indicate that platelet activating factor plays an important role in the pathogenesis of acute pancreatitis probably by reducing the blood flow and increasing vascular permeability in the pancreas. PMID:1385272

  6. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release From Platelet-Rich Plasma.

    PubMed

    Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P

    2017-12-01

    It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor concentrations in HGT-activated samples. This COX-2 inhibitor did not impair platelet activation, growth factor release, or TXB2 production in this canine PRP when using HGT as an activator. Studies are warranted to determine whether COX-2 inhibitors affect platelet activation and growth factor release from human PRPs. These results suggest that there is no need to withhold a COX-2 inhibitor before PRP preparation, particularly if thrombin is going to be used to activate the PRP. This is clinically relevant information because many patients who are candidates for PRP therapy for treatment of musculoskeletal injury are also using COX-2 inhibitors.

  7. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    PubMed

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2017-07-01

    : Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  8. Identification of functional VEGF receptors on human platelets.

    PubMed

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  9. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  10. Influence of calcium salts and bovine thrombin on growth factor release from equine platelet-rich gel supernatants.

    PubMed

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2017-01-16

    To compare five activation methods in equine platelet-rich plasma (PRP) by determination of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) concentrations in platelet-rich gel (PRG) supernatants. Platelet-rich plasma from 20 horses was activated by calcium chloride (CC), calcium gluconate (CG), bovine thrombin (BT), and their combinations, BTCC and BTCG. Both growth factor concentrations in PRG supernatants were measured by ELISA and compared with plasma and platelet lysates (PL) over time. Growth factor concentrations were significantly lower in plasma and higher for all PRG supernatants. Platelet lysates contained a significantly lower concentration of PDGF-BB than PRG supernatants and a significantly higher concentration of TGF-β1 than PRG supernatants. Clots from PRP activated with sodium salts were more stable over time and had significant growth factor release, whereas CC produced gross salt deposition. Significant correlations were noticed for platelet with leukocyte concentrations in PRP (r s : 0.76), platelet counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.86), platelet counts in PRP with PDGF-BB concentrations in PRG supernatants (r s : 0.78), leukocyte counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.76), and PDGF-BB concentrations with activating substances (r s : 0.72). Calcium gluconate was the better substance to induce PRP activation. It induced growth factor release free from calcium precipitates in the clots. Use of BT alone or combined with calcium salts was not advantageous for growth factor release.

  11. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    PubMed

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.

  12. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed Central

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-01-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961

  13. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  14. Equid Herpesvirus Type 1 Activates Platelets

    PubMed Central

    Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James

    2015-01-01

    Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis. PMID:25905776

  15. Origin of platelet-derived growth factor in megakaryocytes in guinea pigs.

    PubMed Central

    Chernoff, A; Levine, R F; Goodman, D S

    1980-01-01

    Growth factor activity, as determined by the stimulation of [3H]thymidine incorporation into the DNA of quiescent 3T3 cells in culture, was found in lysates of guinea pig platelets and megakaryocytes. Quantitative dilution studies demonstrated that, of the cells present in the guinea pig bone marrow, only the megakaryocyte possessed quantitatively significant growth factor activity. The amount of activity present in one megakaryocyte was equivalent to that present in 1,000-5,000 platelets, a value approximately comparable to the number of platelets shed from a single megakaryocyte. It is suggested that guinea pig platelet-derived growth factor has its origin in the megakaryocyte. PMID:7358851

  16. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII

    PubMed Central

    Mattheij, Nadine J.A.; Swieringa, Frauke; Mastenbroek, Tom G.; Berny-Lang, Michelle A.; May, Frauke; Baaten, Constance C.F.M.J.; van der Meijden, Paola E.J.; Henskens, Yvonne M.C.; Beckers, Erik A.M.; Suylen, Dennis P.L.; Nolte, Marc W.; Hackeng, Tilman M.; McCarty, Owen J.T.; Heemskerk, Johan W.M.; Cosemans, Judith M.E.M.

    2016-01-01

    Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays. Platelet stimulation with convulxin/thrombin resulted in initial integrin αIIbβ3 activation, the appearance of a platelet population with high fibrinogen binding, (independently of active integrins, but dependent on the presence of thrombin) followed by phosphatidylserine exposure and binding of coagulation factors Va and Xa. A subpopulation of phosphatidylserine-exposing platelets bound Rhod-A14 both in suspension and in thrombi generated on a collagen surface. In suspension, high fibrinogen and Rhod-A14 binding were antagonized by combined inhibition of transglutaminase activity and integrin αIIbβ3. Markedly, in thrombi from mice deficient in transglutaminase factor XIII, platelet-driven fibrin formation and Rhod-A14 binding were abolished by blockage of integrin αIIbβ3. Vice versa, star-like fibrin formation from platelets of a patient with deficiency in αIIbβ3 (Glanzmann thrombasthenia) was abolished upon blockage of transglutaminase activity. We conclude that coated platelets, with initial αIIbβ3 activation and high fibrinogen binding, form a subpopulation of phosphatidylserine-exposing platelets, and function in platelet-dependent star-like fibrin fiber formation via transglutaminase factor XIII and integrin αIIbβ3. PMID:26721892

  17. Thrombin generation by activated factor VII on platelet activated by different agonists. Extending the cell-based model of hemostasis

    PubMed Central

    Altman, Raul; Scazziota, Alejandra Silvia; Herrera, Maria de Lourdes; Gonzalez, Claudio

    2006-01-01

    Background Platelet activation is crucial in normal hemostasis. Using a clotting system free of external tissue factor, we investigated whether activated Factor VII in combination with platelet agonists increased thrombin generation (TG) in vitro. Methods and results TG was quantified by time parameters: lag time (LT) and time to peak (TTP), and by amount of TG: peak of TG (PTG) and area under thrombin formation curve after 35 minutes (AUC→35min) in plasma from 29 healthy volunteers using the calibrated automated thrombography (CAT) technique. TG parameters were measured at basal conditions and after platelet stimulation by sodium arachidonate (AA), ADP, and collagen (Col). In addition, the effects of recombinant activated FVII (rFVIIa) alone or combined with the other platelet agonists on TG parameters were investigated. We found that LT and TTP were significantly decreased (p < 0.05) and PTG and AUC→35min were significantly increased (p < 0.05) in platelet rich plasma activated with AA, ADP, Col, and rFVIIa compared to non-activated platelet rich plasma from normal subjects (p = 0.01). Furthermore platelet rich plasma activated by the combined effects of rFVIIa plus AA, ADP or Col had significantly reduced LT and TTP and increased AUC→35min (but not PTG) when compared to platelet rich plasma activated with agonists in the absence of rFVIIa. Conclusion Platelets activated by AA, ADP, Col or rFVIIa triggered TG. This effect was increased by combining rFVIIa with other agonists. Our intrinsic coagulation system produced a burst in TG independent of external tissue factor activity an apparent hemostatic effect with little thrombotic capacity. Thus we suggest a modification in the cell-based model of hemostasis. PMID:16630353

  18. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    PubMed

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  19. Effect of platelet-derived β-thromboglobulins on coagulation.

    PubMed

    Egan, Karl; van Geffen, Johanna P; Ma, Hui; Kevane, Barry; Lennon, Aine; Allen, Seamus; Neary, Elaine; Parsons, Martin; Maguire, Patricia; Wynne, Kieran; O' Kennedy, Richard; Heemskerk, Johan W M; Áinle, Fionnuala Ní

    2017-06-01

    β-thromboglobulins are derived from the cleavage of the CXC chemokine platelet basic protein and are released in high concentrations by activated platelets. Platelet-derived β-thromboglobulins (βTG) share 70% homology with platelet factor 4 (PF4), another CXC chemokine released by activated platelets. PF4 modulates coagulation by inhibiting heparin-antithrombin interactions, promoting protein C activation, and attenuating the activity of activated protein C. In contrast, the effect of βTG on coagulation is unknown. Clotting times, thrombin generation, chromogenic clotting factor assays, and surface plasmon resonance (SPR) were used to assess the effect of purified βTG on coagulation. In normal pooled plasma, βTG shortened the lagtime and time to peak thrombin generation of tissue factor (TF)-dependent and TF-independent thrombin generation. In factor VIII and factor IX-deficient plasmas, βTG induced thrombin generation in the absence of a TF stimulus and in the presence of anti-TF and factor VIIa inhibitory antibodies. The procoagulant effect was not observed when thrombin generation was independent of factor X activation (supplementation of factor X-deficient plasma with factor Xa). Cleavage of a factor Xa-specific chromogenic substrate was observed when βTG was incubated with factor X, suggesting a direct interaction between βTG and factor X. Using SPR, βTG were found to bind to immobilised factor X in a dose dependent manner. βTG modulate coagulation in vitro via an interaction with factor X. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Salivary Platelet Activating Factor Levels in Periodontal Disease

    DTIC Science & Technology

    1991-05-01

    Factor Levels in Periodontal Disease 6. AUTHOR(S) Martha L. Garito, Major 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATO;N...ABSTRACT 98 0801 SALIVARY PLATELET ACTIVATING FACTOR LEVELS IN PERIODONTAL DISEASE A THESIS Presented to the Faculty of The University of Texas Graduate...B.S., D.M.D. San Antonio, Texas May 1991 SALIVARY PLATELET ACTIVATING FACTOR LEVELS IN PERIODONTAL DISEASE Martha Laura Gar’to APPROVED: - Supervising

  1. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  2. Influence of Pre-Analytical Factors on Thymus- and Activation-Regulated Chemokine Quantitation in Plasma

    PubMed Central

    Zhao, Xuemei; Delgado, Liliana; Weiner, Russell; Laterza, Omar F.

    2015-01-01

    Thymus- and activation-regulated chemokine (TARC) in serum/plasma associates with the disease activity of atopic dermatitis (AD), and is a promising tool for assessing the response to the treatment of the disease. TARC also exists within platelets, with elevated levels detectable in AD patients. We examined the effects of pre-analytical factors on the quantitation of TARC in human EDTA plasma. TARC levels in platelet-free plasma were significantly lower than those in platelet-containing plasma. After freeze-thaw, TARC levels increased in platelet-containing plasma, but remained unchanged in platelet-free plasma, suggesting TARC was released from the platelets during the freeze-thaw process. In contrast, TARC levels were stable in serum independent of freeze-thaw. These findings underscore the importance of pre-analytical factors to TARC quantitation. Plasma TARC levels should be measured in platelet-free plasma for accurate quantitation. Pre-analytical factors influence the quantitation, interpretation, and implementation of circulating TARC as a biomarker for the development of AD therapeutics. PMID:28936246

  3. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  4. Platelet Surface-Associated Activation and Secretion-Mediated Inhibition of Coagulation Factor XII

    PubMed Central

    Zakharova, Natalia V.; Artemenko, Elena O.; Podoplelova, Nadezhda A.; Sveshnikova, Anastasia N.; Demina, Irina A.; Ataullakhanov, Fazly I.; Panteleev, Mikhail A.

    2015-01-01

    Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (k i/k a = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860

  5. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    PubMed

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  6. Functional factor XIII-A is exposed on the stimulated platelet surface

    PubMed Central

    Mitchell, Joanne L.; Lionikiene, Ausra S.; Fraser, Steven R.; Whyte, Claire S.; Booth, Nuala A.

    2014-01-01

    Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin. PMID:25331118

  7. Platelet Factor 4 Mediates Inflammation in Cerebral Malaria

    PubMed Central

    Srivastava, Kalyan; Cockburn, Ian A.; Swaim, AnneMarie; Thompson, Laura E.; Tripathi, Abhai; Fletcher, Craig A.; Shirk, Erin M.; Sun, Henry; Kowalska, M. Anna; Fox-Talbot, Karen; Sullivan, David; Zavala, Fidel; Morrell, Craig N.

    2008-01-01

    Summary Cerebral malaria is a major complication of Plasmodium falciparum infection in children. The pathogenesis of cerebral malaria involves vascular inflammation, immune stimulation and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria. Plasmodium infected red blood cells (RBC) activated platelets independent of vascular effects, resulting in increased plasma PF4. PF4 or CXCR3 null mice had less ECM, decreased brain T-cell recruitment, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium infected RBC can activate platelets and platelet derived PF4 then contributes to immune activation and T-cell trafficking as part of the pathogenesis of ECM. PMID:18692777

  8. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase

    PubMed Central

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010

  9. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase.

    PubMed

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.

  10. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    PubMed

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  12. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.« less

  13. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development

    PubMed Central

    Jäckel, Sven; Saffarzadeh, Mona; Langer, Florian

    2017-01-01

    Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)–dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3−/− mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5−/− mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells. PMID:28223279

  14. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary for coupling postsynaptic and presynaptic phenomena, through the activation of group I metabotropic glutamate receptors, and its action lasts only for a short period. If this coupling does not occur, a full and long-lasting potentiation cannot develop.

  15. Alternatives to allogeneic platelet transfusion.

    PubMed

    Desborough, Michael J R; Smethurst, Peter A; Estcourt, Lise J; Stanworth, Simon J

    2016-11-01

    Allogeneic platelet transfusions are widely used for the prevention and treatment of bleeding in thrombocytopenia. Recent evidence suggests platelet transfusions have limited efficacy and are associated with uncertain immunomodulatory risks and concerns about viral or bacterial transmission. Alternatives to transfusion are a well-recognised tenet of Patient Blood Management, but there has been less focus on different strategies to reduce bleeding risk by comparison to platelet transfusion. Direct alternatives to platelet transfusion include agents to stimulate endogenous platelet production (thrombopoietin mimetics), optimising platelet adhesion to endothelium by treating anaemia or increasing von Willebrand factor levels (desmopressin), increasing formation of cross-linked fibrinogen (activated recombinant factor VII, fibrinogen concentrate or recombinant factor XIII), decreasing fibrinolysis (tranexamic acid or epsilon aminocaproic acid) or using artificial or modified platelets (cryopreserved platelets, lyophilised platelets, haemostatic particles, liposomes, engineered nanoparticles or infusible platelet membranes). The evidence base to support the use of these alternatives is variable, but an area of active research. Much of the current randomised controlled trial focus is on evaluation of the use of thrombopoietin mimetics and anti-fibrinolytics. It is also recognised that one alternative strategy to platelet transfusion is choosing not to transfuse at all. © 2016 John Wiley & Sons Ltd.

  16. Platelet response heterogeneity in thrombus formation.

    PubMed

    Munnix, Imke C A; Cosemans, Judith M E M; Auger, Jocelyn M; Heemskerk, Johan W M

    2009-12-01

    Vascular injury leads to formation of a structured thrombus as a consequence of platelet activation and aggregation, thrombin and fibrin formation, and trapping of leukocytes and red cells. This review summarises current evidence for heterogeneity of platelet responses and functions in the thrombus-forming process. Environmental factors contribute to response heterogeneity, as the platelets in a thrombus adhere to different substrates, and sense specific (ant)agonists and rheological conditions. Contraction of platelets and interaction with fibrin and other blood cells cause further response variation. On the other hand, response heterogeneity can also be due to intrinsic differences between platelets in age and in receptor and signalling proteins. As a result, at least three subpopulations of platelets are formed in a thrombus: aggregating platelets with (reversible) integrin activation, procoagulant (coated) platelets exposing phosphatidylserine and binding coagulation factors, and contracting platelets with cell-cell contacts. This recognition of thrombus heterogeneity has implications for the use and development of antiplatelet medication.

  17. Patients with metabolic syndrome exhibit higher platelet activity than those with conventional risk factors for vascular disease.

    PubMed

    Serebruany, Victor L; Malinin, Alex; Ong, Stephen; Atar, Dan

    2008-04-01

    The metabolic syndrome is a matter of ongoing debate with regard to its existence, classification, clinical meaningfulness, and associated risks for vessel occlusion. Considering that persistent platelet activation is a cornerstone for the development of acute vascular events, and that patients with type 2 diabetes consistently exhibit high platelet activity, these characteristics may be critical for distinguishing and triageing specific features of metabolic syndrome among established risk factors for vascular disease. We assessed the platelet activity by conventional aggregation, expression of major surface receptors by flow cytometry, and quantitatively by rapid bedside analyzers in 20 aspirin-naïve patients with documented metabolic syndrome, and compared these with 20 untreated subjects with multiple cardiovascular risk factors. Closure time by the PFA-100 analyzer was significantly (P = 0.002) shorter in patients with metabolic syndrome indicating platelet inhibition under high shear conditions. Ultegra analyzer readings revealed increased fibrinogen binding (P = 0.0003) what in combination with the increased expression of PAC-1 (P = 0.32) strongly suggest activation of platelet glycoprotein IIb/IIIa receptor. Surface expression of CD107a (P = 0.014), and SPAN-12 (P = 0.003) were also higher in patients with metabolic syndrome. In contrast, platelet aggregation induced by collagen or ADP, CD31, CD41, CD42b, CD51/61, CD62p, CD63, CD154, CD165, so as formation of platelet-monocyte aggregates, PAR-1 thrombin receptor, and thrombospondin did not differ between groups. Patients with metabolic syndrome exhibited a higher degree of platelet activation than subjects with conventional risk factors for vascular disease. Conceptually, applying adequate antiplatelet strategies may reduce the risk of acute thrombotic events in these patients. Further prospective studies exploring this notion are encouraged.

  18. Prothrombin Activation by Platelet-associated Prothrombinase Proceeds through the Prethrombin-2 Pathway via a Concerted Mechanism*

    PubMed Central

    Haynes, Laura M.; Bouchard, Beth A.; Tracy, Paula B.; Mann, Kenneth G.

    2012-01-01

    The protease α-thrombin is a key enzyme of the coagulation process as it is at the cross-roads of both the pro- and anti-coagulant pathways. The main source of α-thrombin in vivo is the activation of prothrombin by the prothrombinase complex assembled on either an activated cell membrane or cell fragment, the most relevant of which is the activated platelet surface. When prothrombinase is assembled on synthetic phospholipid vesicles, prothrombin activation proceeds with an initial cleavage at Arg-320 yielding the catalytically active, yet effectively anticoagulant intermediate meizothrombin, which is released from the enzyme complex ∼30–40% of the time. Prothrombinase assembled on the surface of activated platelets has been shown to proceed through the inactive intermediate prethrombin-2 via an initial cleavage at Arg-271 followed by cleavage at Arg-320. The current work tests whether or not platelet-associated prothrombinase proceeds via a concerted mechanism through a study of prothrombinase assembly and function on collagen-adhered, thrombin-activated, washed human platelets in a flow chamber. Prothrombinase assembly was demonstrated through visualization of bound factor Xa by confocal microscopy using a fluorophore-labeled anti-factor Xa antibody, which demonstrated the presence of distinct platelet subpopulations capable of binding factor Xa. When prothrombin activation was monitored at a typical venous shear rate over preassembled platelet-associated prothrombinase neither potential intermediate, meizothrombin or prethrombin-2, was observed in the effluent. Collectively, these findings suggest that platelet-associated prothrombinase activates prothrombin via an efficient concerted mechanism in which neither intermediate is released. PMID:22989889

  19. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine

    PubMed Central

    Novakovic, Valerie A.; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W.

    2015-01-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  20. Platelet-rich preparations to improve healing. Part II: platelet activation and enrichment, leukocyte inclusion, and other selection criteria.

    PubMed

    Davis, Vicki L; Abukabda, Alaeddin B; Radio, Nicholas M; Witt-Enderby, Paula A; Clafshenkel, William P; Cairone, J Vito; Rutkowski, James L

    2014-08-01

    Multiple platelet-rich preparations have been reported to improve wound and bone healing, such as platelet-rich plasma (PRP) and platelet rich fibrin (PRF). The different methods employed during their preparation are important, as they influence the quality of the product applied to a wound or surgical site. Besides the general protocol for preparing the platelet-rich product (discussed in Part 1 of this review), multiple choices need to be considered during its preparation. For example, activation of the platelets is required for the release and enmeshment of growth factors, but the method of activation may influence the resulting matrix, growth factor availability, and healing. Additionally, some methods enrich leukocytes as well as platelets, but others are designed to be leukocyte-poor. Leukocytes have many important roles in healing and their inclusion in PRP results in increased platelet concentrations. Platelet and growth factor enrichment reported for the different types of platelet-rich preparations are also compared. Generally, TGF-β1 and PDGF levels were higher in preparations that contain leukocytes compared to leukocyte-poor PRP. However, platelet concentration may be the most reliable criterion for comparing different preparations. These and other criteria are described to help guide dental and medical professionals, in large and small practices, in selecting the best procedures for their patients. The healing benefits of platelet-rich preparations along with the low risk and availability of simple preparation procedures should encourage more clinicians to incorporate platelet-rich products in their practice to accelerate healing, reduce adverse events, and improve patient outcomes.

  1. Effects of protopine on blood platelet aggregation. III. Effect of protopine on the metabolic system of arachidonic acid in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1991-02-01

    The mode of action of protopine on blood platelet aggregation was investigated in the metabolic system of arachidonic acid and in liberation of platelet activating factor using in vitro experimental models. Protopine inhibited the releases of arachidonic acid and platelet activating factor from platelet membrane phospholipids. Protopine also inhibited the conversion of prostaglandin G2 to thromboxane A2, as well as carboxyheptyl imidazole, a thromboxane synthetase inhibitor. These results indicated that protopine functions both as a phospholipase inhibitor and a thromboxane synthetase inhibitor. It is expected that protopine can be applied for treatment of thrombosis as an antiplatelet drug.

  2. Influence of cryopreservation and mechanical stimulation on equine Autologous Conditioned Plasma (ACP®).

    PubMed

    Mageed, M; Ionita, C; Kissich, C; Brehm, W; Winter, K; Ionita, J-C

    2015-01-01

    To determine the influence of cryopreservation at two different temperatures on platelet concentration, growth factor (GF) levels and platelet activation parameters in equine ACP®; moreover, to determine if adding mechanical ACP® stimulation to freeze-thaw activation amplifies GF release from platelets. Firstly, blood from five horses was used to prepare ACP®. Platelet, platelet derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) concentrations as well as mean platelet volume (MPV) and mean platelet component (MPC) were determined in fresh and corresponding ACP® samples after 2 months cryopreservation at -20 °C and -80 °C, respectively. Secondly, ACP® was prepared from blood of nine horses. Half of ACP® was activated using one freeze-thaw-cycle at -20 °C, whereas the rest was first vortexed. Their PDGF-BB and TGF-β1 concentrations were subsequently determined. Platelet concentration significantly decreased after -80 °C cryopreservation. PDGF-BB level augmented significantly after both storage methods, whereas TGF-β1 concentration was not significantly altered. MPV significantly increased after -20 °C cryopreservation. Both storage regimens induced a significant MPC decrease. No significant differences in GF concentrations between the vortexed and non-vortexed samples were detected. Both cryopreservation methods induced platelet activation, but storage at -80 °C apparently harmed the platelets without generating higher GF release than -20 °C. The mechanical stimulation process could not enhance GF release in subsequently frozen-thawed ACP®. Storage of ACP® at -20 °C could be useful in equine practice, but, before this procedure can be recommended, further qualitative tests are needed. The mechanical stimulation technique should be adjusted in order to increase platelet activation.

  3. C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumor metastasis.

    PubMed

    Martín-Granado, Víctor; Ortiz-Rivero, Sara; Carmona, Rita; Gutiérrez-Herrero, Sara; Barrera, Mario; San-Segundo, Laura; Sequera, Celia; Perdiguero, Pedro; Lozano, Francisco; Martín-Herrero, Francisco; González-Porras, José Ramón; Muñoz-Chápuli, Ramón; Porras, Almudena; Guerrero, Carmen

    2017-12-19

    Previous observations indicated that C3G (RAPGEF1) promotes α-granule release, evidenced by the increase in P-selectin exposure on the platelet surface following its activation. The goal of the present study is to further characterize the potential function of C3G as a modulator of the platelet releasate and its implication in the regulation of angiogenesis. Proteomic analysis revealed a decreased secretion of anti-angiogenic factors from activated transgenic C3G and C3G∆Cat platelets. Accordingly, the secretome from both transgenic platelets had an overall pro-angiogenic effect as evidenced by an in vitro capillary-tube formation assay with HUVECs (human umbilical vein endothelial cells) and by two in vivo models of heterotopic tumor growth. In addition, transgenic C3G expression in platelets greatly increased mouse melanoma cells metastasis. Moreover, immunofluorescence microscopy showed that the pro-angiogenic factors VEGF and bFGF were partially retained into α-granules in thrombin- and ADP-activated mouse platelets from both, C3G and C3GΔCat transgenic mice. The observed interaction between C3G and Vesicle-associated membrane protein (Vamp)-7 could explain these results. Concomitantly, increased platelet spreading in both transgenic platelets upon thrombin activation supports this novel function of C3G in α-granule exocytosis. Collectively, our data point out to the co-existence of Rap1GEF-dependent and independent mechanisms mediating C3G effects on platelet secretion, which regulates pathological angiogenesis in tumors and other contexts. The results herein support an important role for platelet C3G in angiogenesis and metastasis.

  4. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    PubMed

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  5. Effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation in the coronary circulation.

    PubMed

    Nichols, A B; Gold, K D; Marcella, J J; Cannon, P J; Owen, J

    1987-07-01

    The effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation was investigated in seven patients with severe proximal lesions of the left anterior descending coronary artery to determine if acute ischemia activates the coagulation system. Fibrin formation was assessed from plasma levels of fibrinopeptide A. Platelet activation was assessed by levels of platelet factor 4, beta-thromboglobulin and thromboxane B2. Plasma levels were measured before, during and after acute myocardial ischemia induced by rapid atrial pacing. Blood samples were collected from the ascending aorta and from the great cardiac vein through heparin-bonded catheters. The occurrence of anterior myocardial ischemia was established by electrocardiography and by myocardial lactate extraction. No significant transmyocardial gradients in the levels of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 were found at rest, during ischemia or in the recovery period, and levels in the great cardiac vein did not change in response to ischemia. These data indicate that pacing-induced myocardial ischemia does not result in release of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 into the coronary circulation, and imply that acute ischemia does not induce platelet activation or fibrin formation in the coronary circulation.

  6. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor.

    PubMed

    Morrison, W J; Dhar, A; Shukla, S D

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.

  7. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors.

    PubMed

    Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan

    2013-06-07

    Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only <0.3% from the initial red blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool from different donors with high reproducibility. These findings support the use of PRP in therapies aiming for tissue regeneration, and its content characterization will allow us to understand and improve the clinical outcomes.

  8. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    PubMed

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.

  9. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity

    PubMed Central

    Lionikiene, Ausra S.; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y.

    2016-01-01

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70. Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. PMID:27694320

  10. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack.

    PubMed

    Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao

    2013-03-15

    Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.

  11. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation.

    PubMed

    Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo . We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation. These drugs have potential as adjunctive therapy to reduce the serious complications associated with EHV-1-induced thrombosis. Treatment trials are warranted to determine whether these drugs yield clinical benefit when administered to horses infected with EHV-1.

  12. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis.

    PubMed

    Ma, Ruishuang; Xie, Rui; Yu, Chengyuan; Si, Yu; Wu, Xiaoming; Zhao, Lu; Yao, Zhipeng; Fang, Shaohong; Chen, He; Novakovic, Valerie; Gao, Chunyan; Kou, Junjie; Bi, Yayan; Thatte, Hemant S; Yu, Bo; Yang, Shufen; Zhou, Jin; Shi, Jialan

    2017-07-10

    The mechanisms that eliminate activated platelets in inflammation-induced disseminated intravascular coagulation (DIC) in micro-capillary circulation are poorly understood. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered were and ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or αvβ3 integrin on ECs attenuated platelet clearance resulting in increased platelet count in a mouse model of sepsis. Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets. Pretreatment with lactadherin significantly increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contribute to maintaining platelet homeostasis during acute inflammation. These results suggest a new therapeutic target for impeding the development of DIC.

  13. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates

    PubMed Central

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Background Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Methods Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Results Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl2, and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). Conclusions These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction. PMID:27900155

  14. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates.

    PubMed

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl 2 , and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl 2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction.

  15. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps.

    PubMed

    Jansen, Marcel P B; Emal, Diba; Teske, Gwendoline J D; Dessing, Mark C; Florquin, Sandrine; Roelofs, Joris J T H

    2017-02-01

    Acute kidney injury is often the result of ischemia reperfusion injury, which leads to activation of coagulation and inflammation, resulting in necrosis of renal tubular epithelial cells. Platelets play a central role in coagulation and inflammatory processes, and it has been shown that platelet activation exacerbates acute kidney injury. However, the mechanism of platelet activation during ischemia reperfusion injury and how platelet activation leads to tissue injury are largely unknown. Here we found that renal ischemia reperfusion injury in mice leads to increased platelet activation in immediate proximity of necrotic cell casts. Furthermore, platelet inhibition by clopidogrel decreased cell necrosis and inflammation, indicating a link between platelet activation and renal tissue damage. Necrotic tubular epithelial cells were found to release extracellular DNA, which, in turn, activated platelets, leading to platelet-granulocyte interaction and formation of neutrophil extracellular traps ex vivo. Renal ischemia reperfusion injury resulted in increased DNA-platelet and DNA-platelet-granulocyte colocalization in tissue and elevated levels of circulating extracellular DNA and platelet factor 4 in mice. After renal ischemia reperfusion injury, neutrophil extracellular traps were formed within renal tissue, which decreased when mice were treated with the platelet inhibitor clopidogrel. Thus, during renal ischemia reperfusion injury, necrotic cell-derived DNA leads to platelet activation, platelet-granulocyte interaction, and subsequent neutrophil extracellular trap formation, leading to renal inflammation and further increase in tissue injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Exercise-induced myocardial ischemia in patients with coronary artery disease: lack of evidence for platelet activation or fibrin formation in peripheral venous blood.

    PubMed

    Marcella, J J; Nichols, A B; Johnson, L L; Owen, J; Reison, D S; Kaplan, K L; Cannon, P J

    1983-05-01

    The hypothesis that exercise-induced myocardial ischemia is associated with abnormal platelet activation and fibrin formation or dissolution was tested in patients with coronary artery disease undergoing upright bicycle stress testing. In vivo platelet activation was assessed by radioimmunoassay of platelet factor 4, beta-thrombo-globulin and thromboxane B2. In vivo fibrin formation was assessed by radioimmunoassay of fibrinopeptide A, and fibrinolysis was assessed by radioimmunoassay of thrombin-increasable fibrinopeptide B which reflects plasmin cleavage of fibrin I. Peripheral venous concentrations of these substances were measured in 10 normal subjects and 13 patients with coronary artery disease at rest and during symptom-limited peak exercise. Platelet factor 4, beta-thromboglobulin and thromboxane B2 concentrations were correlated with rest and exercise catecholamine concentrations to determine if exercise-induced elevation of norepinephrine and epinephrine enhances platelet activation. Left ventricular end-diastolic and end-systolic volumes, ejection fraction and segmental wall motion were measured at rest and during peak exercise by first pass radionuclide angiography. All patients with coronary artery disease had documented exercise-induced myocardial ischemia manifested by angina pectoris, ischemic electrocardiographic changes, left ventricular segmental dyssynergy and a reduction in ejection fraction. Rest and peak exercise plasma concentrations were not significantly different for platelet factor 4, beta-thromboglobulin, thromboxane B2, fibrinopeptide A and thrombin-increasable fibrinopeptide B. Peripheral venous concentrations of norepinephrine and epinephrine increased significantly (p less than 0.001) in both groups of patients. The elevated catecholamine levels did not lead to detectable platelet activation. This study demonstrates that enhanced platelet activation, thromboxane release and fibrin formation or dissolution are not detectable in peripheral venous blood of patients with coronary disease during exercise-induced myocardial ischemia.

  17. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  18. Arterial thrombosis associated with immune thrombocytopenia: presence of a platelet aggregating IgG synergistic with thrombin and adrenalin.

    PubMed

    Jackson, S P; Jane, S M; Mitchell, C A; Fernando Cortizo, W; Hau, L; Pfueller, S L; Salem, H H

    1989-11-24

    We report the case of a 50-year-old lady who presented with arterial thrombosis in the setting of thrombocytopenia. Investigations confirmed the diagnosis of idiopathic thrombocytopenic purpura. A spontaneous platelet aggregating factor (SPAF) was isolated from the immunoglobulin fraction of the patient's plasma. The isolated IgG irreversibly aggregated platelet-rich plasma and washed platelets, an effect abolished by pretreating the platelets with aspirin. The activity of the IgG was greatly enhanced by subaggregatory concentrations of thrombin and adrenalin and was localized to the F(ab')2 of the molecule. Plasmapheresis in combination with anti-platelet therapy resulted in an increase in the patient's platelet count, reduced platelet aggregating activity of plasma and significant clinical improvement. We suggest that the presence of this platelet aggregating IgG contributed to the development of thrombosis in our patient and postulate that a similar factor may explain the paradox of thrombosis observed in a select group of thrombocytopenic patients.

  19. Platelet-rich plasma and platelet gel preparation using Plateltex.

    PubMed

    Mazzucco, L; Balbo, V; Cattana, E; Borzini, P

    2008-04-01

    The platelet gel is made by embedding concentrate platelets within a semisolid (gel) network of polymerized fibrin. It is believed that this blood component will be used more and more in the treatment of several clinical conditions and as an adjunctive material in tissue engineering. Several systems are available to produce platelet-rich plasma (PRP) for topical therapy. Recently, a new system became commercially available, Plateltex. Here we report the technical performance of this system in comparison with the performance of other commercially available systems: PRGF, PRP-Landesber, Curasan, PCCS, Harvest, Vivostat, Regen and Fibrinet. Both the PRP and the gel were prepared according to the manufacturer's directions. The blood samples of 20 donors were used. The yield, the efficiency, and the amount of platelet-derived growth factor AB (PDGF-AB), transforming growth factor beta, vascular endothelial growth factor and fibroblast growth factor were measured in the resulting PRP. The feature of the batroxobin-induced gelation was evaluated. The yield, the collection efficiency and the growth factor content of Plateltex were comparable to those of most of the other available systems. The gelation time was not dependent on the fibrinogen concentration; however, it was strongly influenced by the contact surface area of the container where the clotting reaction took place (P < 0.0001). Plateltex provided platelet recovery, collection efficiency and PDGF-AB availability close to those provided by other systems marketed with the same intended use. Batroxobin, the enzyme provided to induce gelation, acts differently from thrombin, which is used by most other systems. Platelets treated with thrombin become activated; they release their growth factors quickly. Furthermore, thrombin-platelet interaction is a physiological mechanism that hastens the clot-retraction rate. On the contrary, platelets treated with batroxobin do not become activated; they are passively entrapped within the fibrin network, and their growth factor release occurs slowly. In these conditions, the clot retraction takes longer to occur. According to these differences between thrombin and batroxobin, it is expected that batroxobin-induced PRP activation will tailor slow release of the platelet content, thus, providing longer in loco availability of trophic factors. In selected clinical conditions, this durable anabolic factor availability might be preferable to quick thrombin-induced growth factor release.

  20. Effects of aspirin on intra-platelet vascular endothelial growth factor, angiopoietin-1, and p-selectin levels in hypertensive patients.

    PubMed

    Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H

    2006-09-01

    Although aspirin is useful in reducing platelet activation and cardiovascular events, its effects on platelet levels of angiogenic factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), and markers of platelet activation in hypertension are unknown. The aim of this study was to study the effects of aspirin on the platelet morphology, plasma and platelet levels of VEGF (sVEGF and pVEGF respectively), Ang-1 (sAng-1 and pAng-1 respectively), and P-selectin (sPsel and pPsel respectively) in patients with well controlled hypertension. A total of 35 aspirin-naive, hypertensive patients (29 male and six female; mean age 64 years) were compared with 30 (23 male, seven female, mean age 59 years) normotensive control subjects. Blood was collected for plasma VEGF, P-selectin, and Ang-1 (enzyme-linked immunoassay), intra-platelet levels of VEGF, Ang-1, and P-selectin, and platelet volume and mass. Research indices in hypertensive patients were studied before and after 3 months treatment with aspirin 75 mg daily. Hypertensive patients had significantly higher plasma levels of VEGF (P=.04), Ang-1 (P<.001), as well as pVEGF (P=.008), pAng-1(P=.001), sPsel (P=.02), pPsel (P<.001), and mean platelet mass (P=.01) when compared with control subjects. After treatment with aspirin for 3 months, there were significant reductions in plasma VEGF (P=.01), pAng-1 (P=.04), sPsel (P=.001), and pPsel (P<.001) levels, but not levels of platelet VEGF and plasma Ang-1. Neither pVEGF nor pAng-1 correlated with blood pressure or with their respective plasma levels. The use of aspirin in high-risk hypertensive patients leads to a reduction in intra-platelet angiogenic growth factors and platelet activation. This may have implications for the use of aspirin in conditions (such as vascular disease) that have been associated with an increase in angiogenesis and platelet activation.

  1. Plasma and platelet-derived vascular endothelial growth factor and angiopoietin-1 in hypertension: effects of antihypertensive therapy.

    PubMed

    Nadar, S K; Blann, A D; Lip, G Y H

    2004-10-01

    Platelets carry angiogenic growth factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1). Although platelet-derived growth factors are important in the pathogenesis and metastasis of malignancy, their role in the pathogenesis of complications and the response to treatment in hypertension is less known. To test the hypotheses that there are differences in VEGF and Ang-1 in the plasma and within platelets from patients with hypertension, and that levels change with successful treatment. We recruited 42 previously untreated patients with hypertension (25 male; mean age 53 years) and 30 age- and sex-matched controls. Plasma VEGF, Ang-1 and soluble P-selectin (sPsel, an index of platelet activation), and total platelet [platelet VEGF (pVEGF) and platelet Ang-1 (pAng-1)] were measured by ELISA. The patients were then treated for 6 months with amlodipine-based antihypertensive therapy, achieving a mean blood pressure below 140/80 mmHg. Patients with hypertension had significantly higher levels of plasma sPsel (P =0.01), VEGF (P < 0.001) and Ang-1 (P = 0.01), as well as pVEGF (P < 0.001) and pAng-1 (P =0.02). The levels of plasma and platelet angiogenic growth factors were significantly reduced after antihypertensive treatment (VEGF, P = 0.01; pVEGF, P < 0.001; Ang-1, P < 0.001; pAng-1, P = 0.04). There were no correlations with blood pressure or the levels of sPsel. Levels of plasma and intra-platelet VEGF and Ang-1 are increased in hypertension and are decreased with treatment. Platelet levels of VEGF and Ang-1 may be related to platelet activation but may also involve other mechanisms (for example, the general vascular and haemodynamic changes) that are seen in hypertension.

  2. Effect of platelet lysate on human cells involved in different phases of wound healing.

    PubMed

    Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  3. Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing

    PubMed Central

    Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412

  4. "Platelet-associated regulatory system (PARS)" with particular reference to female reproduction.

    PubMed

    Bódis, József; Papp, Szilárd; Vermes, István; Sulyok, Endre; Tamás, Péter; Farkas, Bálint; Zámbó, Katalin; Hatzipetros, Ioannis; Kovács, Gábor L

    2014-01-01

    Blood platelets play an essential role in hemostasis, thrombosis and coagulation of blood. Beyond these classic functions their involvement in inflammatory, neoplastic and immune processes was also investigated. It is well known, that platelets have an armament of soluble molecules, factors, mediators, chemokines, cytokines and neurotransmitters in their granules, and have multiple adhesion molecules and receptors on their surface. Selected relevant literature and own views and experiences as clinical observations have been used. Considering that platelets are indispensable in numerous homeostatic endocrine functions, it is reasonable to suppose that a platelet-associated regulatory system (PARS) may exist; internal or external triggers and/or stimuli may complement and connect regulatory pathways aimed towards target tissues and/or cells. The signal (PAF, or other tissue/cell specific factors) comes from the stimulated (by the e.g., hypophyseal hormones, bacteria, external factors, etc.) organs or cells, and activates platelets. Platelet activation means their aggregation, sludge formation, furthermore the release of the for-mentioned biologically very powerful factors, which can locally amplify and deepen the tissue specific cell reactions. If this process is impaired or inhibited for any reason, the specifically stimulated organ shows hypofunction. When PARS is upregulated, organ hyperfunction may occur that culminate in severe diseases. Based on clinical and experimental evidences we propose that platelets modulate the function of hypothalamo-hypophyseal-ovarian system. Specifically, hypothalamic GnRH releases FSH from the anterior pituitary, which induces and stimulates follicular and oocyte maturation and steroid hormone secretion in the ovary. At the same time follicular cells enhance PAF production. Through these pathways activated platelets are accumulated in the follicular vessels surrounding the follicle and due to its released soluble molecules (factors, mediators, chemokines, cytokines, neurotransmitters) locally increase oocyte maturation and hormone secretion. Therefore we suggest that platelets are not only a small participant but may be the conductor or active mediator of this complex regulatory system which has several unrevealed mechanisms. In other words platelets are corpuscular messengers, or are more than a member of the family providing hemostasis.

  5. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    PubMed

    Puy, Cristina; Tucker, Erik I; Ivanov, Ivan S; Gailani, David; Smith, Stephanie A; Morrissey, James H; Gruber, András; McCarty, Owen J T

    2016-01-01

    Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  6. Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse

    PubMed Central

    Kiebala, Michelle; Singh, Meera V.; Piepenbrink, Michael S.; Qiu, Xing; Kobie, James J.; Maggirwar, Sanjay B.

    2015-01-01

    Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders. PMID:26076359

  7. Analysis of aggregation of platelets in thrombosis

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    Platelets are key players in thrombus formation by first rolling over collagen bound von Willebrand factor followed by formation of a stable interaction with collagen. The first adhered platelets bind additional platelets until the whole injury is sealed off by a platelet aggregate. The coagulation system stabilizes the formed platelet plug by creating a tight fibrin network, and then wound contraction takes place because of morphological changes in platelets. Coagulation takes place by platelet activation and aggregation mainly through fibrinogen polymerization into fibrin fibers. The process includes multiple factors, such as thrombin, plasmin, and local shear-rate which regulate and control the process. Coagulation can be divided into two pathways: the intrinsic pathway and the extrinsic pathway. The intrinsic pathway is initiated by the exposure of a negatively charged. It is able to activate factor XII, using a complex reaction that includes prekallikrein and high-molecular-weight kininogen as cofactors.. Thrombin is the final enzyme that is needed to convert fibrinogen into fibrin. The extrinsic pathway starts with the exposure of tissue factor to the circulating blood, which is the major initiator of coagulation. There are several feedback loops that reinforce the coagulation cascade, resulting in large amounts of thrombin. It is dependent on the presence of pro-coagulant surfaces of cells expressing negatively charged phospholipids--which include phosphatidylserine (PS)--on their outer membrane. PS-bearing surfaces are able to increase the efficiency of the reactions by concentrating and co-localizing coagulation factors.. Aggregation of platelets are analyzed and compared to adhesion of platelet to erythrocyte and to endothelial cells. This abstract is replacing MAR16-2015-020003.

  8. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity

    PubMed Central

    Wood, Jeremy P.; Silveira, Jay R.; Maille, Nicole M.; Haynes, Laura M.

    2011-01-01

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca2+-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC50 = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin. PMID:21131592

  9. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity.

    PubMed

    Wood, Jeremy P; Silveira, Jay R; Maille, Nicole M; Haynes, Laura M; Tracy, Paula B

    2011-02-03

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.

  10. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  11. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling.

    PubMed

    Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad

    2014-11-07

    Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.

  12. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive. Background Targeting factor (F) VIII expression to platelets is a promising gene therapy approach for hemophilia A, and is successful even in the presence of inhibitors. It is well known that platelets play important roles not only in hemostasis, but also in thrombosis and inflammation. Objective To evaluate whether platelet-FVIII expression might increase thrombotic risk and thereby compromise the safety of this approach. Methods In this study, platelet-FVIII-expressing transgenic mice were examined either in steady-state conditions or under prothrombotic conditions induced by inflammation or the FV Leiden mutation. Native whole blood thrombin generation assay, rotational thromboelastometry analysis and ferric chloride-induced vessel injury were used to evaluate the hemostatic properties. Various parameters associated with thrombosis risk, including D-dimer, thrombin-antithrombin complexes, fibrinogen, tissue fibrin deposition, platelet activation status and activatability, and platelet-leukocyte aggregates, were assessed. Results We generated a new line of transgenic mice that expressed 30-fold higher levels of platelet-expressed FVIII than are therapeutically required to restore hemostasis in hemophilic mice. Under both steady-state conditions and prothrombotic conditions induced by lipopolysaccharide-mediated inflammation or the FV Leiden mutation, supratherapeutic levels of platelet-expressed FVIII did not appear to be thrombogenic. Furthermore, FVIII-expressing platelets were neither hyperactivated nor hyperactivatable upon agonist activation. Conclusion We conclude that, in mice, more than 30-fold higher levels of platelet-expressed FVIII than are required for therapeutic efficacy in hemophilia A are not associated with a thrombotic predilection. © 2016 International Society on Thrombosis and Haemostasis.

  13. A New Risk Factor for Traumatic Spinal Cord Injury.

    PubMed

    Sabre, Liis; Harro, Jaanus; Eensoo, Diva; Vaht, Mariliis; Kabel, Vaike; Pakkanen, Malle; Asser, Toomas; Kõrv, Janika

    2016-11-01

    Several behavioral factors such as violence, impulsivity, and alcohol-related problems are associated with traumatic spinal cord injury (TSCI). Such factors have been associated with inherently low neuronal serotonergic capacity that in turn is reflected in low activity of monoamine oxidase (MAO) as measured in platelets. The aim of the study was to characterize platelet MAO activity and impulsivity in persons with TSCI. Data were collected from 93 patients with TSCI and compared with 93 age- and gender-matched control subjects. Platelet MAO activity was measured radioenzymatically and expressed as nanomoles of beta-phenylethylamine oxidized per 10 to the tenth power platelets per minute. Facets of impulsivity were self-reported using Barratt Impulsiveness Scale (BIS-11). Most of the patients were men (87%). The mean time from TSCI was 4.3 ± 3.7 years. Twenty-one (24%) patients reported social problems associated with alcohol, and 30 (39%) patients had consumed alcohol before the trauma. Platelet MAO activity was significantly lower among the patients with TSCI (6.4 ± 3.2 vs.10.8 ± 5.2, p < 0.0001). This difference was not affected by consideration of their smoking status. The patients with TSCI had significantly higher BIS-11 impulsivity compared with the controls (62.8 ± 10.0 vs. 55.4 ± 8.6, p = 0.0001). The patients with TSCI have lower platelet MAO activity, and they are more impulsive compared with the healthy controls. Our results indicate that both low platelet MAO activity and high impulsivity are important risk factors for TSCI that can have predictive value and aid in undertaking preventive measures.

  14. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation

    PubMed Central

    Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd

    2018-01-01

    Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400

  15. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity.

    PubMed

    Mitchell, Joanne L; Lionikiene, Ausra S; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y; Mutch, Nicola J

    2016-12-15

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP 70 , of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP 70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP 70 Indeed, complex formation between polyP 70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP 70 , highlighting the importance of the anion binding site. PolyP 70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP 70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP 70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP 70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. © 2016 by The American Society of Hematology.

  16. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A.

    PubMed

    Du, Lily M; Nurden, Paquita; Nurden, Alan T; Nichols, Timothy C; Bellinger, Dwight A; Jensen, Eric S; Haberichter, Sandra L; Merricks, Elizabeth; Raymer, Robin A; Fang, Juan; Koukouritaki, Sevasti B; Jacobi, Paula M; Hawkins, Troy B; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A

    2013-01-01

    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.

  17. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A

    PubMed Central

    Du, Lily M.; Nurden, Paquita; Nurden, Alan T.; Nichols, Timothy C.; Bellinger, Dwight A.; Jensen, Eric S.; Haberichter, Sandra L.; Merricks, Elizabeth; Raymer, Robin A.; Fang, Juan; Koukouritaki, Sevasti B.; Jacobi, Paula M.; Hawkins, Troy B.; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A.

    2013-01-01

    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A. PMID:24253479

  18. Functional assembly of intrinsic coagulation proteases on monocytes and platelets. Comparison between cofactor activities induced by thrombin and factor Xa

    PubMed Central

    1992-01-01

    Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin- activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin- activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes. These kinetic profiles are consistent with a 1:1 stoichiometry for the functional interaction between cofactor and enzyme on the surface of monocytes and platelets. Taken together, these results indicate that autocatalytic pathways connecting the extrinsic, intrinsic, and common coagulation pathways can operate efficiently on the monocyte membrane. PMID:1613461

  19. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    PubMed Central

    Serra-Millàs, Montserrat

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  20. Human Cancer and Platelet Interaction, a Potential Therapeutic Target.

    PubMed

    Wang, Shike; Li, Zhenyu; Xu, Ren

    2018-04-20

    Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.

  1. Growth Factor Receptor–Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif–Mediated Signaling in Platelets

    PubMed Central

    Morowski, Martina; Schiessl, Sarah; Schäfer, Carmen M.; Watson, Stephanie K.; Hughes, Craig E.; Ackermann, Jochen A.; Radtke, Daniel; Hermanns, Heike M.; Watson, Steve P.; Nitschke, Lars; Nieswandt, Bernhard

    2015-01-01

    Rationale Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem) immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome. PMID:24265393

  2. Space and Time Resolved Detection of Platelet Activation and von Willebrand Factor Conformational Changes in Deep Suspensions.

    PubMed

    Biasetti, Jacopo; Sampath, Kaushik; Cortez, Angel; Azhir, Alaleh; Gilad, Assaf A; Kickler, Thomas S; Obser, Tobias; Ruggeri, Zaverio M; Katz, Joseph

    2017-01-01

    Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.

  3. Optimisation of a double-centrifugation method for preparation of canine platelet-rich plasma.

    PubMed

    Shin, Hyeok-Soo; Woo, Heung-Myong; Kang, Byung-Jae

    2017-06-26

    Platelet-rich plasma (PRP) has been expected for regenerative medicine because of its growth factors. However, there is considerable variability in the recovery and yield of platelets and the concentration of growth factors in PRP preparations. The aim of this study was to identify optimal relative centrifugal force and spin time for the preparation of PRP from canine blood using a double-centrifugation tube method. Whole blood samples were collected in citrate blood collection tubes from 12 healthy beagles. For the first centrifugation step, 10 different run conditions were compared to determine which condition produced optimal recovery of platelets. Once the optimal condition was identified, platelet-containing plasma prepared using that condition was subjected to a second centrifugation to pellet platelets. For the second centrifugation, 12 different run conditions were compared to identify the centrifugal force and spin time to produce maximal pellet recovery and concentration increase. Growth factor levels were estimated by using ELISA to measure platelet-derived growth factor-BB (PDGF-BB) concentrations in optimised CaCl 2 -activated platelet fractions. The highest platelet recovery rate and yield were obtained by first centrifuging whole blood at 1000 g for 5 min and then centrifuging the recovered platelet-enriched plasma at 1500 g for 15 min. This protocol recovered 80% of platelets from whole blood and increased platelet concentration six-fold and produced the highest concentration of PDGF-BB in activated fractions. We have described an optimised double-centrifugation tube method for the preparation of PRP from canine blood. This optimised method does not require particularly expensive equipment or high technical ability and can readily be carried out in a veterinary clinical setting.

  4. Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation

    PubMed Central

    Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich

    2014-01-01

    von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415

  5. Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Bergerone, Serena; Dondi, Anna Erna; Goffi, Alberto; Oliaro, Elena; Cordero, Marco; Del Sorbo, Lorenzo; Trevi, Giampaolo; Montrucchio, Giuseppe

    2006-12-05

    We sought to investigate the potential role of elevated levels of thrombopoietin (TPO) in platelet activation during unstable angina (UA). Thrombopoietin is a humoral growth factor that does not induce platelet aggregation per se, but primes platelet activation in response to several agonists. No data concerning its contribution to platelet function abnormalities described in patients with UA are available. We studied 15 patients with UA and, as controls, 15 patients with stable angina (SA) and 15 healthy subjects. We measured TPO and C-reactive protein (CRP), as well as monocyte-platelet binding and the platelet expression of P-selectin and of the TPO receptor, c-Mpl. The priming activity of patient or control plasma on platelet aggregation and monocyte-platelet binding and the role of TPO in this effect also were studied. Patients with UA showed higher circulating TPO levels, as well as increased monocyte-platelet binding, platelet P-selectin expression, and CRP levels, than those with SA and healthy control subjects. The UA patients also showed reduced platelet expression of the TPO receptor, c-Mpl. In vitro, the plasma from UA patients, but not from SA patients or healthy controls, primed platelet aggregation and monocyte-platelet binding, which were both reduced when an inhibitor of TPO was used. Thrombopoietin may enhance platelet activation in the early phases of UA, potentially participating in the pathogenesis of acute coronary syndromes.

  6. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Wu, Zhongjun J

    2016-07-01

    Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that nonphysiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25 Pa, 125 Pa) with an exposure time of 0.5 s, generated by using a novel blood-shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with Western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWMs) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis, while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Paradoxical Effect of Non-Physiological Shear Stress on Platelets and von Willebrand factor

    PubMed Central

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C.; Slaughter, Mark S.; Wu, Zhongjun J.

    2016-01-01

    Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that non-physiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25Pa, 125Pa) with an exposure time of 0.5 sec., generated by using a novel blood shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWM) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. PMID:26582038

  8. Platelets and cancer: a casual or causal relationship: revisited

    PubMed Central

    Menter, David G.; Tucker, Stephanie C.; Kopetz, Scott; Sood, Anil K.; Crissman, John D.; Honn, Kenneth V.

    2014-01-01

    Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy. PMID:24696047

  9. Direct factor IXa inhibition with the RNA-aptamer pegnivacogin reduces platelet reactivity in vitro and residual platelet aggregation in patients with acute coronary syndromes.

    PubMed

    Staudacher, Dawid L; Putz, Vera; Heger, Lukas; Reinöhl, Jochen; Hortmann, Marcus; Zelenkofske, Steven L; Becker, Richard C; Rusconi, Christopher P; Bode, Christoph; Ahrens, Ingo

    2017-04-01

    Residual platelet reactivity is a predictor of poor prognosis in patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention. Thrombin is a major platelet activator and upon initiation of the coagulation cascade, it is subsequently produced downstream of factor IXa, which itself is known to be increased in ACS. Pegnivacogin is a novel RNA-aptamer based factor IXa inhibitor featuring a reversal agent, anivamersen. We hypothesized that pegnivacogin could reduce platelet reactivity. Whole blood samples from healthy volunteers were incubated in vitro in the presence and absence of pegnivacogin and platelet reactivity was analysed. In addition, platelet aggregometry was performed in blood samples from ACS patients in the RADAR trial featuring the intravenous administration of pegnivacogin as well as reversal by anivamersen. In vitro, pegnivacogin significantly reduced adenosine diphosphate-induced CD62P-expression (100% vs. 89.79±4.04%, p=0.027, n=9) and PAC-1 binding (100% vs. 83.02±4.08%, p=0.010, n=11). Platelet aggregation was reduced (97.71±5.30% vs. 66.53±9.92%, p=0.013, n=10) as evaluated by light transmission aggregometry. In the presence of the RNA-aptamer reversal agent anivamersen, neither CD62P-expression nor platelet aggregation was attenuated. In patients with ACS treated with aspirin and clopidogrel, residual platelet aggregation was significantly reduced 20 min after intravenous bolus of 1 mg/kg pegnivacogin (100% versus 43.21±8.23%, p=0.020). Inhibition of factor IXa by pegnivacogin decreases platelet activation and aggregation in vitro. This effect was negated by anivamersen. In ACS patients, platelet aggregation was significantly reduced after intravenous pegnivacogin. An aptamer-based anticoagulant inhibiting factor IXa therefore might be a promising antithrombotic strategy in ACS patients.

  10. Shiga Toxin 2 and Lipopolysaccharide Induce Human Microvascular Endothelial Cells To Release Chemokines and Factors That Stimulate Platelet Function

    PubMed Central

    Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.

