Sample records for platelet activation induced

  1. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed Central

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-01-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961

  2. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  3. Platelet Activation by Streptococcus pyogenes Leads to Entrapment in Platelet Aggregates, from Which Bacteria Subsequently Escape

    PubMed Central

    Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias

    2014-01-01

    Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984

  4. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  5. Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation

    PubMed Central

    Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich

    2014-01-01

    von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415

  6. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    PubMed

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.

  7. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    PubMed

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  8. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  9. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  10. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease.

    PubMed

    Carnevale, R; Loffredo, L; Nocella, C; Bartimoccia, S; Bucci, T; De Falco, E; Peruzzi, M; Chimenti, I; Biondi-Zoccai, G; Pignatelli, P; Violi, F; Frati, G

    2014-01-01

    Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets.

  11. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844

  12. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Wu, Zhongjun J

    2016-07-01

    Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that nonphysiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25 Pa, 125 Pa) with an exposure time of 0.5 s, generated by using a novel blood-shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with Western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWMs) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis, while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Paradoxical Effect of Non-Physiological Shear Stress on Platelets and von Willebrand factor

    PubMed Central

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C.; Slaughter, Mark S.; Wu, Zhongjun J.

    2016-01-01

    Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that non-physiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25Pa, 125Pa) with an exposure time of 0.5 sec., generated by using a novel blood shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWM) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. PMID:26582038

  14. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling.

    PubMed

    Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad

    2014-11-07

    Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.

  15. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase.

    PubMed

    Jeng, Jiiang-Huei; Chen, Shiao-Yun; Liao, Chang-Hui; Tung, Yuan-Yii; Lin, Bor-Ru; Hahn, Liang-Jiunn; Chang, Mei-Chi

    2002-05-01

    There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.

  16. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway

    PubMed Central

    Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling

    2009-01-01

    Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688

  17. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  18. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    PubMed

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  19. Hyperglycemia-Induced Platelet Activation in Type 2 Diabetes Is Resistant to Aspirin but Not to a Nitric Oxide–Donating Agent

    PubMed Central

    Gresele, Paolo; Marzotti, Stefania; Guglielmini, Giuseppe; Momi, Stefania; Giannini, Silvia; Minuz, Pietro; Lucidi, Paola; Bolli, Geremia B.

    2010-01-01

    OBJECTIVE Acute, short-term hyperglycemia enhances high shear stress–induced platelet activation in type 2 diabetes. Several observations suggest that platelets in type 2 diabetes are resistant to inhibition by aspirin. Our aim was to assess comparatively the effect of aspirin, a nitric oxide–donating agent (NCX 4016), their combination, or placebo on platelet activation induced by acute hyperglycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS In a double-blind, placebo-controlled, randomized trial, 40 type 2 diabetic patients were allocated to 100 mg aspirin once daily, 800 mg NCX 4016 b.i.d., both of them, or placebo for 15 days. On day 15, 1 h after the morning dose, a 4-h hyperglycemic clamp (plasma glucose 13.9 mmol/l) was performed, and blood samples were collected before and immediately after it for platelet activation and cyclooxygenase-1 (COX-1) inhibition studies. RESULTS Acute hyperglycemia enhanced shear stress–induced platelet activation in placebo-treated patients (basal closure time 63 ± 7.1 s, after hyperglycemia 49.5 ± 1.4 s, −13.5 ± 6.3 s, P < 0.048). Pretreatment with aspirin, despite full inhibition of platelet COX-1, did not prevent it (−12.7 ± 6.9 s, NS vs. placebo). On the contrary, pretreatment with the NO donor NCX 4016, alone or in combination with aspirin, suppressed platelet activation induced by acute hyperglycemia (NCX 4016 +10.5 ± 8.3 s; NCX 4016 plus aspirin: +12.0 ± 10.7 s, P < 0.05 vs. placebo for both). Other parameters of shear stress–dependent platelet activation were also more inhibited by NCX 4016 than by aspirin, despite lesser inhibition of COX-1. CONCLUSIONS Acute hyperglycemia-induced enhancement of platelet activation is resistant to aspirin; a NO-donating agent suppresses it. Therapeutic approaches aiming at a wider platelet inhibitory action than that exerted by aspirin may prove useful in patients with type 2 diabetes. PMID:20299485

  20. Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release.

    PubMed

    Yacoub, Daniel; Théorêt, Jean-François; Villeneuve, Louis; Abou-Saleh, Haissam; Mourad, Walid; Allen, Bruce G; Merhi, Yahye

    2006-10-06

    The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).

  1. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.

    PubMed

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-10-13

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.

  2. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  3. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.« less

  5. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    PubMed

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  6. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation.

    PubMed

    Gilio, Karen; Munnix, Imke C A; Mangin, Pierre; Cosemans, Judith M E M; Feijge, Marion A H; van der Meijden, Paola E J; Olieslagers, Servé; Chrzanowska-Wodnicka, Magdalena B; Lillian, Rivka; Schoenwaelder, Simone; Koyasu, Shigeo; Sage, Stewart O; Jackson, Shaun P; Heemskerk, Johan W M

    2009-12-04

    Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.

  7. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    PubMed

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  8. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  9. Inhibitory effects of ethyl pyruvate on platelet aggregation and phosphatidylserine exposure.

    PubMed

    Li, Wenjin; Yang, Xinyu; Peng, Minyuan; Li, Can; Mu, Guangfu; Chen, Fangping

    2017-06-03

    Ethyl pyruvate (EP) is a stable lipophilic pyruvate derivative. Studies demonstrated that EP shows potent anti-oxidation, anti-inflammatory and anti-coagulant effects. Inflammation and coagulation are closely interacted with platelet activation. However, it is unclear whether EP has anti-platelet effects. Therefore, we investigated the anti-platelet effect of EP in this study in vitro. We found that EP inhibited agonists induced platelets aggregation, ATP release and adhesion to collagen. Flow cytometric analysis revealed that EP inhibited agonist induced platelets PAC-1 binding, as well as P-selectin and CD40L expression. The underlying mechanism of action may involve the inhibition of platelet PI3K/Akt and Protein Kinase C (PKC) signaling pathways. Additionally, EP dose dependently inhibited platelet PS exposure induced by high concentration thrombin. Lactate dehydrogenase (LDH) activity assay and mice platelet count implied that EP may have no toxic effect on platelets. Therefore, we are the first to report that EP has potent anti-platelet activity and attenuates platelet PS exposure in vitro, suggesting that the inhibitory effects of EP on platelets may also play important roles in improvement of inflammation and coagulation disorder in related animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells.

    PubMed

    Zarà, Marta; Canobbio, Ilaria; Visconte, Caterina; Canino, Jessica; Torti, Mauro; Guidetti, Gianni Francesco

    2018-08-01

    Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl 2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca 2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A 2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis

    PubMed Central

    Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren

    2015-01-01

    Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396

  12. Effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation in the coronary circulation.

    PubMed

    Nichols, A B; Gold, K D; Marcella, J J; Cannon, P J; Owen, J

    1987-07-01

    The effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation was investigated in seven patients with severe proximal lesions of the left anterior descending coronary artery to determine if acute ischemia activates the coagulation system. Fibrin formation was assessed from plasma levels of fibrinopeptide A. Platelet activation was assessed by levels of platelet factor 4, beta-thromboglobulin and thromboxane B2. Plasma levels were measured before, during and after acute myocardial ischemia induced by rapid atrial pacing. Blood samples were collected from the ascending aorta and from the great cardiac vein through heparin-bonded catheters. The occurrence of anterior myocardial ischemia was established by electrocardiography and by myocardial lactate extraction. No significant transmyocardial gradients in the levels of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 were found at rest, during ischemia or in the recovery period, and levels in the great cardiac vein did not change in response to ischemia. These data indicate that pacing-induced myocardial ischemia does not result in release of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 into the coronary circulation, and imply that acute ischemia does not induce platelet activation or fibrin formation in the coronary circulation.

  13. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    PubMed

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  14. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced by KG1 (TF-) cells (105.5+/-24 vs. 42+/-7 pg/ml; P<0.001). Omitting fibrinogen or FII from the reaction mixture markedly decreased VEGF release. In vivo, GpIIb/IIIa blockade with murine 7E3 F(ab')(2) reduced LL2 tumor cell-induced thrombocytopenia by 90% (P<0.001) and lung seeding by 82% (P<0.05). We conclude that TF-bearing tumor cells can activate platelets largely via thrombin generation, and that such activation is associated with release of VEGF. This may enhance metastasis, possibly by increasing extravasation at points of adhesion to vascular endothelium.

  15. The effect of anthocyanin supplementation in modulating platelet function in sedentary population: a randomised, double-blind, placebo-controlled, cross-over trial.

    PubMed

    Thompson, Kiara; Hosking, Holly; Pederick, Wayne; Singh, Indu; Santhakumar, Abishek B

    2017-09-01

    The anti-thrombotic properties of anthocyanin (ACN) supplementation was evaluated in this randomised, double-blind, placebo (PBO) controlled, cross-over design, dietary intervention trial in sedentary population. In all, sixteen participants (three males and thirteen females) consumed ACN (320 mg/d) or PBO capsules for 28 d followed by a 2-week wash-out period. Biomarkers of thrombogenesis and platelet activation induced by ADP; platelet aggregation induced by ADP, collagen and arachidonic acid; biochemical, lipid, inflammatory and coagulation profile were evaluated before and after supplementation. ACN supplementation reduced monocyte-platelet aggregate formation by 39 %; inhibited platelet endothelial cell adhesion molecule-1 expression by 14 %; reduced platelet activation-dependant conformational change and degranulation by reducing procaspase activating compound-1 (PAC-1) (↓10 %) and P-selectin expression (↓14 %), respectively; and reduced ADP-induced whole blood platelet aggregation by 29 %. Arachidonic acid and collagen-induced platelet aggregation; biochemical, lipid, inflammatory and coagulation parameters did not change post-ACN supplementation. PBO treatment did not have an effect on the parameters tested. The findings suggest that dietary ACN supplementation has the potential to alleviate biomarkers of thrombogenesis, platelet hyperactivation and hyper-aggregation in sedentary population.

  16. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    PubMed

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  17. Amifostine, a reactive oxigen species scavenger with radiation- and chemo-protective properties, inhibits in vitro platelet activation induced by ADP, collagen or PAF.

    PubMed

    Porta, C; Maiolo, A; Tua, A; Grignani, G

    2000-08-01

    Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production, which suggests that NO release by activated platelets was involved in the inhibitory effect of amifostine. Amifostine proved to be an effective inhibitor of platelet activation induced in vitro by physiologic inducers. This previously unrecognized effect was more evident with the weak agonist ADP and was related to reduced NO consumption by free radicals generated during platelet activation. Amifostine proved to be not only a powerful cytoprotectant, but, more generally, a therapeutic agent endowed with several relevant, though largely unknown, biological effects. Finally, our data once again support the concept that oxidative balance is of crucial importance in regulating platelet reactivity in both health and disease.

  18. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation.

    PubMed

    Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo . We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation. These drugs have potential as adjunctive therapy to reduce the serious complications associated with EHV-1-induced thrombosis. Treatment trials are warranted to determine whether these drugs yield clinical benefit when administered to horses infected with EHV-1.

  19. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    PubMed

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  20. High shear induces platelet dysfunction leading to enhanced thrombotic propensity and diminished hemostatic capacity.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Zheng, Shirong; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-28

    Thrombosis and bleeding are devastating adverse events in patients supported with blood-contacting medical devices (BCMDs). In this study, we delineated that high non-physiological shear stress (NPSS) caused platelet dysfunction that may contribute to both thrombosis and bleeding. Human blood was subjected to NPSS with short exposure time. Levels of platelet surface GPIbα and GPVI receptors as well as activation level of GPIIb/IIIa in NPSS-sheared blood were examined with flow cytometry. Adhesion of sheared platelets on fibrinogen, von Willibrand factor (VWF), and collagen was quantified with fluorescent microscopy. Ristocetin- and collagen-induced platelet aggregation was characterized by aggregometry. NPSS activated platelets in a shear and exposure time-dependent manner. The number of activated platelets increased with increasing levels of NPSS and exposure time, which corresponded well with increased adhesion of sheared platelets on fibrinogen. Concurrently, NPSS caused shedding of GPIbα and GPVI in a manner dependent on shear and exposure time. The loss of intact GPIbα and GPVI increased with increasing levels of NPSS and exposure time. The number of platelets adhered on VWF and collagen decreased with increasing levels of NPSS and exposure time, respectively. The decrease in the number of platelets adhered on VWF and collagen corresponded well with the loss in GPIbα and GPVI on platelet surface. Both ristocetin- and collagen-induced platelet aggregation in sheared blood decreased with increasing levels of NPSS and exposure time. The study clearly demonstrated that high NPSS causes simultaneous platelet activation and receptor shedding, resulting in a paradoxical effect on platelet function via two distinct mechanisms. The results from the study suggested that the NPSS could induce the concurrent propensity for both thrombosis and bleeding in patients.

  1. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation

    PubMed Central

    Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd

    2018-01-01

    Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400

  2. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  3. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-05-14

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  4. Exercise-induced myocardial ischemia in patients with coronary artery disease: lack of evidence for platelet activation or fibrin formation in peripheral venous blood.

    PubMed

    Marcella, J J; Nichols, A B; Johnson, L L; Owen, J; Reison, D S; Kaplan, K L; Cannon, P J

    1983-05-01

    The hypothesis that exercise-induced myocardial ischemia is associated with abnormal platelet activation and fibrin formation or dissolution was tested in patients with coronary artery disease undergoing upright bicycle stress testing. In vivo platelet activation was assessed by radioimmunoassay of platelet factor 4, beta-thrombo-globulin and thromboxane B2. In vivo fibrin formation was assessed by radioimmunoassay of fibrinopeptide A, and fibrinolysis was assessed by radioimmunoassay of thrombin-increasable fibrinopeptide B which reflects plasmin cleavage of fibrin I. Peripheral venous concentrations of these substances were measured in 10 normal subjects and 13 patients with coronary artery disease at rest and during symptom-limited peak exercise. Platelet factor 4, beta-thromboglobulin and thromboxane B2 concentrations were correlated with rest and exercise catecholamine concentrations to determine if exercise-induced elevation of norepinephrine and epinephrine enhances platelet activation. Left ventricular end-diastolic and end-systolic volumes, ejection fraction and segmental wall motion were measured at rest and during peak exercise by first pass radionuclide angiography. All patients with coronary artery disease had documented exercise-induced myocardial ischemia manifested by angina pectoris, ischemic electrocardiographic changes, left ventricular segmental dyssynergy and a reduction in ejection fraction. Rest and peak exercise plasma concentrations were not significantly different for platelet factor 4, beta-thromboglobulin, thromboxane B2, fibrinopeptide A and thrombin-increasable fibrinopeptide B. Peripheral venous concentrations of norepinephrine and epinephrine increased significantly (p less than 0.001) in both groups of patients. The elevated catecholamine levels did not lead to detectable platelet activation. This study demonstrates that enhanced platelet activation, thromboxane release and fibrin formation or dissolution are not detectable in peripheral venous blood of patients with coronary disease during exercise-induced myocardial ischemia.

  5. Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse

    PubMed Central

    Kiebala, Michelle; Singh, Meera V.; Piepenbrink, Michael S.; Qiu, Xing; Kobie, James J.; Maggirwar, Sanjay B.

    2015-01-01

    Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders. PMID:26076359

  6. Human Cancer and Platelet Interaction, a Potential Therapeutic Target.

    PubMed

    Wang, Shike; Li, Zhenyu; Xu, Ren

    2018-04-20

    Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.

  7. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  8. The role of platelet and endothelial GARP in thrombosis and hemostasis.

    PubMed

    Vermeersch, Elien; Denorme, Frederik; Maes, Wim; De Meyer, Simon F; Vanhoorelbeke, Karen; Edwards, Justin; Shevach, Ethan M; Unutmaz, Derya; Fujii, Hodaka; Deckmyn, Hans; Tersteeg, Claudia

    2017-01-01

    Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice.

  9. The role of platelet and endothelial GARP in thrombosis and hemostasis

    PubMed Central

    Vermeersch, Elien; Denorme, Frederik; Maes, Wim; De Meyer, Simon F.; Vanhoorelbeke, Karen; Edwards, Justin; Shevach, Ethan M.; Unutmaz, Derya; Fujii, Hodaka; Deckmyn, Hans; Tersteeg, Claudia

    2017-01-01

    Background Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. Objectives To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. Methods Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. Results Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. Conclusions Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice. PMID:28278197

  10. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization.

    PubMed

    Kuckleburg, Christopher J; McClenahan, Dave J; Czuprynski, Charles J

    2008-02-01

    Histophilus somni is a gram-negative coccobacillus that causes respiratory and reproductive disease in cattle. The hallmark of systemic H. somni infection is diffuse vascular inflammation that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis. Previously, we demonstrated that H. somni and its lipooligosaccharide (LOS) activate bovine platelets, leading to expression of P selectin, CD40L, and FasL. Because activated platelets have been reported to induce endothelial cell cytokine production and adhesion molecule expression, we sought to determine if bovine platelets induce proinflammatory and procoagulative changes in bovine pulmonary artery endothelial cells. Endothelial cells were incubated with platelets activated with adenosine diphosphate, H. somni, or H. somni LOS. Incubation with activated bovine platelets significantly increased expression of in adhesion molecules (intercellular adhesion molecule 1, E selectin) and tissue factor, as measured by flow cytometry, real-time polymerase chain reaction, and Western blot analysis. Activated platelets also up-regulated expression of endothelial cell IL-1beta, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1alpha as determined by real-time polymerase chain reaction and an IL-1beta enzyme-linked immunosorbent assay. An interesting and surprising finding was that bovine platelets activated by H. somni or its LOS were internalized by bovine endothelial cells as visualized by transmission electron microscopy. This internalization seemed to correlate with endothelial cell activation and morphological changes indicative of cell stress. These findings suggest that activated platelets might play a role in promoting vascular inflammation during H. somni infection.

  11. Autoantibody against angiotensin AT1 receptor from preeclamptic patients enhances collagen-induced human platelet aggregation.

    PubMed

    Bai, Kehua; Wang, Ke; Li, Xiaoyu; Wang, Jie; Zhang, Jie; Song, Li; Wang, Jin; Zhang, Suli; Lau, Wayne Bond; Ma, Xinliang; Liu, Huirong

    2013-09-01

    Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.

  12. Unaltered Angiogenesis-Regulating Activities of Platelets in Mild Type 2 Diabetes Mellitus despite a Marked Platelet Hyperreactivity.

    PubMed

    Miao, Xinyan; Zhang, Wei; Huang, Zhangsen; Li, Nailin

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with platelet dysfunction and impaired angiogenesis. Aim of the study is to investigate if platelet dysfunction might hamper platelet angiogenic activities in T2DM patients. Sixteen T2DM patients and gender/age-matched non-diabetic controls were studied. Flow cytometry and endothelial colony forming cell (ECFC) tube formation on matrigel were used to assess platelet reactivity and angiogenic activity, respectively. Thrombin receptor PAR1-activating peptide (PAR1-AP) induced higher platelet P-selectin expression, and evoked more rapid and intense platelet annexin V binding in T2DM patients, seen as a more rapid increase of annexin V+ platelets (24.3±6.4% vs 12.6±3.8% in control at 2 min) and a higher elevation (30.9±5.1% vs 24.3±3.0% at 8 min). However, PAR1-AP and PAR4-AP induced similar releases of angiogenic regulators from platelets, and both stimuli evoked platelet release of platelet angiogenic regulators to similar extents in T2DM and control subjects. Thus, PAR1-stimulated platelet releasate (PAR1-PR) and PAR4-PR similarly enhanced capillary-like network/tube formation of ECFCs, and the enhancements did not differ between T2DM and control subjects. Direct supplementation of platelets to ECFCs at the ratio of 1:200 enhanced ECFC tube formation even more markedly, leading to approximately 100% increases of the total branch points of ECFC tube formation, for which the enhancements were also similar between patients and controls. In conclusion, platelets from T2DM subjects are hyperreactive. Platelet activation induced by high doses of PAR1-AP, however, results in similar releases of angiogenic regulators in mild T2DM and control subjects. Platelets from T2DM and control subjects also demonstrate similar enhancements on ECFC angiogenic activities.

  13. DREAM plays an important role in platelet activation and thrombogenesis

    PubMed Central

    Kim, Kyungho; Tseng, Alan; Barazia, Andrew; Italiano, Joseph E.

    2017-01-01

    Downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, is known to modulate pain responses. However, it is unknown whether DREAM is expressed in anucleate platelets and plays a role in thrombogenesis. By using intravital microscopy with DREAM-null mice and their bone marrow chimeras, we demonstrated that both hematopoietic and nonhematopoietic cell DREAMs are required for platelet thrombus formation following laser-induced arteriolar injury. In a FeCl3-induced thrombosis model, we found that compared with wild-type (WT) control and nonhematopoietic DREAM knockout (KO) mice, DREAM KO control and hematopoietic DREAM KO mice showed a significant delay in time to occlusion. Tail bleeding time was prolonged in DREAM KO control mice, but not in WT or DREAM bone marrow chimeric mice. In vivo adoptive transfer experiments further indicated the importance of platelet DREAM in thrombogenesis. We found that DREAM deletion does not alter the ultrastructural features of platelets but significantly impairs platelet aggregation and adenosine triphosphate secretion induced by numerous agonists (collagen-related peptide, adenosine 5′-diphosphate, A23187, thrombin, or U46619). Biochemical studies revealed that platelet DREAM positively regulates phosphoinositide 3-kinase (PI3K) activity during platelet activation. Using DREAM-null platelets and PI3K isoform-specific inhibitors, we observed that platelet DREAM is important for α-granule secretion, Ca2+ mobilization, and aggregation through PI3K class Iβ (PI3K-Iβ). Genetic and pharmacological studies in human megakaryoblastic MEG-01 cells showed that DREAM is important for A23187-induced Ca2+ mobilization and its regulatory function requires Ca2+ binding and PI3K-Iβ activation. These results suggest that platelet DREAM regulates PI3K-Iβ activity and plays an important role during thrombus formation. PMID:27903531

  14. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase

    PubMed Central

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010

  15. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase.

    PubMed

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.

  16. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion.

    PubMed

    Södergren, A L; Tynngård, N; Berlin, G; Ramström, S

    2016-02-01

    Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.

  18. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-03

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.

  19. Platelet activation in essential hypertension during exercise: pre- and post-treatment changes with an angiotensin II receptor blocker.

    PubMed

    Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Yiannaki, Efi; Markala, Dimitra; Papadopoulos, Nikolaos; Triantafyllou, Areti; Anyfanti, Panagiota; Petidis, Konstantinos; Garypidou, Vasileia; Doumas, Michael; Ferro, Albert; Douma, Stella

    2014-04-01

    Acute exercise may exert deleterious effects on the cardiovascular system through a variety of pathophysiological mechanisms, including increased platelet activation. However, the degree of exercise-induced platelet activation in untreated hypertensive (UH) individuals as compared with normotensive (NT) individuals has yet to be established. Furthermore, the effect of antihypertensive treatment on exercise-induced platelet activation in essential hypertension (EH) remains unknown. Study 1 consisted of 30 UH and 15 NT subjects. UH subjects who received treatment were included in study 2 and were followed-up after a 3-month treatment period with an angiotensin II receptor blocker (ARB; valsartan). Circulating monocyte-platelet aggregates (MPA) and platelet P-selectin were measured as platelet activation markers at baseline, immediately after a treadmill exercise test, and 10, 30, and 90 minutes later. Maximal platelet activation was observed at 10 minutes after peak exercise in both groups. In UH subjects, MPA levels remained increased at 30 minutes after peak exercise, despite BP fall to baseline levels. MPA levels were significantly higher in UH subjects than NT subjects at maximal exercise and at 10 and 30 minutes of recovery. Post-treatment MPA levels increased significantly only at 10 minutes into recovery and were similar to those of NT subjects. Acute high-intensity exercise exaggerates platelet activation in untreated patients with EH compared with NT individuals. Angiotensin II receptor blockade with adequate BP control greatly improves exercise-induced platelet activation in EH. Further studies are needed to clarify whether this phenomenon depends purely on BP lowering or benefits also from the pleiotropic effects of ARBs.

  20. In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations.

    PubMed

    Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje

    2011-11-01

    Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation

    PubMed Central

    Haining, Elizabeth J.; Matthews, Alexandra L.; Noy, Peter J.; Romanska, Hanna M.; Harris, Helen J.; Pike, Jeremy; Morowski, Martina; Gavin, Rebecca L.; Yang, Jing; Milhiet, Pierre-Emmanuel; Berditchevski, Fedor; Nieswandt, Bernhard; Poulter, Natalie S.; Watson, Steve P.; Tomlinson, Michael G.

    2017-01-01

    Abstract The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics. PMID:28032533

  2. Effects of low temperature on shear-induced platelet aggregation and activation.

    PubMed

    Zhang, Jian-ning; Wood, Jennifer; Bergeron, Angela L; McBride, Latresha; Ball, Chalmette; Yu, Qinghua; Pusiteri, Anthony E; Holcomb, John B; Dong, Jing-fei

    2004-08-01

    Hemorrhage is a major complication of trauma and often becomes more severe in hypothermic patients. Although it has been known that platelets are activated in the cold, studies have been focused on platelet behavior at 4 degrees C, which is far below temperatures encountered in hypothermic trauma patients. In contrast, how platelets function at temperatures that are commonly found in hypothermic trauma patients (32-37 degrees C) remains largely unknown, especially when they are exposed to significant changes in fluid shear stress that could occur in trauma patients due to hemorrhage, vascular dilation/constriction, and fluid resuscitation. Using a cone-plate viscometer, we have examined platelet activation and aggregation in response to a wide range of fluid shear stresses at 24, 32, 35, and 37 degrees C. We found that shear-induced platelet aggregation was significantly increased at 24, 32, and 35 degrees C as compared with 37 degrees C and the enhancement was observed in whole blood and platelet-rich plasma. In contrast to observation made at 4 degrees C, the increased shear-induced platelet aggregation at these temperatures was associated with minimal platelet activation as determined by the P-selectin expression on platelet surface. Blood viscosity was also increased at low temperature and the changes in viscosity correlated with levels of plasma total protein and fibrinogen. We found that platelets are hyper-reactive to fluid shear stress at temperatures of 24, 32, and 35 degrees C as compared with at 37 degrees C. The hyperreactivity results in heightened aggregation through a platelet-activation independent mechanism. The enhanced platelet aggregation parallels with increased whole blood viscosity at these temperatures, suggesting that enhanced mechanical cross-linking may be responsible for the enhanced platelet aggregation.

  3. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive. Background Targeting factor (F) VIII expression to platelets is a promising gene therapy approach for hemophilia A, and is successful even in the presence of inhibitors. It is well known that platelets play important roles not only in hemostasis, but also in thrombosis and inflammation. Objective To evaluate whether platelet-FVIII expression might increase thrombotic risk and thereby compromise the safety of this approach. Methods In this study, platelet-FVIII-expressing transgenic mice were examined either in steady-state conditions or under prothrombotic conditions induced by inflammation or the FV Leiden mutation. Native whole blood thrombin generation assay, rotational thromboelastometry analysis and ferric chloride-induced vessel injury were used to evaluate the hemostatic properties. Various parameters associated with thrombosis risk, including D-dimer, thrombin-antithrombin complexes, fibrinogen, tissue fibrin deposition, platelet activation status and activatability, and platelet-leukocyte aggregates, were assessed. Results We generated a new line of transgenic mice that expressed 30-fold higher levels of platelet-expressed FVIII than are therapeutically required to restore hemostasis in hemophilic mice. Under both steady-state conditions and prothrombotic conditions induced by lipopolysaccharide-mediated inflammation or the FV Leiden mutation, supratherapeutic levels of platelet-expressed FVIII did not appear to be thrombogenic. Furthermore, FVIII-expressing platelets were neither hyperactivated nor hyperactivatable upon agonist activation. Conclusion We conclude that, in mice, more than 30-fold higher levels of platelet-expressed FVIII than are required for therapeutic efficacy in hemophilia A are not associated with a thrombotic predilection. © 2016 International Society on Thrombosis and Haemostasis.

  4. Potentiation by adrenaline of human platelet activation and the inhibition by the alpha-adrenergic antagonist nicergoline of platelet adhesion, secretion and aggregation.

    PubMed

    Lanza, F; Cazenave, J P; Beretz, A; Sutter-Bay, A; Kretz, J G; Kieny, R

    1986-08-01

    Adrenaline (1 to 10 microM) can induce the aggregation of human platelets suspended in citrated plasma but does not induce the aggregation of washed human platelets at doses as high as 1 mM, although these platelets respond normally to ADP, PAF-acether, collagen, arachidonic acid, thrombin, the endoperoxide analog U-46619 and the Ca2+ ionophore A23187. Adrenaline (0.5 microM) potentiates the aggregation and secretion induced by all the previous agonists in citrated platelet-rich plasma (cPRP) or in washed platelets. The activation by adrenaline of human platelets is mediated by alpha 2-adrenergic receptors, as demonstrated by inhibition with a series of adrenergic antagonists. The alpha-adrenergic antagonist nicergoline inhibits the activation of human platelets by adrenaline in the following situations: nicergoline inhibits the aggregation and secretion caused by adrenaline in cPRP (IC50 0.22 microM and 0.28 microM respectively); nicergoline inhibits the aggregation and secretion induced by the combination of adrenaline and each aggregating agent listed above in cPRP (IC50 ranging from 0.1 to 2.5 microM) or in washed platelets (IC50 ranging from 0.1 to 0.8 microM); nicergoline inhibits the binding of 3H-yohimbine to washed human platelets (IC50 0.26 microM); the intravenous administration of nicergoline (0.5 mg/kg per day) to patients inhibits significantly the ex vivo response of their platelets to adrenaline in cPRP. High concentrations of nicergoline also inhibit the aggregation and secretion induced by the aggregating agents listed above in cPRP (IC50 range 108 to 670 microM) and in washed platelets (IC50 range 27 to 140 microM) and the adhesion of platelets to collagen-coated surfaces. This latter effect is not mediated through blockade of alpha-adrenoceptors. A possible role of adrenaline in platelet activation in vivo could justify the use of nicergoline (Sermion), an alpha-adrenergic antagonist in combination therapy to prevent arterial thrombosis.

  5. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.

    PubMed

    Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B

    2018-02-28

    We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Thrombin-induced activation of RhoA in platelet shape change.

    PubMed

    Bodie, S L; Ford, I; Greaves, M; Nixon, G F

    2001-09-14

    Thrombin-induced activation of RhoA and its involvement in the regulation of myosin II light chain(20) phosphorylation (MLC-P) in alpha-toxin permeabilized platelets was investigated. Permeabilized platelets, expressing normal levels of P-selectin, displayed a Ca(2+)-dependent increase in shape change and MLC-P. Thrombin activated RhoA as measured by a rhotekin-binding assay within 30 s of stimulation under conditions of constant [Ca(2+)](i). Under the same conditions and timecourse, thrombin or GTPgammaS induced an increase in MLC-P and platelet shape change which was not dependent on an increase in [Ca(2+)](i). The thrombin- and GTPgammaS-induced MLC-P in constant [Ca(2+)](i) was inhibited by the addition of Y27632, a Rho-kinase inhibitor. This study directly demonstrates that thrombin can activate RhoA in platelets in a timecourse compatible with a role in increasing MLC-P and shape change (not involving an increase in [Ca(2+)](i)). This is also Rho-kinase-dependent. Copyright 2001 Academic Press.

  7. Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets.

    PubMed

    Bijak, Michal; Szelenberger, Rafal; Dziedzic, Angela; Saluk-Bijak, Joanna

    2018-02-10

    Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets' aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets' ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet activation.

  8. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus.

    PubMed

    Nhek, Sokha; Clancy, Robert; Lee, Kristen A; Allen, Nicole M; Barrett, Tessa J; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D; Buyon, Jill P; Berger, Jeffrey S

    2017-04-01

    Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. © 2017 American Heart Association, Inc.

  9. Effects of clopidogrel and aspirin combination versus aspirin alone on platelet aggregation and major receptor expression in patients with heart failure: the Plavix Use for Treatment Of Congestive Heart Failure (PLUTO-CHF) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Jerome, Scott D; Lowry, David R; Morgan, Athol W; Sane, David C; Tanguay, Jean-François; Steinhubl, Steven R; O'connor, Christopher M

    2003-10-01

    Persistent platelet activation may contribute to thrombotic events in patients with congestive heart failure (CHF). Chronic use of mild platelet inhibitors could therefore represent an independent avenue to improve morbidity, mortality, and quality of life in this expanding population. Although clopidogrel is widely used in patients with acute coronary syndromes and ischemic stroke, the ability of this novel ADP-receptor antagonist to inhibit platelet function in patients with CHF is unknown. We assessed antiplatelet properties of clopidogrel with aspirin (C+A) versus aspirin alone (A) in patients with CHF with heightened platelet activity. Patients with left ventricular ejection fraction <40%, or CHF symptoms in the setting of preserved systolic function and New York Heart Association class II-IV were screened. Patients were considered to have platelet activation when 4 of the following 5 parameters were met: ADP-induced platelet aggregation >60%; collagen-induced aggregation >70%; whole blood aggregation >18 ohms; expression of GP IIb/IIIa >220 log MFI; and P-selectin cell positivity >8%. All patients were treated with 325 mg of acetylsalycilic acid (ASA) for at least 1 month. Patients receiving an antithrombotic agent other than ASA were excluded. Patients meeting clinical and laboratory criteria were randomly assigned to C+A (n=25), A (n=25) groups, or represent screen failures (n=38). Platelet studies (conventional and whole blood aggregometry, shear-induced activation, expression of 10 major receptors and formation of platelet-leukocyte microparticles) were performed at baseline and after 30 days of therapy. There were no deaths, hospitalizations, or serious adverse events. There were no changes in platelet parameters in the A group. In contrast, therapy with C+A resulted in a significant inhibition of platelet activity assessed by ADP-induced (P =.00001), and epinephrine-induced (P =.0016) aggregation, closure time (P =.04), expression of PECAM-1 (P =.009), GP Ib (P =.006), GP IIb/IIIa antigen (P =.0001), GP IIb/IIIa activity with PAC-1 (P =.0021), and CD151 (P =.0026) when compared with the A group. Therapy with C+A also resulted in the reduced formation of platelet-leukocyte microparticles (P =.021). Collagen-induced aggregation in plasma and in whole blood, expression of vitronectin receptor, P-selectin, CD63, CD107a, and CD107b did not differ among groups. Treatment with C+A for 1 month provides significantly greater inhibition of platelet activity than ASA alone in patients with CHF. Patients with CHF with heightened platelet activity represent a potential target population in which addition of clopidogrel may decrease mortality rates by reducing the incidence of thrombotic vascular events.

  10. [Effect of protopine on rabbit platelet function].

    PubMed

    Ma, G Y; Zhang, Z Z; Chen, Z H

    1994-07-01

    Protopine (Pro) inhibited dose-dependently rabbit platelet aggregation induced by ADP, arachidonic acid (AA), collagen, or aggregoserpentin of Trimeresurus mucrosquamatus venom (TMVA) in vitro. Their IC50 were 25.3, 30.5, 46.9, 33.4 mumol.L-1, respectively. Pro 10, 20 mg.kg-1 iv also inhibited the platelet aggregation induced by these inducers. The effects (maximal at 5 min) lasted 1 h. By using fluorophotometry and RIA, it was seen that Pro suppressed the release of 5-HT from platelets during aggregation induced by collagen, AA, or TMVM in vitro. Pro did not block the formation of thromboxane A2 during aggregation induced by AA and did not increase the content of cAMP in rabbit platelet, but increased the content of cGMP in rabbit platelets. The antiplatelet effect of Pro may be related to an increase cGMP in rabbit platelets and the suppression of the release of the active substances from platelets.

  11. Critical Role for CD38-mediated Ca2+ Signaling in Thrombin-induced Procoagulant Activity of Mouse Platelets and Hemostasis*

    PubMed Central

    Mushtaq, Mazhar; Nam, Tae-Sik; Kim, Uh-Hyun

    2011-01-01

    CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca2+ messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca2+ signal, resulting from a coordinated interplay of Ca2+-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca2+ signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38+/+ platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38−/− platelets. Similarly, PS exposure and Ca2+ signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca2+ signaling mediated by its products, cADPR and NAADP. PMID:21339289

  12. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3.

    PubMed

    Li, R H L; Stern, J A; Ho, V; Tablin, F; Harris, S P

    2016-09-01

    Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. To determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. Fourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild-type cats without the A31P mutation. Ex vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)-induced P-selectin expression was evaluated. ADP- and thrombin-induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. Platelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58-48.55) to 58.90% (24.85-69.90)], in response to ADP. Clopidogrel treatment attenuated ADP-induced P-selectin expression and platelet aggregation. ADP- and PGE 1 -treated platelets had a similar level of pVASP as PGE 1 -treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46-35.50) to 11.30% (-7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Clopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild-type cats. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary for coupling postsynaptic and presynaptic phenomena, through the activation of group I metabotropic glutamate receptors, and its action lasts only for a short period. If this coupling does not occur, a full and long-lasting potentiation cannot develop.

  14. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets.

    PubMed

    Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni

    2012-11-01

    Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  15. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.

    PubMed

    Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye

    2011-09-01

    Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation

    PubMed Central

    Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.

    2009-01-01

    Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838

  17. Effect of heparin bonding on catheter-induced fibrin formation and platelet activation.

    PubMed

    Nichols, A B; Owen, J; Grossman, B A; Marcella, J J; Fleisher, L N; Lee, M M

    1984-11-01

    Pathologic and experimental evidence indicates that platelet activation and fibrin formation contribute to the pathogenesis of angina pectoris, coronary vasospasm and myocardial infarction. Detection of localized intravascular platelet activation and fibrin formation in vivo by selective blood sampling requires catheters that do not induce coagulation ex vivo. We studied the effect of heparin bonding of catheter surfaces on activation of the coagulation system by cardiovascular catheters. Woven Dacron, polyvinylchloride, and polyurethane catheters were tested and compared with identical catheters with heparin-bonded surfaces in 47 patients undergoing percutaneous cardiac catheterization. Platelet activation was measured by radioimmunoassay of plasma platelet factor 4 (PF4), beta-thromboglobulin (BTG), and thromboxane B2 (TXB2) in blood samples withdrawn through catheters, and fibrin formation was assessed by determination of fibrinopeptide A (FPA) levels. In blood samples collected through conventional catheters, FPA, PF4, BTG, and TXB2 levels were markedly elevated; blood sampling through heparin-bonded catheters had no significant effect on FPA, PF4, BTG, or TXB2 levels. Scanning electron microscopy disclosed extensive platelet aggregates and fibrin strands adherent to the surface of conventional catheters but not to heparin-bonded catheter surfaces. This study demonstrates that (1) collection of blood samples through cardiovascular catheters causes artifactual elevation of FPA, PF4, BTG, and TXB2 levels, and (2) heparin-bonded catheter surfaces effectively prevent catheter-induced platelet alpha-granule release and fibrin formation on catheter surfaces. Heparin-bonded catheters will facilitate investigation of the role of intravascular coagulation in coronary artery disease by eliminating catheter-induced fibrin formation and platelet activation.