    2005-01-01

    Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328

  11. Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction

    PubMed Central

    Heitmeier, Stefan; Laux, Volker

    2015-01-01

    Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131

  12. Thrombin-dependent Incorporation of von Willebrand Factor into a Fibrin Network*

    PubMed Central

    Miszta, Adam; Pelkmans, Leonie; Lindhout, Theo; Krishnamoorthy, Ganeshram; de Groot, Philip G.; Hemker, Coenraad H.; Heemskerk, Johan W. M.; Kelchtermans, Hilde; de Laat, Bas

    2014-01-01

    Attachment of platelets from the circulation onto a growing thrombus is a process involving multiple platelet receptors, endothelial matrix components, and coagulation factors. It has been indicated previously that during a transglutaminase reaction activated factor XIII (FXIIIa) covalently cross-links von Willebrand factor (VWF) to polymerizing fibrin. Bound VWF further recruits and activates platelets via interactions with the platelet receptor complex glycoprotein Ib (GPIb). In the present study we found proof for binding of VWF to a fibrin monomer layer during the process of fibrinogen-to-fibrin conversion in the presence of thrombin, arvin, or a snake venom from Crotalus atrox. Using a domain deletion mutant we demonstrated the involvement of the C domains of VWF in this binding. Substantial binding of VWF to fibrin monomers persisted in the presence of the FXIIIa inhibitor K9-DON, illustrating that cross-linking via factor XIII is not essential for this phenomenon and suggesting the identification of a second mechanism through which VWF multimers incorporate into a fibrin network. Under high shear conditions, platelets were shown to adhere to fibrin only if VWF had been incorporated. In conclusion, our experiments show that the C domains of VWF and the E domain of fibrin monomers are involved in the incorporation of VWF during the polymerization of fibrin and that this incorporation fosters binding and activation of platelets. Fibrin thus is not an inert end product but partakes in further thrombus growth. Our findings help to elucidate the mechanism of thrombus growth and platelet adhesion under conditions of arterial shear rate. PMID:25381443

  13. Thrombopoietin contributes to enhanced platelet activation in cigarette smokers.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Goffi, Alberto; Poletto, Cesare; Locatelli, Stefania; Spatola, Tiziana; Cuccurullo, Alessandra; Montrucchio, Giuseppe

    2010-05-01

    Thrombopoietin (TPO) is a humoral growth factor that primes platelet activation in response to several agonists. We recently showed that TPO enhances platelet activation in unstable angina and sepsis. Aim of this study was to investigate the role of TPO in platelet function abnormalities described in cigarette smokers. In a case-control study we enrolled 20 healthy cigarette smokers and 20 nonsmokers, and measured TPO and C-reactive protein (CRP), as well as platelet-leukocyte binding and P-selectin expression. In vitro we evaluated the priming activity of smoker or control plasma on platelet activation, and the role of TPO in this effect. We then studied the effects of acute smoking and smoking cessation on TPO levels and platelet activation indices. Chronic cigarette smokers had higher circulating TPO levels than nonsmoking controls, as well as increased platelet-leukocyte binding, P-selectin expression, and CRP levels. Serum cotinine concentrations correlated with TPO concentrations, platelet-monocyte aggregates and P-selectin expression. In addition, TPO levels significantly correlated with ex vivo platelet-monocyte aggregation and P-selectin expression. In vitro, the plasma from cigarette smokers, but not from nonsmoking controls, primed platelet-monocyte binding, which was reduced when an inhibitor of TPO was used. We also found that acute smoking slightly increased TPO levels, but did not affect platelet-leukocyte binding, whereas smoking cessation induced a significant decrease in both circulating TPO and platelet-leukocyte aggregation. Elevated TPO contributes to enhance platelet activation and platelet-monocyte cross-talk in cigarette smokers. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Clinical-grade quality platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelet concentrates promoted expansion of mesenchymal stromal cells.

    PubMed

    Borghese, C; Agostini, F; Durante, C; Colombatti, A; Mazzucato, M; Aldinucci, D

    2016-08-01

    The aim of our study was to test a platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelets as a source of growth factors for the expansion of mesenchymal stromal cells (MSCs). PRP-R/SRGF, obtained with a low-cost procedure, is characterized by a reduced variability of growth factor release. PRP-R/SRGF is a clinical-grade quality solution obtained from CaCl2 -activated platelets. Its activity was evaluated by measuring the proliferation, the phenotype, the differentiation potential and the immunosuppressive properties of MSCs derived from bone marrow (BM) and adipose tissue (AT). PRP-R/SRGF was more active than FBS to expand BM- and AT-derived MSCs. PRP-R/SRGF treatment did not affect the expression of typical MSCs surface markers, neither MSCs differentiation potential nor their capability to inhibit activated T-cell proliferation. The clinical-grade PRP-R/SRGF may be used in the clinical setting for the expansion of MSCs. © 2016 International Society of Blood Transfusion.

  15. Factor XII (Hageman factor) is a missing link between stress and hypercoagulability and plays an important role in the pathophysiology of ischemic stroke.

    PubMed

    Eggers, Arnold E

    2006-01-01

    A new hypothesis is presented on the function of factor XII, which is postulated to be a "missing link" between acute stress and transient hypercoagulability. The implications of this idea are developed to show how chronic stress, which involves activation of hypertension and migraine as well as hypercoagulability, can cause of cerebrovascular disease. "Acute stress" is defined as "the normal short-term physiological response to the perception of major threats or demands". "Chronic stress" is "the abnormal ongoing physiological response to the continuing perception of unresolvable major threats or demands". The factor XII hypothesis is as follows: Acute stress includes release of epinephrine by the adrenal medulla. Epinephrine activates platelets by binding to alpha-2A adrenergic receptors. Activated platelets convert pre-bound factor XII to its active form, which then initiates the intrinsic coagulation cascade. This can be called the "activated platelet initiation pathway" for coagulation. Neither tissue factor nor pre-formed thrombin is required. Thrombosis proceeds to completion, but only a minute amount of thrombin is formed, and the process normally stops at this point. In people who lapse into a state of chronic stress, essential hypertension, which is also a manifestation of stress, synergizes with hypercoagulability: there is both a baseline rise in blood pressure and systemic platelet activation as well as superimposed labile rises of both. Upregulation of these two stress parameters is atherogenic: epinephrine-activated platelets stimulating thrombin formation interact with endothelial cells activated by angiotensin II to cause, first, smooth muscle cell proliferation, which is a histological hallmark of atherosclerosis, and, lastly, a symptomatic thrombotic occlusion-the stroke. The migraine symptoms which often accompany this process are a marker of chronic stress and ongoing pathophysiologic damage. Therapeutic predictions are made regarding novel ways of blocking stress-induced hypercoagulability and hypertension. Hypercoagulability could be targeted by monoclonal antibodies directed against the platelet-specific alpha-2 adrenergic receptor or the (putative) platelet receptor for Factor XII; hypertension could be treated with monoclonal antibodies directed against the beta-adrenergic receptor in the juxtaglomerular apparatus or by surgical denervation of the kidneys, either of which would decrease the renin release which helps drive the hypertension.

  16. Effects of garlic extract on platelet aggregation: a randomized placebo-controlled double-blind study.

    PubMed

    Morris, J; Burke, V; Mori, T A; Vandongen, R; Beilin, L J

    1995-01-01

    1. Studies of the effects of garlic on platelet aggregation have produced inconsistent results possibly related to variations in study design and in the garlic preparations used. 2. The present study examined the effects on platelet aggregation and serum thromboxane and lyso-platelet activating factor, of feeding garlic extract to healthy men using a placebo-controlled, double-blind design. The effects of the same garlic preparation on platelet aggregation in vitro were also investigated. 3. There were no significant differences in platelet aggregation with adenosine diphosphate, platelet activating factor (PAF) or collagen according to treatment group. Serum thromboxane and lysoPAF also showed no change related to garlic supplements. 4. In vitro aggregation with collagen decreased linearly with increasing amounts of garlic extract, but concentrations were higher than those attainable in vivo. Gastrointestinal side effects prevented the use of higher doses of garlic which must be considered to be pharmacological as they exceed changes achievable by dietary modification.

  17. Regulation of platelet granule exocytosis by S-nitrosylation

    PubMed Central

    Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.

    2005-01-01

    Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422

  18. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    PubMed

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  19. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients.

    PubMed

    Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming

    2016-06-01

    Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.

  20. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    PubMed

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  1. Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow

    PubMed Central

    Cosemans, Judith M. E. M.; Schols, Saskia E. M.; Stefanini, Lucia; de Witt, Susanne; Feijge, Marion A. H.; Hamulyák, Karly; Deckmyn, Hans; Bergmeier, Wolfgang

    2011-01-01

    A microscopic method was developed to study the role of platelets in fibrin formation. Perfusion of adhered platelets with plasma under coagulating conditions at a low shear rate (250−1) resulted in the assembly of a star-like fibrin network at the platelet surface. The focal fibrin formation on platelets was preceded by rises in cytosolic Ca2+, morphologic changes, and phosphatidylserine exposure. Fibrin formation was slightly affected by αIIbβ3 blockage, but it was greatly delayed and reduced by the following: inhibition of thrombin or platelet activation; interference in the binding of von Willebrand factor (VWF) to glycoprotein Ib/V/IX (GpIb-V-IX); plasma or blood from patients with type 1 von Willebrand disease; and plasma from mice deficient in VWF or the extracellular domain of GpIbα. In this process, the GpIb-binding A1 domain of VWF was similarly effective as full-length VWF. Prestimulation of platelets enhanced the formation of fibrin, which was abrogated by blockage of phosphatidylserine. Together, these results show that, in the presence of thrombin and low shear flow, VWF-induced activation of GpIb-V-IX triggers platelet procoagulant activity and anchorage of a star-like fibrin network. This process can be relevant in hemostasis and the manifestation of von Willebrand disease. PMID:21037087

  2. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    PubMed

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The origin and function of platelet glycosyltransferases

    PubMed Central

    Rumjantseva, Viktoria; Sørensen, Anne Louise Tølbøll; Patel-Hett, Sunita; Josefsson, Emma C.; Bennett, Eric P.; Italiano, Joseph E.; Clausen, Henrik; Hartwig, John H.; Hoffmeister, Karin M.

    2012-01-01

    Platelets are megakaryocyte subfragments that participate in hemostatic and host defense reactions and deliver pro- and antiangiogenic factors throughout the vascular system. Although they are anucleated cells that lack a complex secretory apparatus with distinct Golgi/endoplasmic reticulum compartments, past studies have shown that platelets have glycosyltransferase activities. In the present study, we show that members of 3 distinct glycosyltransferase families are found within and on the surface of platelets. Immunocytology and flow cytometry results indicated that megakaryocytes package these Golgi-derived glycosyltransferases into vesicles that are sent via proplatelets to nascent platelets, where they accumulate. These glycosyltransferases are active, and intact platelets glycosylate large exogenous substrates. Furthermore, we show that activation of platelets results in the release of soluble glycosyltransferase activities and that platelets contain sufficient levels of sugar nucleotides for detection of glycosylation of exogenously added substrates. Therefore, the results of the present study show that blood platelets are a rich source of both glycosyltransferases and donor sugar substrates that can be released to function in the extracellular space. This platelet-glycosylation machinery offers a pathway to a simple glycoengineering strategy improving storage of platelets and may serve hitherto unknown biologic functions. PMID:22613794

  4. The use of autologous blood-derived growth factors in bone regeneration

    PubMed Central

    Civinini, Roberto; Macera, Armando; Nistri, Lorenzo; Redl, Birgit; Innocenti, Massimo

    2011-01-01

    Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having platelet concentrations above baseline. When activated the platelets release growth factors that play an essential role in bone healing such as Platelet-derived Growth Factor, Transforming Growth Factor-β, Vascular Endothelial Growth Factor and others. Multiple basic science and in vivo animal studies agree that PRP has a role in the stimulation of the healing cascade in ligament, tendon, muscle cartilage and in bone regeneration in the last years PRP had a widespread diffusion in the treatment of soft tissue and bone healing. The purpose of this review is to describe the biological properties of platelets and its factors, the methods used for producing PRP, to provide a background on the underlying basic science and an overview of evidence based medicine on clinical application of PRP in bone healing. PMID:22461800

  5. Synthesis of analogues of gingerol and shogaol, the active pungent principles from the rhizomes of Zingiber officinale and evaluation of their anti-platelet aggregation effects.

    PubMed

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-03-04

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads.

  6. Synthesis of Analogues of Gingerol and Shogaol, the Active Pungent Principles from the Rhizomes of Zingiber officinale and Evaluation of Their Anti-Platelet Aggregation Effects

    PubMed Central

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-01-01

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads. PMID:24599082

  7. The Potential Role of Recombinant Activated Factor VIIa (rFVIIa) in Military Pre-Hospital Setting

    DTIC Science & Technology

    2004-09-01

    coagulation factors and platelets by crystalloids, colloids, or blood products The severity of dilutional coagulopathy is determined by both volume and...RTO-MP-HFM-109 3 - 1 The Potential Role of Recombinant Activated Factor VIIa (rFVIIa) in Military Pre-Hospital Setting LTC (ret.) Uri...decrease mortality from exsanguinations. Recombinant factor VIIa (rFVIIa) has been shown to overcome a variety of coagulation and platelet disorders

  8. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  9. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis

    PubMed Central

    Jackson, Joseph W.; Singh, Meera V.; Singh, Vir B.; Jones, Letitia D.; Davidson, Gregory A.; Ture, Sara; Morrell, Craig N.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies. PMID:27270236

  10. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis.

    PubMed

    Jackson, Joseph W; Singh, Meera V; Singh, Vir B; Jones, Letitia D; Davidson, Gregory A; Ture, Sara; Morrell, Craig N; Schifitto, Giovanni; Maggirwar, Sanjay B

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies.

  11. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    synthase (ADS) increases ether lipid content, growth and PAF synthesis in MCF-7 cells. 4. Eicosapentaenoic acid (EPA) inhibits the synthesis of PAF...Schmitt, J. D., Bullock, B. C. Wykle, R. L. Reacylation of platelet activating factor with eicosapentaenoic acid in fish-oil-enriched monkey...breast cancer. Recent studies have shown that the ratio of two families of essential fatty acids is important in regulating many cellular processes

  12. Factors affecting the activity of guanylate cyclase in lysates of human blood platelets.

    PubMed Central

    Adams, A F; Haslam, R J

    1978-01-01

    1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors. PMID:29607

  13. Factors affecting the activity of guanylate cyclase in lysates of human blood platelets.

    PubMed

    Adams, A F; Haslam, R J

    1978-07-15

    1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.

  14. Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation

    PubMed Central

    Starossom, Sarah C.; Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Au, Cheryl; Lau, Alexander Y.; Weiner, Howard L.; Ponomarev, Eugene D.

    2015-01-01

    Rationale Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases such as multiples sclerosis (MS) is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T cell differentiation towards pathogenic Th1/Th17 phenotypes are not completely understood. Objectives We investigated the role of platelets in the modulation of CD4 T cell functions in MS patients and in mice with experimental autoimmune encephalitis (EAE), an animal model for MS. Methods and Results We found that early in MS and EAE platelets degranulated and produced a number of soluble factors serotonin (5HT), PF4 and PAF, which specifically stimulated differentiation of T cells towards pathogenic Th1, Th17 and IFN-γ/IL-17-producing CD4 T cells. At the later stages of MS and EAE platelets became exhausted in their ability to produce proinflammatory factors and stimulate CD4 T cells, but substantially increased their ability to form aggregates with CD4 T cells. Formation of platelet-CD4 T cell aggregates involved interaction of CD62P on activated platelets with adhesion molecule CD166 on activated CD4 T cells, contributing to downmodulation of CD4 T cell activation, proliferation and production of IFN-γ. Blocking of formation of platelet-CD4 T cell aggregates during progression of EAE substantially enhanced proliferation of CD4 T cell in the CNS and the periphery leading to exacerbation of the disease. Conclusion Our study indicates differential roles for platelets in the regulation of functions of pathogenic CD4 T cells during initiation and progression of CNS autoimmune inflammation. PMID:26294656

  15. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    PubMed

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  16. Rapid activation of endothelial cells enables P. falciparum adhesion to platelet decorated von Willebrand factor strings

    PubMed Central

    Bridges, Daniel J.; Bunn, James; van Mourik, Jan A.; Grau, Georges; Preston, Roger J.S.; Molyneux, Malcolm; Combes, Valery; O'Donnell, James S.; de Laat, Bas; Craig, Alister

    2009-01-01

    During Plasmodium falciparum malaria infections, von Willebrand factor (VWF) levels are elevated, post-mortem studies show platelets co-localised with sequestered infected erythrocytes (IE) at brain microvascular sites, while in vitro studies have demonstrated platelet-mediated IE adhesion to TNF-activated brain endothelium via a bridging mechanism. This current study demonstrates how all these observations could be linked through a completely novel mechanism whereby IE adhere via platelet decorated ultra-large VWF strings on activated endothelium. Using an in vitro laminar flow model, we have demonstrated tethering and firm adhesion of IE to the endothelium specifically at sites of platelet accumulation. We also show that an IE pro-adhesive state, capable of supporting high levels of binding within minutes of induction can be removed through the action of the VWF protease ADAMTS-13. We propose that this new mechanism contributes to sequestration both independently of and in concert with current adhesion mechanisms. PMID:19897581

  17. Identification of Aspergillus fumigatus Surface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets.

    PubMed

    Rambach, Günter; Blum, Gerhard; Latgé, Jean-Paul; Fontaine, Thierry; Heinekamp, Thorsten; Hagleitner, Magdalena; Jeckström, Hanna; Weigel, Günter; Würtinger, Philipp; Pfaller, Kristian; Krappmann, Sven; Löffler, Jürgen; Lass-Flörl, Cornelia; Speth, Cornelia

    2015-10-01

    Platelets were recently identified as a part of innate immunity. They are activated by contact with Aspergillus fumigatus; putative consequences include antifungal defense but also thrombosis, excessive inflammation, and thrombocytopenia. We aimed to identify those fungal surface structures that mediate interaction with platelets. Human platelets were incubated with Aspergillus conidia and hyphae, isolated wall components, or fungal surface mutants. Interaction was visualized microscopically; activation was quantified by flow cytometry of specific markers. The capacity of A. fumigatus conidia to activate platelets is at least partly due to melanin, because this effect can be mimicked with "melanin ghosts"; a mutant lacking melanin showed reduced platelet stimulating potency. In contrast, conidial hydrophobin masks relevant structures, because an A. fumigatus mutant lacking the hydrophobin protein induced stronger platelet activation than wild-type conidia. A. fumigatus hyphae also contain surface structures that interact with platelets. Wall proteins, galactomannan, chitin, and β-glucan are not the relevant hyphal components; instead, the recently identified fungal polysaccharide galactosaminogalactan potently triggered platelet activation. Conidial melanin and hydrophobin as well as hyphal galactosaminogalactan represent important pathogenicity factors that modulate platelet activity and thus might influence immune responses, inflammation, and thrombosis in infected patients. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems.

    PubMed

    Castillo, Tiffany N; Pouliot, Michael A; Kim, Hyeon Joo; Dragoo, Jason L

    2011-02-01

    Clinical studies claim that platelet-rich plasma (PRP) shortens recovery times because of its high concentration of growth factors that may enhance the tissue repair process. Most of these studies obtained PRP using different separation systems, and few analyzed the content of the PRP used as treatment. This study characterized the composition of single-donor PRP produced by 3 commercially available PRP separation systems. Controlled laboratory study. Five healthy humans donated 100 mL of blood, which was processed to produce PRP using 3 PRP concentration systems (MTF Cascade, Arteriocyte Magellan, Biomet GPS III). Platelet, white blood cell (WBC), red blood cell, and fibrinogen concentrations were analyzed by automated systems in a clinical laboratory, whereas ELISA determined the concentrations of platelet-derived growth factor αβ and ββ (PDGF-αβ, PDGF-ββ), transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor (VEGF). There was no significant difference in mean PRP platelet, red blood cell, active TGF-β1, or fibrinogen concentrations among PRP separation systems. There was a significant difference in platelet capture efficiency. The highest platelet capture efficiency was obtained with Cascade, which was comparable with Magellan but significantly higher than GPS III. There was a significant difference among all systems in the concentrations of WBC, PDGF-αβ, PDGF-ββ, and VEGF. The Cascade system concentrated leukocyte-poor PRP, compared with leukocyte-rich PRP from the GPS III and Magellan systems. The GPS III and Magellan concentrate leukocyte-rich PRP, which results in increased concentrations of WBCs, PDGF-αβ, PDGF-ββ, and VEGF as compared with the leukocyte-poor PRP from Cascade. Overall, there was no significant difference among systems in the platelet concentration, red blood cell, active TGF-β1, or fibrinogen levels. Products from commercially available PRP separation systems produce differing concentrations of growth factors and WBCs. Further research is necessary to determine the clinical relevance of these findings.

  19. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells.

    PubMed

    Orellana, Renan; Kato, Sumie; Erices, Rafaela; Bravo, María Loreto; Gonzalez, Pamela; Oliva, Bárbara; Cubillos, Sofía; Valdivia, Andrés; Ibañez, Carolina; Brañes, Jorge; Barriga, María Isabel; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Castellon, Enrique; Hidalgo, Patricia; Trigo, Cesar; Panes, Olga; Pereira, Jaime; Mezzano, Diego; Cuello, Mauricio A; Owen, Gareth I

    2015-04-15

    An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.

  20. Semi-synthetic preparation of 1-O-(1'-/sup 14/C)hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) using plant cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, N.; Mangold, H.K.

    1985-04-01

    Incubation of photomixotrophic cell suspension cultures of rape (Brassica napus) and heterotrophic cell suspension cultures of soya (Glycine max) with 1-O-(1'-/sup 14/C)hexadecyl-sn-glycerol or rac-1-O-(1'-/sup 14/C)hexadecylglycerol leads in high yield (up to 78%) to labeled 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholines. Alkaline hydrolysis of the choline glycerophospholipids yields pure 1-O-(1'-/sup 14/C)hexadecyl-sn-glycero-3-phosphocholine. 1-O-(1'-14C)Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) is obtained by acetylating the lyso compound. The semi-synthetic preparation described leads to labeled platelet activating factor in an overall yield of 50-60% without loss of specific activity.

  1. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    PubMed

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P <0.01). P2Y 12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P <0.05). Using a FeCl 3 -injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P <0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y 12 receptor expression in diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus. © 2017 American Heart Association, Inc.

  2. Human platelet lysate as a promising growth-stimulating additive for culturing of stem cells and other cell types.

    PubMed

    Shanskii, Ya D; Sergeeva, N S; Sviridova, I K; Kirakozov, M S; Kirsanova, V A; Akhmedova, S A; Antokhin, A I; Chissov, V I

    2013-11-01

    We compared the composition and biological activity of fetal calf serum and platelet lysate from donor platelet concentrate. In platelet lysate, the concentrations of alkaline phosphatase, lactate dehydrogenase, creatinine, and mineral metabolism parameters were lower, while parameters of lipid and protein metabolism were higher than in fetal calf serum. The concentrations of growth factors (platelet-derived (AA, AB, BB), vascular endothelial, insulin-like, and transforming growth factor β) in platelet lysate 1.7-148.7-fold surpassed the corresponding parameters in fetal calf serum. After replacement of fetal calf serum with platelet lysate in the culture medium (0, 25, 50, 75, and 100%), the count of multipotent mesenchymal stromal cells on day 7 (in comparison with day 1) increased by 154.8, 206.6, 228.2, 367.7, and 396.5%, respectively. Thus, platelet lysate can be an adequate non-xenogenic alternative for fetal calf serum.

  3. Coagulation disorders in dogs with hepatic disease.

    PubMed

    Prins, M; Schellens, C J M M; van Leeuwen, M W; Rothuizen, J; Teske, E

    2010-08-01

    Liver disease has been associated with abnormalities in haemostasis. In this study, coagulation times, platelet counts, platelet activity parameters, activities of individual coagulation factors, D-dimers, antithrombin (AT) and protein C activity were measured in 42 dogs with histologically confirmed liver disease. Outcome was correlated with histological diagnosis. One or more coagulation abnormalities were present in 57% of dogs with hepatic disease. Activated partial thromboplastin time was significantly prolonged in dogs with chronic hepatitis (CH), with or without cirrhosis. Mean platelet numbers, AT and factor IX activity were significantly lower in dogs with CH plus cirrhosis, compared to dogs with other hepatopathies. D-dimers were not significantly increased in any group. Only three dogs, all with different histological diagnoses, satisfied the criteria for disseminated intravascular coagulation (DIC). Haemostatic abnormalities were primarily seen in dogs with cirrhosis and this may be due to reduced synthesis rather than increased consumption of coagulation factors. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  5. R1: Platelets and Megakaryocytes contain functional NF-κB

    PubMed Central

    Spinelli, Sherry L.; Casey, Ann E.; Pollock, Stephen J.; Gertz, Jacqueline M.; McMillan, David H.; Narasipura, Srinivasa D.; Mody, Nipa A.; King, Michael R.; Maggirwar, Sanjay B.; Francis, Charles W.; Taubman, Mark B.; Blumberg, Neil; Phipps, Richard P.

    2010-01-01

    The Nuclear Factor (NF)-κB transcription factor family is well-known for their role in eliciting inflammation and promoting cell survival. We discovered that human megakaryocytes and platelets express the majority of NF-κB family members including the regulatory Inhibitor (I)-κB and Inhibitor Kappa Kinase (IKK) molecules. Objective Investigate the presence and role of NF-κB proteins in megakaryocytes and platelets. Methods and Results Anucleate platelets exposed to NF-κB inhibitors demonstrated impaired fundamental functions involved in repairing vascular injury and thrombus formation. Specifically, NF-κB inhibition diminished lamellapodia formation, decreased clot retraction times and reduced thrombus stability. Moreover, inhibition of I-κB-α phosphorylation (BAY-11-7082) reverts fully spread platelets back to a spheroid morphology. Addition of recombinant IKK-β or I-κB-α protein to BAY inhibitor-treated platelets partially restore platelet spreading in I-κB-α inhibited platelets, and addition of active IKK-β increased endogenous I-κB-α phosphorylation levels. Conclusions These novel findings support a crucial and non-classical role for the NF-κB family in modulating platelet function and reveal that platelets are sensitive to NF-κB inhibitors. As NF-κB inhibitors are being developed as anti-inflammatory and anti-cancer agents, they may have unintended effects on platelets. Based on these data, NF-κB is also identified as a new target to dampen unwanted platelet activation. PMID:20042710

  6. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review.

    PubMed

    Liao, Han-Tsung; Marra, Kacey G; Rubin, J Peter

    2014-08-01

    Due to the natural properties of fat, fat grafting remains a popular procedure for soft tissue volume augmentation and reconstruction. However, clinical outcome varies and is technique dependent. Platelet-rich plasma (PRP) contains α-granules, from which multiple growth factors such as platelet-derived growth factor, transforming growth factor-β, vascular endothelial growth factor, and epidermal growth factor can be released after activation. In recent years, the scope of PRP therapies has extended from bone regeneration, wound healing, and healing of musculoskeletal injuries, to enhancement of fat graft survival. In this review, we focus on the definition of PRP, the different PRP preparation and activation methods, and growth factor concentrations. In addition, we discuss possible mechanisms for the role of PRP in fat grafting by reviewing in vitro studies with adipose-derived stem cells, preadipocytes, and adipocytes, and preclinical and clinical research. We also review platelet-rich fibrin, a so-called second generation PRP, and its slow-releasing biology and effects on fat grafts compared to PRP in both animal and clinical research. Finally, we provide a general foundation on which to critically evaluate earlier studies, discuss the limitations of previous research, and direct plans for future experiments to improve the optimal effects of PRP in fat grafting.

  7. Platelet Glycoprotein lb-1X and Malignancy

    DTIC Science & Technology

    2011-09-01

    Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci...JM, Hakim J, de Prost D. Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves...interactions in vitro. (14) The extrinsic pathway of coagulation triggered by factor VII ( FVII ) and tissue factor can be activated in cancer patients. (15

  8. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development

    PubMed Central

    Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut

    2015-01-01

    Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015

  9. Inhibition of the plasma SCUBE1, a novel platelet adhesive protein, protects mice against thrombosis.

    PubMed

    Wu, Meng-Ying; Lin, Yuh-Charn; Liao, Wei-Ju; Tu, Cheng-Fen; Chen, Ming-Huei; Roffler, Steve R; Yang, Ruey-Bing

    2014-07-01

    Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1), a secreted and surface-exposed glycoprotein on activated platelets, promotes platelet-platelet interaction and supports platelet-matrix adhesion. Its plasma level is a biomarker of platelet activation in acute thrombotic diseases. However, the exact roles of plasma SCUBE1 in vivo remain undefined. We generated new mutant (Δ) mice lacking the soluble but retaining the membrane-bound form of SCUBE1. Plasma SCUBE1-depleted Δ/Δ mice showed normal hematologic and coagulant features and expression of major platelet receptors, but Δ/Δ platelet-rich plasma showed impaired platelet aggregation in response to ADP and collagen treatment. The addition of purified recombinant SCUBE1 protein restored the aggregation of platelets in Δ/Δ platelet-rich plasma and further enhanced platelet aggregation in +/+ platelet-rich plasma. Plasma deficiency of SCUBE1 diminished arterial thrombosis in mice and protected against lethal thromboembolism induced by collagen-epinephrine treatment. Last, antibodies directed against the epidermal growth factor-like repeats of SCUBE1, which are involved in trans-homophilic protein-protein interactions, protected mice against fatal thromboembolism without causing bleeding in vivo. We conclude that plasma SCUBE1 participates in platelet aggregation by bridging adjacent activated platelets in thrombosis. Blockade of soluble SCUBE1 might represent a novel antithrombotic strategy. © 2014 American Heart Association, Inc.

  10. Procoagulant expression in platelets and defects leading to clinical disorders.

    PubMed

    Solum, N O

    1999-12-01

    Hemostasis is a result of interactions between fibrillar structures in the damaged vessel wall, soluble components in plasma, and cellular elements in blood represented mainly by platelets and platelet-derived material. During formation of a platelet plug at the damaged vessel wall, factors IXa and VIIIa form the "tenase" complex, leading to activation of factor X on the surface of activated platelets. Subsequently, factors Xa and Va form the "prothrombinase" complex, which catalyzes the formation of thrombin from prothrombin, leading to fibrin formation. An enhanced expression of negatively charged phosphatidylserine in the outer membrane leaflet resulting from a breakdown of the phospholipid asymmetry is essential for the formation of the procoagulant surface. An ATP-driven and inward-acting aminophospholipid "translocase" and a "floppase" counterbalancing this have been postulated to maintain the dynamic state of phospholipid asymmetry. A phospholipid-nonspecific "scramblase," believed to be responsible for the fast breakdown of the asymmetry during cell activation, has recently been isolated from erythrocytes, cloned, and characterized. An intracellular calcium-binding segment and one or more thioesterified fatty acids are probably of importance for calcium-induced activation of this transporter protein. Cytosolic calcium ions also activate the calcium-dependent protease calpain associated with shedding of microvesicles from the transformed platelet membrane. These are shed with a procoagulant surface and with surface-exposed P-selectin from the alpha-granules. Theoretically, therefore, microvesicles can be involved in both coagulation and inflammation. Scott syndrome is probably caused by a defect in the activation of an otherwise normal scramblase, resulting in a relatively severe bleeding tendency. In Stormorken syndrome, the patients demonstrate a spontaneous surface expression of aminophospholipids. Activated platelets and the presence of procoagulant microvesicles have been demonstrated in several clinical conditions, such as thrombotic and idiopathic thrombocytopenia, disseminated intravascular coagulation, and HIV-1 infection, and have been found to be associated with fibrin in thrombosis. Procoagulant microvesicles may also be formed from other cells as a result of apoptosis.

  11. Activation and desensitization of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. I. Characteristics of the secretory response

    PubMed Central

    1976-01-01

    The secretion of vasoactive amines from rabbit platelets induced by the platelet-activating factor (PAF) derived from IgE-sensitized rabbit basophils, was examined. The secretion required calcium has previously been shown to be noncytotoxic and was optimal in both rate and extent at 37 degrees C and pH 7.2. Different temperature-sensitive steps were rate limiting for secretion above or below 20 degrees C. The rate of secretion was dependent upon the concentration of PAF and also of platelets. Maximal rates were observed with relatively low concentrations of platelets (2.5 X 10(8)/ml), sharply contrasting with other platelet stimuli such as C3 or thrombin. The extent of secretion was dependent upon PAF concentration until a maximum of 50 or 60% of the serotonin was released and then declined with increasing amounts of PAF. This was interpreted to result from the platelets becoming desensitized to the PAF, a process that shuts off the secretion. Such a desensitization was demonstrated and was shown to be stimulus specific, i.e., other stimuli could still induce secretion from PAF-desensitized platelets. PAF extracted with ethanol from the albumin to which it is usually bound during preparation, exhibited similar characteristics, except that secretion of up to 90% of the serotonin was induced. The extracted PAF thus seemed less able to induce the desensitization. Its use did provide important evidence that populations of rabbit platelets are relatively homogenous in their ability to respond to PAF. PMID:3618

  12. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation

    PubMed Central

    Zou, Siying; Teixeira, Alexandra M.; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferruccio, Juliana; Zhang, Ping-xia; Hwa, John; Min, Wang; Krause, Diane S.

    2018-01-01

    Summary Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal hemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout, shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using 2 different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice. PMID:27345948

  13. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation.

    PubMed

    Zou, Siying; Teixeira, Alexandra M; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferrucio, Juliana; Zhang, Ping-Xia; Hwa, John; Min, Wang; Krause, Diane S

    2016-08-30

    Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice.

  14. A Review on Platelet Activating Factor Inhibitors: Could a New Class of Potent Metal-Based Anti-Inflammatory Drugs Induce Anticancer Properties?

    PubMed Central

    Lagopati, Nefeli; Tsilibary, Effie C.

    2017-01-01

    In this minireview, we refer to recent results as far as the Platelet Activating Factor (PAF) inhibitors are concerned. At first, results of organic compounds (natural and synthetic ones and specific and nonspecific) as inhibitors of PAF are reported. Emphasis is given on recent results about a new class of the so-called metal-based inhibitors of PAF. A small library of 30 metal complexes has been thus created; their anti-inflammatory activity has been further evaluated owing to their inhibitory effect against PAF in washed rabbit platelets (WRPs). In addition, emphasis has also been placed on the identification of preliminary structure-activity relationships for the different classes of metal-based inhibitors. PMID:28458618

  15. In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel.

    PubMed

    Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H

    2013-07-01

    Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization.

    PubMed

    Kuckleburg, Christopher J; McClenahan, Dave J; Czuprynski, Charles J

    2008-02-01

    Histophilus somni is a gram-negative coccobacillus that causes respiratory and reproductive disease in cattle. The hallmark of systemic H. somni infection is diffuse vascular inflammation that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis. Previously, we demonstrated that H. somni and its lipooligosaccharide (LOS) activate bovine platelets, leading to expression of P selectin, CD40L, and FasL. Because activated platelets have been reported to induce endothelial cell cytokine production and adhesion molecule expression, we sought to determine if bovine platelets induce proinflammatory and procoagulative changes in bovine pulmonary artery endothelial cells. Endothelial cells were incubated with platelets activated with adenosine diphosphate, H. somni, or H. somni LOS. Incubation with activated bovine platelets significantly increased expression of in adhesion molecules (intercellular adhesion molecule 1, E selectin) and tissue factor, as measured by flow cytometry, real-time polymerase chain reaction, and Western blot analysis. Activated platelets also up-regulated expression of endothelial cell IL-1beta, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1alpha as determined by real-time polymerase chain reaction and an IL-1beta enzyme-linked immunosorbent assay. An interesting and surprising finding was that bovine platelets activated by H. somni or its LOS were internalized by bovine endothelial cells as visualized by transmission electron microscopy. This internalization seemed to correlate with endothelial cell activation and morphological changes indicative of cell stress. These findings suggest that activated platelets might play a role in promoting vascular inflammation during H. somni infection.

  17. Clinical Applications of Platelet-Rich Plasma in Patellar Tendinopathy

    PubMed Central

    Jeong, D. U.; Lee, C.-R.; Lee, J. H.; Pak, J.; Kang, L.-W.; Jeong, B. C.

    2014-01-01

    Platelet-rich plasma (PRP), a blood derivative with high concentrations of platelets, has been found to have high levels of autologous growth factors (GFs), such as transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), fibroblastic growth factor (FGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). These GFs and other biological active proteins of PRP can promote tissue healing through the regulation of fibrosis and angiogenesis. Moreover, PRP is considered to be safe due to its autologous nature and long-term usage without any reported major complications. Therefore, PRP therapy could be an option in treating overused tendon damage such as chronic tendinopathy. Here, we present a systematic review highlighting the clinical effectiveness of PRP injection therapy in patellar tendinopathy, which is a major cause of athletes to retire from their respective careers. PMID:25136568

  18. [Platelet function in acute myeloid leukemia. II. Aggregation of isolated platelets].

    PubMed

    Zawilska, K; Komarnicki, M; Mańka, B

    1978-01-01

    In 22 patients with acute myeloid leukaemia (17 cases of myeloblastic leukaemia, 4 cases of myelomonocytic leukaemia and 1 case of undifferentiated-cell leukaemia) platelets were isolated from the plasma by the method of Nicholls and Hampton as modified by Levy-Toledano by centrifugation in albumin gradient. The aim of platelet isolation was their "concentration" in cases of thrombocytopenia to values making possible aggregation tests, and platelet separation from the influence of plasma factors. Then aggregation of isolated platelets caused by ADP was studied. In 16 out of 22 patients a fall of aggregation was observed, with the mean values of aggregation rate and intensity were significantly lower. Parallelly done determinations of aggregating activity released from the platelets by thrombin showed lower values as compared with platelets from healthy subjects. In might be thought, in this connection, that the demonstrated reduction of isolated platelets is associated with a diminution of the nucleotide pool or disturbances of the platelet release reaction. The disturbances of the platelet release reaction. The disturbances of aggregation of isolated platelets and reduction of the aggregating activity were most pronounced in acute myelomonocytic leukaemia.

  19. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    PubMed

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  20. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  1. Enhanced platelet/endothelial activation in depressed patients with acute coronary syndromes: evidence from recent clinical trials.

    PubMed

    Serebruany, Victor L; Glassman, Alexander H; Malinin, Alex I; Sane, David C; Finkel, Mitchell S; Krishnan, Ranga R; Atar, Dan; Lekht, Vladimir; O'Connor, Christopher M

    2003-09-01

    Platelets play a key role in the progression of acute coronary syndromes (ACS). Clinical depression alone is also associated with enhanced platelet activation. The purpose of this study was to compare concentrations of established biomarkers of enhanced platelet/endothelial activation in clinically depressed versus non-depressed patients enrolled in recent clinical trials for ACS. Two hundred and eighty-one baseline plasma samples from patients with acute myocardial infarction (ASSENT-2; n = 41), with ACS (PRONTO; n = 126) and with clinical depression plus previous acute coronary syndrome within 6 months (SADHART; n = 64), and from normal healthy controls (n = 50) were analyzed. Blood was drawn before applying any therapeutic strategies including interventions, thrombolytics, infusions, and selective serotonin re-uptake inhibitors. Platelet factor 4, beta-thromboglobulin, platelet/endothelial cell adhesion molecule-1, P-selectin, thromboxane, prostacyclin, vascular cell adhesion molecule-1, and E-selectin were measured by enzyme-linked immunosorbent assay by a single core laboratory. Patients with ACS exhibited a higher degree of platelet activation than controls independently of the presence of depression. Plasma levels of P-selectin, thromboxane, prostacyclin, and vascular cell adhesion molecule-1 were the highest in the acute myocardial infarction group when compared with ACS despite the presence or absence of clinical depression. Surprisingly, patients with ACS and depression exhibited the highest levels of platelet factor 4, beta-thromboglobulin, and platelet/endothelial cell adhesion molecule-1 when compared with myocardial infarction or angina patients without clinical depression. E-selectin plasma level was constantly elevated compared with controls but did not differ among the groups dependent on the incidence of depression. The depressed plus ACS group had higher plasma levels of all biomarkers compared with the non-depressed patients. Retrospective analysis of the data from several clinical trials reveals that clinical depression is associated with enhanced activation of platelet/endothelial biomarkers even above the level expected in ACS. These findings may contribute to the unfavorable outcome associated with clinical depression in patients with ACS.

  2. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced by KG1 (TF-) cells (105.5+/-24 vs. 42+/-7 pg/ml; P<0.001). Omitting fibrinogen or FII from the reaction mixture markedly decreased VEGF release. In vivo, GpIIb/IIIa blockade with murine 7E3 F(ab')(2) reduced LL2 tumor cell-induced thrombocytopenia by 90% (P<0.001) and lung seeding by 82% (P<0.05). We conclude that TF-bearing tumor cells can activate platelets largely via thrombin generation, and that such activation is associated with release of VEGF. This may enhance metastasis, possibly by increasing extravasation at points of adhesion to vascular endothelium.

  3. Endothelial dysfunction is associated with activation of the type I interferon system and platelets in patients with systemic lupus erythematosus

    PubMed Central

    Tydén, Helena; Lood, Christian; Gullstrand, Birgitta; Nielsen, Christoffer Tandrup; Heegaard, Niels H H; Kahn, Robin; Jönsen, Andreas; Bengtsson, Anders A

    2017-01-01

    Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated the interplay between endothelial dysfunction, platelets and type I IFN in SLE. Methods We enrolled 148 patients with SLE and 79 sex-matched and age-matched healthy controls (HCs). Type I IFN activity was assessed with a reporter cell assay and platelet activation by flow cytometry. Endothelial dysfunction was assessed using surrogate markers of endothelial activation, soluble vascular cell adhesion molecule-1 (sVCAM-1) and endothelial microparticles (EMPs), and finger plethysmograph to determine Reactive Hyperaemia Index (RHI). Results In patients with SLE, type I IFN activity was associated with endothelial activation, measured by high sVCAM-1 (OR 1.68, p<0.01) and elevated EMPs (OR 1.40, p=0.03). Patients with SLE with high type I IFN activity had lower RHI than HCs (OR 2.61, p=0.04), indicating endothelial dysfunction. Deposition of complement factors on platelets, a measure of platelet activation, was seen in patients with endothelial dysfunction. High levels of sVCAM-1 were associated with increased deposition of C4d (OR 4.57, p<0.01) and C1q (OR 4.10, p=0.04) on platelets. High levels of EMPs were associated with C4d deposition on platelets (OR 3.64, p=0.03). Conclusions Endothelial dysfunction was associated with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE. PMID:29119007

  4. Evaluation of two platelet-rich plasma processing methods and two platelet-activation techniques for use in llamas and alpacas.

    PubMed

    Semevolos, Stacy A; Youngblood, Cori D; Grissom, Stephanie K; Gorman, M Elena; Larson, Maureen K

    2016-11-01

    OBJECTIVE To evaluate 2 processing methods (commercial kit vs conical tube centrifugation) for preparing platelet rich plasma (PRP) for use in llamas and alpacas. SAMPLES Blood samples (30 mL each) aseptically collected from 6 healthy llamas and 6 healthy alpacas. PROCEDURES PRP was prepared from blood samples by use of a commercial kit and by double-step conical tube centrifugation. A CBC was performed for blood and PRP samples. Platelets in PRP samples were activated by means of a freeze-thaw method with or without 23mM CaCl 2 , and concentrations of platelet-derived growth factor-BB and transforming growth factor-β 1 were measured. Values were compared between processing methods and camelid species. RESULTS Blood CBC values for llamas and alpacas were similar. The commercial kit yielded a significantly greater degree of platelet enrichment (mean increase, 8.5 fold vs 2.8 fold) and WBC enrichment (mean increase, 3.7 fold vs 1.9 fold) than did conical tube centrifugation. Llamas had a significantly greater degree of platelet enrichment than alpacas by either processing method. No difference in WBC enrichment was identified between species. Concentrations of both growth factors were significantly greater in PRP samples obtained by use of the commercial kit versus those obtained by conical tube centrifugation. CONCLUSIONS AND CLINICAL RELEVANCE For blood samples from camelids, the commercial kit yielded a PRP product with a higher platelet and WBC concentration than achieved by conical tube centrifugation. Optimal PRP platelet and WBC concentrations for various applications need to be determined for llamas and alpacas.

  5. Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor.

    PubMed

    Burdorf, L; Riner, A; Rybak, E; Salles, I I; De Meyer, S F; Shah, A; Quinn, K J; Harris, D; Zhang, T; Parsell, D; Ali, F; Schwartz, E; Kang, E; Cheng, X; Sievert, E; Zhao, Y; Braileanu, G; Phelps, C J; Ayares, D L; Deckmyn, H; Pierson, R N; Azimzadeh, A M; Dandro, Amy; Karavi, Kasinath

    2016-05-01

    Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1-desamino-8-d-arginine vasopressin (DDAVP), 3 μg/kg (to pre-deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung "survival" was significantly longer (>240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre-treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. The GPIb-VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    PubMed

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  7. [PLATELET AGGREGATION IN CLINICALLY HEALTHY PERSONS OF THE SECOND COMING OF AGE LIVING IN THE KURSK REGION].

    PubMed

    Kutafina, N V; Medvedev, I N

    2015-01-01

    This work is dedicated to the study of the aggregation of platelet activity in healthy persons the second coming of age. The study group included 146 clinically healthy people of the second coming of age, leading a healthy lifestyle and not having metabolic and cardiovascular diseases. In healthy people of 36-45 years noted the lack of reliable antioxidant dynamics of platelets and levels of lipid peroxidation. Platelet aggregation with a range of inductors in people of 36-60 years confirmed the age-dependent increase of aggregation platelet function. After 45 years of age, the activity of platelet aggregative in healthy people increases gradually, leading to an increase in their blood platelet active forms, which inevitably leads to the increase in the number of circulating units of various sizes. This tendency is accompanied by painful with age, increasing negative impact of environmental factors, contributing to the realization of a genetic predisposition to various, primarily cardiovascular, diseases.

  8. In vitro effects of polychlorinated biphenyls on human platelets.

    PubMed Central

    Raulf, M; König, W

    1991-01-01

    Incubation of human platelets with polychlorinated biphenyls (PCB) induced and modulated cellular responses to a different degree. 3,3',4,4'-tetrachlorobiphenyl (TCB) was a more potent inducer of platelet aggregation, serotonin release and 12-HETE generation compared to the other PCB [2,2',3,3'-TCB,3,3'-dichlorobiphenyl (DCB),2,2',4,5,5'-pentachlorobiphenyl (PCB)]. 3,3',4,4'-TCB showed synergistic effects, in combination with other PCB, such as an enhanced formation of 12-HETE, when 3,3'-DCB and 2,2',3,3'-TCB were applied simultaneously. The combined incubation of platelets with PCB and sodium fluoride (NaF), an activator of G-proteins, resulted in synergistic 12-HETE generation compared to stimulation with NaF or PCB alone. Furthermore, when platelets were incubated with the PCB the enzymatic steps controlling the metabolism of the platelet-activating factor (PAF) were modulated. A direct relationship between the extent of platelet activation and the chloro-substitution pattern of PCB exists. PMID:1901832

  9. Antimicrobial effect of platelet-rich plasma and platelet-rich fibrin.

    PubMed

    Badade, Pallavi S; Mahale, Swapna A; Panjwani, Alisha A; Vaidya, Prutha D; Warang, Ayushya D

    2016-01-01

    Platelet concentrates have been extensively used in a variety of medical fields to promote soft- and hard-tissue regeneration. The significance behind their use lies in the abundance of growth factors (GFs) in platelets α-granules that promote wound healing. Other than releasing a pool of GFs upon activation, platelets also have many features that indicate their role in the anti-infective host defense. The aim of this study is to evaluate the antimicrobial activities of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) against periodontal disease-associated bacteria. Blood samples were obtained from ten adult male patients. PRP and PRF were procured using centrifugation. The antimicrobial activity of PRP and PRF was evaluated by microbial culturing using bacterial strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. P. gingivalis and A. actinomycetemcomitans were inhibited by PRP but not by PRF. PRP is a potentially useful substance in the fight against periodontal pathogens. This might represent a valuable property in adjunct to the enhancement of tissue regeneration.

  10. Transport physics and biorheology in the setting of hemostasis and thrombosis.

    PubMed

    Brass, L F; Diamond, S L

    2016-05-01

    The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action. © 2016 International Society on Thrombosis and Haemostasis.

  11. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles.

    PubMed

    Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo

    2018-04-01

    Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Platelet-Associated CD40/CD154 Mediates Remote Tissue Damage After Mesenteric Ischemia/Reperfusion Injury

    DTIC Science & Technology

    2012-02-27

    aggregates form in the mesenteric vasculature in patients with ulcerative colitis . Eur J Gastroenterol Hepatol 20: 283 289. 37. Franks ZG, Campbell RA...in these mice [8,33]. Moreover, increased levels of activated platelets and platelet derived factors have also been found in patients with...inflammatory bowel disease [12,34 36] and with ischemic stroke [37 40]. CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily, and is

  13. Standardization of a Protocol for Obtaining Platelet Rich Plasma from blood Donors; a Tool for Tissue Regeneration Procedures.

    PubMed

    Gómez, Lina Andrea; Escobar, Magally; Peñuela, Oscar

    2015-01-01

    To develop a protocol for obtaining autologous platelet rich plasma in healthy individuals and to determine the concentration of five major growth factors before platelet activation. This protocol could be integrated into the guidelines of good clinical practice and research in regenerative medicine. Platelet rich plasma was isolated by centrifugation from 38 healthy men and 42 women ranging from 18 to 59 years old. The platelet count and quantification of growth factors were analyzed in eighty samples, stratified for age and gender of the donor. Analyses were performed using parametric the t-test or Pearson's analysis for non-parametric distribution. P < 0.05 was considered statistically significant. Our centrifugation protocol allowed us to concentrate basal platelet counts from 1.6 to 4.9 times (mean = 2.8). There was no correlation between platelet concentration and the level of the following growth factors: VEGF-D (r = 0.009, p = 0.4105), VEGF-A (r = 0.0068, p = 0.953), PDGF subunit AA (p = 0.3618; r = 0.1047), PDGF-BB (p = 0.5936; r = 0.6095). In the same way, there was no correlation between donor gender and growth factor concentrations. Only TGF-β concentration was correlated to platelet concentration (r = 0.3163, p = 0.0175). The procedure used allowed us to make preparations rich in platelets, low in leukocytes and red blood cells, and sterile. Our results showed biological variations in content of growth factors in PRP. The factors influencing these results should be further studied.

  14. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.

  15. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882

  16. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.

    PubMed

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-10-13

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.

  17. Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies.

    PubMed

    Chen, Jianchun; Tan, Kui; Zhou, Hairu; Lo, Hsuan-Fu; Tronik-Le Roux, Diana; Liddington, Robert C; Diacovo, Thomas G

    2008-01-01

    The A1 domain of von Willebrand factor (VWF-A1) plays a crucial role in hemostasis and thrombosis by initiating platelet adhesion at sites of arterial injury through interactions with the platelet receptor glycoprotein Ib alpha (GPIbalpha). Here we report that murine VWF-A1 supports limited binding of human platelets. However, atomic models of GPIbalpha-VWF-A1 complexes identified an electrostatic 'hot-spot' that, when mutated in murine VWF-A1, switches its binding specificity from mouse to human GPIbalpha. Furthermore, mice expressing this mutant VWF-A1 display a bleeding phenotype that can be corrected by infusion of human platelets. Mechanistically, human platelets correct the phenotype by forming occlusive thrombi, an event that can be abrogated by blockade of GPIbalpha or by the preadministration of inhibitors of platelet activation or adhesion (clopidogrel (Plavix) and abciximab (ReoPro), respectively). Thus, by modifying a protein interface, we have generated a potential biological platform for preclinical screening of antithrombotics that specifically target human platelets.

  18. Platelet factor XIIIa release during platelet aggregation and plasma clot strength measured by thrombelastography in patients with coronary artery disease treated with clopidogrel.

    PubMed

    Kreutz, Rolf P; Owens, Janelle; Lu, Deshun; Nystrom, Perry; Jin, Yan; Kreutz, Yvonne; Desta, Zeruesenay; Flockhart, David A

    2015-01-01

    It has been estimated that up to half of circulating factor XIIIa (FXIIIa) is stored in platelets. The release of FXIIIa from platelets upon stimulation with adenosine diphosphate (ADP) in patients with coronary artery disease treated with dual antiplatelet therapy has not been previously examined. Samples from 96 patients with established coronary artery disease treated with aspirin and clopidogrel were examined. Platelet aggregation was performed by light transmittance aggregometry in platelet-rich plasma (PRP), with platelet-poor plasma (PPP) as reference, and ADP 5 µM as agonist. Kaolin-activated thrombelastography (TEG) was performed in citrate PPP. PRP after aggregation was centrifuged and plasma supernatant (PSN) collected. FXIIIa was measured in PPP and PSN. Platelet aggregation after stimulation with ADP 5 µM resulted in 24% additional FXIIIa release in PSN as compared to PPP (99.3 ± 27 vs. 80.3 ± 24%, p < 0.0001). FXIIIa concentration in PSN correlated with maximal plasma clot strength (TEG-G) (r = 0.48, p < 0.0001), but not in PPP (r = 0.15, p = 0.14). Increasing quartiles of platelet-derived FXIIIa were associated with incrementally higher TEG-G (p = 0.012). FXIIIa release was similar between clopidogrel responders and non-responders (p = 0.18). In summary, platelets treated with aspirin and clopidogrel release a significant amount of FXIIIa upon aggregation by ADP. Platelet-derived FXIIIa may contribute to differences in plasma TEG-G, and thus, in part, provide a mechanistic explanation for high clot strength observed as a consequence of platelet activation. Variability in clopidogrel response does not significantly influence FXIIIa release from platelets.

  19. Platelet-Rich Plasma Peptides: Key for Regeneration

    PubMed Central

    Sánchez-González, Dolores Javier; Méndez-Bolaina, Enrique; Trejo-Bahena, Nayeli Isabel

    2012-01-01

    Platelet-derived Growth Factors (GFs) are biologically active peptides that enhance tissue repair mechanisms such as angiogenesis, extracellular matrix remodeling, and cellular effects as stem cells recruitment, chemotaxis, cell proliferation, and differentiation. Platelet-rich plasma (PRP) is used in a variety of clinical applications, based on the premise that higher GF content should promote better healing. Platelet derivatives represent a promising therapeutic modality, offering opportunities for treatment of wounds, ulcers, soft-tissue injuries, and various other applications in cell therapy. PRP can be combined with cell-based therapies such as adipose-derived stem cells, regenerative cell therapy, and transfer factors therapy. This paper describes the biological background of the platelet-derived substances and their potential use in regenerative medicine. PMID:22518192

  20. Improving platelet transfusion safety: biomedical and technical considerations

    PubMed Central

    Garraud, Olivier; Cognasse, Fabrice; Tissot, Jean-Daniel; Chavarin, Patricia; Laperche, Syria; Morel, Pascal; Lefrère, Jean-Jacques; Pozzetto, Bruno; Lozano, Miguel; Blumberg, Neil; Osselaer, Jean-Claude

    2016-01-01

    Platelet concentrates account for near 10% of all labile blood components but are responsible for more than 25% of the reported adverse events. Besides factors related to patients themselves, who may be particularly at risk of side effects because of their underlying illness, there are aspects of platelet collection and storage that predispose to adverse events. Platelets for transfusion are strongly activated by collection through disposal equipment, which can stress the cells, and by preservation at 22 °C with rotation or rocking, which likewise leads to platelet activation, perhaps more so than storage at 4 °C. Lastly, platelets constitutively possess a very large number of bioactive components that may elicit pro-inflammatory reactions when infused into a patient. This review aims to describe approaches that may be crucial to minimising side effects while optimising safety and quality. We suggest that platelet transfusion is complex, in part because of the complexity of the “material” itself: platelets are highly versatile cells and the transfusion process adds a myriad of variables that present many challenges for preserving basal platelet function and preventing dysfunctional activation of the platelets. The review also presents information showing - after years of exhaustive haemovigilance - that whole blood buffy coat pooled platelet components are extremely safe compared to the gold standard (i.e. apheresis platelet components), both in terms of acquired infections and of immunological/inflammatory hazards. PMID:26674828

  1. Platelet interactions in thrombosis.

    PubMed

    Andrews, Robert K; Gardiner, Elizabeth E; Shen, Yang; Berndt, Michael C

    2004-01-01

    Patho/physiological platelet aggregate (thrombus) formation is initiated by engagement of platelet surface receptors, glycoprotein (GP)Ib-IX-V and GPVI that bind von Willebrand factor or collagen. Although beneficial in response to vascular injury by preventing blood loss (haemostasis), platelet aggregation in a sclerotic coronary artery or other diseased blood vessel (thrombosis) can cause thrombotic diseases like heart attack and stroke. At the molecular level, ligand interactions with GPIb-IX-V or GPVI trigger signalling responses, including elevation of cytosolic Ca2+, dissociation of calmodulin from their cytoplasmic domains, cytoskeletal actin-filament rearrangements, activation of src-family kinases or PI 3-kinase, and 'inside-out' activation of the integrin, alphaIIbbeta3 (GPIIb-llla), that binds von Willebrand factor or fibrinogen and mediates platelet aggregation. Furthermore, emerging evidence supports a topographical co-association of these receptors of the leucine-rich repeat family (GPIb-IX-V) and immunoglobulin superfamily (GPVI) in an adhesive cluster or 'adhesosome'. This arrangement may underlie common mechanisms of initiating thrombus formation in haemostasis or thrombotic disease.