  18. Acetylsalicylic Acid Produces Different Effects on the Production of Active Oxygen Species by Activated Platelets in Different Inflammatory Diseases.

    PubMed

    Gabbasov, Z A; Kogan-Yasny, V V; Lakhno, D A; Kagan, L G; Ryzhkova, E V; Vasilieva, E Yu; Shpektor, A V

    2017-11-01

    We studied the effect of acetylsalicylic acid on ROS generation by platelets in patients after surgical interventions and in patients with bronchial asthma was studied. Platelets stimulated with platelet-activating factor are characterized by weak luminol-enhanced chemiluminescence in healthy people and patients after operations with laparoscopic incisions. Addition of platelet activation factor to platelet samples from patients after open abdominal surgery caused intensive chemiluminescence that was suppressed after platelet incubation with acetylsalicylic acid. At the same time, platelets of patients with aspirin-sensitive asthma did not respond to addition of platelet activating factor, but after incubation with acetylsalicylic acid, an intensive burst of chemiluminescence was detected with a maximum in 5-10 sec after the addition of a platelet-activating factor. In patients with bronchial asthma tolerant to aspirin, platelet activation factor did not induce chemiluminescence irrespective of incubation with acetylsalicylic acid.

  19. Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood.

    PubMed

    Montrucchio, Giuseppe; Bosco, Ornella; Del Sorbo, Lorenzo; Fascio Pecetto, Paolo; Lupia, Enrico; Goffi, Alberto; Omedè, Paola; Emanuelli, Giorgio; Camussi, Giovanni

    2003-11-01

    Several studies focused on the ability of bacterial lipopolysac-charides (LPS) in triggering platelet and/or leukocyte activation. The aim of this study was to investigate the molecular mechanisms involved in the aggregation of platelets and in their interaction with leukocytes in whole blood after stimulation with low doses of LPS. LPS did not directly induce platelet aggregation in whole blood, but they primed the aggregation of platelets induced by epinephrine, adenosine diphosphate and arachidonic acid. As shown by cytofluorimetry, platelets neither bind FITC-LPS, nor express the LPS-receptors CD14 and toll-like receptor 4 (TLR4). On the contrary, LPS primed monocytes and to a lesser extent polymorphonuclear neutrophils to adhere to platelets. Both platelet-leukocyte interaction and platelet aggregation in whole blood were inhibited by blockade of CD14 and TLR4. Moreover, the interaction between platelets and leukocytes was inhibited by P-selectin, and by blockade of PAF and reactive oxygen species, suggesting a role of P-selectin and of leukocyte-derived mediators. In conclusion, these results elucidate the mechanisms leading to platelet activation and interaction with leukocytes triggered by LPS. They suggest that the activation of platelets by LPS is mainly dependent on leukocytes and especially monocytes as a result of CD14 and TLR4 engagement. Moreover, we found that leukocyte-platelet interaction was triggered by the synthesis of PAF and the generation of oxygen radicals that induced upregulation of surface expression of P-selectin.

  20. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus

    PubMed Central

    Nhek, Sokha; Clancy, Robert; Lee, Kristen A.; Allen, Nicole M.; Barrett, Tessa J.; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D.; Buyon, Jill P.; Berger, Jeffrey S.

    2017-01-01

    Objective Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Approach and Results Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Conclusions Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. PMID:28153882

  1. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom.

    PubMed

    Chanda, Chandrasekhar; Sarkar, Angshuman; Sistla, Srinivas; Chakrabarty, Dibakar

    2013-11-22

    A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3 FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Identification of functional VEGF receptors on human platelets.

    PubMed

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  3. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    PubMed

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  4. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization.

    PubMed

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-09-01

    Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.

  5. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    PubMed

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide.

    PubMed

    Yngen, M; Ostenson, C-G; Hjemdahl, P; Wallén, N H

    2006-02-01

    To compare the effects of treatment with repaglinide and glibenclamide on platelet function and endothelial markers in patients with Type 2 diabetes mellitus, before and after a standardized meal. Fifteen patients with Type 2 diabetes were investigated on three occasions: at baseline without oral hypoglycaemic drug treatment, and after 6 weeks' treatment with repaglinide or glibenclamide, respectively, in an open randomized cross-over study. Agonist-induced platelet P-selectin expression and platelet aggregation, urinary thromboxane, soluble P-selectin, von Willebrand factor (VWF), soluble E-selectin, intercellular adhesion molecule (ICAM-1) and C-reactive protein (CRP) were measured. In addition, pre-meal data were compared with non-diabetic control subjects (n = 15), matched for sex, age and BMI. Adenosine diphosphate (ADP)-induced platelet P-selectin expression increased post-meal in Type 2 diabetic patients both at baseline and after treatment with repaglinide and glibenclamide (P < 0.01 for all; repeated measures anova). Repaglinide treatment reduced fasting ADP-induced P-selectin expression compared with baseline (P = 0.01), but did not influence meal-induced platelet hyper-reactivity (P = 0.32). No significant anti-platelet effects of glibenclamide treatment were found. Plasma concentrations of VWF and ICAM-1 were elevated in patients with Type 2 diabetes compared with control subjects (P < 0.05 for both) and were reduced during treatment with repaglinide (P < 0.01 for both) but did not change during glibenclamide treatment. The post-meal state is associated with enhanced platelet reactivity in patients with Type 2 diabetes mellitus. Pre-meal treatment with repaglinide or glibenclamide does not inhibit postprandial platelet activation, but repaglinide treatment is associated with attenuated platelet and endothelial activity in the fasting state.

  7. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways.

    PubMed

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60  μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  8. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    PubMed Central

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. PMID:24868545

  9. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    PubMed

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  10. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan

    PubMed Central

    Jiang, Peng; Loyau, Stéphane; Tchitchinadze, Maria; Ropers, Jacques; Jondeau, Guillaume; Jandrot-Perrus, Martine

    2015-01-01

    Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II) type I receptor (AT1R) antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2) receptor (TP) and the glycoprotein VI (GPVI). Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg.mL-1 and 10 μg.mL-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day) on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25) and non-treated (n=30) patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy. Trial Registration ClinicalTrials.gov NCT00763893 PMID:26052700

  11. Subcutaneous Administration of Low-Molecular-Weight Heparin to Horses Inhibits Ex Vivo Equine Herpesvirus Type 1-Induced Platelet Activation

    PubMed Central

    Stokol, Tracy; Serpa, Priscila B. S.; Brooks, Marjory B.; Divers, Thomas; Ness, Sally

    2018-01-01

    Equine herpesvirus type 1 (EHV-1) is a major cause of infectious respiratory disease, abortion and neurologic disease. Thrombosis in placental and spinal vessels and subsequent ischemic injury in EHV-1-infected horses manifests clinically as abortion and myeloencephalopathy. We have previously shown that addition of heparin anticoagulants to equine platelet-rich plasma (PRP) can abolish ex vivo EHV-1-induced platelet activation. The goal of this study was to test whether platelets isolated from horses treated with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) were resistant to ex vivo EHV-1-induced activation. In a masked, block-randomized placebo-controlled cross-over trial, 9 healthy adult horses received 4 subcutaneous injections at q. 12 h intervals of one of the following treatments: UFH (100 U/kg loading dose, 3 maintenance doses of 80 U/kg), 2 doses of LMWH (enoxaparin) 80 U/kg 24 h apart with saline at the intervening 12 h intervals, or 4 doses of saline. Blood samples were collected before treatment and after 36 h, 40 h (4 h after the last injection) and 60 h (24 h after the last injection). Two strains of EHV-1, Ab4 and RacL11, were added to PRP ex vivo and platelet membrane expression of P selectin was measured as a marker of platelet activation. Drug concentrations were monitored in a Factor Xa inhibition (anti-Xa) bioassay. We found that LMWH, but not UFH, inhibited platelet activation induced by low concentrations (1 × 106 plaque forming units/mL) of both EHV-1 strains at 40 h. At this time point, all horses had anti-Xa activities above 0.1 U/ml (range 0.15–0.48 U/ml) with LMWH, but not UFH. By 60 h, a platelet inhibitory effect was no longer detected and anti-Xa activity had decreased (range 0.03 to 0.07 U/ml) in LMWH-treated horses. Neither heparin inhibited platelet activation induced by high concentrations (5 × 106 plaque forming units/mL) of the RacL11 strain. We found substantial between horse variability in EHV-1-induced platelet activation at baseline and after treatment. Minor injection site reactions developed in horses given either heparin. These results suggest that LMWH therapy may prevent thrombotic sequelae of EHV-1, however further evaluation of dosage regimens is required. PMID:29892605

  12. Evaluation of the effect of phosphodiesterase on equine platelet activation and the effect of antigen challenge on platelet phosphodiesterase activity in horses with recurrent airway obstruction.

    PubMed

    Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M

    2010-05-01

    To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.

  13. Effects of escalating doses of tirofiban on platelet aggregation and major receptor expression in diabetic patients: hitting the TARGET in the TENACITY trial?

    PubMed

    Serebruany, Victor; Malinin, Alex; Pokov, Alex; Arora, Umesh; Atar, Dan; Angiolillo, Dominick

    2007-01-01

    Ongoing search for the optimal dosing regimens, and valid concerns that some GPIIb/IIIa inhibitors may cause rebound platelet activation are limiting the use of these agents in patients with acute vascular events. We assessed the in vitro effects of preincubation with escalating (12.5-200 ng/mL) concentrations of tirofiban on platelet biomarkers in 20 diabetic patients. Platelet activity was assessed by ADP-, and collagen-induced conventional plasma aggregometry, and by whole blood flow cytometry measuring expression of PECAM-1, GPIb, GP IIb/IIIa antigen and activity, vitronectin, P-selectin, LAMP-1, GP 37, LAMP-3, activated and intact PAR-1 thrombin receptors, GPIV, and platelet-monocyte formation. All patients were treated with aspirin (at least 81 mg daily for 1 month); other antiplatelet agents were not allowed. Significant decrease of ADP-induced platelet aggregation was observed starting at the low 12.5 ng/mL concentration (p=0.0001), with total inhibition occurring at 50 ng/mL of tirofiban dose. Inhibition of collagen-induced platelet aggregability requires 25 ng/ml of tirofiban (p=0.002), and was complete at 100 ng/mL. Dose-dependent blockade of GP IIb/IIIa activity was observed with tirofiban concentrations over 50 ng/mL (p=0.003). Other receptors were unaffected even with the high doses of tirofiban (100-200 ng/mL). Tirofiban completely inhibits ADP- and, with the higher dose, collagen-induced platelet aggregation. Higher loading dose of tirofiban used in the ongoing TENACITY trial (100 ng/mL) may be superior with regard to clinical outcomes to the regimens used in PRISM-PLUS (25 ng/mL), or TARGET (50 ng/mL). Selective inhibition of GPIIb/IIIa activity, and lack of alternative platelet activation beyond the GP IIb/IIIa blockade may represent the therapeutic advantage of tirofiban over other agents.

  14. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Yacoub, Daniel; Hachem, Ahmed; Théorêt, Jean-François; Gillis, Marc-Antoine; Mourad, Walid; Merhi, Yahye

    2010-12-01

    CD40 ligand is a thromboinflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40 ligand (sCD40L), which has been shown to influence platelet activation, although its exact functional impact on platelets and the underlying mechanisms remain undefined. We aimed to determine the impact and the signaling mechanisms of sCD40L on platelets. sCD40L strongly enhances platelet activation and aggregation. Human platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40(-/-) mouse platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Notably, sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target p38 mitogen-activated protein kinase, which leads to platelet shape change and actin polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in wild-type mice but not in CD40(-/-) mice. sCD40L enhances agonist-induced platelet activation and aggregation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing platelets to enhanced thrombus formation in response to vascular injury. This may explain the link between circulating levels of sCD40L and cardiovascular diseases.

  15. Activation and desensitization of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. I. Characteristics of the secretory response

    PubMed Central

    1976-01-01

    The secretion of vasoactive amines from rabbit platelets induced by the platelet-activating factor (PAF) derived from IgE-sensitized rabbit basophils, was examined. The secretion required calcium has previously been shown to be noncytotoxic and was optimal in both rate and extent at 37 degrees C and pH 7.2. Different temperature-sensitive steps were rate limiting for secretion above or below 20 degrees C. The rate of secretion was dependent upon the concentration of PAF and also of platelets. Maximal rates were observed with relatively low concentrations of platelets (2.5 X 10(8)/ml), sharply contrasting with other platelet stimuli such as C3 or thrombin. The extent of secretion was dependent upon PAF concentration until a maximum of 50 or 60% of the serotonin was released and then declined with increasing amounts of PAF. This was interpreted to result from the platelets becoming desensitized to the PAF, a process that shuts off the secretion. Such a desensitization was demonstrated and was shown to be stimulus specific, i.e., other stimuli could still induce secretion from PAF-desensitized platelets. PAF extracted with ethanol from the albumin to which it is usually bound during preparation, exhibited similar characteristics, except that secretion of up to 90% of the serotonin was induced. The extracted PAF thus seemed less able to induce the desensitization. Its use did provide important evidence that populations of rabbit platelets are relatively homogenous in their ability to respond to PAF. PMID:3618

  16. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    PubMed

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  17. Heparin-induced thrombocytopenia: real-world issues.

    PubMed

    Linkins, Lori-Ann; Warkentin, Theodore E

    2011-09-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic drug reaction caused by platelet-activating antibodies. HIT sera often activate platelets without needing heparin-such heparin-"independent" platelet activation can be associated with HIT beginning or worsening despite stopping heparin ("delayed-onset HIT"). We address important issues in HIT diagnosis and therapy, using a recent cohort of HIT patients to illustrate influences of heparin type; triggers for HIT investigation; serological features of heparin-independent platelet activation; and treatment. In our cohort of recent HIT cases ( N = 13), low-molecular-weight heparin (dalteparin) was a common causative agent ( N = 8, 62%); most patients were diagnosed after HIT-thrombosis had occurred; and danaparoid was the most frequently selected treatment. Heparin-independent platelet activation was common (7/13 [54%]) and predicted slower platelet count recovery (>1 week) among evaluable patients (5/5 vs 1/6; P = 0.015). In our experience with argatroban-treated patients, HIT-associated consumptive coagulopathy confounds anticoagulant monitoring. Our observations provide guidance on practical aspects of HIT diagnosis and management. Thieme Medical Publishers.

  18. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation☆

    PubMed Central

    Walsh, T.G.; Berndt, M.C.; Carrim, N.; Cowman, J.; Kenny, D.; Metharom, P.

    2014-01-01

    Background Activation of the platelet-specific collagen receptor, glycoprotein (GP) VI, induces intracellular reactive oxygen species (ROS) production; however the relevance of ROS to GPVI-mediated platelet responses remains unclear. Objective The objective of this study was to explore the role of the ROS-producing NADPH oxidase (Nox)1 and 2 complexes in GPVI-dependent platelet activation and collagen-induced thrombus formation. Methods and results ROS production was measured by quantitating changes in the oxidation-sensitive dye, H2DCF-DA, following platelet activation with the GPVI-specific agonist, collagen related peptide (CRP). Using a pharmacological inhibitor specific for Nox1, 2-acetylphenothiazine (ML171), and Nox2 deficient mice, we show that Nox1 is the key Nox homolog regulating GPVI-dependent ROS production. Nox1, but not Nox2, was essential for CRP-dependent thromboxane (Tx)A2 production, which was mediated in part through p38 MAPK signaling; while neither Nox1 nor Nox2 was significantly involved in regulating CRP-induced platelet aggregation/integrin αIIbβ3 activation, platelet spreading, or dense granule and α-granule release (ATP release and P-selectin surface expression, respectively). Ex-vivo perfusion analysis of mouse whole blood revealed that both Nox1 and Nox2 were involved in collagen-mediated thrombus formation at arterial shear. Conclusion Together these results demonstrate a novel role for Nox1 in regulating GPVI-induced ROS production, which is essential for optimal p38 activation and subsequent TxA2 production, providing an explanation for reduced thrombus formation following Nox1 inhibition. PMID:24494191

  19. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization

    PubMed Central

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-01-01

    Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677

  20. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi.

    PubMed

    Ahrens, Ingo; Chen, Yung-Chih; Topcic, Danijal; Bode, Michael; Haenel, David; Hagemeyer, Christoph E; Seeba, Hannah; Duerschmied, Daniel; Bassler, Nicole; Jandeleit-Dahm, Karin A; Sweet, Matthew J; Agrotis, Alex; Bobik, Alex; Peter, Karlheinz

    2015-11-01

    High mobility group box 1 (HMGB1) acts as both a nuclear protein that regulates gene expression, as well as a pro-inflammatory alarmin that is released from necrotic or activated cells. Recently, HMGB1-expression in human atherosclerotic plaques was identified. Therapeutic blockade of HMGB1 reduced the development of diet-induced atherosclerosis in ApoE knockout mice. Thus, we hypothesised an interaction between HMGB1 and activated platelets. Binding of recombinant HMGB1 to platelets was assessed by flow cytometry. HMGB1 bound to thrombin-activated human platelets (MFI 2.49 vs 25.01, p=0.0079). Blood from wild-type, TLR4 and RAGE knockout mice was used to determine potential HMGB1 receptors on platelets. HMGB1 bound to platelets from wild type C57Bl6 (MFI 2.64 vs 20.3, p< 0.05), and TLR4-/- mice (MFI 2.11 vs 25.65, p< 0.05) but failed to show binding to platelets from RAGE-/- mice (p > 0.05). RAGE expression on human platelets was detected by RT-PCR with mRNA extracted from highly purified platelets and confirmed by Western blot and immunofluorescence microscopy. Platelet activation increased RAGE surface expression (MFI 4.85 vs 6.74, p< 0.05). Expression of HMGB1 in human coronary artery thrombi was demonstrated by immunohistochemistry and revealed high expression levels. Platelets bind HMGB1 upon thrombin-induced activation. Platelet specific expression of RAGE could be detected at the mRNA and protein level and is involved in the binding of HMGB1. Furthermore, platelet activation up-regulates platelet surface expression of RAGE. HMGB1 is highly expressed in platelet-rich human coronary artery thrombi pointing towards a central role for HMGB1 in atherothrombosis, thereby suggesting the possibility of platelet targeted anti-inflammatory therapies for atherothrombosis.

  1. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    PubMed

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A{sub 2} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chi; Chang, Hsiao-Hua; Chan, Chiu-Po

    2012-09-15

    Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5–25 μM) suppressed AA-induced platelet aggregation and thromboxane B{sub 2} (TXB{sub 2}) production, but not U46619-induced platelet aggregation. Phloroglucinol (100–250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45–74% and 49–72% respectively at concentrations of 10–50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC{sub 50} ofmore » 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10–25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57–71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE{sub 2} production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use. -- Highlights: ► Phloroglucinol suppressed AA-induced platelet aggregation and thromboxane production. ► Phloroglucinol inhibited COX activity and IL-1b-induced PGE2 production in fibroblast. ► Phloroglucinol declined platelet and PMN ROS production and ERK/p38 phosphorylation. ► Phloroglucinol suppressed ex vivo AA-induced platelet aggregation. ► Phloroglucinol may prevent and for treatment of atherosclerosis/ vascular diseases.« less

  3. Dimerization of glycoprotein Ibα is not sufficient to induce platelet clearance.

    PubMed

    Liang, X; Syed, A K; Russell, S R; Ware, J; Li, R

    2016-02-01

    ESSENTIALS: Many anti-glycoprotein (GP)Ibα antibodies induce platelet clearance in a dimer-dependent manner. Characterization of monoclonal antibodies that bind the mechanosensitive domain (MSD) of GPIbα. An anti-MSD antibody binds two copies of GPIbα in platelets but does not induce platelet clearance. The prevailing clustering model of GPIbα signaling is incorrect or needs revision. The mechanism of platelet clearance is not clear. Many antibodies binding the membrane-distal ligand-binding domain of glycoprotein (GP)Ibα induce rapid clearance of platelets and acute thrombocytopenia, which requires the bifurcated antibody structure. It was thought that binding of these antibodies induced lateral dimerization or clustering of GPIbα in the plasma membrane, which leads to downstream signaling and platelet clearance. However, many antibodies targeting GPIbβ and GPIX, which are associated with GPIbα in the GPIb-IX complex, do not induce platelet clearance, which is in contradiction to the clustering model. To test whether dimerization or clustering of GPIbα is sufficient to transmit the signal that leads to platelet clearance. We have recently raised several mAbs targeting the mechanosensitive domain (MSD) of GPIbα. Binding of these anti-MSD antibodies was characterized with biochemical methods. Their ability to stimulate platelets and induce platelet clearance in mice was assessed. Infusion of anti-MSD antibodies does not cause thrombocytopenia in mice. These antibodies show no detectable effects on platelet activation and aggregation in vitro. Further biochemical investigation showed that the anti-MSD antibody 3D1 binds two copies of GPIbα on the platelet surface. Therefore, lateral dimerization of GPIbα induced by antibody binding is not sufficient to initiate GPIb-IX signaling and induce platelet clearance. Our results suggest that a factor other than or in addition to clustering of GPIbα is required to induce platelet clearance. © 2015 International Society on Thrombosis and Haemostasis.

  4. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  5. In vitro effects of polychlorinated biphenyls on human platelets.

    PubMed Central

    Raulf, M; König, W

    1991-01-01

    Incubation of human platelets with polychlorinated biphenyls (PCB) induced and modulated cellular responses to a different degree. 3,3',4,4'-tetrachlorobiphenyl (TCB) was a more potent inducer of platelet aggregation, serotonin release and 12-HETE generation compared to the other PCB [2,2',3,3'-TCB,3,3'-dichlorobiphenyl (DCB),2,2',4,5,5'-pentachlorobiphenyl (PCB)]. 3,3',4,4'-TCB showed synergistic effects, in combination with other PCB, such as an enhanced formation of 12-HETE, when 3,3'-DCB and 2,2',3,3'-TCB were applied simultaneously. The combined incubation of platelets with PCB and sodium fluoride (NaF), an activator of G-proteins, resulted in synergistic 12-HETE generation compared to stimulation with NaF or PCB alone. Furthermore, when platelets were incubated with the PCB the enzymatic steps controlling the metabolism of the platelet-activating factor (PAF) were modulated. A direct relationship between the extent of platelet activation and the chloro-substitution pattern of PCB exists. PMID:1901832

  6. Platelet Senescence and Phosphatidylserine Exposure

    PubMed Central

    Dasgupta, Swapan Kumar; Argaiz, Eduardo Rios; Chedid Mercado, Jose Emmanel; Elizondo Maul, Hector Omar; Garza, Jorge; Enriquez, Ana Bety; Abdel-Monem, Hanan; Prakasam, Anthony; Andreeff, Michael; Thiagarajan, Perumal

    2010-01-01

    Background The exposure of phosphatidylserine occurs during platelet activation and during in vitro storage. Phosphatidylserine exposure also occurs during apoptosis following the release of mitochondrial cytochrome c. We have examined the role of cytochrome c release, mitochondrial membrane potential (ΔΨm), and cyclophilin D (CypD) in phosphatidylserine exposure due to activation and storage. Study Design and Methods The exposure of phosphatidylserine and the loss ΔΨm were determined in a flow cytometer using FITC-lactadherin and JC-1, a lipophilic cationic reporter dye. The role of CypD was determined with cyclosporine A and CypD-deficient murine platelets. Cytochrome C induced caspase-3 and Rho associated kinase I (ROCK1) activation were determined by immunoblotting and using their inhibitors. Results Collagen and thrombin-induced exposure of phosphatidylserine was accompanied by a decrease in ΔΨm. Cyclosporin A inhibited the phosphatidylserine exposure and the loss of ΔΨm. CypD-/- mice had decreased loss of ΔΨm and impaired phosphatidylserine exposure. Collagen and thrombin did not induce the release of cytochrome c nor the activation of caspase-3 and ROCK1. In contrast, in platelets stored for more than 5 days, the phosphatidylserine exposure was associated with cytochrome c induced caspase-3 and ROCK1 activation. ABT737, a BH3 mimetic that induces mitochondrial pathway of apoptosis, induced cytochrome c release and activation of caspase-3 and ROCK1 and phosphatidylserine exposure independent of CypD. Conclusion These results show that in stored platelets cytochrome c release and the subsequent activation of caspase-3 and ROCK1 mediate phosphatidylserine exposure and it is distinct from activation-induced phosphatidylserine exposure. PMID:20456701

  7. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    PubMed

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P < 0.05 using analysis of variance and the Bonferroni correction. Sixty to 100 platelets adhered to bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P < 0.05) compared both with unsparged samples and sparged samples without surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  8. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release.

    PubMed

    Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata

    2016-07-01

    Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.

  9. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    PubMed

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.

  10. Human platelet activation by C3a and C3a des-arg

    PubMed Central

    1983-01-01

    C3a liberated from C3 by treatment with C3 convertase (or by trypsin) induced aggregation of gel-filtered human platelets and stimulated serotonin release. At concentrations of 10(-10) M to 8 X 10(-12) M, C3a induced aggregation when added alone to platelets. However, at lower concentrations (2 X 10(-12) M) C3a did not aggregate platelets directly but exhibited highly significant synergism (two-way analysis of variance P less than 0.0001) with ADP in mediating platelet aggregation and release of serotonin. Removal of the C-terminus arginine from C3a abolished anaphylotoxin activity but did not affect the platelet- stimulating activity of the peptide. C3a and C3a des-arg were equally reactive in mediating platelet aggregation and release of serotonin. Further C3a and C3a des-arg exhibited synergism with ADP of equal significance in both aggregation and the release reaction. The concentrations of C3a required for the platelet-stimulating activity involve relatively small number of molecules per platelet (4,000-10,000 for the synergistic reaction with ADP). These data suggest the possibility of a C3a (C3a des-arg) receptor on human platelets. This premise is strengthened by the demonstration ultrastructurally of C3a on the platelet membrane subsequent to C3a stimulation. PMID:6604123

  11. Influence of gold nanoparticles on platelets functional activity in vitro

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.

    2008-02-01

    Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <>, Russia). Aggregation inductor was ADP solution in terminal concentration 2.5 micromole (<>, Russia). Gold nanoshells soluted in salt solution were used for experiments. Samples of PRP were incubated with 50 or 100 μl gold nanoshells solution in 5 minute, after that we made definition ADP induced platelet aggregation. We found out increase platelet function activity after incubation with nanoparticles solution which shown in maximum ADP-induced aggregation degree increase. Increase platelet function activity during intravenous nanoshells injection can be cause of thrombosis on patients. That's why before clinical application of cancer cell destruction based on laser photothermal used with plasmon gold nanoparticles careful investigations of thrombosis process and detail analyze of physiological blood parameters are very necessary.

  12. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo.

    PubMed

    Seizer, Peter; Ungern-Sternberg, Saskia N I V; Schönberger, Tanja; Borst, Oliver; Münzer, Patrick; Schmidt, Eva-Maria; Mack, Andreas F; Heinzmann, David; Chatterjee, Madhumita; Langer, Harald; Malešević, Miroslav; Lang, Florian; Gawaz, Meinrad; Fischer, Gunter; May, Andreas E

    2015-03-01

    Cyclophilin A (CyPA) is secreted under inflammatory conditions by various cell types. Whereas the important role of intracellular CyPA for platelet function has been reported, the effect of extracellular CyPA on platelet function has not been investigated yet. Inhibition of extracellular CyPA through a novel specific inhibitor MM284 reduced thrombus after ferric chloride-induced injury in vivo. In vitro extracellular CyPA enhanced thrombus formation even in CyPA(-/-) platelets. Treatment of isolated platelets with recombinant CyPA resulted in platelet degranulation in a time- and dose-dependent manner. Inhibition of the platelet surface receptor extracellular matrix metalloproteinase inducer (cluster of differentiation 147) by an anticluster of differentiation 147 monoclonal antibody significantly reduced CyPA-dependent platelet degranulation. Pretreatment of platelets with CyPA enhanced their recruitment to mouse carotid arteries after arterial injury, which could be inhibited by an anticluster of differentiation 147 monoclonal antibody (intravital microscopy). The role of extracellular CyPA in adhesion could be confirmed by infusing CyPA(-/-) platelets in CyPA(+/+) mice and by infusing CyPA(+/+) platelets in CyPA(-/-) mice. Stimulation of platelets with CyPA induced phosphorylation of Akt, which could in turn be inhibited in the presence of phosphoinositid-3-kinase inhibitors. Akt-1(-/-) platelets revealed a markedly decreased degranulation on CyPA stimulation. Finally, ADP-induced platelet aggregation was attenuated by MM284, as well as by inhibiting paracrine-secreted CyPA without directly affecting Ca(2+)-signaling. Extracellular CyPA activates platelets via cluster of differentiation 147-mediated phosphoinositid-3-kinase/Akt-signaling, leading to enhanced adhesion and thrombus formation independently of intracellular CyPA. Targeting extracellular CyPA via a specific inhibitor may be a promising strategy for platelet inhibition without affecting critical functions of intracellular CyPA. © 2014 American Heart Association, Inc.

  13. Acute hypertriglyceridemia induces platelet hyperactivity that is not attenuated by insulin in polycystic ovary syndrome.

    PubMed

    Aye, Myint Myint; Kilpatrick, Eric S; Aburima, Ahmed; Wraith, Katie S; Magwenzi, Simbarashe; Spurgeon, B; Rigby, Alan S; Sandeman, Derek; Naseem, Khalid M; Atkin, Stephen L

    2014-02-28

    Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI2) were measured by flow cytometric analysis of platelet fibrinogen binding and P-selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg(-1) min(-1), P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg(-1) min(-1), P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI2 diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid-induced platelet hyperactivity by decreasing their response to 1 μmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 μmol/L PGI2 (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero-thrombotic risk. www.isrctn.org. Unique Identifier: ISRCTN42448814.

  14. Acute Hypertriglyceridemia Induces Platelet Hyperactivity That is Not Attenuated by Insulin in Polycystic Ovary Syndrome

    PubMed Central

    Aye, Myint Myint; Kilpatrick, Eric S.; Aburima, Ahmed; Wraith, Katie S.; Magwenzi, Simbarashe; Spurgeon, B.; Rigby, Alan S.; Sandeman, Derek; Naseem, Khalid M.; Atkin, Stephen L.

    2014-01-01

    Background Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. Methods and Results Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI2) were measured by flow cytometric analysis of platelet fibrinogen binding and P‐selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg−1 min−1, P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg−1 min−1, P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI2 diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid‐induced platelet hyperactivity by decreasing their response to 1 μmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 μmol/L PGI2 (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. Conclusion Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero‐thrombotic risk. Clinical Trial Registration URL: www.isrctn.org. Unique Identifier: ISRCTN42448814. PMID:24584741

  15. Platelet receptor polymorphisms do not influence Staphylococcus aureus–platelet interactions or infective endocarditis

    PubMed Central

    Daga, Shruti; Shepherd, James G.; Callaghan, J. Garreth S.; Hung, Rachel K.Y.; Dawson, Dana K.; Padfield, Gareth J.; Hey, Shi Y.; Cartwright, Robyn A.; Newby, David E.; Fitzgerald, J. Ross

    2011-01-01

    Cardiac vegetations result from bacterium–platelet adherence, activation and aggregation, and are associated with increased morbidity and mortality in infective endocarditis. The GPIIb/IIIa and FcγRIIa platelet receptors play a central role in platelet adhesion, activation and aggregation induced by endocarditis pathogens such as Staphylococcus aureus, but the influence of known polymorphisms of these receptors on the pathogenesis of infective endocarditis is unknown. We determined the GPIIIa platelet antigen PlA1/A2 and FcγRIIa H131R genotype of healthy volunteers (n = 160) and patients with infective endocarditis (n = 40), and investigated the influence of these polymorphisms on clinical outcome in infective endocarditis and S. aureus–platelet interactions in vitro. Platelet receptor genotype did not correlate with development of infective endocarditis, vegetation characteristics on echocardiogram or the composite clinical end-point of embolism, heart failure, need for surgery or mortality (P > 0.05 for all), even though patients with the GPIIIa PlA1/A1 genotype had increased in vivo platelet activation (P = 0.001). Furthermore, neither GPIIIa PlA1/A2 nor FcγRIIa H131R genotype influenced S. aureus-induced platelet adhesion, activation or aggregation in vitro (P > 0.05). Taken together, our data suggest that the GPIIIa and FcγRIIa platelet receptor polymorphisms do not influence S. aureus–platelet interactions in vitro or the clinical course of infective endocarditis. PMID:21044892

  16. Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract.

    PubMed

    Wong, Wai-Teng; Ismail, Maznah; Imam, Mustapha Umar; Zhang, Yi-Da

    2016-07-28

    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation. Adenosine diphosphate (ADP), collagen, and arachidonic acid (AA)-induced aggregation were studied using the microtiter technique. Rat platelets were pre-treated with various concentrations of policosanol extract, and the adhesion of platelets onto collagen- and laminin-coated surface (extracellular matrix) was studied using the acid phosphatase assay. The effect of crude policosanol extract on released proteins from activated platelets was measured using modified Lowry determination method. Rice bran policosanol extract significantly inhibited in vitro platelet aggregation induced by different agonists in a dose dependent manner. The IC50 of ADP-, collagen-, and AA-induced platelet aggregation were 533.37 ± 112.16, 635.94 ± 78.45 and 693.86 ± 70.57 μg/mL, respectively. The present study showed that crude rice bran policosanol extract significantly inhibited platelet adhesion to collagen in a dose dependent manner. Conversely, at a low concentration of 15.625 μg/mL, the extract significantly inhibited platelet adhesion to laminin stimulated by different platelet agonists. In addition to the alteration of cell adhesive properties, cellular protein secretion of the treated platelets towards different stimulants were decreased upon crude extract treatment. Our results showed that crude rice bran policosanol extract could inhibit in vitro platelet adhesion, aggregation and secretion upon activation using agonists. These findings serve as a scientific platform to further explore alternative therapies in cardiovascular diseases related to platelet malfunction.

  17. Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome

    PubMed Central

    Abrey Recalde, Maria J.; Alvarez, Romina S.; Alberto, Fabiana; Mejias, Maria P.; Ramos, Maria V.; Fernandez Brando, Romina J.; Bruballa, Andrea C.; Exeni, Ramon A.; Alconcher, Laura; Ibarra, Cristina A.; Amaral, María M.; Palermo, Marina S.

    2017-01-01

    Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions. PMID:29068360

  18. Platelet Dynamics during Natural and Pharmacologically Induced Torpor and Forced Hypothermia

    PubMed Central

    de Vrij, Edwin L.; Vogelaar, Pieter C.; Goris, Maaike; Houwertjes, Martin C.; Herwig, Annika; Dugbartey, George J.; Boerema, Ate S.; Strijkstra, Arjen M.; Bouma, Hjalmar R.; Henning, Robert H.

    2014-01-01

    Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5′-AMP in mice did not induce thrombocytopenia, possibly because 5′-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets, dependent on intrinsic platelet functionality, governs clearance of circulating platelets during torpor. PMID:24722364

  19. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  20. Role of platelet activating factor in pathogenesis of acute pancreatitis in rats.

    PubMed Central

    Konturek, S J; Dembinski, A; Konturek, P J; Warzecha, Z; Jaworek, J; Gustaw, P; Tomaszewska, R; Stachura, J

    1992-01-01

    The importance of platelet activating factor in acute pancreatitis was examined by determining the tissue content of endogenous platelet activating factor and the protective effects of TCV-309, a highly selective platelet activating factor blocker, against caerulein induced pancreatitis in rats. Infusion of caerulein (10 micrograms/kg/h) for five hours resulted in about 70% increase in pancreatic weight, 22% rise in protein content, 50% reduction in tissue blood flow, nine fold increase in tissue level of platelet activating factor and 165% rise in plasma amylase as well as histological evidence of acute pancreatitis. Such infusion of caerulein in chronic pancreatic fistula rats caused a marked increase in protein output from basal secretion of 10 mg/30 minutes to 40 mg/30 minutes in the first hour of infusion followed by a decline in protein output to 15-20 mg/30 minutes in the following hours of the experiment. Exogenous platelet activating factor (50 micrograms/kg) injected ip produced similar alterations in weight, protein content, blood flow, and histology of the pancreas but the increment in serum amylase was significantly smaller and pancreatic secretion was reduced below the basal level. TCV-309 (50 micrograms/kg) given ip before caerulein or platelet activating factor administration significantly reduced the biochemical and morphological alterations caused by caerulein and abolished those induced by exogenous platelet activating factor. These results indicate that platelet activating factor plays an important role in the pathogenesis of acute pancreatitis probably by reducing the blood flow and increasing vascular permeability in the pancreas. PMID:1385272

  1. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

    PubMed

    Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V

    2017-05-01

    The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X 7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca 2+ mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Flavan-3-ol-enriched dark chocolate and white chocolate improve acute measures of platelet function in a gender-specific way--a randomized-controlled human intervention trial.

    PubMed

    Ostertag, Luisa M; Kroon, Paul A; Wood, Sharon; Horgan, Graham W; Cienfuegos-Jovellanos, Elena; Saha, Shikha; Duthie, Garry G; de Roos, Baukje

    2013-02-01

    We examined whether flavan-3-ol-enriched dark chocolate, compared with standard dark and white chocolate, beneficially affects platelet function in healthy subjects, and whether this relates to flavan-3-ol bioavailability. A total of 42 healthy subjects received an acute dose of flavan-3-ol-enriched dark, standard dark or white chocolate, in random order. Blood and urine samples were obtained just before and 2 and 6 h after consumption for measurements of platelet function, and bioavailability and excretion of flavan-3-ols. Flavan-3-ol-enriched dark chocolate significantly decreased adenosine diphosphate-induced platelet aggregation and P-selectin expression in men (all p ≤ 0.020), decreased thrombin receptor-activating peptide-induced platelet aggregation and increased thrombin receptor-activating peptide-induced fibrinogen binding in women (both p ≤ 0.041), and increased collagen/epinephrine-induced ex vivo bleeding time in men and women (p ≤ 0.042). White chocolate significantly decreased adenosine diphosphate-induced platelet P-selectin expression (p = 0.002) and increased collagen/epinephrine-induced ex vivo bleeding time (p = 0.042) in men only. Differences in efficacy by which flavan-3-ols affect platelet function were only partially explained by concentrations of flavan-3-ols and their metabolites in plasma or urine. Flavan-3-ols in dark chocolate, but also compounds in white chocolate, can improve platelet function, dependent on gender, and may thus beneficially affect atherogenesis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modified diadenosine tetraphosphates with dual specificity for P2Y1 and P2Y12 are potent antagonists of ADP-induced platelet activation

    PubMed Central

    CHANG, H.; YANACHKOV, I. B.; DIX, E. J.; LI, Y. F.; BARNARD, M. R.; WRIGHT, G. E.; MICHELSON, A. D.; FRELINGER, A. L.

    2017-01-01

    Summary Background Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A), a natural compound stored in platelet dense granules, inhibits ADP-induced platelet aggregation. Ap4A inhibits the platelet ADP receptors P2Y1 and P2Y12, is a partial agonist of P2Y12, and is a full agonist of the platelet ATP-gated ion channel P2X1. Modification of the Ap4A tetraphosphate backbone enhances inhibition of ADP-induced platelet aggregation. However, the effects of these Ap4A analogs on human platelet P2Y1, P2Y12 and P2X1 are unclear. Objective To determine the agonist and antagonist activities of diadenosine tetraphosphate analogs towards P2Y1, P2Y12, and P2X1. Methods We synthesized the following Ap4A analogs: P1,P4-dithiotetraphosphate; P2,P3-chloromethylenetetraphosphate; P1-thio-P2,P3-chloromethylenetetraphosphate; and P1,P4-dithio-P2,P3-chloromethylenetetraphosphate. We then measured the effects of these analogs on: (i) ADP-induced platelet aggregation; (ii) P2Y1-mediated changes in cytosolic Ca2+; (iii) P2Y12-mediated changes in vasodilator-stimulated phosphoprotein phosphorylation; and (iv) P2X1-mediated entry of extracellular Ca2+. Results Ap4A analogs with modifications in the phosphate backbone inhibited both P2Y1 and P2Y12, and showed no agonist activity towards these receptors. The dithio modification increased inhibition of P2Y1, P2Y12, and platelet aggregation, whereas the chloromethylene modification increased inhibition of P2Y12 and platelet aggregation, but decreased P2Y1 inhibition. Combining the dithio and chloromethylene modifications increased P2Y1 and P2Y12 inhibition. As compared with Ap4A, each modification decreased agonist activity towards P2X1, and the dual modification completely eliminated P2X1 agonist activity. Conclusions As compared with Ap4A, tetraphosphate backbone analogs of Ap4A have diminished activity towards P2X1 but inhibit both P2Y1 and P2Y12 and, with greater potency, inhibit ADP-induced platelet aggregation. Thus, diadenosine tetraphosphate analogs with dual receptor selectivity may have potential as antiplatelet drugs. PMID:23083103

  4. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis.

    PubMed

    Ma, Ruishuang; Xie, Rui; Yu, Chengyuan; Si, Yu; Wu, Xiaoming; Zhao, Lu; Yao, Zhipeng; Fang, Shaohong; Chen, He; Novakovic, Valerie; Gao, Chunyan; Kou, Junjie; Bi, Yayan; Thatte, Hemant S; Yu, Bo; Yang, Shufen; Zhou, Jin; Shi, Jialan

    2017-07-10

    The mechanisms that eliminate activated platelets in inflammation-induced disseminated intravascular coagulation (DIC) in micro-capillary circulation are poorly understood. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered were and ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or αvβ3 integrin on ECs attenuated platelet clearance resulting in increased platelet count in a mouse model of sepsis. Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets. Pretreatment with lactadherin significantly increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contribute to maintaining platelet homeostasis during acute inflammation. These results suggest a new therapeutic target for impeding the development of DIC.

  5. Effects of clopidogrel and aspirin in combination versus aspirin alone on platelet activation and major receptor expression in diabetic patients: the PLavix Use for Treatment Of Diabetes (PLUTO-Diabetes) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Pokov, Alex; Barsness, Gregory; Hanley, Dan F

    2008-01-01

    Clopidogrel is widely used in diabetic patients after vascular events; however, the ability of this thienopyridine to yield additional antiplatelet protection on top of aspirin has never been explored in a controlled study with comprehensive assessment of platelet activity. The objective of this study was to compare the antiplatelet profiles of clopidogrel + aspirin in combination (C + ASA) versus aspirin alone (ASA) in patients with type 2 diabetes mellitus. Seventy patients with documented diabetes already treated with antecedent aspirin were randomly assigned to receive C + ASA or ASA in the PLUTO-Diabetes trial. Platelet studies included adenosine diphosphate-, collagen-, and arachidonic acid-induced aggregometry; PFA-100 (Dade-Behring, Miami, FL) and Ultegra (Accumetrics, San Diego, CA) analyzers; and expression of 6 major receptors by flow cytometry at baseline and at day 30 after randomization. There were no differences in the baseline clinical and platelet characteristics between the C + ASA and ASA groups, or subsequent significant changes in platelet biomarkers in the ASA group, except for diminished collagen-induced aggregation (P = .02). In contrast, when compared with the ASA group, therapy with C + ASA resulted in significant inhibition of platelet activity assessed by adenosine diphosphate aggregation (P = .0001); closure time prolongation (P = .0003) and reduction of platelet activation units with Ultegra (P = .0001); and expression of platelet/endothelial cell adhesion molecule 1 (P = .002), glycoprotein IIb/IIIa antigen (P = .0002), and activity (P = .0001). Treatment with C + ASA for 1 month provides significantly greater inhibition of platelet activity than ASA alone in diabetic patients in this small randomized trial. However, despite dual antiplatelet regimen, diabetic patients exhibit high residual activity of some platelet biomarkers, including unaffected protease-activated receptor 1 receptor expression.

  6. Inhibitory effects of Atractylodis lanceae rhizoma and Poria on collagen- or thromboxane A2-induced aggregation in rabbit platelets.

    PubMed

    Nasu, Yuiko; Iwashita, Masaya; Saito, Masaki; Fushiya, Shinji; Nakahata, Norimichi

    2009-05-01

    Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.

  7. Preanalytical requirements for flow cytometric evaluation of platelet activation: choice of anticoagulant.

    PubMed

    Mody, M; Lazarus, A H; Semple, J W; Freedman, J

    1999-06-01

    Accurate assessment of in vivo or in vitro platelet activation requires optimal preanalytical conditions to prevent artefactual in vitro activation of the platelets. The choice of anticoagulant is one of the critical preanalytical conditions as anticoagulants exert different effects on the activation of platelets ex vivo. We tested the effectiveness of Diatube-H (also known as CTAD; sodium citrate, theophylline, adenosine and dipyridamole) and citrate vacutainer tubes in preventing artefactual activation of platelets and preserving functional reserve. Platelet surface expression of the CD62P (reflecting alpha granule release), CD63 (reflecting lysosomal release) and modulation of normal platelet membrane glycoproteins CD41a and CD42b, were measured in whole blood and in isolated platelets immediately after collection and at 6, 24 and 48 h after venipuncture. Samples taken into Diatube-H showed less spontaneous platelet activation than did those taken into citrate. To measure in vitro platelet functional reserve, thrombin was added as agonist to blood stored for varying periods up to 48 h. Although Diatube-H suppressed in vitro platelet activation for up to 4 h, in samples kept for 6-24 h before thrombin addition, the inhibitory effect was lost and platelets responded fully to agonist activation. Hence, Diatube-H preserved platelets and allowed for measurement of in vivo platelet activation as well as thrombin-induced in vitro platelet activation after 6-24 h, in both whole blood and isolated platelets.

  8. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling.

    PubMed

    Irfan, Muhammad; Jeong, Da Hye; Kwon, Hyuk-Woo; Shin, Jung-Hae; Park, Sang-Joon; Kwak, Dongmi; Kim, Tae-Hwan; Lee, Dong-Ha; Park, Hwa-Jin; Rhee, Man Hee

    2018-06-08

    Ginseng (Panax ginseng C.A. Mayer) contains saponin fractions called ginsenosides, which are thought to be the main components responsible for its various pharmacological activities. Ginsenosides have cardioprotective and antiplatelet effects. In the present study, we evaluated the effects of ginsenoside Rp3 (G-Rp3) on platelet function. The in vitro effects of G-Rp3 were evaluated on agonist-induced human and rat platelet aggregation, while [Ca 2+ ] i mobilization, granule secretion, integrin α IIb β 3 activation, and clot retraction were assessed in rat platelets. Its effects on vasodilator-stimulated phosphoprotein (VASP) expression, phosphorylation of MAPK signaling molecules, and PI3K/Akt activation were also studied. Moreover, the tyrosine phosphorylation of components of the P 2 Y 12 receptor downstream signaling pathway was also examined. The in vivo effects of G-Rp3 were studied using an acute pulmonary thromboembolism model and lung histopathology. G-Rp3 significantly inhibited collagen, ADP, and thrombin-induced platelet aggregation. G-Rp3 elevated cAMP levels and VASP phosphorylation and suppressed agonist-induced [Ca 2+ ] i mobilization, ATP release, and P-selectin expression along with fibrinogen binding to integrin α IIb β 3 , fibronectin adhesion, and clot retraction. G-Rp3 also attenuated the phosphorylation of MAPK, Src, and PLCγ2 as well as PI3K/Akt activation. Furthermore, it inhibited tyrosine phosphorylation of the Src family kinases (Src, Fyn, and Lyn) and PLCγ2 and protected mice from thrombosis. G-Rp3 modulates agonist-induced platelet activation and thrombus formation by inhibiting granule secretion, integrin α IIb β 3 activation, MAPK signaling, and Src, PLCγ2, and PI3K/Akt activation, and VASP stimulation. Our data suggest that G-Rp3 has therapeutic potential as a treatment for platelet-related cardiovascular disorders. Copyright © 2017. Published by Elsevier Inc.

  9. Glaucocalyxin A Inhibits Platelet Activation and Thrombus Formation Preferentially via GPVI Signaling Pathway

    PubMed Central

    Li, Qiang; Ren, Lijie; Liu, Xiaohui; Chu, Chunjun; Ozaki, Yukio; Zhang, Jian; Zhu, Li

    2013-01-01

    Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent. PMID:24386454

  10. Effects of clopidogrel and aspirin in combination versus aspirin alone on platelet activation and major receptor expression in patients after recent ischemic stroke: for the Plavix Use for Treatment of Stroke (PLUTO-Stroke) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Ziai, Wendy; Pokov, Alex N; Bhatt, Deepak L; Alberts, Mark J; Hanley, Dan F

    2005-10-01

    Clopidogrel is widely used in patients after recent ischemic stroke; however, its ability to yield additional antiplatelet protection on top of aspirin has never been explored in a controlled study. To determine whether clopidogrel with aspirin (C+ASA) will produce more potent platelet inhibition than aspirin alone (ASA) in patients after ischemic stroke, we conducted the Plavix Use for Treatment of Stroke trial. Seventy patients after ischemic stroke were randomly assigned to C+ASA or ASA groups. Platelet studies included aggregometry; cartridge-based analyzers; expression of PECAM-1, P-selectin, GP IIb/IIIa (antigen and activity), vitronectin receptor, and formation of platelet-leukocyte microparticles by flow cytometry. Platelet tests were performed at baseline and after 30 days after randomization. There were no deaths, hospitalizations, or serious adverse events. There were no differences in the baseline platelet characteristics between C+ASA and ASA groups, or significant changes in platelet parameters in the ASA group, except diminished collagen-induced aggregation (P=0.001). In contrast, therapy with C+ASA resulted in a significant inhibition of platelet activity assessed by ADP- (P=0.00001) and collagen-induced (P=0.02) aggregation; closure time prolongation (P=0.03), and reduction of platelet activation units with Ultegra (P=0.00001); expression of PECAM-1 (P=0.01), and GP IIb/IIIa activity with PAC-1 (P=0.02) when compared with ASA group. Therapy with C+ASA also resulted in the reduced formation of platelet-leukocyte microparticles (P=0.02). Treatment with C+ASA for 1 month provides significantly greater inhibition of platelet activity than ASA alone in patients after recent ischemic stroke in the frame of the small randomized trial.

  11. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    PubMed

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  12. Combined aspirin and cilostazol treatment is associated with reduced platelet aggregation and prevention of exercise-induced platelet activation.

    PubMed

    Cleanthis, M; Bhattacharya, V; Smout, J; Ashour, H; Stansby, G

    2009-05-01

    Cilostazol has proven efficacy in increasing walking distance in claudicants, but it has not been demonstrated to be more effective than placebo in secondary cardiovascular prevention. The direct effect of exercise on platelet function remains less well defined. We have investigated the effect of combination treatment with aspirin and cilostazol on platelet activity in claudicants subjected to repeated treadmill exercise. Nineteen claudicants completed a double-blind, randomised, controlled, cross-over trial. Each subject received a 2-week course of aspirin (75mg) and placebo and aspirin and cilostazol (100mg twice daily). Following each 2-week treatment period, patients participated in a standardised treadmill test (3.2kmh(-1), 10 degrees incline) walking to maximal claudication distance. The exercise was repeated thrice in total, and blood was sampled before and after exercise. Platelet activation was measured using free platelet counting aggregation, flow cytometry for surface markers of platelet activation and soluble P-selectin assay. Compared to aspirin and placebo, combination treatment with aspirin and cilostazol was associated with reduced arachidonic-acid-induced platelet aggregation (p<0.01, Wilcoxon signed-rank test). Aspirin and placebo treatment were associated with elevated P-selectin expression, platelet-monocyte aggregation and reduced CD42b expression (p<0.05, Wilcoxon signed-rank test) post-exercise. No difference was seen in spontaneous platelet aggregation whilst soluble P-selectin was reduced post-exercise with combination treatment with aspirin and cilostazol (p<0.05, Wilcoxon signed-rank test). Combination treatment with aspirin and cilostazol results in suppression of platelet activation and reduces the effect of exercise on platelets. The benefit seen may be a result of cilostazol enhancing the inhibitory effect of aspirin on the cyclo-oxygenase pathway.

  13. FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli.

    PubMed

    Berlacher, Mark D; Vieth, Joshua A; Heflin, Brittany C; Gay, Steven R; Antczak, Adam J; Tasma, Brian E; Boardman, Holly J; Singh, Navinderjit; Montel, Angela H; Kahaleh, M Bashar; Worth, Randall G

    2013-01-01

    Platelets are known for their important role in hemostasis, however their significance in other functions, including inflammation and infection, are becoming more apparent. Patients with systemic lupus erythematosus (SLE) are known to have circulating IgG complexes in their blood and are highly susceptible to thrombotic events. Because platelets express a single receptor for IgG, we tested the hypothesis that ligation of this receptor (FcγRIIa) induces platelet hypersensitivity to thrombotic stimuli. Platelets from SLE patients were considerably more sensitive to thrombin compared to healthy volunteers, and this correlated with elevated levels of surface IgG on SLE platelets. To test whether FcγRIIa ligation stimulated thrombin hypersensitivity, platelets from healthy volunteers were incubated with buffer or heat-aggregated IgG, then stimulated with increasing concentrations of thrombin. Interestingly, heat-aggregated IgG-stimulated platelets, but not buffer-treated platelets, were hypersensitive to thrombin, and hypersensitivity was blocked by an anti-FcγRIIa monoclonal antibody (mAb). Thrombin hypersensitivity was not due to changes in thrombin receptor expression (GPIbα or PAR1) but is dependent on activation of shared signaling molecules. These observations suggest that ligation of platelet FcγRIIa by IgG complexes induces a hypersensitive state whereby small changes in thrombotic stimuli may result in platelet activation and subsequent vascular complications such as transient ischemic attacks or stroke. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Anticoagulant and Antiplatelet Activities of Artemisia princeps Pampanini and Its Bioactive Components.

    PubMed

    Ryu, Ri; Jung, Un Ju; Kim, Hye-Jin; Lee, Wonhwa; Bae, Jong-Sup; Park, Yong Bok; Choi, Myung-Sook

    2013-09-01

    Artemisia princeps Pampanini (AP) has been used as a traditional medicine in Korea, China and Japan and reported to exhibit various beneficial biological effects including anti-inflammatory, antioxidant, anti-atherogenic and lipid lowering activities; however, its antiplatelet and anticoagulant properties have not been studied. In the present study, we evaluated the effects of an ethanol extract of Artemisia princeps Pampanini (EAP) and its major flavonoids, eupatilin and jaceosidin, on platelet aggregation and coagulation. To determine the antiplatelet activity, arachidonic acid (AA)-, collagen- and ADP (adenosine diphosphate)-induced platelet aggregation were examined along with serotonin and thromboxane A2 (TXA2) generation in vitro. The anticoagulant activity was determined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in vitro. The data showed that EAP and its major flavonoids, eupatilin and jaceosidin, significantly reduced AA-induced platelet aggregation and the generation of serotonin and TXA2, although no significant change in platelet aggregation induced by collagen and ADP was observed. Moreover, EAP significantly prolonged the PT and aPTT. The PT and/or aPTT were significantly increased in the presence of eupatilin and jaceosidin. Thus, these results suggest that EAP may have the potential to prevent or improve thrombosis by inhibiting platelet activation and blood coagulation.

  15. Anticoagulant and Antiplatelet Activities of Artemisia princeps Pampanini and Its Bioactive Components

    PubMed Central

    Ryu, Ri; Jung, Un Ju; Kim, Hye-jin; Lee, Wonhwa; Bae, Jong-Sup; Park, Yong Bok; Choi, Myung-Sook

    2013-01-01

    Artemisia princeps Pampanini (AP) has been used as a traditional medicine in Korea, China and Japan and reported to exhibit various beneficial biological effects including anti-inflammatory, antioxidant, anti-atherogenic and lipid lowering activities; however, its antiplatelet and anticoagulant properties have not been studied. In the present study, we evaluated the effects of an ethanol extract of Artemisia princeps Pampanini (EAP) and its major flavonoids, eupatilin and jaceosidin, on platelet aggregation and coagulation. To determine the antiplatelet activity, arachidonic acid (AA)-, collagen- and ADP (adenosine diphosphate)-induced platelet aggregation were examined along with serotonin and thromboxane A2 (TXA2) generation in vitro. The anticoagulant activity was determined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in vitro. The data showed that EAP and its major flavonoids, eupatilin and jaceosidin, significantly reduced AA-induced platelet aggregation and the generation of serotonin and TXA2, although no significant change in platelet aggregation induced by collagen and ADP was observed. Moreover, EAP significantly prolonged the PT and aPTT. The PT and/or aPTT were significantly increased in the presence of eupatilin and jaceosidin. Thus, these results suggest that EAP may have the potential to prevent or improve thrombosis by inhibiting platelet activation and blood coagulation. PMID:24471130

  16. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to integrin αIIbβ3-dependent aggregation in human platelets. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Platelet-activated clotting time does not measure platelet reactivity during cardiac surgery.

    PubMed

    Shore-Lesserson, L; Ammar, T; DePerio, M; Vela-Cantos, F; Fisher, C; Sarier, K

    1999-08-01

    Platelet dysfunction is a major contributor to bleeding after cardiopulmonary bypass (CPB), yet it remains difficult to diagnose. A point-of-care monitor, the platelet-activated clotting time (PACT), measures accelerated shortening of the kaolin-activated clotting time by addition of platelet activating factor. The authors sought to evaluate the clinical utility of the PACT by conducting serial measurements of PACT during cardiac surgery and correlating postoperative measurements with blood loss. In 50 cardiac surgical patients, blood was sampled at 10 time points to measure PACT. Simultaneously, platelet reactivity was measured by the thrombin receptor agonist peptide-induced expression of P-selectin, using flow cytometry. These tests were temporally analyzed. PACT values, P-selectin expression, and other coagulation tests were analyzed for correlation with postoperative chest tube drainage. PACT and P-selectin expression were maximally reduced after protamine administration. Changes in PACT did not correlate with changes in P-selectin expression at any time interval. Total 8-h chest tube drainage did not correlate with any coagulation test at any time point except with P-selectin expression after protamine administration (r = -0.4; P = 0.03). The platelet dysfunction associated with CPB may be a result of depressed platelet reactivity, as shown by thrombin receptor activating peptide-induced P-selectin expression. Changes in PACT did not correlate with blood loss or with changes in P-selectin expression suggesting that PACT is not a specific measure of platelet reactivity.

  18. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion.

    PubMed

    Zou, Yuquan; Lai, Benjamin F L; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2010-12-08

    Poly(N,N-dimethylacrylamide) (PDMA) brushes are successfully grown from unplasticized poly(vinyl chloride) (uPVC) by well-controlled surface-initiated atom transfer radical polymerization (SI-ATRP). Molecular weights of the grafted PDMA brushes vary from ≈ 35,000 to 2,170000 Da, while the graft density ranges from 0.08 to 1.13 chains · nm(-2). The polydispersity of the grafted PDMA brushes is controlled within 1.20 to 1.80. Platelet activation (expression of CD62) and adhesion studies reveal that the graft densities of the PDMA brushes play an important role in controlling interfacial properties. PDMA brushes with graft densities between 0.35 and 0.50 chains · nm(-2) induce a significantly reduced platelet activation compared to unmodified uPVC. Moreover, the surface adhesion of platelets on uPVC is significantly reduced by the densely grafted PDMA brushes. PDMA brushes that have high molecular weights lead to a relatively lower platelet activation compared to low-molecular-weight brushes. However, the graft density of the brush is more important than molecular weight in controlling platelet interactions with PVC. PDMA brushes do not produce any significant platelet consumption in platelet rich plasma. Up to a seven-fold decrease in the number of platelets adhered on high graft density brushes is observed compared to the bare PVC surface. Unlike the bare PVC, platelets do not form pseudopodes or change morphology on PDMA brush-coated surfaces. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mucor circinelloides induces platelet aggregation through integrin αIIbβ3 and FcγRIIA.

    PubMed

    Ghuman, Harlene; Shepherd-Roberts, Alicia; Watson, Stephanie; Zuidscherwoude, Malou; Watson, Steve P; Voelz, Kerstin

    2018-01-03

    Thrombosis is a hallmark of the fatal fungal infection mucormycosis. Yet, the platelet activation pathway in response to mucormycetes is unknown. In this study we determined the platelet aggregation potential of Mucor circinelloides (M. circinelloides) NRRL3631, characterized the signaling pathway facilitating aggregation in response to fungal spores, and identified the influence of the spore developmental stage upon platelet aggregation potential. Using impedance and light-transmission aggregometry, we showed that M. circinelloides induced platelet aggregation in whole blood and in platelet-rich plasma, respectively. The formation of large spore-platelet aggregates was confirmed by light-sheet microscopy, which showed spores dispersed throughout the aggregate. Aggregation potential was dependent on the spore's developmental stage, with the strongest platelet aggregation by spores in mid-germination. Inhibitor studies revealed platelet aggregation was mediated by the low affinity IgG receptor FcγRIIA and integrin αIIbβ3; Src and Syk tyrosine kinase signaling; and the secondary mediators TxA 2 and ADP. Flow cytometry of antibody stained platelets showed that interaction with spores increased expression of platelet surface integrin αIIbβ3 and the platelet activation marker CD62P. Together, this is the first elucidation of the signaling pathways underlying thrombosis formation during a fungal infection, highlighting targets for therapeutic intervention.

  20. Platelet activation in pregnancy-induced hypertension.

    PubMed

    Karalis, Ioannis; Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H

    2005-01-01

    Although excess platelet activation, as indicated by increased plasma beta thromboglobulin (beta-TG), has been shown in pregnancy-induced hypertension (PIH), platelet adhesion, platelet morphology and a comparison of platelet and soluble (plasma) levels of the adhesion molecules P-selectin (pPsel and sPsel, respectively) have not been studied. We conducted a cross-sectional study of 35 consecutive women with PIH (age 31+/-6 years), 31 consecutive women with normotensive pregnancies (age 29+/-5 years) and 30 normotensive non pregnant women (age 30+/-5 years). Platelet adhesion was studied in vitro by binding to fibrinogen-coated microwells, platelet morphology [mass and volume by flow cytometry], whole-platelet P-selectin (pPsel) by ELISA of the lysate of 2 x 10(8) cells, and the plasma markers soluble P-selectin (sP-sel) and beta-TG, by ELISA. The women with PIH had significantly raised sPsel, pPsel and (as expected) beta-TG (all p<0.05), when compared to the normotensive pregnant women and controls. However, in PIH platelet adhesion was similar to that in the normotensive pregnancy, but still higher than the normal controls (p<0.001). There was no difference among the three groups with respect to platelet mass and volume. pPsel and platelet adhesion correlated with gestational age and with systolic and diastolic blood pressure (all p<0.05). Increased platelet activation and adhesion develop during normal pregnancy, with some indices being further altered in PIH.

  1. Novel sila-amide derivatives of N-acetylcysteine protects platelets from oxidative stress-induced apoptosis.

    PubMed

    Paul, Manoj; Thushara, Ram M; Jagadish, Swamy; Zakai, Uzma I; West, Robert; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-02-01

    Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H 2 O 2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.

  2. Influence of calcium salts and bovine thrombin on growth factor release from equine platelet-rich gel supernatants.

    PubMed

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2017-01-16

    To compare five activation methods in equine platelet-rich plasma (PRP) by determination of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) concentrations in platelet-rich gel (PRG) supernatants. Platelet-rich plasma from 20 horses was activated by calcium chloride (CC), calcium gluconate (CG), bovine thrombin (BT), and their combinations, BTCC and BTCG. Both growth factor concentrations in PRG supernatants were measured by ELISA and compared with plasma and platelet lysates (PL) over time. Growth factor concentrations were significantly lower in plasma and higher for all PRG supernatants. Platelet lysates contained a significantly lower concentration of PDGF-BB than PRG supernatants and a significantly higher concentration of TGF-β1 than PRG supernatants. Clots from PRP activated with sodium salts were more stable over time and had significant growth factor release, whereas CC produced gross salt deposition. Significant correlations were noticed for platelet with leukocyte concentrations in PRP (r s : 0.76), platelet counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.86), platelet counts in PRP with PDGF-BB concentrations in PRG supernatants (r s : 0.78), leukocyte counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.76), and PDGF-BB concentrations with activating substances (r s : 0.72). Calcium gluconate was the better substance to induce PRP activation. It induced growth factor release free from calcium precipitates in the clots. Use of BT alone or combined with calcium salts was not advantageous for growth factor release.

  3. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  4. High Residual Collagen-Induced Platelet Reactivity Predicts Development of Restenosis in the Superficial Femoral Artery After Percutaneous Transluminal Angioplasty in Claudicant Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, Thomas, E-mail: thomas.gary@medunigraz.at; Prüller, Florian, E-mail: florian.prueller@klinikum-graz.at; Raggam, Reinhard, E-mail: reinhard.raggam@klinikum-graz.at

    PurposeAlthough platelet reactivity is routinely inhibited with aspirin after percutaneous angioplasty (PTA) in peripheral arteries, the restenosis rate in the superficial femoral artery (SFA) is high. Interaction of activated platelets and the endothelium in the region of intervention could be one reason for this as collagen in the subendothelium activates platelets.Materials and MethodsA prospective study evaluating on-site platelet reactivity during PTA and its influence on the development of restenosis with a total of 30 patients scheduled for PTA of the SFA. Arterial blood was taken from the PTA site after SFA; platelet function was evaluated with light transmission aggregometry. Aftermore » 3, 6, 12, and 24 months, duplex sonography was performed and the restenosis rate evaluated.ResultsEight out of 30 patients developed a hemodynamically relevant restenosis (>50 % lumen narrowing) in the PTA region during the 24-month follow-up period. High residual collagen-induced platelet reactivity defined as AUC >30 was a significant predictor for the development of restenosis [adjusted odds ratio 11.8 (9.4, 14.2); P = .04].ConclusionsHigh residual collagen-induced platelet reactivity at the interventional site predicts development of restenosis after PTA of the SFA. Platelet function testing may be useful for identifying patients at risk.« less

  5. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    PubMed

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  6. The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.

    PubMed Central

    May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.

    1992-01-01

    1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722

  7. Influence of cryopreservation and mechanical stimulation on equine Autologous Conditioned Plasma (ACP®).

    PubMed

    Mageed, M; Ionita, C; Kissich, C; Brehm, W; Winter, K; Ionita, J-C

    2015-01-01

    To determine the influence of cryopreservation at two different temperatures on platelet concentration, growth factor (GF) levels and platelet activation parameters in equine ACP®; moreover, to determine if adding mechanical ACP® stimulation to freeze-thaw activation amplifies GF release from platelets. Firstly, blood from five horses was used to prepare ACP®. Platelet, platelet derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) concentrations as well as mean platelet volume (MPV) and mean platelet component (MPC) were determined in fresh and corresponding ACP® samples after 2 months cryopreservation at -20 °C and -80 °C, respectively. Secondly, ACP® was prepared from blood of nine horses. Half of ACP® was activated using one freeze-thaw-cycle at -20 °C, whereas the rest was first vortexed. Their PDGF-BB and TGF-β1 concentrations were subsequently determined. Platelet concentration significantly decreased after -80 °C cryopreservation. PDGF-BB level augmented significantly after both storage methods, whereas TGF-β1 concentration was not significantly altered. MPV significantly increased after -20 °C cryopreservation. Both storage regimens induced a significant MPC decrease. No significant differences in GF concentrations between the vortexed and non-vortexed samples were detected. Both cryopreservation methods induced platelet activation, but storage at -80 °C apparently harmed the platelets without generating higher GF release than -20 °C. The mechanical stimulation process could not enhance GF release in subsequently frozen-thawed ACP®. Storage of ACP® at -20 °C could be useful in equine practice, but, before this procedure can be recommended, further qualitative tests are needed. The mechanical stimulation technique should be adjusted in order to increase platelet activation.

  8. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.

  9. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882

  10. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    PubMed

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  11. DUSP3 Phosphatase Deficiency or Inhibition Limit Platelet Activation and Arterial Thrombosis

    PubMed Central

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A.; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas DY; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan WM; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-01-01

    Background A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. Better understanding of the molecular mechanisms leading to platelet activation is of importance for the development of improved therapies. Recently, protein tyrosine phosphatases (PTPs) have emerged as critical regulators of platelet function. Methods and Results This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated through the collagen receptor glycoprotein VI (GPVI) and the C-type lectin-like receptor 2 (CLEC-2). DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism, compared to wild-type mice, and showed severely impaired thrombus formation upon ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of PLCγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen and CLEC-2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. Conclusions DUSP3 plays a selective and essential role in collagen- and CLEC-2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a PTP, implicated in platelet signaling, has been targeted with a small-molecule drug. PMID:25520375

  12. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt

    PubMed Central

    Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  13. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    PubMed

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  14. Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells

    PubMed Central

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N.; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R.; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A.; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. PMID:25418726

  15. Scalable generation of universal platelets from human induced pluripotent stem cells.

    PubMed

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-11-11

    Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.

  16. Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release and coagulation.

    PubMed

    Pang, Aiming; Cui, Yujie; Chen, Yunfeng; Cheng, Ni; Delaney, M Keegan; Gu, Minyi; Stojanovic-Terpo, Aleksandra; Zhu, Cheng; Du, Xiaoping

    2018-05-31

    It is currently unclear why agonist-stimulated platelets require shear force to efficiently externalize the procoagulant phospholipid phosphatidylserine (PS) and release PS-exposed microvesicles (MVs). We reveal that integrin outside-in signaling is an important mechanism for this requirement. PS exposure and MV release were inhibited in β 3 -/- platelets or by integrin antagonists. The impaired MV release and PS exposure in β 3 -/- platelets were rescued by expressing wild type β 3 but not a Gα 13 binding-deficient β 3 mutant (E 733 EE to AAA), which blocks outside-in signaling but not ligand binding. Inhibition of Gα 13 or Src also diminished agonist/shear-dependent PS exposure and MV release, further indicating a role for integrin outside-in signaling. PS exposure in activated platelets was induced by application of pulling force via an integrin ligand, which was abolished by inhibiting Gα 13 -integrin interaction, suggesting that GGα 13 -dependent transmission of mechanical signals by integrins induces PS exposure. Inhibition of Gα 13 delayed coagulation in vitro. Furthermore, inhibition or platelet-specific knockout of Gα 13 diminished laser-induced intravascular fibrin formation in arterioles in vivo. Thus, β 3 integrins serve as a shear sensor activating the Gα 13 -dependent outside-in signaling pathway to facilitate platelet procoagulant function. Pharmacological targeting of Gα 13 -integrin interaction prevents occlusive thrombosis in vivo by inhibiting both coagulation and platelet thrombus formation. Copyright © 2018 American Society of Hematology.

  17. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling.

    PubMed

    Vaiyapuri, Sakthivel; Ali, Marfoua S; Moraes, Leonardo A; Sage, Tanya; Lewis, Kirsty R; Jones, Chris I; Gibbins, Jonathan M

    2013-12-01

    Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

  18. Nanomolar concentrations of adrenaline induce platelet adhesion in vitro.

    PubMed

    Eriksson, Andreas C; Whiss, Per A

    2013-01-01

    Adrenaline is a platelet activator having a resting plasma concentration of <1 nmol/l that increases to a few nmol/l during stress. However, most in vitro assays only detect effects of adrenaline in micromolar concentrations. This makes it difficult to estimate the relevance of in vitro data for the in vivo situation. The aim of this study was to investigate experimental conditions in vitro that could detect platelet effects of adrenaline in nanomolar concentrations. Platelet adhesion to albumin and collagen was evaluated with a static platelet adhesion assay. Our results show that 10 nmol/l adrenaline induced platelet adhesion to albumin in platelet-rich plasma (PRP) prepared at 140 × g, while 100 nmol/l was necessary in order to increase adhesion of platelets prepared at 220 × g. The mean platelet volume was increased after preparation at 140 × g, suggesting that large reactive platelets contributed to the increased adrenaline sensitivity. At optimal Mg(2+)-concentration, adhesion to collagen was increased by 10 nmol/l adrenaline irrespective of centrifugal force applied during PRP preparation. More specifically, we defined two populations where adhesion to collagen was increased by 10 nmol/l adrenaline either upon centrifugation at 140 × g but not 220 × g or vice versa. In some experiments, platelet adhesion to collagen was induced by 3 nmol/l adrenaline, which corresponds to concentrations achieved during stress in vivo. In summary, the static adhesion assay is able to detect platelet activating effects of adrenaline very close to physiological concentrations. This is rare for in vitro assays and motivates further research about adrenergic signalling in platelets.

  19. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination.

    PubMed

    Matsui, T; Hori, A; Hamako, J; Matsushita, F; Ozeki, Y; Sakurai, Y; Hayakawa, M; Matsumoto, M; Fujimura, Y

    2017-03-01

    Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that specifically blocks VWF function. This is the first report on an artificial botrocetin that can inhibit the VWF-GPIb interaction. © 2017 International Society on Thrombosis and Haemostasis.

  20. Abnormal Whole Blood Thrombi in Humans with Inherited Platelet Receptor Defects

    PubMed Central

    Castellino, Francis J.; Liang, Zhong; Davis, Patrick K.; Balsara, Rashna D.; Musunuru, Harsha; Donahue, Deborah L.; Smith, Denise L.; Sandoval-Cooper, Mayra J.; Ploplis, Victoria A.; Walsh, Mark

    2012-01-01

    To delineate the critical features of platelets required for formation and stability of thrombi, thromboelastography and platelet aggregation measurements were employed on whole blood of normal patients and of those with Bernard-Soulier Syndrome (BSS) and Glanzmann’s Thrombasthenia (GT). We found that separation of platelet activation, as assessed by platelet aggregation, from that needed to form viscoelastic stable whole blood thrombi, occurred. In normal human blood, ristocetin and collagen aggregated platelets, but did not induce strong viscoelastic thrombi. However, ADP, arachidonic acid, thrombin, and protease-activated-receptor-1 and -4 agonists, stimulated both processes. During this study, we identified the genetic basis of a very rare double heterozygous GP1b deficiency in a BSS patient, along with a new homozygous GP1b inactivating mutation in another BSS patient. In BSS whole blood, ADP responsiveness, as measured by thrombus strength, was diminished, while ADP-induced platelet aggregation was normal. Further, the platelets of 3 additional GT patients showed very weak whole blood platelet aggregation toward the above agonists and provided whole blood thrombi of very low viscoelastic strength. These results indicate that measurements of platelet counts and platelet aggregability do not necessarily correlate with generation of stable thrombi, a potentially significant feature in patient clinical outcomes. PMID:23300803

  1. Three-dimentional simulation of flow-induced platelet activation in artificial heart valves

    NASA Astrophysics Data System (ADS)

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.

  2. Synthesis and evaluation of dual antiplatelet activity of bispidine derivatives of N-substituted pyroglutamic acids.

    PubMed

    Misra, Ankita; Anil Kumar, K S; Jain, Manish; Bajaj, Kirti; Shandilya, Shyamali; Srivastava, Smriti; Shukla, Pankaj; Barthwal, Manoj K; Dikshit, Madhu; Dikshit, Dinesh K

    2016-03-03

    N-aralkylpyroglutamides of substituted bispidine were prepared and evaluated for their ability to inhibit collagen induced platelet aggregation, both in vivo and in vitro. Some compounds showed high anti-platelet efficacy (in vitro) of which six inhibited both collagen as well as U46619 induced platelet aggregation with concentration dependent anti-platelet efficacy through dual mechanism. In particular, the compound 4j offered significant protection against collagen epinephrine induced pulmonary thromboembolism as well as ferric chloride induced arterial thrombosis, without affecting bleeding tendency in mice. Therefore, the present study suggests that the compound 4j displays a remarkable antithrombotic efficacy much better than aspirin and clopidogrel. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Towards optical control of single blood platelet activation

    NASA Astrophysics Data System (ADS)

    Spiryova, Darya V.; Karmatskih, Oleg Yu.; Vorob'ev, Alexei Yu.; Moskalensky, Alexander E.

    2018-04-01

    Blood platelets play a pivotal role in blood coagulation and in other normal and pathological processes. The understanding of fundamental mechanisms underlying their functions is very important for diagnostics and treatment. Single-cell experiments are needed for this purpose, which are complicated by insufficient spatiotemporal precision of conventional activation protocols. We present an approach to trigger single platelet activation optically, without the need of reagent mixing. This is achieved using photolabile compound, which rapidly delivers epinephrine upon UV irradiation. We demonstrated the applicability of the technique to rapidly induce platelet activation for studying dynamics of activation. The presented method may give novel fundamental knowledge about platelet functions and facilitate current research of their ability to deliver drugs to tumors or vascular injury sites.

  4. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell‐Derived Platelets

    PubMed Central

    Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono‐Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi

    2016-01-01

    Abstract Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720–730 PMID:28297575

  5. [Effects of lysine clonixinate on platelet function. Comparison with other non-steroidal anti-inflammatory agents].

    PubMed

    Kramer, E H; Sassetti, B; Kaminker, A J; De Los Santos, A R; Martí, M L; Di Girolamo, G

    2001-01-01

    One of the mechanisms of action of non steroid antiinflammatory drugs (NSAIDs) consists of inhibition of prostaglandin synthesis. This explains many of the pharmacological effects and adverse events observed in medical practice. Administration of NSAIDs to patients with hemostatic disorders or perioperative conditions entails the risk of bleeding due to inhibition of platelet function. This study deals with platelet changes induced by lysine clonixinate vs diclofenac, ibuprofen and aspirin in classical tests such as platelet count, platelet factor 3 (PF3) activity and platelet aggregation with various inductors and more recent procedures such as P-selectin measurement by flow cytometry. Unlike control drugs, lysine clonixinate did not induce changes in platelet count or function when administered to healthy volunteers at the commonly used therapeutic doses.

  6. Structure-Antiplatelet Activity Relationships of Novel Ruthenium (II) Complexes: Investigation of Its Molecular Targets.