  2. Platelet activation in the hypertensive disorders of pregnancy.

    PubMed

    Nadar, Sunil; Lip, Gregory Y H

    2004-05-01

    The hypertensive disorders of pregnancy, including gestational hypertension, pre-eclampsia and eclampsia, continue to be an important cause of maternal morbidity and mortality. Abnormal placentation is considered to be the main instigating factor, which then leads to widespread maternal endothelial activation and dysfunction. This endothelial perturbation leads to the release of many substances into the circulation, many of which result in platelet activation. For example, there is an imbalance between the levels of prostacyclin (a vasodilator and platelet inhibitor) and thromboxane (a platelet activator and vasoconstrictor), which then results in the maintenance of high blood pressure and complications. It is also likely that platelets play an important part in the pathogenesis of hypertension in pregnancy. The use of antiplatelet drugs has been shown to be effective in reducing the incidence of gestational hypertension in women at high risk and in preventing the complications associated with it. In addition, some antihypertensive agents are effective in reversing platelet activation in essential hypertension and, therefore, their use in pregnancy-induced hypertension may be beneficial in more ways than simply blood pressure reduction.

  3. Platelet von Willebrand factor in Hermansky-Pudlak syndrome.

    PubMed

    McKeown, L P; Hansmann, K E; Wilson, O; Gahl, W; Gralnick, H R; Rosenfeld, K E; Rosenfeld, S J; Horne, M K; Rick, M E

    1998-10-01

    The Hermansky-Pudlak Syndrome (HPS) is an autosomal recessive inherited disorder characterized by oculocutaneous albinism, tissue accumulation of ceroid pigment, and a mild to moderate bleeding diathesis attributed to storage-pool deficient (SPD) platlets. Patients have platelet aggregation and release abnormalities. In addition, low levels of plasma von Willebrand factor (vWF) antigen in some HPS patients have been associated with a greater bleeding tendency than would be predicted from either condition alone. Other HPS patients have severe bleeding despite normal levels of plasma vWF, suggesting that at least one additional factor is responsible for their bleeding diathesis. Because platelet vWF levels have been well correlated with clinical bleeding times in patients with von Willebrand's disease, we have measured the platelet vWF activity and antigen levels in 30 HPS patients and have attempted to correlate their clinical bleeding with these values. The platelet vWF activity levels in patients was significantly lower than that of normal subjects (P < 0.0001). The patients as a group also had slightly lower values of plasma vWF activity when compared with normals (P-0.03). In 11 of the HPS patients, the multimeric structure of plasma vWF showed a decrease in the high molecular weight multimers and an increase in the low molecular weight multimers. In correlating the platelet and plasma vWF values with the bleeding histories, we were not able to show a predictable relationship in the majority of the patients.

  4. Platelet-rich plasma to improve the bio-functionality of biomaterials.

    PubMed

    Anitua, Eduardo; Tejero, Ricardo; Alkhraisat, Mohammad H; Orive, Gorka

    2013-04-01

    Growth factors and cytokines are active players in controlling the different stages of wound healing and tissue regeneration. Recent trends in personalized regenerative medicine involve using patient's own platelet-rich plasma for stimulating wound healing and tissue regeneration. This technology provides a complex cocktail of growth factors and even a fibrin scaffold with multiple biologic effects. In the last few years, an increasing number of studies provide evidence of the potential of combining platelet-rich plasma with different biomaterials in order to improve their properties, including handling, administration, bioactivity, and level of osseointegration, among others. In this review, we discuss the use of platelet-rich plasma as an alternative, easy, cost-effective, and controllable strategy for the release of high concentrations of many endogenous growth factors. Additionally, we provide an overview of the current progress and future directions of research combining different types of biomaterials with platelet-rich plasma in tissue engineering and regenerative medicine.

  5. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.

    PubMed

    Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M

    2004-10-29

    Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.

  6. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase.

    PubMed

    Jeng, Jiiang-Huei; Chen, Shiao-Yun; Liao, Chang-Hui; Tung, Yuan-Yii; Lin, Bor-Ru; Hahn, Liang-Jiunn; Chang, Mei-Chi

    2002-05-01

    There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.

  7. High shear induces platelet dysfunction leading to enhanced thrombotic propensity and diminished hemostatic capacity.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Zheng, Shirong; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-28

    Thrombosis and bleeding are devastating adverse events in patients supported with blood-contacting medical devices (BCMDs). In this study, we delineated that high non-physiological shear stress (NPSS) caused platelet dysfunction that may contribute to both thrombosis and bleeding. Human blood was subjected to NPSS with short exposure time. Levels of platelet surface GPIbα and GPVI receptors as well as activation level of GPIIb/IIIa in NPSS-sheared blood were examined with flow cytometry. Adhesion of sheared platelets on fibrinogen, von Willibrand factor (VWF), and collagen was quantified with fluorescent microscopy. Ristocetin- and collagen-induced platelet aggregation was characterized by aggregometry. NPSS activated platelets in a shear and exposure time-dependent manner. The number of activated platelets increased with increasing levels of NPSS and exposure time, which corresponded well with increased adhesion of sheared platelets on fibrinogen. Concurrently, NPSS caused shedding of GPIbα and GPVI in a manner dependent on shear and exposure time. The loss of intact GPIbα and GPVI increased with increasing levels of NPSS and exposure time. The number of platelets adhered on VWF and collagen decreased with increasing levels of NPSS and exposure time, respectively. The decrease in the number of platelets adhered on VWF and collagen corresponded well with the loss in GPIbα and GPVI on platelet surface. Both ristocetin- and collagen-induced platelet aggregation in sheared blood decreased with increasing levels of NPSS and exposure time. The study clearly demonstrated that high NPSS causes simultaneous platelet activation and receptor shedding, resulting in a paradoxical effect on platelet function via two distinct mechanisms. The results from the study suggested that the NPSS could induce the concurrent propensity for both thrombosis and bleeding in patients.

  8. Complement Activation Alters Platelet Function

    DTIC Science & Technology

    2015-12-01

    haemostatic and coagulation properties of platelets. 15. SUBJECT TERMS Platelets, Complement, Trauma, Tissue Damage 16. SECURITY CLASSIFICATION... coagulation , there is mounting evidence that they may also be important in the development and progression of inflammatory processes (Coppinger et al...receptor-ligand interactions and/or through exposure to cytokines including IL-6, other acute-phase reactants, and pro- coagulant factors such as thrombin

  9. Implementation of a more physiological plasma rich in growth factor (PRGF) protocol: Anticoagulant removal and reduction in activator concentration.

    PubMed

    Anitua, Eduardo; Prado, Roberto; Troya, María; Zalduendo, Mar; de la Fuente, María; Pino, Ander; Muruzabal, Francisco; Orive, Gorka

    2016-07-01

    Plasma rich in growth factors (PRGF) is a biological therapy that uses patient's own growth factors for promoting tissue regeneration. Given the current European regulatory framework in which anticoagulant solution in blood extraction tubes could be considered as a medicinal product, a new PRGF protocol has been developed. The actual protocol (PRGF-A) and the new one (PRGF-B) have been performed and compared under Good Laboratory Practices. PRGF-A protocol uses extraction tubes with 0.9 mL of trisodium citrate as anticoagulant and 50 μL of calcium chloride/mL PRGF to activate it. The PRGF-B reduces the amount of sodium citrate and calcium chloride to 0.4 mL and to 20 μL, respectively. Basic hematological parameters, platelet function, the scaffold obtaining process, growth factors content, and the biological effect were compared between both PRGF obtaining protocols. PRGF-B protocol led to a statistically significant higher enrichment and recovery of platelets regarding to the PRGF-A. Hypotonic stress response by platelets was significantly better in the new protocol. A statistically significant decrease in the basal platelet activation status of PRGF-B compared to PRGF-A was also observed. The duration of the lag phase in the platelet aggregation assay was statistically lower for the PRGF-B protocol. Both the clotting and the clot retraction time were significantly reduced in the B protocol. A higher growth factor concentration was detected in the plasma obtained using the PRGF-B protocol. The new PRGF obtaining protocol, with a reduction in the amount of anticoagulant and activator, has even improved the actual one.

  10. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components

    PubMed Central

    Fekete, Natalie; Gadelorge, Mélanie; Fürst, Daniel; Maurer, Caroline; Dausend, Julia; Fleury-Cappellesso, Sandrine; Mailänder, Volker; Lotfi, Ramin; Ignatius, Anita; Sensebé, Luc; Bourin, Philippe; Schrezenmeier, Hubert; Rojewski, Markus Thomas

    2012-01-01

    Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \\in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation. PMID:22296115

  11. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking

    PubMed Central

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A.; Moncman, Carole L.

    2016-01-01

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate–ribosylation factor 6 (Arf6) is a small guanosine triphosphate–binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)–labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. PMID:26738539

  12. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking.

    PubMed

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A; Moncman, Carole L; Whiteheart, Sidney W

    2016-03-17

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate-ribosylation factor 6 (Arf6) is a small guanosine triphosphate-binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)-labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. © 2016 by The American Society of Hematology.

  13. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIb)β₃ evokes phosphatidylserine exposure on their cell surface.

    PubMed

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIb)β₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  14. Binding of Thrombin-Activated Platelets to a Fibrin Scaffold through αIIbβ3 Evokes Phosphatidylserine Exposure on Their Cell Surface

    PubMed Central

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an αIIbβ3 antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment. PMID:23383331

  15. Blood Hemostatic Changes During an Ultraendurance Road Cycling Event in a Hot Environment.

    PubMed

    Kupchak, Brian R; Kazman, Josh B; Vingren, Jakob L; Levitt, Danielle E; Lee, Elaine C; Williamson, Keith H; Armstrong, Lawrence E; Deuster, Patricia A

    2017-09-01

    This study aims to examine blood hemostatic responses to completing a 164-km road cycling event in a hot environment. Thirty-seven subjects (28 men and 9 women; 51.8±9.5 [mean±SD] y) completed the ride in 6.6±1.1 hours. Anthropometrics (height, body mass [taken also during morning of the ride], percent body fat [%]) were collected the day before the ride. Blood samples were collected on the morning of the ride (PRE) and immediately after (IP) the subject completed the ride. Concentrations of platelet, platelet activation, coagulation, and fibrinolytic markers (platelet factor 4, β-thromboglobulin, von Willebrand factor antigen, thrombin-antithrombin complex, thrombomodulin, and D-Dimer) were measured. Associations between changes from PRE- to IP-ride were examined as a function of event completion time and subject characteristics (demographics and anthropometrics). All blood hemostatic markers increased significantly (P < .001) from PRE to IP. After controlling for PRE values, finishing time was negatively correlated with platelet factor 4 (r = 0.40; P = .017), while percent body fat (%BF) was negatively correlated with thrombin-antithrombin complex (r = -0.35; P = .038) and to thrombomodulin (r = -0.36; P = .036). In addition, male subjects had greater concentrations of thrombin-antithrombin complex (d = 0.63; P < .05) and natural logarithm thrombomodulin (d = 6.42; P < .05) than female subjects. Completing the 164-km road cycling event in hot conditions resulted in increased concentrations of platelet, platelet activation, coagulation, and fibrinolytic markers in both men and women. Although platelet activation and coagulation occurred, the fibrinolytic system markers also increased, which appears to balance blood hemostasis and may prevent clot formation during exercise in a hot environment. Published by Elsevier Inc.

  16. Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets.

    PubMed

    Palankar, Raghavendra; Binsker, Ulrike; Haracska, Bianca; Wesche, Jan; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-18

    S. aureus associated bacteremia can lead to severe infections with high risk of mortality (e.g. sepsis, infective endocarditis). Many virulence factors and adhesins of S. aureus are known to directly interact with platelets. Extracellular adherence protein, Eap, one of the most important virulence factors in S. aureus mediated infections is a multi-tandem domain protein and has been shown to interact with almost all cell types in the human circulatory system. By using amine reactive fluorescent N-hydroxysuccinimidyl (NHS)-ester dyes and by direct detection with primary fluorescently conjugated anti-histidine (His-tag) antibodies against detect N-terminal His6, we show Eap subdomain Eap D 3 D 4 specifically interacts and rapidly activates human platelets. Furthermore, we validate our finding by using site directed directional immobilization of Eap D 3 D 4 through N-terminal His 6 on nickel (II)-nitrilotriacetic acid (Ni-NTA) functionalized bacteriomimetic microbead arrays to visualize real-time platelet activation through calcium release assay. These methods offer an easily adoptable protocols for screening of S.aureus derived virulence factors and adhesins with platelets. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. [Association between platelet-activating factor acetylhydrolase gene polymorphisms and gastrointestinal bleeding in children with Henoch-Schönlein purpura].

    PubMed

    Wang, Bao-Xiang; Mei, Hong; Peng, Han-Ming; Gao, Yuan; Ding, Yan

    2017-04-01

    To study the association between the single nucleotide polymorphisms (SNPs) of the ninth exon Val279Phe of platelet-activating factor acetylhydrolase (PAF-AH) gene and gastrointestinal bleeding in children with Henoch-Schönlein purpura (HSP). A total 516 children with HSP were enrolled, among whom 182 had gastrointestinal bleeding and 334 had no gastrointestinal bleeding. PCR was used to investigate the distribution of genotypes and alleles in the SNPs of Val97Phe. The plasma PAF-AH activity was measured, as well as the levels of platelet-activating factor (PAF), granular membrane protein-140 (GMP-140), β-thromboglobulin (β-TG), and platelet factor 4 (PF4). The Val279Phe genotype and allele frequencies were in Hardy-Weinberg equilibrium, and the homozygous genotype TT and heterozygotes accounted for 0.97% and 6.05% respectively. The gastrointestinal bleeding group had a significantly higher allele frequency than the control group (5.22% vs 3.33%; P<0.01). The HSP patients with GG genotype in the gastrointestinal bleeding group had significantly higher levels of plasma PAF and GMP-140 than those in the non-gastrointestinal bleeding group (P<0.05), while the non-gastrointestinal bleeding group had a significantly higher PAF-AH activity than the gastrointestinal bleeding group (P<0.05). There were no significant differences in β-TG and PF4 between the two groups (P>0.05). Val279Phe gene polymorphisms in PAF-AH are associated with PAF-AH activity and PAF and GMP-140 levels and may be a risk factor for HSP with gastrointestinal bleeding.

  18. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    PubMed

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  19. von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion.

    PubMed

    Madabhushi, Sri R; Shang, Chengwei; Dayananda, Kannayakanahalli M; Rittenhouse-Olson, Kate; Murphy, Mary; Ryan, Thomas E; Montgomery, Robert R; Neelamegham, Sriram

    2012-05-17

    Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D'D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D'D3 domain. At pH 6.2 and 10mM Ca(2+), conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (K(D) = 0.2nM, k(off) = 8 × 10(-5) s(-1)). Significant, albeit weaker, binding (K(D) = 25nM, k(off) = 4 × 10(-3) s(-1)) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca(2+). This interaction was also observed in human plasma (K(D) = 50nM). The addition of recombinant VWFpp in both flow-chamber-based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D'D3 mAb DD3.1, which blocks VWFpp binding to VWF-D'D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα.

  20. Of von Willebrand factor and platelets.

    PubMed

    Bryckaert, Marijke; Rosa, Jean-Philippe; Denis, Cécile V; Lenting, Peter J

    2015-01-01

    Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.

  1. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    PubMed

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  2. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  3. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  4. Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts.

    PubMed

    Tohidnezhad, Mersedeh; Wruck, Christoph-Jan; Slowik, Alexander; Kweider, Nisreen; Beckmann, Rainer; Bayer, Andreas; Houben, Astrid; Brandenburg, Lars-Ove; Varoga, Deike; Sönmez, Tolga-Taha; Stoffel, Marcus; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas

    2014-08-01

    Oxidative stress can impair fracture healing. To protect against oxidative damage, a system of detoxifying and antioxidative enzymes works to reduce the cellular stress. The transcription of these enzymes is regulated by antioxidant response element (ARE). The nuclear factor (erythroid-derived 2)-like2 (Nrf2) plays a major role in transcriptional activation of ARE-driven genes. Recently it has been shown that vascular endothelial growth factor (VEGF) prevents oxidative damage via activation of the Nrf2 pathway in vitro. Platelet-released growth factor (PRGF) is a mixture of autologous proteins and growth factors, prepared from a determined volume of platelet-rich plasma (PRP). It has already used to enhance fracture healing in vitro. The aim of the present study was to elucidate if platelets can lead to upregulation of VEGF and if platelets can regulate the activity of Nrf2-ARE system in primary human osteoblast (hOB) and in osteoblast-like cell line (SAOS-2). Platelets and PRGF were obtained from healthy human donors. HOB and SAOS-2 osteosarcoma cell line were used. The ARE activity was analysed using a dual luciferase reporter assay system. We used Western blot to detect the nuclear accumulation of Nrf2 and the amount of cytosolic antioxidant Thioredoxin Reductase-1 (TXNRD-1), Heme Oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1 (NQO1). Gene expression analysis was performed by real-time RT PCR. ELISA was used for the quantification of growth factors. The activity of ARE was increased in the presence of PRGF up to 50%. Western blotting demonstrated enhanced nuclear accumulation of Nrf2. This was followed by an increase in the protein expression of the aforementioned downstream targets of Nrf2. Real-time RT PCR data showed an upregulation in the gene expression of the VEGF after PRGF treatment. This was confirmed by ELISA, where the treatment with PRGF induced the protein level of VEGF in both cells. These results provide a new insight into PRGF's mode of action in osteoblasts. PRGF not only leads to increase the endogenous VEGF, but also it may be involved in preventing oxidative damage through the Nrf2-ARE signalling. Nrf2 activation via PRGF may have great potential as an effective therapeutic drug target in fracture healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Structural basis for signal recognition and transduction by platelet-activating-factor receptor.

    PubMed

    Cao, Can; Tan, Qiuxiang; Xu, Chanjuan; He, Lingli; Yang, Linlin; Zhou, Ye; Zhou, Yiwei; Qiao, Anna; Lu, Minmin; Yi, Cuiying; Han, Gye Won; Wang, Xianping; Li, Xuemei; Yang, Huaiyu; Rao, Zihe; Jiang, Hualiang; Zhao, Yongfang; Liu, Jianfeng; Stevens, Raymond C; Zhao, Qiang; Zhang, Xuejun C; Wu, Beili

    2018-06-01

    Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.

  6. Platelet-activated clotting time does not measure platelet reactivity during cardiac surgery.

    PubMed

    Shore-Lesserson, L; Ammar, T; DePerio, M; Vela-Cantos, F; Fisher, C; Sarier, K

    1999-08-01

    Platelet dysfunction is a major contributor to bleeding after cardiopulmonary bypass (CPB), yet it remains difficult to diagnose. A point-of-care monitor, the platelet-activated clotting time (PACT), measures accelerated shortening of the kaolin-activated clotting time by addition of platelet activating factor. The authors sought to evaluate the clinical utility of the PACT by conducting serial measurements of PACT during cardiac surgery and correlating postoperative measurements with blood loss. In 50 cardiac surgical patients, blood was sampled at 10 time points to measure PACT. Simultaneously, platelet reactivity was measured by the thrombin receptor agonist peptide-induced expression of P-selectin, using flow cytometry. These tests were temporally analyzed. PACT values, P-selectin expression, and other coagulation tests were analyzed for correlation with postoperative chest tube drainage. PACT and P-selectin expression were maximally reduced after protamine administration. Changes in PACT did not correlate with changes in P-selectin expression at any time interval. Total 8-h chest tube drainage did not correlate with any coagulation test at any time point except with P-selectin expression after protamine administration (r = -0.4; P = 0.03). The platelet dysfunction associated with CPB may be a result of depressed platelet reactivity, as shown by thrombin receptor activating peptide-induced P-selectin expression. Changes in PACT did not correlate with blood loss or with changes in P-selectin expression suggesting that PACT is not a specific measure of platelet reactivity.

  7. Autoantibody against angiotensin AT1 receptor from preeclamptic patients enhances collagen-induced human platelet aggregation.

    PubMed

    Bai, Kehua; Wang, Ke; Li, Xiaoyu; Wang, Jie; Zhang, Jie; Song, Li; Wang, Jin; Zhang, Suli; Lau, Wayne Bond; Ma, Xinliang; Liu, Huirong

    2013-09-01

    Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.

  8. Relationship between platelet count and hemodialysis membranes

    PubMed Central

    Nasr, Rabih; Saifan, Chadi; Barakat, Iskandar; Azzi, Yorg Al; Naboush, Ali; Saad, Marc; Sayegh, Suzanne El

    2013-01-01

    Background One factor associated with poor outcomes in hemodialysis patients is exposure to a foreign membrane. Older membranes are very bioincompatible and increase complement activation, cause leukocytosis by activating circulating factors, which sequesters leukocytes in the lungs, and activates platelets. Recently, newer membranes have been developed that were designed to be more biocompatible. We tested if the different “optiflux” hemodialysis membranes had different effects on platelet levels. Methods Ninety-nine maintenance hemodialysis patients with no known systemic or hematologic diseases affecting their platelets had blood drawn immediately prior to, 90 minutes into, and immediately following their first hemodialysis session of the week. All patients were dialyzed using a Fresenius Medical Care Optiflux polysulfone membrane F160, F180, or F200 (polysulfone synthetic dialyzer membranes, 1.6 m2, 1.8 m2, and 2.0 m2 surface area, respectively, electron beam sterilized). Platelet counts were measured from each sample by analysis using a CBC analyzer. Results The average age of the patients was 62.7 years; 36 were female and 63 were male. The mean platelet count pre, mid, and post dialysis was 193 (standard deviation ±74.86), 191 (standard deviation ±74.67), and 197 (standard deviation ±79.34) thousand/mm3, respectively, with no statistical differences. Conclusion Newer membranes have no significant effect on platelet count. This suggests that they are, in fact, more biocompatible than their predecessors and may explain their association with increased survival. PMID:23983482

  9. Platelet abnormalities in adults with severe pulmonary arterial hypertension related to congenital heart defects (Eisenmenger syndrome).

    PubMed

    Remková, Anna; Šimková, Iveta; Valkovičová, Tatiana; Kaldarárová, Monika

    2016-12-01

    Patients with severe pulmonary arterial hypertension suffer from life-threatening thrombotic and bleeding complications. The aim of this study was to compare selected platelet, endothelial, and coagulation parameters in healthy volunteers and patients with severe pulmonary arterial hypertension because of congenital heart defects. The study included healthy volunteers (n = 50) and patients with cyanotic congenital heart defects classified as Eisenmenger syndrome (n = 41). We investigated platelet count, mean platelet volume, and platelet aggregation - spontaneous and induced by various concentrations of five agonists. Von Willebrand factor (vWF), fibrinogen, factor VIII and XII, plasminogen activator inhibitor, antithrombin, D-dimer, and antiphospholipid antibodies were also investigated. We found a decreased platelet count [190 (147-225) vs. 248 (205-295) 10 l, P < 0.0001], higher mean platelet volume [10.9 (10.1-12.0) vs. 10.2 (9.4-10.4) fl, P < 0.0001], and significantly decreased platelet aggregation (induced by five agonists, in various concentrations) in patients with Eisenmenger syndrome compared with controls. These changes were accompanied by an increase of plasma vWF antigen [141.6 (108.9-179.1) vs. 117.4 (9.2-140.7) IU/dl, P = 0.022] and serum anti-β2-glycoprotein [2.07 (0.71-3.41) vs. 0.47 (0.18-0.99) U/ml, P < 0.0001]. Eisenmenger syndrome is accompanied by platelet abnormalities. Thrombocytopenia with increased platelet size is probably due to a higher platelet turnover associated with platelet activation. Impaired platelet aggregation can reflect specific platelet behaviour in patients with Eisenmenger syndrome. These changes can be related both to bleeding and to thrombotic events. A higher vWF antigen may be a consequence of endothelial damage in Eisenmenger syndrome, but the cause for an increase of anti-β2-glycoprotein is unknown.

  10. Dogs with heart diseases causing turbulent high-velocity blood flow have changes in platelet function and von Willebrand factor multimer distribution.

    PubMed

    Tarnow, Inge; Kristensen, Annemarie T; Olsen, Lisbeth H; Falk, Torkel; Haubro, Lotte; Pedersen, Lotte G; Pedersen, Henrik D

    2005-01-01

    The purpose of this prospective study was to investigate platelet function using in vitro tests based on both high and low shear rates and von Willebrand factor (vWf) multimeric composition in dogs with cardiac disease and turbulent high-velocity blood flow. Client-owned asymptomatic, untreated dogs were divided into 4 groups: 14 Cavalier King Charles Spaniels (Cavaliers) with mitral valve prolapse (MVP) and no or minimal mitral regurgitation (MR), 17 Cavaliers with MVP and moderate to severe MR, 14 control dogs, and 10 dogs with subaortic stenosis (SAS). Clinical examinations and echocardiography were performed in all dogs. PFA100 closure times (the ability of platelets to occlude a hole in a membrane at high shear rates), platelet activation markers (plasma thromboxane B2 concentration, platelet surface P-selectin expression), platelet aggregation (in whole blood and platelet-rich plasma with 3 different agonists), and vWf multimers were analyzed. Cavaliers with moderate to severe MR and dogs with SAS had longer closure times and a lower percentage of the largest vWf multimers than did controls. Maximal aggregation responses were unchanged in dogs with SAS but enhanced in Cavaliers with MVP (regardless of MR status) compared with control dogs. No significant difference in platelet activation markers was found among groups. The data suggest that a form of platelet dysfunction detected at high shear rates was present in dogs with MR and SAS, possibly associated with a qualitative vWf defect. Aggregation results suggest increased platelet reactivity in Cavaliers, but the platelets did not appear to circulate in a preactivated state in either disease.

  11. Verotoxin and neuraminidase induced platelet aggregating activity in plasma: their possible role in the pathogenesis of the haemolytic uraemic syndrome.

    PubMed Central

    Rose, P E; Armour, J A; Williams, C E; Hill, F G

    1985-01-01

    Certain strains of Escherichia coli producing verotoxin have been isolated in the stools of patients with the haemolytic uraemic syndrome. A platelet aggregating activity has been found in normal plasma after incubation with verotoxin at 37 degrees C for 24 h. This activity, unlike neuraminidase, has an effect that is independent of changing factor VIII related antigen, but requires the IIA and IIIB platelet surface glycoprotein (deficient in thrombasthenia) to mediate its effect. Prostacyclin totally inhibited this effect, but other antiplatelet drugs and heparin were without inhibitory effects. PMID:2859303

  12. Platelets Subvert T Cell Immunity Against Cancer via GARP-TGFβ Axis

    PubMed Central

    Rachidi, Saleh; Metelli, Alessandra; Riesenberg, Brian; Wu, Bill X; Nelson, Michelle H; Fugle, Caroline W; Paulos, Chrystal M; Rubinstein, Mark P; Garrett-Mayer, Elizabeth; Hennig, Mirko; Bearden, Daniel W; Yang, Yi; Liu, Bei; Li, Zihai

    2017-01-01

    Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We herein show that genetic targeting of platelets significantly enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as the major platelet-derived soluble factors to obliterate CD4+ and CD8+ T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of TGFβ-docking receptor Glycoprotein A Repetitions Predominant (GARP) rather than secretion of TGFβ per se. Indeed, platelet-specific deletion of GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Finally, we found that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available anti-platelet agents. We conclude that platelets constrain T cell immunity though a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer. PMID:28763790

  13. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men).

    PubMed

    Tang, Yingzhan; Ling, Junhong; Zhang, Peng; Zhang, Xiangrong; Zhang, Na; Wang, Wenli; Li, Jiayuan; Li, Ning

    2015-08-15

    Because of platelets as critical factor in the formation of pathogenic thrombi, anti-platelet activities have been selected as therapeutic target for various circulatory diseases. In order to find potential therapeutic agents, bioassay-directed separation of Bauhinia glauca Benth.subsp. pernervosa. (called Da Ye Guan Men as a traditional Chinese medicine) was performed to get 29 main components (compounds 1-29) from the bioactive part of this herbal. It was the first time to focus on the composition with anti-platelet aggregation activities for this traditional Chinese medicine. The constituents, characterized from the effective extract, were established on the basis of extensive spectral data analysis. Then their anti-platelet aggregation effects were evaluated systematically. On the basis of the chemical profile and biological assay, it was suggested that the flavonoid composition (5 and 18) should be responsible for the anti-platelet aggregation of the herbal because of their significant activities. The primary structure and activity relationship was also discussed briefly. Copyright © 2015. Published by Elsevier Ltd.

  14. A Plasma Protein Indistinguishable from Ribosomal Protein S19

    PubMed Central

    Semba, Umeko; Chen, Jun; Ota, Yoshihiko; Jia, Nan; Arima, Hidetoshi; Nishiura, Hiroshi; Yamamoto, Tetsuro

    2010-01-01

    A monocyte-chemoattracting factor is generated during blood coagulation and during clotting of platelet-rich plasma. This chemotactic factor attracts monocytes as a ligand of the C5a receptor; however, it inhibits C5a-induced neutrophil chemotaxis as an apparent receptor antagonist. The curious dual function of the serum monocyte chemotactic factor resembles that of the cross-linked homodimer of ribosomal protein S19 (RP S19). Indeed, the inactive precursor of the monocyte chemotactic factor was present in plasma, and the precursor molecule and RP S19, as well as the active form and the RP S19 dimer, were indistinguishable in terms of immunological reactivity and molecular size. Coagulation factor XIIIa, plasma transglutaminase, and membrane phosphatidylserine on the activated platelets were required for conversion of the precursor to the active form. In addition, the precursor molecule in plasma could be replaced by wild-type recombinant RP S19 but not by mutant forms of it. These results indicate that a molecule indistinguishable from RP S19 was present in plasma, and that the RP S19-like molecule was converted to the active form by a transglutaminase-catalyzed reaction on a scaffold that included the phosphatidylserine-exposed platelet membrane. PMID:20093496

  15. Megakaryocytic Smad4 Regulates Platelet Function through Syk and ROCK2 Expression.

    PubMed

    Wang, Yanhua; Jiang, Lirong; Mo, Xi; Lan, Yu; Yang, Xiao; Liu, Xinyi; Zhang, Jian; Zhu, Li; Liu, Junling; Wu, Xiaolin

    2017-09-01

    Smad4, a key transcription factor in the transforming growth factor- β signaling pathway, is involved in a variety of cell physiologic and pathologic processes. Here, we characterized megakaryocyte/platelet-specific Smad4 deficiency in mice to elucidate its effect on platelet function. We found that megakaryocyte/platelet-specific loss of Smad4 caused mild thrombocytopenia and significantly extended first occlusion time and tail bleeding time in mice. Smad4-deficient platelets showed reduced agonist-induced platelet aggregation. Further studies showed that a severe defect was seen in integrin α IIb β 3 -mediated bidirectional (inside-out and outside-in) signaling in Smad4-deficient platelets, as evidenced by reduced fibrinogen binding and α -granule secretion, suppressed platelet spreading and clot retraction. Microarray analysis showed that the expression levels of multiple genes were altered in Smad4-deficient platelets. Among these genes, spleen tyrosine kinase (Syk) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) were downregulated several times as confirmed by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Further research showed that Smad4 directly regulates ROCK2 transcription but indirectly regulates Syk. Megakaryocyte/platelet-specific Smad4 deficiency caused decreased expression levels of Syk and ROCK2 in platelets. These results suggest potential links among Smad4 deficiency, attenuated Syk, and ROCK2 expression and defective platelet activation. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption

    DTIC Science & Technology

    2009-12-01

    found platelet aggregation, thrombus formation and endothelial cell rupture (Fig 1). All these findings demonstrate that PDT damages endothelial...after 0.5 mg/kg verteporfin (i.v.)). (A) 1 h after PDT showing platelet aggregation and thrombus formation; (B) 6 h after PDT showing edema...mechanisms causing thrombi formation. Other mechanisms, such as release of thromboxane from platelets (33) and von Willebrand factor from damaged

  17. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling.

    PubMed

    Vaiyapuri, Sakthivel; Ali, Marfoua S; Moraes, Leonardo A; Sage, Tanya; Lewis, Kirsty R; Jones, Chris I; Gibbins, Jonathan M

    2013-12-01

    Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

  18. Platelet morphology, soluble P selectin and platelet P-selectin in acute ischaemic stroke. The West Birmingham Stroke Project.

    PubMed

    Nadar, Sunil K; Lip, Gregory Y H; Blann, Andrew D

    2004-12-01

    The pathophysiology of ischaemic stroke involves the platelet. In this study, we hypothesised that abnormalities in platelet morphology, as well as soluble (sPsel) and total platelet P-selectin (pPsel) levels would be present in patients presenting with an acute ischaemic stroke, and that these changes would improve at > or = 3 months' follow-up. We studied 59 hypertensive patients (34 male; mean age 68 +/- 12 years) who presented with an acute ischaemic stroke (ictus < 24 hours), and compared them with 2 groups: (i) age-, sex- and ethnic- origin matched normotensive healthy controls; and (ii) uncomplicated 'high risk' hypertensive patients as 'risk factor control' subjects. Platelet morphology (volume and mass) was quantified, and sPsel (plasma marker of platelet activation) was measured (ELISA) in citrated plasma. The mass of P-selectin in each platelet (pPsel) was determined by lysing a fixed number of platelets and then determining the levels of P-selectin in the lysate. Results show that patients who presented with a stroke had significantly higher levels of sPsel and pPsel (both p < 0.001), compared to the normal controls and the hypertensive patients. Patients with an acute stroke had lower mean platelet mass (MPM) and mean platelet volume (MPV) as compared to the uncomplicated hypertensive patients, who had significantly higher mean MPM and MPV values, as compared to normal controls. On follow-up, the levels of both sPsel (p = 0.011), pPsel (< 0.001) and MPV (p = 0.03) were significantly lower. Mean MPM levels remained unchanged. We conclude that patients presenting with an acute ischaemic stroke have activated platelets, as evident by the increased levels of soluble and platelet P-selectin. Further study of platelet activation and the role of P-selectin is warranted.

  19. Activation of platelet-rich plasma using soluble type I collagen.

    PubMed

    Fufa, Duretti; Shealy, Blake; Jacobson, May; Kevy, Sherwin; Murray, Martha M

    2008-04-01

    Platelet-rich plasma (PRP) has recently been found to be a useful delivery system for growth factors important to oral tissue healing. But application of PRP in a liquid form to a wound site within the oral cavity can be complicated by significant loss of the PRP into the surrounding oral space unless gelation through the clotting mechanism is accomplished. Gelation is currently accomplished using bovine thrombin; however, rare but serious complications of this method have led to the search for alternative clotting mechanisms, including the use of soluble collagen as a clotting activator. In this work, our hypothesis was that soluble type I collagen would be as effective as bovine thrombin in causing clotting of the PRP and stimulating growth factor release from the platelets and granulocytes. PRP from human donors was clotted using type I collagen or bovine thrombin. Clot retraction was determined by measuring clot diameters over time. The release of platelet-derived growth factor (PDGF)-AB, transforming growth factor (TGF)-beta1, and vascular endothelial growth factor (VEGF) from both types of clots was measured over 10 days using enzyme-linked immunosorbent assasy. Clots formed using type I collagen exhibited far less retraction than those formed with bovine thrombin. Bovine thrombin and type I collagen stimulated similar release of PDGF-AB and VEGF between 1 and 10 days; however, thrombin activation resulted in a greater release of TGF-beta1 during the first 5 days after activation. The use of type I collagen to activate clotting of PRP may be a safe and effective alternative to bovine thrombin. The use of collagen results in less clot retraction and equal release of PDGF-AB and VEGF compared with currently available methods of clot activation.

  20. Platelets Cellular and Functional Characteristics in Patients with Atrial Fibrillation: A Comprehensive Meta-Analysis and Systematic Review

    PubMed Central

    Weymann, Alexander; Ali-Hasan-Al-Saegh, Sadeq; Sabashnikov, Anton; Popov, Aron-Frederik; Mirhosseini, Seyed Jalil; Nombela-Franco, Luis; Testa, Luca; Lotfaliani, Mohammadreza; Zeriouh, Mohamed; Liu, Tong; Dehghan, Hamidreza; Yavuz, Senol; de Oliveira Sá, Michel Pompeu Barros; Baker, William L.; Jang, Jae-Sik; Gong, Mengqi; Benedetto, Umberto; Dohmen, Pascal M.; D’Ascenzo, Fabrizio; Deshmukh, Abhishek J.; Biondi-Zoccai, Giuseppe; Calkins, Hugh; Stone, Gregg W.

    2017-01-01

    Background This systematic review with meta-analysis aimed to determine the strength of evidence for evaluating the association of platelet cellular and functional characteristics including platelet count (PC), MPV, platelet distribution width (PDW), platelet factor 4, beta thromboglobulin (BTG), and p-selectin with the occurrence of atrial fibrillation (AF) and consequent stroke. Material/Methods We conducted a meta-analysis of observational studies evaluating platelet characteristics in patients with paroxysmal, persistent and permanent atrial fibrillations. A comprehensive subgroup analysis was performed to explore potential sources of heterogeneity. Results Literature search of all major databases retrieved 1,676 studies. After screening, a total of 73 studies were identified. Pooled analysis showed significant differences in PC (weighted mean difference (WMD)=−26.93 and p<0.001), MPV (WMD=0.61 and p<0.001), PDW (WMD=−0.22 and p=0.002), BTG (WMD=24.69 and p<0.001), PF4 (WMD=4.59 and p<0.001), and p-selectin (WMD=4.90 and p<0.001). Conclusions Platelets play a critical and precipitating role in the occurrence of AF. Whereas distribution width of platelets as well as factors of platelet activity was significantly greater in AF patients compared to SR patients, platelet count was significantly lower in AF patients. PMID:28302997

  1. Platelets and Infections – Complex Interactions with Bacteria

    PubMed Central

    Hamzeh-Cognasse, Hind; Damien, Pauline; Chabert, Adrien; Pozzetto, Bruno; Cognasse, Fabrice; Garraud, Olivier

    2015-01-01

    Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response. PMID:25767472

  2. Platelets prime hematopoietic and vascular niche to drive angiocrine-mediated liver regeneration.

    PubMed

    Shido, Koji; Chavez, Deebly; Cao, Zhongwei; Ko, Jane; Rafii, Shahin; Ding, Bi-Sen

    2017-01-01

    In mammals, the livers regenerate after chemical injury or resection of hepatic lobe by hepatectomy. How liver regeneration is initiated after mass loss remains to be defined. Here, we report that following liver injury, activated platelets deploy SDF-1 and VEGF-A to stimulate CXCR7 + liver sinusoidal endothelial cell (LSEC) and VEGFR1 + myeloid cell, orchestrating hepatic regeneration. After carbon tetrachloride (CCl 4 ) injection or hepatectomy, platelets and CD11b + VEGFR1 + myeloid cells were recruited LSEC, and liver regeneration in both models was impaired in thrombopoietin-deficient ( Thpo -/- ) mice lacking circulating platelets. This impeded regeneration phenotype was recapitulated in mice with either conditional ablation of Cxcr7 in LSEC ( Cxcr7 iΔ/iΔ ) or Vegfr1 in myeloid cell ( Vegfr1 lysM/lysM ). Both Vegfr1 lysM/lysM and Cxcr7 iΔ/iΔ mice exhibited suppressed expression of hepatocyte growth factor and Wnt2, two crucial trophogenic angiocrine factors instigating hepatocyte propagation. Of note, administration of recombinant thrombopoietin restored the prohibited liver regeneration in the tested genetic models. As such, our data suggest that platelets and myeloid cells jointly activate the vascular niche to produce pro-regenerative endothelial paracrine/angiocrine factors. Modulating this "hematopoietic-vascular niche" might help to develop regenerative therapy strategy for hepatic disorders.

  3. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  4. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  5. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-05-14

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  6. How do we approach thrombocytopenia in critically ill patients?

    PubMed

    Thachil, Jecko; Warkentin, Theodore E

    2017-04-01

    A low platelet count is a frequently encountered haematological abnormality in patients treated in intensive treatment units (ITUs). Although severe thrombocytopenia (platelet count <20 × 10 9 /l) can be associated with bleeding, even moderate-degree thrombocytopenia is associated with organ failure and adverse prognosis. The aetiology for thrombocytopenia in ITU is often multifactorial and correcting one aetiology may not normalise the low platelet count. The classical view for thrombocytopenia in this setting is consumption associated with thrombin-mediated platelet activation, but other concepts, including platelet adhesion to endothelial cells and leucocytes, platelet aggregation by increased von Willebrand factor release, red cell damage and histone release, and platelet destruction by the complement system, have recently been described. The management of severe thrombocytopenia is platelet transfusion in the presence of active bleeding or invasive procedure, but the risk-benefit of prophylactic platelet transfusions in this setting is uncertain. In this review, the incidence and mechanisms of thrombocytopenia in patients with ITU, its prognostic significance and the impact on organ function is discussed. A practical approach based on the authors' experience is described to guide management of a critically ill patient who develops thrombocytopenia. © 2016 John Wiley & Sons Ltd.

  7. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice.

    PubMed

    Jansen, A J Gerard; Josefsson, Emma C; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M; Sackstein, Robert; von Andrian, Ulrich H; Wagner, Denisa D; Hartwig, John H; Hoffmeister, Karin M

    2012-02-02

    When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17(ΔZn/ΔZn) platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage.

  8. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice

    PubMed Central

    Jansen, A. J. Gerard; Josefsson, Emma C.; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M.; Sackstein, Robert; von Andrian, Ulrich H.; Wagner, Denisa D.; Hartwig, John H.

    2012-01-01

    When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17ΔZn/ΔZn platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage. PMID:22101895

  9. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination.

    PubMed

    Matsui, T; Hori, A; Hamako, J; Matsushita, F; Ozeki, Y; Sakurai, Y; Hayakawa, M; Matsumoto, M; Fujimura, Y

    2017-03-01

    Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that specifically blocks VWF function. This is the first report on an artificial botrocetin that can inhibit the VWF-GPIb interaction. © 2017 International Society on Thrombosis and Haemostasis.

  10. IMMUNOREACTIONS INVOLVING PLATELETS

    PubMed Central

    Shulman, N. Raphael

    1958-01-01

    Quantitative aspects of platelet agglutination and inhibition of clot retraction by the antibody of quinidine purpura were described. The reactions appeared to depend on formation of types of antibody-quinidine-platelet complexes which could fix complement but complement was not necessary for these reactions. Complement fixation was at least 10 times more sensitive than platelet agglutination or inhibition of clot retraction for measurement and detection of antibody activity. Although it has been considered that antibodies of drug purpura act as platelet lysins in the presence of complement and that direct lysis of platelets accounts for development of thrombocytopenia in drug purpura, the present study suggests that attachment of antibody produces a change in platelets which is manifested in vitro only by increased susceptibility to non-specific factors which can alter the stability of platelets in the absence of antibody. The attachment of antibody to platelets in vivo may only indirectly affect platelet survival. In contrast to human platelets, dog, rabbit, and guinea pig platelets, and normal or trypsin-treated human red cells did not agglutinate, fix complement, or adsorb antibody; and intact human endothelial cells did not fix complement or adsorb antibody. Rhesus monkey platelets were not agglutinated by the antibody but did adsorb antibody and fix complement although their activity in these reactions differed quantitatively from that of human platelets. Cinchonine could be substituted for quinidine in agglutination and inhibition of clot retraction reactions but quinine and cinchonidine could not. Attempts to cause passive anaphylaxis in guinea pigs with the antibody of quinidine purpura were not successful. PMID:13525580

  11. Effect of heparin bonding on catheter-induced fibrin formation and platelet activation.

    PubMed

    Nichols, A B; Owen, J; Grossman, B A; Marcella, J J; Fleisher, L N; Lee, M M

    1984-11-01

    Pathologic and experimental evidence indicates that platelet activation and fibrin formation contribute to the pathogenesis of angina pectoris, coronary vasospasm and myocardial infarction. Detection of localized intravascular platelet activation and fibrin formation in vivo by selective blood sampling requires catheters that do not induce coagulation ex vivo. We studied the effect of heparin bonding of catheter surfaces on activation of the coagulation system by cardiovascular catheters. Woven Dacron, polyvinylchloride, and polyurethane catheters were tested and compared with identical catheters with heparin-bonded surfaces in 47 patients undergoing percutaneous cardiac catheterization. Platelet activation was measured by radioimmunoassay of plasma platelet factor 4 (PF4), beta-thromboglobulin (BTG), and thromboxane B2 (TXB2) in blood samples withdrawn through catheters, and fibrin formation was assessed by determination of fibrinopeptide A (FPA) levels. In blood samples collected through conventional catheters, FPA, PF4, BTG, and TXB2 levels were markedly elevated; blood sampling through heparin-bonded catheters had no significant effect on FPA, PF4, BTG, or TXB2 levels. Scanning electron microscopy disclosed extensive platelet aggregates and fibrin strands adherent to the surface of conventional catheters but not to heparin-bonded catheter surfaces. This study demonstrates that (1) collection of blood samples through cardiovascular catheters causes artifactual elevation of FPA, PF4, BTG, and TXB2 levels, and (2) heparin-bonded catheter surfaces effectively prevent catheter-induced platelet alpha-granule release and fibrin formation on catheter surfaces. Heparin-bonded catheters will facilitate investigation of the role of intravascular coagulation in coronary artery disease by eliminating catheter-induced fibrin formation and platelet activation.

  12. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; hide

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  13. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin.

    PubMed

    Konstantopoulos, K; Neelamegham, S; Burns, A R; Hentzen, E; Kansas, G S; Snapp, K R; Berg, E L; Hellums, J D; Smith, C W; McIntire, L V; Simon, S I

    1998-09-01

    After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  14. Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element.

    PubMed

    Tohidnezhad, M; Varoga, D; Wruck, C J; Brandenburg, L O; Seekamp, A; Shakibaei, M; Sönmez, T T; Pufe, Thomas; Lippross, S

    2011-05-01

    Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2-ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2-ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.

  15. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  16. [Effects of lysine clonixinate on platelet function. Comparison with other non-steroidal anti-inflammatory agents].

    PubMed

    Kramer, E H; Sassetti, B; Kaminker, A J; De Los Santos, A R; Martí, M L; Di Girolamo, G

    2001-01-01

    One of the mechanisms of action of non steroid antiinflammatory drugs (NSAIDs) consists of inhibition of prostaglandin synthesis. This explains many of the pharmacological effects and adverse events observed in medical practice. Administration of NSAIDs to patients with hemostatic disorders or perioperative conditions entails the risk of bleeding due to inhibition of platelet function. This study deals with platelet changes induced by lysine clonixinate vs diclofenac, ibuprofen and aspirin in classical tests such as platelet count, platelet factor 3 (PF3) activity and platelet aggregation with various inductors and more recent procedures such as P-selectin measurement by flow cytometry. Unlike control drugs, lysine clonixinate did not induce changes in platelet count or function when administered to healthy volunteers at the commonly used therapeutic doses.

  17. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis.

    PubMed

    Rachidi, Saleh; Metelli, Alessandra; Riesenberg, Brian; Wu, Bill X; Nelson, Michelle H; Wallace, Caroline; Paulos, Chrystal M; Rubinstein, Mark P; Garrett-Mayer, Elizabeth; Hennig, Mirko; Bearden, Daniel W; Yang, Yi; Liu, Bei; Li, Zihai

    2017-05-05

    Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4 + and CD8 + T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer. Copyright © 2017, American Association for the Advancement of Science.

  18. The use of platelet-rich plasma to treat chronic tendinopathies: A technical analysis.

    PubMed

    Kaux, Jean-François; Emonds-Alt, Thibault

    2018-05-01

    Platelet-rich plasma (PRP) is blood plasma with a high concentration of autologous platelets which constitute an immense reservoir of growth factors. The clinical use of PRP is widespread in various medical applications. Although highly popular with athletes, the use of PRP for the treatment of tendinopathies remains scientifically controversial, particularly due to the diversity of products that go by the name of "PRP." To optimize its use, it is important to look at the various stages of obtaining PRP. In this literature review, we take a closer look at eight parameters which may influence the quality of PRP: 1) anticoagulants used to preserve the best platelet function, 2) the speed of centrifugation used to extract the platelets, 3) the platelet concentrations obtained, 4) the impact of the concentration of red and while blood cells on PRP actions, 5) platelet activators encouraging platelet degranulation and, hence, the release of growth factors, and 6) the use or nonuse of local anesthetics when carrying out infiltration. In addition to these parameters, it may be interesting to analyze other variables such as 7) the use of ultrasound guidance during the injection with a view to determining the influence they have on potential recovery.

  19. Determinants of the Thrombogenic Potential of Multiwalled Carbon Nanotubes

    PubMed Central

    Burke, Andrew; Singh, Ravi; Carroll, David L.; Owen, John; Kock, Nancy D.; D’Agostino, Ralph; Torti, Frank M.; Torti, Suzy V.

    2011-01-01

    Multiwalled carbon nanotubes (MWCNTs) are cylindrical tubes of graphitic carbon with unique physical and electrical properties. MWCNTs are being explored for a variety of diagnostic and therapeutic applications. Successful biomedical application of MWCNTs will require compatibility with normal circulatory components, including constituents of the hemostatic cascades. In this manuscript, we compare the thrombotic activity of MWCNTs in vitro and in vivo. We also assess the influence of functionalization of MWCNTs on thrombotic activity. In vitro, MWCNT activate the intrinsic pathway of coagulation as measured by activated partial thromboplastin time (aPTT) assays. Functionalization by amidation or carboxylation enhances this procoagulant activity. Mechanistic studies demonstrate that MWCNTs enhance propagation of the intrinsic pathway via a non-classical mechanism strongly dependent on factor IX. MWCNTs preferentially associate with factor IXa and may provide a platform for its activation. In addition to their effects on the coagulation cascade, MWCNTs activate platelets in vitro, with amidated MWCNTs exhibiting greater platelet activation than carboxylated or pristine MWCNTs. However, contrasting trends are obtained in vivo, where functionalization tends to diminish rather than enhance pro-coagulant activity. Thus, following systemic injection of MWCNTs in mice, pristine MWCNTs decreased platelet counts, increased vWF, and increased D-dimers. In contrast, carboxylated MWCNTS exhibited little procoagulant tendency in vivo, eliciting only a mild and transient decrease in platelets. Amidated MWCNTs elicited no statistically significant change in platelet count. Further, neither carboxylated nor amidated MWCNTs increased vWF or D-dimers in mouse plasma. We conclude that the pro-coagulant tendencies of MWCNTs observed in vitro are not necessarily recapitulated in vivo. Further, functionalization can markedly attenuate the procoagulant activity of MWCNTs in vivo. This work will inform the rational development of biocompatible MWCNTs for systemic delivery. PMID:21663954

  20. Components in Plasma-Derived Factor VIII, But Not in Recombinant Factor VIII Downregulate Anti-Inflammatory Surface Marker CD163 in Human Macrophages through Release of CXCL4 (Platelet Factor 4).

    PubMed

    Bertling, Anne; Brodde, Martin F; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C; Kelsch, Reinhard; Kehrel, Beate E

    2017-09-01

    Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress.

  1. A virally inactivated functional growth factor preparation from human platelet concentrates.

    PubMed

    Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T

    2009-08-01

    Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.

  2. Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)].

    PubMed

    Nadar, S K; Blann, A; Beevers, D G; Lip, G Y H

    2005-10-01

    The increased risk of target organ damage (TOD) in hypertension may be related to a prothrombotic or hypercoagulable state, with abnormalities in platelet activation. Altered angiogenesis, possibly related to increased plasma vascular endothelial growth factor (VEGF) is also a feature of hypertension. We hypothesized a link between altered angiogenesis and TOD in hypertension. Accordingly, the angiogenic growth factors VEGF, angiopoietin 1 and 2 (Ang 1 & 2) and soluble angiopoietin receptor Tie-2 in plasma and in platelets were assessed in terms of the presence or absence of hypertensive TOD. We studied 199 patients (75% men; mean age 68 years) with hypertension. Of these, 125 had evidence of hypertensive TOD (stroke, previous myocardial infarction, angina, left ventricular hypertrophy and mild renal failure). Patients were compared with 74 healthy normotensive controls (69% men; mean age 68 years). Plasma VEGF, Ang 1 & 2 and Tie-2, and total platelet levels of VEGF and Ang-1 (obtained by lysing a known number of platelets with 0.5% Tween) were measured by an enzyme-linked immunosorbent assay. Hypertensive patients had higher levels of plasma VEGF, Ang-1, Ang-2, Tie-2 and platelet VEGF (all P

  3. Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk

    PubMed Central

    Dovizio, Melania; Alberti, Sara; Sacco, Angela; Guillem-Llobat, Paloma; Schiavone, Simone; Maier, Thorsten J.; Steinhilber, Dieter; Patrignani, Paola

    2015-01-01

    Platelets are activated by the interaction with cancer cells and release enhanced levels of lipid mediators [such as thromboxane (TX)A2 and prostaglandin (PG)E2, generated from arachidonic acid (AA) by the activity of cyclooxygenase (COX)-1], granule content, including ADP and growth factors, chemokines, proteases and Wnt proteins. Moreover, activated platelets shed different vesicles, such as microparticles (MPs) and exosomes (rich in genetic material such as mRNAs and miRNAs). These platelet-derived products induce several phenotypic changes in cancer cells which confer high metastatic capacity. A central event involves an aberrant expression of COX-2 which influences cell-cycle progression and contribute to the acquisition of a cell migratory phenotype through the induction of epithelial mesenchymal transition genes and down-regulation of E-cadherin expression. The identification of novel molecular determinants involved in the cross-talk between platelets and cancer cells has led to identify novel targets for anti-cancer drug development. PMID:26551717

  4. Relationships of inflammatory and haemostatic markers with social class: results from a population-based study of older men.

    PubMed

    Ramsay, Sheena; Lowe, Gordon D O; Whincup, Peter H; Rumley, Ann; Morris, Richard W; Wannamethee, S Goya

    2008-04-01

    Haemostatic and inflammatory markers have been hypothesised to mediate the relationship of social class and cardiovascular disease (CVD). We investigated whether a range of inflammatory/haemostatic markers are associated with social class independent of chronic diseases and behavioural risk factors in a population-based sample of 2682 British men aged 60-79 without a physician diagnosis of CVD, diabetes or musculoskeletal disease requiring anti-inflammatory medications. Men in lower social classes had higher mean levels of C-reactive protein, fibrinogen, interleukin-6, white blood cell count, von Willebrand factor (vWF), factor VIII, activated protein C (APC) resistance, plasma viscosity, fibrin D-dimer and platelet count, compared to higher social class groups; but not of tissue plasminogen activator antigen, haematocrit or activated partial prothrombin time. After adjustment for behavioural risk factors (smoking, alcohol, physical activity and body mass), the associations of social class with vWF, factor VIII, APC resistance, plasma viscosity, and platelet count though weakened, remained statistically significant, while those of other markers were considerably attenuated. In this study of older men without CVD, the social gradient in inflammatory and haemostatic markers was substantially explained by behavioural risk factors. The effect of socio-economic gradient on the factor VIII-vWF complex, APC resistance, plasma viscosity and platelet count merits further study.

  5. Comparison of point-of-care methods for preparation of platelet concentrate (platelet-rich plasma).

    PubMed

    Weibrich, Gernot; Kleis, Wilfried K G; Streckbein, Philipp; Moergel, Maximilian; Hitzler, Walter E; Hafner, Gerd

    2012-01-01

    This study analyzed the concentrations of platelets and growth factors in platelet-rich plasma (PRP), which are likely to depend on the method used for its production. The cellular composition and growth factor content of platelet concentrates (platelet-rich plasma) produced by six different procedures were quantitatively analyzed and compared. Platelet and leukocyte counts were determined on an automatic cell counter, and analysis of growth factors was performed using enzyme-linked immunosorbent assay. The principal differences between the analyzed PRP production methods (blood bank method of intermittent flow centrifuge system/platelet apheresis and by the five point-of-care methods) and the resulting platelet concentrates were evaluated with regard to resulting platelet, leukocyte, and growth factor levels. The platelet counts in both whole blood and PRP were generally higher in women than in men; no differences were observed with regard to age. Statistical analysis of platelet-derived growth factor AB (PDGF-AB) and transforming growth factor β1 (TGF-β1) showed no differences with regard to age or gender. Platelet counts and TGF-β1 concentration correlated closely, as did platelet counts and PDGF-AB levels. There were only rare correlations between leukocyte counts and PDGF-AB levels, but comparison of leukocyte counts and PDGF-AB levels demonstrated certain parallel tendencies. TGF-β1 levels derive in substantial part from platelets and emphasize the role of leukocytes, in addition to that of platelets, as a source of growth factors in PRP. All methods of producing PRP showed high variability in platelet counts and growth factor levels. The highest growth factor levels were found in the PRP prepared using the Platelet Concentrate Collection System manufactured by Biomet 3i.

  6. Modulation of P-selection and platelet aggregation in chronic periodontitis: A clinical study

    PubMed Central

    Perumal, Ramesh; Rajendran, Maheashwari; Krishnamurthy, Malathi; Ganji, Kiran Kumar; Pendor, Sunil Dattuji

    2014-01-01

    Background: The primary etiologic factor of periodontitis is the subgingival infection with a group of Gram negative pathogens. Transient bacteremia in periodontitis patients underlie chronic production and systemic increases of various proinflammatory mediators, including Interleukin (IL)-1α, IL-6, C-reactive protein and Tumor necrosis factor (TNF)-α. P- selectin is a member of selectin family of cell surface receptor which is located in the membrane of the secretory granules (alpha granules) of platelets and in the membrane of the Weibel-Palade bodies of the vascular endothelial cells. P selectin redistributes from the membrane of the granules to the plasma membrane when platelets and endothelial cells are activated and thus degranulated. Aim: To compare the level of platelet activation, soluble P Selectin level and morphological changes and aggregation of platelets in patients in periodontitis patients compared to healthy controls. Materials and Methods: 80 patients were included in the study with the age group of 35-60. The patients were divided into 2 groups, 40 subjects with generalized chronic periodontitis and 40 healthy subjects taken as control. Periodontal Examination using clinical parameters namely, Bleeding Index, Plaque Index, Probing Pocket Depth and Clinical Attachment Level were recorded. Collection of blood samples for estimation of serum soluble P- selectin level by ELISA method. Evaluation of Platelet morphology and grading the platelet aggregation. Results: P-selectin expression shows that the mean value for control group is 4.97 ± 16.56 ng/mL and study group 13.05 ± 29.94 ng/mL which was significantly higher than control group with P value 0.001. Platelet morphological changes shows small form – mean value for control group is 75.83% ± 14.24% while for study group is 39.08%. ± 21.59; Big form – mean value for control group 0.80% ± 0.35% while for study group 0.48% ± 1.3%and Spider form- mean value for control group 23.88% ± 14.13 while study group 59.32% ±. 23.42. The observation showed high statistical significance with P- value < 0.001 for small and spider form and no statistical significance for big form P = 0.075. Conclusion: Increased expression of P-selectin, spider form of platelets and pathological aggregation pattern which indicates that platelet activation may be associated with chronic periodontitis. The results of the study showed, higher number of spider forms and significant pathological aggregation pattern in periodontitis patients which indicates activation of platelets thus emphasized that periodontitis can be an contributing factor in the development of cardiovascular disease. PMID:25024540

  7. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time.

    PubMed

    Arora, Satyam; Doda, Veena; Kotwal, Urvershi; Dogra, Mitu

    2016-02-01

    Platelet derived biomaterials represent a key source of cytokines and growth factors extensively used for tissue regeneration; wound healing and tissue repair. Our study was to quantify platelets and growth factors released by PRP when prepared at different centrifugal force (g) and time. Our study was approved by the institutional ethical committee. One hundred millilitres of whole blood (WB) was collected in bag with CPDA as the anticoagulant(AC); (14 mL for 100 mL WB ratio). Nine aliquots of 10 mL each were made from the bag and set of three aliquots were made a group. PRP was prepared at varying centrifugal force (group A: -110 g, group B: -208 g & group C: -440 g) & time (1: -5 min, 2: -10 min & 3: -20 min). Contents of each PRP prepared were analysed. Commercial sandwich ELISA kits were used to quantify the concentrations of CD62P (Diaclone SAS; France), Platelet derived growth factors-AB (Qayee-Bio; China), transforming growth factor-β1 (DRG; Germany) and vascular endothelial growth factor (Boster Immuno Leader; USA) released in each PRP prepared. Eight volunteers were enrolled in the study (24-30 years). The baseline blood counts of all the volunteers were comparable (p ≥ 0.05). Mean ± SD of platelet yield of all nine groups ranged from 17.2 ± 4.2% to 78.7 ± 5.7%. Each PRP was activated with calcified thromboplastin to quantify the growth factors released by them. Significantly higher (p < 0.05) transforming growth factor-β1 and vascular endothelial growth factor were released compared to the baseline. Our study highlights the variation in both force (g) and time results in changes at cellular level and growth factor concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome

    PubMed Central

    Abrey Recalde, Maria J.; Alvarez, Romina S.; Alberto, Fabiana; Mejias, Maria P.; Ramos, Maria V.; Fernandez Brando, Romina J.; Bruballa, Andrea C.; Exeni, Ramon A.; Alconcher, Laura; Ibarra, Cristina A.; Amaral, María M.; Palermo, Marina S.

    2017-01-01

    Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions. PMID:29068360

  9. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    PubMed

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Activity of blood coagulation and fibrinolysis during and after hydroxyethyl starch (HES) colloidal volume replacement.

    PubMed

    Omar, M N; Shouk, T A; Khaleq, M A

    1999-06-01

    To examine the effect of medium molecular weight hydroxyethyl starch on protein C levels and the changes in the activation state of blood platelets, coagulation and fibrinolyis during and after 5 day of its infusion. Fifty male patients (mean age: 47 years, range 45-50 years) who required prostatectomy for benign prostatic hyperplasia were divided into two equal groups. One group was given 15 mL/kg body weight (mean volume 1000 mL +/- 100 mL) of 6% hydroxyethyl starch (HES) 200/0.5, the other received an equal volume of 5% human albumin during the operation. Blood samples were collected immediately before infusion (baseline values) and at 20, 40, 60, 90, 240, and 480 min after the infusion started then daily for the next 5 days postoperatively. Hematocrit, factor VIII:C, thrombin-antithrombin III complex; the anticoagulant protein C levels; the fibrinolytic parameters tissue type plasminogen activator (t-PA), and the fibrinolytic product D-Dimer and the platelet aggregation activity were measured. The data obtained did not detect any significant differences between HES and human albumin in the plasma levels of thrombin-antithrombin III complex, protein C, tissue-type plasminogen activator and the fibrin split products D-Dimer. Factor VIII:C and platelet aggregation were significantly lower in the hydroxyethyl starch group in comparison with albumin. Baseline values were attained postoperatively for factor VIII:C and platelet aggregation by the first and fifth days, respectively. The lowering effect of medium molecular weight hydroxyethyl starch on factor VIII:C would not be attributed to increased proteolytic activity of protein C on this coagulation cofactor because there is a nonsignificant change in protein C levels.

  11. Picomolar platelet-activating factor mobilizes Ca to change platelet shape without activating phospholipase C or protein kinase C; simultaneous fluorometric measurement of intracellular free Ca concentration and aggregation.

    PubMed

    James-Kracke, M R; Sexe, R B; Shukla, S D

    1994-11-01

    The purpose of this study was to investigate signal transduction mechanisms activated by low and high concentrations of platelet-activating factor (PAF) in rabbit platelets and to contrast the responses to those induced by thrombin. We measured changes in intracellular free calcium ([Ca++]i) with fura2, while monitoring light scatter simultaneously as a measure of shape change and aggregation in a dual-excitation dual-emission spectrofluorometer. An abrupt 20% fall in light scatter, coincident with the peak of the [Ca++]i, indicated shape change in Ca-containing or Ca-free medium and was blocked by BAPTA loading and 10 microM cytochalasin B. A secondary decline in light scatter, indicating aggregation, occurred only in Ca-containing medium and only under conditions favoring protein kinase C (PKC) activation. PAF at 10(-12) M did not increase 1,4,5-inositol triphosphate content, which suggested PKC would not be activated. However, PAF at 10(-12) rapidly increased [Ca++]i to 900 nM in 7 sec seemingly by Ca influx through receptor-operated channels inducing shape change. PAF at 10(-9) and 10(-8) M increased [Ca++]i to 2 microM in 12 sec and induced both shape change and aggregation. However, in platelets pretreated with 100 nM staurosporine to inhibit protein kinases, 10(-9) M PAF did not cause aggregation even though [Ca++]i still rose to 2 microM, which indicated that PKC plays a role in aggregation but not in Ca++ mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmis, Lars; Tanner, Felix C.; Center for Integrative Human Physiology, University of Zuerich, Zuerich

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysismore » showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.« less

  13. Opposite effects of Agrimonia pilosa Ledeb aqueous extracts on blood coagulation function

    PubMed Central

    Yuan, Wufeng; Jiang, Lei; Wang, Huan

    2017-01-01

    Background Agrimonia pilosa Ledeb (APL) has showed anticoagulant and antithrombotic activities in some studies, whereas its actual effects on blood coagulation are still unclear. This study was designed to observe the in vitro effects of APL aqueous extracts on blood coagulation, as well as to investigate the underlying mechanisms. Methods Studies were divided into four groups: 0, 4, 20, and 80 g/L of APL aqueous extracts mixed with plasma or whole blood samples. Clotting time of whole blood, plasma coagulation tests, activities of plasma coagulation factors, plasma calcium ion, platelet aggregation test, and platelet fibrinogen receptor as well as the blood viscosity were measured. Results It was observed that the APL aqueous extracts in 4 g/L significantly prolonged the whole blood clotting time and activated partial thromboplastin time, shortened prothrombin time, decreased activities of coagulation factor VIII, IX and XI, and levels of platelet aggregation and fibrinogen receptor expression. However, coagulation factor VII activity, and blood viscosity were increased after the extracts treatment. And the effects of APL extracts were in a concentration-dependent manner (0–80 g/L). Conclusions The results suggest that APL aqueous extracts have a total anticoagulant activity, whereas they exhibit opposite effects of greater anticoagulant activity than pro-coagulant activity. PMID:28480193

  14. Evaluation and validation of a method for determining platelet catecholamine in patients with obstructive sleep apnea and arterial hypertension.

    PubMed

    Feres, Marcia C; Cintra, Fatima D; Rizzi, Camila F; Mello-Fujita, Luciane; Lino de Souza, Altay A; Tufik, Sergio; Poyares, Dalva

    2014-01-01

    Measurements of plasma and urinary catecholamine are susceptible to confounding factors that influence the results, complicating the interpretation of sympathetic nervous system (SNS) activity in the Obstructive sleep apnea (OSA) and arterial hypertension (HYP) conditions. In this study, we validated a test for platelet catecholamine and compared the catecholamine levels (adrenaline and noradrenaline) in urine, plasma and platelets in patients with OSA and HYP compared with controls. In the validation, 30 healthy, nonsmoking volunteers who were not currently undergoing treatment or medication were selected as the control group. One hundred fifty-four individuals (114 OSA, 40 non-OSA) were consecutively selected from the outpatient clinic of the Sleep Institute and underwent clinical, polysomnographic and laboratory evaluation, including the urinary, plasma and platelet levels of adrenaline (AD) and noradrenaline (NA). Patients were then allocated to groups according to the presence of OSA and/or hypertension. A logistic regression model, controlled for age and BMI, showed that urinary AD and urinary NA were risk factors in the OSA+HYP group and the HYP group; however, the model showed higher levels of platelet NA for OSA without HYP. After 1 year of CPAP (continuous upper airway pressure) treatment, patients (n = 9) presented lower levels of urinary NA (p = 0.04) and platelet NA (p = 0.05). Urinary NA and AD levels were significantly associated with the condition of hypertension with and without OSA, whereas platelet NA with OSA without comorbidity. These findings suggest that platelet catecholamine levels might reflect nocturnal sympathetic activation in OSA patients without hypertension.

  15. Lipid Oxidation in Carriers of Lecithin:Cholesterol Acyltransferase Gene Mutations

    PubMed Central

    Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J.P.; Stroes, Erik S.G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert

    2013-01-01

    Objective Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT mutations. Methods and Results In 4 carriers of 2 mutant LCAT alleles, 63 heterozygotes, and 63 family controls, we measured activities of LCAT, paraoxonase 1, and platelet-activating factor-acetylhydrolase; levels of lysophosphatidylcholine molecular species, arachidonic and linoleic acids, and their oxidized derivatives; immunodetectable oxidized phospholipids on apolipoprotein (apo) B–containing and apo(a)-containing lipoproteins; IgM and IgG autoantibodies to malondialdehyde-low-density lipoprotein and IgG and IgM apoB-immune complexes; and the antioxidant capacity of high-density lipoprotein (HDL). In individuals with LCAT mutations, plasma LCAT activity, HDL cholesterol, apoA-I, arachidonic acid, and its oxidized derivatives, oxidized phospholipids on apo(a)-containing lipoproteins, HDL-associated platelet-activating factor-acetylhydrolase activity, and the antioxidative capacity of HDL were gene-dose–dependently decreased. Oxidized phospholipids on apoB-containing lipoproteins was increased in heterozygotes (17%; P<0.001) but not in carriers of 2 defective LCAT alleles. Conclusion Carriers of LCAT mutations present with significant reductions in LCAT activity, HDL cholesterol, apoA-I, platelet-activating factor-acetylhydrolase activity, and antioxidative potential of HDL, but this is not associated with parameters of increased lipid peroxidation; we did not observe significant changes in the oxidation products of arachidonic acid and linoleic acid, immunoreactive oxidized phospholipids on apo(a)-containing lipoproteins, and IgM and IgG autoantibodies against malondialdehyde-low-density lipoprotein. These data indicate that plasma LCAT activity, HDL-associated platelet-activating factor-acetylhydrolase activity, and HDL cholesterol may not influence the levels of plasma lipid oxidation products. PMID:23023370

  16. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    PubMed

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide

    PubMed Central

    Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo

    2016-01-01

    The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287

  18. Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients.

    PubMed

    Agouti, Imane; Cointe, Sylvie; Robert, Stéphane; Judicone, Coralie; Loundou, Anderson; Driss, Fathi; Brisson, Alain; Steschenko, Dominique; Rose, Christian; Pondarré, Corinne; Bernit, Emmanuelle; Badens, Catherine; Dignat-George, Françoise; Lacroix, Romaric; Thuret, Isabelle

    2015-11-01

    The level of circulating platelet-, erythrocyte-, leucocyte- and endothelial-derived microparticles detected by high-sensitivity flow cytometry was investigated in 37 β-thalassaemia major patients receiving a regular transfusion regimen. The phospholipid procoagulant potential of the circulating microparticles and the microparticle-dependent tissue factor activity were evaluated. A high level of circulating erythrocyte- and platelet-microparticles was found. In contrast, the number of endothelial microparticles was within the normal range. Platelet microparticles were significantly higher in splenectomized than in non-splenectomized patients, independent of platelet count (P < 0·001). Multivariate analysis indicated that phospholipid-dependent procoagulant activity was influenced by both splenectomy (P = 0·001) and platelet microparticle level (P < 0·001). Erythrocyte microparticles were not related to splenectomy, appear to be devoid of proper procoagulant activity and no relationship between their production and haemolysis, dyserythropoiesis or oxidative stress markers could be established. Intra-microparticle labelling with anti-HbF antibodies showed that they originate only partially (median of 28%) from thalassaemic erythropoiesis. In conclusion, when β-thalassaemia major patients are intensively transfused, the procoagulant activity associated with thalassaemic erythrocyte microparticles is probably diluted by transfusions. In contrast, platelet microparticles, being both more elevated and more procoagulant, especially after splenectomy, may contribute to the residual thrombotic risk reported in splenectomized multi-transfused β-thalassaemia major patients. © 2015 John Wiley & Sons Ltd.

  19. Changes in Blood Factors and Ultrasound Findings in Mild Cognitive Impairment and Dementia

    PubMed Central

    Cho, Kyoungjoo; Kim, Jihye; Kim, Gyung W.

    2017-01-01

    The present study aimed to assess the changes in blood factors and ultrasound measures of atherosclerosis burden patient with mild cognitive impairment (MCI) and dementia. Peripheral blood samples and ultrasonography findings were obtained for 53 enrolled participants. Flow cytometry was used to evaluate levels of activated platelets and platelet-leukocyte aggregates (PLAs). The number of platelets expressing p-selectin was correlated with intima media thickness (IMT) and plaque number in both the MCI and dementia groups. The number of platelets expressing p-selectin glycoprotein ligand (PSGL) was strongly correlated with IMT in patients with MCI, whereas the number of platelets expressing PGSL was correlated with plaque number rather than IMT in patients with dementia. PLAs was associated with both IMT and plaque number in patients with MCI but not in those with dementia. Our findings demonstrate that alterations in IMT and plaque number are associated with an increased risk of cognitive decline as well as conversion from MCI to dementia and that blood factor analysis may aid to detect the severity of cognitive decline. PMID:29311909

  20. Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis.

    PubMed

    Kleinschnitz, Christoph; Braeuninger, Stefan; Pham, Mirko; Austinat, Madeleine; Nölte, Ingo; Renné, Thomas; Nieswandt, Bernhard; Bendszus, Martin; Stoll, Guido

    2008-04-01

    Models of photochemically-induced thrombosis are widely used in cerebrovascular research. Photothrombotic brain infarctions can be induced by systemic application of photosensitizing dyes followed by focal illumination of the cerebral cortex. Although the ensuing activation of platelets is well established, their contribution for thrombosis and tissue damage has not formally been proved. Infarction to the cerebral cortex was induced in mice by Rose Bengal and a cold light source. To assess the functional role of platelets, animals were platelet-depleted by anti-GPIbalpha antibodies or treated with GPIIb/IIIa-blocking F(ab)(2) fragments. The significance of the plasmatic coagulation cascade was determined by using blood coagulation factor XII (FXII)-deficient mice or heparin. Infarct development and infarct volumes were determined by serial MRI and conventional and electron microscopy. There was no difference in development and final size of photothrombotic infarctions in mice with impaired platelet function. Moreover, deficiency of FXII, which initiates the intrinsic pathway of coagulation and is essential for thrombus formation, or blockade of FXa, the key protease during the waterfall cascade of plasmatic coagulation, by heparin likewise did not affect lesion development. Our data demonstrate that platelet activation, factor XII-driven thrombus formation, and plasmatic coagulation pathways downstream of FX are not a prerequisite for ensuing tissue damage in models of photothrombotic vessel injury indicating that other pathomechanisms are involved. We suggest that this widely used model does not depend on platelet- or plasmatic coagulation-derived thrombosis.

  1. Insights into abnormal hemostasis in the Quebec platelet disorder from analyses of clot lysis.

    PubMed

    Diamandis, M; Adam, F; Kahr, W H A; Wang, P; Chorneyko, K A; Arsenault, A L; Rivard, G E; Hayward, C P M

    2006-05-01

    The Quebec platelet disorder (QPD) is inherited and characterized by delayed-onset bleeding following hemostatic challenge. Other characteristics include increased expression and storage of active urokinase-type plasminogen activator (u-PA) in platelets in the setting of normal to increased u-PA in plasma. There is also consumption of platelet plasminogen activator inhibitor-1 and increased generation of plasmin in platelets accompanied by proteolysis of stored alpha-granule proteins, including Factor V. Although fibrinolysis has been proposed to contribute to QPD bleeding, the effects of QPD blood and platelets on clot lysis have not been evaluated. We used thromboelastography (TEG), biochemical evaluations of whole blood clot lysis, assessments of clot ultrastructure, and perfusion of blood over preformed fibrin to gain insights into the disturbed hemostasis in the QPD. Thromboelastography was not sensitive to the increased u-PA in QPD blood. However, there was abnormal plasmin generation in QPD whole blood clots, generated at low shear, with biochemical evidence of increased fibrinolysis. The incorporation of QPD platelets into a forming clot led to progressive disruption of fibrin and platelet aggregates unless drugs were added to inhibit plasmin. In whole blood perfusion studies, QPD platelets showed normal adherence to fibrin, but their adhesion was followed by accelerated fibrinolysis. The QPD is associated with "gain-of-function" abnormalities that increase the lysis of forming or preformed clots. These findings suggest accelerated fibrinolysis is an important contributor to QPD bleeding.

  2. Platelets prime hematopoietic–vascular niche to drive angiocrine-mediated liver regeneration

    PubMed Central

    Shido, Koji; Chavez, Deebly; Cao, Zhongwei; Ko, Jane L; Rafii, Shahin; Ding, Bi-Sen

    2017-01-01

    In mammals, the livers regenerate after chemical injury or resection of hepatic lobe by hepatectomy. How liver regeneration is initiated after mass loss remains to be defined. Here we report that following liver injury, activated platelets deploy SDF-1 and VEGF-A to stimulate CXCR7+ liver sinusoidal endothelial cell (LSEC) and VEGFR1+ myeloid cell, orchestrating hepatic regeneration. After carbon tetrachloride injection or hepatectomy, platelets and CD11b+VEGFR1+ myeloid cells were recruited to LSECs, and liver regeneration in both models was impaired in thrombopoietin-deficient (Thpo−/−) mice repressing production of circulating platelets. This impeded regeneration phenotype was recapitulated in mice with either conditional ablation of Cxcr7 in LSEC (Cxcr7iΔ/iΔ) or Vegfr1 in myeloid cell (Vegfr1lysM/lysM). Both Vegfr1lysM/lysM and Cxcr7iΔ/iΔ mice exhibited suppressed expression of hepatocyte growth factor and Wnt2, two crucial trophogenic angiocrine factors instigating hepatocyte propagation. Of note, administration of recombinant thrombopoietin restored the prohibited liver regeneration in the tested genetic models. As such, our data suggest that platelets and myeloid cells jointly activate the vascular niche to produce pro-regenerative endothelial paracrine/angiocrine factors. Modulating this ‘hematopoietic–vascular niche’ might help to develop regenerative therapy strategy for hepatic disorders. PMID:29201496

  3. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.

    PubMed

    Panes, Olga; Padilla, Oslando; Matus, Valeria; Sáez, Claudia G; Berkovits, Alejandro; Pereira, Jaime; Mezzano, Diego

    2012-01-01

    Fibrinolysis dysfunctions cause bleeding or predisposition to thrombosis. Platelets contain several factors of the fibrinolytic system, which could up or down regulate this process. However, the temporal relationship and relative contributions of plasma and platelet components in clot lysis are mostly unknown. We developed a clot lysis time (CLT) assay in platelet-rich plasma (PRP-CLT, with and without stimulation) and compared it to a similar one in platelet-free plasma (PFP) and to another previously reported test in platelet-poor plasma (PPP). We also studied the differential effects of a single dose of tranexamic acid (TXA) on these tests in healthy subjects. PFP- and PPP-CLT were significantly shorter than PRP-CLT, and the three assays were highly correlated (p < 0.0001). PFP- and PPP-, but more significantly PRP-CLT, were positively correlated with age and plasma PAI-1, von Willebrand factor, fibrinogen, LDL-cholesterol, and triglycerides (p < 0.001). All these CLT assays had no significant correlations with platelet aggregation/secretion, platelet counts, and pro-coagulant tests to explore factor X activation by platelets, PRP clotting time, and thrombin generation in PRP. Among all the studied variables, PFP-CLT was independently associated with plasma PAI-1, LDL-cholesterol, and triglycerides and, additionally, stimulated PRP-CLT was also independently associated with plasma fibrinogen. A single 1 g dose of TXA strikingly prolonged all three CLTs, but in contrast to the results without the drug, the lysis times were substantially shorter in non-stimulated or stimulated PRP than in PFP and PPP. This standardized PRP-CLT may become a useful tool to study the role of platelets in clot resistance and lysis. Our results suggest that initially, the platelets enmeshed in the clot slow down the fibrinolysis process. However, the increased clot resistance to lysis induced by TXA is overcome earlier in platelet-rich clots than in PFP or PPP clots. This is likely explained by the display of platelet pro-fibrinolytic effects. Focused research is needed to disclose the mechanisms for the relationship between CLT and plasma cholesterol and its potential pathophysiologic and clinical relevance.

  4. Role of serotonin in the regulation of renal proximal tubular epithelial cells.

    PubMed

    Erikci, Acelya; Ucar, Gulberk; Yabanoglu-Ciftci, Samiye

    2016-08-01

    In various renal injuries, tissue damage occurs and platelet activation is observed. Recent studies suggest that some factors, such as serotonin, are released into microenvironment upon platelet activation following renal injury. In the present study, we aimed to investigate whether platelets and platelet-released serotonin are involved in the functional regulation of renal proximal tubular epithelial cells (PTECs). PTECs were obtained by primary cell culture and treated with platelet lysate (PL) (2 × 10(6)/mL, 4 × 10(6)/mL, 8 × 10(6)/mL) or serotonin (1 μM or 5 μM) for 12 or 24 h. Phenotypic transdifferentiation of epithelial cells into myofibroblasts were demonstrated under light microscope and confirmed by the determination of α-smooth muscle actin gene expression. Serotonin and PL were shown to induce epithelial-mesenchymal transdifferentiation of PTECs. After stimulation of PTECs with serotonin or PL, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and collagen-α1 gene expressions, which were reported to be elevated in renal injury, were determined by real-time PCR and found to be upregulated. Expressions of some inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and transforming growth factor-β1 were found to be increased in both protein and gene levels. Recently there is no published report on the effect of serotonin on renal PTECs. Results obtained in this study have lightened the role of serotonin and platelet-mediated effects of serotonin on fibrotic and inflammatory processes in PTECs.

  5. Safety of recombinant human factor XIII in a cynomolgus monkey model of extracorporeal blood circulation.

    PubMed

    Ponce, R; Armstrong, K; Andrews, K; Hensler, J; Waggie, K; Heffernan, J; Reynolds, T; Rogge, M

    2005-01-01

    Factor XIII (FXIII) is a thrombin-activated plasma coagulation factor critical for blood clot stabilization and longevity. Administration of exogenous FXIII to replenish depleted stores after major surgery, including cardiopulmonary bypass, may reduce bleeding complications and transfusion requirements. Thus, a model of extracorporeal circulation (ECC) was developed in adult male cynomolgus monkeys (Macaca fascicularis) to evaluate the nonclinical safety of recombinant human FXIII (rFXIII). The hematological and coagulation profile in study animals during and after 2 h of ECC was similar to that reported for humans during and after cardiopulmonary bypass, including observations of anemia, thrombocytopenia, and activation of coagulation and platelets. Intravenous slow bolus injection of 300 U/kg (2.1 mg/kg) or 1000 U/kg (7 mg/kg) rFXIII after 2 h of ECC was well tolerated in study animals, and was associated with a dose-dependent increase in FXIII activity. No clinically significant effects in respiration, ECG, heart rate, blood pressure, body temperature, clinical chemistry, hematology (including platelet counts), or indicators of thrombosis (thrombin:anti-thrombin complex and D-Dimer) or platelet activation (platelet factor 4 and beta-thromboglobulin) were related to rFXIII administration. Specific examination of brain, heart, lung, liver, and kidney from rFXIII-treated animals provided no evidence of histopathological alterations suggestive of subclinical hemorrhage or thrombosis. Taken as a whole, the results demonstrate the ECC model suitably replicated the clinical presentation reported for humans during and after cardiopulmonary bypass surgery, and do not suggest significant concerns regarding use of rFXIII in replacement therapy after extracorporeal circulation.

  6. NF-E2 p45 Is Important for Establishing Normal Function of Platelets

    PubMed Central

    Fujita, Rie; Takayama-Tsujimoto, Mariko; Satoh, Hironori; Gutiérrez, Laura; Aburatani, Hiroyuki; Fujii, Satoshi; Sarai, Akinori; Bresnick, Emery H.

    2013-01-01

    NF-E2 is a heterodimeric transcription factor consisting of p45 and small Maf subunits. Since p45−/− mice display severe thrombocytopenia, p45 is recognized as a critical regulator of platelet production from megakaryocytes. To identify direct p45 target genes in megakaryocytes, we used chromatin immunoprecipitation (ChIP) sequencing to analyze the genome-wide chromatin occupancy of p45 in primary megakaryocytes. p45 target gene candidates obtained from the analysis are implicated in the production and function of platelets. Two of these genes, Selp and Myl9, were verified as direct p45 targets through multiple approaches. Since P-selectin, encoded by Selp, plays a critical role in platelet function during thrombogenesis, we tested whether p45 determines the intrinsic reactivity and potency of platelets generated from megakaryocytes. Mice expressing a hypomorphic p45 mutant instead of wild-type p45 in megakaryocytes (p45−/−:ΔNTD-Tg mice) displayed platelet hypofunction accompanied by mild thrombocytopenia. Furthermore, lung metastasis of melanoma cells, which requires platelet activation, was repressed in p45−/−:ΔNTD-Tg mice compared to control mice, validating the impaired function of platelets produced from p45−/−:ΔNTD-Tg megakaryocytes. By activating genes in megakaryocytes that mediate platelet production and function, p45 determines the quantity and quality of platelets. PMID:23648484

  7. Stereochemistry- and concentration-dependent effects of phosphatidylserine enrichment on platelet function.

    PubMed

    Meyer, Audrey F; Gruba, Sarah M; Kim, Donghyuk; Meyer, Ben M; Koseoglu, Secil; Dalluge, Joseph J; Haynes, Christy L

    2017-08-01

    Platelets are small (1-2μm in diameter), circulating anuclear cell fragments with important roles in hemostasis and thrombosis that provide an excellent platform for studying the role of membrane components in cellular communication. Platelets use several forms of communication including exocytosis of three distinct granule populations, formation of bioactive lipid mediators, and shape change (allowing for adhesion). This work explores the role of stereochemistry and concentration of exogenous phosphatidylserine (PS) on platelet exocytosis and adhesion. PS, most commonly found in the phosphatidyl-l-serine (l-PS) form, is exposed on the outer leaflet of the cell membrane after the platelet is activated. Knowledge about the impact of exogenous phosphatidylserine on cell-to-cell communication is limited (particularly concentration and stereochemistry effects). This study found that platelets incubated in l-PS or phosphatidyl-d-serine (d-PS) are enriched to the same extent with their respective incubated PS. All levels of l-PS enrichment also showed an increase in platelet cholesterol, but only the 50μM d-PS incubation showed an increase in cholesterol. The uptake of d-PS induced the secretion of granules and manufactured platelet activating factor (PAF) in otherwise unstimulated platelets. The uptake of l-PS had a greater impact on platelet stimulation by decreasing both the amount of δ-granule secretion and the amount of PAF that was manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hemostatic abnormalities in Noonan syndrome.

    PubMed

    Artoni, Andrea; Selicorni, Angelo; Passamonti, Serena M; Lecchi, Anna; Bucciarelli, Paolo; Cerutti, Marta; Cianci, Paola; Gianniello, Francesca; Martinelli, Ida

    2014-05-01

    A bleeding diathesis is a common feature of Noonan syndrome, and various coagulation abnormalities have been reported. Platelet function has never been carefully investigated. The degree of bleeding diathesis in a cohort of patients with Noonan syndrome was evaluated by a validated bleeding score and investigated with coagulation and platelet function tests. If ratios of prothrombin time and/or activated partial thromboplastin time were prolonged, the activity of clotting factors was measured. Individuals with no history of bleeding formed the control group. The study population included 39 patients and 28 controls. Bleeding score was ≥2 (ie, suggestive of a moderate bleeding diathesis) in 15 patients (38.5%) and ≥4 (ie, suggestive of a severe bleeding diathesis) in 7 (17.9%). Abnormal coagulation and/or platelet function tests were found in 14 patients with bleeding score ≥2 (93.3%) but also in 21 (87.5%) of those with bleeding score <2. The prothrombin time and activated partial thromboplastin time were prolonged in 18 patients (46%) and partial deficiency of factor VII, alone or in combination with the deficiency of other vitamin K-dependent factors, was the most frequent coagulation abnormality. Moreover, platelet aggregation and secretion were reduced in 29 of 35 patients (82.9%, P < .01 for all aggregating agents). Nearly 40% of patients with the Noonan syndrome had a bleeding diathesis and >90% of them had platelet function and/or coagulation abnormalities. Results of these tests should be taken into account in the management of bleeding or invasive procedures in these patients. Copyright © 2014 by the American Academy of Pediatrics.

  9. Comparison of platelet function and viscoelastic test results between healthy dogs and dogs with naturally occurring chronic kidney disease.

    PubMed

    Dudley, Alicia; Byron, Julie K; Burkhard, Mary Jo; Warry, Emma; Guillaumin, Julien

    2017-05-01

    OBJECTIVE To compare platelet function and viscoelastic test results between healthy dogs and dogs with chronic kidney disease (CKD) to assess whether dogs with CKD have platelet dysfunction and altered blood coagulation. ANIMALS 10 healthy control dogs and 11 dogs with naturally occurring CKD. PROCEDURES Blood and urine were collected once from each dog for a CBC, serum biochemical analysis, urinalysis, and determination of the urine protein-to-creatinine ratio, prothrombin time, activated partial thromboplastin time, plasma fibrinogen concentration, and antithrombin activity. Closure time was determined by use of a platelet function analyzer and a collagen-ADP platelet agonist. Thromboelastography (TEG) variables (reaction time, clotting time, α angle, maximum amplitude, and global clot strength [G value]) were determined by use of recalcified nonactivated TEG. Platelet expression of glycoprotein Ib (GPIb; receptor for von Willebrand factor), integrin αIIbβ3 (αIIbβ3; receptor for fibrinogen), and P-selectin (marker for platelet activation) was assessed by flow cytometry. RESULTS Compared with healthy control dogs, the median closure time was prolonged, the median maximum amplitude and G value were increased, and the median clotting time was decreased for dogs with CKD. Platelet expression of both αIIbβ3 and P-selectin was also significantly increased for dogs with CKD, compared with that for control dogs. Platelet expression of GPIb, αIIbβ3, and P-selectin was not correlated with closure time or any TEG variable. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dogs with CKD frequently had evidence of platelet dysfunction and hypercoagulability that were not totally attributable to alterations in platelet surface expression of GPIb, αIIbβ3, and P-selectin.

  10. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation

    PubMed Central

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  11. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    PubMed

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  12. A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets

    PubMed Central

    Redondo, Pedro C; Harper, Alan G S; Salido, Ginés M; Pariente, Jose A; Sage, Stewart O; Rosado, Juan A

    2004-01-01

    Store-mediated Ca2+ entry (SMCE) is a major mechanism for Ca2+ influx in non-excitable cells. Recently, a conformational coupling mechanism allowing coupling between transient receptor potential channels (TRPCs) and IP3 receptors has been proposed to activate SMCE. Here we have investigated the role of two soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs), which are involved in membrane trafficking and docking, in SMCE in human platelets. We found that the synaptosome-associated protein (SNAP-25) and the vesicle-associated membrane proteins (VAMP) coimmunoprecipitate with hTRPC1 in platelets. Treatment with botulinum toxin (BoNT) E or with tetanus toxin (TeTx), induced cleavage and inactivation of SNAP-25 and VAMPs, respectively. BoNTs significantly reduced thapsigargin- (TG) and agonist-evoked SMCE. Treatment with BoNTs once SMCE had been activated decreased Ca2+ entry, indicating that SNAP-25 is required for the activation and maintenance of SMCE. In contrast, treatment with TeTx had no effect on either the activation or the maintenance of SMCE in platelets. Finally, treatment with BoNT E impaired the coupling between naturally expressed hTRPC1 and IP3 receptor type II in platelets. From these findings we suggest SNAP-25 has a role in SMCE in human platelets. PMID:15121806

  13. Inhibitory activity of aspirin on von Willebrand factor-induced platelet aggregation.

    PubMed

    Homoncik, M; Jilma, B; Eichelberger, B; Panzer, S

    2000-09-01

    The effect of aspirin (ASA) on vWF induced platelet - platelet interaction is unknown. We therefore tested the response of platelets to von Willebrand factor (vWF) coated beads induced platelet aggregation before and after i.v. and oral ASA. 1000 mg ASA was infused to 10 healthy individuals and after a wash-out period 7 volunteers received 100 mg ASA orally over a period of 11 days. Prior to ASA and in regular intervals thereafter we tested the reactivity to vWF-coated beads to assess platelet adhesion/aggregation and the fade-out time of ASA effects on platelets. Considerable interindividual variability in response to vWF-coated beads was observed, both before ASA and after treatment with ASA. The maximal response to vWF-coated beads (Tmax), the time lag, and the slope of the curve were significantly affected by i.v. ASA, whereas 100 mg of ASA had only inconstant effect on Tmax and slope. The absolute reduction of Tmax after ASA depended on the pre-ASA level, while the percentage of the reduction was similar in all individuals. Thus, platelet aggregation induced by vWF-coated beads is impaired by ASA. Furthermore, our data indicate a large interindividual variability of the response to ASA shortly after treatment induction, which becomes more constant after prolonged treatment.

  14. Components in Plasma-Derived Factor VIII, But Not in Recombinant Factor VIII Downregulate Anti-Inflammatory Surface Marker CD163 in Human Macrophages through Release of CXCL4 (Platelet Factor 4)

    PubMed Central

    Bertling, Anne; Brodde, Martin F.; Visser, Mayken; Treffon, Janina; Fennen, Michelle; Fender, Anke C.; Kelsch, Reinhard; Kehrel, Beate E.

    2017-01-01

    Background Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. Methods Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. Results Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. Conclusion Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress. PMID:29070980

  15. [Experimental research on the effects of different activators on the formation of platelet-rich gel and the release of bioactive substances in human platelet-rich plasma].

    PubMed

    Yang, Y; Zhang, W; Cheng, B

    2017-01-20

    Objective: To explore the effects of calcium gluconate and thrombin on the formation of platelet-rich gel (PRG) and the release of bioactive substances in human platelet-rich plasma (PRP) and the clinical significance. Methods: Six healthy blood donors who met the inclusion criteria were recruited in our unit from May to August in 2016. Platelet samples of each donor were collected for preparation of PRP. (1) PRP in the volume of 10 mL was collected from each donor and divided into thrombin activation group (TA, added with 0.5 mL thrombin solution in dose of 100 U/mL) and calcium gluconate activation group (CGA, added with 0.5 mL calcium gluconate solution in dose of 100 g/L) according to the random number table, with 5 mL PRP in each group. Then the PRP of the two groups was activated in water bath at 37 ℃ for 1 h. The formation time of PRG was recorded, and the formation situation of PRG was observed within 1 hour of activation. After being activated for 1 h, one part of PRG was collected to observe the distribution of fibrous protein with HE staining, and another part of PRG was collected to observe platelet ultrastructure under transmission electron microscope (TEM). After being activated for 1 h, the supernatant was collected to determine the content of transforming growth factor β(1, )platelet-derived growth factor BB (PDGF-BB), vascular endothelial growth factor, basic fibroblast growth factor (bFGF), epidermal growth factor, and insulin-like growth factorⅠby enzyme-linked immunosorbent assay. (2) Another 10 mL PRP from each donor was collected and grouped as above, and the platelet suspension was obtained after two times of centrifugation and resuspension with phosphate buffered saline, respectively. And then they were treated with corresponding activator for 1 h as that in experiment (1). Nanoparticle tracking analyzer was used to detect the concentrations of microvesicles with different diameters and total microvesicles derived from platelet. Data were processed with t test. Results: (1) The formation time of PRG in group TA was (228±40) s, and the PRG volume reached the maximum at this moment. The PRG volume shrunk to the minimum after 30 minutes of activation. The formation time of PRG in group CGA was (690±71) s, and the PRG volume reached the maximum at this moment. After 55 minutes of activation, the PRG volume shrunk to the minimum. The formation time of PRG in group TA was obviously shorter than that in group CGA ( t =15.17, P <0.01). (2) HE staining showed that after 1 hour of activation, the red-stained area of fibrous protein in PRG of group TA was large and densely distributed, while that of group CGA was small and loosely distributed. TEM revealed that after 1 hour of activation, the platelets in PRG of group TA were fragmented, while lysing platelet structure, lysing α granule structure, intact α granule structure, and intact dense body structure were observed in PRG of group CGA. (3) The content of PDGF-BB released by PRP in group TA was (7.4±0.8) ng/mL, which was obviously higher than that in group CGA [(4.9±0.5) ng/mL, t =5.41, P <0.01]. The content of bFGF released by PRP in group CGA was (960±151) pg/mL, which was significantly higher than that in group TA [(384±56) pg/mL, t =8.75, P <0.01]. The content of the other 4 growth factors released by PRP in the two groups was close (with t values from 0.11 to 1.97, P values above 0.05). (4) The concentrations of total microvesicles, microvesicles with diameter more than 100 nm, and exosomes with diameter less than or equal to 100 nm derived from platelet in group CGA were (165.8±15.1)×10(8)/mL, (142.4±12.3)×10(8)/mL, and (23.4±2.9)×10(8)/mL respectively, which were significantly higher than those in group TA [(24.7±4.6)×10(8)/mL, (22.6±4.0)×10(8)/mL, and (2.1±0.7)×10(8)/mL, with t values from 17.36 to 22.66, P values below 0.01]. Conclusions: Calcium gluconate can slowly activate PRP, resulting in slowly shrunk PRG with high content of bFGF and high concentration of microvesicles, which is suitable for repairing articular cavity and sinus tract wound. Thrombin can rapidly activate PRP, resulting in quickly shrunk PRG with high content of PDGF-BB and a certain concentration of microvesicles, which is suitable for repairing acute trauma.

  16. Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis.

    PubMed

    Aidoudi, Sallouha; Bikfalvi, Andreas

    2010-11-01

    Platelet factor-4 (PF4), a platelet-derived chemokine, has two important functions in the vasculature. It has a pro-atherogenic role while also having anti-angiogenic effects. The activity of platelet factor-4 (PF4), unlike other chemokines that bind to specific receptors, depends on its unusually high affinity for proteoglycans and other negatively charged molecules. High affinity for heparan sulfates was thought to be central to all of PF4's biological functions. However, other mechanisms have been described such as direct growth factor binding, activation of the CXCR3B chemokine receptor isoform that is present in some vascular cells or binding to lipoprotein-related protein-1 (LRP1). Furthermore, PF4 also binds to integrins with affinities similar to matrix molecules. These interactions may explain the effects of PF4 in healthy and pathological tissues. However, the mechanisms involved in PF4's activity are complex and may depend on a given tissue or localisation. Overall, while much is already known about PF4, its specific role in atherosclerosis and angiogenesis remains still to be clarified.

  17. IGF-1 facilitates thrombopoiesis primarily through Akt activation.

    PubMed

    Chen, Shilei; Hu, Mengjia; Shen, Mingqiang; Wang, Song; Wang, Cheng; Chen, Fang; Tang, Yong; Wang, Xinmiao; Zeng, Hao; Chen, Mo; Gao, Jining; Wang, Fengchao; Su, Yongping; Xu, Yang; Wang, Junping

    2018-05-25

    It is known that insulin-like growth factor-1 (IGF-1) also functions as a hematopoietic factor, while its direct effect on thrombopoiesis remains unclear. In this study, we show that IGF-1 is able to promote CD34+ cell differentiation toward megakaryocytes (MKs), as well as the facilitation of proplatelet formation (PPF) and platelet production from cultured MKs. The in vivo study demonstrates that IGF-1 administration accelerates platelet recovery in mice after 6.0Gy of irradiation and in mice that received bone marrow transplantation (BMT) following 10.0Gy of lethal irradiation. Subsequent investigations reveal that ERK1/2 and Akt activation mediate the effect of IGF-1 on thrombopoiesis. Notably, Akt activation induced by IGF-1 is more apparent than that of ERK1/2, compared with that of thrombopoietin (TPO) treatment. Moreover, the effect of IGF-1 on thrombopoiesis is independent of TPO signaling, because IGF-1 treatment can also lead to a significant increase of platelet counts in homozygous TPO receptor mutant mice. Further analysis indicates that the activation of Akt triggered by IGF-1 requires the assistance of steroid receptor coactivator-3 (SRC-3). Therefore, our data reveal a distinct role of IGF-1 in regulating thrombopoiesis, providing new insights into TPO-independent regulation of platelet generation. Copyright © 2018 American Society of Hematology.

  18. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells.

    PubMed

    Zarà, Marta; Canobbio, Ilaria; Visconte, Caterina; Canino, Jessica; Torti, Mauro; Guidetti, Gianni Francesco

    2018-08-01

    Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl 2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca 2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A 2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Procoagulant Platelets Form an α-Granule Protein-covered “Cap” on Their Surface That Promotes Their Attachment to Aggregates*

    PubMed Central

    Abaeva, Anastasia A.; Canault, Matthias; Kotova, Yana N.; Obydennyy, Sergey I.; Yakimenko, Alena O.; Podoplelova, Nadezhda A.; Kolyadko, Vladimir N.; Chambost, Herve; Mazurov, Aleksei V.; Ataullakhanov, Fazoil I.; Nurden, Alan T.; Alessi, Marie-Christine; Panteleev, Mikhail A.

    2013-01-01

    Strongly activated “coated” platelets are characterized by increased phosphatidylserine (PS) surface expression, α-granule protein retention, and lack of active integrin αIIbβ3. To study how they are incorporated into thrombi despite a lack of free activated integrin, we investigated the structure, function, and formation of the α-granule protein “coat.” Confocal microscopy revealed that fibrin(ogen) and thrombospondin colocalized as “cap,” a single patch on the PS-positive platelet surface. In aggregates, the cap was located at the point of attachment of the PS-positive platelets. Without fibrin(ogen) retention, their ability to be incorporated in aggregates was drastically reduced. The surface fibrin(ogen) was strongly decreased in the presence of a fibrin polymerization inhibitor GPRP and also in platelets from a patient with dysfibrinogenemia and a fibrinogen polymerization defect. In contrast, a fibrinogen-clotting protease ancistron increased the amount of fibrin(ogen) and thrombospondin on the surface of the PS-positive platelets stimulated with collagen-related peptide. Transglutaminases are also involved in fibrin(ogen) retention. However, platelets from patients with factor XIII deficiency had normal retention, and a pan-transglutaminase inhibitor T101 had only a modest inhibitory effect. Fibrin(ogen) retention was normal in Bernard-Soulier syndrome and kindlin-3 deficiency, but not in Glanzmann thrombasthenia lacking the platelet pool of fibrinogen and αIIbβ3. These data show that the fibrin(ogen)-covered cap, predominantly formed as a result of fibrin polymerization, is a critical mechanism that allows coated (or rather “capped”) platelets to become incorporated into thrombi despite their lack of active integrins. PMID:23995838

  20. Integrity(®) bare-metal coronary stent-induced platelet and endothelial cell activation results in a higher risk of restenosis compared to Xience(®) everolimus-eluting stents in stable angina patients.

    PubMed

    Szük, Tibor; Fejes, Zsolt; Debreceni, Ildikó Beke; Kerényi, Adrienne; Édes, István; Kappelmayer, János; Nagy, Béla

    2016-07-01

    Drug-eluting stenting (DES) has become a reliable tool for coronary stenting; however, its direct effects on platelet and endothelium function differ from those of bare-metal stenting (BMS). This study involved a periprocedural analysis of various biomarkers of cellular activation after elective DES (Xience(®), Abbott Vascular, Santa Clara, CA, USA) or BMS (Integrity(®), Medtronic, Minneapolis, MI, USA). Forty-nine stable angina patients were recruited: 28 underwent BMS, and 21 received everolimus-eluting stents. Samples were collected (i) prior to stenting, (ii) at 24 hours after procedure, and (iii) after 1 month of dual antiplatelet therapy. Platelet activation was analyzed by surface P-selectin positivity in parallel with plasma levels of soluble P-selectin, CD40L and platelet-derived growth factor (PDGF). Endothelial cell (EC) activation was detected by measuring markers of early (von Willebrand factor) and delayed response (VCAM-1, ICAM-1, E-selectin). Patients were followed for 6 months for the occurrence of restenosis or stent thrombosis. Increased platelet activation was sustained regardless of stent type or antiplatelet medication. Concentrations of most EC markers were more elevated after BMS than after DES. No stent thrombosis was seen, but six BMS subjects displayed restenosis with significantly higher sCD40L (779 [397-899] vs. 381 [229-498] pg/mL; p = 0.032) and sICAM-1 (222 [181-272] vs. 162 [153-223] ng/mL; p = 0.046) levels than in those without complication, while DES patients exhibited significantly decreased PDGF (572 [428-626] vs. 244 [228-311] pg/mL; p = 0.004) after 1 month. Nonresponsiveness to antiplatelet drugs did not influence these changes. In conclusion, the degree of platelet and EC activation suggests that Xience(®) DES may be regarded a safer coronary intervention than Integrity(®) BMS, with a lower risk of in-stent restenosis.

  1. Microbicidal properties of Leukocyte- and Platelet-Rich Plasma/Fibrin (L-PRP/L-PRF): new perspectives.

    PubMed

    Cieslik-Bielecka, A; Dohan Ehrenfest, D M; Lubkowska, A; Bielecki, T

    2012-01-01

    Platelets, as main actors of the first stage of the healing process, play an important role in tissue repair. Their granules contain many active substances, particularly over 30 growth factors with significant effects on the resident cells at the site of injury, such as mesenchymal stem cells, chondrocytes, fibroblasts, osteoblasts. This potential may be increased by the concentration of the platelets, using platelet-rich plasma/fibrin products. In the four families of platelet concentrates, 2 families contain also significant concentrations of leukocytes: L-PRP (Leukocyte- and Platelet-Rich Plasma) and L-PRF (Leukocyte- and Platelet-Rich Fibrin). Inductive properties of platelet concentrates were widely described. However, they present also antimicrobial effects. The antibacterial effects of L-PRP were highlighted in only a few in vitro studies. Strong activity comparable to gentamicin and oxacillin for L-PRP against methicillin susceptible Staphylococcus aureus (MSSA) was already demonstrated. L-PRP also inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and Escherichia coli. Some authors also reported clinical observations about the reduction of infections and the induction of healing processes after the use of platelet concentrates in cardiac, orthopaedic, oral and maxillofacial surgery. However, very little is yet known about the antibacterial effects of these concentrates. In this manuscript, the current data about the antimicrobial agents and cells present in the platelet-rich plasma/fibrin are highlighted and discussed, in order to introduce this new key chapter of the platelet concentrate technology history.

  2. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo.

    PubMed

    Mezouar, Soraya; Darbousset, Roxane; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe

    2015-01-15

    Venous thromboembolism constitutes one of the main causes of death during the progression of a cancer. We previously demonstrated that tissue factor (TF)-bearing cancer cell-derived microparticles accumulate at the site of injury in mice developing a pancreatic cancer. The presence of these microparticles at the site of thrombosis correlates with the size of the platelet-rich thrombus. The objective of this study was to determine the involvement of TF expressed by cancer cell-derived microparticles on thrombosis associated with cancer. We observed that pancreatic cancer cell derived microparticles expressed TF, its inhibitor tissue factor pathway inhibitor (TFPI) as well as the integrins αvβ1 and αvβ3. In mice bearing a tumor under-expressing TF, a significant decrease in circulating TF activity associated with an increase bleeding time and a 100-fold diminished fibrin generation and platelet accumulation at the site of injury were observed. This was mainly due to the interaction of circulating cancer cell-derived microparticles expressing TFPI with activated platelets and fibrinogen. In an ectopic model of cancer, treatment of mice with Clopidogrel, an anti-platelet drug, decreased the size of the tumors and restored hemostasis by preventing the accumulation of cancer cell-derived microparticles at the site of thrombosis. In a syngeneic orthotopic model of pancreatic cancer Clopidogrel also significantly inhibited the development of metastases. Together, these results indicate that an anti-platelet strategy may efficiently treat thrombosis associated with cancer and reduce the progression of pancreatic cancer in mice. © 2014 UICC.

  3. Dermal Influence on Epidermal Resurfacing during the Repair of Split Thickness Wounds.

    DTIC Science & Technology

    1983-08-15

    by exposing purified platelets to thrombin also stimulated the proliferation of mooth muscle cells. They concluded that much of the growth-proanting...easily separated with forceps. The moist epidermis was placed on a microscope slide with the stratm corneum (and protruding hair shafts) against the glass...hcmogenate intradermally around the wound bed or using a viscous vehicle for the platelet factor, such as an ointment -based emollient. 3) The active factor

  4. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides.

    PubMed

    De Marco, Agostino; De Candia, Modesto; Carotti, Andrea; Cellamare, Saverio; De Candia, Erica; Altomare, Cosimo

    2004-06-01

    Using N-[4-(hexyloxy)phenyl]piperidine-3-carboxamide (17c) as a structural lead, a number of isomers, derivatives, and ring-opened analogs were synthesized and tested for their ability to block the in vitro aggregation of human platelets induced by adenosine 5'-diphosphate (ADP). For the most active compounds, inhibition of the platelet aggregation triggered by arachidonic acid (AA) and ADP-induced intraplatelet calcium mobilization was also demonstrated. Based on quantitative structure-activity relationships (QSARs), we proved the impact of hydrophobicity on antiplatelet activity by a nonlinear (parabolic or bilinear) relationship between pIC(50) and lipophilicity, as assessed by RP-HPLC capacity factors and ClogP (i.e. calculated 1-octanol-water partition coefficients). This study highlighted the following additional SARs: quasi-isolipophilic isomers of 17c (isonipecotanilides and pipecolinanilides) and ring-opened analogs (e.g. anilide of beta-alanine) exhibited lower antiplatelet activity; methylation of the piperidine nitrogen of 17c has no effect, whereas alkylation with an n-propyl group decreases the activity by a factor of approximately 2, most likely due to a conformation-dependent decrease in lipophilicity.

  5. Significance of platelet-activating factor acetylhydrolase in patients with non-insulin-dependent (type 2) diabetes mellitus.

    PubMed

    Serban, M; Tanaseanu, Cristina; Kosaka, T; Vidulescu, Cristina; Stoian, Irina; Marta, Daciana S; Tanaseanu, S; Moldoveanu, Elena

    2002-01-01

    Non-insulin dependent diabetes mellitus (NIDDM) represents an independent risk factor for cardiovascular diseases (CVD), being characterized by a continuous low-grade inflammation and endothelial activation state. Plasma platelet - activating factor - acetylhydrolases (PAF-AHs) are a subgroup of Ca(2+)-independent phospholipase A(2) family (also known as lipoprotein-associated phospholipases A(2)) that hydrolyze and inactivate the lipid mediator platelet-activating factor (PAF) and/or oxidized phospholipids. This enzyme is considered to play an important role in inflammatory diseases and atherosclerosis. The present study aims to investigate the relations between the levels of PAF-AH activity and LDL-cholesterol / HDL-cholesterol (LDL-ch / HDL-ch) ratio in NIDDM patients as compared to controls. serum PAF-AH activity was measured in 50 patients with dyslipidemia, in 50 NIDDM patients and in 50 controls (normal lipid and glucose levels). Total cholesterol, LDL-ch, HDL-ch, triglyceride and blood glucose were determined in all subjects. All NIDDM patients display hiperlipidemia, with increased LDL-ch and triglyceride levels. There is a significant correlation between LDL-ch levels (especially LDL-ch / HDL-ch ratio) and PAF-AH activity in dyslipidemic and NIDDM patients. Diabetic and dyslipidemic patients have an increased plasma PAF-AH activity correlated with their LDL-ch levels and mainly with LDL-ch / HDL-ch ratio. Plasma PAF-AH high levels appear to be important as a risk marker for endothelial dysfunction in patients with NIDDM.

  6. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials.

    PubMed

    Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C

    2012-12-13

    Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers.

    PubMed

    Sovkova, Vera; Vocetkova, Karolina; Rampichova, Michala; Mickova, Andrea; Buzgo, Matej; Lukasova, Vera; Dankova, Jana; Filova, Eva; Necas, Alois; Amler, Evzen

    2018-06-01

    Platelets are a popular source of native growth factors for tissue engineering applications. The aim of the study was to verify the use of platelet lysate as a fetal bovine serum (FBS) replacement for skin cell culture. The cytokine content of the platelet lysate was characterized using the Bio-Plex system. The cells (fibroblasts, melanocytes, and keratinocytes) were cultured on PCL nanofibrous scaffolds to mimic their natural microenvironment. The cytokine content of the platelet lysate was determined, and to the cells, a medium containing platelet lysate or platelet lysate in combination with FBS was added. The results showed that 7% (v/v) platelet lysate was sufficient to supplement 10% (v/v) FBS in the culture of fibroblasts and keratinocytes. The combination of platelet lysate and FBS had a rather inhibitory effect on fibroblasts, in contrary to keratinocytes, where the effect was synergic. Platelet lysate did not sufficiently promote proliferation in melanocytes; however, the combination of FBS and platelet lysate yielded a better outcome and resulted in bipolar morphology of the cultured melanocytes. The data indicated that platelet lysate improved cell proliferation and metabolic activity and may be used as an additive to the cell culture media.