    PubMed

    Hsia, Chih-Hsuan; Jayakumar, Thanasekaran; Sheu, Joen-Rong; Tsao, Shin-Yi; Velusamy, Marappan; Hsia, Chih-Wei; Chou, Duen-Suey; Chang, Chao-Chien; Chung, Chi-Li; Khamrang, Themmila; Lin, Kao-Chang

    2018-02-22

    The regulation of platelet function by pharmacological agents that modulate platelet signaling has proven to be a positive approach to the prevention of thrombosis. Ruthenium complexes are fascinating for the development of new drugs, as they possess numerous chemical and biological properties. The present study aims to evaluate the structure-activity relationship (SAR) of newly synthesized ruthenium (II) complexes, TQ-1, TQ-2 and TQ-3 in agonists-induced washed human platelets. Silica gel column chromatography, aggregometry, immunoblotting, NMR, and X-ray analyses were performed in this study. Of the three tested compounds, TQ-3 showed a concentration (1-5 μM) dependent inhibitory effect on platelet aggregation induced by collagen (1 μg/mL) and thrombin (0.01 U/mL) in washed human platelets; however, TQ-1 and TQ-2 had no response even at 250 μM of collagen and thrombin-induced aggregation. TQ-3 was effective with inhibiting collagen-induced ATP release, calcium mobilization ([Ca 2+ ]i) and P-selectin expression without cytotoxicity. Moreover, TQ-3 significantly abolished collagen-induced Lyn-Fyn-Syk, Akt-JNK and p38 mitogen-activated protein kinases (p38 MAPKs) phosphorylation. The compound TQ-3 containing an electron donating amino group with two phenyl groups of the quinoline core could be accounted for by its hydrophobicity and this nature might be the reason for the noted antiplatelet effects of TQ-3. The present results provide a molecular basis for the inhibition by TQ-3 in collagen-induced platelet aggregation, through the suppression of multiple machineries of the signaling pathway. These results may suggest that TQ-3 can be considered a potential agent for the treatment of vascular diseases.

  7. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity

    PubMed Central

    Gaspar, Renato Simões

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690

  8. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.

    PubMed

    Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.

  9. 2',5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor.

    PubMed

    Lin, C N; Lee, T H; Hsu, M F; Wang, J P; Ko, F N; Teng, C M

    1997-05-01

    Eleven chalcone derivatives have been tested for their inhibitory effects on platelet aggregation in rabbit platelet suspension and the activation of mast cells and neutrophils. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the compounds and some also had a potent inhibitory effect on collagen-induced platelet aggregation and cyclooxygenase. Some hydroxychalcone derivatives showed strong inhibitory effects on the release of beta-glucuronidase and lysozyme, and on superoxide formation by rat neutrophils stimulated with the peptide fMet-Leu-Phe (fMLP). We found that the anti-inflammatory effect of 2',5'-dihydroxychalcone was greater than that of trifluoperazine. 2'5'-Dihydroxy and 2',3,4,5'-tetrahydroxyl chalcones, even at low concentration (50 microM), tested in platelet-rich plasma from man almost completely inhibited secondary aggregation induced by adrenaline. These results suggest that the anti-platelet effects of the chalcones are mainly a result of inhibition of thromboxane formation.

  10. Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Bergerone, Serena; Dondi, Anna Erna; Goffi, Alberto; Oliaro, Elena; Cordero, Marco; Del Sorbo, Lorenzo; Trevi, Giampaolo; Montrucchio, Giuseppe

    2006-12-05

    We sought to investigate the potential role of elevated levels of thrombopoietin (TPO) in platelet activation during unstable angina (UA). Thrombopoietin is a humoral growth factor that does not induce platelet aggregation per se, but primes platelet activation in response to several agonists. No data concerning its contribution to platelet function abnormalities described in patients with UA are available. We studied 15 patients with UA and, as controls, 15 patients with stable angina (SA) and 15 healthy subjects. We measured TPO and C-reactive protein (CRP), as well as monocyte-platelet binding and the platelet expression of P-selectin and of the TPO receptor, c-Mpl. The priming activity of patient or control plasma on platelet aggregation and monocyte-platelet binding and the role of TPO in this effect also were studied. Patients with UA showed higher circulating TPO levels, as well as increased monocyte-platelet binding, platelet P-selectin expression, and CRP levels, than those with SA and healthy control subjects. The UA patients also showed reduced platelet expression of the TPO receptor, c-Mpl. In vitro, the plasma from UA patients, but not from SA patients or healthy controls, primed platelet aggregation and monocyte-platelet binding, which were both reduced when an inhibitor of TPO was used. Thrombopoietin may enhance platelet activation in the early phases of UA, potentially participating in the pathogenesis of acute coronary syndromes.

  11. Equid Herpesvirus Type 1 Activates Platelets

    PubMed Central

    Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James

    2015-01-01

    Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis. PMID:25905776

  12. Preventive and therapeutic effect of brozopine on stroke in Dahl Salt-sensitive hypertensive rats.

    PubMed

    Gao, Yuan; Wang, Yan; Li, Miao; Liu, Yali; Chang, Junbiao; Qiao, Hailing

    2017-10-01

    Our aim was to explore the preventive and therapeutic effects of sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate (brand name: brozopine, BZP) on stroke in Dahl Salt-sensitive (Dahl-SS) hypertensive rats. Dahl-SS rats were fed a high-salt diet to observe the effect of BZP on blood pressure, and brain, heart, and kidney tissues. Additionally, the incidence of stroke was recorded according to the neurological score. The relative mechanisms investigated included anti-oxidative effects and anti-platelet aggregation. BZP reduced the incidence of stroke, neuronal necrosis in the brain, and cell swelling and inflammatory infiltration in the kidney. Its mechanisms were related to the increased activities of gluthatione peroxidase and catalase and the decreased level of plasma nitric oxide. BZP inhibited arachidonic acid (AA) - induced platelet aggregation (IC 50 : 12µM) rather than that of adenosine diphosphate (ADP) - and/or thrombin-induced platelet aggregation in vitro. Interestingly, BZP inhibited ADP-, thrombin-, or AA-induced platelet aggregation and elevated the level of AMP-activated protein kinase, cyclic guanosine monophosphate, and vasodilator-stimulated-phosphoprotein, and attenuated ATP contents and mitogen-activated protein kinase levels in platelet and inhibited thrombus formation in a carotid artery thrombosis model, dose-dependently, in Dahl-SS hypertensive-induced stroke rats. In conclusion, BZP can have therapeutic and preventive effects on stroke in Dahl-SS hypertensive rats, the mechanisms of which may be related to anti-oxidant, anti-platelet aggregation and anti-thrombus formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of analogues of gingerol and shogaol, the active pungent principles from the rhizomes of Zingiber officinale and evaluation of their anti-platelet aggregation effects.

    PubMed

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-03-04

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads.

  14. Synthesis of Analogues of Gingerol and Shogaol, the Active Pungent Principles from the Rhizomes of Zingiber officinale and Evaluation of Their Anti-Platelet Aggregation Effects

    PubMed Central

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-01-01

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads. PMID:24599082

  15. Fibrin activates GPVI in human and mouse platelets

    PubMed Central

    Alshehri, Osama M.; Montague, Samantha; Watson, Stephanie K.; Frampton, Jon; Bender, Markus; Watson, Steve P.

    2015-01-01

    The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability. PMID:26282541

  16. Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation.

    PubMed

    Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A H; Stegner, David; van der Meijden, Paola E J; Kuijpers, Marijke J E; Varga-Szabo, David; Heemskerk, Johan W M; Nieswandt, Bernhard

    2010-07-30

    In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1(-/-) and Orai1(-/-) platelets had greatly impaired glycoprotein (GP) VI-dependent Ca(2+) signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2(-/-) platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca(2+) signals of Stim1(-/-) and Orai1(-/-) platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1(-/-) and Orai1(-/-) platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca(2+) entry, inhibited Ca(2+) and procoagulant responses even in Stim1(-/-) and Orai1(-/-) platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca(2+) entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca(2+) entry and PS exposure, only one relying on STIM1-Orai1 interaction.

  17. Abacavir has no prothrombotic effect on platelets in vitro.

    PubMed

    Diallo, Yacouba L; Ollivier, Véronique; Joly, Véronique; Faille, Dorothée; Catalano, Giovanna; Jandrot-Perrus, Martine; Rauch, Antoine; Yeni, Patrick; Ajzenberg, Nadine

    2016-12-01

    HIV patients exposed to abacavir have an increased risk of myocardial infarction, with contradictory results in the literature. The aim of our study was to determine whether abacavir has a direct effect on platelet activation and aggregation using platelets from healthy donors and from HIV-infected patients under therapy with an undetectable viral load. Platelet-rich plasma (PRP) or whole blood from healthy donors was treated with abacavir (5 or 10 μg/mL) or its active metabolite carbovir diphosphate. Experiments were also performed using blood of HIV-infected patients (n = 10) with an undetectable viral load. Platelet aggregation was performed on PRP by turbidimetry and under high shear conditions at 4000 s -1 . Platelet procoagulant potential was analysed by measuring thrombin generation by thrombinography. Abacavir and carbovir diphosphate significantly increased the aggregation of platelets from healthy donors induced by collagen at 2 μg/mL (P = 0.002), but not at 0.5 μg/mL. No effect of abacavir or carbovir diphosphate was observed on platelet aggregation induced by other physiological agonists or by high shear stress, or on thrombin generation. Pretreatment of blood from HIV-infected patients with abacavir produced similar results. Our results suggest that abacavir does not significantly influence platelet activation in vitro when incubated with platelets from healthy donors or from HIV-infected patients. It is, however, not excluded that a synergistic effect with other drugs could promote platelet activation and thereby play a role in the pathogenesis of myocardial infarction. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  19. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    NASA Astrophysics Data System (ADS)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  20. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less

  1. Hypercoagulability after energy drink consumption.

    PubMed

    Pommerening, Matthew J; Cardenas, Jessica C; Radwan, Zayde A; Wade, Charles E; Holcomb, John B; Cotton, Bryan A

    2015-12-01

    Energy drink consumption in the United States has more than doubled over the last decade and has been implicated in cardiac arrhythmias, myocardial infarction, and even sudden cardiac death. We hypothesized that energy drink consumption may increase the risk of adverse cardiovascular events by increasing platelet aggregation, thereby resulting in a relatively hypercoagulable state and increased risk of thrombosis. Thirty-two healthy volunteers aged 18-40 y were given 16 oz of bottled water or a standardized, sugar-free energy drink on two separate occasions, 1-wk apart. Beverages were consumed after an overnight fast over a 30-min period. Coagulation parameters and platelet function were measured before and 60 min after consumption using thrombelastography and impedance aggregometry. No statistically significant differences in coagulation were detected using kaolin or rapid thrombelastography. In addition, no differences in platelet aggregation were detected using ristocetin, collagen, thrombin receptor-activating peptide, or adenosine diphosphate-induced multiple impedance aggregometry. However, compared to water controls, energy drink consumption resulted in a significant increase in platelet aggregation via arachidonic acid-induced activation (area under the aggregation curve, 72.4 U versus 66.3 U; P = 0.018). Energy drinks are associated with increased platelet activity via arachidonic acid-induced platelet aggregation within 1 h of consumption. Although larger clinical studies are needed to further address the safety and health concerns of these drinks, the increased platelet response may provide a mechanism by which energy drinks increase the risk of adverse cardiovascular events. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function.

    PubMed

    Murphy, Karen J; Chronopoulos, Andriana K; Singh, Indu; Francis, Maureen A; Moriarty, Helen; Pike, Marilyn J; Turner, Alan H; Mann, Neil J; Sinclair, Andrew J

    2003-06-01

    Flavonoids may be partly responsible for some health benefits, including antiinflammatory action and a decreased tendency for the blood to clot. An acute dose of flavanols and oligomeric procyanidins from cocoa powder inhibits platelet activation and function over 6 h in humans. This study sought to evaluate whether 28 d of supplementation with cocoa flavanols and related procyanidin oligomers would modulate human platelet reactivity and primary hemostasis and reduce oxidative markers in vivo. Thirty-two healthy subjects were assigned to consume active (234 mg cocoa flavanols and procyanidins/d) or placebo (< or = 6 mg cocoa flavanols and procyanidins/d) tablets in a blinded parallel-designed study. Platelet function was determined by measuring platelet aggregation, ATP release, and expression of activation-dependent platelet antigens by using flow cytometry. Plasma was analyzed for oxidation markers and antioxidant status. Plasma concentrations of epicatechin and catechin in the active group increased by 81% and 28%, respectively, during the intervention period. The active group had significantly lower P selectin expression and significantly lower ADP-induced aggregation and collagen-induced aggregation than did the placebo group. Plasma ascorbic acid concentrations were significantly higher in the active than in the placebo group (P < 0.05), whereas plasma oxidation markers and antioxidant status did not change in either group. Cocoa flavanol and procyanidin supplementation for 28 d significantly increased plasma epicatechin and catechin concentrations and significantly decreased platelet function. These data support the results of acute studies that used higher doses of cocoa flavanols and procyanidins.

  3. Thrombopoietin contributes to enhanced platelet activation in cigarette smokers.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Goffi, Alberto; Poletto, Cesare; Locatelli, Stefania; Spatola, Tiziana; Cuccurullo, Alessandra; Montrucchio, Giuseppe

    2010-05-01

    Thrombopoietin (TPO) is a humoral growth factor that primes platelet activation in response to several agonists. We recently showed that TPO enhances platelet activation in unstable angina and sepsis. Aim of this study was to investigate the role of TPO in platelet function abnormalities described in cigarette smokers. In a case-control study we enrolled 20 healthy cigarette smokers and 20 nonsmokers, and measured TPO and C-reactive protein (CRP), as well as platelet-leukocyte binding and P-selectin expression. In vitro we evaluated the priming activity of smoker or control plasma on platelet activation, and the role of TPO in this effect. We then studied the effects of acute smoking and smoking cessation on TPO levels and platelet activation indices. Chronic cigarette smokers had higher circulating TPO levels than nonsmoking controls, as well as increased platelet-leukocyte binding, P-selectin expression, and CRP levels. Serum cotinine concentrations correlated with TPO concentrations, platelet-monocyte aggregates and P-selectin expression. In addition, TPO levels significantly correlated with ex vivo platelet-monocyte aggregation and P-selectin expression. In vitro, the plasma from cigarette smokers, but not from nonsmoking controls, primed platelet-monocyte binding, which was reduced when an inhibitor of TPO was used. We also found that acute smoking slightly increased TPO levels, but did not affect platelet-leukocyte binding, whereas smoking cessation induced a significant decrease in both circulating TPO and platelet-leukocyte aggregation. Elevated TPO contributes to enhance platelet activation and platelet-monocyte cross-talk in cigarette smokers. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Synthetic analogues of flavonoids with improved activity against platelet activation and aggregation as novel prototypes of food supplements.

    PubMed

    Del Turco, Serena; Sartini, Stefania; Cigni, Giulia; Sentieri, Cassandra; Sbrana, Silverio; Battaglia, Debora; Papa, Angela; Da Settimo, Federico; La Motta, Concettina; Basta, Giuseppina

    2015-05-15

    We investigated the ability of quercetin and apigenin to modulate platelet activation and aggregation, and compared the observed efficacy with that displayed by their synthetic analogues 2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-ones, 1-4, and 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-ones, 5-7. Platelet aggregation was explored through a spectrophotometric assay on platelet-rich plasma (PRP) treated with the thromboxane A2 mimetic U46619, collagen and thrombin in presence/absence of various bioisosteres of flavonoids (12.5-25-50-100 μM). The platelet density, (mean platelet component, MPC), was measured by the Advia 120 Hematology System as a marker surrogate of platelet activation. The induced P-selectin expression, which reflects platelet degranulation/activation, was quantified by flow cytometry on PRP. Our synthetic compounds modulated significantly both platelet activation and aggregation, thus turning out to be more effective than the analogues quercetin and apigenin when tested at a concentration fully consistent with their use in vivo. Accordingly, they might be used as food supplements to increase the efficacy of natural flavonoids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis.

    PubMed

    Kleinschnitz, Christoph; Braeuninger, Stefan; Pham, Mirko; Austinat, Madeleine; Nölte, Ingo; Renné, Thomas; Nieswandt, Bernhard; Bendszus, Martin; Stoll, Guido

    2008-04-01

    Models of photochemically-induced thrombosis are widely used in cerebrovascular research. Photothrombotic brain infarctions can be induced by systemic application of photosensitizing dyes followed by focal illumination of the cerebral cortex. Although the ensuing activation of platelets is well established, their contribution for thrombosis and tissue damage has not formally been proved. Infarction to the cerebral cortex was induced in mice by Rose Bengal and a cold light source. To assess the functional role of platelets, animals were platelet-depleted by anti-GPIbalpha antibodies or treated with GPIIb/IIIa-blocking F(ab)(2) fragments. The significance of the plasmatic coagulation cascade was determined by using blood coagulation factor XII (FXII)-deficient mice or heparin. Infarct development and infarct volumes were determined by serial MRI and conventional and electron microscopy. There was no difference in development and final size of photothrombotic infarctions in mice with impaired platelet function. Moreover, deficiency of FXII, which initiates the intrinsic pathway of coagulation and is essential for thrombus formation, or blockade of FXa, the key protease during the waterfall cascade of plasmatic coagulation, by heparin likewise did not affect lesion development. Our data demonstrate that platelet activation, factor XII-driven thrombus formation, and plasmatic coagulation pathways downstream of FX are not a prerequisite for ensuing tissue damage in models of photothrombotic vessel injury indicating that other pathomechanisms are involved. We suggest that this widely used model does not depend on platelet- or plasmatic coagulation-derived thrombosis.

  6. Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet pro-inflammatory and oxidation states.

    PubMed

    Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat

    2017-08-01

    Upon platelet stimulation with agonists, reactive oxygen species (ROS) generation enhances platelet activation and granule release. Whether ROS generation during platelet storage could be directly correlated with the expression of proinflammatory molecules and granule release has been investigated in this study. PRP-platelet concentrates were subjected to flowcytometry analysis to assess the expression of platelet activation marker, P-selectin and CD40L during storage. Intracellular ROS generation was also detected in platelet by flowcytometry using dihydrorhodamine (DHR) 123. Through the dual staining, ROS production was analyzed in either P-selectin positive or negative populations. ROS formation in platelet population was significantly increased by either TRAP (a potent agonist that induces granule release) or PMA (a classic inducer of ROS generation), while the effects of each agonists on P-selectin expression and ROS generation in platelets were comparable. Platelet storage was also associated with the increasing levels of ROS (day 0 vs. day 5; p<0.001) while this increasing pattern was directly correlated with the either expressed P-selectin or CD40L. In addition, in 5 day-stored platelets, samples with ROS levels above 40% showed significantly higher levels of P-selectin and CD40L expression. P-selectin negative population of platelet did not show significant amount of ROS. Our data demonstrated decreased levels of important platelet pro-inflammatory molecules in stored platelets with lower levels of intraplatelet ROS. However, whether quenching of ROS generation during platelet storage can attenuate adverse transfusion reactions raised by platelet pro-inflammatory status is required to be further studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Novel Role of Eruca sativa Mill. (Rocket) Extract: Antiplatelet (NF-κB Inhibition) and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Alarcón, Marcelo; Fuentes, Manuel; Carrasco, Gilda; Palomo, Iván

    2014-01-01

    Background: Epidemiological studies have shown the prevention of cardiovascular diseases through the regular consumption of vegetables. Eruca sativa Mill., commonly known as rocket, is a leafy vegetable that has anti-inflammatory activity. However, its antiplatelet and antithrombotic activities have not been described. Methods: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL), was evaluated on human platelets: (i) P-selectin expression by flow cytometry; (ii) platelet aggregation induced by ADP, collagen and arachidonic acid; (iii) IL-1β, TGF-β1, CCL5 and thromboxane B2 release; and (iv) activation of NF-κB and PKA by western blot. Furthermore, (v) antithrombotic activity (200 mg/kg) and (vi) bleeding time in murine models were evaluated. Results: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL) inhibited P-selectin expression and platelet aggregation induced by ADP. The release of platelet inflammatory mediators (IL-1β, TGF-β1, CCL5 and thromboxane B2) induced by ADP was inhibited by Eruca sativa Mill. aqueous extract. Furthermore, Eruca sativa Mill. aqueous extract inhibited NF-κB activation. Finally, in murine models, Eruca sativa Mill. aqueous extract showed significant antithrombotic activity and a slight effect on bleeding time. Conclusion: Eruca sativa Mill. presents antiplatelet and antithrombotic activity. PMID:25514563

  8. Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats.

    PubMed

    Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina

    2016-07-01

    Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Shiga Toxin 2 and Lipopolysaccharide Induce Human Microvascular Endothelial Cells To Release Chemokines and Factors That Stimulate Platelet Function

    PubMed Central

    Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.

    2005-01-01

    Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328

  10. Microparticles from splenectomized β-thalassemia/HbE patients play roles on procoagulant activities with thrombotic potential.

    PubMed

    Klaihmon, Phatchanat; Phongpao, Kunwadee; Kheansaard, Wasinee; Noulsri, Egarit; Khuhapinant, Archrob; Fucharoen, Suthat; Morales, Noppawan Phumala; Svasti, Saovaros; Pattanapanyasat, Kovit; Chaichompoo, Pornthip

    2017-02-01

    Thromboembolic events including cerebral thrombosis, deep vein thrombosis, and pulmonary embolism are major complications in β-thalassemia. Damaged red blood cells and chronic platelet activation in splenectomized β-thalassemia/HbE patients were associated with increased microparticles (MPs) releases into blood circulation. MPs are small membrane vesicles, which play important roles on coagulation. However, the role of MP in thalassemia is poorly understood. In this study, the effects of splenectomized-MPs on platelet activation and aggregation were investigated. The results showed that isolated MPs from fresh platelet-free plasma of patients and normal subjects directly induce platelet activation, platelet aggregation, and platelet-neutrophil aggregation in a dose-dependent manner. Interestingly, MPs obtained from splenectomized patients are more efficient in induction of platelet activation (P-selectin + ) when compared to MPs from normal subjects (P < 0.05), tenfold lower than pathophysiological level, at 1:0.1 platelet MP ratio. Co-incubation of splenectomized-MPs with either normal-, non-splenectomized- or splenectomized-platelets at 1:10 platelet MP ratio increased platelet activation up to 5.1 ± 2.2, 5.6 ± 3.7, and 9.5 ± 3.0%, respectively, when normalized with individual baseline. These findings suggest that splenectomized patients were proned to be activated by MPs, and splenectomized-MPs could play an important role on chronic platelet activation and aggregation, leading to thrombus formation in β-thalassemia/HbE patients.

  11. The antiplatelet activity of magnolol is mediated by PPAR-β/γ.

    PubMed

    Shih, Ching-Yu; Chou, Tz-Chong

    2012-09-15

    Activation of peroxisome proliferator-activated receptor (PPAR) isoforms (α, β/δ, and γ) is known to inhibit platelet aggregation. In the present study, we examined whether PPARs-mediated pathways contribute to the antiplatelet activity of magnolol, a compound purified from Magnolia officinalis. Magnolol (20-60 μM) dose-dependently enhanced the activity and intracellular level of PPAR-β/γ in platelets. In the presence of selective PPAR-β antagonist (GSK0660) or PPAR-γ antagonist (GW9662), the inhibition of magnolol on collagen-induced platelet aggregation and intracellular Ca(2+) mobilization was significantly reversed. Moreover, magnolol-mediated up-regulation of NO/cyclic GMP/PKG pathway and Akt phosphorylation leading to increase of eNOS activity were markedly abolished by blocking PPAR-β/γ activity. Additionally, magnolol significantly inhibited collagen-induced PKCα activation through a PPAR-β/γ and PKCα interaction manner. The arachidonic acid (AA) or collagen-induced thromboxane B(2) formation and elevation of COX-1 activity caused by AA were also markedly attenuated by magnolol. However, these above effects of magnolol on platelet responses were strongly reduced by simultaneous addition of GSK0660 or GW9662, suggesting that PPAR-β/γ-mediated processes may account for magnolol-regulated antiplatelet mechanisms. Similarly, administration of PPAR-β/γ antagonists remarkably abolished the actions of magnolol in preventing platelet plug formation and prolonging bleeding time in mice. Taken together, we demonstrate for the first time that the antiplatelet and anti-thrombotic activities of magnolol are modulated by up-regulation of PPAR-β/γ-dependent pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Ristocetin induces phosphorylated-HSP27 (HSPB1) release from the platelets of type 2 DM patients: Anti-platelet agent-effect on the release.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Onuma, Takashi; Enomoto, Yukiko; Doi, Tomoaki; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2018-04-01

    It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.

  13. Morusinol extracted from Morus alba inhibits arterial thrombosis and modulates platelet activation for the treatment of cardiovascular disease.

    PubMed

    Lee, Jung-Jin; Yang, Hyun; Yoo, Yeong-Min; Hong, Seong Su; Lee, Dongho; Lee, Hyun-Jung; Lee, Hak-Ju; Myung, Chang-Seon; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-01-01

    Morus alba (white mulberry) has been used in traditional Chinese medicine as an anti-headache, diuretic, expectorant, and anti-diabetic agent. In previous studies, extracts of Morus alba demonstrated favorable biological properties, such as antioxidant activity, suppression of lipoxygenase (LOX)-1, cytotoxicity against cancer cells, and inhibition of the invasion and migration of cancer cells. This study further evaluated the effects of morusinol, a flavonoid derived from Morus alba root bark, on platelet aggregation and thromboxane B(2) (TXB(2) formation in vitro and thrombus formation in vivo. The antiplatelet potential of morusinol was measured using in vitro rabbit platelet aggregation and TXB(2) formation assays. Arterial thrombus formation was investigated using an in vivo ferric chloride (FeCl(3)-induced thrombosis model. Morusinol significantly inhibited collagen- and arachidonic acid-induced platelet aggregation and TXB(2) formation in cultured platelets in a concentration-dependent manner. Thrombus formation was reduced by 32.1, 42.0, and 99.0% for collagen-induced TXB(2) formation, and 8.0, 24.1, and 29.2% for arachadonic acid-induced TXB(2) formation, with 5, 10, and 30 µg/mL morusinol, respectively. Moreover, oral morusinol (20 mg/kg) or aspirin (20 mg/kg) for three days significantly increased the time to occlusion in vivo by 20.3±5.0 or 6.8±2.9 min, respectively, compared with the control (1% CMC, carboxymethyl cellulose). Taken together, these results indicate that morusinol may significantly inhibit arterial thrombosis in vivo due to antiplatelet activity. Thus, morusinol may exert beneficial effects on transient ischemic attacks or stroke via the modulation of platelet activation.

  14. Hydroxysafflor yellow A of Carthamus tinctorius attenuates lung injury of aged rats exposed to gasoline engine exhaust by down-regulating platelet activation.

    PubMed

    Wang, Chaoyun; Wang, Chunhua; Ma, Chunlei; Huang, Qingxian; Sun, Hongliu; Zhang, Xiaomin; Bai, Xianyong

    2014-02-15

    Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    PubMed

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  17. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.

  18. Inhibitory activity of aspirin on von Willebrand factor-induced platelet aggregation.

    PubMed

    Homoncik, M; Jilma, B; Eichelberger, B; Panzer, S

    2000-09-01

    The effect of aspirin (ASA) on vWF induced platelet - platelet interaction is unknown. We therefore tested the response of platelets to von Willebrand factor (vWF) coated beads induced platelet aggregation before and after i.v. and oral ASA. 1000 mg ASA was infused to 10 healthy individuals and after a wash-out period 7 volunteers received 100 mg ASA orally over a period of 11 days. Prior to ASA and in regular intervals thereafter we tested the reactivity to vWF-coated beads to assess platelet adhesion/aggregation and the fade-out time of ASA effects on platelets. Considerable interindividual variability in response to vWF-coated beads was observed, both before ASA and after treatment with ASA. The maximal response to vWF-coated beads (Tmax), the time lag, and the slope of the curve were significantly affected by i.v. ASA, whereas 100 mg of ASA had only inconstant effect on Tmax and slope. The absolute reduction of Tmax after ASA depended on the pre-ASA level, while the percentage of the reduction was similar in all individuals. Thus, platelet aggregation induced by vWF-coated beads is impaired by ASA. Furthermore, our data indicate a large interindividual variability of the response to ASA shortly after treatment induction, which becomes more constant after prolonged treatment.

  19. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap.

    PubMed

    Bazou, D; Santos-Martinez, M J; Medina, C; Radomski, M W

    2011-04-01

    Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster-platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate-cancer cell clusters may be an important strategy to control metastasis. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap

    PubMed Central

    Bazou, D; Santos-Martinez, MJ; Medina, C; Radomski, MW

    2011-01-01

    BACKGROUND AND PURPOSE Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. EXPERIMENTAL APPROACH Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster–platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. KEY RESULTS We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. CONCLUSION AND IMPLICATIONS Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate–cancer cell clusters may be an important strategy to control metastasis. PMID:21182493

  1. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  2. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Pharmacological studies on proglumetacin maleate, a new non-steroidal anti-inflammatory drug (4). Mode of action on anti-inflammatory activity.

    PubMed

    Ono, N; Yamasaki, Y; Yamamoto, N; Sunami, A; Miyake, H

    1986-11-01

    The possible mechanism of the anti-inflammatory activity of proglumetacin maleate (PGM), a new indomethacin (IND) derivative interacting with arachidonic acid (AA) metabolism, was investigated to elucidate the contributions of PGM itself and its two major metabolites, desproglumideproglumetacin maleate (DPP) and IND. PGM caused much less inhibition of PGE2 formation by sheep seminal vesicle microsomes (IC50 = 310 microM) and TXB2 formation by a washed rabbit platelet suspension (IC50 = 6.3 microM) than IND. DPP also caused less inhibition of cyclooxygenase than IND. Moreover, PGM had less effect on sodium arachidonate (SAA)-induced rat platelet aggregation ex vivo and AA-induced sudden death in rabbits than IND. These results show that PGM has anti-inflammatory activity after its conversion to the active metabolite IND. However, the inhibitory effects of PGM and DPP were as strong as that of IND on SAA- or collagen-induced rabbit platelet aggregation in vitro. These activities are considered to be associated with platelet membrane interaction. Moreover, unlike IND, PGM (IC50 = 1.5 microM) and DPP (IC50 = 16.3 microM) strongly inhibited 5-HETE formation by the cytosol of guinea pig polymorphonuclear leukocytes. This unique activity of PGM on 5-lipoxygenase may contribute to its anti-inflammatory activity.

  4. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Ok-Nam; Lim, Kyung-Min; AMOREPACIFIC CO/R and D Center, Gyeonggi-do 446-729

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resultedmore » in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson Holm, Ann-Charlotte B., E-mail: ann-charlotte.svensson@liu.se; Experimental Pathology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping; Bengtsson, Torbjoern

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blockingmore » antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.« less

  6. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  7. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliyu, S.U.; Upahi, L.

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effectsmore » described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.« less

  8. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    PubMed

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Human SolCD39 Inhibits Injury-induced Development of Neointimal Hyperplasia

    PubMed Central

    Drosopoulos, Joan H. F.; Kraemer, Rosemary; Shen, Hao; Upmacis, Rita K.; Marcus, Aaron J.; Musi, Elgilda

    2010-01-01

    SUMMARY Blood platelets provide the initial response to vascular endothelial injury, becoming activated as they adhere to the injured site. Activated platelets recruit leukocytes, and initiate proliferation and migration of vascular smooth muscle cells (SMC) within the injured vessel wall, leading to development of neointimal hyperplasia. Endothelial CD39/NTPDase1 and recombinant solCD39 rapidly metabolize nucleotides, including stimulatory ADP released from activated platelets, thereby suppressing additional platelet reactivity. Using a murine model of vascular endothelial injury, we investigated whether circulating human solCD39 could reduce platelet activation and accumulation, thus abating leukocyte infiltration and neointimal formation following vascular damage. Intraperitoneally-administered solCD39 ADPase activity in plasma peaked 1 hr post-injection, with an elimination half-life of 43 hr. Accordingly, mice were administered solCD39 or saline 1 hr prior to vessel injury, then either sacrificed 24 hr post-injury or treated with solCD39 or saline (3X weekly) for an additional 18 days. 24 hr post-injury, solCD39-treated mice displayed a reduction in platelet activation and recruitment, P-selectin expression, and leukocyte accumulation in the arterial lumen. Furthermore, repeated administration of solCD39 modulated the late stage of vascular injury by suppressing leukocyte deposition, macrophage infiltration and SMC proliferation/migration, resulting in abrogation of neointimal thickening. In contrast, injured femoral arteries of saline-injected mice exhibited massive platelet thrombus formation, marked P-selectin expression, and leukocyte infiltration. Pronounced neointimal growth with macrophage and SMC accretion was also observed (intimal-to-medial area ratio 1.56±0.34 at 19 days). Thus, systemic administration of solCD39 profoundly affects injury-induced cellular responses, minimizing platelet deposition and leukocyte recruitment, and suppressing neointimal hyperplasia. PMID:20024507

  10. Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin.

    PubMed

    Sivaraman, Balakrishnan; Latour, Robert A

    2011-08-01

    Platelet adhesion to adsorbed plasma proteins, such as fibrinogen (Fg), has been conventionally thought to be mediated by the GPIIb/IIIa receptor binding to Arg-Gly-Asp (RGD)-like motifs in the adsorbed protein. In previous studies, we showed that platelet adhesion response to adsorbed Fg and Alb was strongly influenced by the degree of adsorption-induced protein unfolding and that platelet adhesion was only partially blocked by soluble RGD, with RGD-blocked platelets adhering without activation. Based on these results, we hypothesized that in addition to the RGD-specific GPIIb/IIIa receptor, which mediates both adhesion and activation, a non-RGD-specific receptor set likely also plays a role in platelet adhesion (but not activation) to both Fg and albumin (Alb). To identify and elucidate the role of these receptors, in addition to GPIIb/IIIa, we also examined the GPIb-IX-V receptor complex, which has been shown to mediate platelet adhesion (but not activation) in studies by other groups. The platelet suspension was pretreated with either a GPIIb/IIIa-antagonist drug Aggrastat(®) or monoclonal antibodies 6B4 or 24G10 against GPIb-IX-V prior to adhesion on Fg- and Alb-coated OH- and CH(3)-functionalized alkanethiol self-assembled monolayer surfaces. The results revealed that GPIIb/IIIa is the primary receptor set involved in platelet adhesion to adsorbed Fg and Alb irrespective of their degree of adsorption-induced unfolding, while the GPIb-IX-V receptor complex plays an insignificant role. Overall, these studies provide novel insights into the molecular-level mechanisms mediating platelet interactions with adsorbed plasma proteins, thereby assisting the biomaterials field develop potent strategies for inhibiting platelet-protein interactions in the design of more hemocompatible cardiovascular biomaterials and effective anti-thrombotic therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aherne, T.; Price, D.C.; Yee, E.S.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue bloodmore » content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.« less

  12. Intracellular activation of the fibrinolytic cascade in the Quebec Platelet Disorder.

    PubMed

    Sheth, Prameet M; Kahr, Walter H A; Haq, M Anwar; Veljkovic, Dragoslava Kika; Rivard, Georges E; Hayward, Catherine P M

    2003-08-01

    The Quebec Platelet Disorder (QPD) is an unusual bleeding disorder associated with increased platelet stores of urokinase-type plasminogen activator (u-PA) and proteolysis of platelet alpha-granule proteins. The increased u-PA and proteolyzed plasminogen in QPD platelets led us to investigate possible contributions of intracellular plasmin generation to QPD alpha-granule proteolysis. ELISA indicated there were normal amounts of plasminogen and plasmin-alpha(2)-antiplasmin (PAP) complexes in QPD plasmas. Like normal platelets, QPD platelets contained only a small proportion of the blood plasminogen, however, they contained an increased amount of PAP complexes compared to normal platelets (P < 0.005). The quantities of plasminogen stored in platelets were important to induce QPD-like proteolysis of normal alpha-granule proteins by two chain u-PA (tcu-PA) in vitro. Moreover, adding supplemental plasminogen to QPD, but not to control, platelet lysates, triggered further alpha-granule protein proteolysis to forms that comigrated with plasmin degraded proteins. These data suggest the generation of increased but limiting amounts of plasmin within platelets is involved in producing the unique phenotypic changes to alpha-granule proteins in QPD platelets. The QPD is the only known bleeding disorder associated with chronic, intracellular activation of the fibrinolytic cascade.

  13. A time course study on prothrombotic parameters and their modulation by anti-platelet drugs in hyperlipidemic hamsters.

    PubMed

    Singh, Vishal; Jain, Manish; Prakash, Prem; Misra, Ankita; Khanna, Vivek; Tiwari, Rajiv Lochan; Keshari, Ravi Shankar; Singh, Shivendra; Dikshit, Madhu; Barthwal, Manoj Kumar

    2011-06-01

    The present study was undertaken to assess the chronology of major pathological events associated with high cholesterol (HC) diet and their modulation by anti-platelet drugs. Male Golden Syrian hamsters were fed HC diet up to 90 days. Plasma lipid, glucose and coagulation parameters (commercial kits), platelet activation (whole blood aggregation and static adhesion), endothelial dysfunction (aortic ring vasoreactivity), splenocyte TNF-α, IFN-γ and iNOS mRNA transcripts (RT-PCR), and ferric chloride (time to occlusion) induced thrombosis were monitored at 15, 30, 60, and 90 days after HC feeding and compared with normolipidemic hamsters. A significant increase in plasma lipid levels was observed at 15 days of HC feeding, but other parameters remain unaltered. Enhanced ADP, collagen, and thrombin-induced platelet aggregation, splenocyte TNF-α expression along with endothelial dysfunction were observed from 30 to 90 days of HC feeding. Platelet adhesion on collagen-/fibrinogen-coated surface and IFN-γ expression were augmented only after 60 days, while enhanced iNOS expression, reduction in thrombin time, and potentiation of ferric chloride-induced thrombosis was observed only at 90 days of HC feeding. Thus, pathological changes induced by HC diet depend on the duration and extent of hyperlipidemia. Moreover, hamsters treated with anti-platelet drugs aspirin (5 mg/kg) or clopidogrel (10 mg/kg) along with HC feeding exhibited reduction in platelet activation as well as subsequent changes observed in the abovementioned parameters following HC feeding. Since reduction in TNF-α was associated with reversion in endothelial dysfunction and prothrombotic state, the role of platelets is implicated in the pathological changes associated with HC feeding.

  14. Neuroprotection by the Traditional Chinese Medicine, Tao-Hong-Si-Wu-Tang, against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia in Rats

    PubMed Central

    Wu, Chih-Jen; Chen, Jui-Tai; Yen, Ting-Lin; Jayakumar, Thanasekaran; Chou, Duen-Suey; Hsiao, George; Sheu, Joen-Rong

    2011-01-01

    Tao-Hong-Si-Wu-Tang (THSWT) is a famous traditional Chinese medicine (TMC). In the present study, oral administration of THSWT (0.7 and 1.4 g kg−1day−1) for 14 days before MCAO dose-dependently attenuated focal cerebral ischemia in rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and active caspase-3 expressions in ischemic regions. These expressions were obviously inhibited by 0.7 g kg−1day−1 THSWT treatment. In addition, THSWT inhibited platelet aggregation stimulated by collagen in washed platelets. In an in vivo study, THSWT (16 g kg−1) significantly prolonged platelet plug formation in mice. However, THSWT (20 and 40 μg mL−1) did not significantly reduce the electron spin resonance (ESR) signal intensity of hydroxyl radical (OH•) formation. In conclusion, the most important findings of this study demonstrate for the first time that THSWT possesses potent neuroprotective activity against MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and platelet activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. PMID:21076527

  15. Adrenaline potentiates PI 3-kinase in platelets stimulated with thrombin and SFRLLN: role of secreted ADP.

    PubMed

    Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H

    2000-11-17

    Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.