  8. A Nitric Oxide-Releasing Heparin Conjugate for Delivery of a Combined Antiplatelet/Anticoagulant Agent

    PubMed Central

    2015-01-01

    Heparin is a widely used anticoagulant due to its ability to inhibit key components in the coagulation cascade such as Factor Xa and thrombin (Factor IIa). Its potential to preferentially bind to antithrombin (ATIII) results in a conformational change and activation that leads to the prevention of fibrin formation from fibrinogen and ultimately obstructs a hemostatic plug from forming. Nitric oxide (NO) exhibits potent antiplatelet activity attributed to its capacity to increase the amount of cyclic guanosine monophosphate (cGMP) within platelets, which decreases the Ca2+ concentration required for platelet activation. Currently there is no single agent that combines the functions of both antiplatelet and anticoagulant (anti-Xa and anti-IIa) activities to effectively block both the extrinsic and the intrinsic coagulation pathways. The research reported herein demonstrates the ability to combine the physiological capabilities of both heparin and NO into one functional compound via use of a spermine derivative of heparin, thus enabling formation of a novel diazeniumdiolate (NONOate). The heparin–spermine NONOate has a half-life of 85 min at 25 °C (pH 7.4). The heparin backbone of the conjugate maintains its anticoagulant activity as demonstrated via an anti-Xa assay, providing an anticoagulant conversion of 3.6 μg/mL of the heparin–spermine–NONO conjugate being equivalent to 2.5 μg/mL (0.50 IU/mL) of underivatized heparin in terms of anti-Xa activity. Using standard platelet aggregometry, it is shown that the functionality of the NO release portion of the heparin conjugate prevents (nearly 100%) platelet aggregation in the presence of adenosine diphosphate (ADP, platelet agonist). PMID:24423090

  9. Rupture Forces among Human Blood Platelets at different Degrees of Activation

    PubMed Central

    Nguyen, Thi-Huong; Palankar, Raghavendra; Bui, Van-Chien; Medvedev, Nikolay; Greinacher, Andreas; Delcea, Mihaela

    2016-01-01

    Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects. PMID:27146004

  10. In vitro comparison of the efficacy of TGF-β1 and PDGF-BB in combination with freeze-dried bone allografts for induction of osteogenic differentiation in MG-63 osteoblast-like cells.

    PubMed

    Vahabi, Surena; Torshabi, Maryam; Esmaeil Nejad, Azadeh

    2016-12-01

    Predictable regeneration of alveolar bone defects has always been a challenge in implant dentistry. Bone allografts are widely used bone substitutes with controversial osteoinductive activity. This in vitro study aimed to assess the osteogenic potential of some commercially available freeze-dried bone allografts supplemented with human recombinant platelet-derived growth factor-BB and transforming growth factor beta-1. Cell viability, mineralization, and osteogenic gene expression of MG-63 osteoblast-like cells were compared among the allograft alone, allograft/platelet-derived growth factor-BB, allograft/transforming growth factor beta-1, and allograft/platelet-derived growth factor-BB/transforming growth factor beta-1 groups. The methyl thiazol tetrazolium assay, real-time quantitative reverse transcription polymerase chain reaction and alizarin red staining were performed, respectively, for assessment of cell viability, differentiation, and mineralization at 24-72 h post treatment. The allograft with greater cytotoxic effect on MG-63 cells caused the lowest differentiation among the groups. In comparison with allograft alone, allograft/transforming growth factor beta-1, and allograft/transforming growth factor beta-1/platelet-derived growth factor-BB caused significant upregulation of bone sialoprotein and osteocalcin osteogenic mid-late marker genes, and resulted in significantly higher amounts of calcified nodules especially in mineralized non-cytotoxic allograft group. Supplementation of platelet-derived growth factor-BB alone in 5 ng/mL concentration had no significant effect on differentiation or mineralization markers. According to the results, transforming growth factor beta-1 acts synergistically with bone allografts to enhance the osteogenic differentiation potential. Therefore, this combination may be useful for rapid transformation of undifferentiated cells into bone-forming cells for bone regeneration. However, platelet-derived growth factor-BB supplementation did not support this synergistic ability to enhance osteogenic differentiation and thus, further investigations are required.

  11. Platelet-rich plasma therapy - future or trend?

    PubMed Central

    2012-01-01

    Chronic complex musculoskeletal injuries that are slow to heal pose challenges to physicians and researchers alike. Orthobiologics is a relatively newer science that involves application of naturally found materials from biological sources (for example, cell-based therapies), and offers exciting new possibilities to promote and accelerate bone and soft tissue healing. Platelet-rich plasma (PRP) is an orthobiologic that has recently gained popularity as an adjuvant treatment for musculoskeletal injuries. It is a volume of fractionated plasma from the patient's own blood that contains platelet concentrate. The platelets contain alpha granules that are rich in several growth factors, such as platelet-derived growth factor, transforming growth factor-β, insulin-like growth factor, vascular endothelial growth factor and epidermal growth factor, which play key roles in tissue repair mechanisms. PRP has found application in diverse surgical fields to enhance bone and soft-tissue healing by placing supra-physiological concentrations of autologous platelets at the site of tissue damage. The relative ease of preparation, applicability in the clinical setting, favorable safety profile and possible beneficial outcome make PRP a promising therapeutic approach for future regenerative treatments. However, there is a large knowledge gap in our understanding of PRPs mechanism of action, which has raised skepticism regarding its potential efficacy and use. Thus, the aim of this review is to describe the various factors proposed to contribute to the biological activity of PRP, and the published pre-clinical and clinical evidence to support it. Additionally, we describe the current techniques and technology for PRP preparation, and review the present shortcomings of this therapy that will need to be overcome if it is to gain broad acceptance. PMID:22894643

  12. Lymphocyte-mediated inhibition of platelet cytotoxic functions during Hymenoptera venom desensitization: characterization of a suppressive lymphokine.

    PubMed

    Tsicopoulos, A; Tonnel, A B; Vorng, H; Joseph, M; Wallaert, B; Kusnierz, J P; Pestel, J; Capron, A

    1990-06-01

    Recently, it has been shown that platelets, through a receptor for the Fc fragment of IgE, could be specially triggered by venom allergens in hypersensitivity to hymenoptera, generating cytocidal mediators toward Schistosoma mansoni larvae, and oxygen metabolites measured by chemiluminescence. After rush immunotherapy, a depressed platelet response was demonstrated to be associated with the production of lymphokine(s). Here we report the characterization of a factor present in supernatants of antigen-stimulated T cells from patients after hymenoptera venom desensitization which is able to inhibit platelet cytotoxic functions in a dose-dependent manner. The optimal inhibition was observed with supernatants obtained after T lymphocyte stimulated with 10(-5) micrograms venom allergen/ml. Once specifically produced the platelet-suppressive effect of lymphocyte supernatants was not antigen specific. The producing T cell subpopulation was identified as CD8+. This lymphokine had an approximate molecular mass of 25 kDa and a pI of 4.8. It was heat and acid stable and sensitive to trypsin and proteinase K but not to neuraminidase. This platelet inhibitory activity was absorbed by platelet membrane suggesting its binding to a receptor. These properties were very similar to a previously described platelet activity suppressive lymphokine, suggesting the participation of this lymphokine in the mechanisms of rush desensitization.

  13. [Essential thrombocythemia and cerebral ischemic accident: discussion of two cases].

    PubMed

    Alecu, C; Abraham, P; Ternisien, C; Enon, B; Saumet, J L

    1999-10-01

    Not only the total number of platelets but their normal or abnormal function are essential points to be analyzed in case of stroke associated with thrombocytemia. When possible the treatment of arterial episodes in thrombocytemia should not be surgical. Anti-platelet agents and the rigorous control of the different risk factors are warranted to limit the activation of abnormal platelets on early endothelial lesions and thereby limit the risk of recurrent accidents. We report two typical cases illustrating these different points.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sithu, Srinivas D.; Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202; Srivastava, Sanjay

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not causemore » pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.« less

  15. Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide.

    PubMed

    Yngen, M; Ostenson, C-G; Hjemdahl, P; Wallén, N H

    2006-02-01

    To compare the effects of treatment with repaglinide and glibenclamide on platelet function and endothelial markers in patients with Type 2 diabetes mellitus, before and after a standardized meal. Fifteen patients with Type 2 diabetes were investigated on three occasions: at baseline without oral hypoglycaemic drug treatment, and after 6 weeks' treatment with repaglinide or glibenclamide, respectively, in an open randomized cross-over study. Agonist-induced platelet P-selectin expression and platelet aggregation, urinary thromboxane, soluble P-selectin, von Willebrand factor (VWF), soluble E-selectin, intercellular adhesion molecule (ICAM-1) and C-reactive protein (CRP) were measured. In addition, pre-meal data were compared with non-diabetic control subjects (n = 15), matched for sex, age and BMI. Adenosine diphosphate (ADP)-induced platelet P-selectin expression increased post-meal in Type 2 diabetic patients both at baseline and after treatment with repaglinide and glibenclamide (P < 0.01 for all; repeated measures anova). Repaglinide treatment reduced fasting ADP-induced P-selectin expression compared with baseline (P = 0.01), but did not influence meal-induced platelet hyper-reactivity (P = 0.32). No significant anti-platelet effects of glibenclamide treatment were found. Plasma concentrations of VWF and ICAM-1 were elevated in patients with Type 2 diabetes compared with control subjects (P < 0.05 for both) and were reduced during treatment with repaglinide (P < 0.01 for both) but did not change during glibenclamide treatment. The post-meal state is associated with enhanced platelet reactivity in patients with Type 2 diabetes mellitus. Pre-meal treatment with repaglinide or glibenclamide does not inhibit postprandial platelet activation, but repaglinide treatment is associated with attenuated platelet and endothelial activity in the fasting state.

  16. On the Use of the Platelet Activity State Assay for the In Vitro Quantification of Platelet Activation in Blood Recirculating Devices for Extracorporeal Circulation.

    PubMed

    Consolo, Filippo; Valerio, Lorenzo; Brizzola, Stefano; Rota, Paolo; Marazzato, Giulia; Vincoli, Valentina; Reggiani, Stefano; Redaelli, Alberto; Fiore, Gianfranco

    2016-10-01

    We designed an experimental setup to characterize the thrombogenic potential associated with blood recirculating devices (BRDs) used in extracorporeal circulation (ECC). Our methodology relies on in vitro flow loop platelet recirculation experiments combined with the modified-prothrombinase platelet activity state (PAS) assay to quantify the bulk thrombin production rate of circulated platelets, which correlates to the platelet activation (PA) level. The method was applied to a commercial neonatal hollow fiber membrane oxygenator. In analogous hemodynamic environment, we compared the PA level resulting from multiple passes of platelets within devices provided with phosphorylcholine (PC)-coated and noncoated (NC) fibers to account for flow-related mechanical factors (i.e., fluid-induced shear stress) together with surface contact activation phenomena. We report for the first time that PAS assay is not significantly sensitive to the effect of material coating under clinically pertinent flow conditions (500 mL/min), while providing straightforward information on shear-mediated PA dynamics in ECC devices. Being that the latter is intimately dependent on local flow dynamics, according to our results, the rate of thrombin production as measured by the PAS assay is a valuable biochemical marker of the selective contribution of PA in BRDs induced by device design features. Thus, we recommend the use of PAS assay as a means of evaluating the effect of modification of specific device geometrical features and/or different design solutions for developing ECC devices providing flow conditions with reduced thrombogenic impact. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    PubMed Central

    Rodriguez, Isaac A.; Growney Kalaf, Emily A.; Bowlin, Gary L.; Sell, Scott A.

    2014-01-01

    Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP). PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use. PMID:25050347

  18. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh.

    PubMed

    Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon

    2015-03-11

    For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.

  19. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  20. Laboratory Testing for von Willebrand Disease: The Past, Present, and Future State of Play for von Willebrand Factor Assays that Measure Platelet Binding Activity, with or without Ristocetin.

    PubMed

    Just, Sarah

    2017-02-01

    von Willebrand disease (VWD) was first described nearly a century ago in 1924 by Erik Adolf von Willebrand. Diagnostic testing at the time was very limited and it was not until the mid to late 1900s that more tests became available to assist with the diagnosis and classification of VWD. Two of these tests are based on ristocetin, one being ristocetin-induced platelet aggregation (RIPA) and the other the von Willebrand factor (VWF) ristocetin cofactor assay (VWF:RCo). The VWF:RCo assay provides functional assessment of in vitro VWF binding to the platelet glycoprotein (Gp) complex, GPIb-IX-V. Despite some advancements and newer technologies utilizing the principles of the original VWF:RCo assay, the original assay is still referred to as the gold standard for measurement of VWF activity. This article will review the history of VWD diagnostic assays, including RIPA and VWF:RCo over the past 40 years, as well as the newer assays that measure platelet binding with or without ristocetin, and which have been developed with the aim to potentially replace platelet-based ristocetin-dependent assays. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Effects of sodium citrate and acid citrate dextrose solutions on cell counts and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel.

    PubMed

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2015-03-14

    There is a lack information on the effects of the most commonly used anticoagulants for equine platelet rich plasmas (PRPs) elaboration on cell counts and growth factor release from platelet rich gels (PRGs). The aims of this study were 1) to compare the effects of the anticoagulants sodium citrate (SC), acid citrate dextrose solution A (ACD-A) and ACD-B on platelet (PLT), leukocyte (WBC) and on some parameters associated to platelet activation including mean platelet volume (MPV) and platelet distribution width (PDW) between whole blood, pure PRP (P-PRP) and platelet-poor plasma (PPP); 2) to compare transforming growth factor beta 1 (TGF-β(1)) and platelet-derived growth factor isoform BB (PDGF-BB) concentrations in supernatants from pure PRG (P-PRG), platelet-poor gel (PPG), P-PRP lysate (positive control) and plasma (negative control); 3) to establish the possible correlations between all the studied cellular and molecular parameters. In all cases the three anticoagulants produced P-PRPs with significantly higher PLT counts compared with whole blood and PPP. The concentrations of WBCs were similar between P-PRP and whole blood, but significantly lower in PPP. The type of anticoagulant did not significantly affect the cell counts for each blood component. The anticoagulants also did not affect the MPV and PDW parameters. Independently of the anticoagulant used, all blood components presented significantly different concentrations of PDGF-BB and TGF-β(1). The highest growth factor (GF) concentrations were observed from P-PRP lysates, followed by PRG supernatants, PPP lysates, PPG supernatants and plasma. Significant correlations were observed between PLT and WBC counts (ρ = 0.80), PLT count and TGF-β(1) concentration (ρ = 0.85), PLT count and PDGF-BB concentration (ρ = 0.80) and PDGF-BB and TGF-β(1) concentrations (ρ = 0.75). The type of anticoagulant was not correlated with any of the variables evaluated. The anticoagulants did not significantly influence cell counts or GF concentrations in equine PRP. However, ACD-B was apparently the worst anticoagulant evaluated. It is necessary to perform additional research to determine the effect of anticoagulants on the kinetics of GF elution from P-PRG.

  2. Smoking-induced alterations in platelet membrane fluidity and Na(+)/K(+)-ATPase activity in chronic cigarette smokers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Maturu, Paramahamsa; Varadacharyulu, Nallanchakravarthula

    2010-06-30

    Cigarette smoking is a recognized risk factor for cardiovascular diseases and has been implicated in the pathogenesis of atherosclerosis. Platelet adhesiveness and aggregation increases as a result of smoking. Cigarette smoking modifies haemostatic parameters via thrombosis with a consequently higher rate of cardiovascular events, but smoking-induced alterations of platelet membrane fluidity and other changes have not been studied. Thirty experimental and control subjects (mean age 35+/-8) were selected for the study. Experimental subjects had smoked 10+/-2 cigarettes per day for 7-10 years. The plasma lipid profile, platelet carbonyls, sulfhydryl groups, Na(+)/k(+)-ATPase activity, fluidity using a fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), total cholesterol and phospholipids as well individual phospholipids were determined. Increases in the platelet membrane cholesterol phospholipid (C/P) ratio, phosphotidylethanolamine, phosphotidylserine with decreased phosphotidylcholine, Na(+)/k(+)-ATPase activity, fluidity and no significant change in phosphotidylinositol and sphingomylein, as well as increases in plasma total cholesterol, LDL-cholesterol, protein carbonyls with decreased HDL-cholesterol and sulfhydryl groups were observed in cigarette smokers. Platelet membrane total phospholipids were positively correlated with plasma LDL-cholesterol (r=0.568) and VLDL-cholesterol (r=0.614) in cigarette smokers. Increased plasma LDL-cholesterol, VLDL-cholesterol and total cholesterol might have resulted in the increased C/P ratio and decreased platelet membrane fluidity of cigarette smokers.

  3. Effects of Pharmacologic Intervention on Oxygenation, Lung Water and Protein Leak in the Pseudomonas ARDS Porcine Model

    DTIC Science & Technology

    1989-07-01

    model indicate that Pseudomonas primes these cells to produce superoxide anion at a much higher rate post-injury than pre-injury, thus implicating...as oxygen free radicals, the neutrophils, platelets, monocytes and lymphocytes can release a number of other factors which have an affect on...mediator in the lung injury seen with endotoxin induced ARDS is the inappropriately named platelet activating factor (PAF). This phospholipid, which is

  4. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    PubMed

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Platelet hyperaggregability in obesity: is there a role for nitric oxide impairment and oxidative stress?

    PubMed

    Leite, Natália Rodrigues Pereira; Siqueira de Medeiros, Mariana; Mury, Wanda Vianna; Matsuura, Cristiane; Perszel, Monique Bandeira Moss; Noronha Filho, Gerson; Brunini, Tatiana Mc; Mendes-Ribeiro, Antônio Claúdio

    2016-08-01

    Epidemiological evidence has shown that platelet activation markers are consistently elevated in obesity, contributing to its prothrombotic state. In order to improve the understanding of the regulation of platelet function in obesity, the aim of this study was to investigate the l-arginine-nitric oxide (NO) pathway in obese adults without other cardiovascular risk factor. Seventeen obese (body mass index [BMI] 35.9±1.0 kg/m(2) ) and eighteen age-matched normal weight subjects (BMI 22.0±0.6 kg/m(2) ) were included in this study. l-arginine influx was measured with incubation of l-[(3) H]-arginine. NO synthase (NOS) and arginase activities were determined by the citrulline assay and the conversion of l-[(14) C]-arginine to [(14) C]-urea, respectively. Cyclic guanosine monophosphate (cGMP) content was evaluated by enzyme-linked immunosorbent assay. In addition, the study analyzed: platelet aggregation; intraplatelet antioxidant enzymes, via superoxide dismutase (SOD) and catalase activities; and systemic levels of l-arginine, fibrinogen, and C-reactive protein (CRP). Obese patients presented a significant decrease of platelet l-arginine influx, NOS activity, and cGMP levels, along with platelet hyperaggregability. On the presence of NO donor, platelet aggregation was similar between the groups. The fibrinogen and CRP systemic levels were significantly higher and SOD activity was reduced in obesity. No significant differences were observed in plasma levels of l-arginine and intraplatelet arginase and catalase activities between groups. The diminished NO bioavailability associated with inflammatory status and impaired enzymatic antioxidant defence may contribute to future cardiovascular complications in obesity. © 2016 John Wiley & Sons Australia, Ltd.

  6. Relationship between ADAMTS13 activity, von Willebrand factor antigen levels and platelet function in the early and late phases after TIA or ischaemic stroke.

    PubMed

    McCabe, Dominick J H; Murphy, Stephen J X; Starke, Richard; Harrison, Paul; Brown, Martin M; Sidhu, Paul S; Mackie, Ian J; Scully, Marie; Machin, Samuel J

    2015-01-15

    Reduced ADAMTS13 activity is seen in thrombotic thrombocytopenic purpura (TTP), and may lead to accumulation of prothrombotic ultra-large von Willebrand factor (ULVWF) multimers in vivo. ADAMTS13 activity and its relationship with VWF antigen (VWF:Ag) levels and platelet function in 'non-TTP related' TIA or ischaemic stroke has not been comprehensively studied. In this prospective pilot observational analytical case-control study, ADAMTS13 activity and VWF:Ag levels were quantified in platelet poor plasma in 53 patients in the early phase (≤ 4 weeks) and 34 of these patients in the late phase (≥ 3 months) after TIA or ischaemic stroke on aspirin. Data were compared with those from 22 controls not on aspirin. The impact of ADAMTS13 on platelet function in whole blood was quantified by measuring Collagen-ADP (C-ADP) and Collagen-Epinephrine closure times on a platelet function analyser (PFA-100(®)). Median ADAMTS13 activity was significantly reduced in the early phase (71.96% vs. 95.5%, P <0.01) but not in the late phase after TIA or stroke compared with controls (86.3% vs. 95.5%, P=0.19). There was a significant inverse relationship between ADAMTS13 activity and VWF:Ag levels in the early phase (r=-0.31; P=0.024), but not in the late phase after TIA or stroke (P=0.74). There was a positive correlation between ADAMTS13 activity and C-ADP closure times in early phase patients only, likely mediated via VWF:Ag levels. ADAMTS13 activity is reduced and VWF:Ag expression is increased within 4 weeks of TIA or ischaemic stroke onset, and can promote enhanced platelet adhesion and aggregation in response to stimulation with collagen and ADP via VWF-mediated pathways. These data improve our understanding of the dynamic haemostatic and thrombotic profiles of ischaemic cerebrovascular disease (CVD) patients, and are important in view of the potential future role that ADAMTS13 may have to play as an anti-thrombotic agent in CVD. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Imaging analyses of coagulation-dependent initiation of fibrinolysis on activated platelets and its modification by thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Brzoska, Tomasz; Suzuki, Yuko; Sano, Hideto; Suzuki, Seiichirou; Tomczyk, Martyna; Tanaka, Hiroki; Urano, Tetsumei

    2017-04-03

    Using intravital confocal microscopy, we observed previously that the process of platelet phosphatidylserine (PS) exposure, fibrin formation and lysine binding site-dependent plasminogen (plg) accumulation took place only in the centre of thrombi, not at their periphery. These findings prompted us to analyse the spatiotemporal regulatory mechanisms underlying coagulation and fibrinolysis. We analysed the fibrin network formation and the subsequent lysis in an in vitro experiment using diluted platelet-rich plasma supplemented with fluorescently labelled coagulation and fibrinolytic factors, using confocal laser scanning microscopy. The structure of the fibrin network formed by supplemented tissue factor was uneven and denser at the sites of coagulation initiation regions (CIRs) on PS-exposed platelets. When tissue-type plasminogen activator (tPA; 7.5 nM) was supplemented, labelled plg (50 nM) as well as tPA accumulated at CIRs, from where fibrinolysis started and gradually expanded to the peripheries. The lysis time at CIRs and their peripheries (50 µm from the CIR) were 27.9 ± 6.6 and 44.4 ± 9.7 minutes (mean ± SD, n=50 from five independent experiments) after the addition of tissue factor, respectively. Recombinant human soluble thrombomodulin (TMα; 2.0 nM) attenuated the CIR-dependent plg accumulation and strongly delayed fibrinolysis at CIRs. A carboxypeptidase inhibitor dose-dependently enhanced the CIR-dependent fibrinolysis initiation, and at 20 µM it completely abrogated the TMα-induced delay of fibrinolysis. Our findings are the first to directly present crosstalk between coagulation and fibrinolysis, which takes place on activated platelets' surface and is further controlled by thrombin-activatable fibrinolysis inhibitor (TAFI).

  8. Platelet lysate obtained via plateletpheresis performed in standing and awake equine donors.

    PubMed

    Sumner, Scarlett M; Naskou, Maria C; Thoresen, Merrilee; Copland, Ian; Peroni, John F

    2017-07-01

    Platelet preparations containing growth factors, attachment factors, and enzymes are appealing to enhance healing of injured tissues and as an alternative to xenogenic serum in cell culture media. Plateletpheresis is commonly used to collect platelets in human medicine but has not been validated in horses. Plateletpheresis to collect platelet concentrate was performed on six female, mixed breed, chemically restrained horses using commercially available apheresis equipment. Before and immediately after plateletpheresis, we performed physical examinations and collected blood for chemistry and coagulation panels and then again at 8, 16, 24, and 48 hours after the procedure. To produce platelet lysate, the platelet concentrate underwent two freeze-thaw cycles followed by centrifugation and filtration processing. The platelet lysate was then analyzed for cellular debris, fibrinogen, and growth factors. The collected platelet concentration contained a mean platelet yield of 390 × 10 3 /μL. Donor platelet count decreased from a mean of 193 × 10 3 /μL to 138 × 10 3 /μL after plateletpheresis, but no individual was at risk for hemorrhage. Pooled platelet lysate had minimal cellular residue and contained growth factor concentrations at 6.1 ng/mL for transforming growth factor-β1, at 3.5 ng/mL for platelet-derived growth factor-BB, and at 13.8 ng/mL for vascular endothelial growth factor-A. Plateletpheresis using commercially available apheresis equipment is a feasible option for collecting platelet concentrate from equine donors. The lysate generated from the apheresis product contains growth factors and has potential to be used as a fetal bovine serum substitute for cell culture. © 2017 AABB.

  9. Anti-aggregatory effect of boswellic acid in high-fat fed rats: involvement of redox and inflammatory cascades

    PubMed Central

    2016-01-01

    Introduction A high-fat diet is one of the main dietary factors promoting platelet aggregation. The present study was conducted to elucidate the involvement of boswellic acid (BA) on the platelet hyperaggregability in HFD-fed rats. As platelet hyperaggregability in HFD rats is closely linked to inflammation and enhanced free radical production, the present study was extended to evaluate the anti-inflammatory and anti-oxidative effect of BA on HFD-promoted platelet aggregation. Material and methods Rats were assigned to normal, HFD-fed, aspirin-treated (30 mg/kg), and BA-treated (250 and 500 mg/kg) groups. Results Boswellic acid administration in a high dose was effective in attenuating the severity of hyperlipidemia and platelet aggregation, indicated by lower collagen/epinephrine-induced platelet aggregation, as evidenced by the significant increase (p < 0.05) in the circulating platelet count and reduction in the number of thrombi in the lungs. Moreover, it attenuated the oxidative stress and the intensity of inflammatory mediators associated with platelet hyperaggregability, as evidenced by the inhibitory effects on interlukin-1β, COX-2 and tumor necrosis factor-α, indicating that the antiplatelet activity of BA is likely a consequence of controlling oxidative stress and inflammation. Conclusions The present data suggest that BA shows a promising anti-aggregatory effect by attenuating the enhanced hyperlipidemia, oxidative stress and inflammation associated with HFD. PMID:27904529

  10. Ultrastructure and growth factor content of equine platelet-rich fibrin gels.

    PubMed

    Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern

    2014-04-01

    To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.

  11. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell‐Derived Platelets

    PubMed Central

    Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono‐Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi

    2016-01-01

    Abstract Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720–730 PMID:28297575

  12. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation.

    PubMed

    Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T

    2013-02-01

    Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.

  13. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of hormones on platelet aggregation.

    PubMed

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  15. Platelet storage in Fresenius/NPBI polyolefin and BTHC-PVC bags: a direct comparison.

    PubMed

    Hornsey, V S; McColl, K; Drummond, O; Macgregor, I R; Prowse, C V

    2008-08-01

    New platelet storage systems, such as changes in the plastic of the storage bags, require validation. In this study, pooled buffy coat platelets stored in Fresenius/NPBI polyolefin bags were compared with those stored in Fresenius/NPBI butyryl-trihexyl citrate (BTHC) plasticized polyvinyl chloride (PVC). The CompoSelect thrombocyte polishing filter system (1000 mL polyolefin bag) and the CompoStop F730 system (1300 mL BTHC-PVC bag) were used to prepare paired, plasma-suspended, buffy coat platelet concentrates. Samples were taken up to day 7 for in vitro analysis. In a separate experiment, 12 units were prepared using the CompoStop F730 system and samples taken after leucofiltration for FXIIa assay. By day 7, platelet concentrates stored in BTHC-PVC demonstrated significantly higher pH levels (7.32 +/- 0.05 vs. 7.26 +/- 0.05) and a greater degree of cell lysis as shown by increased lactate dehydrogenase levels (497 +/- 107 vs. 392 +/- 81 U L(-1)). The supernatants contained higher concentrations of soluble P-selectin and the chemokine 'regulated on activation, normal T-cell expressed and presumably secreted', which are released from the alpha-granules during activation. The ATP concentrations were significantly lower in BTHC-PVC. Platelet counts, mean platelet volume and hypotonic shock response were similar for both bags. FXIIa antigen concentrations were 0.6 +/- 0.2 ng mL(-1) indicating that activation of the contact factor pathway had not occurred. Although the CompoStop F730 leucoreduction filter did not activate the contact system, platelets stored in 100% plasma in BTHC-PVC bags demonstrated different in vitro characteristics from those stored in polyolefin. Further work is required to demonstrate whether these differences will affect in vivo recovery and survival.

  16. Platelet Storage Lesions: What More Do We Know Now?

    PubMed

    Ng, Monica Suet Ying; Tung, John-Paul; Fraser, John Francis

    2018-04-17

    Platelet concentrate (PC) transfusions are a lifesaving adjunct to control and prevent bleeding in cancer, hematologic, surgical, and trauma patients. Platelet concentrate availability and safety are limited by the development of platelet storage lesions (PSLs) and risk of bacterial contamination. Platelet storage lesions are a series of biochemical, structural, and functional changes that occur from blood collection to transfusion. Understanding of PSLs is key for devising interventions that prolong PC shelf life to improve PC access and wastage. This article will review advancements in clinical and mechanistic PSL research. In brief, exposure to artificial surfaces and high centrifugation forces during PC preparation initiate PSLs by causing platelet activation, fragmentation, and biochemical release. During room temperature storage, enhanced glycolysis and reduced mitochondrial function lead to glucose depletion, lactate accumulation, and product acidification. Impaired adenosine triphosphate generation reduces platelet capacity to perform energetically demanding processes such as hypotonic stress responses and activation/aggregation. Storage-induced alterations in platelet surface proteins such as thrombin receptors and glycoproteins decrease platelet aggregation. During storage, there is an accumulation of immunoactive proteins such as leukocyte-derive cytokines (tumor necrosis factor α, interleukin (IL) 1α, IL-6, IL-8) and soluble CD40 ligand which can participate in transfusion-related acute lung injury and nonhemolytic transfusion reactions. Storage-induced microparticles have been linked to enhanced platelet aggregation and immune system modulation. Clinically, stored PCs have been correlated with reduced corrected count increment, posttransfusion platelet recovery, and survival across multiple meta-analyses. Fresh PC transfusions have been associated with superior platelet function in vivo; however, these differences were abrogated after a period of circulation. There is currently insufficient evidence to discern the effect of PSLs on transfusion safety. Various bag and storage media changes have been proposed to reduce glycolysis and platelet activation during room temperature storage. Moreover, cryopreservation and cold storage have been proposed as potential methods to prolong PC shelf life by reducing platelet metabolism and bacterial proliferation. However, further work is required to elucidate and manage the PSLs specific to these storage protocols before its implementation in blood banks. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane.

    PubMed

    Sirolli, V; Ballone, E; Di Stante, S; Amoroso, L; Bonomini, M

    2002-06-01

    During hemodialysis (HD), circulating blood cells can be activated and also engage in dynamic interplay. These phenomena may be important factors behind dialysis membrane bio(in)compatibility. In the present prospective cross-over study, we have used flow cytometry to evaluate the influence of different dialysis membranes on the activation of circulating blood cells (leukocytes, platelets) and their dynamic interactions (formation of circulating platelet-leukocyte and platelet-erythrocyte aggregates) during in vivo HD. Each patient (n = 10) was treated with dialyzers containing membranes of cellulose diacetate, polysulfone and ethylenevinylalcohol (EVAL) in a randomized order. Upregulation of adhesion receptor expression (CD15s, CD11b/CD18) occurred mainly with the cellulosic membrane, though an increase in CD11b/CD18 circulating on neutrophils was also found with both synthetic membranes. Circulating activated platelets (P-selectin/CD63-positive platelets) increased during HD sessions with cellulose diacetate and polysulfone. An increased formation of platelet-neutrophil aggregates was found at 15 and 30 min during dialysis with cellulose diacetate and polysulfone but not with EVAL. Platelet-erythrocyte aggregates also increased with cellulose diacetate and at 15 min with polysulfone as well. Generally in concomitance with the increase in platelet-neutrophil coaggregates, there was an increased hydrogen peroxide production by neutrophils. The results of this study indicate that cellular mechanisms can be activated during HD largely depending on the membrane material, EVAL causing less reactivity than the other two membranes. It appears that each dialysis membrane has multiple and different characteristics that may contribute to interactions with blood components. Our results also indicate that derivatizing cellulose (cellulose diacetate) may be a useful way to improve the biocompatibility of the cellulose polymer and that there may be great variability in the biocompatibility profile of synthetic membranes, dialysis with polysulfone being in general associated with a higher degree of cell activation than EVAL membrane.

  18. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination.

    PubMed

    Kitamura, Yutaka; Watanabe, Taisuke; Nakamura, Masayuki; Isobe, Kazushige; Kawabata, Hideo; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2018-01-01

    Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl 2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix.

  19. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination

    PubMed Central

    Kitamura, Yutaka; Watanabe, Taisuke; Nakamura, Masayuki; Isobe, Kazushige; Kawabata, Hideo; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2018-01-01

    Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix. PMID:29450197

  20. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy.

    PubMed

    Wang, Zhe; Huang, He

    2013-05-01

    Platelet factor-4 (CXCL4/PF-4) is the first chemokine identified to have several biological functions. Notably, CXCL4/PF-4 inhibits endothelial cell proliferation and migration, leading to suppression of angiogenesis. Since angiogenesis is essential for the growth of most primary tumors and their subsequent metastases, it is a target for cancer therapy; due to its multiple functions, CXCL4/PF-4 is a potential clinical anti-tumor agent. This report reviews the mechanisms of CXCL4/PF-4 angiostatic activity, including interference with angiogenic growth factors bFGF-2 and VEGF165, activation of CXCR3B, interactions with integrins, interference with cell cycle, interactions with factors such as VEGF121 and CXCL8/IL-8, and derived molecules of CXCL4/PF-4 with angiostatic and anti-tumoral activities in different models in vivo or in vitro. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of BN 52021, a specific antagonist of platelet activating factor (PAF-acether), on calcium movements and phosphatidic acid production induced by PAF-acether in human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M.F.; Chap, H.; Braquet, P.

    1987-02-15

    /sup 32/P-labelled human platelets loaded with quin 2 and pretreated with aspirin were stimulated with 1-100 nM platelet activating factor (PAF-acether or 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in a medium containing the ADP-scavenging system creatine phosphate/creatine phosphokinase. Under these conditions, PAF-acether evoked a characteristic fluorescence change allowing to quantify elevations in cytoplasmic free Ca/sup 2 +/ from internal stores (Ca/sup 2 +/ mobilization) or from external medium (Ca/sup 2 +/ influx), as well as an increased production of phosphatidic acid, reflecting phospholipase C activation. These effects, which can be attributed to PAF-acether only and not to released products such as ADP or thromboxane A2,more » were strongly inhibited in a dose-dependent manner by BN 52021, a specific antagonist of PAF-acether isolated from Ginkgo biloba. As the drug remained inactive against the same effects elicited by thrombin, it is concluded that BN 52021 does not interfere directly with the mechanism of transmembrane signalling involving inositol-phospholipids or (and) some putative receptor-operated channels, but rather acts on the binding of PAF-acether to its presumed membrane receptor.« less

  2. Red Blood Cell Hematocrit Influences Platelet Adhesion Rate in a Microchannel

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Campbell, James; Fitzgibbon, Sean; Rodriguez, Armando; Shaqfeh, Eric

    2014-11-01

    The creation of a blood clot to stop bleeding involves platelets forming a plug at the site of injury. Red blood cells indirectly play a role in ensuring that the distribution of platelets across the height of the channel is not uniform - the contrast in deformability and size between platelets and red blood cells allows the platelets to preferentially marginate close to the walls. We perform 3D boundary integral simulations of a suspension of platelets and red blood cells in a periodic channel with a model that allows for platelet binding at the walls. The relative rate of platelet activity with varying hematocrit (volume fraction of red blood cells) is compared to experiments in which red blood cells and platelets flow through a channel coated with von Willebrand factor. In the simulations as well as the experiments, a decrease in hematocrit of red blood cells is found to reduce the rate at which platelets adhere to the channel wall in a manner that is both qualitatively and quantitatively similar. We conclude with a discussion of the tumbling and wobbling motions of platelets in 3D leading up to the time at which the platelets bind to the wall. Funded by Stanford Army High Performance Computing Research Center, experiments by US Army Institute of Surgical Research.

  3. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    PubMed

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  4. Flow cytometric assessment of activation of peripheral blood platelets in dogs with normal platelet count and asymptomatic thrombocytopenia.

    PubMed

    Żmigrodzka, M; Guzera, M; Winnicka, A

    2016-01-01

    Platelets play a crucial role in hemostasis. Their activation has not yet been evaluated in healthy dogs with a normal and low platelet count. The aim of this study was to determine the influence of activators on platelet activation in dogs with a normal platelet count and asymptomatic thrombocytopenia. 72 clinically healthy dogs were enrolled. Patients were allocated into three groups. Group 1 consisted of 30 dogs with a normal platelet count, group 2 included 22 dogs with a platelet count between 100 and 200×109/l and group 3 consisted of 20 dogs with a platelet count lower than 100×109/l. Platelet rich-plasma (PRP) was obtained from peripheral blood samples using tripotassium ethylenediaminetetraacetic acid (K3-EDTA) as anticoagulant. Next, platelets were stimulated using phorbol-12-myristate-13-acetate or thrombin, stabilized using procaine or left unstimulated. The expression of CD51 and CD41/CD61 was evaluated. Co-expression of CD41/CD61 and Annexin V served as a marker of platelet activation. The expression of CD41/CD61 and CD51 did not differ between the 3 groups. Thrombin-stimulated platelets had a significantly higher activity in dogs with a normal platelet count than in dogs with asymptomatic thrombocytopenia. Procaine inhibited platelet activity in all groups. In conclusion, activation of platelets of healthy dogs in vitro varied depending on the platelet count and platelet activator.

  5. Comparison of ultrastructural and nanomechanical signature of platelets from acute myocardial infarction and platelet activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Aiqun; Chen, Jianwei; Liang, Zhi-Hong

    Acute myocardial infarction (AMI) initiation and progression follow complex molecular and structural changes in the nanoarchitecture of platelets. However, it remains poorly understood how the transformation from health to AMI alters the ultrastructural and biomechanical properties of platelets within the platelet activation microenvironment. Here, we show using an atomic force microscope (AFM) that platelet samples, including living human platelets from the healthy and AMI patient, activated platelets from collagen-stimulated model, show distinct ultrastructural imaging and stiffness profiles. Correlative morphology obtained on AMI platelets and collagen-activated platelets display distinct pseudopodia structure and nanoclusters on membrane. In contrast to normal platelets, AMImore » platelets have a stiffer distribution resulting from complicated pathogenesis, with a prominent high-stiffness peak representative of platelet activation using AFM-based force spectroscopy. Similar findings are seen in specific stages of platelet activation in collagen-stimulated model. Further evidence obtained from different force measurement region with activated platelets shows that platelet migration is correlated to the more elasticity of pseudopodia while high stiffness at the center region. Overall, ultrastructural and nanomechanical profiling by AFM provides quantitative indicators in the clinical diagnostics of AMI with mechanobiological significance.« less

  6. Evaluation of flow cytometric HIT assays in relation to an IgG-Specific immunoassay and clinical outcome.

    PubMed

    Kerényi, Adrienne; Beke Debreceni, Ildikó; Oláh, Zsolt; Ilonczai, Péter; Bereczky, Zsuzsanna; Nagy, Béla; Muszbek, László; Kappelmayer, János

    2017-09-01

    Heparin-induced thrombocytopenia (HIT) is a severe side effect of heparin treatment caused by platelet activating IgG antibodies generated against the platelet factor 4 (PF4)-heparin complex. Thrombocytopenia and thrombosis are the leading clinical symptoms of HIT. The clinical pretest probability of HIT was evaluated by the 4T score system. Laboratory testing of HIT was performed by immunological detection of antibodies against PF4-heparin complex (EIA) and two functional assays. Heparin-dependent activation of donor platelets by patient plasma was detected by flow cytometry. Increased binding of Annexin-V to platelets and elevated number of platelet-derived microparticles (PMP) were the indicators of platelet activation. EIA for IgG isotype HIT antibodies was performed in 405 suspected HIT patients. Based on negative EIA results, HIT was excluded in 365 (90%) of cases. In 40 patients with positive EIA test result functional tests were performed. Platelet activating antibodies were detected in 17 cases by Annexin V binding. PMP count analysis provided nearly identical results. The probability of a positive flow cytometric assay result was higher in patients with elevated antibody titer. 71% of patients with positive EIA and functional assay had thrombosis. EIA is an important first line laboratory test in the diagnosis of HIT; however, HIT must be confirmed by a functional test. Annexin V binding and PMP assays using flow cytometry are functional HIT tests convenient in a clinical diagnostic laboratory. The positive results of functional assays may predict the onset of thrombosis. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  7. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome.

    PubMed

    Blanchet, X; Cesarek, K; Brandt, J; Herwald, H; Teupser, D; Küchenhoff, H; Karshovska, E; Mause, S F; Siess, W; Wasmuth, H; Soehnlein, O; Koenen, R R; Weber, C; von Hundelshausen, P

    2014-12-01

    Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute coronary syndrome (ACS), its medical treatment, concomitant clinical or laboratory parameters, and predictive for the progression of coronary artery disease (CAD). In an observational study, the association of various factors with plasma concentrations of platelet chemokines and neutrophil mediators in 204 patients, either upon admission with ACS and 6 hours later or without ACS or CAD, was determined by multiple linear regression. Mediator release was further analysed after activation of blood with ACS-associated triggers such as plaque material. CXCL4, CXCL4L1, CCL5, MPO and azurocidin levels were elevated in ACS. CXCL4 and CCL5 but not CXCL4L1 or MPO were associated with platelet counts and CRP. CXCL4 (in association with heparin treatment) and MPO declined over 6 hours during ACS. Elevated CCL5 was associated with a progression of CAD. Incubating blood with plaque material, PAR1 and PAR4 activation induced a marked release of CXCL4 and CCL5, whereas CXCL4L1 and MPO were hardly or not altered. Platelet chemokines and neutrophil products are concomitantly elevated in ACS and differentially modulated by heparin treatment. CCL5 levels during ACS predict a progression of preexisting CAD. Platelet-derived products appear to dominate the inflammatory response during ACS, adding to the emerging evidence that ACS per se may promote vascular inflammation.

  8. Stability validation of paraformaldehyde-fixed samples for the assessment of the platelet PECAM-1, P-selectin, and PAR-1 thrombin receptor by flow cytometry.

    PubMed

    Atar, Oliver D; Eisert, Christian; Pokov, Ilya; Serebruany, Victor L

    2010-07-01

    Sample fixation for storage and/or transportation represents an unsolved challenge for multicenter clinical trials assessing serial changes in platelet activity, or monitoring various antiplatelet regimens. Whole blood flow cytometry represents a major advance in defining platelet function, although special training and expensive equipment is required. We sought to determine how fixation with 2% paraformaldehyde (PFA), and storage of blood samples over 1 week affects the flow cytometry readings for both intact and thrombin-activating four major surface platelet receptors. Whole blood platelet expression of PECAM-1, P-selectin, PAR-1 inactive receptor (SPAN-12), and cleaved (WEDE-15) epitope was assessed immediately after blood draw, after staining with 2% PFA, and at day 1, 3, 5, and 7. The study was performed in 6 volunteers with multiple risk factors for vascular disease, not receiving any antiplatelet agents. Staining with PFA resulted in a slight decrease of fluorescence intensity, especially for PECAM-1, while antigen expression at day 1, 3 and 5 remains consistent, and highly reproducible. At day 7 there was a small but inconsistent trend towards diminished fluorescence intensity. The platelet data were consistent while validated with the isotype-matched irrelevant antibody. These data suggest that there is a 5 day window to perform final flow cytometry readings of whole blood PFA-fixed inactivated platelet samples. In contrast, thrombin activation cause gradual loss of flow cytometry signal, and cannot be recommended for long-term storage. This is critical logistic information for conducting multicenter platelet substudies within the framework of major clinical trials.

  9. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes

    PubMed Central

    Petersson, Frida; Kilsgård, Ola; Shannon, Oonagh

    2018-01-01

    Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction. PMID:29385206

  10. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes.

    PubMed

    Petersson, Frida; Kilsgård, Ola; Shannon, Oonagh; Lood, Rolf

    2018-01-01

    Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction.

  11. Platelet ERK5 is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion

    PubMed Central

    Cameron, Scott J.; Ture, Sara K.; Mickelsen, Deanne; Chakrabarti, Enakshi; Modjeski, Kristina L.; McNitt, Scott; Seaberry, Micheal; Field, David J.; Le, Nhat-Tu; Abe, Jun-ichi; Morrell, Craig N.

    2015-01-01

    Background Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes (ACS). Compared to platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species (ROS) rich environments may not be the same as in normal healthy conditions. Extracellular Regulated Protein Kinase 5 (ERK5) is a Mitogen Activated Protein Kinase (MAPK) family member activated in hypoxic, ROS rich environments, and in response to receptor signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells following ischemia. We present evidence that platelets express ERK5 and platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent ROS mediated mechanisms in ischemic myocardium. Methods and Results Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and platelet specific ERK5−/− mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5 regulated proteins is reduced in ERK5−/− platelets post-MI. Conclusions ERK5 functions as a platelet activator in ischemic conditions and platelet ERK5 maintains the expression of some platelet proteins following MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment. PMID:25934838

  12. Hydrolysis of platelet-activating factor by human serum paraoxonase.

    PubMed Central

    Rodrigo, L; Mackness, B; Durrington, P N; Hernandez, A; Mackness, M I

    2001-01-01

    Human serum paraoxonase (human PON1) has been shown to be important in the metabolism of phospholipid and cholesteryl ester hydroperoxides, thereby preventing the oxidation of low-density lipoprotein (LDL) and retarding atherogenesis. However, the exact substrate specificity of PON1 has not been established. In the present study we show that purified PON1 hydrolyses platelet-activating factor (PAF). We could find no evidence for contamination of our preparation with authentic platelet-activating-factor acetylhydrolase (PAFAH) by immunoblotting with a PAFAH monoclonal antibody or by sequencing the purified protein. In addition the specific PAFAH inhibitor SB-222657 did not affect the ability of PON1 to hydrolyse PAF (30.1+/-2.8 micromol/min per mg of protein with no inhibitor; 31.4+/-2.2 micromol/min per mg of protein with 100 nM inhibitor) or phenyl acetate (242.6+/-30.8 versus 240.8+/-31.5 micromol/min per mg of protein with and without inhibitor respectively). SB-222657 was also unable to inhibit PAF hydrolysis by isolated human high-density lipoprotein (HDL), but completely abolished the activity of human LDL. Ostrich (Struthio camelus) HDL, which does not contain PON1, was unable to hydrolyse PAF. These data provide evidence that PON1 may limit the action of this bioactive pro-inflammatory phospholipid. PMID:11171072

  13. Synthetic Strategies for Engineering Intravenous Hemostats

    PubMed Central

    Chan, Leslie W.-G.; White, Nathan J.; Pun, Suzie H.

    2015-01-01

    While there are currently many well-established topical hemostatic agents for field administration, there are still limited tools to staunch bleeding at less accessible injury sites. Current clinical methods of restoring hemostasis after large volume blood loss include platelet and clotting factor transfusion, which have respective drawbacks of short shelf-life and risk of viral transmission. Therefore, synthetic hemostatic agents that can be delivered intravenously and encourage stable clot formation after localizing to sites of vascular injury are particularly appealing. In the past three decades, platelet substitutes have been prepared using drug delivery vehicles such as liposomes and PLGA nanoparticles that have been modified to mimic platelet properties. Additionally, structural considerations such as particle size, shape, and flexibility have been addressed in a number of reports. Since platelets are the first responders after vascular injury, platelet substitutes represent an important class of intravenous hemostats under development. More recently, materials affecting fibrin formation have been introduced to induce faster or more stable blood clot formation through fibrin crosslinking. Fibrin represents a major structural component in the final blood clot, and a fibrin-based hemostatic mechanism acting downstream of initial platelet plug formation may be a safer alternative to platelets to avoid undesired thrombotic activity. This review explores intravenous hemostats under development and strategies to optimize their clotting activity. PMID:25803791

  14. Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    PubMed

    Norris, J W; Pombo, M; Shirley, E; Blevins, G; Tablin, F

    2015-01-01

    Two congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation. Platelet dysfunction in horses with this second thrombasthenia results from a secretory defect. Two affected and 6 clinically normal horses. Ex vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1). Platelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation. Defects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia. Copyright © The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  15. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction.

    PubMed

    Popa, Miruna; Tahir, Sibgha; Elrod, Julia; Kim, Su Hwan; Leuschner, Florian; Kessler, Thorsten; Bugert, Peter; Pohl, Ulrich; Wagner, Andreas H; Hecker, Markus

    2018-06-12

    Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.

  16. Preanalytical requirements for flow cytometric evaluation of platelet activation: choice of anticoagulant.

    PubMed

    Mody, M; Lazarus, A H; Semple, J W; Freedman, J

    1999-06-01

    Accurate assessment of in vivo or in vitro platelet activation requires optimal preanalytical conditions to prevent artefactual in vitro activation of the platelets. The choice of anticoagulant is one of the critical preanalytical conditions as anticoagulants exert different effects on the activation of platelets ex vivo. We tested the effectiveness of Diatube-H (also known as CTAD; sodium citrate, theophylline, adenosine and dipyridamole) and citrate vacutainer tubes in preventing artefactual activation of platelets and preserving functional reserve. Platelet surface expression of the CD62P (reflecting alpha granule release), CD63 (reflecting lysosomal release) and modulation of normal platelet membrane glycoproteins CD41a and CD42b, were measured in whole blood and in isolated platelets immediately after collection and at 6, 24 and 48 h after venipuncture. Samples taken into Diatube-H showed less spontaneous platelet activation than did those taken into citrate. To measure in vitro platelet functional reserve, thrombin was added as agonist to blood stored for varying periods up to 48 h. Although Diatube-H suppressed in vitro platelet activation for up to 4 h, in samples kept for 6-24 h before thrombin addition, the inhibitory effect was lost and platelets responded fully to agonist activation. Hence, Diatube-H preserved platelets and allowed for measurement of in vivo platelet activation as well as thrombin-induced in vitro platelet activation after 6-24 h, in both whole blood and isolated platelets.

  17. Neuroprotection by the Traditional Chinese Medicine, Tao-Hong-Si-Wu-Tang, against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia in Rats

    PubMed Central

    Wu, Chih-Jen; Chen, Jui-Tai; Yen, Ting-Lin; Jayakumar, Thanasekaran; Chou, Duen-Suey; Hsiao, George; Sheu, Joen-Rong

    2011-01-01

    Tao-Hong-Si-Wu-Tang (THSWT) is a famous traditional Chinese medicine (TMC). In the present study, oral administration of THSWT (0.7 and 1.4 g kg−1day−1) for 14 days before MCAO dose-dependently attenuated focal cerebral ischemia in rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and active caspase-3 expressions in ischemic regions. These expressions were obviously inhibited by 0.7 g kg−1day−1 THSWT treatment. In addition, THSWT inhibited platelet aggregation stimulated by collagen in washed platelets. In an in vivo study, THSWT (16 g kg−1) significantly prolonged platelet plug formation in mice. However, THSWT (20 and 40 μg mL−1) did not significantly reduce the electron spin resonance (ESR) signal intensity of hydroxyl radical (OH•) formation. In conclusion, the most important findings of this study demonstrate for the first time that THSWT possesses potent neuroprotective activity against MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and platelet activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. PMID:21076527

  18. Multi-physics 3D computational study of leaflet thrombus formation following surgical and transcatheter aortic valve replacement

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Abbasi, Mostafa; Barakat, Mohammed; Dvir, Danny; Azadani, Ali

    2017-11-01

    An increasingly recognized complication following surgical/transcatheter aortic valve replacement is thrombosis or blood clot formation on replacement valve leaflets. A predisposing factor in thrombus formation on biomaterial surfaces of a bioprosthetic heart valve is blood stasis. Longer residence time of blood provides an opportunity for platelets and agonists to accumulate to critical concentrations that leads to platelet activation and then thrombosis. In this study, we have developed a fluid-solid interaction (FSI) modeling approach, to quantify blood stasis on the leaflets of bioprosthetic aortic valves with different design operating in a patient-specific geometry. We have validated our FSI model against experimental measurements of valve opening/closing as well as in-vitro particle image velocimetry. We have also embedded in our method a model for transport of platelets and agonists (ADP, TxA2, and thrombin) and their interactions that result in platelets activation and adhesion to biomaterial bioprosthetic surfaces. We have provided quantitative evidence for the correlation between long residence of blood on bioprosthetic aortic valve leaflets and formation of high thrombogenicity risk regions on the leaflets that are characterized by accumulation of activated platelet.

  19. Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases.

    PubMed

    Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe

    2012-01-01

    Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists ("priming effect"). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.

  20. Drug-Free Platelets Can Act as Seeds for Aggregate Formation During Antiplatelet Therapy

    PubMed Central

    Hoefer, Thomas; Armstrong, Paul C.; Finsterbusch, Michaela; Chan, Melissa V.; Kirkby, Nicholas S.

    2015-01-01

    Objective— Reduced antiplatelet drug efficacy occurs in conditions of increased platelet turnover, associated with increased proportions of drug-free, that is, uninhibited, platelets. Here, we detail mechanisms by which drug-free platelets promote platelet aggregation in the face of standard antiplatelet therapy. Approach and Results— To model standard antiplatelet therapy, platelets were treated in vitro with aspirin, the P2Y12 receptor blocker prasugrel active metabolite, or aspirin plus prasugrel active metabolite. Different proportions of uninhibited platelets were then introduced. Light transmission aggregometry analysis demonstrated clear positive associations between proportions of drug-free platelets and percentage platelet aggregation in response to a range of platelet agonists. Using differential platelet labeling coupled with advanced flow cytometry and confocal imaging we found aggregates formed in mixtures of aspirin-inhibited platelets together with drug-free platelets were characterized by intermingled platelet populations. This distribution is in accordance with the ability of drug-free platelets to generate thromboxane A2 and so drive secondary platelet activation. Conversely, aggregates formed in mixtures of prasugrel active metabolite–inhibited or aspirin plus prasugrel active metabolite–inhibited platelets together with drug-free platelets were characterized by distinct cores of drug-free platelets. This distribution is consistent with the ability of drug-free platelets to respond to the secondary activator ADP. Conclusions— These experiments are the first to image the interactions of inhibited and uninhibited platelets in the formation of platelet aggregates. They demonstrate that a general population of platelets can contain subpopulations that respond strikingly differently to overall stimulation of the population and so act as the seed for platelet aggregation. PMID:26272940

  1. Evaluation of QT and P wave dispersion and mean platelet volume among inflammatory bowel disease patients.

    PubMed

    Dogan, Yuksel; Soylu, Aliye; Eren, Gulay A; Poturoglu, Sule; Dolapcioglu, Can; Sonmez, Kenan; Duman, Habibe; Sevindir, Isa

    2011-01-01

    In inflammatory bowel disease (IBD) number of thromboembolic events are increased due to hypercoagulupathy and platelet activation. Increases in mean platelet volume (MPV) can lead to platelet activation, this leads to thromboembolic events and can cause acute coronary syndromes. In IBD patients, QT-dispersion and P-wave dispersion are predictors of ventricular arrhythmias and atrial fibrilation; MPV is accepted as a risk factor for acute coronary syndromes, we aimed at evaluating the correlations of these with the duration of disease, its localization and activity. The study group consisted of 69 IBD (Ulcerative colitis n: 54, Crohn's Disease n: 15) patients and the control group included 38 healthy individuals. Disease activity was evaluated both endoscopically and clinically. Patients with existing cardiac conditions, those using QT prolonging medications and having systemic diseases, anemia and electrolyte imbalances were excluded from the study. QT-dispersion, P-wave dispersion and MPV values of both groups were compared with disease activity, its localization, duration of disease and the antibiotics used. The P-wave dispersion values of the study group were significantly higher than those of the control group. Duration of the disease was not associated with QT-dispersion, and MPV levels. QT-dispersion, P-wave dispersion, MPV and platelet count levels were similar between the active and in mild ulcerative colitis patients. QT-dispersion levels were similar between IBD patients and the control group. No difference was observed between P-wave dispersion, QT-dispersion and MPV values; with regards to disease duration, disease activity, and localization in the study group (p>0.05). P-wave dispersion which is accepted as a risk factor for the development of atrial fibirilation was found to be high in our IBD patients. This demonstrates us that the risk of developing atrial fibrillation may be high in patients with IBD. No significant difference was found in the QT-dispersion, and in the MPV values when compared to the control group.