  16. Clopidogrel (Plavix) and cardiac surgical patients: implications for platelet function monitoring and postoperative bleeding.

    PubMed

    Tanaka, Kenichi A; Szlam, Fania; Kelly, Andrew B; Vega, J David; Levy, Jerrold H

    2004-08-01

    The use of clopidogrel (Plavix), an inhibitor of adenosine diphosphate (ADP)-induced platelet aggregation, has been proven to reduce ischemic events in cardiovascular patients, but little information is available for optimal monitoring of platelet function in patients receiving the drug preoperatively. In the first part of the study we compared different testing modalities (thrombelastography (TEG), platelet aggregometry, and whole blood aggregation) to assess platelet ADP receptor inhibition. Because clopidogrel is a pro-drug, we used an in vitro model of ADP inhibition with 5'-p-fluorosulfonylbenzoyladenosine (FSBA). FSBA at final concentration of 80 microM completely inhibited platelet aggregation but had no effect on TEG maximum amplitude (MA). In the second part of the study, antiplatelet effects of clopidogrel were clinically assessed and correlated to postoperative bleeding in 18 coronary bypass surgery patients. Preoperative TEG results were normal or hypercoagulable in clopidogrel-treated patients, although platelet aggregation responses to ADP were inhibited. Clopidogrel-treated patients who underwent cardiopulmonary bypass had a high incidence (84.6%) of platelet transfusion therapy due to increased chest tube drainage. In conclusion, we have demonstrated that normal preoperative TEG-MA does not preclude clopidogrel-induced ADP receptor blockade; however, TEG can be a reliable monitor for CPB-induced platelet dysfunction related to GPIIb/IIIa. For monitoring clopidogrel, it is necessary to perform more specific platelet function tests (aggregometry or platelet count ratio) using ADP as an activator.

  17. The in vitro and in vivo pharmacological profiles of a platelet glycoprotein IIb/IIIa antagonist, NSL-9403.

    PubMed

    Katada, J; Takiguchi, Y; Muramatsu, M; Fujiyoshi, T; Uno, I

    1997-10-01

    The in vitro and in vivo pharmacological profiles of NSL-9403 [orotyl-serylarginyl-glycyl-asparatyl-tryptophane], a platelet glycoprotein IIb/IIIa (GpIIb/IIIa) antagonist, has been studied. NSL-9403 inhibited platelet aggregation of human platelet-rich plasma (PRP) with IC50 values of 4.3 +/- 0.4 microM (collagen) and 1.8 +/- 0.3 microM (ADP), which was about 100 times more potent than RGDS. It also inhibited the binding of fibrinogen to activated platelets. Ex vivo collagen and ADP-induced platelet aggregation in a guinea pig was inhibited after a bolus intravenous administration of NSL-9403 at 1.25 mg/kg and above. NSL-9403 had an anti-thrombotic effect in in vivo thrombosis models. In a platelet agonist-induced pulmonary embolic sudden death model, where a bolus injection of collagen and epinephrine induced sudden death in mice, intravenous administration of NSL-9403 before an injection of collagen and epinephrine inhibited this platelet-agonist induced death in a dose dependent manner. In an arterio-venous shunt, infusion of NSL-9403 at 3 mg/kg/hour prevented an increase in circulation pressure due to thrombus formation in the shunt circuit and platelet loss. Infusion of NSL-9403 at 1 to 10 mg/kg/hour produced a complete inhibition of platelet-dependent arterial thrombosis in a dog femoral arterial thrombosis model. Thus NSL-9403 is a potent inhibitor or platelet aggregation in vitro and a potent anti-thrombotic agent in vivo with a relatively short duration of action.

  18. Platelet-rich plasma and platelet gel preparation using Plateltex.

    PubMed

    Mazzucco, L; Balbo, V; Cattana, E; Borzini, P

    2008-04-01

    The platelet gel is made by embedding concentrate platelets within a semisolid (gel) network of polymerized fibrin. It is believed that this blood component will be used more and more in the treatment of several clinical conditions and as an adjunctive material in tissue engineering. Several systems are available to produce platelet-rich plasma (PRP) for topical therapy. Recently, a new system became commercially available, Plateltex. Here we report the technical performance of this system in comparison with the performance of other commercially available systems: PRGF, PRP-Landesber, Curasan, PCCS, Harvest, Vivostat, Regen and Fibrinet. Both the PRP and the gel were prepared according to the manufacturer's directions. The blood samples of 20 donors were used. The yield, the efficiency, and the amount of platelet-derived growth factor AB (PDGF-AB), transforming growth factor beta, vascular endothelial growth factor and fibroblast growth factor were measured in the resulting PRP. The feature of the batroxobin-induced gelation was evaluated. The yield, the collection efficiency and the growth factor content of Plateltex were comparable to those of most of the other available systems. The gelation time was not dependent on the fibrinogen concentration; however, it was strongly influenced by the contact surface area of the container where the clotting reaction took place (P < 0.0001). Plateltex provided platelet recovery, collection efficiency and PDGF-AB availability close to those provided by other systems marketed with the same intended use. Batroxobin, the enzyme provided to induce gelation, acts differently from thrombin, which is used by most other systems. Platelets treated with thrombin become activated; they release their growth factors quickly. Furthermore, thrombin-platelet interaction is a physiological mechanism that hastens the clot-retraction rate. On the contrary, platelets treated with batroxobin do not become activated; they are passively entrapped within the fibrin network, and their growth factor release occurs slowly. In these conditions, the clot retraction takes longer to occur. According to these differences between thrombin and batroxobin, it is expected that batroxobin-induced PRP activation will tailor slow release of the platelet content, thus, providing longer in loco availability of trophic factors. In selected clinical conditions, this durable anabolic factor availability might be preferable to quick thrombin-induced growth factor release.

  19. Nonhuman primate model of polytraumatic hemorrhagic shock recapitulates early platelet dysfunction observed following severe injury in humans.

    PubMed

    Schaub, Leasha J; Moore, Hunter B; Cap, Andrew P; Glaser, Jacob J; Moore, Ernest E; Sheppard, Forest R

    2017-03-01

    Platelet dysfunction has been described as an early component of trauma-induced coagulopathy. The platelet component of trauma-induced coagulopathy remains to be fully elucidated and translatable animal models are required to facilitate mechanistic investigations. We sought to determine if the early platelet dysfunction described in trauma patients could be recapitulated in a nonhuman primate model of polytraumatic hemorrhagic shock. Twenty-four male rhesus macaques weighting 7 to 14 kg were subjected to 60 minutes (min) of severe pressure-targeted controlled hemorrhagic shock (HS) with and without other injuries. After 60 min, resuscitation with 0.9% NaCl and whole blood was initiated. Platelet counts and platelet aggregation assays were performed at baseline (BSLN), end of shock (EOS; T = 60 min), end of resuscitation (EOR; T = 180 min), and T = 360 min on overall cohort. Results are reported as mean ± standard deviation (SD) or median (interquartile range). Statistical analysis was conducted using Spearmen correlation, one-way analysis of variance, two-way repeated-measures analysis of variance, paired t-test or Wilcoxon nonparametric test, with p < 0.05 considered significant. Platelet count in all injury cohorts decreased over time, but no animals developed thrombocytopenia. Correlations were observed between platelet aggregation and platelet count for all agonists: adenosine diphosphate, thrombin recognition-activating peptide-6, collagen, and arachidonic acid. Overall, compared to BSLN, platelet aggregation decreased for all agonist at EOS, EOR, and T = 360 min. When normalized to platelet count, platelet aggregation in response to agonist thrombin recognition-activating peptide-6 demonstrated no change from BSLN at subsequent time points. Aggregation to adenosine diphosphate was significantly less at EOR but not EOS or T = 360 min compared to BSLN. Platelet aggregation to collagen and arachidonic acid was not significantly different at EOS compared to BSLN but was significantly less at EOR and T = 360 min. Nonhuman primates manifest early platelet dysfunction in response to polytraumatic hemorrhagic shock, consistent with that reported in severely injured human patients. Nonhuman primate models potentially are translationally valuable for understanding the mechanisms and pathophysiology of trauma-induced platelet dysfunction.

  20. Identification of Aspergillus fumigatus Surface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets.

    PubMed

    Rambach, Günter; Blum, Gerhard; Latgé, Jean-Paul; Fontaine, Thierry; Heinekamp, Thorsten; Hagleitner, Magdalena; Jeckström, Hanna; Weigel, Günter; Würtinger, Philipp; Pfaller, Kristian; Krappmann, Sven; Löffler, Jürgen; Lass-Flörl, Cornelia; Speth, Cornelia

    2015-10-01

    Platelets were recently identified as a part of innate immunity. They are activated by contact with Aspergillus fumigatus; putative consequences include antifungal defense but also thrombosis, excessive inflammation, and thrombocytopenia. We aimed to identify those fungal surface structures that mediate interaction with platelets. Human platelets were incubated with Aspergillus conidia and hyphae, isolated wall components, or fungal surface mutants. Interaction was visualized microscopically; activation was quantified by flow cytometry of specific markers. The capacity of A. fumigatus conidia to activate platelets is at least partly due to melanin, because this effect can be mimicked with "melanin ghosts"; a mutant lacking melanin showed reduced platelet stimulating potency. In contrast, conidial hydrophobin masks relevant structures, because an A. fumigatus mutant lacking the hydrophobin protein induced stronger platelet activation than wild-type conidia. A. fumigatus hyphae also contain surface structures that interact with platelets. Wall proteins, galactomannan, chitin, and β-glucan are not the relevant hyphal components; instead, the recently identified fungal polysaccharide galactosaminogalactan potently triggered platelet activation. Conidial melanin and hydrophobin as well as hyphal galactosaminogalactan represent important pathogenicity factors that modulate platelet activity and thus might influence immune responses, inflammation, and thrombosis in infected patients. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction

    PubMed Central

    Heitmeier, Stefan; Laux, Volker

    2015-01-01

    Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131

  2. Evaluating antithrombotic activity of HY023016 on rat hypercoagulable model.

    PubMed

    Chen, Qiu-Fang; Li, Yun-Zhan; Wang, Xin-Hui; Su, You-Rui; Cui, Shuang; Miao, Ming-Xing; Jiang, Zhen-Zhou; Jiang, Mei-Ling; Jiang, Ai-Dou; Chen, Xiang; Xu, Yun-Gen; Gong, Guo-Qing

    2016-06-15

    The generation of thrombus is not considered as an isolated progression without other pathologic processes, which may also enhance procoagulant state. The purpose of this study was to assess whether HY023016, a novel dabigatran prodrug and an oral direct thrombin inhibitor, or dabigatran etexilate, another thrombin inhibitor can improve the state of whole blood hypercoagulability in vitro/vivo. By using whole blood flow cytometry we explored the effects of HY023016 and dabigatran etexilate on thrombin and ADP-induced human platelet-leukocyte aggregation generated in vitro. With the method of continuous infusion of thrombin intravenous, we successfully established a rat hypercoagulable model and evaluated the effect of HY023016 or dabigatran etexilate in vivo. HY023016 was able to inhibit thrombin- or ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates in dose-dependent manner. Dabigatran etexilate was unable to affect ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates. Based on rat hypercoagulable model, dabigatran etexilate could reverse thrombin-induced circulatory system hypercoagulable state in a concentration-dependent manner. Dabigatran etexilate also inhibited electrical stimulation induced formation of arterial thrombus in rat under hypercoagulable state, and extracorporal circulation-induced formation of thrombus in dose-dependent manner. Compared with dabigatran etexilate, HY023016 showed nearly equal or even better antithrombotic activity, regardless of reversing the cycle of rat hypercoagulable state or inhibiting platelet-leukocyte aggregation. In surrmary, HY023016 could effectively improve hypercoagulable state of circulatory system. Copyright © 2016. Published by Elsevier B.V.

  3. Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation*

    PubMed Central

    Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A. H.; Stegner, David; van der Meijden, Paola E. J.; Kuijpers, Marijke J. E.; Varga-Szabo, David; Heemskerk, Johan W. M.; Nieswandt, Bernhard

    2010-01-01

    In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca2+ entry (SOCE) with Orai1 as principal Ca2+ entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca2+ entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1−/− and Orai1−/− platelets had greatly impaired glycoprotein (GP) VI-dependent Ca2+ signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2−/− platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca2+ signals of Stim1−/− and Orai1−/− platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1−/− and Orai1−/− platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca2+ entry, inhibited Ca2+ and procoagulant responses even in Stim1−/− and Orai1−/− platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca2+ entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca2+ entry and PS exposure, only one relying on STIM1-Orai1 interaction. PMID:20519511

  4. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  5. Quantitative Protein Sulfenic Acid Analysis Identifies Platelet Releasate-Induced Activation of Integrin β2 on Monocytes via NADPH Oxidase.

    PubMed

    Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen

    2016-12-02

    Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.

  6. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis.

    PubMed

    Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Norström, Eva; Braun, Oscar Ö; Mörgelin, Matthias; Thorlacius, Henrik

    2018-02-01

    Sepsis is associated with dysfunctional coagulation. Recent data suggest that platelets play a role in sepsis by promoting neutrophil accumulation. Herein, we show that cecal ligation and puncture (CLP) triggered systemic inflammation, which is characterized by formation of IL-6 and CXC chemokines as well as neutrophil accumulation in the lung. Platelet depletion decreased neutrophil accumulation, IL-6, and CXC chemokines formation in septic lungs. Depletion of platelets increased peak thrombin formation and total thrombin generation (TG) in plasma from septic animals. CLP elevated circulating levels of platelet-derived microparticles (PMPs). In vitro generated PMPs were a potent inducer of TG. Interestingly, in vitro wild-type recombinant annexin V abolished PMP-induced thrombin formation whereas a mutant annexin V protein, which does not bind to phosphatidylserine (PS), had no effect. Administration of wild-type, but not mutant annexin V, significantly inhibited thrombin formation in septic animals. Moreover, CLP-induced formation of thrombin-antithrombin complexes were reduced in platelet-depleted mice and in animals pretreated with annexin V. PMP-induced TG attenuated in FXII- and FVII-deficient plasma. These findings suggest that sepsis-induced TG is dependent on platelets. Moreover, PMPs formed in sepsis are a potent inducer of TG via PS exposure, and activation of both the intrinsic and extrinsic pathway of coagulation. In conclusion, these observations suggest that PMPs and PS play an important role in dysfunctional coagulation in abdominal sepsis. © 2017 Wiley Periodicals, Inc.

  7. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation.

    PubMed

    Meshkini, Azadeh; Tahmasbi, Masoumeh

    2017-06-01

    Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders. Copyright © 2017. Published by Elsevier B.V.

  8. HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms.

    PubMed

    Yang, Xinyu; Wang, Haichao; Zhang, Menmen; Liu, Jin; Lv, Ben; Chen, Fangping

    2015-08-06

    Thrombotic diseases are a group of prevalent and life-threatening diseases. Selective inhibition of pathological thrombosis holds the key to treat variety of thrombotic diseases. The pathological thrombosis can be induced by either tissue necrosis and deregulated inflammation. HMGB1, as an important proinflammatory cytokine and a late mediator, also involves on thrombosis disease. However, the underlying mechanisms are not fully understood. Immunofluorescence, ELISA assay, Platelet Aggregation, Thromboelastogram (TEG) analyzes. Flow cytometric analysis and Western blot analysis were used to investigated the role of HMGB1 in platelet aggregation and obtained following observations. By doing so, we obtained the following observations: i) Highly purified HMGB1 recombinant protein induces platelet aggregation and secretion in a dose-dependent manner in the presence of serum. ii) Low concentration of extracellular HMGB1 could synergistically promote subthreshold concentration of collagen or thrombin induced platelet aggregation. iii) Extracellular HMGB1 promoted platelet aggregation in a platelet-expressed GPIIb/IIIa-dependent manner. iv) We proposed that extracellular HMGB1 seems to promote the phosphorylation of GPIIb/IIIa and subsequent platelet aggregation via TLR4/NF-κB and cGMP pathway. In this study, we provide evidence for the hypothesis that HMGB1 interact with platelet might play an important role in the haemostasis and thrombotic diseases. Our research might be provide an interesting avenue for the treatment of thrombotic diseases in the future.

  9. Nanodiamonds activate blood platelets and induce thromboembolism.

    PubMed

    Kumari, Sharda; Singh, Manoj K; Singh, Sunil K; Grácio, José J A; Dash, Debabrata

    2014-03-01

    Nanodiamonds (NDs) have been evaluated for a wide range of biomedical applications. Thus, thorough investigation of the biocompatibility of NDs has become a research priority. Platelets are highly sensitive and are one of the most abundant cell types found in blood. They have a central role in hemostasis and arterial thrombosis. In this study, we aim to investigate the direct and acute effects of carboxylated NDs on platelet function. In this study, pro-coagulant parameters such as platelet aggregability, intracellular Ca(2+) flux, mitochondrial transmembrane potential (ΔΨm), generation of reactive oxygen species, surface exposure of phosphatidylserine, electron microscopy, cell viability assay and in vivo thromboembolism were analyzed in great detail. Carboxylated NDs evoked significant activation of human platelets. When administered intravenously in mice, NDs were found to induce widespread pulmonary thromboembolism, indicating the remarkable thrombogenic potential of this nanomaterial. Our findings raise concerns regarding the putative biomedical applications of NDs pertaining to diagnostics and therapeutics, and their toxicity and prothrombotic properties should be critically evaluated.

  10. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis.

    PubMed

    Tabor, Caroline M; Shaw, Catherine A; Robertson, Sarah; Miller, Mark R; Duffin, Rodger; Donaldson, Ken; Newby, David E; Hadoke, Patrick W F

    2016-02-09

    Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 μg/mL). Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.

  11. Inhibition of the plasma SCUBE1, a novel platelet adhesive protein, protects mice against thrombosis.

    PubMed

    Wu, Meng-Ying; Lin, Yuh-Charn; Liao, Wei-Ju; Tu, Cheng-Fen; Chen, Ming-Huei; Roffler, Steve R; Yang, Ruey-Bing

    2014-07-01

    Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1), a secreted and surface-exposed glycoprotein on activated platelets, promotes platelet-platelet interaction and supports platelet-matrix adhesion. Its plasma level is a biomarker of platelet activation in acute thrombotic diseases. However, the exact roles of plasma SCUBE1 in vivo remain undefined. We generated new mutant (Δ) mice lacking the soluble but retaining the membrane-bound form of SCUBE1. Plasma SCUBE1-depleted Δ/Δ mice showed normal hematologic and coagulant features and expression of major platelet receptors, but Δ/Δ platelet-rich plasma showed impaired platelet aggregation in response to ADP and collagen treatment. The addition of purified recombinant SCUBE1 protein restored the aggregation of platelets in Δ/Δ platelet-rich plasma and further enhanced platelet aggregation in +/+ platelet-rich plasma. Plasma deficiency of SCUBE1 diminished arterial thrombosis in mice and protected against lethal thromboembolism induced by collagen-epinephrine treatment. Last, antibodies directed against the epidermal growth factor-like repeats of SCUBE1, which are involved in trans-homophilic protein-protein interactions, protected mice against fatal thromboembolism without causing bleeding in vivo. We conclude that plasma SCUBE1 participates in platelet aggregation by bridging adjacent activated platelets in thrombosis. Blockade of soluble SCUBE1 might represent a novel antithrombotic strategy. © 2014 American Heart Association, Inc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sithu, Srinivas D.; Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202; Srivastava, Sanjay

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not causemore » pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.« less

  13. Smoking-induced alterations in platelet membrane fluidity and Na(+)/K(+)-ATPase activity in chronic cigarette smokers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Maturu, Paramahamsa; Varadacharyulu, Nallanchakravarthula

    2010-06-30

    Cigarette smoking is a recognized risk factor for cardiovascular diseases and has been implicated in the pathogenesis of atherosclerosis. Platelet adhesiveness and aggregation increases as a result of smoking. Cigarette smoking modifies haemostatic parameters via thrombosis with a consequently higher rate of cardiovascular events, but smoking-induced alterations of platelet membrane fluidity and other changes have not been studied. Thirty experimental and control subjects (mean age 35+/-8) were selected for the study. Experimental subjects had smoked 10+/-2 cigarettes per day for 7-10 years. The plasma lipid profile, platelet carbonyls, sulfhydryl groups, Na(+)/k(+)-ATPase activity, fluidity using a fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), total cholesterol and phospholipids as well individual phospholipids were determined. Increases in the platelet membrane cholesterol phospholipid (C/P) ratio, phosphotidylethanolamine, phosphotidylserine with decreased phosphotidylcholine, Na(+)/k(+)-ATPase activity, fluidity and no significant change in phosphotidylinositol and sphingomylein, as well as increases in plasma total cholesterol, LDL-cholesterol, protein carbonyls with decreased HDL-cholesterol and sulfhydryl groups were observed in cigarette smokers. Platelet membrane total phospholipids were positively correlated with plasma LDL-cholesterol (r=0.568) and VLDL-cholesterol (r=0.614) in cigarette smokers. Increased plasma LDL-cholesterol, VLDL-cholesterol and total cholesterol might have resulted in the increased C/P ratio and decreased platelet membrane fluidity of cigarette smokers.

  14. On the Use of the Platelet Activity State Assay for the In Vitro Quantification of Platelet Activation in Blood Recirculating Devices for Extracorporeal Circulation.

    PubMed

    Consolo, Filippo; Valerio, Lorenzo; Brizzola, Stefano; Rota, Paolo; Marazzato, Giulia; Vincoli, Valentina; Reggiani, Stefano; Redaelli, Alberto; Fiore, Gianfranco

    2016-10-01

    We designed an experimental setup to characterize the thrombogenic potential associated with blood recirculating devices (BRDs) used in extracorporeal circulation (ECC). Our methodology relies on in vitro flow loop platelet recirculation experiments combined with the modified-prothrombinase platelet activity state (PAS) assay to quantify the bulk thrombin production rate of circulated platelets, which correlates to the platelet activation (PA) level. The method was applied to a commercial neonatal hollow fiber membrane oxygenator. In analogous hemodynamic environment, we compared the PA level resulting from multiple passes of platelets within devices provided with phosphorylcholine (PC)-coated and noncoated (NC) fibers to account for flow-related mechanical factors (i.e., fluid-induced shear stress) together with surface contact activation phenomena. We report for the first time that PAS assay is not significantly sensitive to the effect of material coating under clinically pertinent flow conditions (500 mL/min), while providing straightforward information on shear-mediated PA dynamics in ECC devices. Being that the latter is intimately dependent on local flow dynamics, according to our results, the rate of thrombin production as measured by the PAS assay is a valuable biochemical marker of the selective contribution of PA in BRDs induced by device design features. Thus, we recommend the use of PAS assay as a means of evaluating the effect of modification of specific device geometrical features and/or different design solutions for developing ECC devices providing flow conditions with reduced thrombogenic impact. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Picomolar platelet-activating factor mobilizes Ca to change platelet shape without activating phospholipase C or protein kinase C; simultaneous fluorometric measurement of intracellular free Ca concentration and aggregation.

    PubMed

    James-Kracke, M R; Sexe, R B; Shukla, S D

    1994-11-01

    The purpose of this study was to investigate signal transduction mechanisms activated by low and high concentrations of platelet-activating factor (PAF) in rabbit platelets and to contrast the responses to those induced by thrombin. We measured changes in intracellular free calcium ([Ca++]i) with fura2, while monitoring light scatter simultaneously as a measure of shape change and aggregation in a dual-excitation dual-emission spectrofluorometer. An abrupt 20% fall in light scatter, coincident with the peak of the [Ca++]i, indicated shape change in Ca-containing or Ca-free medium and was blocked by BAPTA loading and 10 microM cytochalasin B. A secondary decline in light scatter, indicating aggregation, occurred only in Ca-containing medium and only under conditions favoring protein kinase C (PKC) activation. PAF at 10(-12) M did not increase 1,4,5-inositol triphosphate content, which suggested PKC would not be activated. However, PAF at 10(-12) rapidly increased [Ca++]i to 900 nM in 7 sec seemingly by Ca influx through receptor-operated channels inducing shape change. PAF at 10(-9) and 10(-8) M increased [Ca++]i to 2 microM in 12 sec and induced both shape change and aggregation. However, in platelets pretreated with 100 nM staurosporine to inhibit protein kinases, 10(-9) M PAF did not cause aggregation even though [Ca++]i still rose to 2 microM, which indicated that PKC plays a role in aggregation but not in Ca++ mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    PubMed Central

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  17. Anti-platelet effects of chalcones from Angelica keiskei Koidzumi (Ashitaba) in vivo.

    PubMed

    Ohkura, N; Ohnishi, K; Taniguchi, M; Nakayama, A; Usuba, Y; Fujita, M; Fujii, A; Ishibashi, K; Baba, K; Atsumi, G

    2016-11-02

    Angelica keiskei Koidzumi (Ashitaba) is a traditional folk medicine that is also regarded in Japan as a health food with potential antithrombotic properties. The ability of the major chalcones, xanthoangelol (XA) and 4-hydroxyderricin (4-HD) extracted from Ashitaba roots to inhibit platelet aggregation activity in vitro was recently determined. However, the anti-platelet activities of Ashitaba chalcones in vivo have remained unclear. The present study examines the anti-platelet effects of Ashitaba exudate and its constituent chalcones using mouse tail-bleeding models that reflect platelet aggregation in vivo. Ashitaba exudate and the major chalcone subtype XA, suppressed the lipopolysaccharide (LPS)-induced shortening of mouse tail bleeding. However, trace amounts of other Ashitaba chalcone subtypes including xanthoangelols B (XB), D (XD), E (XE) and F (XF) did not affect tail bleeding. These results suggest that the major chalcone subtype in Ashitaba, XA, has anti-platelet-activities in vivo.

  18. Cystamine immobilization on TiO 2 film surfaces and the influence on inhibition of collagen-induced platelet activation

    NASA Astrophysics Data System (ADS)

    Zhou, Yujuan; Weng, Yajun; Zhang, Liping; Jing, Fengjuan; Huang, Nan; Chen, Junying

    2011-12-01

    Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO 2 films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO 2 films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.

  19. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    NASA Astrophysics Data System (ADS)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity associated with ( ^3H) PIP_2/( ^3H) PIP was 0.41 in fish oil consumers and 1.14 in olive oil consumers. These results are consistent with a dampened collagen-induced phosphatidylinositol 4 -phosphate kinase activity in platelets of healthy individuals consuming dietary fish oil. This effect may be eicosanoid -related based on work with BW 755C, a dual inhibitor of the cyclooxygenase and lipoxygenase enzymes. The relevance of these findings to the altered production of inositol 1,4,5 trisphosphate remains to be determined.

  20. Evaluation of the effects of several zoanthamine-type alkaloids on the aggregation of human platelets.

    PubMed

    Villar, Rosa M; Gil-Longo, José; Daranas, Antonio H; Souto, María L; Fernández, José J; Peixinho, Solange; Barral, Miguel A; Santafé, Gilmar; Rodríguez, Jaime; Jiménez, Carlos

    2003-05-15

    Ten zoanthamine-type alkaloids from two marine zoanthids belonging to the Zoanthus genus (Zoanthus nymphaeus and Zoanthus sp.) along with one semisynthetic derivative were evaluated for their antiplatelet activities on human platelet aggregation induced by several stimulating agents. 11-Hydroxyzoanthamine (11) and a synthetic derivative of norzoanthamine (16) showed strong inhibition against thrombin-, collagen- and arachidonic acid-induced aggregation, zoanthenol (15) displayed a selective inhibitory activity induced by collagen, while zoanthaminone (10) behaved as a potent aggregant agent. These evaluations allowed us to deduce several structure-activity relationships and suggest some mechanisms of action for this type of compounds.

  1. Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation.

    PubMed

    Sereni, Lucia; Castiello, Maria Carmina; Marangoni, Francesco; Anselmo, Achille; di Silvestre, Dario; Motta, Sara; Draghici, Elena; Mantero, Stefano; Thrasher, Adrian J; Giliani, Silvia; Aiuti, Alessandro; Mauri, Pierluigi; Notarangelo, Luigi D; Bosticardo, Marita; Villa, Anna

    2018-02-06

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by eczema, infections, and susceptibility to autoimmunity and malignancies. Thrombocytopenia is a constant finding, but its pathogenesis remains elusive. To dissect the basis of the WAS platelet defect, we used a novel conditional mouse model (CoWas) lacking Wiskott-Aldrich syndrome protein (WASp) only in the megakaryocytic lineage in the presence of a normal immunologic environment, and in parallel we analyzed samples obtained from patients with WAS. Phenotypic and functional characterization of megakaryocytes and platelets in mutant CoWas mice and patients with WAS with and without autoantibodies was performed. Platelet antigen expression was examined through a protein expression profile and cluster proteomic interaction network. Platelet immunogenicity was tested by using ELISAs and B-cell and platelet cocultures. CoWas mice showed increased megakaryocyte numbers and normal thrombopoiesis in vitro, but WASp-deficient platelets had short lifespan and high expression of activation markers. Proteomic analysis identified signatures compatible with defects in cytoskeletal reorganization and metabolism yet surprisingly increased antigen-processing capabilities. In addition, WASp-deficient platelets expressed high levels of surface and soluble CD40 ligand and were capable of inducing B-cell activation in vitro. WASp-deficient platelets were highly immunostimulatory in mice and triggered the generation of antibodies specific for WASp-deficient platelets, even in the context of a normal immune system. Patients with WAS also showed platelet hyperactivation and increased plasma soluble CD40 ligand levels correlating with the presence of autoantibodies. Overall, these findings suggest that intrinsic defects in WASp-deficient platelets decrease their lifespan and dysregulate immune responses, corroborating the role of platelets as modulators of inflammation and immunity. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. [Lipid changes of fibrinogen and of platelet aggregation induced by etofibrate].

    PubMed

    Fonseca, F A; Novazzi, J P; Cendoroglo, M S; Duarte, M; Almeida Pinto, L E; Rabelo, L M; da Rocha Martinez, T L

    1996-01-01

    To evaluate modifications on lipid profile, fibrinogen and platelet aggregation induced by etofibrate. Twenty-one adult patients were studied. They all had primary hyperlipidemia and had already been on the AHA step I diet and placebo. Etofibrate (500mg/day) was administered for 60 days in the active phase, when lipid parameters, fibrinogen and platelet aggregation were measured. The % significant reductions were: total cholesterol (-9.50%), LDL-cholesterol (-7.88%), triglycerides (-19.07%), total cholesterol/HDL-cholesterol(-11.90%), LDL-cholesterol/HDL-cholesterol (-10.20%), fibrinogen (-12.79%), platelet aggregation with adrenaline (-24.02%), with ADP 1 mumol (-30.13%), and ADP 3 mumol (-24.51%). The beneficial effects of etofibrate were observed not only on the lipid profile but also on the thrombogenic parameters measured by fibrinogen and platelet aggregation.

  3. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets.

    PubMed

    Ju, Lining; McFadyen, James D; Al-Daher, Saheb; Alwis, Imala; Chen, Yunfeng; Tønnesen, Lotte L; Maiocchi, Sophie; Coulter, Brianna; Calkin, Anna C; Felner, Eric I; Cohen, Neale; Yuan, Yuping; Schoenwaelder, Simone M; Cooper, Mark E; Zhu, Cheng; Jackson, Shaun P

    2018-03-14

    Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin α IIb β 3 on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen. This compressive force-induced integrin activation is calcium and PI 3-kinase dependent, resulting in enhanced integrin affinity maturation and exaggerated shear-dependent platelet adhesion. Analysis of discoid platelet aggregation in the mesenteric circulation of mice confirmed that diabetes leads to a marked enhancement in the formation and stability of discoid platelet aggregates, via a mechanism that is not inhibited by therapeutic doses of aspirin and clopidogrel, but is eliminated by PI 3-kinase inhibition. These studies demonstrate the existence of a compression force sensing mechanism linked to α IIb β 3 adhesive function that leads to a distinct prothrombotic phenotype in diabetes.

  4. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers.

    PubMed

    Rodrigues, Sofia N; Gonçalves, Inês C; Martins, M C L; Barbosa, Mário A; Ratner, Buddy D

    2006-11-01

    The effect of surface wettability on fibrinogen adsorption, platelet adhesion and platelet activation was investigated using self-assembled monolayers (SAMs) containing different ratios of longer chain methyl- and shorter chain hydroxyl-terminated alkanethiols (C15CH3 vs. C11OH) on gold. Protein adsorption studies were performed using radiolabeled human fibrinogen (HFG). Platelet adhesion and activation studies with and without pre-adsorbed fibrinogen, albumin and plasma were assessed using scanning electron microscopy (SEM) and a glutaraldehyde-induced fluorescence technique (GIFT). Results demonstrated a linear decrease of HFG adsorption with the increase of OH groups on the monolayer (increase of the hydrophilicity). Platelet adhesion and activation also decrease with increase of hydrophilicity of surface. Concerning SAMs pre-immersed in proteins, fibrinogen adsorption was related with high platelet adhesion and activation. The passivant effect of albumin on platelet adhesion and activation was only demonstrated on SAMs contained C11OH. When all the blood proteins are present (plasma) platelet adhesion was almost absent on SAMs with 65% and 100% C11OH. This could be explained by the higher albumin affinity of the SAMs with 65% C11OH and the lower total protein adsorption associated with SAMs with 100% C11OH.

  5. Comparison of cytotoxic and anti-platelet activities of polyphenolic extracts from Arnica montana flowers and Juglans regia husks.

    PubMed

    Rywaniak, Joanna; Luzak, Boguslawa; Podsedek, Anna; Dudzinska, Dominika; Rozalski, Marcin; Watala, Cezary

    2015-01-01

    Polyphenolic compounds of plant origin are well known to be beneficial to human health: they exert protective effects on haemostasis and have a particular influence on blood platelets. However, the anti-platelet properties of polyphenolic compounds observed so far have not been weighed against their potential cytotoxic action against platelets. The aim of this study was to demonstrate that anti-platelet and cytotoxic effects on blood platelets may interfere and therefore, may often lead to confusion when evaluating the properties of plant extracts or other agents towards blood platelets. The anti-platelet and cytotoxic in vitro effects of plant extracts obtained from the husks of walnuts (J. regia) and flowers of arnica (A. montana) on platelet reactivity and viability were examined. Platelet function was assessed using standard methods (flow cytometry: P-selectin expression, activation of GPIIbIIIa complex, vasodilator-stimulated phosphoprotein, VASP index; turbidimetric and impedance aggregometry) and newly set assays (flow cytometric monitoring of platelet cytotoxicity). The results reveal that none of the studied plant extracts demonstrated cytotoxicity towards blood platelets. The phenolic acid-rich extract of A. montana (7.5 and 15 µg/ml) significantly reduced the ADP-induced aggregation in both whole blood and PRP, and decreased the platelet reactivity index (PRI; VASP phosphorylation) in whole blood, while showing excellent antioxidant capacity. The extract of J. regia husks significantly reduced ADP-induced platelet aggregation in whole blood when applied at 7.5 µg/ml, and only slightly decreased the PRI at 15 µg/ml. Both examined extracts suppressed platelet hyper-reactivity, and such influence did not interfere with cytotoxic effects of the extracts. Thus, its high polyphenol content, excellent antioxidant capacity and distinct anti-platelet properties, in combination with its lack of toxicity, make the extract of A. montana flowers a possible candidate as an anti-platelet agent or a compounding diet supplement.

  6. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  7. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.

    PubMed

    Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode

    2013-08-09

    The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Platelet participation in the pathogenesis of dermonecrosis induced by Loxosceles gaucho venom.

    PubMed

    Tavares, F L; Peichoto, M E; Marcelino, J R; Barbaro, K C; Cirillo, M C; Santoro, M L; Sano-Martins, I S

    2016-06-01

    Loxosceles gaucho spider venom induces in vitro platelet activation and marked thrombocytopenia in rabbits. Herein, we investigated the involvement of platelets in the development of the dermonecrosis induced by L. gaucho venom, using thrombocytopenic rabbits as a model. L. gaucho venom evoked a drop in platelet and neutrophil counts 4 h after venom injection. Ecchymotic areas at the site of venom inoculation were noticed as soon as 4 h in thrombocytopenic animals but not in animals with initial normal platelet counts. After 5 days, areas of scars in thrombocytopenic animals were also larger, evidencing the marked development of lesions in the condition of thrombocytopenia. Histologically, local hemorrhage, collagen fiber disorganization, and edema were more severe in thrombocytopenic animals. Leukocyte infiltration, predominantly due to polymorphonuclears, was observed in the presence or not of thrombocytopenia. Thrombus formation was demonstrated by immunohistochemistry at the microvasculature, and it occurred even under marked thrombocytopenia. Taken together, platelets have an important role in minimizing not only the hemorrhagic phenomena but also the inflammatory and wound-healing processes, suggesting that cutaneous loxoscelism may be aggravated under thrombocytopenic conditions. © The Author(s) 2015.

  9. Endothelial dysfunction is associated with activation of the type I interferon system and platelets in patients with systemic lupus erythematosus

    PubMed Central

    Tydén, Helena; Lood, Christian; Gullstrand, Birgitta; Nielsen, Christoffer Tandrup; Heegaard, Niels H H; Kahn, Robin; Jönsen, Andreas; Bengtsson, Anders A

    2017-01-01

    Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated the interplay between endothelial dysfunction, platelets and type I IFN in SLE. Methods We enrolled 148 patients with SLE and 79 sex-matched and age-matched healthy controls (HCs). Type I IFN activity was assessed with a reporter cell assay and platelet activation by flow cytometry. Endothelial dysfunction was assessed using surrogate markers of endothelial activation, soluble vascular cell adhesion molecule-1 (sVCAM-1) and endothelial microparticles (EMPs), and finger plethysmograph to determine Reactive Hyperaemia Index (RHI). Results In patients with SLE, type I IFN activity was associated with endothelial activation, measured by high sVCAM-1 (OR 1.68, p<0.01) and elevated EMPs (OR 1.40, p=0.03). Patients with SLE with high type I IFN activity had lower RHI than HCs (OR 2.61, p=0.04), indicating endothelial dysfunction. Deposition of complement factors on platelets, a measure of platelet activation, was seen in patients with endothelial dysfunction. High levels of sVCAM-1 were associated with increased deposition of C4d (OR 4.57, p<0.01) and C1q (OR 4.10, p=0.04) on platelets. High levels of EMPs were associated with C4d deposition on platelets (OR 3.64, p=0.03). Conclusions Endothelial dysfunction was associated with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE. PMID:29119007

  10. Structure-activity relationship of three synthesized benzimidazole-based oligosaccharides in human platelet activation.

    PubMed

    Chang, Yi; Hsu, Wen-Hsien; Yang, Wen-Bin; Jayakumar, Thanasekaran; Lee, Tzu-Yin; Sheu, Joen-Rong; Lu, Wan-Jung; Li, Jiun-Yi

    2017-11-01

    Antiplatelet agents have considerable benefits in the treatment of thromboembolic diseases; however, these agents still have substantial limitations due to their severe side-effects. In this study, the antiplatelet activity of three newly synthesized saccharide based benzimidazole derivatives, M3BIM, Malto-BIM and Melibio-BIM, in collagen and thrombin-stimulated human platelets in vitro was examined. Among the compounds tested, only compound M3BIM exerted concentration (20-60 µM)-dependent inhibitory effects against collagen (1 µg/ml) and thrombin (0.01 U/ml)-induced washed human platelet aggregation. Moreover, at a concentration of 60 µM, M3BIM distinctly abolished collagen-induced adenosine triphosphate (ATP) release and intracellular Ca2+ mobilization. Additionally, this compound attenuated the collagen-induced phosphorylation of p47, a marker of the activation of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK). However, Malto-BIM and Melibio-BIM were not effective in this regard. Moreover, the toxic effects of these compounds were evaluated using zebrafish embryo toxicity (ZET) assay, and the results revealed that all three compounds had no comparative cytotoxicity within the range of 25-200 µM. Overall, the results of this study provide evidence for the inhibitory effects of M3BIM on collagen-induced platelet aggregation in vitro compared to other imidazole derivatives. The presence of 1-imidazolyl moiety at one end with a longer chain length (three sugar moieties) may be mainly responsible for the observed effects of M3BIM. These results suggest that compound M3BIM may be used as a potential candidate for the treatment of aberrant platelet activation-related diseases as it inhibits the activation of p47 and p38 MAPK, and reduces ATP release and Ca2+ mobilization.

  11. The Use of Spinning-Disk Confocal Microscopy for the Intravital Analysis of Platelet Dynamics in Response to Systemic and Local Inflammation

    PubMed Central

    Jenne, Craig N.; Wong, Connie H. Y.; Petri, Björn; Kubes, Paul

    2011-01-01

    Platelets are central players in inflammation and are an important component of the innate immune response. The ability to visualize platelets within the live host is essential to understanding their role in these processes. Past approaches have involved adoptive transfer of labelled platelets, non-specific dyes, or the use of fluorescent antibodies to tag platelets in vivo. Often, these techniques result in either the activation of the platelet, or blockade of specific platelet receptors. In this report, we describe two new methods for intravital visualization of platelet biology, intravenous administration of labelled anti-CD49b, which labels all platelets, and CD41-YFP transgenic mice, in which a percentage of platelets express YFP. Both approaches label endogenous platelets and allow for their visualization using spinning-disk confocal fluorescent microscopy. Following LPS-induced inflammation, we were able to measure a significant increase in both the number and size of platelet aggregates observed within the vasculature of a number of different tissues. Real-time observation of these platelet aggregates reveals them to be large, dynamic structures that are continually expanding and sloughing-off into circulation. Using these techniques, we describe for the first time, platelet recruitment to, and behaviour within numerous tissues of the mouse, both under control conditions and following LPS induced inflammation. PMID:21949865

  12. Adhesion of human platelets to albumin is synergistically increased by lysophosphatidic acid and adrenaline in a donor-dependent fashion.

    PubMed

    Eriksson, Andreas C; Whiss, Per A; Nilsson, Ulrika K

    2006-07-01

    Lysophosphatidic acid (LPA) and adrenaline are weak platelet activators considered important for thrombus formation, and were previously shown to synergistically increase platelet aggregation. Here we investigate synergistic activation by LPA and adrenaline when measuring platelet adhesion. Platelet-rich plasma from healthy blood donors together with adrenaline and/or LPA were added to protein-coated microplates. Platelets were allowed to adhere and the amount of adhesion detected enzymatically. The LPA and adrenaline combination induced a synergistic increase of platelet adhesion to a normally non-adhesive albumin surface. The degree of synergy varied markedly between individuals; these variations could not be explained by age, gender, blood type or different amounts of platelets, oxidized low-density lipoprotein, insulin or glucose in plasma. There was a trend indicating increased synergistic effect for platelets sensitive to adrenaline stimulation. The synergistic effect was blocked by the alpha2-adrenoceptor antagonist yohimbine and inhibited by the ADP scavenger system creatine phosphate/creatine phosphokinase and antibodies against alphaIIbbeta3. Furthermore, platelets adhering to albumin after adrenaline and LPA treatment expressed P-selectin. In conclusion, LPA and adrenaline act synergistically to increase alphaIIbbeta3-mediated platelet adhesion to albumin, dependent on alpha2-adrenoceptor signalling and platelet secretion. We also confirm that synergistic platelet activation achieved with LPA and adrenaline is highly donor dependent.

  13. Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives.

    PubMed

    Nanda, Himansu Sekhar; Shah, Ankur Harish; Wicaksono, Gautama; Pokholenko, Oleksandr; Gao, Feng; Djordjevic, Ivan; Steele, Terry W J

    2018-05-14

    Bioadhesives are a current unmet clinical need for mending of blood contacting soft tissues without inducing thrombosis. Recent development of carbene precursor bioadhesives with the advantages of on-demand curing, tuneable modulus, and wet adhesion have been synthesized by grafting diazirine onto poly (amidoamine) (PAMAM-G5) dendrimers. Herein, the structure activity relationships of platelet adhesion and activation is evaluated for the first time on the cured PAMAM-g-diazirine bioadhesives. Three strategies were employed to prevent healthy human donor platelets from adhering and activating on light-cured bioadhesive surfaces: (1) Attenuation of cationic surface charge, (2) antifouling composites by incorporating heparin and alginate in uncured formulation, and (3) heparin wash of cured bioadhesive surface. Topographical imaging of cured and ethanol dehydrated bioadhesive surfaces was used to quantify the adhered and activated platelets with scanning electron microscopy, whose resolution allowed identification of round senescent, short dendritic, and long dendritic platelets. Cured surfaces of PAMAM-g-diazirine (15%) had 10300 ± 500 adhered platelets mm -2 with 99.7% activation into short/long dendritic cells. Reduction of primary amines by higher degree of diazirine grafting or capping of free amines by acetylation reduces platelet adherence (2400 ± 200 vs 3000 ± 300, respectively). Physical incorporation of heparin and alginate in the formulations reduced the activated platelet; 1300 ± 300 and 300 ± 50, activated platelets mm -2 , in comparison with additive free adhesive formulation. Similarly, heparin rinse of the surface of additive free bioadhesive reduced the activated platelet to platelets of heparin composites at 600 ± 100 platelets mm -2 . PAMAM-g-diazirine (15%) bioadhesive retained the photocured mechanical properties and lap shear adhesion despite the addition of heparin and alginate additives.

  14. Greater Collagen‐Induced Platelet Aggregation Following Cyclooxygenase 1 Inhibition Predicts Incident Acute Coronary Syndromes

    PubMed Central

    Becker, Diane M.; Yanek, Lisa R.; Faraday, Nauder; Vaidya, Dhananjay; Mathias, Rasika; Kral, Brian G.; Becker, Lewis C.

    2014-01-01

    Abstract Greater ex vivo platelet aggregation to agonists may identify individuals at risk of acute coronary syndromes (ACS). However, increased aggregation to a specific agonist may be masked by inherent variability in other activation pathways. In this study, we inhibited the cyclooxygenase‐1 (COX1) pathway with 2‐week aspirin therapy and measured residual aggregation to collagen and ADP to determine whether increased aggregation in a non‐COX1 pathway is associated with incident ACS. We assessed ex vivo whole blood platelet aggregation in 1,699 healthy individuals with a family history of early‐onset coronary artery disease followed for 6±1.2 years. Incident ACS events were observed in 22 subjects. Baseline aggregation was not associated with ACS. After COX1 pathway inhibition, collagen‐induced aggregation was significantly greater in participants with ACS compared with those without (29.0 vs. 23.6 ohms, p < 0.001). In Cox proportional hazards models, this association remained significant after adjusting for traditional cardiovascular risk factors (HR = 1.10, 95%CI = 1.06–1.15; p < 0.001). In contrast, ADP‐induced aggregation after COX1 inhibition was not associated with ACS. After COX1 pathway inhibition, subjects with greater collagen‐induced platelet aggregation demonstrated a significant excess risk of incident ACS. These data suggest that platelet activation related to collagen may play an important role in the risk of ACS. PMID:25066685

  15. Fresh frozen plasma resuscitation attenuates platelet dysfunction compared with normal saline in a large animal model of multisystem trauma.

    PubMed

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S; Jin, Guang; Jepsen, Cecilie H; Imam, Ayesha; Hwabejire, John O; Deperalta, Danielle; Duggan, Michael; DeMoya, Marc; Velmahos, George C; Alam, Hasan B

    2014-04-01

    Platelet dysfunction following trauma has been identified as an independent predictor of mortality. We hypothesized that fresh frozen plasma (FFP) resuscitation would attenuate platelet dysfunction compared with 0.9% normal saline (NS). Twelve swine were subjected to multisystem trauma (traumatic brain injury, liver injury, rib fracture, and soft tissue injury) with hemorrhagic shock (40% of estimated blood volume). Animals were left in shock (mean arterial pressure, 30-35 mm Hg) for 2 hours followed by resuscitation with three times shed volume NS (n = 6) or one times volume FFP (n = 6) and monitored for 6 hours. Platelet function was assessed by adenosine diphosphate (ADP)-induced platelet aggregation at baseline, after 2 hours of shock following resuscitation, and 6 hours after resuscitation. Fibrinogen levels and markers of platelet activation (transforming growth factor β [TGF-β], sP-Selectin, and CD40L) as well as endothelial injury (intercellular adhesion molecule 1 [ICAM-1], vascular cell adhesion molecule 1 [VCAM-1]) were also assayed. Thromboelastography was used to measure clotting activity. ADP-induced platelet aggregation was significantly higher in the FFP group (46.3 U vs. 25.5 U, p < 0.01) following resuscitation. This was associated with higher fibrinogen levels (202 mg/dL vs. 80 mg/dL, p < 0.01) but lower endothelial activation (VCAM-1, 1.25 ng/mL vs. 3.87 ng/mL, p = 0.05). Other markers did not differ.After 6 hours of observation, ADP-induced platelet aggregation remained higher in the FFP group (53.8 U vs. 37.0 U, p = 0.03) as was fibrinogen levels (229 mg/dL vs. 153 mg/dL, p < 0.01). Endothelial activation was lower (ICAM-1, 21.0 ng/mL vs. 24.4 ng/mL, p = 0.05), whereas TGF-β levels were higher (2,138 pg/mL vs. 1,802 pg/mL, p = 0.03) in the FFP group. Other markers did not differ. Thromboelastography revealed increased clot strength in the FFP group at both postresuscitation time points. Resuscitation with FFP resulted in an immediate and sustained improvement in platelet function and clot strength compared with high-volume NS resuscitation. This was associated with an increase in fibrinogen levels and an attenuation of endothelial activation.

  16. Formation of PI 3-kinase products in platelets by thrombin, but not collagen, is dependent on synergistic autocrine stimulation, particularly through secreted ADP.

    PubMed

    Selheim, F; Idsøe, R; Fukami, M H; Holmsen, H; Vassbotn, F S

    1999-10-05

    Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). Copyright 1999 Academic Press.

  17. Mauritia flexuosa Presents In Vitro and In Vivo Antiplatelet and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Rodríguez-Pérez, Wilson; Guzmán, Luis; Alarcón, Marcelo; Navarrete, Simón; Forero-Doria, Oscar; Palomo, Iván

    2013-01-01

    Fruit from the palm Mauritia flexuosa is one of the most important species in Peru, Venezuela, Brazil, Colombia, Bolivia, and Guyana. The present study aimed to investigate the antiplatelet and antithrombotic activities of oil extracted from Mauritia flexuosa. The fatty acid contents were determined by gas chromatography—mass spectrometry. Oil extract of peel of Mauritia flexuosa was extracted by soxhlet extraction. The oil extract inhibited platelet secretion and aggregation induced by ADP, collagen, and TRAP-6 by a concentration-dependent way (0.1 to 1 mg/mL) without the participation of the adenylyl cyclase pathway and diminished platelet rolling and firm adhesion under flow conditions. Furthermore, the oil extract induced a marked increase in the rolling speed of leukocytes retained on the platelet surface, reflecting a reduction of rolling and less adhesion. At the concentrations used, the oil extract significantly decreased platelet release of sP-selectin, an atherosclerotic-related inflammatory mediator. Oil extract inhibited thrombus growth at the same concentration as that of aspirin, a classical reference drug. Finally, the data presented herein also demonstrate for the first time to our knowledge the protective effect of oil extracted from Mauritia flexuosa on platelet activation and thrombosis formation. PMID:24454503

  18. Mauritia flexuosa Presents In Vitro and In Vivo Antiplatelet and Antithrombotic Activities.

    PubMed

    Fuentes, Eduardo; Rodríguez-Pérez, Wilson; Guzmán, Luis; Alarcón, Marcelo; Navarrete, Simón; Forero-Doria, Oscar; Palomo, Iván

    2013-01-01

    Fruit from the palm Mauritia flexuosa is one of the most important species in Peru, Venezuela, Brazil, Colombia, Bolivia, and Guyana. The present study aimed to investigate the antiplatelet and antithrombotic activities of oil extracted from Mauritia flexuosa. The fatty acid contents were determined by gas chromatography-mass spectrometry. Oil extract of peel of Mauritia flexuosa was extracted by soxhlet extraction. The oil extract inhibited platelet secretion and aggregation induced by ADP, collagen, and TRAP-6 by a concentration-dependent way (0.1 to 1 mg/mL) without the participation of the adenylyl cyclase pathway and diminished platelet rolling and firm adhesion under flow conditions. Furthermore, the oil extract induced a marked increase in the rolling speed of leukocytes retained on the platelet surface, reflecting a reduction of rolling and less adhesion. At the concentrations used, the oil extract significantly decreased platelet release of sP-selectin, an atherosclerotic-related inflammatory mediator. Oil extract inhibited thrombus growth at the same concentration as that of aspirin, a classical reference drug. Finally, the data presented herein also demonstrate for the first time to our knowledge the protective effect of oil extracted from Mauritia flexuosa on platelet activation and thrombosis formation.

  19. Effect of platelet lysate on human cells involved in different phases of wound healing.

    PubMed

    Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  20. Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing

    PubMed Central

    Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412

  1. Release of Phosphorylated HSP27 (HSPB1) from Platelets Is Accompanied with the Acceleration of Aggregation in Diabetic Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Onuma, Takashi; Kojima, Akiko; Doi, Tomoaki; Tanabe, Kumiko; Akamatsu, Shigeru; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Iwama, Toru; Tanikawa, Takahisa; Ishikawa, Kei; Kojima, Kumi; Kozawa, Osamu

    2015-01-01

    We investigated the relationship between HSP27 phosphorylation and collagen-stimulated activation of platelets in patients with diabetes mellitus (DM). Platelet-rich plasma was prepared from blood of type 2 DM patients. The platelet aggregation was analyzed in size of aggregates by an aggregometer using a laser scattering method. The protein phosphorylation was analyzed by Western blotting. Phosphorylated-HSP27 and PDGF-AB released from platelets were measured by ELISA. The phosphorylated-HSP27 levels at Ser-78 and Ser-82 induced by collagen were directly proportional to the platelet aggregation. Total HSP27 levels in platelets were decreased concomitantly with the phosphorylation. The released HSP27 levels were significantly correlated with the phosphorylated levels of HSP27 in the platelets stimulated by 0.3 μg/ml collagen. The low dose collagen-stimulated release of HSP27 was detected but relatively small in healthy donors. The released levels of PDGF-AB were in parallel with the levels of released HSP27. Area under the curve (AUC) of small aggregation (9-25 μm) induced by 0.3 μg/ml collagen was inversely proportional to the levels of released HSP27. AUC of large aggregation (50-70 μm) was directly proportional to the levels of released HSP27. Exogenous recombinant phosphorylated- HSP27 hardly affected the aggregation or the released levels of PDGF-AB induced by collagen. These results strongly suggest that HSP27 is released from human platelets accompanied with its phosphorylation induced by collagen, which is correlated with the acceleration of platelet aggregation in type 2 DM patients. PMID:26046355

  2. Release of Phosphorylated HSP27 (HSPB1) from Platelets Is Accompanied with the Acceleration of Aggregation in Diabetic Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Onuma, Takashi; Kojima, Akiko; Doi, Tomoaki; Tanabe, Kumiko; Akamatsu, Shigeru; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Iwama, Toru; Tanikawa, Takahisa; Ishikawa, Kei; Kojima, Kumi; Kozawa, Osamu

    2015-01-01

    We investigated the relationship between HSP27 phosphorylation and collagen-stimulated activation of platelets in patients with diabetes mellitus (DM). Platelet-rich plasma was prepared from blood of type 2 DM patients. The platelet aggregation was analyzed in size of aggregates by an aggregometer using a laser scattering method. The protein phosphorylation was analyzed by Western blotting. Phosphorylated-HSP27 and PDGF-AB released from platelets were measured by ELISA. The phosphorylated-HSP27 levels at Ser-78 and Ser-82 induced by collagen were directly proportional to the platelet aggregation. Total HSP27 levels in platelets were decreased concomitantly with the phosphorylation. The released HSP27 levels were significantly correlated with the phosphorylated levels of HSP27 in the platelets stimulated by 0.3 μg/ml collagen. The low dose collagen-stimulated release of HSP27 was detected but relatively small in healthy donors. The released levels of PDGF-AB were in parallel with the levels of released HSP27. Area under the curve (AUC) of small aggregation (9-25 μm) induced by 0.3 μg/ml collagen was inversely proportional to the levels of released HSP27. AUC of large aggregation (50-70 μm) was directly proportional to the levels of released HSP27. Exogenous recombinant phosphorylated- HSP27 hardly affected the aggregation or the released levels of PDGF-AB induced by collagen. These results strongly suggest that HSP27 is released from human platelets accompanied with its phosphorylation induced by collagen, which is correlated with the acceleration of platelet aggregation in type 2 DM patients.

  3. Clopidogrel, a P2Y12 Receptor Antagonist, Potentiates the Inflammatory Response in a Rat Model of Peptidoglycan Polysaccharide-Induced Arthritis

    PubMed Central

    Rico, Mario C.; Dela Cadena, Raul A.; Kunapuli, Satya P.

    2011-01-01

    The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation. PMID:22028806

  4. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients.

    PubMed

    Danese, S; Katz, J A; Saibeni, S; Papa, A; Gasbarrini, A; Vecchi, M; Fiocchi, C

    2003-10-01

    The CD40/CD40L system, a key regulator and amplifier of immune reactivity, is activated in inflammatory bowel disease (IBD) mucosa. To determine whether plasma levels of sCD40L are elevated in Crohn's disease (CD) and ulcerative colitis (UC) patients compared with normal controls, to investigate the cellular source of sCD40L, and to explore CD40L induction mechanisms. CD, UC, and normal control subjects were studied. The concentration of sCD40L in plasma and supernatants of freshly isolated platelets and autologous peripheral blood T cells (PBT) was measured by ELISA. Surface CD40L expression level was measured by flow cytometry in resting and thrombin activated platelets, and unstimulated and CD3/CD28 stimulated PBT before and after coculture with human intestinal microvascular endothelial cells (HIMEC). Compared with normal controls, plasma sCD40L levels were significantly higher in both CD and UC patients and proportional to the extent of mucosal inflammation. Platelets from IBD patients displayed a significantly higher surface CD40L expression than those from control subjects, and released greater amounts of sCD40L than autologous PBT. Contact with IL-1beta activated HIMEC induced significant upregulation of CD40L surface expression and release by platelets. Elevated levels of sCD40L in the circulation of IBD patients reflect enhanced surface expression and release of CD40L by platelets. This phenomenon translates to an increased platelet activation state apparently induced by passage through an inflamed mucosal microvascular bed, a conclusion supported by the positive correlation of plasma sCD40L levels with the extent of anatomical involvement by IBD. These results suggest that platelet-endothelial interactions critically contribute to activation of the CD40 pathway in IBD.

  5. von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion.

    PubMed

    Madabhushi, Sri R; Shang, Chengwei; Dayananda, Kannayakanahalli M; Rittenhouse-Olson, Kate; Murphy, Mary; Ryan, Thomas E; Montgomery, Robert R; Neelamegham, Sriram

    2012-05-17

    Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D'D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D'D3 domain. At pH 6.2 and 10mM Ca(2+), conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (K(D) = 0.2nM, k(off) = 8 × 10(-5) s(-1)). Significant, albeit weaker, binding (K(D) = 25nM, k(off) = 4 × 10(-3) s(-1)) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca(2+). This interaction was also observed in human plasma (K(D) = 50nM). The addition of recombinant VWFpp in both flow-chamber-based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D'D3 mAb DD3.1, which blocks VWFpp binding to VWF-D'D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα.

  6. Platelet activation and function in response to high intensity interval exercise and moderate continuous exercise in CABG and PCI patients.

    PubMed

    Ahmadizad, Sajad; Nouri-Habashi, Akbar; Rahmani, Hiwa; Maleki, Majid; Naderi, Nasim; Lotfian, Sara; Salimian, Morteza

    2016-01-01

    The effects of high intensity interval training (HIIT) on inflammatory markers and endothelial function have been extensively shown. However, the acute effect of HIIT on platelet activation and function in patients with recent revascularization is unclear. The purpose of present study was to compare the responses of platelet activation (CD62P) and function (platelet aggregation) to high intensity interval exercise (HIIE) and moderate continuous exercise (MCE) in coronary artery bypass grafting (CABG) and percutaneous coronary interventions (PCI) patients. Thirty patients who had CABG or PCI were randomly divided into HIIE, MCE and control groups. After determining the VO2peak, subjects in the MCE group carried out 30 min of continuous exercise at 60% of VO2peak, whereas, the subjects in HIIE group performed an interval protocol consisted of 8 repetitions of 2 min activity (running on treadmill) at 90% of VO2peak interspersed by 2 min of active recovery between repetitions at 30% of VO2peak .  Subjects in control group were seated and had no activity for the same period of time. Two blood samples were collected before and immediately after exercise and were analyzed for markers of platelet activation and function. Data analyzes revealed that increases in platelet aggregation induced by ADP and corrected for increases in platelet count in response to MCE trial was significantly lower than HIIE group (P < 0.05). In addition, responses of CD62P to MCE trial was significantly lower compared to HIIE group (P < 0.05). Changes in plateletcrit and platelet distribution width were significantly different among the three trials where the PCT and PDW following the HIIE were higher than MCE. Platelet count increased significantly (P < 0.05) by 13% following HIIE trial. Based on the findings of the present study it could be concluded that the risk of exercise-induced thrombosis is higher during HIIE than MCE in patients with recent revascularization.

  7. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets.

    PubMed

    Muñoz, Yenny; Garrido, Argelia; Valladares, Luis

    2009-03-01

    Several dietary intervention studies examining the health effect of soy isoflavones allude to the importance of equol in establishing the cardiovascular response to soy protein. Although, the specific mechanism by which this action occurs has not been established. The aim of this study was to investigate the inhibitory effect of soy-isoflavones and the metabolite of daidzein, equol, on agonist-induced platelet responses dependent on thromboxane A(2) (TxA(2)) receptor. Competitive radioligand binding assay was used to screen for affinity of these compounds to the TxA(2) receptor. The effect of equol on platelet activation, evaluate through of release of the ATP, by analogs of TxA(2) was analyzed. The effect of equol on platelet aggregation was investigated with ADP, U46619 (a TxA(2) mimic) and the calcium ionophore A23187. The data showed that aglycone isoflavones and equol bind to TxA(2) receptor in the micromol/L range, whereas their glucoside derivates had very low binding activity for this receptor. Under equilibrium conditions, the following order of the relative affinity in inhibiting [(3)H]-SQ29585 binding was: equol>genistein>daidzein>glycitein>genistin, daidzin, glycitin. Equol interaction was reversible and competitive for labeled-SQ29548 with not apparent decrease in the number of TxA(2) binding sites. In addition, from platelet activation studies, equol effectively inhibited ATP secretion elicited by the TxA(2) analog U46619. On the other hand, equol inhibited the platelet aggregation induced by U46619 and A23187, while it failed to inhibit that induced by ADP. The aglycone isoflavones from soy, and particularly equol, have been found to have biological effects attributable to thromboxane A(2) receptor antagonism. These findings may help elucidate how dietary isoflavone modulate platelet function and explain why soy-rich foods are claimed to have beneficial effects in the prevention of thrombotic events.

  8. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  9. Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161

    PubMed Central

    Ren, Lijie; Liu, Xiaohui; Wang, Qi; He, Sudan; Wu, Qingyu; Hu, Hu; Mao, Xinliang; Zhu, Li

    2014-01-01

    The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. PMID:25115838

  10. Pneumatic tube system transport does not alter platelet function in optical and whole blood aggregometry, prothrombin time, activated partial thromboplastin time, platelet count and fibrinogen in patients on anti-platelet drug therapy

    PubMed Central

    Enko, Dietmar; Mangge, Harald; Münch, Andreas; Niedrist, Tobias; Mahla, Elisabeth; Metzler, Helfried; Prüller, Florian

    2017-01-01

    Introduction The aim of this study was to assess pneumatic tube system (PTS) alteration on platelet function by the light transmission aggregometry (LTA) and whole blood aggregometry (WBA) method, and on the results of platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen. Materials and methods Venous blood was collected into six 4.5 mL VACUETTE® 9NC coagulation sodium citrate 3.8% tubes (Greiner Bio-One International GmbH, Kremsmünster, Austria) from 49 intensive care unit (ICU) patients on dual anti-platelet therapy and immediately hand carried to the central laboratory. Blood samples were divided into 2 Groups: Group 1 samples (N = 49) underwent PTS (4 m/s) transport from the central laboratory to the distant laboratory and back to the central laboratory, whereas Group 2 samples (N = 49) were excluded from PTS forces. In both groups, LTA and WBA stimulated with collagen, adenosine-5’-diphosphate (ADP), arachidonic acid (AA) and thrombin-receptor-activated-peptide 6 (TRAP-6) as well as platelet count, PT, APTT, and fibrinogen were performed. Results No statistically significant differences were observed between blood samples with (Group 1) and without (Group 2) PTS transport (P values from 0.064 – 0.968). The AA-induced LTA (bias: 68.57%) exceeded the bias acceptance limit of ≤ 25%. Conclusions Blood sample transportation with computer controlled PTS in our hospital had no statistically significant effects on platelet aggregation determined in patients with anti-platelet therapy. Although AA induced LTA showed a significant bias, the diagnostic accuracy was not influenced. PMID:28392742

  11. Platelet Storage Lesions: What More Do We Know Now?

    PubMed

    Ng, Monica Suet Ying; Tung, John-Paul; Fraser, John Francis

    2018-04-17

    Platelet concentrate (PC) transfusions are a lifesaving adjunct to control and prevent bleeding in cancer, hematologic, surgical, and trauma patients. Platelet concentrate availability and safety are limited by the development of platelet storage lesions (PSLs) and risk of bacterial contamination. Platelet storage lesions are a series of biochemical, structural, and functional changes that occur from blood collection to transfusion. Understanding of PSLs is key for devising interventions that prolong PC shelf life to improve PC access and wastage. This article will review advancements in clinical and mechanistic PSL research. In brief, exposure to artificial surfaces and high centrifugation forces during PC preparation initiate PSLs by causing platelet activation, fragmentation, and biochemical release. During room temperature storage, enhanced glycolysis and reduced mitochondrial function lead to glucose depletion, lactate accumulation, and product acidification. Impaired adenosine triphosphate generation reduces platelet capacity to perform energetically demanding processes such as hypotonic stress responses and activation/aggregation. Storage-induced alterations in platelet surface proteins such as thrombin receptors and glycoproteins decrease platelet aggregation. During storage, there is an accumulation of immunoactive proteins such as leukocyte-derive cytokines (tumor necrosis factor α, interleukin (IL) 1α, IL-6, IL-8) and soluble CD40 ligand which can participate in transfusion-related acute lung injury and nonhemolytic transfusion reactions. Storage-induced microparticles have been linked to enhanced platelet aggregation and immune system modulation. Clinically, stored PCs have been correlated with reduced corrected count increment, posttransfusion platelet recovery, and survival across multiple meta-analyses. Fresh PC transfusions have been associated with superior platelet function in vivo; however, these differences were abrogated after a period of circulation. There is currently insufficient evidence to discern the effect of PSLs on transfusion safety. Various bag and storage media changes have been proposed to reduce glycolysis and platelet activation during room temperature storage. Moreover, cryopreservation and cold storage have been proposed as potential methods to prolong PC shelf life by reducing platelet metabolism and bacterial proliferation. However, further work is required to elucidate and manage the PSLs specific to these storage protocols before its implementation in blood banks. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Platelet activation in the hypertensive disorders of pregnancy.

    PubMed

    Nadar, Sunil; Lip, Gregory Y H

    2004-05-01

    The hypertensive disorders of pregnancy, including gestational hypertension, pre-eclampsia and eclampsia, continue to be an important cause of maternal morbidity and mortality. Abnormal placentation is considered to be the main instigating factor, which then leads to widespread maternal endothelial activation and dysfunction. This endothelial perturbation leads to the release of many substances into the circulation, many of which result in platelet activation. For example, there is an imbalance between the levels of prostacyclin (a vasodilator and platelet inhibitor) and thromboxane (a platelet activator and vasoconstrictor), which then results in the maintenance of high blood pressure and complications. It is also likely that platelets play an important part in the pathogenesis of hypertension in pregnancy. The use of antiplatelet drugs has been shown to be effective in reducing the incidence of gestational hypertension in women at high risk and in preventing the complications associated with it. In addition, some antihypertensive agents are effective in reversing platelet activation in essential hypertension and, therefore, their use in pregnancy-induced hypertension may be beneficial in more ways than simply blood pressure reduction.

  13. Laboratory tests for identification or exclusion of heparin induced thrombocytopenia: HIT or miss?

    PubMed

    Favaloro, Emmanuel J

    2018-02-01

    Heparin induced thrombocytopenia (HIT) is a potentially fatal condition that arises subsequent to formation of antibodies against complexes containing heparin, usually platelet-factor 4-heparin ("anti-PF4-heparin"). Assessment for HIT involves both clinical evaluation and, if indicated, laboratory testing for confirmation or exclusion, typically using an initial immunological assay ("screening"), and only if positive, a secondary functional assay for confirmation. Many different immunological and functional assays have been developed. The most common contemporary immunological assays comprise enzyme-linked immunosorbent assay [ELISA], chemiluminescence, lateral flow, and particle gel techniques. The most common functional assays measure platelet aggregation or platelet activation events (e.g., serotonin release assay; heparin-induced platelet activation (HIPA); flow cytometry). All assays have some sensitivity and specificity to HIT antibodies, but differ in terms of relative sensitivity and specificity for pathological HIT, as well as false negative and false positive error rate. This brief article overviews the different available laboratory methods, as well as providing a suggested approach to diagnosis or exclusion of HIT. © 2017 Wiley Periodicals, Inc.

  14. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Detection of HIT antibody dependent platelet aggregation using novel surface imprinting approach.

    PubMed

    Hussain, Munawar; Northoff, Hinnak; Gehring, Frank K

    2016-01-15

    We present a fast, robust and straightforward spin force assisted surface imprinting approach for activated platelets and demonstrate that Heparin induced thrombocytopenia (HIT) platelet aggregation can be measured by this approach. A critical and challenging step in functional assays for HIT is platelet separation from the healthy donor's platelet-rich plasma (PRP). Our approach using surface imprinted polymer (MIP) for measurements on a quartz crystal microbalance with dissipation (QCM-D) enables monitoring of platelet aggregation directly in PRP thus eliminating the challenge of platelet separation. This is the first report of platelet imprinting. We also provide proof of principle that QCM-D technology can be applied for functional measurements of HIT antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury

    PubMed Central

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G. Scott; Cines, Douglas B.; Poncz, Mortimer

    2017-01-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7−/− and Cxcl4−/− knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7−/− mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4−/− mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability. PMID:27755915

  17. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury.

    PubMed

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G Scott; Cines, Douglas B; Poncz, Mortimer; Kowalska, M Anna

    2017-02-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7 -/- and Cxcl4 -/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7 -/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4 -/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.

  18. Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2.

    PubMed Central

    Landucci, E C; Antunes, E; Donato, J L; Faro, R; Hyslop, S; Marangoni, S; Oliveira, B; Cirino, G; de Nucci, G

    1995-01-01

    1. The effect of purified crotapotin, a non-toxic non-enzymatic chaperon protein normally complexed to a phospholipase A2 (PLA2) in South America rattlesnake venom, was studied in the acute inflammatory response induced by carrageenin (1 mg/paw), compound 48/80 (3 micrograms/paw) and 5-hydroxytryptamine (5-HT) (3 micrograms/paw) in the rat hind-paw. The effects of crotapotin on platelet aggregation, mast cell degranulation and eicosanoid release from guinea-pig isolated lung were also investigated. 2. Subplantar co-injection of crotapotin (1 and 10 micrograms/paw) with carrageenin or injection of crotapotin (10 micrograms/paw) into the contralateral paw significantly inhibited the carrageenin-induced oedema. This inhibition was also observed when crotapotin (10-30 micrograms/paw) was administered either intraperitoneally or orally. Subplantar injection of heated crotapotin (15 min at 60 degrees C) failed to inhibit carrageenin-induced oedema. Subplantar injection of crotapotin (10 micrograms/paw) also significantly inhibited the rat paw oedema induced by compound 48/80, but it did not affect 5-HT-induced oedema. 3. In adrenalectomized animals, subplantar injection of crotapotin markedly inhibited the oedema induced by carrageenin. The inhibitory effect of crotapotin was also observed in rats depleted of histamine and 5-HT stores. 4. Crotapotin (30 micrograms/paw) had no effect on either the histamine release induced by compound 48/80 in vitro or on the platelet aggregation induced by both arachidonic acid (1 nM) and platelet activating factor (1 microM) in human platelet-rich plasma. The platelet aggregation and thromboxane B2 (TXB2) release induced by thrombin (100 mu ml-1) in washed human platelets were also not affected by crotapotin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537590

  19. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets

    PubMed Central

    Naik, Meghna U.; Stalker, Timothy J.; Brass, Lawrence F.

    2012-01-01

    Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation. PMID:22271446

  20. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets

    PubMed Central

    Unsworth, Amanda J.; Bye, Alexander P.; Tannetta, Dionne S.; Desborough, Michael J.R.; Kriek, Neline; Sage, Tanya; Allan, Harriet E.; Crescente, Marilena; Yaqoob, Parveen; Warner, Timothy D.; Jones, Chris I.

    2017-01-01

    Objectives— The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. Approach and Results— We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. Conclusions— We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo. PMID:28619996

  1. High sensitivity and specificity of a new functional flow cytometry assay for clinically significant heparin-induced thrombocytopenia antibodies.

    PubMed

    Garritsen, H S; Probst-Kepper, M; Legath, N; Eberl, W; Samaniego, S; Woudenberg, J; Schuitemaker, J H N; Kroll, H; Gurney, D A; Moore, G W; Zehnder, J L

    2014-04-01

    Heparin-induced thrombocytopenia (HIT) is a life-threatening condition, in which the anticoagulant heparin, platelet factor 4 (PF4), and platelet-activating antibodies form complexes with prothrombotic properties. Laboratory tests to support clinical diagnosis are subdivided into functional, platelet activation assays, which lack standardization, or immunological assays, which have moderate specificity toward HIT. In this study, clinical performance of HITAlert, a novel in vitro diagnostic (IVD) registered platelet activation assay, was tested in a large cohort of HIT-suspected patients and compared with immunological assays. From 346 HIT-suspected patients (single center), clinical data including 4T pretest probability results, citrated platelet-poor plasmas, and sera were collected, allowing direct comparison of clinical observations with HITAlert results. HITAlert performance was compared with PF4 IgG ELISA (246 patients, three centers) and PF4 PaGIA (298 patients, single center). HITAlert showed high sensitivity (88.2%) and specificity (99.1%) when compared with clinical diagnosis. Agreement of HITAlert with PF4 ELISA- and PF4 PaGIA-positive patients is low (52.7 and 23.2%, respectively), while agreement with PF4 IgG ELISA- and PF4 PaGIA-negative patients is very high (98.1 and 99.1%, respectively). HITAlert performance is excellent when compared with clinical HIT diagnosis, making it a suitable assay for rapid testing of platelet activation due to anticoagulant therapy. © 2013 John Wiley & Sons Ltd.

  2. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction

    PubMed Central

    Jones, Letitia D.; Jackson, Joseph W.; Maggirwar, Sanjay B.

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND. PMID:26986758

  3. Verotoxin and neuraminidase induced platelet aggregating activity in plasma: their possible role in the pathogenesis of the haemolytic uraemic syndrome.

    PubMed Central

    Rose, P E; Armour, J A; Williams, C E; Hill, F G

    1985-01-01

    Certain strains of Escherichia coli producing verotoxin have been isolated in the stools of patients with the haemolytic uraemic syndrome. A platelet aggregating activity has been found in normal plasma after incubation with verotoxin at 37 degrees C for 24 h. This activity, unlike neuraminidase, has an effect that is independent of changing factor VIII related antigen, but requires the IIA and IIIB platelet surface glycoprotein (deficient in thrombasthenia) to mediate its effect. Prostacyclin totally inhibited this effect, but other antiplatelet drugs and heparin were without inhibitory effects. PMID:2859303

  4. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  5. Platelet aggregation caused by Carybdea rastonii toxins (CrTX-I, II and III) obtained from a jellyfish, Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T

    1986-05-01

    The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.

  6. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    PubMed Central

    Son, Dong Ju; Akiba, Satoshi; Hong, Jin Tae; Yun, Yeo Pyo; Hwang, Seock Yeon; Park, Young Hyun; Lee, Sung Eun

    2014-01-01

    PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms. PMID:25153972

  7. Platelet abnormalities in adults with severe pulmonary arterial hypertension related to congenital heart defects (Eisenmenger syndrome).

    PubMed

    Remková, Anna; Šimková, Iveta; Valkovičová, Tatiana; Kaldarárová, Monika

    2016-12-01

    Patients with severe pulmonary arterial hypertension suffer from life-threatening thrombotic and bleeding complications. The aim of this study was to compare selected platelet, endothelial, and coagulation parameters in healthy volunteers and patients with severe pulmonary arterial hypertension because of congenital heart defects. The study included healthy volunteers (n = 50) and patients with cyanotic congenital heart defects classified as Eisenmenger syndrome (n = 41). We investigated platelet count, mean platelet volume, and platelet aggregation - spontaneous and induced by various concentrations of five agonists. Von Willebrand factor (vWF), fibrinogen, factor VIII and XII, plasminogen activator inhibitor, antithrombin, D-dimer, and antiphospholipid antibodies were also investigated. We found a decreased platelet count [190 (147-225) vs. 248 (205-295) 10 l, P < 0.0001], higher mean platelet volume [10.9 (10.1-12.0) vs. 10.2 (9.4-10.4) fl, P < 0.0001], and significantly decreased platelet aggregation (induced by five agonists, in various concentrations) in patients with Eisenmenger syndrome compared with controls. These changes were accompanied by an increase of plasma vWF antigen [141.6 (108.9-179.1) vs. 117.4 (9.2-140.7) IU/dl, P = 0.022] and serum anti-β2-glycoprotein [2.07 (0.71-3.41) vs. 0.47 (0.18-0.99) U/ml, P < 0.0001]. Eisenmenger syndrome is accompanied by platelet abnormalities. Thrombocytopenia with increased platelet size is probably due to a higher platelet turnover associated with platelet activation. Impaired platelet aggregation can reflect specific platelet behaviour in patients with Eisenmenger syndrome. These changes can be related both to bleeding and to thrombotic events. A higher vWF antigen may be a consequence of endothelial damage in Eisenmenger syndrome, but the cause for an increase of anti-β2-glycoprotein is unknown.