  2. What Is Deep Vein Thrombosis?

    MedlinePlus

    ... the blood to trigger the activity of the enzyme thrombin. Active thrombin then forms long protein strands that clump together with platelets and red blood cells to form clots. Read less Risk Factors Risk factors for VTE include a history of a previous VTE event; surgery; medical conditions ...

  3. [Effect of Chinese drugs for activating blood circulation and removing blood stasis on carotid atherosclerosis and ischemic cerebrovascular events].

    PubMed

    Lu, Yan; Li, Tao

    2014-03-01

    To explore the effect of Chinese drugs for activating blood circulation and removing blood stasis (CDABCRBS) on carotid atherosclerotic plaque and long-term ischemic cerebrovascular events. By using open and control method, effect of 4 groups of platelet antagonists, platelet antagonists + CDABCRBS, platelet antagonists +atorvastatin, platelet antagonists +atorvastatin +CDABCRBS on carotid atherosclerotic plaque and long-term ischemic cerebrovascular events of 90 cerebral infarction patients were analyzed. Through survival analysis, there was no statistical difference in the effect of the 4 interventions on the variation of carotid stenosis rates or ischemic cerebrovascular events (P > 0.05). The occurrence of ischemic cerebrovascular events could be postponed by about 4 months in those treated with platelet antagonists + CDABCRBS and platelet antagonists + atorvastatin +CDABCRBS. By multivariate Logistic analysis, age, hypertension, and clopidogrel were associated with stenosis of extracranial carotid arteries (P <0.05). Age, diabetes, aspirin, clopidogrel, CDABCRBS were correlated with cerebrovascular accidents (P < 0.05). Whether or not accompanied with hypertension is an influential factor for carotid stenosis, but it does not affect the occurrence of ischemic cerebrovascular events. CDABCRBS could effectively prolong the occurrence time of ischemic cerebrovascular events.

  4. Determinants of ABH expression on human blood platelets.

    PubMed

    Cooling, Laura L W; Kelly, Kathleen; Barton, James; Hwang, Debbie; Koerner, Theodore A W; Olson, John D

    2005-04-15

    Platelets express ABH antigens, which can adversely effect platelet transfusion recovery and survival in ABH-incompatible recipients. To date, there has been no large, comprehensive study comparing specific donor factors with ABH expression on platelet membranes and glycoconjugates. We studied ABH expression in 166 group A apheresis platelet donors by flow cytometry, Western blotting, and thin layer chromatography relative to donor age, sex, A1/A2 subgroup, and Lewis phenotype. Overall, A antigen on platelet membranes, glycoproteins, and glycosphingolipids was linked to an A1 red blood cell (RBC) phenotype. Among A1 donors, platelet ABH varied significantly between donors (0%-87%). Intradonor variability, however, was minimal, suggesting that platelet ABH expression is a stable, donor-specific characteristic, with 5% of A1 donors typing as either ABH high- or low-expressers. Group A2 donors, in contrast, possessed a Bombay-like phenotype, lacking both A and H antigens. Unlike RBCs, ABH expression on platelets may be determined primarily by H-glycosyltransferase (FUT1) activity. Identification of A2 and A1 low expressers may increase the availability and selection of crossmatched and HLA-matched platelets. Platelets from group A2 may also be a superior product for patients undergoing A/O major mismatch allogeneic progenitor cell transplantation.

  5. Mechanisms of Thrombocytopenia During Septic Shock: A Multiplex Cluster Analysis of Endogenous Sepsis Mediators.

    PubMed

    Bedet, Alexandre; Razazi, Keyvan; Boissier, Florence; Surenaud, Mathieu; Hue, Sophie; Giraudier, Stéphane; Brun-Buisson, Christian; Mekontso Dessap, Armand

    2018-06-01

    Thrombocytopenia is a common feature of sepsis and may involve various mechanisms often related to the inflammatory response. This study aimed at evaluating factors associated with thrombocytopenia during human septic shock. In particular, we used a multiplex analysis to assess the role of endogenous sepsis mediators. Prospective, observational study. Thrombocytopenia was defined as an absolute platelet count <100 G/L or a 50% relative decrease in platelet count during the first week of septic shock. Plasma concentrations of 27 endogenous mediators involved in sepsis and platelet pathophysiology were assessed at day-1 using a multi-analyte Milliplex human cytokine kit. Patients with underlying diseases at risk of thrombocytopenia (hematological malignancies, chemotherapy, cirrhosis, and chronic heart failure) were excluded. Thrombocytopenia occurred in 33 (55%) of 60 patients assessed. Patients with thrombocytopenia were more prone to present with extrapulmonary infections and bacteremia. Disseminated intravascular coagulation was frequent (81%) in these patients. Unbiased hierarchical clustering identified five different clusters of sepsis mediators, including one with markers of platelet activation (e.g., thrombospondin-1) positively associated with platelet count, one with markers of inflammation (e.g., tumor necrosis factor alpha and heat shock protein 70), and endothelial dysfunction (e.g., intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) negatively associated with platelet count, and another involving growth factors of thrombopoiesis (e.g., thrombopoietin), also negatively associated with platelet count. Surrogates of hemodilution (e.g., hypoprotidemia and higher fluid balance) were also associated with thrombocytopenia. Multiple mechanisms seemed involved in thrombocytopenia during septic shock, including endothelial dysfunction/coagulopathy, hemodilution, and altered thrombopoiesis.

  6. Subcutaneous Administration of Low-Molecular-Weight Heparin to Horses Inhibits Ex Vivo Equine Herpesvirus Type 1-Induced Platelet Activation

    PubMed Central

    Stokol, Tracy; Serpa, Priscila B. S.; Brooks, Marjory B.; Divers, Thomas; Ness, Sally

    2018-01-01

    Equine herpesvirus type 1 (EHV-1) is a major cause of infectious respiratory disease, abortion and neurologic disease. Thrombosis in placental and spinal vessels and subsequent ischemic injury in EHV-1-infected horses manifests clinically as abortion and myeloencephalopathy. We have previously shown that addition of heparin anticoagulants to equine platelet-rich plasma (PRP) can abolish ex vivo EHV-1-induced platelet activation. The goal of this study was to test whether platelets isolated from horses treated with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) were resistant to ex vivo EHV-1-induced activation. In a masked, block-randomized placebo-controlled cross-over trial, 9 healthy adult horses received 4 subcutaneous injections at q. 12 h intervals of one of the following treatments: UFH (100 U/kg loading dose, 3 maintenance doses of 80 U/kg), 2 doses of LMWH (enoxaparin) 80 U/kg 24 h apart with saline at the intervening 12 h intervals, or 4 doses of saline. Blood samples were collected before treatment and after 36 h, 40 h (4 h after the last injection) and 60 h (24 h after the last injection). Two strains of EHV-1, Ab4 and RacL11, were added to PRP ex vivo and platelet membrane expression of P selectin was measured as a marker of platelet activation. Drug concentrations were monitored in a Factor Xa inhibition (anti-Xa) bioassay. We found that LMWH, but not UFH, inhibited platelet activation induced by low concentrations (1 × 106 plaque forming units/mL) of both EHV-1 strains at 40 h. At this time point, all horses had anti-Xa activities above 0.1 U/ml (range 0.15–0.48 U/ml) with LMWH, but not UFH. By 60 h, a platelet inhibitory effect was no longer detected and anti-Xa activity had decreased (range 0.03 to 0.07 U/ml) in LMWH-treated horses. Neither heparin inhibited platelet activation induced by high concentrations (5 × 106 plaque forming units/mL) of the RacL11 strain. We found substantial between horse variability in EHV-1-induced platelet activation at baseline and after treatment. Minor injection site reactions developed in horses given either heparin. These results suggest that LMWH therapy may prevent thrombotic sequelae of EHV-1, however further evaluation of dosage regimens is required. PMID:29892605

  7. Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR-/- mice.

    PubMed

    Przyborowski, K; Kassassir, H; Wojewoda, M; Kmiecik, K; Sitek, B; Siewiera, K; Zakrzewska, A; Rudolf, A M; Kostogrys, R; Watala, C; Zoladz, J A; Chlopicki, S

    2017-11-01

    Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI 2 ) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR - /- mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB 2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF 1α , nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR - /- mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB 2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR - /- but not in WT mice, strenuous exercise partially inhibited TXB 2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR - /- mice; however, only 7-month-old ApoE/LDLR - /- mice showed lower TXB 2 production after exercise. In female 4-6-month-old ApoE/LDLR - /- but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF 1α was observed. In turn, the pre- and post-exercise plasma concentrations of nitrite (NO 2 - ) and nitrate (NO 3 - ) were decreased in ApoE/LDLR - /- as compared to that in age-matched WT mice. In conclusion, we demonstrated overactivation of platelets in ApoE/LDLR - /- as compared to WT mice. However, platelet activation in ApoE/LDLR - /- mice was not further increased by strenuous exercise, but was instead attenuated, a phenomenon not observed in WT mice. This phenomenon could be linked to compensatory up-regulation of PGI 2 -dependent anti-platelet mechanisms in ApoE/LDLR - /- mice.

  8. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    PubMed

    Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.

  9. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation.

    PubMed

    Potter, Timothy M; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A

    2018-01-01

    Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.

  10. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a sufficient level for triggering potentiation. Once the synaptic efficacy has changed, it becomes a long-lasting phenomenon only through a subsequent action of platelet-activating factor.

  11. High sensitivity and specificity of a new functional flow cytometry assay for clinically significant heparin-induced thrombocytopenia antibodies.

    PubMed

    Garritsen, H S; Probst-Kepper, M; Legath, N; Eberl, W; Samaniego, S; Woudenberg, J; Schuitemaker, J H N; Kroll, H; Gurney, D A; Moore, G W; Zehnder, J L

    2014-04-01

    Heparin-induced thrombocytopenia (HIT) is a life-threatening condition, in which the anticoagulant heparin, platelet factor 4 (PF4), and platelet-activating antibodies form complexes with prothrombotic properties. Laboratory tests to support clinical diagnosis are subdivided into functional, platelet activation assays, which lack standardization, or immunological assays, which have moderate specificity toward HIT. In this study, clinical performance of HITAlert, a novel in vitro diagnostic (IVD) registered platelet activation assay, was tested in a large cohort of HIT-suspected patients and compared with immunological assays. From 346 HIT-suspected patients (single center), clinical data including 4T pretest probability results, citrated platelet-poor plasmas, and sera were collected, allowing direct comparison of clinical observations with HITAlert results. HITAlert performance was compared with PF4 IgG ELISA (246 patients, three centers) and PF4 PaGIA (298 patients, single center). HITAlert showed high sensitivity (88.2%) and specificity (99.1%) when compared with clinical diagnosis. Agreement of HITAlert with PF4 ELISA- and PF4 PaGIA-positive patients is low (52.7 and 23.2%, respectively), while agreement with PF4 IgG ELISA- and PF4 PaGIA-negative patients is very high (98.1 and 99.1%, respectively). HITAlert performance is excellent when compared with clinical HIT diagnosis, making it a suitable assay for rapid testing of platelet activation due to anticoagulant therapy. © 2013 John Wiley & Sons Ltd.

  12. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  13. Clotting and fibrinolytic changes after firefighting activities.

    PubMed

    Smith, Denise L; Horn, Gavin P; Petruzzello, Steven J; Fahey, George; Woods, Jeffrey; Fernhall, Bo

    2014-03-01

    Approximately 45%-50% of all duty-related deaths among firefighters are due to sudden cardiovascular events, and a disproportionate number of these fatalities occur after strenuous fire suppression activities. The objective of this study is to evaluate the effect of strenuous firefighting activities on platelets, coagulation, and fibrinolytic activity and to document the extent to which these variables recovered 2 h after completion of the firefighting activity. Firefighters performed 18 min of simulated firefighting activities in a training structure that contained live fires. After firefighting activities, firefighters were provided with fluid and allowed to cool down and then recovered for 2 h in an adjacent room. Blood samples were obtained prefirefighting, postfirefighting, and 2 h postfirefighting. Platelet number, platelet activity, and coagulatory potential increased immediately postfirefighting and many variables (platelet function, partial thromboplastin time, and factor VIII) reflected a procoagulatory state even after 2 h of recovery. Fibrinolysis, as reflected by tissue plasminogen activator, also was enhanced immediately postfirefighting but returned to baseline values by 2 h postfirefighting. In contrast, inhibition of fibrinolysis, as evidenced by a reduction in plasminogen activator inhibitor-1, was depressed at 2 h postfirefighting. Firefighting resulted in elevated coagulatory and fibrinolytic activity. However, 2 h postfirefighting, tissue plasminogen activator returned to baseline and coagulatory potential remained elevated. The procoagulatory state that exists after firefighting may provide a mechanistic link to the reports of sudden cardiac events after strenuous fire suppression activities.

  14. Alloimmunization in Congenital Deficiencies of Platelet Surface Glycoproteins: Focus on Glanzmann's Thrombasthenia and Bernard-Soulier's Syndrome.

    PubMed

    Poon, Man-Chiu; d'Oiron, Roseline

    2018-06-07

    Glanzmann's thrombasthenia (GT) and Bernard-Soulier's syndrome (BSS) are well-understood congenital bleeding disorders, showing defect/deficiency of platelet glycoprotein (GP) IIb/IIIa (integrin αIIbβ3) and GPIb-IX-V complexes respectively, with relevant clinical, laboratory, biochemical, and genetic features. Following platelet transfusion, affected patients may develop antiplatelet antibodies (to human leukocyte antigen [HLA], and/or αIIbβ3 in GT or GPIb-IX in BSS), which may render future platelet transfusion ineffective. Anti-αIIbβ3 and anti-GPIb-IX may also cross the placenta during pregnancy to cause thrombocytopenia and bleeding in the fetus/neonate. This review will focus particularly on the better studied GT to illustrate the natural history and complications of platelet alloimmunization. BSS will be more briefly discussed. Platelet transfusion, if unavoidable, should be given judiciously with good indications. Patients following platelet transfusion, and women during and after pregnancy, should be monitored for the development of platelet antibodies. There is now a collection of data suggesting the safety and effectiveness of recombinant activated factor VII in the management of affected patients with platelet antibodies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Overview on platelet preservation: better controls over storage lesion.

    PubMed

    Ohto, Hitoshi; Nollet, Kenneth E

    2011-06-01

    Platelet storage lesion (PSL), correlating with reduced in vivo recovery/survival and hemostatic capacity after transfusion, is characterized essentially by morphological and molecular evidence of platelet activation and energy consumption in the medium. Processes that limit shelf-life are multifactorial, and include both necrosis and apoptosis. PSL is greatly influenced by factors including duration of storage, temperature, ratio of platelet number to media volume, solution composition with respect to energy content and buffering capacity, and gas permeability of the container. Recent progress for slowing PSL has been made with storage media that more effectively fuel ATP production and buffer the inevitable effects of metabolism. Improved oxygen-permeability of containers also helps to maintain aerobic-dominant glycolysis. Patients stand to benefit from platelet products of higher intrinsic quality that store well until the moment of transfusion. Copyright © 2011. Published by Elsevier Ltd.

  16. Effect of the FXa inhibitors Rivaroxaban and Apixaban on platelet activation in patients with atrial fibrillation.

    PubMed

    Steppich, B; Dobler, F; Brendel, L C; Hessling, G; Braun, S L; Steinsiek, A L; Deisenhofer, I; Hyseni, A; Roest, M; Ott, I

    2017-05-01

    Rivaroxaban and Apixaban, increasingly used for stroke prevention in non-valvular atrial fibrillation (AF), might impact platelet reactivity directly or indirectly. By inhibition of Factor Xa (FXa) they preclude not only generation of relevant thrombin amounts but also block signalling of FXa via protease activated receptors. However, weather FXa-inhibition affects platelet haemostasis remains incompletely known. One hundred and twenty-eight patients with AF on chronic anticoagulation with either Rivaroxaban or Apixaban for at least 4 weeks were included in the study. In a time course group (25 on Rivaroxaban, 13 on Apixaban) venous blood samples were taken before NOAC medication intake in the morning as well as 2 and 6 h afterwards. In 90 patients (Rivaroxaban n = 73, Apixaban n = 17) blood samples were drawn during left atrial RFA procedures before as well as 10 and 60 min after the first heparin application (RFA group). Platelet reactivity analyzed by whole blood aggregometry (Multiplate Analyzer, Roche) in response to ADP, Collagen, TRAP and ASPI (arachidonic acid) was not altered by Rivaroxaban or Apixaban neither in the time course nor in the RFA group. Moreover, soluble P-selectin, Thrombospondin, von Willebrand Factor and beta thromboglobulin plasma levels, measured by ELISA, showed no statistically significant changes in both clinical settings for either FXa-inhibitor. The present study fails to demonstrate any significant changes on platelet reactivity in patients with AF under chronic Rivaroxaban or Apixaban medication, neither for trough or peak levels nor in case of a haemostatic activation in vivo as depicted by RFA procedures.

  17. Platelet Activation by Streptococcus pyogenes Leads to Entrapment in Platelet Aggregates, from Which Bacteria Subsequently Escape

    PubMed Central

    Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias

    2014-01-01

    Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984

  18. Antiplatelet properties of escitalopram in patients with the metabolic syndrome: a dose-ranging in vitro study.

    PubMed

    Atar, Dan; Malinin, Alex; Pokov, Alex; van Zyl, Louis; Frasure-Smith, Nancy; Lesperance, Francois; Serebruany, Victor L

    2007-11-01

    There is an increasing body of evidence suggesting that selective serotonin reuptake inhibitors exhibit clinical benefit beyond treating depression, by simultaneously inhibiting platelet activity. We recently demonstrated that escitalopram (ESC), but not its major metabolites, inhibits multiple platelet biomarkers in healthy volunteers. Considering that the metabolic syndrome represents one of the major risk factors for vascular disease, we here determined how ESC affects platelet activity in such patients. We assessed the in vitro effects of preincubation with escalating (50-200 nM/l) concentrations of ESC on platelet aggregation, expression of major surface receptors by flow cytometry, and quantitatively by platelet function analyzers. Blood samples were obtained from 20 aspirin-naïve patients with documented metabolic syndrome. Pretreatment of blood samples with medium (150 nM/l), or high (200 nM/l) doses of ESC resulted in a significant inhibition of platelet aggregation induced by ADP (p=0.007) and by collagen (p=0.004). Surface platelet expression of GPIb (CD42, p=0.03), LAMP-3 (CD63, p=0.04), and GP37 (CD165, p=0.03) was decreased in the ESC-pretreated samples. Closure time by the PFA-100 analyzer was prolonged after the 200 nM/l dose (p=0.02), indicating platelet inhibition under high shear conditions. On the other hand, the lowest tested concentration of ESC (50 nM/l) did not affect platelet activity in these patients. The in vitro antiplatelet characteristics of ESC in patients with the metabolic syndrome are similar to those in healthy volunteers. However, higher ESC doses are required to induce equally potent platelet inhibition. These data justify prospective ex vivo studies with the highest therapeutic dose to determine the potential clinical advantage of ESC in high-risk patients with vascular disease.

  19. An In Vitro Investigation of Platelet-Rich Plasma-Gel as a Cell and Growth Factor Delivery Vehicle for Tissue Engineering

    PubMed Central

    Jalowiec, Jagoda M.; D'Este, Matteo; Bara, Jennifer Jane; Denom, Jessica; Menzel, Ursula; Alini, Mauro; Herrmann, Marietta

    2016-01-01

    Platelet-rich plasma (PRP) has been used for different applications in human and veterinary medicine. Many studies have shown promising therapeutic effects of PRP; however, there are still many controversies regarding its composition, properties, and clinical efficacy. The aim of this study was to evaluate the influence of different platelet concentrations on the rheological properties and growth factor (GF) release profile of PRP-gels. In addition, the viability of incorporated bone marrow-derived human mesenchymal stem cells (MSCs) was investigated. PRP (containing 1000 × 103, 2000 × 103, and 10,000 × 103 platelets/μL) was prepared from human platelet concentrates. Platelet activation and gelification were achieved by addition of human thrombin. Viscoelastic properties of PRP-gels were evaluated by rheological studies. The release of GFs and inflammatory proteins was measured using a membrane-based protein array and enzyme-linked immunosorbent assay. MSC viability and proliferation in PRP-gels were assessed over 7 days by cell viability staining. Cell proliferation was examined using DNA quantification. Regardless of the platelet content, all tested PRP-gels showed effective cross-linking. A positive correlation between protein release and the platelet concentration was observed at all time points. Among the detected proteins, the chemokine CCL5 was the most abundant. The greatest release appeared within the first 4 h after gelification. MSCs could be successfully cultured in PRP-gels over 7 days, with the highest cell viability and DNA content found in PRP-gels with 1000 × 103 platelets/μL. The results of this study suggest that PRP-gels represent a suitable carrier for both cell and GF delivery for tissue engineering. Notably, a platelet concentration of 1000 × 103 platelets/μL appeared to provide the most favorable environment for MSCs. Thus, the platelet concentration is an important consideration for the clinical application of PRP-gels. PMID:26467221

  20. Overview of platelet physiology and laboratory evaluation of platelet function.

    PubMed

    Rodgers, G M

    1999-06-01

    Appropriate laboratory testing for the platelet-type bleeding disorders hinges on an adequate assessment in the history and physical examination. Patients with histories and screening laboratory results consistent with coagulation disorders (hemophilia, disseminated intravascular coagulation) are not appropriate candidates for platelet function testing. In contrast, patients with a lifelong history of platelet-type bleeding symptoms and perhaps a positive family history of bleeding would be appropriate for testing. Figure 6 depicts one strategy to evaluate these patients. Platelet morphology can easily be evaluated to screen for two uncommon qualitative platelet disorders: Bernard-Soulier syndrome (associated with giant platelets) and gray platelet syndrome, a subtype of storage pool disorder in which platelet granulation is morphologically abnormal by light microscopy. If the bleeding disorder occurred later in life (no bleeding with surgery or trauma early in life), the focus should be on acquired disorders of platelet function. For those patients thought to have an inherited disorder, testing for vWD should be done initially because approximately 1% of the population has vWD. The complete vWD panel (factor VIII coagulant activity, vWf antigen, ristocetin cofactor activity) should be performed because many patients will have abnormalities of only one particular panel component. Patients diagnosed with vWD should be classified using multimeric analysis to identify the type 1 vWD patients likely to respond to DDAVP. If vWD studies are normal, platelet aggregation testing should be performed, ensuring that no antiplatelet medications have been ingested at least 1 week before testing. If platelet aggregation tests are normal and if suspicion for an inherited disorder remains high, vWD testing should be repeated. The evaluation of thrombocytopenia may require bone marrow examination to exclude primary hematologic disorders. If future studies with thrombopoietin assays confirm preliminary results, however, the bone marrow examination of certain patients may be replaced by a thrombopoietin level.

  1. Platelet utilization: a Canadian Blood Services research and development symposium.

    PubMed

    Webert, Kathryn E; Alam, Asim Q; Chargé, Sophie B; Sheffield, William P

    2014-04-01

    Considerable progress has been made in recent years in understanding platelet biology and in strengthening the clinical evidence base around platelet transfusion thresholds and appropriate platelet dosing. Platelet alloimmunization rates have also declined. Nevertheless, controversies and uncertainties remain that are relevant to how these products can best be used for the benefit of platelet transfusion recipients. Platelets are unique among the blood products directly derived from whole blood or apheresis donations in requiring storage, with shaking, at ambient temperature. Storage is accordingly constrained between the need to limit the growth of any microbes in the product and the need to minimize losses in platelet function associated with storage. Proteomic and genomic approaches are being applied to the platelet storage lesion. Platelet inventory management is made challenging by these constraints. Although bacterial screening has enhanced the safety of platelet transfusions, pathogen reduction technology may offer further benefits. Continuing clinical investigations are warranted to understand the value of transfusing platelets prophylactically or only in response to bleeding in different patient groups and how best to manage the most grievously injured trauma patients. Patients refractory to platelet transfusions also require expert clinical management. The engineering of platelet substitute products is an active area of research, but considerable hurdles remain before any clinical uses may be contemplated. Roles for platelets in biological areas distinct from hemostasis are also emerging. Platelet utilization is variably affected by all of the above factors, by demographic changes, by new medications, and by new patient care approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    PubMed

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

    PubMed

    Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J

    1989-09-01

    Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.

  4. Differential effects of somatostatin on circulating tissue factor procoagulant activity and protein.

    PubMed

    Boden, Guenther; Vaidyula, Vijender; Homko, Carol; Mozzoli, Maria; Rao, A Koneti

    2007-05-01

    The tissue factor (TF) pathway is the primary mechanism for initiation of blood coagulation. Circulating blood contains TF, which originates mainly from monocytes and is thrombogenic. The presence of somatostatin (SMS) receptors on monocytes suggests the possibility that SMS may regulate TF synthesis and/or release. Circulating TF procoagulant activity (TF-PCA), factor VIIa activity (FVIIa; clotting assays), TF antigen (TF-Ag; ELISA), prothrombin fragment 1.2 (F1.2), thrombin-antithrombin complexes (ELISAs), CD40 ligand expression on platelets, and monocyte-platelet aggregates (flow cytometry) were determined in blood from normal volunteers undergoing 24 h of basal glucose/basal insulin (BG/BI) clamps and high-glucose/high-insulin (HG/HI) clamps with and without SMS. Infusions of SMS under basal conditions (BG/BI) raised TF-PCA 1.8-fold (P < 0.03), TF-Ag 2.3-fold (P < 0.001), and TF expression on monocytes by 36% (P < 0.001) and decreased plasma levels of FVIIa by 30% (P < 0.001). Infusion of SMS reduced the 8.6-fold HG/HI-induced increase in TF-Ag by 26% and the 8.6-fold increase in TF-PCA by 100%. SMS also prevented the 60% increase in TF expression on monocytes, the 2.2-fold increase in F1.2, the 40% increase in CD40L expression on platelets, and the 17% increase in monocyte-platelet aggregates seen during HG/HI. We conclude that SMS completely prevented HG/HI-induced TF activation in normal volunteers and may be of use to reduce the procoagulant state and acute vascular events in hyperinsulinemic insulin-resistant patients with type 2 diabetes.

  5. Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor beta receptor.

    PubMed

    Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel

    2005-02-01

    The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.

  6. The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.

    PubMed Central

    May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.

    1992-01-01

    1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722

  7. Native Platelet Aggregation and Response to Aspirin in Persons With the Metabolic Syndrome and Its Components

    PubMed Central

    Yanek, Lisa R.; Faraday, Nauder; Moy, Taryn F.; Becker, Lewis C.; Becker, Diane M.

    2009-01-01

    Abstract Background Aspirin chemoprophylaxis for coronary artery disease (CAD) is recommended for persons with the metabolic syndrome. We determined the extent to which persons with increased risk for CAD with and without the metabolic syndrome accrued antiplatelet benefits from aspirin therapy. Methods We examined 2088 apparently healthy persons with a family history of CAD for the components that comprise metabolic syndrome and classified them according to national guidelines as having the metabolic syndrome or not. We assayed whole blood for ex vivo agonist-induced platelet aggregation (collagen, adenosine diphosphate, and arachidonic acid) and assessed a measure of in vivo platelet activation using urinary 11-dehydrothromboxane B2 (TxM), at baseline and after 2 weeks of treatment with 81 mg/day aspirin. Results At baseline, in multivariable analyses adjusted for race, age, sex, and risk factors, persons with metabolic syndrome had more aggregable platelets in response to all three agonists and higher levels of TxM (P < 0.005 for all) compared to those without metabolic syndrome. Postaspirin, although all individuals had lower platelet activation measures, subjects with metabolic syndrome retained higher platelet aggregation to adenosine diphosphate (P = 0.002) and higher TxM (P < 0.001), while aggregation to arachidonic acid (P = 0.12) and collagen (P = 0.08) were marginally different between those with and without the metabolic syndrome. Conclusions Among persons with an increased risk for CAD, metabolic syndrome was independently associated with overall greater platelet aggregation and activation at baseline and lesser, though significant, effect following aspirin, suggesting that low-dose aspirin therapy alone may not be sufficient to provide optimal anti-platelet protection in persons with metabolic syndrome. PMID:19351291

  8. CXCL4-platelet factor 4, heparin-induced thrombocytopenia and cancer.

    PubMed

    Sandset, Per Morten

    2012-04-01

    Platelet factor 4 (CXCL4-PF4) is a chemokine that binds to and neutralizes heparin and other negatively charged proteoglycans, but is also involved in angiogenesis and cancer development. In some patients exposed to heparin, antibodies are generated against the CXCL-PF4/heparin complex that may activate platelets and coagulation and lead to thrombocytopenia and arterial or venous thrombosis, a condition commonly named heparin induced thrombocytopenia (HIT). HIT has been investigated in numerous clinical settings, but there is limited data on the epidemiology and phenotype of HIT in cancer patients. The present review describes the role of CXCL4-PF4 in cancer, the immunobiology, clinical presentation and diagnosis of HIT, and the specific problems faced in cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fruitflow®: the first European Food Safety Authority-approved natural cardio-protective functional ingredient.

    PubMed

    O'Kennedy, Niamh; Raederstorff, Daniel; Duttaroy, Asim K

    2017-03-01

    Hyperactive platelets, in addition to their roles in thrombosis, are also important mediators of atherogenesis. Antiplatelet drugs are not suitable for use where risk of a cardiovascular event is relatively low. It is therefore important to find alternative safe antiplatelet inhibitors for the vulnerable population who has hyperactive platelets in order to reduce the risk of cardiovascular disease. Potent antiplatelet factors were identified in water-soluble tomato extract (Fruitflow ® ), which significantly inhibited platelet aggregation. Human volunteer studies demonstrated the potency and bioavailability of active compounds in Fruitflow ® . Fruitflow ® became the first product in Europe to obtain an approved, proprietary health claim under Article 13(5) of the European Health Claims Regulation 1924/2006 on nutrition and health claims made on foods. Fruitflow ® is now commercially available in different countries worldwide. In addition to its reduction in platelet reactivity, Fruitflow ® contains anti-angiotensin-converting enzyme and anti-inflammatory factors, making it an effective and natural cardio-protective functional food.

  10. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia.

    PubMed

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-07-15

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells.

  11. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  12. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  13. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus.

    PubMed

    Nhek, Sokha; Clancy, Robert; Lee, Kristen A; Allen, Nicole M; Barrett, Tessa J; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D; Buyon, Jill P; Berger, Jeffrey S

    2017-04-01

    Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. © 2017 American Heart Association, Inc.

  14. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    PubMed

    Trugilho, Monique Ramos de Oliveira; Hottz, Eugenio Damaceno; Brunoro, Giselle Villa Flor; Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patrícia T; Perales, Jonas

    2017-05-01

    Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses.

  15. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue

    PubMed Central

    Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A.; Perales, Jonas

    2017-01-01

    Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses. PMID:28542641

  16. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    PubMed Central

    Chen, Nan-Fu; Sung, Chun-Sung; Wen, Zhi-Hong; Chen, Chun-Hong; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Tsui, Kuan-Hao; Chen, Wu-Fu

    2018-01-01

    Platelet-rich plasma (PRP) is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), and epithelial growth factor (EGF). The complex mechanisms underlying spinal cord injury (SCI) diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS) injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t.) PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration) exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an autologous, biocompatible, nontoxic material that does not result in a major immune response. In addition, based on its safety and ease of preparation, we hypothesize that PRP is a promising therapeutic agent for SCI. PMID:29740270

  17. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond.

    PubMed

    Xu, Xiaohong Ruby; Zhang, Dan; Oswald, Brigitta Elaine; Carrim, Naadiya; Wang, Xiaozhong; Hou, Yan; Zhang, Qing; Lavalle, Christopher; McKeown, Thomas; Marshall, Alexandra H; Ni, Heyu

    2016-12-01

    Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.

  18. Platelet activation suppresses HIV-1 infection of T cells

    PubMed Central

    2013-01-01

    Background Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. Results We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Conclusions Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens. PMID:23634812

  19. Platelet activation suppresses HIV-1 infection of T cells.

    PubMed

    Solomon Tsegaye, Theodros; Gnirß, Kerstin; Rahe-Meyer, Niels; Kiene, Miriam; Krämer-Kühl, Annika; Behrens, Georg; Münch, Jan; Pöhlmann, Stefan

    2013-05-01

    Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.

  20. Palladin is involved in platelet activation and arterial thrombosis.

    PubMed

    Chen, Xuejiao; Fan, Xuemei; Tan, Juan; Shi, Panlai; Wang, Xiyi; Wang, Jinjin; Kuang, Ying; Fei, Jian; Liu, Junling; Dang, Suying; Wang, Zhugang

    2017-01-01

    The dynamics of actin cytoskeleton have been shown to play a critical role during platelet activation. Palladin is an actin-associated protein, serving as a cytoskeleton scaffold to bundle actin fibers and actin cross linker. The functional role of palladin on platelet activation has not been investigated. Here, we characterized heterozygous palladin knockout (palladin +/- ) mice to elucidate the platelet-related functions of palladin. The results showed that palladin was expressed in platelets and moderate palladin deficiency accelerated hemostasis and arterial thrombosis. The aggregation of palladin +/- platelets was increased in response to low levels of thrombin, U46619, and collagen. We also observed enhanced spreading of palladin +/- platelets on immobilized fibrinogen (Fg) and increased rate of clot retraction in platelet-rich plasma (PRP) containing palladin +/- platelets. Furthermore, the activation of the small GTPase Rac1 and Cdc42, which is associated with cytoskeletal dynamics and platelet activation signalings, was increased in the spreading and aggregating palladin +/- platelets compared to that in wild type platelets. Taken together, these findings indicated that palladin is involved in platelet activation and arterial thrombosis, implying a potent role of palladin in pathophysiology of thrombotic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Platelets and hemophilia: A review of the literature.

    PubMed

    Riedl, Julia; Ay, Cihan; Pabinger, Ingrid

    2017-07-01

    Hemophilia A and B are inherited bleeding disorders due to deficiencies of the clotting factors VIII and IX, respectively. The severity of the disease correlates with remaining factor levels, although individual differences in bleeding tendency are seen despite similar factor levels. While thrombin generation is severely impaired in persons with hemophilia, primary hemostasis, i.e. platelet function, has been generally considered to be normal. However, some studies reported prolonged bleeding times in hemophilia, suggesting that also primary hemostasis is affected. In several other studies different aspects of platelet function in hemophilia have been investigated in more detail and various alterations were discovered, such as increased platelet P-selectin expression, a lower number of procoagulant, so-called 'coated' platelets, lower aggregation upon co-incubation with tissue factor, or reduced platelet contractile forces during clot formation in comparison to healthy individuals. An influence of platelet function on clinical phenotype was suggested, which might contribute in part to variations in bleeding tendency in hemophilic patients with similar factor levels. However, the available evidence is currently limited and no clear correlations between platelet function parameters and clinical phenotypes have been demonstrated. The impact of alterations of platelet function in hemophilia remains to be better defined. Another interesting role of platelets in hemophilia has been reported recently by establishing a novel gene-therapeutic strategy using platelets as a delivery system for FVIII, showing promising results in animal models. This review gives an overview on the currently published literature on platelet function and the potential roles of platelets in hemophilia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Diagnosis and treatment of heparin-induced thrombocytopenia (HIT) based on its atypical immunological features].

    PubMed

    Miyata, Shigeki; Maeda, Takuma

    2016-03-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic side effect of heparin therapy caused by HIT antibodies, i.e., anti-platelet factor 4 (PF4)/heparin IgG with platelet-activating properties. For serological diagnosis, antigen immunoassays are commonly used worldwide. However, such assays do not indicate their platelet-activating properties, leading to low specificity for the HIT diagnosis. Therefore, over-diagnosis is currently the most serious problem associated with HIT. The detection of platelet-activating antibodies using a washed platelet activation assay is crucial for appropriate HIT diagnosis. Recent advances in our understanding of the pathogenesis of HIT include it having several clinical features atypical for an immune-mediated disease. Heparin-naïve patients can develop IgG antibodies as early as day 4, as in a secondary immune response. Evidence for an anamnestic response on heparin re-exposure is lacking. In addition, HIT antibodies are relatively short-lived, unlike those in a secondary immune response. These lines of evidence suggest that the mechanisms underlying HIT antibody formation may be compatible with a non-T cell-dependent immune reaction. These atypical clinical and serological features should be carefully considered while endeavoring to accurately diagnose HIT, which leads to appropriate therapies such as immediate administration of an alternative anticoagulant to prevent thromboembolic events and re-administration of heparin during surgery involving cardiopulmonary bypass when HIT antibodies are no longer detectable.

  3. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents.

    PubMed

    Tribulatti, María Virginia; Mucci, Juan; Van Rooijen, Nico; Leguizamón, María Susana; Campetella, Oscar

    2005-01-01

    Strong thrombocytopenia is observed during acute infection with Trypanosoma cruzi, the parasitic protozoan agent of American trypanosomiasis or Chagas' disease. The parasite sheds trans-sialidase, an enzyme able to mobilize the sialyl residues on cell surfaces, which is distributed in blood and is a virulence factor. Since the sialic acid content on the platelet surface is crucial for determining the half-life of platelets in blood, we examined the possible involvement of the parasite-derived enzyme in thrombocytopenia induction. We found that a single intravenous injection of trans-sialidase into naive mice reduced the platelet count by 50%, a transient effect that lasted as long as the enzyme remained in the blood. CD43(-/-) mice were affected to a similar extent. When green fluorescent protein-expressing platelets were treated in vitro with trans-sialidase, their sialic acid content was reduced together with their life span, as determined after transfusion into naive animals. No apparent deleterious effect on the bone marrow was observed. A central role for Kupffer cells in the clearance of trans-sialidase-altered platelets was revealed after phagocyte depletion by administration of clodronate-containing liposomes and splenectomy. Consistent with this, parasite strains known to exhibit more trans-sialidase activity induced heavier thrombocytopenia. Finally, the passive transfer of a trans-sialidase-neutralizing monoclonal antibody to infected animals prevented the clearance of transfused platelets. Results reported here strongly support the hypothesis that the trans-sialidase is the virulence factor that, after depleting the sialic acid content of platelets, induces the accelerated clearance of the platelets that leads to the thrombocytopenia observed during acute Chagas' disease.

  4. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion.

    PubMed

    Södergren, A L; Tynngård, N; Berlin, G; Ramström, S

    2016-02-01

    Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.

  5. Thrombopoietin as Biomarker and Mediator of Cardiovascular Damage in Critical Diseases

    PubMed Central

    Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe

    2012-01-01

    Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic. PMID:22577249

  6. Prothrombotic mechanisms in patients with congenital p.Cys89Tyr mutation in CD59.

    PubMed

    Tabib, Adi; Hindi, Issam; Karbian, Netanel; Zelig, Orly; Falach, Batla; Mevorach, Dror

    2018-06-11

    Thrombosis is the prognostic factor with the greatest effect on survival in patients with paroxysmal nocturnal hemoglobinuria (PNH), who lack dozens of membrane surface proteins. We recently described a primary homozygous Cys89Tyr congenital nonfunctioning CD59 in humans with clinical manifestation in infancy, associated with chronic hemolysis, recurrent strokes, and relapsing peripheral demyelinating neuropathy. Here we investigated hypercoagulability mechanisms characterizing the syndrome. Membrane attack complex (MAC) deposition (anti-SC5b-9) and free hemoglobin (colorimetric assay) were assessed. Platelet activation was identified (anti-CD61, anti-CD62P), and microparticles (MPs) of 0.5-0.9 μm, were characterized (Annexin V, anti-human GlyA, anti-CD15, anti-CD14, anti-CD61). Platelet-monocyte aggregation was assessed with FlowSight. 2/7 patients (29%) with homozygosity for Cys89Tyr and 6/12 (50%) with any of four described CD59 mutations had recurrent strokes. In plasma samples from four patients carrying identical mutations, MAC deposition was increased on RBCs (p < 0.0003), neutrophils (p < 0.009), and platelets (p < 0.0003). Free-plasma hemoglobin levels were abnormally high, up to 100 mg/dl. Patients with CD59 mutation had RBC-derived MP levels 9-fold higher than those in healthy controls (p < 0.01), and 2-2.5 fold higher than PNH patients (p < 0.09). Leukocyte-activated platelet aggregation was increased (p < 0.0062). Loss of CD59 was shown in the endothelium of these patients. Nonfunctioning CD59 is a major risk factor for stroke and hypercoagulability. Uncontrolled hemolysis causes massive MP release and endothelial heme damage. MAC attack on unprotected endothelium and platelet activation and aggregation with leukocytes mediate additional mechanisms leading to vascular occlusion. It is suggested that CD59 loss represents a major arterial prothrombotic factor in PNH and additional diseases. Copyright © 2018. Published by Elsevier Ltd.

  7. Pathophysiologic roles of the fibrinogen gamma chain.

    PubMed

    Farrell, David H

    2004-05-01

    Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.

  8. The effects of platelet lysate patches on the activity of tendon-derived cells.

    PubMed

    Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2018-03-01

    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Reversal of Apixaban Induced Alterations in Hemostasis by Different Coagulation Factor Concentrates: Significance of Studies In Vitro with Circulating Human Blood

    PubMed Central

    Arellano-Rodrigo, Eduardo; Roquer, Jaume; Reverter, Joan Carles; Sanz, Victoria Veronica; Molina, Patricia; Lopez-Vilchez, Irene; Diaz-Ricart, Maribel; Galan, Ana Maria

    2013-01-01

    Apixaban is a new oral anticoagulant with a specific inhibitory action on FXa. No information is available on the reversal of the antihemostatic action of apixaban in experimental or clinical settings. We have evaluated the effectiveness of different factor concentrates at reversing modifications of hemostatic mechanisms induced by moderately elevated concentrations of apixaban (200 ng/ml) added in vitro to blood from healthy donors (n = 10). Effects on thrombin generation (TG) and thromboelastometry (TEM) parameters were assessed. Modifications in platelet adhesive, aggregating and procoagulant activities were evaluated in studies with blood circulating through damaged vascular surfaces, at a shear rate of 600 s−1. The potential of prothrombin complex concentrates (PCCs; 50 IU/kg), activated prothrombin complex concentrates (aPCCs; 75 IU/kg), or activated recombinant factor VII (rFVIIa; 270 μg/kg), at reversing the antihemostatic actions of apixaban, were investigated. Apixaban interfered with TG kinetics. Delayed lag phase, prolonged time to peak and reduced peak values, were improved by the different concentrates, though modifications in TG patterns were diversely affected depending on the activating reagents. Apixaban significantly prolonged clotting times (CTs) in TEM studies. Prolongations in CTs were corrected by the different concentrates with variable efficacies (rFVIIa≥aPCC>PCC). Apixaban significantly reduced fibrin and platelet interactions with damaged vascular surfaces in perfusion studies (p<0.05 and p<0.01, respectively). Impairments in fibrin formation were normalized by the different concentrates. Only rFVIIa significantly restored levels of platelet deposition. Alterations in hemostasis induced by apixaban were variably compensated by the different factor concentrates investigated. However, effects of these concentrates were not homogeneous in all the tests, with PCCs showing more efficacy in TG, and rFVIIa being more effective on TEM and perfusion studies. Our results indicate that rFVIIa, PCCs and aPCCs have the potential to restore platelet and fibrin components of the hemostasis previously altered by apixaban. PMID:24244342

  10. The important role of von Willebrand factor in platelet-derived FVIII gene therapy for murine hemophilia A in the presence of inhibitory antibodies.

    PubMed

    Shi, Q; Schroeder, J A; Kuether, E L; Montgomery, R R

    2015-07-01

    Our previous studies have demonstrated that targeting FVIII expression to platelets results in FVIII storage together with von Willebrand factor (VWF) in platelet α-granules and that platelet-derived FVIII (2bF8) corrects the murine hemophilia A phenotype even in the presence of high-titer anti-FVIII inhibitory antibodies (inhibitors). To explore how VWF has an impact on platelet gene therapy for hemophilia A with inhibitors. 2bF8 transgenic mice in the FVIII(-/-) background (2bF8(tg+/-) F8(-/-) ) with varying VWF phenotypes were used in this study. Animals were analyzed by VWF ELISA, FVIII activity assay, Bethesda assay and tail clip survival test. Only 18% of 2bF8(tg+/-) F8(-/-) VWF(-/-) animals, in which VWF was deficient, survived the tail clip challenge with inhibitor titers of 3-8000 BU mL(-1) . In contrast, 82% of 2bF8(tg+/-) F8(-/-) VWF(+/+) mice, which had normal VWF levels, survived tail clipping with inhibitor titers of 10-50,000 BU mL(-1) . All 2bF8(tg+/-) F8(-/-) VWF(-/-) mice without inhibitors survived tail clipping and no VWF(-/-) F8(-/-) mice survived this challenge. Because VWF is synthesized by endothelial cells and megakaryocytes and is distributed in both plasma and platelets in peripheral blood, we further investigated the effect of each compartment of VWF on platelet-FVIII gene therapy for hemophilia A with inhibitors. In the presence of inhibitors, 42% of animals survived tail clipping in the group with plasma-VWF and 50% survived in the platelet-VWF group. VWF is essential for platelet gene therapy for hemophilia A with inhibitors. Both platelet-VWF and plasma-VWF are required for optimal platelet-derived FVIII gene therapy for hemophilia A in the presence of inhibitors. © 2015 International Society on Thrombosis and Haemostasis.

  11. Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine

    PubMed Central

    Shimojo, Andréa Arruda Martins; Perez, Amanda Gomes Marcelino; Galdames, Sofia Elisa Moraga; Brissac, Isabela Cambraia de Souza; Santana, Maria Helena Andrade

    2015-01-01

    This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days. PMID:25821851

  12. Dose response of surfactants to attenuate gas embolism related platelet aggregation

    NASA Astrophysics Data System (ADS)

    Eckmann, David M.; Eckmann, Yonaton Y.; Tomczyk, Nancy

    2014-03-01

    Intravascular gas embolism promotes blood clot formation, cellular activation, and adhesion events, particularly with platelets. Populating the interface with surfactants is a chemical-based intervention to reduce injury from gas embolism. We studied platelet activation and platelet aggregation, prominent adverse responses to blood contact with bubbles. We examined dose-response relationships for two chemically distinct surfactants to attenuate the rise in platelet function stimulated by exposure to microbubbles. Significant reduction in platelet aggregation and platelet activation occurred with increasing concentration of the surfactants, indicating presence of a saturable system. A population balance model for platelet aggregation in the presence of embolism bubbles and surfactants was developed. Monte Carlo simulations for platelet aggregation were performed. Results agree qualitatively with experimental findings. Surfactant dose-dependent reductions in platelet activation and aggregation indicate inhibition of the gas/liquid interface's ability to stimulate cellular activation mechanically.

  13. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    PubMed

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  14. Role of G protein signaling in the formation of the fibrin(ogen)-integrin αIIbβ3-actin cytoskeleton complex in platelets.

    PubMed

    Budnik, Ivan; Shenkman, Boris; Savion, Naphtali

    2016-09-01

    Effective platelet function requires formation of a physical link between fibrin(ogen), integrin αIIbβ3, and cytoplasmic actin filaments. We investigated the role of the Gαq, Gαi, and Gα12/13 families of heterotrimeric GTP-binding proteins (G proteins) in the assembly of a ligand-αIIbβ3-actin cytoskeleton complex. Selective and combined activation of the G proteins was achieved by using combinations of various platelet agonists and inhibitors. Formation and stability of fibrinogen-αIIbβ3 interaction were evaluated by the extent of platelet aggregation and the rate of eptifibatide-induced platelet disaggregation; association of αIIbβ3 with the cytoskeleton was analyzed by western blot. Formation of the fibrin-αIIbβ3-actin cytoskeleton complex was evaluated by rotational thromboelastometry assay in which clot formation was induced by the mixture of reptilase and factor XIIIa. We demonstrated that involvement of heterotrimeric G proteins in the formation of the ligand-αIIbβ3-cytoskeleton complex depends on whether fibrinogen or fibrin serves as the integrin ligand. Formation of the fibrinogen-αIIbβ3-cytoskeleton complex requires combined activation of at least two G protein pathways while the maximal αIIbβ3-cytoskeleton association and the strongest αIIbβ3-fibrinogen binding supporting irreversible platelet aggregation require combined activation of all three-Gαq, Gαi, and Gα12/13-G protein families. In contrast, formation of the fibrin-αIIbβ3-cytoskeleton complex mediating clot retraction is critically dependent on the activation of the Gαi family, especially on the activation of Gαz.

  15. Antiplatelet Agents Can Promote Two-Peaked Thrombin Generation in Platelet Rich Plasma: Mechanism and Possible Applications

    PubMed Central

    Tarandovskiy, Ivan D.; Artemenko, Elena O.; Panteleev, Mikhail A.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.

    2013-01-01

    Background Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks. Objective We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve. Methods Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers. Results The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one. Conclusions Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation. PMID:23405196

  16. Effects of aliskiren, a renin inhibitor, on biomarkers of platelet activity, coagulation and fibrinolysis in subjects with multiple risk factors for vascular disease.

    PubMed

    Serebruany, V L; Malinin, A; Barsness, G; Vahabi, J; Atar, D

    2008-05-01

    Aliskiren, an octanamide, is nonpeptide, low molecular weight, orally active renin inhibitor effectively preventing angiotensin and aldosterone release. This drug has been recently approved for the treatment of hypertension. Considering potential links between hypertension, platelets, the coagulation cascade and fibrinolysis we sought to evaluate the effect of aliskiren on human biomarkers of hemostasis. In vitro effects of whole blood preincubation with escalating concentrations of aliskiren (500, 1,000 and 2,000 ng ml(-1)) were assessed in 20 aspirin-naive volunteers with multiple risk factors for vascular disease. A total of 33 biomarkers were measured, of which 18 are related to platelet function, 12 to coagulation and 3 to fibrinolysis. Pretreatment of blood samples with aliskiren 500 ng ml(-1) resulted in a significant increase of antithrombin-III (AT-III) activity (P=0.003). All other tested biomarkers were not significantly affected. Spiking whole blood with the higher aliskiren doses was associated with various trends in biomarker activity, where 1000 ng ml(-1) concentration mostly decreased (7/33), and 2,000 ng ml(-1) mostly increased (6/33) some biomarkers. In the therapeutic concentration of 500 ng ml(-1) aliskiren does not affect hemostatic biomarkers, except for a moderate but highly significant (P=0.003) increase of AT-III activity. Higher aliskiren doses were associated with more profound biomarker changes, but they are likely not to be clinically relevant since they show diverging (that is, both mild antiplatelet and platelet-activating) trends, and considering the 2- to 4-fold safety margin. It is suggested that antithrombotic properties of aliskiren be explored further in an ex vivo clinical setting.

  17. Aspirin Hydrolysis in Plasma Is a Variable Function of Butyrylcholinesterase and Platelet-activating Factor Acetylhydrolase 1b2 (PAFAH1b2)*

    PubMed Central

    Zhou, Gang; Marathe, Gopal K.; Hartiala, Jaana; Hazen, Stanley L.; Allayee, Hooman; Tang, W. H. Wilson; McIntyre, Thomas M.

    2013-01-01

    Aspirin is rapidly hydrolyzed within erythrocytes by a heterodimer of PAFAH1b2/PAFAH1b3 but also in plasma by an unidentified activity. Hydrolysis in both compartments was variable, with a 12-fold variation in plasma among 2226 Cleveland Clinic GeneBank patients. Platelet inhibition by aspirin was suppressed in plasma that rapidly hydrolyzed aspirin. Plasma aspirin hydrolysis was significantly higher in patients with coronary artery disease compared with control subjects (16.5 ± 4.4 versus 15.1 ± 3.7 nmol/ml/min; p = 3.4 × 10−8). A genome-wide association study of 2054 GeneBank subjects identified a single locus immediately adjacent to the BCHE (butyrylcholinesterase) gene associated with plasma aspirin hydrolytic activity (lead SNP, rs6445035; p = 9.1 × 10−17). However, its penetrance was low, and plasma from an individual with an inactivating mutation in BCHE still effectively hydrolyzed aspirin. A second aspirin hydrolase was identified in plasma, the purification of which showed it to be homomeric PAFAH1b2. This is distinct from the erythrocyte PAFAH1b2/PAFAH1b3 heterodimer. Inhibitors showed that both butyrylcholinesterase (BChE) and PAFAH1b2 contribute to aspirin hydrolysis in plasma, with variation primarily reflecting non-genetic variation of BChE activity. Therefore, aspirin is hydrolyzed in plasma by two enzymes, BChE and a new extracellular form of platelet-activating factor acetylhydrolase, PAFAH1b2. Hydrolytic effectiveness varies widely primarily from non-genetic variation of BChE activity that affects aspirin bioavailability in blood and the ability of aspirin to inhibit platelet aggregation. PMID:23508960

  18. Recombinant von Willebrand factor: preclinical development.

    PubMed

    Plaimauer, B; Schlokat, U; Turecek, P L; Mitterer, A; Mundt, W; Auer, W; Pichler, L; Gritsch, H; Schwarz, H P

    2001-08-01

    Von Willebrand factor (vWF) is a multimeric glycoprotein (GP) that attracts platelets to the site of vascular injury, mediates platelet-platelet interaction, and stabilizes factor VIII (FVIII) in the circulation. Quantitative and qualitative defects of vWF result in von Willebrand disease (vWD), manifested by modest to severe bleeding episodes. Substitution therapy, with plasma-derived FVIII/vWF complex concentrates, is used for patients suffering the more severe forms of vWD. Efficacy of these preparations is often unsatisfactory because inadvertent proteolytic degradation during the manufacturing process causes them to lack the hemostatically most active high-molecular-weight multimers. In contrast, recombinant vWF (r-vWF), which is constitutively expressed at high yields in Chinese hamster ovary (CHO) cells and secreted into the conditioned medium under perfusion fermentation in "protein-free" medium, has high-molecular-weight multimers of extraordinary structural integrity. Functional analysis has shown that r-vWF promotes ristocetin cofactor-mediated platelet aggregation, collagen interaction and FVIII binding, and platelet-collagen adhesion under shear stress. Infusing vWF-deficient animals with r-vWF corrected vWF concentration and reduced blood loss, subsequently stabilizing endogenous FVIII associated with the reduction of bleeding time. Compared with plasma-derived vWF preparations, r-vWF was found to have a prolonged half-life, further enhancing the potential value of r-vWF as a therapeutic agent for treating patients suffering from vWD.

  19. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    PubMed

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  20. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  1. Isolation and chemical identification of lipid derivatives from avocado (Persea americana) pulp with antiplatelet and antithrombotic activities.

    PubMed

    Rodriguez-Sanchez, Dariana Graciela; Flores-García, Mirthala; Silva-Platas, Christian; Rizzo, Sheryl; Torre-Amione, Guillermo; De la Peña-Diaz, Aurora; Hernández-Brenes, Carmen; García-Rivas, Gerardo

    2015-01-01

    Platelets play a pivotal role in physiological hemostasis. However, in coronary arteries damaged by atherosclerosis, enhanced platelet aggregation, with subsequent thrombus formation, is a precipitating factor in acute ischemic events. Avocado pulp (Persea americana) is a good source of bioactive compounds, and its inclusion in the diet as a source of fatty acid has been related to reduced platelet aggregability. Nevertheless, constituents of avocado pulp with antiplatelet activity remain unknown. The present study aims to characterize the chemical nature of avocado constituents with inhibitory effects on platelet aggregation. Centrifugal partition chromatography (CPC) was used as a fractionation and purification tool, guided by an in vitro adenosine diphosphate (ADP), arachidonic acid or collagen-platelet aggregation assay. Antiplatelet activity was initially linked to seven acetogenins that were further purified, and their dose-dependent effects in the presence of various agonists were contrasted. This process led to the identification of Persenone-C (3) as the most potent antiplatelet acetogenin (IC₅₀=3.4 mM) among the evaluated compounds. In vivo evaluations with Persenone A (4) demonstrated potential protective effects against arterial thrombosis (25 mg kg⁻¹ of body weight), as coagulation times increased (2-fold with respect to the vehicle) and thrombus formation was attenuated (71% versus vehicle). From these results, avocado may be referred to as a functional food containing acetogenin compounds that inhibit platelet aggregation with a potential preventive effect on thrombus formation, such as those that occur in ischaemic diseases.