  8. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients.

    PubMed

    El Haouari, Mohammed

    2017-10-05

    Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases. Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2-, H2O2 or OH- , further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Characterization of the aggregation responses of camel platelets.

    PubMed

    Al Ghumlas, Abeer K; Gader, Abdel Galil M Abdel

    2013-09-01

    Despite evidence of active hemostasis, camel platelets barely respond to common aggregating agents at standard doses used for human platelet aggregation. The purpose of the study was to find out whether camel platelets can be activated by high doses or combinations of aggregation agonists, and to characterize the receptor that mediates the aggregation response to adenosine diphosphate (ADP), the most potent agonist for camel platelets known so far. Aggregation studies were performed with platelet-rich plasma (PRP) in response to multiple doses or combinations of ADP, epinephrine (EPN), collagen, and arachidonic acid (AA). Aggregation responses to ADP were performed before and after the addition of the ADP receptor (P2Y12) antagonist Clopidogrel. Camel platelets responded to ADP at doses higher than the standard dose for human platelets, and to combinations of EPN and other agonists, while no aggregation was elicited with EPN or AA alone. Clopidogrel blocked the ADP-induced aggregation responses in a dose-dependent fashion in vitro. Camel platelet aggregation can be activated by increasing the dose of some agonists such as ADP, but not AA or EPN. Irreversible aggregation of camel platelets could also be triggered by a combination of EPN and ADP, and collagen and AA. Inhibition with clopidogrel suggests that camel platelets express the ADP receptor, P2Y12. Understanding platelet function in camels will add to the understanding of platelet function in health and disease. © 2013 American Society for Veterinary Clinical Pathology.

  10. The influence of Rubus idaeus and Rubus caesius leaf extracts on platelet aggregation in whole blood. Cross-talk of platelets and neutrophils.

    PubMed

    Dudzinska, Dominika; Bednarska, Katarzyna; Boncler, Magdalena; Luzak, Boguslawa; Watala, Cezary

    2016-07-01

    Recently, polyphenols have gained attention as potential natural cardioprotective therapeutics, due to their antiplatelet, anti-inflammatory and anticoagulant activity. Species belonging to the genus Rubus sp. have been reported to be a source of polyphenolic compounds with antioxidative proprieties and beneficial biological activities. This study investigates the effects of leaf extracts obtained from red raspberry (Rubus idaeus L.) and European dewberry (Rubus caesius L.) on the reactivity of blood platelets. In ADP-stimulated blood, raspberry and dewberry extracts (15 µg/ml) markedly decreased platelet surface membrane expression of activated GPIIbIIIa receptor by 16% and 21%, respectively (P < 0.01) and significantly inhibited platelet aggregation (by 31-41% for raspberry and by 38-55% for dewberry, P < 0.01). In platelet-rich plasma (PRP), the extracts had no effect on ADP-induced platelet aggregation. The effectiveness of the extracts in whole blood and the lack of their activity in PRP indicate that leukocytes are likely to participate in the platelet response to the extracts. Our experiments show that the extracts significantly reduced the amount of free radicals released by activated neutrophils in whole blood (P < 0.001), as well as in suspensions of isolated neutrophils (P < 0.05). Moreover, the reduced number of neutrophils leads to the decreased efficiency of the extracts in the inhibition of platelet aggregation. In summary, our findings show that the raspberry and dewberry leaf extracts considerably modulated blood platelet reactivity in whole blood: they influenced blood platelet aggregation, possibly via the modulation of the redox status dependent on the oxidative activity of neutrophils.

  11. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  12. Intracellular origin and ultrastructure of platelet-derived microparticles.

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays. © 2017 International Society on Thrombosis and Haemostasis.

  13. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    PubMed

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. © 2015 Wiley Periodicals, Inc.

  14. Application of 2-dimensional difference gel electrophoresis (2D-DIGE) to the study of thrombin-activated human platelet secretome.

    PubMed

    Della Corte, Anna; Maugeri, Norma; Pampuch, Agnieszka; Cerletti, Chiara; de Gaetano, Giovanni; Rotilio, Domenico

    2008-02-01

    Thrombin is an agonist inducing platelet activation. We combined two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF MS) to analyse differentially expressed proteins secreted from thrombin-stimulated platelets. Human washed platelets, from healthy volunteers, were stimulated with thrombin 0.5 U/ml at 37 degrees C without stirring and the secreted proteins were resolved by 2D-DIGE. By image analysis, 1094 spots were detected in the 2D gel. The spots whose mean intensity showed at least a five-fold change intensity increase or decrease in the thrombin-activated platelet gel in comparison with unstimulated control were digested by trypsin and subjected to MALDI-TOF MS analysis. Peptides from mass spectra of in-gel digest samples were matched against available databases, using the Mascot search engine (Matrix Science) for peptide mass fingerprint. In the activated platelet secretome, transferrin, glutathione-transferase, WD repeat protein, ER-60, thrombospondin-1 precursor and thrombospondin were the most abundant. Also lamin A, a nuclear protein, not previously identified in platelets, appeared to be released. The novel strategy to combine 2D-DIGE with MALDI-TOF MS is a useful approach for a quantitative analysis of the effect of thrombin on the secretome profile of human platelets.

  15. Protective effects of diketopiperazines from Moslae Herba against influenza A virus-induced pulmonary inflammation via inhibition of viral replication and platelets aggregation.

    PubMed

    Zhang, Huan-Huan; Yu, Wen-Ying; Li, Lan; Wu, Fang; Chen, Qin; Yang, Yang; Yu, Chen-Huan

    2018-04-06

    Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B 2 (TXB 2 ) and 6-keto-PGF 1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells. Furthermore, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe significantly alleviated IAV-induced platelet activation and lung inflammation in mice. They could reduce the expression of CD41 and the phosphorylation of PI3K and AKT in PLTs of IAV-infected mice. These results suggested that cyclo(Ala-Ile) and Bz-Phe-Phe-OMe isolated from MH have antiviral and anticoagulant effects against IAV-induced PLT aggregation and lung inflammation via regulating CD41/PI3K/AKT pathway, and could be used as the potential agents for IAV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.

    PubMed

    Gowtham, Yashonandana J; Kumar, M S; Girish, K S; Kemparaju, K

    2012-06-01

    Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

  17. The possible involvement of protein phosphatase 1 in thrombin-induced Ca2+ influx of human platelets.

    PubMed

    Murata, K; Sakon, M; Kambayashi, J; Yukawa, M; Yano, Y; Fujitani, K; Kawasaki, T; Shiba, E; Mori, T

    1993-04-01

    Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327-334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.

  18. Characterization of a potent platelet aggregation inducer from Cerastes cerastes (Egyptian sand viper) venom.

    PubMed

    Basheer, A R; el-Asmar, M F; Soslau, G

    1995-07-03

    A potent, proteinaceous inducer of platelet aggregation designated as IVa, has been purified to homogeneity from Cerastes cerastes venom by molecular sieve and ion exchange chromatography. It is composed of 2 subunits with total M(r) of 62,000 as shown by native gel chromatography and chemical cross-linking with disuccinimidyl suberate. It is not clear at the present time whether both subunits are identical gene products, however, both have identical N-terminal sequences for the first 15 amino acids. The protein has a pI above 9.6. IVa (0.1 micrograms/ml) could aggregate platelets up to 80% and was inhibited by p-APMSF, leupeptin, iodoacetamide, protein kinase C inhibitor, phosphatase inhibitor, ATP and PGE1, while it was insensitive to acetylsalicylic acid, ADP scavenger system, protein kinase A inhibitor and hirudin. Protein IVa is a serine proteinase with thrombin-like activity as it hydrolysed thrombin chromogenic substrate CBS 34.47, its aggregatory activity was partially inhibited by monoclonal antibodies against GPIb and the thrombin receptor, as was the thrombin, and its ability to induce intracellular Ca2+ release was blocked by pretreating platelets with thrombin. Unlike thrombin, the IVa protein showed very weak coagulant activity as indicated by plasma recalcification time and fibrinogen clotting time although it could hydrolyse fibrinogen alpha-chains.

  19. NPP4 is a procoagulant enzyme on the surface of vascular endothelium

    PubMed Central

    Albright, Ronald A.; Chang, William C.; Robert, Donna; Ornstein, Deborah L.; Cao, Wenxiang; Liu, Lynn; Redick, Meredith E.; Young, J. Isaac; De La Cruz, Enrique M.

    2012-01-01

    Ap3A is a platelet-dense granule component released into the extracellular space during the second wave of platelet aggregation on activation. Here, we identify an uncharacterized enzyme, nucleotide pyrophosphatase/phosphodiesterase-4 (NPP4), as a potent hydrolase of Ap3A capable of stimulating platelet aggregation and secretion. We demonstrate that NPP4 is present on the surface of vascular endothelium, where it hydrolyzes Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Platelet aggregation assays with citrated platelet-rich plasma reveal that the primary and secondary waves of aggregation and dense granule release are strongly induced by nanomolar NPP4 in a concentration-dependent manner in the presence of Ap3A, while Ap3A alone initiates a primary wave of aggregation followed by rapid disaggregation. NPP2 and an active site NPP4 mutant, neither of which appreciably hydrolyzes Ap3A, have no effect on platelet aggregation and secretion. Finally, by using ADP receptor blockade we confirm that NPP4 mediates platelet aggregation via release of ADP from Ap3A and activation of ADP receptors. Collectively, these studies define the biologic and enzymatic basis for NPP4 and Ap3A activity in platelet aggregation in vitro and suggest that NPP4 promotes hemostasis in vivo by augmenting ADP-mediated platelet aggregation at the site of vascular injury. PMID:22995898

  20. Antiplatelet properties of escitalopram in patients with the metabolic syndrome: a dose-ranging in vitro study.

    PubMed

    Atar, Dan; Malinin, Alex; Pokov, Alex; van Zyl, Louis; Frasure-Smith, Nancy; Lesperance, Francois; Serebruany, Victor L

    2007-11-01

    There is an increasing body of evidence suggesting that selective serotonin reuptake inhibitors exhibit clinical benefit beyond treating depression, by simultaneously inhibiting platelet activity. We recently demonstrated that escitalopram (ESC), but not its major metabolites, inhibits multiple platelet biomarkers in healthy volunteers. Considering that the metabolic syndrome represents one of the major risk factors for vascular disease, we here determined how ESC affects platelet activity in such patients. We assessed the in vitro effects of preincubation with escalating (50-200 nM/l) concentrations of ESC on platelet aggregation, expression of major surface receptors by flow cytometry, and quantitatively by platelet function analyzers. Blood samples were obtained from 20 aspirin-naïve patients with documented metabolic syndrome. Pretreatment of blood samples with medium (150 nM/l), or high (200 nM/l) doses of ESC resulted in a significant inhibition of platelet aggregation induced by ADP (p=0.007) and by collagen (p=0.004). Surface platelet expression of GPIb (CD42, p=0.03), LAMP-3 (CD63, p=0.04), and GP37 (CD165, p=0.03) was decreased in the ESC-pretreated samples. Closure time by the PFA-100 analyzer was prolonged after the 200 nM/l dose (p=0.02), indicating platelet inhibition under high shear conditions. On the other hand, the lowest tested concentration of ESC (50 nM/l) did not affect platelet activity in these patients. The in vitro antiplatelet characteristics of ESC in patients with the metabolic syndrome are similar to those in healthy volunteers. However, higher ESC doses are required to induce equally potent platelet inhibition. These data justify prospective ex vivo studies with the highest therapeutic dose to determine the potential clinical advantage of ESC in high-risk patients with vascular disease.

  1. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis

    PubMed Central

    Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.

    2015-01-01

    Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254

  2. Characterization of a novel function-blocking antibody targeted against the platelet P2Y1 receptor.

    PubMed

    Karim, Zubair A; Vemana, Hari Priya; Alshbool, Fatima Z; Lin, Olivia A; Alshehri, Abdullah M; Javaherizadeh, Payam; Paez Espinosa, Enma V; Khasawneh, Fadi T

    2015-03-01

    Platelet hyperactivity is associated with vascular disease and contributes to the genesis of thrombotic disorders. ADP plays an important role in platelet activation and activates platelets through 2 G-protein-coupled receptors, the Gq-coupled P2Y1 receptor (P2Y1R), and the Gi-coupled P2Y12 receptor. Although the involvement of the P2Y1R in thrombogenesis is well established, there are no antagonists that are currently available for clinical use. Our goal is to determine whether a novel antibody targeting the ligand-binding domain, ie, second extracellular loop (EL2) of the P2Y1R (EL2Ab) could inhibit platelet function and protect against thrombogenesis. Our results revealed that the EL2Ab does indeed inhibit ADP-induced platelet aggregation, in a dose-dependent manner. Furthermore, EL2Ab was found to inhibit integrin GPIIb-IIIa activation, dense and α granule secretion, and phosphatidylserine exposure. These inhibitory effects translated into protection against thrombus formation, as evident by a prolonged time for occlusion in a FeCl3-induced thrombosis model, but this was accompanied by a prolonged tail bleeding time. We also observed a dose-dependent displacement of the radiolabeled P2Y1R antagonist [(3)H]MRS2500 from its ligand-binding site by EL2Ab. Collectively, our findings demonstrate that EL2Ab binds to and exhibits P2Y1R-dependent function-blocking activity in the context of platelets. These results add further evidence for a role of the P2Y1R in thrombosis and validate the concept that targeting it is a relevant alternative or complement to current antiplatelet strategies. © 2015 American Heart Association, Inc.

  3. Pharmacological evaluation of aqueous extract of Althaea officinalis flower grown in Lebanon.

    PubMed

    Hage-Sleiman, Rouba; Mroueh, Mohamad; Daher, Costantine F

    2011-03-01

    Althaea officinalis Linn. (Malvaideae) flower is commonly used in folk medicine in Lebanon and neighboring countries. Although most of the studies have been conducted on the mucilage-rich roots, little is known about the flower. This study investigates the potential role of aqueous extract of Althaea officinalis flower in lipemia, gastric ulcer, inflammation, and platelet aggregation using the rat model. Blood lipid profile and liver function were assessed after 1 month of extract intake via drinking water. Anti-inflammatory activity was tested against acute and chronic inflammation induced by carrageenan and formalin, respectively. Antiulcer activity was evaluated using ethanol-induced gastric ulcer. Antiplatelet activity was investigated in vitro using the adenosine 5'-diphosphate (ADP)-induced platelet aggregation bioassay. The 50 mg/kg body weight dose resulted in significant increase in serum HDL cholesterol level with no effects on stool cholesterol and triacylglycerol. Increasing the dose to 500 mg/kg body weight caused a significant decrease in stool water content. No adverse effect on liver enzymes was observed. Significant anti-inflammatory (acute and chronic inflammation) and antiulcerogenic activities were observed at all used doses (50, 100, and 250 mg/kg body). Time-dependent inhibition of platelet aggregation was demonstrated at 500 µg/ml concentration. The aqueous extract of Althaea officinalis flower demonstrated potential benefits in lipemia, inflammation, gastric ulcer, and platelet aggregation with no visible adverse effect.

  4. Platelet P2Y12 receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng

    PubMed Central

    Gao, B; Huang, L; Liu, H; Wu, H; Zhang, E; Yang, L; Wu, X; Wang, Z

    2014-01-01

    BACKGROUND AND PURPOSE Saponins isolated from Panax notoginseng (Burk.) F.H. Chen have been shown to relieve thrombogenesis and facilitate haemostasis. However, it is not known which saponin accounts for this haemostatic effect. Hence, in the present study we aimed to identify which saponins contribute to its haemostatic activity and to elucidate the possible underlying mechanisms. EXPERIMENTAL APPROACH Platelet aggregation was analysed using a platelet aggregometer. Prothrombin time, activated partial thromboplastin time and thrombin time were measured using a blood coagulation analyser, which was further corroborated with bleeding time and thrombotic assays. The interaction of notoginsenoside Ft1 with the platelet P2Y12 receptor was determined by molecular docking analysis, cytosolic Ca2+ and cAMP measurements, and phosphorylation of PI3K and Akt assays. KEY RESULTS Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca2+ accumulation, effects that were attenuated by clopidogrel. Molecular docking analysis suggested that Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca2+ evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor. Ft1 also affected the production of cAMP and increased phosphorylation of PI3K and Akt downstream of P2Y12 signalling pathways. CONCLUSION AND IMPLICATIONS Ft1 enhanced platelet aggregation by activating a signalling network mediated through P2Y12 receptors. These novel findings may contribute to the effective utilization of this compound in the therapy of haematological disorders. PMID:24117220

  5. Nitric oxide activity in platelets of dengue haemorrhagic fever patients: the apparent paradoxical role of ADMA and l-NMMA.

    PubMed

    Matsuura, Cristiane; Moraes, Thalyta L; Barbosa, Julia B; Moss, Monique B; Siqueira, Mariana A S; Mann, Giovanni E; Neto, Miguel Lemos; Brunini, Tatiana M C; Mendes-Ribeiro, Antonio Claudio

    2012-03-01

    Dengue haemorrhagic fever (DHF) is a prevalent acute disease that occurs in patients infected by an arbovirus in tropical and subtropical regions. We have previously shown increased intraplatelet nitric oxide (NO) production in patients with dengue fever associated with reduced platelet aggregation. In this study, l-arginine transport as well as expression and activity of nitric oxide synthase (NOS) isoforms in the presence or absence of l-arginine analogues were examined in 23 DHF patients. l-arginine transport and NOS activity in platelets were increased in patients with DHF compared with controls. However, platelet endothelial NOS (eNOS) and inducible (iNOS) protein levels did not differ between healthy controls and DHF patients. Endogenous or exogenous analogues did not inhibit platelet NOS activity from DHF patients. In contrast, endogenous l-arginine analogues [N(G)-monomethyl-l-arginine (l-NMMA) and asymmetric dimethylarginine (ADMA)] inhibited NOS activity in platelets from healthy subjects. These results show the first evidence that the intraplatelet l-arginine-NO pathway is activated in DHF patients. The lack of inhibition of NO formation in vitro by all l-arginine analogues tested in DHF platelets may suggest another mechanism by which NOS activity can be regulated. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  6. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    PubMed

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  7. [Diagnosis and treatment of heparin-induced thrombocytopenia (HIT) based on its atypical immunological features].

    PubMed

    Miyata, Shigeki; Maeda, Takuma

    2016-03-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic side effect of heparin therapy caused by HIT antibodies, i.e., anti-platelet factor 4 (PF4)/heparin IgG with platelet-activating properties. For serological diagnosis, antigen immunoassays are commonly used worldwide. However, such assays do not indicate their platelet-activating properties, leading to low specificity for the HIT diagnosis. Therefore, over-diagnosis is currently the most serious problem associated with HIT. The detection of platelet-activating antibodies using a washed platelet activation assay is crucial for appropriate HIT diagnosis. Recent advances in our understanding of the pathogenesis of HIT include it having several clinical features atypical for an immune-mediated disease. Heparin-naïve patients can develop IgG antibodies as early as day 4, as in a secondary immune response. Evidence for an anamnestic response on heparin re-exposure is lacking. In addition, HIT antibodies are relatively short-lived, unlike those in a secondary immune response. These lines of evidence suggest that the mechanisms underlying HIT antibody formation may be compatible with a non-T cell-dependent immune reaction. These atypical clinical and serological features should be carefully considered while endeavoring to accurately diagnose HIT, which leads to appropriate therapies such as immediate administration of an alternative anticoagulant to prevent thromboembolic events and re-administration of heparin during surgery involving cardiopulmonary bypass when HIT antibodies are no longer detectable.

  8. Growth Factor Receptor–Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif–Mediated Signaling in Platelets

    PubMed Central

    Morowski, Martina; Schiessl, Sarah; Schäfer, Carmen M.; Watson, Stephanie K.; Hughes, Craig E.; Ackermann, Jochen A.; Radtke, Daniel; Hermanns, Heike M.; Watson, Steve P.; Nitschke, Lars; Nieswandt, Bernhard

    2015-01-01

    Rationale Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem) immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome. PMID:24265393

  9. Blood Platelets in the Progression of Alzheimer’s Disease

    PubMed Central

    Gowert, Nina S.; Donner, Lili; Chatterjee, Madhumita; Eisele, Yvonne S.; Towhid, Seyda T.; Münzer, Patrick; Walker, Britta; Ogorek, Isabella; Borst, Oliver; Grandoch, Maria; Schaller, Martin; Fischer, Jens W.; Gawaz, Meinrad; Weggen, Sascha; Lang, Florian; Jucker, Mathias; Elvers, Margitta

    2014-01-01

    Alzheimer’s disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke. PMID:24587388

  10. Pyridoxine improves platelet nitric oxide synthase dysfunction induced by advanced glycation end products in vitro.

    PubMed

    Han, Yi; Liu, Yuan; Mi, Qiongyu; Xie, Liping; Huang, Yan; Jiang, Qin; Chen, Qi; Ferro, Albert; Liu, Naifeng; Ji, Yong

    2010-06-01

    Advanced glycation end products (AGEs) increase platelet aggregation and suppress vascular nitric oxide (NO) synthase (NOS) activity, and these effects may contribute to the atherothrombotic disease seen in diabetes. The aims of this study were to determine in vitro whether pyridoxine can abrogate the impairment in platelet NOS activity caused by AGEs, and to determine the mechanism by which it does this. Platelet aggregation was measured by Born aggregometry. Intraplatelet cyclic guanosine-3',5'-monophosphate (cGMP, an index of bioactive NO) was measured by radioimmunoassay. Serine-1177-specific phosphorylation of NOS type 3 (NOS-3) and phosphorylation of protein kinase Akt were determined in platelets by Western blotting. Phosphatidylinositol 3-kinase (PI3K) activity in platelets was ascertained by homogeneous time-resolved fluorescence (HTRF) assay. We found that AGE-modified albumin (AGEs) 200 mg/L increased platelet aggregability and decreased intraplatelet cGMP; these effects were largely attenuated by pyridoxine. Western blotting studies revealed that AGEs decreased NOS-3 phosphorylation on serine-1177, increased NOS-3 O-glycosylation, and decreased serine phosphorylation of protein kinase Akt; all of these changes were abrogated by pyridoxine. Direct measurement of PI3K activity in platelets demonstrated that all of the above effects could be attributed to a suppression by AGEs of PI3K activity, which was prevented by co-incubation with pyridoxine. We conclude that pyridoxine is effective in ameliorating the dysfunction of platelet NO signaling in response to AGEs, through improving PI3K activity, and hence downstream Akt phosphorylation and in turn serine-1177 phosphorylation of NOS-3.

  11. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease

    PubMed Central

    van Golen, Rowan F.; Stevens, Katarzyna M.; Colarusso, Pina; Jaeschke, Hartmut; Heger, Michal

    2016-01-01

    Background Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. Aims To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. Methods Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. Results Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. Conclusions Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. Relevance for patients I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I/R injury and improving clinical outcomes. PMID:26925465

  12. Arachidonic acid depletion extends survival of cold-stored platelets by interfering with the [glycoprotein Ibα – 14-3-3ζ] association

    PubMed Central

    van der Wal, Dianne E.; Gitz, Eelo; Du, Vivian X.; Lo, Kimberly S.L.; Koekman, Cornelis A.; Versteeg, Sabine; Akkerman, Jan Willem N.

    2012-01-01

    Background Cold storage of platelets reduces bacterial growth and preserves their hemostatic properties better than current procedures do. However, storage at 0°C induces [14-3-3ζ-glycoprotein Ibα] association, 14-3-3ζ release from phospho-Bad, Bad activation and apoptosis. Design and Methods We investigated whether arachidonic acid, which also binds 14-3-3ζ, contributes to coldinduced apoptosis. Results Cold storage activated P38-mitogen-activated protein kinase and released arachidonic acid, which accumulated due to cold inactivation of cyclooxygenase-1/thromboxane synthase. Accumulated arachidonic acid released 14-3-3ζ from phospho-Bad and decreased the mitochondrial membrane potential, which are steps in the induction of apoptosis. Addition of arachidonic acid did the same and its depletion made platelets resistant to cold-induced apoptosis. Incubation with biotin-arachidonic acid revealed formation of an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex. Indomethacin promoted complex formation by accumulating arachidonic acid and released 14-3-3ζ from cyclo-oxygenase-1. Arachidonic acid depletion prevented the cold-induced reduction of platelet survival in mice. Conclusions We conclude that cold storage induced apoptosis through an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex, which released 14-3-3ζ from Bad in an arachidonic acid-dependent manner. Although arachidonic acid depletion reduced agonist-induced thromboxane A2 formation and aggregation, arachidonic acid repletion restored these functions, opening ways to reduce apoptosis during storage without compromising hemostatic functions post-transfusion. PMID:22371179

  13. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development

    PubMed Central

    Jäckel, Sven; Saffarzadeh, Mona; Langer, Florian

    2017-01-01

    Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)–dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3−/− mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5−/− mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells. PMID:28223279

  14. Effect of Physical Exercise on Platelet Reactivity in Patients with Dual Antiplatelet Therapy.

    PubMed

    Brunner, Stefan; Rizas, Konstantinos; Hamm, Wolfgang; Mehr, Michael; Lackermair, Korbinian

    2018-06-14

    It is known that physical exercise may increase platelet activity. However, the effect of exercise on platelet reactivity in patients on dual antiplatelet therapy has not been investigated yet. In our study, 21 patients with coronary artery disease on dual antiplatelet therapy and 10 controls were enrolled. We performed an exercise test using a cycle ergometer and determined the adenosine diphosphate-induced platelet reactivity before and immediately after exercise testing. Additionally, we analysed maximal exercise capacity and an electrocardiogram. Further, we assessed chromogranin A and P-selectin levels and platelet counts. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Treatment of platelets with riboflavin and ultraviolet light mediates complement activation and suppresses monocyte interleukin-12 production in whole blood.

    PubMed

    Loh, Y S; Dean, M M; Johnson, L; Marks, D C

    2015-11-01

    Pathogen inactivation (PI) and storage may alter the immunomodulatory capacity of platelets (PLTs). The aim of this study was to examine the effect of PI (Riboflavin and ultraviolet light treatment) and storage on the capacity of PLTs to induce cytokine responses in recipient inflammatory cells. A pool and split design was used to prepare untreated and PI-treated buffy coat-derived platelet concentrates (PCs). Samples were taken on days 2 and 7 postcollection and incubated with ABO/RhD-matched fresh whole blood for 6 h with or without lipopolysaccharide (LPS). The intracellular production of IP-10, MCP-1, MIP-1α, IL-8, IL-6, IL-10, IL-12, TNF-α and MIP-1β in monocytes and neutrophils was assessed using flow cytometry. Complement proteins in PLT supernatants were measured using a cytometric bead array. PLTs and PLT supernatant (both untreated and PI-treated) resulted in modulation of intracellular MIP-1β and IL-12 production in monocytes. Compared to untreated PLTs, PI-treated PLTs resulted in significantly lower LPS-induced monocyte IL-12 production (day 7). The concentration of C3a and C5a (and their desArg forms) was significantly increased in PLT supernatants following PI. PI results in decreased LPS-induced monocyte IL-12 production and increased complement activation. The association between platelet-induced complement activation and IL-12 production warrants further investigation. © 2015 International Society of Blood Transfusion.

  16. Role of G protein signaling in the formation of the fibrin(ogen)-integrin αIIbβ3-actin cytoskeleton complex in platelets.

    PubMed

    Budnik, Ivan; Shenkman, Boris; Savion, Naphtali

    2016-09-01

    Effective platelet function requires formation of a physical link between fibrin(ogen), integrin αIIbβ3, and cytoplasmic actin filaments. We investigated the role of the Gαq, Gαi, and Gα12/13 families of heterotrimeric GTP-binding proteins (G proteins) in the assembly of a ligand-αIIbβ3-actin cytoskeleton complex. Selective and combined activation of the G proteins was achieved by using combinations of various platelet agonists and inhibitors. Formation and stability of fibrinogen-αIIbβ3 interaction were evaluated by the extent of platelet aggregation and the rate of eptifibatide-induced platelet disaggregation; association of αIIbβ3 with the cytoskeleton was analyzed by western blot. Formation of the fibrin-αIIbβ3-actin cytoskeleton complex was evaluated by rotational thromboelastometry assay in which clot formation was induced by the mixture of reptilase and factor XIIIa. We demonstrated that involvement of heterotrimeric G proteins in the formation of the ligand-αIIbβ3-cytoskeleton complex depends on whether fibrinogen or fibrin serves as the integrin ligand. Formation of the fibrinogen-αIIbβ3-cytoskeleton complex requires combined activation of at least two G protein pathways while the maximal αIIbβ3-cytoskeleton association and the strongest αIIbβ3-fibrinogen binding supporting irreversible platelet aggregation require combined activation of all three-Gαq, Gαi, and Gα12/13-G protein families. In contrast, formation of the fibrin-αIIbβ3-cytoskeleton complex mediating clot retraction is critically dependent on the activation of the Gαi family, especially on the activation of Gαz.

  17. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus

    PubMed Central

    Grice, I. Darren; Rogers, Kelly L.; Griffiths, Lyn R.

    2011-01-01

    Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions. PMID:20047890

  18. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow.

    PubMed

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Bruel, Arlette; Berrabah, Mohamed; Legrand, Chantal; Fauvel-Lafeve, Françoise; Mekhfi, Hassane

    2012-08-10

    Blood platelets are directly involved in both haemostatic and pathologic thrombotic processes, through their adhesion, secretion and aggregation. In this study, we investigated the effect of genins (aglycone flavonoids without sugar group) isolated from parsley (Petroselinum crispum) leaves in vitro on human platelet aggregation and adhesion to a collagen-coated surface under physiologic flow conditions. The aggregation and adhesion studies were monitored after pre-incubation of platelets with genins. Genins inhibited dose dependently aggregation induced by thrombin, ADP and collagen. The strongest effect was observed in collagen induced aggregation (IC50 = 0.08 ± 0.01 mg/ml). The HPLC identification of genins compounds revealed the presence of keampferol, apigenin and other not identified compounds. The aggregation tests showed that these compounds have anti-aggregating activity. In addition, adhesion of human platelets to collagen was greatly decreased (over 75 %) by genins (0.3 mg/ml). While the mechanism by which genins act is unclear, we suggest that these compounds may interfere with a multiple target step in the haemostasis process. These results show that genins isolated from parsley has a potent antiplatelet activity. It may be an important source of beneficial antiplatelet compounds that decrease thrombosis and cardiovascular diseases.

  19. Anti-platelet and anti-thrombotic effect of a traditional herbal medicine Kyung-Ok-Ko.

    PubMed

    Kim, Tae-Ho; Lee, Kyoung Mee; Hong, Nam Doo; Jung, Yi-Sook

    2016-02-03

    Kyung-Ok-Ko (KOK), a traditional herbal prescription, contains six main ingredients; Rehmannia glutinosa var. purpurae, Lycium chinense, Aquillaria agallocha, Poria cocos, Panax ginseng, and honey. KOK has been widely taken as a traditional oriental medicine for improving blood circulation or age-related symptoms, such as dementia and stroke. However, the effect of KOK on platelet activity has not been clarified. To evaluate the effect of KOK on platelet function, we evaluated its effect on functional markers of platelet activation such as aggregation and shape change. As a mechanism study for the effect of KOK, we examined its effect on granule secretion, intracellular Ca(2+) increase, and PLCγ and Akt activation. To investigate the effect of orally administered KOK (0.5, 1, 2 g/kg), we examined its ex vivo effect on platelet aggregation in rat, and its in vivo anti-thrombotic effect in mice thromboembolism model. Furthermore, the effect of KOK on bleeding time was examined to estimate its potential side effect. KOK (0.3, 1, 3, 10 mg/ml) inhibited collagen-induced platelet aggregation and shape change in rat platelets in a concentration-dependent manner. The mechanism for the anti-platelet effect of KOK seems to involve the inhibition of ATP release, intracellular Ca(2+) elevation, and the phosphorylation of PLCγ and Akt. In rat ex vivo study, KOK (2 g/kg, p.o. for 1 day, and 0.5, 1, 2 g/kg, p.o. for 7 days) also had significant inhibitory effects on collagen-induced platelet aggregation. In addition, KOK showed a significant protective effect against thrombosis attack in mice. The prolongation of bleeding time by KOK was much less than that by ASA, suggesting a beneficial potential of KOK than ASA in view of side effect. These findings suggest that KOK elicits remarkable anti-platelet and anti-thrombotic effects with less side effect of bleeding, and therefore, it may have a therapeutic potential for the prevention of platelet-associated cardiovascular diseases. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow

    PubMed Central

    Cosemans, Judith M. E. M.; Schols, Saskia E. M.; Stefanini, Lucia; de Witt, Susanne; Feijge, Marion A. H.; Hamulyák, Karly; Deckmyn, Hans; Bergmeier, Wolfgang

    2011-01-01

    A microscopic method was developed to study the role of platelets in fibrin formation. Perfusion of adhered platelets with plasma under coagulating conditions at a low shear rate (250−1) resulted in the assembly of a star-like fibrin network at the platelet surface. The focal fibrin formation on platelets was preceded by rises in cytosolic Ca2+, morphologic changes, and phosphatidylserine exposure. Fibrin formation was slightly affected by αIIbβ3 blockage, but it was greatly delayed and reduced by the following: inhibition of thrombin or platelet activation; interference in the binding of von Willebrand factor (VWF) to glycoprotein Ib/V/IX (GpIb-V-IX); plasma or blood from patients with type 1 von Willebrand disease; and plasma from mice deficient in VWF or the extracellular domain of GpIbα. In this process, the GpIb-binding A1 domain of VWF was similarly effective as full-length VWF. Prestimulation of platelets enhanced the formation of fibrin, which was abrogated by blockage of phosphatidylserine. Together, these results show that, in the presence of thrombin and low shear flow, VWF-induced activation of GpIb-V-IX triggers platelet procoagulant activity and anchorage of a star-like fibrin network. This process can be relevant in hemostasis and the manifestation of von Willebrand disease. PMID:21037087

  1. CXCL4-induced macrophages in human atherosclerosis.

    PubMed

    Domschke, Gabriele; Gleissner, Christian A

    2017-09-09

    Atherosclerosis is considered an inflammatory disease of the arterial wall. Monocytes and monocyte-derived cells (most often termed macrophages) play an essential role in the formation of atherosclerotic lesions, as they take up lipids leading to subsequent foam cell formation accompanied by release of pro-inflammatory cytokines. Similarly, platelets have been discovered to represent an important cell type mediating inflammatory and immune processes in atherogenesis, mainly by secreting chemokines, which are stored in the platelets' alpha granules, upon platelet activation. Therefore, the interaction between monocyte-derived cells and platelets is of exceptional importance. In this review, we specifically focus on the chemokine (platelet factor-4, PF4) and its effects on monocytes and monocyte-derived cells. By formation of heterodimers dimers and -oligomers with CCL5, CXCL4 induces binding of monocytes cells to endothelial cell and thereby promotes diapedesis of monocytes into the subendothelial space. CXCL4 also affects the differentiation of monocytes as it induces a specific macrophage phenotype, which we suggested to term "M4". For example, CXCL4-induced macrophages irreversibly lose the hemoglobin-haptoglobin scavenger receptor CD163. The combination of CD68, S100A8, and MMP7 turned out to reliably identify M4 macrophages both in vitro and in vivo within atherosclerotic lesions. In human atherosclerotic plaques, M4 macrophages are predominantly present in the adventitia and the intima and their prevalence is associated with plaque instability suggesting that they are a marker of pro-inflammatory activity. Overall, CXCL4-induced M4 macrophages may represent a target for diagnostic and therapeutic interventions in human atherosclerotic disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel.

    PubMed

    Wolfs, Jef L; Wielders, Simone J; Comfurius, Paul; Lindhout, Theo; Giddings, John C; Zwaal, Robert F; Bevers, Edouard M

    2006-10-01

    The platelet procoagulant response requires a sustained elevation of the intracellular Ca2+ concentration, [Ca2+]i, causing exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. An increased [Ca2+]i also activates Ca2+-dependent K+ channels. Here, we investigated the contribution of the efflux of K+ ions on the platelet procoagulant response in collagen-thrombin-activated platelets using selective K+ channel blockers. The Gardos channel blockers clotrimazol, charybdotoxin, and quinine caused a similar decrease in prothrombinase activity as well as in the number of PS-exposing platelets detected by fluorescence-conjugated annexin A5. Apamin and iberiotoxin, inhibitors of other K+ channels, were without effect. Only clotrimazol showed a significant inhibition of the collagen-plus-thrombin-induced intracellular calcium response. Clotrimazol and charybdotoxin did not inhibit aggregation and release under the conditions used. Inhibition by Gardos channel blockers was reversed by valinomycin, a selective K+ ionophore. The impaired procoagulant response of platelets from a patient with Scott syndrome was partially restored by pretreatment with valinomycin, suggesting a possible defect of the Gardos channel in this syndrome. Collectively, these results provide evidence for the involvement of efflux of K+ ions through Ca2+-activated K+ channels in the procoagulant response of platelets, opening potential strategies for therapeutic interventions.

  3. Dietary calcium attenuates platelet aggregation and intracellular Ca2+ mobilization in spontaneously hypertensive rats

    NASA Technical Reports Server (NTRS)

    Otsuka, K.; Watanabe, M.; Yue, Q.; McCarron, D. A.; Hatton, D.

    1997-01-01

    Spontaneously hypertensive rats (SHR) are known to be blood pressure sensitive to dietary calcium. The effects of dietary calcium on platelet aggregation and intracellular Ca2+ mobilization were assessed by turbidimetric methods and fura-2 methods, respectively, in washed platelets of SHR. Ca2+ ATPase activity was examined in aortic membrane fractions. Six weeks of dietary calcium supplementation attenuated the increase of systolic blood pressure (SBP 199 +/- 16 v 170 +/- 9 mm Hg, P < .001) and thrombin-induced platelet aggregation (84.5 +/- 3.7 v 73.7 +/- 7.4%, P < .004) at 9 weeks of age. The ionomycin-induced intracellular calcium ([Ca2+]i) peak in the absence of external Ca2+, which reflects [Ca2+]i storage size, and thrombin-evoked [Ca2+]i release from [Ca2+]i storage were decreased by 2.0% Ca diet (472 +/- 55 v 370 +/- 23 nmol/L, P < .001, 339 +/- 29 v 278 +/- 33 nmol/L, P < .002). In addition, SBP was positively correlated with platelet aggregation (r = 0.703, P = .0088), thrombin-evoked [Ca2+]i (r = 0.739, P = .0044), and ionomycin-induced [Ca2+]i (r = 0.591, P = .0415), respectively. However, there was no significant effect of dietary calcium on Ca2+-ATPase activity in aortic membranes. These results suggest that dietary calcium supplementation had a beneficial effect on platelets of SHR by attenuating [Ca2+]i mobilization from [Ca2+]i storage. The hypotensive effect of dietary calcium might be associated with attenuated [Ca2+]i mobilization in SHR.

  4. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles.

    PubMed

    Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo

    2018-04-01

    Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies.

    PubMed

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5'-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1  μ m(2) (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods.