  2. Moderate consumption of red wine and human platelet responsiveness.

    PubMed

    Tozzi Ciancarelli, Maria Giuliana; Di Massimo, Caterina; De Amicis, Daniela; Ciancarelli, Irene; Carolei, Antonio

    2011-08-01

    Available studies showed an inverse association between red wine consumption and prevalence of vascular risk factors in coronary hearth disease and stroke. Effects were mainly associated to wine antioxidant and antiaggregant properties. Actually, in vitro studies indicate a favourable effect of wine and/or of its non-alcoholic components in decreasing platelet sensitivity and aggregability. In a 4-week supplementation in 15 healthy male volunteers, we evaluated whether moderate red wine consumption might improve antioxidant defence mechanisms and promote positive modulation of inflammatory cytokines and cell adhesion molecules in relation to platelet responsiveness. We did not find any change of ADP- and collagen-induced platelet aggregation ex vivo, any change of biomarkers of oxidative stress, and any change of plasma lipid profile and haemostatic parameters, with the only exception of decreased fibrinogen levels (P<0.05). We also found an increase of mean platelet volume (P<0.05) without any significant modification of CD40 Ligand and P-selectin levels. Increased expressions of intercellular adhesion molecule-1, soluble E-selectin and interleukin-6 (P<0.05) were also observed. According to our findings increased circulating levels of inflammatory and endothelial cell activation markers may indicate a low-grade systemic inflammation and vascular activation that could be responsible for the lack of inhibition or of decreased platelet responsiveness, possibly because the plasmatic increase of wine antioxidant compounds is insufficient to improve endothelial function and to counteract the influence of ethanol on endothelial activation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    PubMed

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of atherosclerotic plaques or the disorder Ehler-Danlos syndrome, which is caused by a defect in collagen synthesis and is associated with fragile blood vessels. This review will focus on the role of the subendothelial matrix in haemostasis and thrombosis, highlighting its potential as a target for novel antithrombotics.

  4. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates.

    PubMed

    Eriksson, Andreas C; Whiss, Per A

    2005-01-01

    Platelet adhesion is an initial, crucial and complex event for inhibiting blood loss upon vascular injury. Activation and adhesion of platelets also play a fundamental role in the development of thrombosis. A combination of exposed extracellular matrix proteins in the vascular wall and release of activating compounds from the participating cells activate the platelets. New potent anti-platelet agents are in progress but there is a shortage of methods that measure the concerted action of adhesive surfaces and soluble compounds upon platelet adhesion in vitro. The aim of this work was to develop a method to measure adhesion of platelets in plasma with standard laboratory equipment. Platelet-rich plasma from healthy humans was used in studies to optimise the conditions of the present assay. Different proteins were coated in microplate wells and various soluble platelet activators and inhibitors were added to establish the ability of the current method to detect increased as well as decreased platelet adhesion. The amount of platelet adhesion was measured by the reaction between p-nitrophenyl phosphate and the intracellular enzyme acid phosphatase. Adhesion of platelets in plasma to microplate wells coated with albumin, collagen, fibrinogen and activated plasma showed significant surface dependency. The known soluble platelet activators adenosine diphosphate, adrenaline and ristocetin enhanced the levels of adhesion. Available anti-platelet agents such as prostacyclin, forskolin, acetylsalicylic acid and RGD containing peptides caused dose-dependent inhibition of platelet adhesion. This report describes a further development of a previously described method and offers the advantage to use platelets in plasma to measure platelet adhesion to protein surfaces. The assay is simple and flexible and is suitable in basic research for screening and characterisation of platelet adhesion responsiveness.

  5. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    PubMed Central

    Lammel, Justus; Tohidnezhad, Mersedeh; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Cremer, Jochen; Jahr, Holger; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF®)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR). In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds. PMID:28811680

  6. Effects of plasma nitric oxide levels on platelet activation in single donor apheresis and random donor concentrates.

    PubMed

    Büyükkağnici, Demet Iren; Ilhan, Osman; Kavas, Güzin Ozelçi; Arslan, Onder; Arat, Mutlu; Dalva, Klara; Ayyildiz, Erol

    2007-02-01

    P-selectin is an useful marker to determine platelet activation and nitric oxide inhibits platelet activation, secretion, adhesion and aggregation. The aim of this study was to investigate the relationship between nitric oxide and P-selectin values in both single donor apheresis and random donor platelet concentrates. According to the results of this study, we found that the best platelet concentrate is freshly prepared single donor apheresis concentrate and it is important to prevent activation at the beginning of the donation. Nitric oxide, which is synthesized from platelets during the storage period, is not sufficient to prevent platelet activation.

  7. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    PubMed

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus

    PubMed Central

    Nhek, Sokha; Clancy, Robert; Lee, Kristen A.; Allen, Nicole M.; Barrett, Tessa J.; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D.; Buyon, Jill P.; Berger, Jeffrey S.

    2017-01-01

    Objective Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Approach and Results Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Conclusions Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. PMID:28153882

  9. The combined effect of platelet storage media and intercept pathogen reduction technology on platelet activation/activability and cellular apoptosis/necrosis: Lisbon-RBS experience.

    PubMed

    Carvalho, Helena; Alguero, Carmen; Santos, Matilde; de Sousa, Gracinda; Trindade, Helder; Seghatchian, Jerard

    2006-04-01

    Platelets are known to undergo shape change, activation, a release reaction and apoptosis/necrosis during processing and storage, all of which are collectively known as the platelet storage lesion. Any additional processing may have some deleterious impact on platelet activability and functional integrity, which need to be investigated. This preliminary investigation was undertaken to establish the combined effects of standard platelet storage media and the intercept pathogen reduction technology on platelet activation and activability during 7 day storage, using buffy-coat derived platelets in standard storage media containing 35% plasma (N=24). P-selectin (CD62p) expression, a classical marker of platelet activation, and phosphatidylserine (PS) exposure on the platelet surface membrane, a hallmark of cellular necrosis/apoptosis, were both measured by flow cytometry. The results reveal significant increases in activation, from an average of 22.7% on day 1 before treatment to 31.6% on day 2 after treatment and 58.7% at the end of storage. Concomitantly, the basal expression of PS was slightly increased from 1.9% to 2.8% at day 2 after treatment and 7.3% at the end of storage. However, the functional reserve of platelets during storage, which reflects their capability to undergo activation and the release reaction when platelets were challenged with either calcium ionophore or thrombin, was relatively well maintained. These preliminary data confirm the earlier data on the use of intercept, and for the first time, based on the assessment of platelet functional integrity, suggest that platelet functional reserve is relatively well maintained, with little change in the formation of apoptotic cells.

  10. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis.

    PubMed

    Habets, Kim L L; Trouw, Leendert A; Levarht, E W Nivine; Korporaal, Suzanne J A; Habets, Petra A M; de Groot, Philip; Huizinga, Tom W J; Toes, René E M

    2015-08-24

    Although the role of platelets in rheumatoid arthritis (RA) is relatively unexplored, recent studies point towards a contribution of platelets in arthritis. We set out to determine platelet phenotype in RA and studied whether this could be influenced by the presence of anti-citrullinated protein antibodies (ACPA). Platelets from healthy controls were incubated in the presence of plasma of patients with RA or age- and sex-matched healthy controls and plasma from ACPA(neg) or ACPA(pos) patients or in the presence of plate-bound ACPA. Characteristics of platelets isolated from patients with RA were correlated to disease activity. Platelets isolated from healthy controls displayed markers of platelet activation in the presence of plasma derived from RA patients, as determined by P-selectin expression, formation of aggregates and secretion of soluble CD40 ligand (sCD40L). Furthermore, levels of P-selectin expression and sCD40L release correlated with high ACPA titres. In accordance with these findings, enhanced platelet activation was observed after incubation with ACPA(pos) plasma versus ACPA(neg) plasma. Pre-incubation of platelets with blocking antibodies directed against low-affinity immunoglobulin G receptor (FcγRIIa) completely inhibited the ACPA-mediated activation. In addition, expression of P-selectin measured as number of platelets correlated with Disease Activity Score in 44 joints, C-reactive protein level, ACPA status and ACPA level. We show for the first time that ACPA can mediate an FcγRIIa-dependent activation of platelets. As ACPA can be detected several years before RA disease onset and activated platelets contribute to vascular permeability, these data implicate a possible role for ACPA-mediated activation of platelets in arthritis onset.

  11. Three-dimensional structure and cytokine distribution of platelet-rich fibrin.

    PubMed

    Bai, Meng-Yi; Wang, Ching-Wei; Wang, Jyun-Yi; Lin, Ming-Fang; Chan, Wing P

    2017-02-01

    Previous reports have revealed that several cytokines (including platelet-derived growth factor-BB, transforming growth factors-β1 and insulin-like growth factor-1) can enhance the rate of bone formation and synthesis of extracellular matrix in orthopaedics or periodontology. This study aimed to determine the concentration of cytokines within platelet-rich fibrin microstructures and investigate whether there are differences in the different portions of platelet-rich fibrin, which has implications for proper clinical use of platelet-rich fibrin gel. Whole blood was obtained from six New Zealand rabbits (male, 7 to 39 weeks old, weight 2.7-4 kg); it was then centrifuged for preparation of platelet-rich fibrin gels and harvest of plasma. The resultant platelet-rich fibrin gels were used for cytokine determination, histological analyses and scanning electron microscopy. All plasmas obtained were subject to the same cytokine determination assays for the purpose of comparison. Cytokines platelet-derived growth factor-BB and transforming growth factor-β1 formed concentration gradients from high at the red blood cell end of the platelet-rich fibrin gel (p=1.88×10-5) to low at the plasma end (p=0.19). Insulin-like growth factor-1 concentrations were similar at the red blood cell and plasma ends. The porosities of the platelet-rich fibrin samples taken in sequence from the red blood cell end to the plasma end were 6.5% ± 4.9%, 24.8% ± 7.5%, 30.3% ± 8.5%, 41.4% ± 12.3%, and 40.3% ± 11.7%, respectively, showing a gradual decrease in the compactness of the platelet-rich fibrin network. Cytokine concentrations are positively associated with platelet-rich fibrin microstructure and portion in a rabbit model. As platelet-rich fibrin is the main entity currently used in regenerative medicine, assessing cytokine concentration and the most valuable portion of PRF gels is essential and recommended to all physicians.

  12. Molecular cloning and characterization of rhesus monkey platelet glycoprotein Ibα, a major ligand-binding subunit of GPIb-IX-V complex.

    PubMed

    Qiao, Jianlin; Shen, Yang; Shi, Meimei; Lu, Yanrong; Cheng, Jingqiu; Chen, Younan

    2014-05-01

    Through binding to von Willebrand factor (VWF), platelet glycoprotein (GP) Ibα, the major ligand-binding subunit of the GPIb-IX-V complex, initiates platelet adhesion and aggregation in response to exposed VWF or elevated fluid-shear stress. There is little data regarding non-human primate platelet GPIbα. This study cloned and characterized rhesus monkey (Macaca Mullatta) platelet GPIbα. DNAMAN software was used for sequence analysis and alignment. N/O-glycosylation sites and 3-D structure modelling were predicted by online OGPET v1.0, NetOGlyc 1.0 Server and SWISS-MODEL, respectively. Platelet function was evaluated by ADP- or ristocetin-induced platelet aggregation. Rhesus monkey GPIbα contains 2,268 nucleotides with an open reading frame encoding 755 amino acids. Rhesus monkey GPIbα nucleotide and protein sequences share 93.27% and 89.20% homology respectively, with human. Sequences encoding the leucine-rich repeats of rhesus monkey GPIbα share strong similarity with human, whereas PEST sequences and N/O-glycosylated residues vary. The GPIbα-binding residues for thrombin, filamin A and 14-3-3ζ are highly conserved between rhesus monkey and human. Platelet function analysis revealed monkey and human platelets respond similarly to ADP, but rhesus monkey platelets failed to respond to low doses of ristocetin where human platelets achieved 76% aggregation. However, monkey platelets aggregated in response to higher ristocetin doses. Monkey GPIbα shares strong homology with human GPIbα, however there are some differences in rhesus monkey platelet activation through GPIbα engagement, which need to be considered when using rhesus monkey platelet to investigate platelet GPIbα function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis

    PubMed Central

    Wilson, Katina M.; Leo, Lorie; Raimondi, Alejandro; Molkentin, Jeffery D.; Lentz, Steven R.; Di Paola, Jorge

    2008-01-01

    Many of the cellular responses that occur in activated platelets resemble events that take place following activation of cell-death pathways in nucleated cells. We tested the hypothesis that formation of the mitochondrial permeability transition pore (MPTP), a key signaling event during cell death, also plays a critical role in platelet activation. Stimulation of murine platelets with thrombin plus the glycoprotein VI agonist convulxin resulted in a rapid loss of mitochondrial transmembrane potential (Δψm) in a subpopulation of activated platelets. In the absence of cyclophilin D (CypD), an essential regulator of MPTP formation, murine platelet activation responses were altered. CypD-deficient platelets exhibited defects in phosphatidylserine externalization, high-level surface fibrinogen retention, membrane vesiculation, and procoagulant activity. Also, in CypD-deficient platelet-rich plasma, clot retraction was altered. Stimulation with thrombin plus H2O2, a known activator of MPTP formation, also increased high-level surface fibrinogen retention, phosphatidylserine externalization, and platelet procoagulant activity in a CypD-dependent manner. In a model of carotid artery photochemical injury, thrombosis was markedly accelerated in CypD-deficient mice. These results implicate CypD and the MPTP as critical regulators of platelet activation and suggest a novel CypD-dependent negative-feedback mechanism regulating arterial thrombosis. PMID:17989312

  14. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.

    PubMed

    Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye

    2011-09-01

    Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Passive participation of fixed platelets in aggregation facilitated by covalently bound fibrinogen.

    PubMed

    Agam, G; Livne, A

    1983-01-01

    The role of fibrinogen in interplatelet recognition during aggregation was examined by combining two cell types: fresh platelets (in limiting density) activated by thrombin or A23187, and formaldehyde-fixed platelets, bearing cross-linked fibrinogen. The fixed platelets did not aggregate by themselves, nor with resting platelets, but were capable of interacting with activated platelets and of participating passively in aggregation. The participation, expressed by enhanced aggregation, was assayed by the conventional turbidometric traces and by cosedimentation of fixed 3H-platelets with aggregates of fresh platelets. Platelet suspensions, prepared without special means to avert spontaneous activation, retained plasma fibrinogen to the extent of 50 micrograms/ml of a suspension containing 10(8) platelets, and the derived fixed platelets participated in aggregation, independently of added fibrinogen. The capability of such fixed platelets to participate in aggregation was sensitive to proteolytic digestion and to massive acetylation. When platelet separation was aided by apyrase or aspirin, PGE1 and gel filtration, the residual plasma fibrinogen was limited to 0.4 micrograms/ml of 10(8) platelet suspension. The derived fixed platelets were incapable of participating in aggregation unless fibrinogen was added prior to fixation. The affixed fibrinogen could not be replaced by soluble fibrinogen or affixed albumin. It is concluded that fibrinogen, which binds to platelets upon activation or is linked to them covalently, is a recognition site for platelet-platelet interaction during aggregation.

  16. Efficacy of platelet-rich plasma applied to post-extraction retained lower third molar alveoli. A systematic review.

    PubMed

    Barona-Dorado, C; González-Regueiro, I; Martín-Ares, M; Arias-Irimia, O; Martínez-González, J-M

    2014-03-01

    Dental retentions have a high prevalence among the general population and their removal can involve multiple complications. The use of platelet rich plasma has been proposed in an attempt to avoid these complications, as it contains high growth factors and stimulates diverse biological functions that facilitate the healing of soft and hard tissues. To evaluate the available scientific evidence related to the application of platelet-rich plasma in the post-extraction alveoli of a retained lower third molars. A systematic review of published literature registered in the Medline, EMBASE, Cochrane and NIH databases. The following categories were included: human randomized clinical studies. Key search words were: platelet rich plasma; platelet rich plasma and oral surgery; platelet rich in growth factors and third molar. Of 101 potentially valid articles, seven were selected, of which four were rejected as they failed to meet quality criteria. Three studies fulfilled all selection and quality criteria: Ogundipe et al.; Rutkowski et al.; Haraji et al. The studies all measured osteoblast activity by means of sintigraphy, and also registered pain, bleeding, inflammation, temperature, numbness as perceived by the patients, radiological bone density and the incidence of alveolar osteitis. Scientific evidence for the use of PRP in retained third molar surgery is poor. For this reason randomized clinical trials are needed before recommendations for the clinical application of PRP can be made.

  17. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  18. Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice

    PubMed Central

    Martin, Sara M.; Holle, Lori A.; Cooley, Brian C.; Flick, Matthew J.

    2018-01-01

    The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIIIplasma) as a heterotetramer of A2 and B2 subunits and platelets (FXIIIplt) as an A2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIIIplasma, but not FXIIIplt, produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIIIplasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis. PMID:29344582

  19. Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice.

    PubMed

    Kattula, Sravya; Byrnes, James R; Martin, Sara M; Holle, Lori A; Cooley, Brian C; Flick, Matthew J; Wolberg, Alisa S

    2018-01-09

    The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIII plasma ) as a heterotetramer of A 2 and B 2 subunits and platelets (FXIII plt ) as an A 2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIII plasma , but not FXIII plt , produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIII plasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis.

  20. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation.

    PubMed

    Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd

    2008-03-01

    The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased - and, under conditions of decreased platelet adhesion, PDI inhibition reduced - fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet-secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury.

  1. Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.)

    PubMed Central

    PALOMO, IVÁN; FUENTES, EDUARDO; PADRÓ, TERESA; BADIMON, LINA

    2012-01-01

    In recent years, it has been shown that platelets are not only involved in the arterial thrombotic process, but also that they play an active role in the inflammatory process of atherogenesis from the beginning. The interaction between platelets and endothelial cells occurs in two manners: activated platelets unite with intact endothelial cells, or platelets in resting adhere to activated endothelium. In this context, inhibition of the platelet function (adhesion/aggregation) could contribute to the prevention of atherothrombosis, the leading cause of cardiovascular morbidity. This can be achieved with antiplatelet agents. However, at the public health level, the level of primary prevention, a healthy diet has also been shown to exert beneficial effects. Among those elements of a healthy diet, the consumption of tomatoes (Solanum lycopersicum L.) stands out for its effect on platelet anti-aggregation activity and endothelial protection, which may be beneficial for cardiovascular health. This article briefly discusses the involvement of platelets in atherogenesis and the possible mechanisms of action provided by tomatoes for platelet anti-aggregation activity and endothelial protection. PMID:22969932

  2. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease.

    PubMed

    Carnevale, R; Loffredo, L; Nocella, C; Bartimoccia, S; Bucci, T; De Falco, E; Peruzzi, M; Chimenti, I; Biondi-Zoccai, G; Pignatelli, P; Violi, F; Frati, G

    2014-01-01

    Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets.

  3. Monitoring of coagulation factor therapy in patients with von Willebrand disease type 3 using a microchip flow chamber system.

    PubMed

    Ågren, Anna; Holmström, Margareta; Schmidt, David E; Hosokawa, Kazuya; Blombäck, Margareta; Hjemdahl, Paul

    2017-01-05

    Patients with type 3 von Willebrand disease (VWD-3) have no measurable levels of VW factor (VWF) and usually require treatment with VWF-FVIII concentrate to prevent and/or stop bleeding. Even though the patients are treated prophylactically, they may experience bleeding symptoms. The aim of this study was to evaluate the effect of VWF-FVIII concentrate treatment in VWD-3 patients with the Total Thrombus Analysis System (T-TAS ® ), which measures thrombus formation under flow conditions. Coagulation profiles of 10 VWD-3 patients were analysed using T-TAS before and 30 minutes after VWF-FVIII concentrate (Haemate ® ) injection. Results were compared to VWF- and FVIII activity in plasma, and results with thromboelastometry and ristocetin-activated platelet impedance aggregometry (Multiplate ® ) in whole blood. For comparison, 10 healthy controls were also analysed with T-TAS. A median dose of 27 (range 15-35) IU/kg of VWF-FVIII concentrate increased VWF- and FVIII activity as expected. T-TAS thrombus formation was enhanced when a tissue factor/collagen-coated flow chamber was used at low shear, but treatment effects at high shear using a collagen-coated flow chamber were minimal. Whole blood coagulation assessed by thromboelastometry was normal and did not change (p > 0.05) but ristocetin-induced platelet aggregation improved (p < 0.001). In conclusion, T-TAS detects effects of VWF-FVIII concentrate treatment on coagulation-dependent thrombus formation at low shear, but minor effects are observed on platelet-dependent thrombus formation at high shear. The poor prediction of bleeding by conventional laboratory monitoring in VWD-3 patients might be related to insufficient restoration of platelet-dependent thrombus formation.

  4. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function.

    PubMed

    Frelinger, Andrew L; Bhatt, Deepak L; Lee, Ronald D; Mulford, Darcy J; Wu, Jingtao; Nudurupati, Sai; Nigam, Anu; Lampa, Michael; Brooks, Julie K; Barnard, Marc R; Michelson, Alan D

    2013-02-26

    This study sought to determine whether known genetic, drug, dietary, compliance, and lifestyle factors affecting clopidogrel absorption and metabolism fully account for the variability in clopidogrel pharmacokinetics and pharmacodynamics. Platelet inhibition by clopidogrel is highly variable. Patients with reduced inhibition have increased risk for major adverse cardiovascular events. Identification of factors contributing to clopidogrel's variable response is needed to improve platelet inhibition and reduce risk for cardiovascular events. Healthy subjects (n = 160; ages 20 to 53 years; homozygous CYP2C19 extensive metabolizer genotype; no nicotine for 6 weeks, prescription drugs for 4 weeks, over-the-counter drugs for 2 weeks, and no caffeine or alcohol for 72 h; confined; restricted diet) received clopidogrel 75 mg/day for 9 days, at which time clopidogrel pharmacokinetic and pharmacodynamic endpoints were measured. At steady-state, clopidogrel active metabolite (clopidogrel(AM)) pharmacokinetics varied widely between subjects (coefficients of variation [CVs] 33.8% and 40.2% for clopidogrel(AM) area under the time-concentration curve and peak plasma concentration, respectively). On-treatment vasodilator stimulated phosphoprotein P2Y(12) platelet reactivity index (PRI), maximal platelet aggregation (MPA) to adenosine phosphate, and VerifyNow P2Y12 platelet response units (PRU) also varied widely (CVs 32% to 53%). All identified factors together accounted for only 18% of intersubject variation in pharmacokinetic parameters and 32% to 64% of intersubject variation in PRI, MPA, and PRU. High on-treatment platelet reactivity was present in 45% of subjects. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite rigorous exclusion or control of known disease, polymorphisms (CYP2C19, CYP3A5, ABCB1, PON1), noncompliance, co-medications, diet, smoking, alcohol, demographics, and pre-treatment platelet hyperreactivity. Thus, as yet unidentified factors contribute to high on-treatment platelet reactivity with its known increased risk of major adverse cardiovascular events. (A Study of the Effects of Multiple Doses of Dexiansoprazole, Lansoprazole, Omeprazole or Esomeprazole on the Pharmacokinetics and Pharmacodynamics of Clopidogrel in Healthy Participants: NCT00942175). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets

    PubMed Central

    Weyrich, Andrew S.; Denis, Melvin M.; Schwertz, Hansjorg; Tolley, Neal D.; Foulks, Jason; Spencer, Eliott; Kraiss, Larry W.; Albertine, Kurt H.; McIntyre, Thomas M.

    2007-01-01

    New activities of human platelets continue to emerge. One unexpected response is new synthesis of proteins from previously transcribed RNAs in response to activating signals. We previously reported that activated human platelets synthesize B-cell lymphoma-3 (Bcl-3) under translational control by mammalian target of rapamycin (mTOR). Characterization of the ontogeny and distribution of the mTOR signaling pathway in CD34+ stem cell–derived megakaryocytes now demonstrates that they transfer this regulatory system to developing proplatelets. We also found that Bcl-3 is required for condensation of fibrin by activated platelets, demonstrating functional significance for mTOR-regulated synthesis of the protein. Inhibition of mTOR by rapamycin blocks clot retraction by human platelets. Platelets from wild-type mice synthesize Bcl-3 in response to activation, as do human platelets, and platelets from mice with targeted deletion of Bcl-3 have defective retraction of fibrin in platelet-fibrin clots mimicking treatment of human platelets with rapamycin. In contrast, overexpression of Bcl-3 in a surrogate cell line enhanced clot retraction. These studies identify new features of post-transcriptional gene regulation and signal-dependant protein synthesis in activated platelets that may contribute to thrombus and wound remodeling and suggest that posttranscriptional pathways are targets for molecular intervention in thrombotic disorders. PMID:17110454

  6. Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A; McCray, Paul B; Davidson, Beverly L

    2014-01-01

    Well-differentiated human airway epithelia present formidable barriers to efficient siRNA delivery. We previously reported that treatment of airway epithelia with specific small molecules improves oligonucleotide uptake and facilitates RNAi responses. Here, we exploited the platelet activating factor receptor (PAFR) pathway, utilized by specific bacteria to transcytose into epithelia, as a trigger for internalization of Dicer-substrate siRNAs (DsiRNA). PAFR is a G-protein coupled receptor which can be engaged and activated by phosphorylcholine residues on the lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae and the teichoic acid of Streptococcus pneumoniae as well as by its natural ligand, platelet activating factor (PAF). When well-differentiated airway epithelia were simultaneously treated with either nontypeable Haemophilus influenzae LOS or PAF and transduced with DsiRNA formulated with the peptide transductin, we observed silencing of both endogenous and exogenous targets. PAF receptor antagonists prevented LOS or PAF-assisted DsiRNA silencing, demonstrating that ligand engagement of PAFR is essential for this process. Additionally, PAF-assisted DsiRNA transfection decreased CFTR protein expression and function and reduced exogenous viral protein levels and titer in human airway epithelia. Treatment with spiperone, a small molecule identified using the Connectivity map database to correlate gene expression changes in response to drug treatment with those associated with PAFR stimulation, also induced silencing. These results suggest that the signaling pathway activated by PAFR binding can be manipulated to facilitate siRNA entry and function in difficult to transfect well-differentiated airway epithelial cells. PMID:25025465

  7. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats

    PubMed Central

    2012-01-01

    Background Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Methods Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. Results After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. Conclusions O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect of these microalgal compounds, displayed a beneficial effect in reducing the risk factors for high-fat induced metabolic syndrome: hyperlipidemia, platelet aggregation, and oxidative stress. PMID:23110391

  8. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats.

    PubMed

    Haimeur, Adil; Ulmann, Lionel; Mimouni, Virginie; Guéno, Frédérique; Pineau-Vincent, Fabienne; Meskini, Nadia; Tremblin, Gérard

    2012-10-31

    Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect of these microalgal compounds, displayed a beneficial effect in reducing the risk factors for high-fat induced metabolic syndrome: hyperlipidemia, platelet aggregation, and oxidative stress.

  9. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    PubMed Central

    2010-01-01

    Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic GMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and finally inhibition of platelet aggregation. PMID:20525309

  10. Monitoring platelet inhibition after clopidogrel with the VerifyNow-P2Y12(R) rapid analyzer: the VERIfy Thrombosis risk ASsessment (VERITAS) study.

    PubMed

    Malinin, Alex; Pokov, Alex; Spergling, Malcolm; Defranco, Anthony; Schwartz, Kenneth; Schwartz, Dianne; Mahmud, Ehtisham; Atar, Dan; Serebruany, Victor

    2007-01-01

    Clopidogrel inhibits platelet P2Y12 ADP receptors, while ADP, as an inductor of aggregation, stimulates both P2Y12 and P2Y1 platelet receptors. Despite a clinical loading dose routine with clopidogrel, some patients still experience coronary stent thrombosis suggesting persistent platelet activation. The VerifyNow-P2Y12 is a rapid assay that test platelet activity over 3 min and uses of the combination of ADP and prostaglandin E1 (PGE1) to directly measure the effects of clopidogrel on the P2Y12 receptor. ADP is used to maximally activate the platelets by binding to the P2Y1 and P2Y12 platelet receptors, while PGE1 is used to suppress the ADP-induced P2Y1-mediated increase in intracellular calcium levels. The VERIfy Thrombosis risk ASsessment (VERITAS) was a prospective study designed to measure platelet response to clopidogrel therapy in subjects with multiple risk factors or history of vascular disease using this novel point-of-care assay. 166 participants were enrolled in 4 participating sites. Data from 147 participants were analyzed after exclusion of 19 patients due to protocol violations. Platelets were assessed twice at baseline (before clopidogrel) and at 24 h post-loading 450 mg (110 participants) or 7 days after chronic clopidogrel treatment (75 mg/day) (37 patients). All participants received aspirin 81-325 mg for at least 2 days before the study enrollment. Results from the VerifyNow-P2Y12 assay are reported in P2Y12 reaction units (PRU). Clopidogrel therapy resulted in a mean 64.0+/-25.3% PRU reduction. No participant reached PRU inhibition below 10% of baseline. Distribution of PRU values for the VerifyNow-P2Y12 assay shows a separation from baseline to post-clopidogrel assay values with some overlap due to high inter-individual variations in response. VerifyNow-P2Y12 is a reliable, fast and sensitive device suitable for monitoring of platelet inhibition during clopidogrel therapy.

  11. Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression.

    PubMed

    Peshkova, Alina D; Le Minh, Giang; Tutwiler, Valerie; Andrianova, Izabella A; Weisel, John W; Litvinov, Rustem I

    2017-07-11

    Platelet-driven reduction in blood clot volume (clot contraction or retraction) has been implicated to play a role in hemostasis and thrombosis. Although these processes are often linked with inflammation, the role of inflammatory cells in contraction of blood clots and thrombi has not been investigated. The aim of this work was to study the influence of activated monocytes on clot contraction. The effects of monocytes were evaluated using a quantitative optical tracking methodology to follow volume changes in a blood clot formed in vitro. When a physiologically relevant number of isolated human monocytes pre-activated with phorbol-12-myristate-13-acetate (PMA) were added back into whole blood, the extent and rate of clot contraction were increased compared to addition of non-activated cells. Inhibition of tissue factor expression or its inactivation on the surface of PMA-treated monocytes reduced the extent and rate of clot contraction back to control levels with non-activated monocytes. On the contrary, addition of tissue factor enhanced clot contraction, mimicking the effects of tissue factor expressed on the activated monocytes. These data suggest that the inflammatory cells through their expression of tissue factor can directly affect hemostasis and thrombosis by modulating the size and density of intra- and extravascular clots and thrombi.

  12. Microparticles from splenectomized β-thalassemia/HbE patients play roles on procoagulant activities with thrombotic potential.

    PubMed

    Klaihmon, Phatchanat; Phongpao, Kunwadee; Kheansaard, Wasinee; Noulsri, Egarit; Khuhapinant, Archrob; Fucharoen, Suthat; Morales, Noppawan Phumala; Svasti, Saovaros; Pattanapanyasat, Kovit; Chaichompoo, Pornthip

    2017-02-01

    Thromboembolic events including cerebral thrombosis, deep vein thrombosis, and pulmonary embolism are major complications in β-thalassemia. Damaged red blood cells and chronic platelet activation in splenectomized β-thalassemia/HbE patients were associated with increased microparticles (MPs) releases into blood circulation. MPs are small membrane vesicles, which play important roles on coagulation. However, the role of MP in thalassemia is poorly understood. In this study, the effects of splenectomized-MPs on platelet activation and aggregation were investigated. The results showed that isolated MPs from fresh platelet-free plasma of patients and normal subjects directly induce platelet activation, platelet aggregation, and platelet-neutrophil aggregation in a dose-dependent manner. Interestingly, MPs obtained from splenectomized patients are more efficient in induction of platelet activation (P-selectin + ) when compared to MPs from normal subjects (P < 0.05), tenfold lower than pathophysiological level, at 1:0.1 platelet MP ratio. Co-incubation of splenectomized-MPs with either normal-, non-splenectomized- or splenectomized-platelets at 1:10 platelet MP ratio increased platelet activation up to 5.1 ± 2.2, 5.6 ± 3.7, and 9.5 ± 3.0%, respectively, when normalized with individual baseline. These findings suggest that splenectomized patients were proned to be activated by MPs, and splenectomized-MPs could play an important role on chronic platelet activation and aggregation, leading to thrombus formation in β-thalassemia/HbE patients.

  13. Fresh frozen plasma resuscitation attenuates platelet dysfunction compared with normal saline in a large animal model of multisystem trauma.

    PubMed

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S; Jin, Guang; Jepsen, Cecilie H; Imam, Ayesha; Hwabejire, John O; Deperalta, Danielle; Duggan, Michael; DeMoya, Marc; Velmahos, George C; Alam, Hasan B

    2014-04-01

    Platelet dysfunction following trauma has been identified as an independent predictor of mortality. We hypothesized that fresh frozen plasma (FFP) resuscitation would attenuate platelet dysfunction compared with 0.9% normal saline (NS). Twelve swine were subjected to multisystem trauma (traumatic brain injury, liver injury, rib fracture, and soft tissue injury) with hemorrhagic shock (40% of estimated blood volume). Animals were left in shock (mean arterial pressure, 30-35 mm Hg) for 2 hours followed by resuscitation with three times shed volume NS (n = 6) or one times volume FFP (n = 6) and monitored for 6 hours. Platelet function was assessed by adenosine diphosphate (ADP)-induced platelet aggregation at baseline, after 2 hours of shock following resuscitation, and 6 hours after resuscitation. Fibrinogen levels and markers of platelet activation (transforming growth factor β [TGF-β], sP-Selectin, and CD40L) as well as endothelial injury (intercellular adhesion molecule 1 [ICAM-1], vascular cell adhesion molecule 1 [VCAM-1]) were also assayed. Thromboelastography was used to measure clotting activity. ADP-induced platelet aggregation was significantly higher in the FFP group (46.3 U vs. 25.5 U, p < 0.01) following resuscitation. This was associated with higher fibrinogen levels (202 mg/dL vs. 80 mg/dL, p < 0.01) but lower endothelial activation (VCAM-1, 1.25 ng/mL vs. 3.87 ng/mL, p = 0.05). Other markers did not differ.After 6 hours of observation, ADP-induced platelet aggregation remained higher in the FFP group (53.8 U vs. 37.0 U, p = 0.03) as was fibrinogen levels (229 mg/dL vs. 153 mg/dL, p < 0.01). Endothelial activation was lower (ICAM-1, 21.0 ng/mL vs. 24.4 ng/mL, p = 0.05), whereas TGF-β levels were higher (2,138 pg/mL vs. 1,802 pg/mL, p = 0.03) in the FFP group. Other markers did not differ. Thromboelastography revealed increased clot strength in the FFP group at both postresuscitation time points. Resuscitation with FFP resulted in an immediate and sustained improvement in platelet function and clot strength compared with high-volume NS resuscitation. This was associated with an increase in fibrinogen levels and an attenuation of endothelial activation.

  14. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi.

    PubMed

    Ahrens, Ingo; Chen, Yung-Chih; Topcic, Danijal; Bode, Michael; Haenel, David; Hagemeyer, Christoph E; Seeba, Hannah; Duerschmied, Daniel; Bassler, Nicole; Jandeleit-Dahm, Karin A; Sweet, Matthew J; Agrotis, Alex; Bobik, Alex; Peter, Karlheinz

    2015-11-01

    High mobility group box 1 (HMGB1) acts as both a nuclear protein that regulates gene expression, as well as a pro-inflammatory alarmin that is released from necrotic or activated cells. Recently, HMGB1-expression in human atherosclerotic plaques was identified. Therapeutic blockade of HMGB1 reduced the development of diet-induced atherosclerosis in ApoE knockout mice. Thus, we hypothesised an interaction between HMGB1 and activated platelets. Binding of recombinant HMGB1 to platelets was assessed by flow cytometry. HMGB1 bound to thrombin-activated human platelets (MFI 2.49 vs 25.01, p=0.0079). Blood from wild-type, TLR4 and RAGE knockout mice was used to determine potential HMGB1 receptors on platelets. HMGB1 bound to platelets from wild type C57Bl6 (MFI 2.64 vs 20.3, p< 0.05), and TLR4-/- mice (MFI 2.11 vs 25.65, p< 0.05) but failed to show binding to platelets from RAGE-/- mice (p > 0.05). RAGE expression on human platelets was detected by RT-PCR with mRNA extracted from highly purified platelets and confirmed by Western blot and immunofluorescence microscopy. Platelet activation increased RAGE surface expression (MFI 4.85 vs 6.74, p< 0.05). Expression of HMGB1 in human coronary artery thrombi was demonstrated by immunohistochemistry and revealed high expression levels. Platelets bind HMGB1 upon thrombin-induced activation. Platelet specific expression of RAGE could be detected at the mRNA and protein level and is involved in the binding of HMGB1. Furthermore, platelet activation up-regulates platelet surface expression of RAGE. HMGB1 is highly expressed in platelet-rich human coronary artery thrombi pointing towards a central role for HMGB1 in atherothrombosis, thereby suggesting the possibility of platelet targeted anti-inflammatory therapies for atherothrombosis.

  15. [Assessment study on a set of platelet-rich plasma preparation].

    PubMed

    Li, Ming; Zhang, Changqing; Yuan, Ting; Chen, Shengbao; Lü, Ruju

    2011-01-01

    To calculate the recovery rate and enrichment factor and to analyse the correlation by measuring the concentrations of platelets, leukocyte, and growth factors in platelet-rich plasma (PRP) so as to evaluate the feasibility and stability of a set of PRP preparation. The peripheral blood (40 mL) was collected from 30 volunteers accorded with the inclusion criteria, and then 4 mL PRP was prepared using the package produced by Shandong Weigao Group Medical Polymer Company Limited. Automatic hematology analyzer was used to count the concentrations of platelets and leukocyte in whole blood and PRP. The enrichment factor and recovery rate of platelets or leukocyte were calculated; the platelet and leukocyte concentrations of male and female volunteers were measured, respectively. The concentrations of platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-beta), and vascular endothelial growth factor (VEGF) were assayed by ELISA. The platelet concentrations of whole blood and PRP were (131.40 +/- 29.44) x 10(9)/L and (819.47 +/- 136.32) x 10(9)/L, respectively, showing significant difference (t = 27.020, P = 0.000). The recovery rate of platelets was 60.85% +/- 8.97%, and the enrichment factor was 6.40 +/- 1.06. The leukocyte concentrations of whole blood and PRP were (5.57 +/- 1.91) x 10(12)/L and (32.20 +/- 10.42) x 10(12)/L, respectively, showing significant difference (t = 13.780, P = 0.000). The recovery rate of leukocyte was 58.30% +/- 19.24%, and the enrichment factor was 6.10 +/- 1.93. The concentrations of platelets and leukocyte in PRP were positively correlated with the platelet concentration (r = 0.652, P = 0.000) and leukocyte concentration (r = 0.460, P = 0.011) in whole blood. The concentrations of platelet and leukocyte in PRP between male and female were not significantly different (P > 0.05). The concentrations of PDGF, TGF-beta, and VEGF in PRP were (698.15 +/- 64.48), (681.36 +/- 65.90), and (1071.55 +/- 106.04) ng/mL, which were (5.67 +/- 1.18), (6.99 +/- 0.61), and (5.74 +/- 0.83) times higher than those in the whole blood, respectively. PDGF concentration (r = 0.832, P = 0.020), TGF-beta concentration (r = 0.835, P = 0.019), and VEGF concentration (r = 0.824, P = 0.023) in PRP were positively correlated with platelet concentration of PRP. PRP with high concentrations of platelets, white blood cells and growth factors can be prepared stably by this package.

  16. Effects of FX06 in vitro on platelet, coagulation, and fibrinolytic biomarkers in volunteers and patients with documented coronary artery disease.

    PubMed

    Hallén, Jonas; Atar, Dan; Serebruany, Victor

    2014-01-01

    FX06 is a naturally occurring fibrin-derived peptide demonstrated to confer cytoprotection in the setting of primary percutaneous coronary intervention. Because the effect of FX06 on human platelet, coagulation, and fibrinolysis biomarkers (PCFB) is unknown but is important for further clinical development, we evaluated how FX06 affects PCFB. The in vitro effects of the whole-blood pre-incubation with escalating concentrations of FX06 (4, 25, and 75 μg/mL) were assessed in aspirin-naïve healthy volunteers (n = 10), those with multiple risk factors for vascular disease (n = 10), and patients with documented coronary artery disease (n = 10). The last two groups were treated with aspirin (81 mg/daily). Thirty-two variables of PCFB were measured with the vehicle and for each chosen FX06 dose. Pretreatment of blood samples with FX06 resulted in a moderate but significant and mostly dose-dependent increases of platelet aggregation induced by adenosine diphosphate and collagen. Similarly, the closure time was reduced, suggesting share-induced activation, PECAM-1, GP Ib, GP IIb/IIIa activity, and vitronectin receptors, which were also up-regulated. In contrast, P-selectin and GPIIb antigen expression were reduced after FX06. All other PCFB were predominantly unaffected by FX06, with the exception of the increased plasminogen, decreased protein C activity, and activated von Willebrand factor. We conclude that in the therapeutic range, FX06 in vitro mildly affects hemostasis by way of mostly activating platelets. Applying moderate concomitant antiplatelet strategies should be considered for the adequate protection from vascular thrombotic events in patients treated with FX06. Similar ex vivo study in patients receiving aspirin and clopidogrel is warranted.

  17. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    NASA Astrophysics Data System (ADS)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  18. The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets

    PubMed Central

    Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.

    1972-01-01

    Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802

  19. Ristocetin induces phosphorylated-HSP27 (HSPB1) release from the platelets of type 2 DM patients: Anti-platelet agent-effect on the release.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Onuma, Takashi; Enomoto, Yukiko; Doi, Tomoaki; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2018-04-01

    It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.

  20. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow

    PubMed Central

    Zhu, Shu; Travers, Richard J.; Morrissey, James H.

    2015-01-01

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) –bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm2. Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm2 and sensitive to O1A6 at 0 to 0.2 molecules per µm2. However, neither antibody reduced fibrin generation at ∼2 molecules per µm2 when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm2) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. PMID:26136249

  1. Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI-Dependent Manner in an In Vitro Venous Thrombosis Model.

    PubMed

    Lehmann, Marcus; Schoeman, Rogier M; Krohl, Patrick J; Wallbank, Alison M; Samaniuk, Joseph R; Jandrot-Perrus, Martine; Neeves, Keith B

    2018-05-01

    The objective of this study was to measure the role of platelets and red blood cells on thrombus propagation in an in vitro model of venous valvular stasis. A microfluidic model with dimensional similarity to human venous valves consists of a sinus distal to a sudden expansion, where for sufficiently high Reynolds numbers, 2 countercurrent vortices arise because of flow separation. The primary vortex is defined by the points of flow separation and reattachment. A secondary vortex forms in the deepest recess of the valve pocket characterized by low shear rates. An initial fibrin gel formed within the secondary vortex of a tissue factor-coated valve sinus. Platelets accumulated at the interface of the fibrin gel and the primary vortex. Red blood cells at physiological hematocrits were necessary to provide an adequate flux of platelets to support thrombus growth out of the valve sinus. A subpopulation of platelets that adhered to fibrin expose phosphatidylserine. Platelet-dependent thrombus growth was attenuated by inhibition of glycoprotein VI with a blocking Fab fragment or D-dimer. A 3-step process regulated by hemodynamics was necessary for robust thrombus propagation: First, immobilized tissue factor initiates coagulation and fibrin deposition within a low flow niche defined by a secondary vortex in the pocket of a model venous valve. Second, a primary vortex delivers platelets to the fibrin interface in a red blood cell-dependent manner. Third, platelets adhere to fibrin, activate through glycoprotein VI, express phosphatidylserine, and subsequently promote thrombus growth beyond the valve sinus and into the bulk flow. © 2018 American Heart Association, Inc.

  2. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  3. Platelets secrete stromal cell–derived factor 1α and recruit bone marrow–derived progenitor cells to arterial thrombi in vivo

    PubMed Central

    Massberg, Steffen; Konrad, Ildiko; Schürzinger, Katrin; Lorenz, Michael; Schneider, Simon; Zohlnhoefer, Dietlind; Hoppe, Katharina; Schiemann, Matthias; Kennerknecht, Elisabeth; Sauer, Susanne; Schulz, Christian; Kerstan, Sandra; Rudelius, Martina; Seidl, Stefan; Sorge, Falko; Langer, Harald; Peluso, Mario; Goyal, Pankaj; Vestweber, Dietmar; Emambokus, Nikla R.; Busch, Dirk H.; Frampton, Jon; Gawaz, Meinrad

    2006-01-01

    The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow–derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide the critical signal that recruits CD34+ bone marrow cells and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells to sites of vascular injury. Correspondingly, specific inhibition of platelet adhesion virtually abrogated the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated platelets secrete the chemokine SDF-1α, thereby supporting further primary adhesion and migration of progenitor cells. These findings establish the platelet as a major player in the initiation of vascular remodeling, a process of fundamental importance for vascular repair and pathological remodeling after vascular injury. PMID:16618794

  4. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.

    PubMed

    Massberg, Steffen; Konrad, Ildiko; Schürzinger, Katrin; Lorenz, Michael; Schneider, Simon; Zohlnhoefer, Dietlind; Hoppe, Katharina; Schiemann, Matthias; Kennerknecht, Elisabeth; Sauer, Susanne; Schulz, Christian; Kerstan, Sandra; Rudelius, Martina; Seidl, Stefan; Sorge, Falko; Langer, Harald; Peluso, Mario; Goyal, Pankaj; Vestweber, Dietmar; Emambokus, Nikla R; Busch, Dirk H; Frampton, Jon; Gawaz, Meinrad

    2006-05-15

    The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow-derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide the critical signal that recruits CD34+ bone marrow cells and c-Kit+ Sca-1+ Lin- bone marrow-derived progenitor cells to sites of vascular injury. Correspondingly, specific inhibition of platelet adhesion virtually abrogated the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin- bone marrow-derived progenitor cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated platelets secrete the chemokine SDF-1alpha, thereby supporting further primary adhesion and migration of progenitor cells. These findings establish the platelet as a major player in the initiation of vascular remodeling, a process of fundamental importance for vascular repair and pathological remodeling after vascular injury.

  5. Platelet-rich plasma differs according to preparation method and human variability.

    PubMed

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David M; Cote, Mark P; Romeo, Anthony A; Bradley, James P; Arciero, Robert A; Beitzel, Knut

    2012-02-15

    Varying concentrations of blood components in platelet-rich plasma preparations may contribute to the variable results seen in recently published clinical studies. The purposes of this investigation were (1) to quantify the level of platelets, growth factors, red blood cells, and white blood cells in so-called one-step (clinically used commercial devices) and two-step separation systems and (2) to determine the influence of three separate blood draws on the resulting components of platelet-rich plasma. Three different platelet-rich plasma (PRP) separation methods (on blood samples from eight subjects with a mean age [and standard deviation] of 31.6 ± 10.9 years) were used: two single-spin processes (PRPLP and PRPHP) and a double-spin process (PRPDS) were evaluated for concentrations of platelets, red and white blood cells, and growth factors. Additionally, the effect of three repetitive blood draws on platelet-rich plasma components was evaluated. The content and concentrations of platelets, white blood cells, and growth factors for each method of separation differed significantly. All separation techniques resulted in a significant increase in platelet concentration compared with native blood. Platelet and white blood-cell concentrations of the PRPHP procedure were significantly higher than platelet and white blood-cell concentrations produced by the so-called single-step PRPLP and the so-called two-step PRPDS procedures, although significant differences between PRPLP and PRPDS were not observed. Comparing the results of the three blood draws with regard to the reliability of platelet number and cell counts, wide variations of intra-individual numbers were observed. Single-step procedures are capable of producing sufficient amounts of platelets for clinical usage. Within the evaluated procedures, platelet numbers and numbers of white blood cells differ significantly. The intra-individual results of platelet-rich plasma separations showed wide variations in platelet and cell numbers as well as levels of growth factors regardless of separation method.

  6. Regenerative medicine for the treatment of Teno-desmic injuries of the equine. A series of 150 horses treated with platelet-derived growth factors.

    PubMed

    Scala, Marco; Lenarduzzi, Silvia; Spagnolo, Francesco; Trapasso, Maria; Ottonello, Chiara; Muraglia, Anita; Barla, Annalisa; Squillario, Margherita; Strada, Paolo

    2014-01-01

    The aim of the present study was to evaluate the safety and the clinical outcome of platelet-rich plasma for the treatment of teno-desmic injures in competition horses. From January 2009 to December 2011, 150 sport horses suffering from teno-desmic injuries were treated with no-gelled platelet-concentrate. No horse showed any major adverse reaction as a result of the procedure. Full healing was obtained for 81% of the horses. Twelve percent had clinical improvement and only 7% a failure. Eight percent of cases of relapse were observed. No statistically significant correlation existed between clinical outcome and the area of the lesion. A statistically significant correlation existed between the clinical outcome and the age of the horse. Treatment with platelet-derived growth factors leads to the formation of a tendon with normal morphology and functionality, which translate in the resumption of the agonistic activity for the horses we treated. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Effect of steroids on the activation status of platelets in patients with Immune thrombocytopenia (ITP).

    PubMed

    Bhoria, Preeti; Sharma, Saniya; Varma, Neelam; Malhotra, Pankaj; Varma, Subhash; Luthra-Guptasarma, Manni

    2015-01-01

    The activation status of platelets in Immune Thrombocytopenia (ITP) patients--which is still somewhat controversial--is of potential interest, because activated platelets tend to aggregate (leading to excessive clotting or thromboembolic events) but cannot do so when platelet numbers are low, as in ITP. Although corticosteroids are the first line of therapy in ITP, the effect of steroids on activation of platelets has not been evaluated so far. We examined the status of platelet activation (with and without stimulation with ADP) in ITP patients, at the start of therapy (pre-steroid treatment, naive) and post-steroid treatment (classified on the basis of steroid responsiveness). We used flow cytometry to evaluate the levels of expression of P-selectin, and PAC-1 binding to platelets of 55 ITP patients and a similar number of healthy controls, treated with and without ADP. We found that platelets in ITP patients exist in an activated state. In patients who are responsive to steroids, the treatment reverses this situation. Also, the fold activation of platelets upon treatment with ADP is more in healthy controls than in ITP patients; treatment with steroids causes platelets in steroid-responsive patients to become more responsive to ADP-activation, similar to healthy controls. Thus steroids may cause changes in the ability of platelets to get activated with an agonist like ADP. Our results provide new insights into how, and why, steroid therapy helps in the treatment of ITP.

  8. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  9. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844

  10. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    PubMed

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The role of platelets in the development and progression of pulmonary arterial hypertension.

    PubMed

    Kazimierczyk, Remigiusz; Kamiński, Karol

    2018-06-06

    Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction, vascular remodeling, inflammation and thrombosis. Although an increasing number of research confirmed that pulmonary artery endothelial cells, pulmonary artery smooth muscle cells as well as platelets have a role in the pulmonary arterial hypertension pathogenesis, it is still unclear what integrates these factors. In this paper, we review the evidence that platelets through releasing a large variety of chemokines could actively impact the pulmonary arterial hypertension pathogenesis and development. A recent publication revealed that not only an excess of platelet derived cytokines, but also a deficiency may be associated with pulmonary arterial hypertension development and progression. Hence, a simple platelet blockade may not be a correct action to treat pulmonary arterial hypertension. Our review aims to analyse the interactions between the platelets and different types of cells involved in pulmonary arterial hypertension pathogenesis. This knowledge could help to find novel therapeutic options and improve prognosis in this devastating disease. Copyright © 2018 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  12. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets.

    PubMed

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie

    2014-04-22

    Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.

  13. Olaratumab Exerts Antitumor Activity in Preclinical Models of Pediatric Bone and Soft Tissue Tumors through Inhibition of Platelet-Derived Growth Factor Receptor α.

    PubMed

    Lowery, Caitlin D; Blosser, Wayne; Dowless, Michele; Knoche, Shelby; Stephens, Jennifer; Li, Huiling; Surguladze, David; Loizos, Nick; Luffer-Atlas, Debra; Oakley, Gerard J; Guo, Qianxu; Iyer, Seema; Rubin, Brian P; Stancato, Louis

    2018-02-15

    Purpose: Platelet-derived growth factor receptor α (PDGFRα) is implicated in several adult and pediatric malignancies, where activated signaling in tumor cells and/or cells within the microenvironment drive tumorigenesis and disease progression. Olaratumab (LY3012207/IMC-3G3) is a human mAb that exclusively binds to PDGFRα and recently received accelerated FDA approval and conditional EMA approval for treatment of advanced adult sarcoma patients in combination with doxorubicin. In this study, we investigated olaratumab in preclinical models of pediatric bone and soft tissue tumors. Experimental Design: PDGFRα expression was evaluated by qPCR and Western blot analysis. Olaratumab was investigated in in vitro cell proliferation and invasion assays using pediatric osteosarcoma and rhabdoid tumor cell lines. In vivo activity of olaratumab was assessed in preclinical mouse models of pediatric osteosarcoma and malignant rhabdoid tumor. Results: In vitro olaratumab treatment of osteosarcoma and rhabdoid tumor cell lines reduced proliferation and inhibited invasion driven by individual platelet-derived growth factors (PDGFs) or serum. Furthermore, olaratumab delayed primary tumor growth in mouse models of pediatric osteosarcoma and malignant rhabdoid tumor, and this activity was enhanced by combination with either doxorubicin or cisplatin. Conclusions: Overall, these data indicate that olaratumab, alone and in combination with standard of care, blocks the growth of some preclinical PDGFRα-expressing pediatric bone and soft tissue tumor models. Clin Cancer Res; 24(4); 847-57. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation.

    PubMed

    Thomas, Christopher P; Morgan, Lloyd T; Maskrey, Benjamin H; Murphy, Robert C; Kühn, Hartmut; Hazen, Stanley L; Goodall, Alison H; Hamali, Hassan A; Collins, Peter W; O'Donnell, Valerie B

    2010-03-05

    Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 +/- 1.42 (PE) or 18.35 +/- 4.61 (PC), whereas free was 65.5 +/- 17.6 ng/4 x 10(7) cells (n = 5 separate donors, mean +/- S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca(2+) mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.

  15. Evaluation of the effect of phosphodiesterase on equine platelet activation and the effect of antigen challenge on platelet phosphodiesterase activity in horses with recurrent airway obstruction.

    PubMed

    Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M

    2010-05-01

    To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.

  16. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair.

    PubMed

    Agren, M S; Rasmussen, K; Pakkenberg, B; Jørgensen, B

    2014-07-01

    Autologous platelet-rich fibrin (PRF(®)) is prepared by the automatic Vivostat(®) system. Conflicting results with Vivostat PRF in acute wound healing prompted us to examine its cellular and biomolecular composition. Specifically, platelets, selected growth factors and matrix metalloproteinase (MMP)-9 were quantified using novel analytical methods. Ten healthy non-thrombocytopenic volunteers donated blood for generation of intermediate fibrin-I and final PRF. Anticoagulated whole blood and serum procured in parallel served as baseline controls. Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme-linked immunosorbent assays. The number of leucocytes and erythrocytes was reduced (P < 0·001), whereas platelets increased (P < 0·001) in fibrin-I versus whole blood. PRF contained 982 ± 206 × 10(9) platelets/l representing 3·9-fold (P < 0·001) enrichment relative to whole blood. Growth factor abundance in Vivostat PRF and serum was in descending order: transforming growth factor-β1 [5·1-fold higher in PRF than serum, P < 0·001] > platelet-derived growth factor (PDGF)-AB [2·5-fold, P < 0·01] > PDGF-BB [1·6-fold, P < 0·05] > vascular endothelial growth factor > basic fibroblast growth factor [75-fold, P < 0·001]. MMP-9 was reduced 139-fold (P < 0·001) compared with serum, reflecting leucocyte depletion in PRF. The gained knowledge on platelet enrichment and biomolecular constituents may guide clinicians in their optimal use of Vivostat PRF for tissue regenerative applications. © 2013 International Society of Blood Transfusion.

  17. NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis

    PubMed Central

    Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren

    2015-01-01

    Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396

  18. Normalized levels of red blood cells expressing phosphatidylserine, their microparticles, and activated platelets in young patients with β-thalassemia following bone marrow transplantation.

    PubMed

    Klaihmon, Phatchanat; Vimonpatranon, Sinmanus; Noulsri, Egarit; Lertthammakiat, Surapong; Anurathapan, Usanarat; Sirachainan, Nongnuch; Hongeng, Suradej; Pattanapanyasat, Kovit

    2017-10-01

    Bone marrow transplantation (BMT) serves as the only curative treatment for patients with β-thalassemia major; however, hemostatic changes have been observed in these BMT patients. Aggregability of thalassemic red blood cells (RBCs) and increased red blood cell-derived microparticles (RMPs) expressing phosphatidylserine (PS) are thought to participate in thromboembolic events by initially triggering platelet activation. To our knowledge, there has been no report providing quantitation of these circulating PS-expressing RBCs and RMPs in young β-thalassemia patients after BMT. Whole blood from each subject was fluorescently labeled to detect RBC markers (CD235a) and annexin-V together with the known number TruCount™ beads. PS-expressing RBCs, RMPs, and activated platelets were identified by flow cytometry. In our randomized study, we found the decreased levels of three aforementioned factors compared to levels in patients receiving regular blood transfusion (RT). This study showed that BMT in β-thalassemia patients decreases the levels of circulating PS-expressing RBCs, their MPs, and procoagulant platelets when compared to patients who received RT. Normalized levels of these coagulation markers may provide the supportive evidence of the effectiveness of BMT for curing thalassemia.

  19. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?

    PubMed

    Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina

    2016-01-01

    The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The life cycle of platelet granules.

    PubMed

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  1. In search of a consensus terminology in the field of platelet concentrates for surgical use: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), fibrin gel polymerization and leukocytes.

    PubMed

    Dohan Ehrenfest, David M; Bielecki, Tomasz; Mishra, Allan; Borzini, Piero; Inchingolo, Francesco; Sammartino, Gilberto; Rasmusson, Lars; Everts, Peter A

    2012-06-01

    In the field of platelet concentrates for surgical use, most products are termed Platelet-Rich Plasma (PRP). Unfortunately, this term is very general and incomplete, leading to many confusions in the scientific database. In this article, a panel of experts discusses this issue and proposes an accurate and simple terminology system for platelet concentrates for surgical use. Four main categories of products can be easily defined, depending on their leukocyte content and fibrin architecture: Pure Platelet-Rich Plasma (P-PRP), such as cell separator PRP, Vivostat PRF or Anitua's PRGF; Leukocyteand Platelet-Rich Plasma (L-PRP), such as Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan, Angel or GPS PRP; Pure Plaletet-Rich Fibrin (P-PRF), such as Fibrinet; and Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Choukroun's PRF. P-PRP and L-PRP refer to the unactivated liquid form of these products, their activated versions being respectively named P-PRP gels and L-PRP gels. The purpose of this search for a terminology consensus is to plead for a more serious characterization of these products. Researchers have to be aware of the complex nature of these living biomaterials, in order to avoid misunderstandings and erroneous conclusions. Understanding the biomaterials or believing in the magic of growth factors ? From this choice depends the future of the field.

  2. Three new 7.3',8.5'-connected bicyclo[3.2.1]octanoids and other neolignans from leaves of Nectandra amazonum NEES. (Lauraceae).

    PubMed

    Coy Barrera, Ericsson David; Cuca Suárez, Luis Enrique

    2009-06-01

    Three new 7.3',8.5'-connected (macrophyllin-type) bicyclo[3.2.1]octanoid neolignans (nectamazins A-C, 1-3) were isolated from leaves of Nectandra amazonum NEES., along with seven known neolignans (4-10). The structures of 1-3 were characterized by spectroscopic methods (1D, 2D NMR) and the absolute configuration was assigned on the basis of circular dichroism (CD) spectra supported by nuclear Overhauser effect spectroscopy (NOESY) correlations. The new compounds showed inhibition activity against platelet activating factor (PAF)-induced aggregation of rabbit platelets.

  3. Evaluation of thrombelastographic platelet-mapping in healthy cats.

    PubMed

    Blois, Shauna L; Banerjee, Amrita; Wood, R Darren

    2012-06-01

    Thrombelastography (TEG) permits analysis of clot formation but it is not specific for platelet activity. TEG PlateletMapping (TEG-PM) is a modification of TEG that uses adenosine diphosphate (ADP) and arachidonic acid (AA) as platelet agonists to define the contribution of platelets to clot formation. The objectives of this study were to determine values for TEG-PM in healthy cats and the interassay variation of TEG-PM. TEG-PM analysis was performed on blood specimens collected from 12 healthy cats and was repeated using a second blood specimen collected 2 hours later. Maximum amplitudes generated by thrombin (MA(thrombin)), fibrin (MA(fibrin)), ADP-stimulated platelet activity (MA(ADP)), and AA-stimulated platelet activity (MA(AA)) were recorded. Mean ± SD for MA(thrombin) was 51.1 ± 8.5 mm, for MA(fibrin) was 32.3 ± 17.7 mm, for MA(ADP) was 32.3 ± 15.0 mm, and for MA(AA) was 24.5 ± 12.2 mm. Mean MA(ADP) and MA(fibrin) were not significantly different, whereas mean MA(AA) was significantly lower than mean MA(fibrin). Results from the first and second specimens were not significantly different. Correlation between the first and second specimens was moderate for MA(thrombin), MA(fibrin), and MA(ADP), but was poor for MA(AA). A high degree of variability (coefficient of variation 47.7-60.0%) was observed for MA(fibrin), MA(ADP), and MA(AA). As MA(ADP) and MA(AA) (AA) were the same as or lower than MA(fibrin), a valid baseline to determine platelet-stimulated clot formation could not be established. Considerable interassay variation and wide intervals for MA(fibrin), MA(ADP), and MA(AA) values in this study indicate that TEG-PM should be used cautiously in feline patients. Several preanalytical factors should be examined in further detail. © 2012 American Society for Veterinary Clinical Pathology.

  4. Antioxidants change platelet responses to various stimulating events

    PubMed Central

    Sobotková, Alžběta; Mášová-Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Májek, Pavel; Reicheltová, Zuzana; Kotlín, Roman; Weisel, John W.; Malý, Martin; Dyr, Jan E.

    2010-01-01

    The role of platelets in hemostasis may be influenced by alteration of the platelet redox state—the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB2 levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments. PMID:19766712

  5. Antioxidants change platelet responses to various stimulating events.

    PubMed

    Sobotková, Alzbeta; Másová-Chrastinová, Leona; Suttnar, Jirí; Stikarová, Jana; Májek, Pavel; Reicheltová, Zuzana; Kotlín, Roman; Weisel, John W; Malý, Martin; Dyr, Jan E

    2009-12-15

    The role of platelets in hemostasis may be influenced by alteration of the platelet redox state-the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB(2) levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments.

  6. Antimicrobial activity of platelet-rich plasma and other plasma preparations against periodontal pathogens.

    PubMed

    Yang, Li-Chiu; Hu, Suh-Woan; Yan, Min; Yang, Jaw-Ji; Tsou, Sing-Hua; Lin, Yuh-Yih

    2015-02-01

    In addition to releasing a pool of growth factors during activation, platelets have many features that indicate their role in the anti-infective host defense. The antimicrobial activities of platelet-rich plasma (PRP) and related plasma preparations against periodontal disease-associated bacteria were evaluated. Four distinct plasma fractions were extracted in the formulation used commonly in dentistry and were tested for their antibacterial properties against three periodontal bacteria: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. The minimum inhibitory concentration of each plasma preparation was determined, and in vitro time-kill assays were used to detect their abilities to inhibit bacterial growth. Bacterial adhesion interference and the susceptibility of bacterial adherence by these plasma preparations were also conducted. All plasma preparations can inhibit bacterial growth, with PRP showing the superior activity. Bacterial growth inhibition by PRP occurred in the first 24 hours after application in the time-kill assay. PRP interfered with P. gingivalis and A. actinomycetemcomitans attachment and enhanced exfoliation of attached P. gingivalis but had no influences on F. nucleatum bacterial adherence. PRP expressed antibacterial properties, which may be attributed to platelets possessing additional antimicrobial molecules. The application of PRP on periodontal surgical sites is advisable because of its regenerative potential and its antibacterial effects.

  7. Circulating microparticles and endogenous estrogen in newly menopausal women

    PubMed Central

    Jayachandran, M.; Litwiller, R. D.; Owen, W. G.; Miller, V. M.

    2011-01-01

    Background Estrogen modulates antithrombotic characteristics of the vascular endothelium and the interaction of blood elements with the vascular surface. A marker of these modulatory activities is formation of cell-specific microparticles. This study examined the relationship between blood-borne microparticles and endogenous estrogen at menopause. Methods Platelet activation and plasma microparticles were characterized from women being screened (n = 146) for the Kronos Early Estrogen Prevention Study. Women were grouped according to serum estrogen (< 20 pg/ml; low estrogen, n = 21 or > 40 pg/ml; high estrogen, n = 11). Results Age, body mass index, blood pressure and blood chemistries were the same in both groups. No woman was hypertensive, diabetic or a current smoker. Platelet counts, basal and activated expression of P-selectin on platelet membranes were the same, but activated expression of glycoprotein IIb/IIIa was greater in the high-estrogen group. Numbers of endothelium-, platelet-, monocyte- and granulocyte-derived microparticles were greater in the low-estrogen group. Of the total numbers of microparticles, those positive for phosphatidylserine and tissue factor were also greater in the low-estrogen group. Conclusion These results suggest that, with declines in endogenous estrogen at menopause, numbers of procoagulant microparticles increase and thus may provide a means to explore mechanisms for cardiovascular risk development in newly menopausal women. PMID:19051075

  8. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates.

    PubMed

    Chen, Meimei; Ye, Xiaohui; Ming, Xin; Chen, Yahui; Wang, Ying; Su, Xingli; Su, Wen; Kong, Yi

    2015-06-02

    Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development.

  9. Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation

    PubMed Central

    Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.

    2009-01-01

    Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838

  10. Platelet-derived growth factor A mRNA in platelets is associated with the degree of hepatic fibrosis in chronic hepatitis C.

    PubMed

    Tanikawa, Aline Aki; Grotto, Rejane Maria Tommasini; Silva, Giovanni Faria; Ferrasi, Adriana Camargo; Sarnighausen, Valéria Cristina Rodrigues; Pardini, Maria Inês de Moura Campos

    2017-01-01

    Transforming growth factor beta 1 (TGFB1) and platelet-derived growth factor (PDGF) are the main cytokines related to hepatic fibrogenesis. RNA isolated from the platelets and hepatic tissue of 43 HCV carriers was used for quantitative polymerase chain reaction to determine TGFB1, PDGFA, and PDGFB RNA expression. The mRNA expression of PDGFA in platelets was significantly lower in the group with advanced fibrosis than in the group with early-stage fibrosis. TGFB1 was more frequently expressed in platelets than in hepatic tissue, which was different from PDGFB. A pathway mediated by overexpression of TGFB1 via PDGFA in megakaryocytes could be involved in the development of fibrosis.

  11. The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects

    PubMed Central

    Spinelli, S. L.; O'Brien, J. J.; Bancos, S.; Lehmann, G. M.; Springer, D. L.; Blumberg, N.; Francis, C. W.; Taubman, M. B.; Phipps, R. P.

    2008-01-01

    Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors (PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons. First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options. PMID:18288284

  12. Binary agonist surface patterns prime platelets for downstream adhesion in flowing whole blood.

    PubMed

    Eichinger, Colin D; Hlady, Vladimir

    2017-04-28

    As platelets encounter damaged vessels or biomaterials, they interact with a complex milieu of surface-bound agonists, from exposed subendothelium to adsorbed plasma proteins. It has been shown that an upstream, surface-immobilized agonist is capable of priming platelets for enhanced adhesion downstream. In this study, binary agonists were integrated into the upstream position of flow cells and the platelet priming response was measured by downstream adhesion in flowing whole blood. A nonadditive response was observed in which platelets transiently exposed to two agonists exhibited greater activation and downstream adhesion than that from the sum of either agonist alone. Antibody blocking of one of the two upstream agonists eliminated nonadditive activation and downstream adhesion. Crosstalk between platelet activation pathways likely led to a synergistic effect which created an enhanced activation response in the platelet population. The existence of synergy between platelet priming pathways is a concept that has broad implications for the field of biomaterials hemocompatibility and platelet activity testing.

  13. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  14. Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine-Associated Treatments in Bottlenose Dolphins (Tursiops truncatus)

    PubMed Central

    Griffeth, Richard J.; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins. PMID:25251412

  15. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus).

    PubMed

    Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins.

  16. Mechanical circulatory support is associated with loss of platelet receptors glycoprotein Ibα and glycoprotein VI.

    PubMed

    Lukito, P; Wong, A; Jing, J; Arthur, J F; Marasco, S F; Murphy, D A; Bergin, P J; Shaw, J A; Collecutt, M; Andrews, R K; Gardiner, E E; Davis, A K

    2016-11-01

    Essentials Relationship of acquired von Willebrand disease (VWD) and platelet dysfunction is explored. Patients with ventricular assist devices and on extracorporeal membrane oxygenation are investigated. Acquired VWD and platelet receptor shedding is demonstrated in the majority of patients. Loss of platelet adhesion receptors glycoprotein (GP) Ibα and GPVI may increase bleeding risk. Background Ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) are associated with bleeding that is not fully explained by anticoagulant or antiplatelet use. Exposure of platelets to elevated shear in vitro leads to increased shedding. Objectives To investigate whether loss of platelet receptors occurs in vivo, and the relationship with acquired von Willebrand syndrome (AVWS). Methods Platelet counts, coagulation tests and von Willebrand factor (VWF) analyses were performed on samples from 21 continuous flow VAD (CF-VAD), 20 ECMO, 12 heart failure and seven aortic stenosis patients. Levels of platelet receptors were measured by flow cytometry or ELISA. Results The loss of high molecular weight VWF multimers was observed in 18 of 19 CF-VAD and 14 of 20 ECMO patients, consistent with AVWS. Platelet receptor shedding was demonstrated by elevated soluble glycoprotein (GP) VI levels in plasma and significantly reduced surface GPIbα and GPVI levels in CF-VAD and ECMO patients as compared with healthy donors. Platelet receptor levels were also significantly reduced in heart failure patients. Conclusions These data link AVWS and increased platelet receptor shedding in patients with CF-VADs or ECMO for the first time. Loss of the platelet surface receptors GPIbα and GPVI in heart failure, CF-VAD and ECMO patients may contribute to ablated platelet adhesion/activation, and limit thrombus formation under high/pathologic shear conditions. © 2016 International Society on Thrombosis and Haemostasis.

  17. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF

    PubMed Central

    Alentorn-Geli, Eduard; Steinbacher, Gilbert; Álvarez-Díaz, Pedro; Cuscó, Xavier; Seijas, Roberto; Barastegui, David; Navarro, Jordi; Laiz, Patricia; García-Balletbó, Montserrat

    2017-01-01

    Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF). Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them). The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients. PMID:28798878

  18. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus

    PubMed Central

    Kaplon-Cieslicka, Agnieszka; Malek, Lukasz; Postula, Marek

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM). BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM. PMID:29062839

  19. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF.

    PubMed

    Cugat, Ramón; Alentorn-Geli, Eduard; Steinbacher, Gilbert; Álvarez-Díaz, Pedro; Cuscó, Xavier; Seijas, Roberto; Barastegui, David; Navarro, Jordi; Laiz, Patricia; García-Balletbó, Montserrat

    2017-01-01

    Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF). Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them). The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  20. Chemoproteomic Discovery of AADACL1 as a Novel Regulator of Human Platelet Activation

    PubMed Central

    Holly, Stephen P.; Chang, Jae Won; Li, Weiwei; Niessen, Sherry; Phillips, Ryan M.; Piatt, Raymond; Black, Justin L.; Smith, Matthew C.; Boulaftali, Yacine; Weyrich, Andrew S.; Bergmeier, Wolfgang; Cravatt, Benjamin F.; Parise, Leslie V.

    2013-01-01

    A comprehensive knowledge of the platelet proteome is necessary for understanding thrombosis and for conceiving novel antiplatelet therapies. To discover new biochemical pathways in human platelets, we screened platelets with a carbamate library designed to interrogate the serine hydrolase subproteome and used competitive activity-based protein profiling to map the targets of active carbamates. We identified an inhibitor that targets arylacetamide deacetylase-like 1 (AADACL1), a lipid deacetylase originally identified in invasive cancers. Using this compound, along with highly selective second-generation inhibitors of AADACL1, metabolomics and RNA interference, we show that AADACL1 regulates platelet aggregation, thrombus growth, RAP1 and PKC activation, lipid metabolism and fibrinogen binding to platelets and megakaryocytes. These data provide the first evidence that AADACL1 regulates platelet and megakaryocyte activation and highlight the value of this chemoproteomic strategy for target discovery in platelets. PMID:23993462

  1. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators

    PubMed Central

    Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.

    2015-01-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  2. Ultrastructural characteristics of fibrin clots from canine and feline platelet concentrates activated with calcium gluconate or calcium gluconate plus batroxobin.

    PubMed

    Silva, Raúl F; Carmona, Jorge U; Rezende, Cleuza M F

    2013-04-15

    The aim of this study was to use transmission electron microscopy to describe the ultrastructural characteristics of clots obtained from canine and feline platelet concentrates (PC) that had been activated with calcium gluconate (CG) or CG plus batroxobin (CGB). Platelets from fibrin clots were classified according their morphological changes. The area of the intercellular space (μm2), the area of the fibrin fibers (μm2), and the width of the fibrin fibers (μm) were determined for the dog clots. The platelet area (μm2), the area of fibrin fibers (μm2), the ratio of the minor and major axes of platelets, the ratio of the major and minor axes of platelets, and the number of α-granules found within platelets were measured for the cat clots. Cat platelets displayed full activation. Dog platelets displayed lysis with loss of normal architecture. In both species, a statistically significant difference was found (P < 0.01) between the fibrin fiber measurements in the PC clots activated with CG and CGB. The findings suggest that activation with CG caused platelet alpha granules to release their contents. In cats, fibrin production was greater when the PC was activated with CG. In dogs, activation with CG produced thick fibrin fibers.

  3. Generation of Platelet Microparticles after Cryopreservation of Apheresis Platelet Concentrates Contributes to Hemostatic Activity.

    PubMed

    Eker, İbrahim; Yılmaz, Soner; Çetinkaya, Rıza Aytaç; Pekel, Aysel; Ünlü, Aytekin; Gürsel, Orhan; Yılmaz, Sebahattin; Avcu, Ferit; Muşabak, Uğur; Pekoğlu, Ahmet; Ertaş, Zerrin; Açıkel, Cengizhan; Zeybek, Nazif; Kürekçi, Ahmet Emin; Avcı, İsmail Yaşar

    2017-03-01

    In the last decade, substantial evidence has accumulated about the use of cryopreserved platelet concentrates, especially in trauma. However, little reference has been made in these studies to the morphological and functional changes of platelets. Recently platelets have been shown to be activated by cryopreservation processes and to undergo procoagulant membrane changes resulting in the generation of platelet-derived microparticles (PMPs), platelet degranulation, and release of platelet-derived growth factors (PDGFs). We assessed the viabilities and the PMP and PDGF levels of cryopreserved platelets, and their relation with thrombin generation. Apheresis platelet concentrates (APCs) from 20 donors were stored for 1 day and cryopreserved with 6% dimethyl sulfoxide. Cryopreserved APCs were kept at -80 °C for 1 day. Thawed APCs (100 mL) were diluted with 20 mL of autologous plasma and specimens were analyzed for viabilities and PMPs by flow cytometry, for thrombin generation by calibrated automated thrombogram, and for PDGFs by enzyme-linked immunosorbent assay testing. The mean PMP and PDGF levels in freeze-thawed APCs were significantly higher (2763±399.4/µL vs. 319.9±80.5/µL, p<0.001 and 550.9±73.6 pg/mL vs. 96.5±49 pg/mL, p<0.001, respectively), but the viability rates were significantly lower (68.2±13.7% vs. 94±7.5%, p<.001) than those of fresh APCs. The mean endogenous thrombin potential (ETP) of freeze-thawed APCs was significantly higher than that of the fresh APCs (3406.1±430.4 nM.min vs. 2757.6±485.7 nM.min, p<0.001). Moreover, there was a significant positive poor correlation between ETP levels and PMP levels (r=0.192, p=0.014). Our results showed that, after cryopreservation, while levels of PMPs were increasing, significantly higher and earlier thrombin formation was occurring in the samples analyzed despite the significant decrease in viability. Considering the damage caused by the freezing process and the scarcity of evidence for their in vivo superiority, frozen platelets should be considered for use in austere environments, reserving fresh platelets for prophylactic use in blood banks.

  4. Unaltered Angiogenesis-Regulating Activities of Platelets in Mild Type 2 Diabetes Mellitus despite a Marked Platelet Hyperreactivity.

    PubMed

    Miao, Xinyan; Zhang, Wei; Huang, Zhangsen; Li, Nailin

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with platelet dysfunction and impaired angiogenesis. Aim of the study is to investigate if platelet dysfunction might hamper platelet angiogenic activities in T2DM patients. Sixteen T2DM patients and gender/age-matched non-diabetic controls were studied. Flow cytometry and endothelial colony forming cell (ECFC) tube formation on matrigel were used to assess platelet reactivity and angiogenic activity, respectively. Thrombin receptor PAR1-activating peptide (PAR1-AP) induced higher platelet P-selectin expression, and evoked more rapid and intense platelet annexin V binding in T2DM patients, seen as a more rapid increase of annexin V+ platelets (24.3±6.4% vs 12.6±3.8% in control at 2 min) and a higher elevation (30.9±5.1% vs 24.3±3.0% at 8 min). However, PAR1-AP and PAR4-AP induced similar releases of angiogenic regulators from platelets, and both stimuli evoked platelet release of platelet angiogenic regulators to similar extents in T2DM and control subjects. Thus, PAR1-stimulated platelet releasate (PAR1-PR) and PAR4-PR similarly enhanced capillary-like network/tube formation of ECFCs, and the enhancements did not differ between T2DM and control subjects. Direct supplementation of platelets to ECFCs at the ratio of 1:200 enhanced ECFC tube formation even more markedly, leading to approximately 100% increases of the total branch points of ECFC tube formation, for which the enhancements were also similar between patients and controls. In conclusion, platelets from T2DM subjects are hyperreactive. Platelet activation induced by high doses of PAR1-AP, however, results in similar releases of angiogenic regulators in mild T2DM and control subjects. Platelets from T2DM and control subjects also demonstrate similar enhancements on ECFC angiogenic activities.

  5. Clinical usefulness of a functional assay for the von Willebrand factor cleaving protease (ADAMTS 13) and its inhibitor in a patient with thrombotic thrombocytopenic purpura.

    PubMed

    Rick, M E; Austin, H; Leitman, S F; Krizek, D M; Aronson, D L

    2004-02-01

    Decreased von Willebrand factor cleaving protease activity (VWFCP, ADAMTS 13) leads to persistence of unusually large multimers of von Willebrand factor that bind to platelets, causing platelet aggregates, microangiopathic hemolysis, and thrombocytopenia in patients with thrombotic thrombocytopenic purpura (TTP). The clinical value of measuring ADAMTS 13 and its inhibitor is not fully defined; the case reported here illustrates the usefulness of the assay to help confirm the clinical diagnosis in a patient with other potential causes for thrombotic microangiopathy; the assay also helped in making treatment decisions. A patient with systemic lupus erythematosis (SLE) presented with fever and abdominal pain, thrombocytopenia, and anemia. Thrombotic microangiopathy was diagnosed by the appearance of schistocytes, decreasing platelet count, and evidence of hemolysis. ADAMTS 13 was decreased and an inhibitor was demonstrated in the patient's initial blood sample within 24 hr of admission. Plasma exchange was initiated, and serial assays showed increased ADAMTS 13 activity and decreased inhibitor after each plasma exchange; there was a rebound in inhibitor and a decrease in ADAMTS 13 activity prior to the next exchange that lessened over time. Increasing levels of protease activity correlated with clinical and laboratory improvement. Measurement of ADAMTS 13 activity and its inhibitor aided in the diagnosis of this complicated case of a patient with other potential causes for microangiopathic hemolysis. Subsequent levels correlated with the clinical course, and disappearance of the inhibitor indicated that long-term plasma exchange or other immunosuppressive treatment was not needed.

  6. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  7. Transport physics and biorheology in the setting of haemostasis and thrombosis

    PubMed Central

    Brass, Lawrence F.; Diamond, Scott L.

    2016-01-01

    SUMMARY The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on haemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are very distinct for: (1) haemostasis vs. thrombosis and (2) venous vs. arterial episodes. Intraclot transport changes dramatically the moment haemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50–200-fold greater than platelet rich plasma, clots formed under flow have very different composition and structure compared to blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by: γ′-fibrinogen incorporated into fibrin, engageability of FIXa/VIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne/cm2. Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand Factor self-association into massive fibers along with shear induced platelet activation. Pathological VWF fibers are ADAMTS13-resistant, but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand’s disease, hemophilia, traumatic bleeding, and drug action. PMID:26848552

  8. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    PubMed

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  9. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    PubMed

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, p<0.001), TGF-β1 (r=0.85, p<0.001), VEGF (r=0.46, p<0.01) and PDGF-bb (r=0.9, p<0.001). Our results demonstrate that selected growth factors are present in the platelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  10. PPARbeta/delta agonists modulate platelet function via a mechanism involving PPAR receptors and specific association/repression of PKCalpha--brief report.

    PubMed

    Ali, Ferhana Y; Hall, Matthew G; Desvergne, Béatrice; Warner, Timothy D; Mitchell, Jane A

    2009-11-01

    Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) is a nuclear receptor found in platelets. PPARbeta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPARbeta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPARbeta/delta receptors and their intracellular signaling pathways in platelets are not known. We have used mice lacking PPARbeta/delta (PPARbeta/delta(-/-)) to show the effects of the PPARbeta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPARbeta/delta, however GW501516 had no PPARbeta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKCalpha, which can mediate platelet activation, was bound and repressed by PPARbeta/delta after platelets were treated with GW501516. These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk.

  11. Role of xenogenous bovine platelet gel embedded within collagen implant on tendon healing: an in vitro and in vivo study

    PubMed Central

    Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Maffulli, Nicola

    2015-01-01

    Surgical reconstruction of large Achilles tendon defects is demanding. Platelet concentrates may be useful to favor healing in such conditions. The characteristics of bovine platelet-gel embedded within a collagen-implant were determined in vitro, and its healing efficacy was examined in a large Achilles tendon defect in rabbits. Two cm of the left Achilles tendon of 60 rabbits were excised, and the animals were randomly assigned to control (no implant), collagen-implant, or bovine-platelet-gel-collagen-implant groups. The tendon edges were maintained aligned using a Kessler suture. No implant was inserted in the control group. In the two other groups, a collagen-implant or bovine-platelet-gel-collagen-implant was inserted in the defect. The bioelectricity and serum platelet-derived growth factor levels were measured weekly and at 60 days post injury, respectively. After euthanasia at 60 days post injury, the tendons were tested at macroscopic, microscopic, and ultrastructural levels, and their dry matter and biomechanical performances were also assessed. Another 60 rabbits were assigned to receive no implant, a collagen-implant, or a bovine-platelet-gel-collagen-implant, euthanized at 10, 20, 30, and 40 days post injury, and their tendons were evaluated grossly and histologically to determine host-graft interactions. Compared to the control and collagen-implant, treatment with bovine-platelet-gel-collagen-implant improved tissue bioelectricity and serum platelet-derived growth factor levels, and increased cell proliferation, differentiation, and maturation. It also increased number, diameter, and density of the collagen fibrils, alignment and maturation of the collagen fibrils and fibers, biomechanical properties and dry matter content of the injured tendons at 60 days post injury. The bovine-platelet-gel-collagen-implant also increased biodegradability, biocompatibility, and tissue incorporation behavior of the implant compared to the collagen-implant alone. This treatment also decreased tendon adhesion, muscle fibrosis, and atrophy, and improved the physical activity of the animals. The bovine-platelet-gel-collagen-implant was effective in neotenon formation in vivo, which may be valuable in the clinical setting. PMID:25341879

  12. Ratio of mean platelet volume to platelet count is a potential surrogate marker predicting liver cirrhosis.

    PubMed

    Iida, Hiroya; Kaibori, Masaki; Matsui, Kosuke; Ishizaki, Morihiko; Kon, Masanori

    2018-01-27

    To provide a simple surrogate marker predictive of liver cirrhosis (LC). Specimens from 302 patients who underwent resection for hepatocellular carcinoma between January 2006 and December 2012 were retrospectively analyzed. Based on pathologic findings, patients were divided into groups based on whether or not they had LC. Parameters associated with hepatic functional reserve were compared in these two groups using Mann-Whitney U -test for univariate analysis. Factors differing significantly in univariate analyses were entered into multivariate logistic regression analysis. There were significant differences between the LC group ( n = 100) and non-LC group ( n = 202) in prothrombin activity, concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin, cholinesterase, type IV collagen, hyaluronic acid, indocyanine green retention rate at 15 min, maximal removal rate of technitium-99m diethylene triamine penta-acetic acid-galactosyl human serum albumin and ratio of mean platelet volume to platelet count (MPV/PLT). Multivariate analysis showed that prothrombin activity, concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin and hyaluronic acid, and MPV/PLT ratio were factors independently predictive of LC. The area under the curve value for MPV/PLT was 0.78, with a 0.8 cutoff value having a sensitivity of 65% and a specificity of 78%. The MPV/PLT ratio, which can be determined simply from the complete blood count, may be a simple surrogate marker predicting LC.

  13. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation.

    PubMed

    Fogelson, Aaron L; Tania, Nessy

    2005-01-01

    A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex. Copyright 2005 S. Karger AG, Basel.

  14. Role of thrombin signalling in platelets in haemostasis and thrombosis

    NASA Astrophysics Data System (ADS)

    Sambrano, Gilberto R.; Weiss, Ethan J.; Zheng, Yao-Wu; Huang, Wei; Coughlin, Shaun R.

    2001-09-01

    Platelets are critical in haemostasis and in arterial thrombosis, which causes heart attacks and other events triggered by abnormal clotting. The coagulation protease thrombin is a potent activator of platelets ex vivo. However, because thrombin also mediates fibrin deposition and because multiple agonists can trigger platelet activation, the relative importance of platelet activation by thrombin in haemostasis and thrombosis is unknown. Thrombin triggers cellular responses at least in part through protease-activated receptors (PARs). Mouse platelets express PAR3 and PAR4 (ref. 9). Here we show that platelets from PAR4-deficient mice failed to change shape, mobilize calcium, secrete ATP or aggregate in response to thrombin. This result demonstrates that PAR signalling is necessary for mouse platelet activation by thrombin and supports the model that mouse PAR3 (mPAR3) does not by itself mediate transmembrane signalling but instead acts as a cofactor for thrombin cleavage and activation of mPAR4 (ref. 10). Importantly, PAR4-deficient mice had markedly prolonged bleeding times and were protected in a model of arteriolar thrombosis. Thus platelet activation by thrombin is necessary for normal haemostasis and may be an important target in the treatment of thrombosis.

  15. Thymidine Phosphorylase is Angiogenic and Promotes Tumor Growth

    NASA Astrophysics Data System (ADS)

    Moghaddam, Amir; Zhang, Hua-Tang; Fan, Tai-Ping D.; Hu, De-En; Lees, Vivien C.; Turley, Helen; Fox, Stephen B.; Gatter, Kevin C.; Harris, Adrian L.; Bicknell, Roy

    1995-02-01

    Platelet-derived endothelial cell growth factor was previously identified as the sole angiogenic activity present in platelets; it is now known to be thymidine phosphorylase (TP). The effect of TP on [methyl-^3H]thymidine uptake does not arise from de novo DNA synthesis and the molecule is not a growth factor. Despite this, TP is strongly angiogenic in a rat sponge and freeze-injured skin graft model. Neutralizing antibodies and site-directed mutagenesis confirmed that the enzyme activity of TP is a condition for its angiogenic activity. The level of TP was found to be elevated in human breast tumors compared to normal breast tissue (P < 0.001). Overexpression of TP in MCF-7 breast carcinoma cells had no effect on growth in vitro but markedly enhanced tumor growth in vivo. These data and the correlation of expression in tumors with malignancy identify TP as a target for antitumor strategies.

  16. Synergistic effect of signaling from receptors of soluble platelet agonists and outside-in signaling in formation of a stable fibrinogen-integrin αIIbβ3-actin cytoskeleton complex.

    PubMed

    Budnik, Ivan; Shenkman, Boris; Savion, Naphtali

    2015-01-01

    Thrombus formation in the injured vessel wall is a highly complex process involving various blood-born components that go through specific temporal and spatial changes as observed by intravital videomicroscopy. Platelets bind transiently to the developing thrombus and may either become stably incorporated into or disengage from the thrombus. The aim of the present study was to reveal the processes involved in the formation of a stable thrombus. Platelet-rich plasma and washed platelets were studied by the aggregometer. The aggregate stability was challenged by eptifibatide. Platelet Triton-insoluble fraction was prepared and the actin and αIIb content in the cytoskeleton was analyzed by western blot. Maximal actin polymerization is achieved 1min after platelet activation while maximal αIIbβ3-actin cytoskeleton association requires 5 to 10min of activation and fibrinogen-mediated platelet-to-platelet bridging. Thus, actin polymerization is dependent on platelet activation and requires neither αIIbβ3 integrin occupation nor platelet aggregation. Formation of a stable aggregate requires platelet activation for more than 1min, complete increase in actin cytoskeleton fraction and partial association of αIIbβ3 with the actin cytoskeleton. However, direct αIIbβ3 activation is not sufficient for cytoskeleton complex formation. Thus, stable αIIbβ3-fibrinogen interaction, representing stable aggregate, is achieved after more than 1min agonist activation, involving inside-out and outside-in signaling but not after direct integrin activation, involving only outside-in signaling. Formation of a stable fibrinogen-αIIbβ3-actin cytoskeleton complex is the result of the combined effect of platelet stimulation by soluble agonists, activation of αIIbβ3, fibrinogen binding and platelet-to-platelet bridging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  18. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway

    PubMed Central

    Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling

    2009-01-01

    Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688

  19. Platelet geometry sensing spatially regulates α-granule secretion to enable matrix self-deposition

    PubMed Central

    Sakurai, Yumiko; Fitch-Tewfik, Jennifer L.; Qiu, Yongzhi; Ahn, Byungwook; Myers, David R.; Tran, Reginald; Fay, Meredith E.; Ding, Lingmei; Spearman, Paul W.; Michelson, Alan D.; Flaumenhaft, Robert

    2015-01-01

    Although the biology of platelet adhesion on subendothelial matrix after vascular injury is well characterized, how the matrix biophysical properties affect platelet physiology is unknown. Here we demonstrate that geometric orientation of the matrix itself regulates platelet α-granule secretion, a key component of platelet activation. Using protein microcontact printing, we show that platelets spread beyond the geometric constraints of fibrinogen or collagen micropatterns with <5-µm features. Interestingly, α-granule exocytosis and deposition of the α-granule contents such as fibrinogen and fibronectin were primarily observed in those areas of platelet extension beyond the matrix protein micropatterns. This enables platelets to “self-deposit” additional matrix, provide more cellular membrane to extend spreading, and reinforce platelet-platelet connections. Mechanistically, this phenomenon is mediated by actin polymerization, Rac1 activation, and αIIbβ3 integrin redistribution and activation, and is attenuated in gray platelet syndrome platelets, which lack α-granules, and Wiskott-Aldrich syndrome platelets, which have cytoskeletal defects. Overall, these studies demonstrate how platelets transduce geometric cues of the underlying matrix geometry into intracellular signals to extend spreading, which endows platelets spatial flexibility when spreading onto small sites of exposed subendothelium. PMID:25964667

  20. PDGFRα promoter polymorphisms and expression patterns influence risk of development of imatinib-induced thrombocytopenia in chronic myeloid leukemia: A study from India.

    PubMed

    Guru, Sameer Ahmad; Mir, Rashid; Bhat, Musadiq; Najar, Imtiyaz; Zuberi, Mariyam; Sumi, Mamta; Masroor, Mirza; Gupta, Naresh; Saxena, Alpana

    2017-10-01

    Platelet-derived growth factor receptor has been implicated in many malignant and non-malignant diseases. Platelet-derived growth factor receptor-α is a tyrosine kinase and a side target for imatinib, a revolutionary drug for the treatment of chronic myeloid leukemia that has dramatically improved the survival of chronic myeloid leukemia patients. Given the importance of platelet-derived growth factor receptor in platelet development and its inhibition by imatinib, it was intriguing to analyze the role of platelet-derived growth factor receptor-α in relation to imatinib treatment in the development of imatinib-induced thrombocytopenia in chronic myeloid leukemia patients. We hypothesized that two known functional polymorphisms, +68GA insertion/deletion and -909C/A, in the promoter region of the platelet-derived growth factor receptor-α gene may affect the susceptibility of chronic myeloid leukemia patients receiving imatinib treatment to the development of thrombocytopenia. A case-control study was conducted among a cohort of chronic myeloid leukemia patients admitted to the Lok Nayak Hospital, New Delhi, India. A set of 100 patients of chronic myeloid leukemia in chronic phase and 100 age- and sex-matched healthy controls were studied. After initiation of imatinib treatment, the hematological response of chronic myeloid leukemia patients was monitored regularly for 2 years, in which the development of thrombocytopenia was the primary end point. Platelet-derived growth factor receptor-α promoter polymorphisms +68GA ins/del and -909C/A were studied by allele-specific polymerase chain reaction. Platelet-derived growth factor receptor-α messenger RNA expression was evaluated by quantitative real-time polymerase chain reaction. The messenger RNA expression results were expressed as 2 -Δct ± standard deviation. The distribution of +68GA ins/del promoter polymorphism genotypes differed significantly between the thrombocytopenic and non-thrombocytopenic chronic myeloid leukemia patient groups (p < 0.0001). Moreover, +68GA del/del and ins/del genotypes in imatinib-treated chronic myeloid leukemia patients were associated with an increased risk of developing thrombocytopenia, with odds ratios 6.5 (95% confidence interval = 2.02-0.89, p = 0.001) and 6.0 (95% confidence interval = 2.26-15.91, p = 0.0002), respectively. Similarly, -909C/A promoter polymorphism genotype distribution also differed significantly between thrombocytopenic and non-thrombocytopenic chronic myeloid leukemia patient groups (p = 0.02), and a significantly increased risk of imatinib-induced thrombocytopenia was associated with -909C/A polymorphism mutant homozygous (AA) genotypes the odds ratio being 7.7 (95% confidence interval 1.50 to 39.91, p = 0.009). However, no significant risk of imatinib-induced thrombocytopenia was found to be associated with heterozygous genotype (-909C/A) with odds ratio 1.9 (95% confidence interval = 0.86-4.56, p = 1.14). Platelet-derived growth factor receptor-α messenger RNA expression was significantly higher in chronic myeloid leukemia patients compared to controls (p = 0.008). Moreover, patients with imatinib-induced thrombocytopenia had a significantly lower platelet-derived growth factor receptor-α messenger RNA expression, compared to patients without thrombocytopenia (p = 0.01). A differential expression of platelet-derived growth factor receptor-α messenger RNA was observed with respect to different +68 GA ins/del and -909C/A polymorphism genotypes. The +68GA deletion allele and -909A allele were significantly associated with lower expression of platelet-derived growth factor receptor-α messenger RNA. The platelet-derived growth factor receptor-α +68GA del/del, +68GA ins/del, and -909AA genotypes are associated with an increased risk of developing thrombocytopenia in imatinib-treated chronic myeloid leukemia patients. A significantly lower platelet-derived growth factor receptor-α messenger RNA expression accompanies the +68GA deletion allele in an allele dose-dependent manner. Platelet-derived growth factor receptor-α -909AA genotype is also associated with lower expression of platelet-derived growth factor receptor-α. The downregulation of platelet-derived growth factor receptor-α expression may play a causative role in imatinib-induced thrombocytopenia, a common side effect, in the subset of chronic myeloid leukemia patients with platelet-derived growth factor receptor-α +68 GA ins/del, +68 GA del/del, and -909C/A genotypes.

  1. Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions.

    PubMed

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Del Fante, Claudia; Perotti, Cesare; Scudeller, Luigia; Caramella, Carla

    2011-02-01

    Growth factors contained in platelet α-granules initiate and modulate tissue repair and are proposed for the treatment of soft and hard-tissue surgical conditions and in the management of non-healing wounds. Platelet lysate is a hemoderivative obtained from platelet-rich plasma and is capable of releasing a pool of growth factors. Many medical and surgical techniques have been proposed for the treatment of corneal lesions; management of these conditions remains problematic and healing with standard protocols is unattainable. The aim of this study was to develop formulations suitable for prolonging the contact of platelet lysate with the damaged cornea for the time necessary to exert a therapeutic effect. Two vehicles, one based on polyacrylic acid and one based on chitosan, were autoclaved and loaded with platelet lysate and the resultant formulations were characterized for rheology, mucoadhesion, vehicle compatibility and stability. The proliferation effect was tested on two cell culture types (rabbit corneal epithelial cells and fibroblasts). An in-vitro wound-healing test was performed on fibroblasts. In both cases the formulations were compared with platelet lysate diluted with saline at the same concentration. Both formulations maintained the rheological and mucoadhesive properties of the vehicles and the proliferative activity of platelet lysate. The chitosan formulation was able to significantly enhance epithelial cell growth even after storage of up to 2 weeks (in-use conditions), while the polyacrylic acid formulation was less efficient, probably due to the characteristics of the cell model used. The in-vitro wound-healing test performed on fibroblasts confirmed the differences between the two vehicles. The effect induced by the platelet lysate and chitosan formulation was faster than that of the polyacrylic acid formulation and complete in-vitro wound repair was achieved within 48 h. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  2. Alteration of mean platelet volume in the pathogenesis of acute ischemic stroke: cause or consequence?

    PubMed

    Ayas, Zeynep Özözen; Can, Ufuk

    2018-01-30

    Platelets have a crucial role on vascular disease which are involved in pathogenesis of ischemic stroke. Platelet size is measured as mean platelet volume (MPV) and is a marker of platelet activity. Platelets contain more dense granules as the size increases and produce more serotonin and tromboglobulin (b-TG) than small platelets. In this study, the alteration of MPV values were investigated in patients with acute stroke, who had MPV values before stroke, during acute ischemic stroke and 7 days after the stroke. The relationship between this alteration and risk factors, etiology and localization of ischemic stroke were also investigated. Sixty-seven patients with clinically and radiologically established diagnoses of ischemic stroke were enrolled into the study and stroke etiology was classified by modified Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification and, modified Bamford classification was used for localization and stroke risk factors were also evaluated. The platelet counts and MPV values from patient files in patients who had values before stroke (at examination for another diseases), within 24 hours of symptom onset and after 7 further days were analysed. MPV values increased after stroke (10.59±2.26) compared with acute stroke values (9.84±1.64) and the values before stroke (9.59±1.72) (p<0.0001); this alteration of MPV values occured 7 days after stroke (p<0.016). There was a positive correlation between age and MPV values during acute stroke (r=0.270; p<0.05). Patients with atrial fibrillation had higher alteration in the time of MPV compared with patients without atrial fibrillation (p>0.006). We assessed for gender, men (n=38) had a higher alteration in the time of MPV compared with women (n=29) (p=0.013). Although there was no alteration of platelet counts, MPV values were increased 7 days after stroke in patients with acute ischemic stroke.

  3. Laboratory tests for identification or exclusion of heparin induced thrombocytopenia: HIT or miss?

    PubMed

    Favaloro, Emmanuel J

    2018-02-01

    Heparin induced thrombocytopenia (HIT) is a potentially fatal condition that arises subsequent to formation of antibodies against complexes containing heparin, usually platelet-factor 4-heparin ("anti-PF4-heparin"). Assessment for HIT involves both clinical evaluation and, if indicated, laboratory testing for confirmation or exclusion, typically using an initial immunological assay ("screening"), and only if positive, a secondary functional assay for confirmation. Many different immunological and functional assays have been developed. The most common contemporary immunological assays comprise enzyme-linked immunosorbent assay [ELISA], chemiluminescence, lateral flow, and particle gel techniques. The most common functional assays measure platelet aggregation or platelet activation events (e.g., serotonin release assay; heparin-induced platelet activation (HIPA); flow cytometry). All assays have some sensitivity and specificity to HIT antibodies, but differ in terms of relative sensitivity and specificity for pathological HIT, as well as false negative and false positive error rate. This brief article overviews the different available laboratory methods, as well as providing a suggested approach to diagnosis or exclusion of HIT. © 2017 Wiley Periodicals, Inc.

  4. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells.

    PubMed

    Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir

    2016-07-01

    Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability.

  5. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells

    PubMed Central

    Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir

    2016-01-01

    Background: Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Materials and Methods: Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. Results: We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. Conclusions: We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability. PMID:27489592

  6. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss®) on ethanol impaired osteoblasts.

    PubMed

    Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh

    2017-11-01

    Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Generation of thromboxane A2 and aorta-contracting activity from platelets stimulated with modified C-reactive protein.

    PubMed Central

    Simpson, R M; Prancan, A; Izzi, J M; Fiedel, B A

    1982-01-01

    The classical acute phase reactant, C-reactive protein (CRP), appears in markedly elevated concentration in the sera of individuals undergoing reactions of acute inflammation and tissue degradation. We previously demonstrated that like IgG, appropriately purified CRP could be thermally modified (H-CRP) such that it enhanced platelet activation in plasma and initiated platelet responses in isolated systems. We now report that this direct platelet activation by modified CRP results in the secretion of both platelet dense body and alpha-granule constituents, and is sensitive to non-steroidal anti-inflammatory drugs as well as the adenosine diphosphate (ADP)-removing enzyme system creatine phosphate/creatine phosphokinase. Thin-layer chromatographic (TLC) analysis of prostanoate endproducts following platelet activation with H-CRP revealed the formation of thromboxane B2 (the hydrated endproduct of thromboxane A2), an important endogenous platelet activator and contractor of vascular tissue; bioassay on rabbit aorta strips of supernatants obtained from platelets undergoing challenge with H-CRP supported the TLC analysis. Complexes formed between CRP and one major ligand, the polycation, were found to share certain platelet activating properties with H-CRP, as does latex-aggregated CRP. These data imply a potential agonist role for this acute phase reactant in platelet physiology and suggest that the interaction of modified forms of CRP with the platelet at sites of vascular damage could have pathological significance. PMID:7118160

  8. Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release.

    PubMed

    Yacoub, Daniel; Théorêt, Jean-François; Villeneuve, Louis; Abou-Saleh, Haissam; Mourad, Walid; Allen, Bruce G; Merhi, Yahye

    2006-10-06

    The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).

  9. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    PubMed Central

    Altamura, Gennaro; Corteggio, Annunziata; Nasir, Lubna; Yuan, Zheng Qiang; Roperto, Franco; Borzacchiello, Giuseppe

    2013-01-01

    Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1) and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR) causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm. PMID:23936786

  10. Acute Coagulopathy of Trauma in the Rat

    DTIC Science & Technology

    2013-01-01

    coagulation and include prothrombin complex con- centrate, recombinant activated FVII , tranexamic acid, and fibrinogen (13, 14). The degree of coagulopathy...extrinsic pathway using tissue factor to initiate coagulation as would be expected following tissue injury. Cytochalasin D (inhibit platelet function in...chalasin D. ! Angle was elevated, and clotting time was shortened, suggesting that coagulation factors were activated and adequate to support thrombin

  11. Acetylglyceryl ether phosphorylcholine (AGEPC; platelet-activating factor)-induced stimulation of rabbit platelets: correlation between phosphatidic acid level, 45Ca2+ uptake, and (3H)serotonin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, S.D.; Hanahan, D.J.

    1984-08-01

    When 32P-labeled rabbits platelet were incubated with 5 X 10(-10) M 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC), either in the presence or absence (0.1 mM EGTA) of added Ca2+, there was a three- to five-fold increase in the (32P)phosphatidic acid (PA) pool within 15 to 20 s. This event was followed by a gradual decrease in the (32P)PA level to near basal level in 5 min. AGEPC effected this change in (32P)PA in a characteristic dose- and time-dependent manner. Polar head group analogs of AGEPC, such as AGEDME and AGEMME, also effected an increase in PA labeling at levels comparable to those previously reportedmore » for their activity toward rabbit platelets. Other analogs, i.e., lysoGEPC and the enantiomer, sn-1-AGEPC, which are inactive toward rabbit platelets, also showed no effect on the level of (32P)PA. The finding that the PA level in rabbit platelets could be manipulated by the addition of AGEPC, without any added Ca2+, provided an excellent model system for establishing a correlation between the uptake of Ca2+, serotonin release, and PA level. Thus, PA must be regarded as a sensitive indicator of a reaction mechanism important to the platelet response to AGEPC, and could be the focal point in promoting calcium uptake during the stimulation process.« less

  12. Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation.

    PubMed

    Kourtzelis, Ioannis; Kotlabova, Klara; Lim, Jong-Hyung; Mitroulis, Ioannis; Ferreira, Anaisa; Chen, Lan-Sun; Gercken, Bettina; Steffen, Anja; Kemter, Elisabeth; Klotzsche-von Ameln, Anne; Waskow, Claudia; Hosur, Kavita; Chatzigeorgiou, Antonios; Ludwig, Barbara; Wolf, Eckhard; Hajishengallis, George; Chavakis, Triantafyllos

    2016-04-01

    Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.

  13. Recruitment and retention: factors that affect pericyte migration

    PubMed Central

    Aguilera, Kristina Y.

    2013-01-01

    Pericytes are critical for vascular morphogenesis and contribute to several pathologies, including cancer development and progression. The mechanisms governing pericyte migration and differentiation are complex and have not been fully established. Current literature suggests that platelet-derived growth factor/platelet-derived growth factor receptor-β, sphingosine 1-phosphate/endothelial differentiation gene-1, angiopoietin-1/tyrosine kinase with immunoglobulin-like and EGF-like domains 2, angiopoietin-2/tyros-ine kinase with immunoglobulin-like and EGF-like domains 2, transforming growth factor β/activin receptor-like kinase 1, transforming growth factor β/activin receptor-like kinase 5, Semaphorin-3A/Neuropilin, and matrix metalloproteinase activity regulate the recruitment of pericytes to nascent vessels. Interestingly, many of these pathways are directly affected by secreted protein acidic and rich in cysteine (SPARC). Here, we summarize the function of these factors in pericyte migration and discuss if and how SPARC might infuence these activities and thus provide an additional layer of control for the recruitment of vascular support cells. Additionally, the consequences of targeted inhibition of pericytes in tumors and the current understanding of pericyte recruitment in pathological environments are discussed. PMID:23912898

  14. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia.

    PubMed

    Augustsson, Cecilia; Persson, Egon

    2014-11-13

    Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.

  15. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    PubMed

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.

  16. Platelets Contain Tissue Factor Pathway Inhibitor-2 Derived from Megakaryocytes and Inhibits Fibrinolysis*

    PubMed Central

    Vadivel, Kanagasabai; Ponnuraj, Sathya-Moorthy; Kumar, Yogesh; Zaiss, Anne K.; Bunce, Matthew W.; Camire, Rodney M.; Wu, Ling; Evseenko, Denis; Herschman, Harvey R.; Bajaj, Madhu S.; Bajaj, S. Paul

    2014-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis. PMID:25262870

  17. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    PubMed

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  18. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept.

    PubMed

    Choukroun, J; Ghanaati, S

    2018-02-01

    The aim of this study was to analyze systematically the influence of the relative centrifugation force (RCF) on leukocytes, platelets and growth factor release within fluid platelet-rich fibrin matrices (PRF). Systematically using peripheral blood from six healthy volunteers, the RCF was reduced four times for each of the three experimental protocols (I-III) within the spectrum (710-44 g), while maintaining a constant centrifugation time. Flow cytometry was applied to determine the platelets and leukocyte number. The growth factor concentration was quantified 1 and 24 h after clotting using ELISA. Reducing RCF in accordance with protocol-II (177 g) led to a significantly higher platelets and leukocytes numbers compared to protocol-I (710 g). Protocol-III (44 g) showed a highly significant increase of leukocytes and platelets number in comparison to -I and -II. The growth factors' concentration of VEGF and TGF-β1 was significantly higher in protocol-II compared to -I, whereas protocol-III exhibited significantly higher growth factor concentration compared to protocols-I and -II. These findings were observed among 1 and 24 h after clotting, as well as the accumulated growth factor concentration over 24 h. Based on the results, it has been demonstrated that it is possible to enrich PRF-based fluid matrices with leukocytes, platelets and growth factors by means of a single alteration of the centrifugation settings within the clinical routine. We postulate that the so-called low speed centrifugation concept (LSCC) selectively enriches leukocytes, platelets and growth factors within fluid PRF-based matrices. Further studies are needed to evaluate the effect of cell and growth factor enrichment on wound healing and tissue regeneration while comparing blood concentrates gained by high and low RCF.

  19. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons.

    PubMed

    Boswell, Stacie G; Schnabel, Lauren V; Mohammed, Hussni O; Sundman, Emily A; Minas, Tom; Fortier, Lisa A

    2014-01-01

    Platelet-rich plasma (PRP) is used for the treatment of tendinopathy. There are numerous PRP preparations, and the optimal combination of platelets and leukocytes is not known. Within leukocyte-reduced PRP (lrPRP), there is a plateau effect of platelet concentration, with increasing platelet concentrations being detrimental to extracellular matrix synthesis. Controlled laboratory study. Different formulations of lrPRP with respect to the platelet:leukocyte ratio were generated from venous blood of 8 horses. Explants of the superficial digital flexor tendon were cultured in lrPRP products for 96 hours. Platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin-1β (IL-1β) concentrations were determined in the media by enzyme-linked immunosorbent assay. Gene expression in tendon tissue for collagen type I and III (COL1A1 and COL3A1, respectively), matrix metalloproteinase-3 and -13 (MMP-3 and MMP-13, respectively), cartilage oligomeric matrix protein (COMP), and IL-1β was determined. Data were divided into 3 groups of lrPRP based on the ratio of platelets:leukocytes and evaluated to determine the effect of platelet concentration. Complete blood counts verified leukocyte reduction and platelet enrichment in all PRP preparations. In the lrPRP preparation, the anabolic growth factors PDGF-BB and TGF-β1 were increased with increasing platelet concentrations, and the catabolic cytokine IL-1β was decreased with increasing platelet concentrations. Increasing the platelet concentration resulted in a significant reduction in COL1A1 and COL3A1 synthesis in tendons. Increasing the platelet concentration within lrPRP preparations results in the delivery of more anabolic growth factors and less proinflammatory cytokines, but the biological effect on tendons is diminished metabolism as indicated by a decrease in the synthesis of both COL1A1 and COL3A1. Together, this information suggests that minimizing leukocytes in PRP is more important than maximizing platelet numbers with respect to decreasing inflammation and enhancing matrix gene synthesis. This study suggests that reducing leukocytes to minimize catabolic signaling appears to be more important than increasing platelets in an effort to maximize anabolic signaling. Further, a maximum biological threshold of benefit was demonstrated with regard to the number of platelets beyond which further increases in platelet concentration did not result in further anabolic upregulation. In vivo investigations documenting the use of platelets for the treatment of tendinopathy are justified as well as further in vitro characterization of the ideal PRP product for the treatment of tendinopathy and other musculoskeletal applications.

  20. Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation

    NASA Astrophysics Data System (ADS)

    Barba, Bin Jeremiah D.; Tranquilan-Aranilla, Charito; Abad, Lucille V.

    2016-01-01

    Various raw materials and hydrogels prepared from their combination were assessed for hemostatic capability using swine whole blood clotting analysis. Initial screening showed efficient coagulative properties from κ-carrageenan and its carboxymethylated form, and α-chitosan, even compared to commercial products like QuikClot Zeolite Powder. Blending natural and synthetic polymers formed into hydrogels using gamma radiation produced materials with improved properties. KC and CMKC hydrogels were found to have the lowest blood clotting index in granulated form and had the higher capacity for platelet adhesion in foamed form compared to GelFoam. Possible mechanisms involved in the evident thrombogenicity of the materials include adsorption of platelets and related proteins that aid in platelet activation (primary hemostasis), absorption of water to concentrate protein factors that control the coagulation cascade, contact activation by its negatively charged surface and the formation of gel-blood clots.

Top