  6. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods. PMID:24159349

  7. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  8. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells

    PubMed Central

    Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu

    2010-01-01

    Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095

  9. Effects of Antimalarial Tafenoquine on Blood Platelet Activity and Survival.

    PubMed

    Cao, Hang; Bissinger, Rosi; Umbach, Anja T; Al Mamun Bhuyan, A; Lang, Florian; Gawaz, Meinrad

    2017-01-01

    The 8-aminoquinoline tafenoquine has been shown to be effective against Plasmodia, Leishmania and Trypanosoma. The substance is at least in part effective by triggering apoptosis of the parasites. Moreover, tafenoquine has been shown to trigger eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The effect of tafenoquine on eryptosis is in part due to stimulation of Ca2+ entry and oxidative stress. Ca2+ entry is a critical event in the activation of blood platelets by thrombin and collagen related peptide (CRP). The present study explored, whether tafenoquine influences Ca2+ entry, activation and apoptosis of blood platelets. Platelets isolated from wild-type mice were exposed for 30 minutes to tafenoquine (2.5 µg/ml) without or with an additional treatment with thrombin (0.01 U/ml) or CRP (2 µg/ml or 5 µg/ml). Flow cytometry was employed to estimate cytosolic Ca2+-activity ([Ca2+] i ) from Fluo-3 fluorescence, platelet degranulation from P-selectin abundance, integrin activation from α IIb β 3 integrin abundance, phosphatidylserine abundance from annexin-V-binding, relative platelet volume from forward scatter, reactive oxygen species (ROS) from DCF fluorescence, caspase 3 activity with an active caspase-3 Staining kit, and aggregation utilizing staining with CD9-APC and CD9-PE. Both, thrombin (0.01 U/ml) and CRP (2 µg/ml or 5 µg/ml), significantly increased [Ca2+] i , P-selectin abundance, active α IIb β 3 integrin, and annexin-V-binding, and both significantly decreased platelet volume, activated caspase 3 and stimulated aggregation. Administration of tafenoquine (2.5 µg/ml, 30 min) significantly decreased [Ca2+] i both, in the absence and presence of thrombin and CRP. Tafenoquine significantly blunted the effect of thrombin and CRP on [Ca2+] i , P-selectin abundance, and active α IIb β 3 integrin, but significantly increased ROS and annexin-V-binding, significantly augmented the effect of thrombin on caspase 3 activity and platelet volume and significantly enhanced platelet aggregation. Tafenoquine counteracts thrombin and CRP induced increase of cytosolic Ca2+ activity and platelet activation, but enhances platelet apoptosis and platelet aggregation. © 2017 The Author(s) Published by S. Karger AG, Basel.

  10. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  11. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  12. Meal-induced platelet activation in diabetes mellitus type 1 or type 2 is related to postprandial insulin rather than glucose levels.

    PubMed

    Spectre, Galia; Stålesen, Ragnhild; Östenson, Claes-Göran; Hjemdahl, Paul

    2016-05-01

    Postprandial platelet activation was related to postprandial insulin rather than glucose levels in a previous meal insulin study in type 2 diabetes mellitus (T2DM). We therefore compared postprandial platelet activation in type 1 (T1DM) patients without insulin secretion and T2DM patients with high postprandial insulin levels. Patients with T1DM (n=11) and T2DM (n=12) were studied before and 90min after a standardized meal without premeal insulin. Five T1DM patients volunteered for a restudy with their regular premeal insulin. Platelet activation was assessed by flow cytometry, with and without the thromboxane analogue U46619 or ADP, and by whole blood aggregometry (Multiplate®). Effects of insulin (100μU/mL) in vitro were also studied. Before the meal, glucose, insulin and platelet activation markers other than platelet-leukocyte aggregates (PLAs) were similar in T1DM and T2DM; PLAs were higher in T1DM. Postprandial glucose levels increased more markedly in T1DM (to 22.1±1.4 vs. 11.2±0.6mmol/L) while insulin levels increased only in T2DM (from 24.4±4.4 to 68.8±12.3μU/mL). Platelet P-selectin expression, fibrinogen binding and PLA formation stimulated by U46619 were markedly enhanced (approximately doubled) and whole blood aggregation stimulated by U46619 was increased (p<0.05 for all) after the meal in T2DM patients but not in T1DM patients. The pilot study with premeal insulin in T1DM patients showed postprandial platelet activation when postprandial insulin levels increased. In vitro insulin mildly activated platelets in both groups. Postprandial platelet activation via the thromboxane pathway is related to postprandial hyperinsulinemia and not to postprandial hyperglycaemia in patients with diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Increased nitric oxide production in platelets from severe chronic renal failure patients.

    PubMed

    Siqueira, Mariana Alves de Sá; Brunini, Tatiana M C; Pereira, Natália Rodrigues; Martins, Marcela Anjos; Moss, Monique Bandeira; Santos, Sérgio F; Lugon, Jocemir R; Mendes-Ribeiro, Antônio C

    2011-02-01

    Nitric oxide (NO) production occurs through oxidation of the amino acid L-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated (da Silva et al. 2005) an enhancement of the L-arginine-NO-cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet L-arginine-NO-cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.

  14. Adverse Effects of Hemorrhagic Shock Resuscitation with Stored Blood are Ameliorated by Inhaled Nitric Oxide in Lambs

    PubMed Central

    Baron, David M.; Beloiartsev, Arkadi; Nakagawa, Akito; Martyn, Trejeeve; Stowell, Christopher P.; Malhotra, Rajeev; Mayeur, Claire; Bloch, Kenneth D.; Zapol, Warren M.

    2013-01-01

    Objectives Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Plasma hemoglobin scavenges nitric oxide (NO), which can cause vasoconstriction, induce inflammation and activate platelets. We hypothesized that transfusion of RBCs stored for prolonged periods would induce adverse effects (pulmonary vasoconstriction, tissue injury, inflammation, and platelet activation) in lambs subjected to severe hemorrhagic shock, and that concurrent inhalation of NO would prevent these adverse effects. Design Animal study. Setting Research laboratory at the Massachusetts General Hospital, Boston, MA. Subjects Seventeen awake Polypay-breed lambs. Interventions Lambs were subjected to 2 h of hemorrhagic shock by acutely withdrawing 50% of their blood volume. Lambs were resuscitated with autologous RBCs stored for 2 h or less (fresh) or 39±2 (mean±SD) days (stored). Stored RBCs were administered with or without breathing NO (80 ppm) during resuscitation and for 21 h thereafter. Measurements and Main Results We measured hemodynamic and oxygenation parameters, markers of tissue injury and inflammation, plasma hemoglobin concentrations, and platelet activation. Peak pulmonary arterial pressure was higher after resuscitation with stored than with fresh RBCs (24±4 vs. 14±2 mmHg, p<0.001) and correlated with peak plasma hemoglobin concentrations (R2=0.56, p=0.003). At 21 h after resuscitation, pulmonary myeloperoxidase activity was higher in lambs resuscitated with stored than with fresh RBCs (11±2 vs. 4±1 U/g, p=0.007). Furthermore, transfusion of stored RBCs increased plasma markers of tissue injury and sensitized platelets to adenosine diphosphate activation. Breathing NO prevented the pulmonary hypertension, and attenuated the pulmonary myeloperoxidase activity, as well as tissue injury and sensitization of platelets to adenosine diphosphate. Conclusions Our data suggest that resuscitation of lambs from hemorrhagic shock with autologous stored RBCs induces pulmonary hypertension and inflammation, which can be ameliorated by breathing NO. PMID:23887236

  15. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis.

    PubMed Central

    Freedman, J E; Loscalzo, J; Benoit, S E; Valeri, C R; Barnard, M R; Michelson, A D

    1996-01-01

    Highly reactive oxygen species rapidly inactivate nitric oxide (NO), and endothelial product which inhibits platelet activation. We studied platelet inhibition by NO in two brothers with a cerebral thrombotic disorder. Both children had hyperreactive platelets, as determined by whole blood platelet aggregometry and flow cytometric analysis of the platelet surface expression of P-selectin. Mixing experiments showed that the patients'platelets behaved normally in control plasma; however, control platelets suspended in patient plasma were not inhibited by NO. As determined by flow cytometry, in the presence of plasma from either patient there was normal inhibition of the thrombin-induced expression of platelet surface P-selectin by prostacyclin, but not NO. Using a scopoletin assay, we measured a 2.7-fold increase in plasma H2O2 generation in one patient and a 3.4-fold increase in the second patient, both compared woth control plasma. Glutathione peroxidase (GSH-Px) activity was decreased in the patients' plasmas compared with control plasma. The addition of exogenous GSH-Px led to restoration of platelet inhibition by NO. These data show that, in these patients' plasmas, impaired metabolism of reactive oxygen species reduces the bioavailability of NO and impairs normal platelet inhibitory mechanisms. These findings suggest that attenuated NO-mediated platelet inhibition produced by increased reactive oxygen species or impaired antioxidant defense may cause a thrombotic disorder in humans. PMID:8613552

  16. Functional expression of cysteinyl leukotriene receptors on human platelets.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.

  17. Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats.

    PubMed

    Seif, A A

    2015-06-01

    Hypercholesterolemia indirectly increases the risk of myocardial infarction by enhancing platelet aggregation. Chromium has been shown to lower plasma lipids. This study was designed to investigate whether chromium inhibits platelet aggregation under hypercholesterolemic conditions. Albino rats were divided into four groups: control rats fed with a normolipemic diet (NLD group), chromium-supplemented rats fed with NLD (NLD + Cr group), rats fed with a high-fat diet (HF group), and chromium-supplemented rats fed with HF (HF + Cr group). After 10 weeks, blood was collected to determine adenosine diphosphate and collagen-induced platelet aggregation and plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B, and thromboxane B2. Low-density lipoprotein cholesterol was calculated by Friedewald formula. High-fat diet animals displayed significant elevation of plasma lipids and platelet aggregation which was normalized to control levels by chromium supplementation. Chromium supplementation in normolipemic (NLD + Cr) rats did not produce significant changes in either plasma lipids or platelet activity. Chromium supplementation to hypercholesterolemic rats improves the lipid profile and returns platelet hyperaggregability to control levels. This normalization is mostly due to a reduction in plasma cholesterol level.

  18. Low-level light treatment ameliorates immune thrombocytopenia

    PubMed Central

    Yang, Jingke; Zhang, Qi; Li, Peiyu; Dong, Tingting; Wu, Mei X.

    2016-01-01

    Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP. PMID:27901126

  19. Low-level light treatment ameliorates immune thrombocytopenia

    NASA Astrophysics Data System (ADS)

    Yang, Jingke; Zhang, Qi; Wu, Mei X.

    2017-02-01

    Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP.

  20. Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk

    PubMed Central

    Dovizio, Melania; Alberti, Sara; Sacco, Angela; Guillem-Llobat, Paloma; Schiavone, Simone; Maier, Thorsten J.; Steinhilber, Dieter; Patrignani, Paola

    2015-01-01

    Platelets are activated by the interaction with cancer cells and release enhanced levels of lipid mediators [such as thromboxane (TX)A2 and prostaglandin (PG)E2, generated from arachidonic acid (AA) by the activity of cyclooxygenase (COX)-1], granule content, including ADP and growth factors, chemokines, proteases and Wnt proteins. Moreover, activated platelets shed different vesicles, such as microparticles (MPs) and exosomes (rich in genetic material such as mRNAs and miRNAs). These platelet-derived products induce several phenotypic changes in cancer cells which confer high metastatic capacity. A central event involves an aberrant expression of COX-2 which influences cell-cycle progression and contribute to the acquisition of a cell migratory phenotype through the induction of epithelial mesenchymal transition genes and down-regulation of E-cadherin expression. The identification of novel molecular determinants involved in the cross-talk between platelets and cancer cells has led to identify novel targets for anti-cancer drug development. PMID:26551717

  1. Early impact of prescription Omega-3 fatty acids on platelet biomarkers in patients with coronary artery disease and hypertriglyceridemia.

    PubMed

    Serebruany, Victor L; Miller, Michael; Pokov, Alex N; Lynch, Donald; Jensen, Jesper K; Hallén, Jonas; Atar, Dan

    2011-01-01

    Prescription omega-3-acid ethyl esters (PO-3A) have been tested for outcome benefits in patients with coronary artery disease (CAD), arrhythmias and heart failure. Some evidence suggests that PO-3A may exert their benefit via inhibiting platelets. We tested the hypothesis that PO-3A may inhibit platelet activity in patients with documented stable CAD, beyond the antiplatelet properties of aspirin and statins. Thirty patients with documented CAD and triglycerides over 250 mg/dl treated with aspirin (70-160 mg/daily) and statins (simvastatin equivalence dose: 5-40 mg/daily) were randomized 1:1:1 to Omacor™ 1 g/day (DHA/EPA ratio 1.25:1.0), Omacor 2 g/day, or a placebo for 2 weeks. Platelet tests including aggregometry and flow cytometry and cartridge analyzer readings were performed at baseline and at 1 and 2 weeks following PO-3A therapy. ADP-induced platelet aggregation (p = 0.037), GP IIb/IIIa antigen (p = 0.031) and activity (p = 0.024), and P-selectin (p = 0.041) were significantly reduced after PO-3A, while platelet/endothelial cell adhesion molecule (p = 0.09), vitronectin receptor (p = 0.16), formation of platelet-monocyte microparticles (p = 0.19) and the VerifyNow IIb/IIIa test (p = 0.27) only exhibited nonsignificant trends suggestive of reduced platelet activity. Finally, collagen- and arachidonic acid-induced aggregation, closure time with the PFA-100 device and expression of thrombospondin (CD36), GP Ib (CD42b), LAMP-3 (CD63), LAMP-1 (CD107a), CD40-ligand (CD154), GP37 (CD165), and PAR-1 receptor intact (SPAN 12) and cleaved (WEDE-15) epitopes were not affected by 2 weeks of PO-3A. Independently of the dose and already at 1 week, short-term therapy with PO-3A provided a modest reduction of platelet activity biomarkers, despite concomitant aspirin and statin therapy, when compared to a placebo. The effect of PO-3A is unique, differs from other known antiplatelet agents and suggests potential pleiotropism. These preliminary randomized data call for confirmation in prospective studies. Copyright © 2011 S. Karger AG, Basel.

  2. Patients with metabolic syndrome exhibit higher platelet activity than those with conventional risk factors for vascular disease.

    PubMed

    Serebruany, Victor L; Malinin, Alex; Ong, Stephen; Atar, Dan

    2008-04-01

    The metabolic syndrome is a matter of ongoing debate with regard to its existence, classification, clinical meaningfulness, and associated risks for vessel occlusion. Considering that persistent platelet activation is a cornerstone for the development of acute vascular events, and that patients with type 2 diabetes consistently exhibit high platelet activity, these characteristics may be critical for distinguishing and triageing specific features of metabolic syndrome among established risk factors for vascular disease. We assessed the platelet activity by conventional aggregation, expression of major surface receptors by flow cytometry, and quantitatively by rapid bedside analyzers in 20 aspirin-naïve patients with documented metabolic syndrome, and compared these with 20 untreated subjects with multiple cardiovascular risk factors. Closure time by the PFA-100 analyzer was significantly (P = 0.002) shorter in patients with metabolic syndrome indicating platelet inhibition under high shear conditions. Ultegra analyzer readings revealed increased fibrinogen binding (P = 0.0003) what in combination with the increased expression of PAC-1 (P = 0.32) strongly suggest activation of platelet glycoprotein IIb/IIIa receptor. Surface expression of CD107a (P = 0.014), and SPAN-12 (P = 0.003) were also higher in patients with metabolic syndrome. In contrast, platelet aggregation induced by collagen or ADP, CD31, CD41, CD42b, CD51/61, CD62p, CD63, CD154, CD165, so as formation of platelet-monocyte aggregates, PAR-1 thrombin receptor, and thrombospondin did not differ between groups. Patients with metabolic syndrome exhibited a higher degree of platelet activation than subjects with conventional risk factors for vascular disease. Conceptually, applying adequate antiplatelet strategies may reduce the risk of acute thrombotic events in these patients. Further prospective studies exploring this notion are encouraged.

  3. Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela L.; Frey, Eric W.; Patel, Jay M.; Nolasco, Leticia; Turner, Nancy A.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa

    2013-03-01

    The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF’s crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.

  4. Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats.

    PubMed

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Legrand, Chantal; Lafeve, Françoise Fauvel; Mekhfi, Hassane

    2009-08-17

    Many cardiovascular diseases are associated with an increase in blood platelet activity. In Morocco, parsley (Petroselinum crispum, Apiaceae) is one of the medicinal herbs used to treat cardiovascular diseases such as arterial hypertension. In this study, crude aqueous extract (CAE) of parsley was evaluated for its anti-platelet activity in experimental animals on platelet aggregation in vitro and ex vivo; and on bleeding time in vivo. The in vitro aggregation was monitored after pre-incubation of platelets with CAE. The bleeding time and ex vivo aggregation were performed after oral treatment. CAE inhibited dose dependently platelet aggregation in vitro induced by thrombin, ADP, collagen and epinephrine. The oral administration of CAE (3g/kg) inhibited significantly (p<0.001) platelet aggregation ex vivo and prolonged bleeding time (p<0.001) without changes in the platelet amount. The prolongation of bleeding time by CAE may be attributed to the observed inhibition of platelet aggregation. These effects could be related in part to the polyphenolic compounds present in the extract. These results support the hypothesis that the dietary intake of parsley may be benefit in the normalization of platelet hyperactivation, in the nutritional prevention of cardiovascular diseases and are potentially interesting in the development of new prevention strategies.

  5. A Review on Platelet Activating Factor Inhibitors: Could a New Class of Potent Metal-Based Anti-Inflammatory Drugs Induce Anticancer Properties?

    PubMed Central

    Lagopati, Nefeli; Tsilibary, Effie C.

    2017-01-01

    In this minireview, we refer to recent results as far as the Platelet Activating Factor (PAF) inhibitors are concerned. At first, results of organic compounds (natural and synthetic ones and specific and nonspecific) as inhibitors of PAF are reported. Emphasis is given on recent results about a new class of the so-called metal-based inhibitors of PAF. A small library of 30 metal complexes has been thus created; their anti-inflammatory activity has been further evaluated owing to their inhibitory effect against PAF in washed rabbit platelets (WRPs). In addition, emphasis has also been placed on the identification of preliminary structure-activity relationships for the different classes of metal-based inhibitors. PMID:28458618

  6. Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways.

    PubMed

    Josefsson, Emma C; Burnett, Deborah L; Lebois, Marion; Debrincat, Marlyse A; White, Michael J; Henley, Katya J; Lane, Rachael M; Moujalled, Diane; Preston, Simon P; O'Reilly, Lorraine A; Pellegrini, Marc; Metcalf, Donald; Strasser, Andreas; Kile, Benjamin T

    2014-03-17

    BH3 mimetic drugs that target BCL-2 family pro-survival proteins to induce tumour cell apoptosis represent a new era in cancer therapy. Clinical trials of navitoclax (ABT-263, which targets BCL-2, BCL-XL and BCL-W) have shown great promise, but encountered dose-limiting thrombocytopenia. Recent work has demonstrated that this is due to the inhibition of BCL-XL, which is essential for platelet survival. These findings raise new questions about the established model of platelet shedding by megakaryocytes, which is thought to be an apoptotic process. Here we generate mice with megakaryocyte-specific deletions of the essential mediators of extrinsic (Caspase-8) and intrinsic (BAK/BAX) apoptosis. We show that megakaryocytes possess a Fas ligand-inducible extrinsic apoptosis pathway. However, Fas activation does not stimulate platelet production, rather, it triggers Caspase-8-mediated killing. Combined loss of Caspase-8/BAK/BAX does not impair thrombopoiesis, but can protect megakaryocytes from death in mice infected with lymphocytic choriomeningitis virus. Thus, apoptosis is dispensable for platelet biogenesis.

  7. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A.

    PubMed

    Du, Lily M; Nurden, Paquita; Nurden, Alan T; Nichols, Timothy C; Bellinger, Dwight A; Jensen, Eric S; Haberichter, Sandra L; Merricks, Elizabeth; Raymer, Robin A; Fang, Juan; Koukouritaki, Sevasti B; Jacobi, Paula M; Hawkins, Troy B; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A

    2013-01-01

    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.

  8. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A

    PubMed Central

    Du, Lily M.; Nurden, Paquita; Nurden, Alan T.; Nichols, Timothy C.; Bellinger, Dwight A.; Jensen, Eric S.; Haberichter, Sandra L.; Merricks, Elizabeth; Raymer, Robin A.; Fang, Juan; Koukouritaki, Sevasti B.; Jacobi, Paula M.; Hawkins, Troy B.; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A.

    2013-01-01

    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A. PMID:24253479

  9. Spontaneous heparin-induced thrombocytopenia (HIT) syndrome: HIT without any heparin exposure.

    PubMed

    Miyata, Shigeki

    2016-01-01

    Heparin-induced thrombocytopenia (HIT) is a pro-thrombotic side effect of heparin therapy caused by HIT antibodies with platelet-activating properties. Recent advances in understanding of spontaneous HIT syndrome, which can occur even without any heparin exposure despite its clinical and serological characteristics being similar to those of HIT, reveal the following HIT clinical features atypical for an immune-mediated disease. Heparin-naïve patients can develop IgG antibodies as early as day 4, as in a secondary immune response. Evidence for an anamnestic response upon heparin re-exposure is lacking. In addition, HIT antibodies are relatively short-lived, unlike those in a secondary immune response. Antigen immunoassays are commonly used worldwide for serological diagnosis of HIT. However, such assays do not indicate whether HIT antibodies have platelet-activating properties, leading to low diagnostic specificity for HIT. The detection of platelet-activating antibodies using a washed platelet activation assay is crucial for making a HIT diagnosis. These atypical clinical and serological features should be carefully considered while appropriately diagnosing HIT, which leads to appropriate therapy such as immediate administration of an alternative anticoagulant for preventing thromboembolic events and re-administration of heparin during surgery involving cardiopulmonary bypass when HIT antibodies are no longer detectable.

  10. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides.

    PubMed

    De Marco, Agostino; De Candia, Modesto; Carotti, Andrea; Cellamare, Saverio; De Candia, Erica; Altomare, Cosimo

    2004-06-01

    Using N-[4-(hexyloxy)phenyl]piperidine-3-carboxamide (17c) as a structural lead, a number of isomers, derivatives, and ring-opened analogs were synthesized and tested for their ability to block the in vitro aggregation of human platelets induced by adenosine 5'-diphosphate (ADP). For the most active compounds, inhibition of the platelet aggregation triggered by arachidonic acid (AA) and ADP-induced intraplatelet calcium mobilization was also demonstrated. Based on quantitative structure-activity relationships (QSARs), we proved the impact of hydrophobicity on antiplatelet activity by a nonlinear (parabolic or bilinear) relationship between pIC(50) and lipophilicity, as assessed by RP-HPLC capacity factors and ClogP (i.e. calculated 1-octanol-water partition coefficients). This study highlighted the following additional SARs: quasi-isolipophilic isomers of 17c (isonipecotanilides and pipecolinanilides) and ring-opened analogs (e.g. anilide of beta-alanine) exhibited lower antiplatelet activity; methylation of the piperidine nitrogen of 17c has no effect, whereas alkylation with an n-propyl group decreases the activity by a factor of approximately 2, most likely due to a conformation-dependent decrease in lipophilicity.

  11. CYP2C19*17 increases clopidogrel-mediated platelet inhibition but does not alter the pharmacokinetics of the active metabolite of clopidogrel.

    PubMed

    Pedersen, Rasmus Steen; Nielsen, Flemming; Stage, Tore Bjerregaard; Vinholt, Pernille Just; el Achwah, Alaa Bilal; Damkier, Per; Brosen, Kim

    2014-11-01

    The aim of the present study was to determine the impact of CYP2C19*17 on the pharmacokinetics and pharmacodynamics of the active metabolite of clopidogrel and the pharmacokinetics of proguanil. Thus, we conducted an open-label two-phase cross-over study in 31 healthy male volunteers (11 CYP2C19*1/*1, 11 CYP2C19*1/*17 and nine CYP2C19*17/*17). In Phase A, the pharmacokinetics of the derivatized active metabolite of clopidogrel (CAMD) and platelet function were determined after administration of a single oral dose of 600 mg clopidogrel (Plavix; Sanofi-Avensis, Horsholm, Denmark). In Phase B, the pharmacokinetics of proguanil and its metabolites cycloguanil and 4-chlorphenylbiguanide (4-CPB) were determined in 29 of 31 subjects after a single oral dose of 200 mg proguanil given as the combination drug Malarone (GlaxoSmithKline Pharma, Brondby, Denmark). Significant correlations were found between the area under the time-concentration curve (AUC0-∞ ) of CAMD and both the absolute ADP-induced P2Y12 receptor-activated platelet aggregation (r = -0.60, P = 0.0007) and the percentage inhibition of aggregation (r = 0.59, P = 0.0009). In addition, the CYP2C19*17/*17 and CYP2C19*1/*17 genotype groups had significantly higher percentage inhibition of platelet aggregation compared with the CYP2C19*1/*1 subjects (geometric mean percentage inhibition of 84%, 73% and 63%, respectively; P = 0.014). Neither the absolute ADP-induced P2Y12 receptor-activated platelet aggregation, exposure to CAMD nor the pharmacokinetic parameters of proguanil, cycloguanil and 4-CPB exhibited any significant differences among the genotype groups. In conclusion, carriers of CYP2C19*17 exhibit higher percentage inhibition of platelet aggregation, but do not have significantly lower absolute P2Y12 receptor-activated platelet aggregation or higher exposure to the active metabolite after a single oral administration of 600 mg clopidogrel. © 2014 Wiley Publishing Asia Pty Ltd.

  12. Plasma exchange to remove HIT antibodies: dissociation between enzyme-immunoassay and platelet activation test reactivities.

    PubMed

    Warkentin, Theodore E; Sheppard, Jo-Ann I; Chu, F Victor; Kapoor, Anil; Crowther, Mark A; Gangji, Azim

    2015-01-01

    Repeated therapeutic plasma exchange (TPE) has been advocated to remove heparin-induced thrombocytopenia (HIT) IgG antibodies before cardiac/vascular surgery in patients who have serologically-confirmed acute or subacute HIT; for this situation, a negative platelet activation assay (eg, platelet serotonin-release assay [SRA]) has been recommended as the target serological end point to permit safe surgery. We compared reactivities in the SRA and an anti-PF4/heparin IgG-specific enzyme immunoassay (EIA), testing serial serum samples in a patient with recent (subacute) HIT who underwent serial TPE precardiac surgery, as well as for 15 other serially-diluted HIT sera. We observed that post-TPE/diluted HIT sera-when first testing SRA-negative-continue to test strongly positive by EIA-IgG. This dissociation between the platelet activation assay and a PF4-dependent immunoassay for HIT antibodies indicates that patients with subacute HIT undergoing repeated TPE before heparin reexposure should be tested by serial platelet activation assays even when their EIAs remain strongly positive. © 2015 by The American Society of Hematology.

  13. Effects of in vitro supplementation with Syzygium cumini (L.) on platelets from subjects affected by diabetes mellitus.

    PubMed

    Raffaelli, Francesca; Borroni, Francesca; Alidori, Alessandro; Tirabassi, Giacomo; Faloia, Emanuela; Rabini, Rosa Anna; Giulietti, Alessia; Mazzanti, Laura; Nanetti, Laura; Vignini, Arianna

    2015-01-01

    The aim of this study was to assess the in vitro effects of Syzygium cumini (L.) (Sc) incubation on platelets from patients with diabetes, in order to test its efficacy as a potential adjuvant therapy. This study was performed on 77 patients with diabetes [29 in good (DMgc) and 48 in poor glycemic control (DMpc)] and 85 controls. In patients, platelets were analyzed at recruitment and after in vitro Sc incubation (final concentration of 200 µg/ml for 3 hours at 37 °C), whereas in controls only basal evaluation was performed. Lipoperoxide and nitric oxide (NO) levels, superoxide dismutase (SOD) and Na(+)/K(+) ATPase activities, total antioxidant capacity (TAC), and membrane fluidity tested by anisotropy of fluorescent probes 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1-6-phenyl-1,3,5-hexatriene (DPH) were determined. Collagen-induced platelet aggregation was also evaluated. In vitro Sc activity counteracts oxidative damage, by improving platelet function through augmented membrane fluidity and Na(+)/K(+) ATPase activity; it also enhances antioxidant system functionality by increasing NO levels, SOD activity, and TAC and by decreasing lipoperoxide levels both in whole samples and in DMgc and DMpc. In addition, a slight tendency towards collagen-induced platelet aggregation decrease after Sc was observed. However, all these parameters, even after improvement, did not reach the levels of control subjects. Our results suggest that Sc may have a preventive and protective effect in oxidative damage progression associated with diabetes mellitus and its complications. If our data will be confirmed, Sc supplementation might become a further tool in the management of this disease, especially in view of its easy availability, safety, low cost, and absence of side effects.

  14. The association of cigarette smoking with enhanced platelet inhibition by clopidogrel.

    PubMed

    Bliden, Kevin P; Dichiara, Joseph; Lawal, Lookman; Singla, Anand; Antonino, Mark J; Baker, Brian A; Bailey, William L; Tantry, Udaya S; Gurbel, Paul A

    2008-08-12

    The purpose of this study was to examine the effect of cigarette smoking on the platelet response to clopidogrel. Response variability to clopidogrel therapy has been demonstrated. Clopidogrel is metabolically activated by several hepatic cytochrome P450 (CYP) isoenzymes, including CYP1A2. Cigarette smoking induces CYP1A2 and may, therefore, enhance the conversion of clopidogrel to its active metabolite. Among 259 consecutive patients undergoing elective coronary stenting; 120 were on chronic clopidogrel therapy and were not loaded; and 139 were clopidogrel naïve and were loaded with 600 mg. There were 104 current smokers (CS) and 155 nonsmokers (NS). The adenosine diphosphate (ADP)-stimulated platelet aggregation (PA) was assessed by conventional aggregometry. The ADP-stimulated total and active glycoprotein (GP) IIb/IIIa expression were assessed with flow cytometry. Low PA was defined as the lowest quartile of 5 micromol/l ADP-induced post-treatment PA. Current smokers on chronic clopidogrel therapy displayed significantly lower PA and ADP-stimulated active GP IIb/IIIa expression compared with NS (p < or = 0.0008 for both). Similarly, CS treated with 600 mg of clopidogrel displayed greater platelet inhibition and lower active GP IIb/IIIa expression compared with NS (p < or = 0.05). In a multivariate Cox regression analysis, current smoking was an independent predictor of low PA (p = 0.0001). Clopidogrel therapy in CS is associated with increased platelet inhibition and lower aggregation as compared with NS. The mechanism of the smoking effect deserves further study and may be an important cause of response variability to clopidogrel therapy.

  15. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents.

    PubMed

    Tribulatti, María Virginia; Mucci, Juan; Van Rooijen, Nico; Leguizamón, María Susana; Campetella, Oscar

    2005-01-01

    Strong thrombocytopenia is observed during acute infection with Trypanosoma cruzi, the parasitic protozoan agent of American trypanosomiasis or Chagas' disease. The parasite sheds trans-sialidase, an enzyme able to mobilize the sialyl residues on cell surfaces, which is distributed in blood and is a virulence factor. Since the sialic acid content on the platelet surface is crucial for determining the half-life of platelets in blood, we examined the possible involvement of the parasite-derived enzyme in thrombocytopenia induction. We found that a single intravenous injection of trans-sialidase into naive mice reduced the platelet count by 50%, a transient effect that lasted as long as the enzyme remained in the blood. CD43(-/-) mice were affected to a similar extent. When green fluorescent protein-expressing platelets were treated in vitro with trans-sialidase, their sialic acid content was reduced together with their life span, as determined after transfusion into naive animals. No apparent deleterious effect on the bone marrow was observed. A central role for Kupffer cells in the clearance of trans-sialidase-altered platelets was revealed after phagocyte depletion by administration of clodronate-containing liposomes and splenectomy. Consistent with this, parasite strains known to exhibit more trans-sialidase activity induced heavier thrombocytopenia. Finally, the passive transfer of a trans-sialidase-neutralizing monoclonal antibody to infected animals prevented the clearance of transfused platelets. Results reported here strongly support the hypothesis that the trans-sialidase is the virulence factor that, after depleting the sialic acid content of platelets, induces the accelerated clearance of the platelets that leads to the thrombocytopenia observed during acute Chagas' disease.

  16. Platelet-Rich Plasma Preparation Types Show Impact on Chondrogenic Differentiation, Migration, and Proliferation of Human Subchondral Mesenchymal Progenitor Cells.

    PubMed

    Kreuz, Peter Cornelius; Krüger, Jan Philipp; Metzlaff, Sebastian; Freymann, Undine; Endres, Michaela; Pruss, Axel; Petersen, Wolf; Kaps, Christian

    2015-10-01

    To evaluate the chondrogenic potential of platelet concentrates on human subchondral mesenchymal progenitor cells (MPCs) as assessed by histomorphometric analysis of proteoglycans and type II collagen. Furthermore, the migratory and proliferative effect of platelet concentrates were assessed. Platelet-rich plasma (PRP) was prepared using preparation kits (Autologous Conditioned Plasma [ACP] Kit [Arthrex, Naples, FL]; Regen ACR-C Kit [Regen Lab, Le Mont-Sur-Lausanne, Switzerland]; and Dr.PRP Kit [Rmedica, Seoul, Republic of Korea]) by apheresis (PRP-A) and by centrifugation (PRP-C). In contrast to clinical application, freeze-and-thaw cycles were subsequently performed to activate platelets and to prevent medium coagulation by residual fibrinogen in vitro. MPCs were harvested from the cortico-spongious bone of femoral heads. Chondrogenic differentiation of MPCs was induced in high-density pellet cultures and evaluated by histochemical staining of typical cartilage matrix components. Migration of MPCs was assessed using a chemotaxis assay, and proliferation activity was measured by DNA content. MPCs cultured in the presence of 5% ACP, Regen, or Dr.PRP formed fibrous tissue, whereas MPCs stimulated with 5% PRP-A or PRP-C developed compact and dense cartilaginous tissue rich in type II collagen and proteoglycans. All platelet concentrates significantly (ACP, P = .00041; Regen, P = .00029; Dr.PRP, P = .00051; PRP-A, P < .0001; and PRP-C, P < .0001) stimulated migration of MPCs. All platelet concentrates but one (Dr.PRP, P = .63) showed a proliferative effect on MPCs, as shown by significant increases (ACP, P = .027; Regen, P = .0029; PRP-A, P = .00021; and PRP-C, P = .00069) in DNA content. Platelet concentrates obtained by different preparation methods exhibit different potentials to stimulate chondrogenic differentiation, migration, and proliferation of MPCs. Platelet concentrates obtained by commercially available preparation kits failed to induce chondrogenic differentiation of MPCs, whereas highly standardized PRP preparations did induce such differentiation. These findings suggest differing outcomes with PRP treatment in stem cell-based cartilage repair. Our findings may help to explain the variability of results in studies examining the use of PRP clinically. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study.

    PubMed

    Sawardekar, Swapna B; Patel, Tejal C; Uchil, Dinesh

    2016-01-01

    The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 10(5)/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5'- diphosphate (ADP) (2.5 μM/L) and collagen. All the concentrations of lycopene (4-12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation.

  18. Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract.

    PubMed

    Amrani, Souliman; Harnafi, Hicham; Gadi, Dounia; Mekhfi, Hassane; Legssyer, Abdelkhaleq; Aziz, Mohammed; Martin-Nizard, Françoise; Bosca, Lisardo

    2009-08-17

    In this work the endothelium-dependant vasorelaxant and anti-platelet aggregation activities of an aqueous extract from Ocimum basilicum were studied. The vasorelaxant effect was undertaken in thoracic aorta from three experimental groups of rats: one of them (NCG) fed with standard diet, the second (HCG) with hypercholesterolemic diet (HCD) and the third (BTG) with hypercholesterolemic diet together with an intragastric administration of Ocimum basilicum extract at a dose of 0.5 g/kg body weight for a period of 10 weeks. The in vitro anti-platelet aggregation of Ocimum basilicum extract was studied using thrombin (0.5 U/ml) and ADP (5 microM) as agonists. The results show that the HCD statistically decreases vascular relaxation in HCG compared to NCG (p<0.001) and increases the vascular responses to phenylephrine (p<0.02). Ocimum basilicum extract exerts a significant vasorelaxant effect at 10(-5) M (p<0.01) and 10(-4) M carbachol (p=0.001). The plant extract also tends to suppress the elevated contractions induced by HCD (p=0.05). The extract inhibits ADP-induced platelet aggregation by 13%, 28.2%, 30.5%, 44.7% and 53% at a dose of 1, 2, 3, 4 and 5 g/l, respectively. Thrombin-induced platelet activation was also reduced by 15%, 23%, 40%, 38.4%, and 42% at the same doses of extract described above. The use of Ocimum basilicum as medicinal plant could be beneficial for cardiovascular system.

  19. Associations of MDR1, TBXA2R, PLA2G7, and PEAR1 genetic polymorphisms with the platelet activity in Chinese ischemic stroke patients receiving aspirin therapy.

    PubMed

    Peng, Ling-Ling; Zhao, Yuan-Qi; Zhou, Zi-Yi; Jin, Jing; Zhao, Min; Chen, Xin-Meng; Chen, Ling-Yan; Cai, Ye-Feng; Li, Jia-Li; Huang, Min

    2016-11-01

    Aspirin resistance has an incidence of 5%-65% in patients with ischemic stroke, who receive the standard dose of aspirin, but the platelet function is inadequately inhibited, thereby leading to thrombotic events. Numerous evidence shows that thromboxane A 2 receptor (TXA 2 receptor, encoded by TBXA2R), lipoprotein-associated phospholipase A 2 (Lp-PLA 2 , encoded by PLA2G7) and platelet endothelial aggregation receptor-1 (PEAR1, encoded by PEAR1) are crucial in regulating platelet activation, and P-glycoprotein (P-gp, encoded by MDR1) influences the absorption of aspirin in the intestine. In this study we examined the correlation between MDR1, TBXA2R, PLA2G7, PEAR1 genetic polymorphisms and platelet activity in Chinese ischemic stroke patients receiving aspirin therapy. A total of 283 ischemic stroke patients receiving 100 mg aspirin for 7 d were genotyped for polymorphisms in MDR1 C3435T, TBXA2R (rs1131882), PLA2G7 (rs1051931, rs7756935), and PEAR1 (rs12566888, rs12041331). The platelet aggregation response was measured using an automatic platelet aggregation analyzer and a commercially available TXB 2 ELISA kit. Thirty-three patients (11.66%) were insensitive to aspirin treatment. MDR1 3435TT genotype carriers, whose arachidonic acid (AA) or adenosine diphosphate (ADP)-induced platelet aggregation was lower than that of CC+CT genotype carriers, were less likely to suffer from aspirin resistance (odds ratio=0.421, 95% CI: 0.233-0.759). The TBXA2R rs1131882 CC genotype, which was found more frequently in the aspirin-insensitive group (81.8% vs 62.4%) than in the sensitive group, was identified as a risk factor for aspirin resistance (odds ratio=2.712, 95% CI: 1.080-6.810) with a higher level of AA-induced platelet aggregation. Due to the combined effects of PLA2G7 rs1051931 and rs7756935, carriers of the AA-CC haplotype had a higher level of ADP-induced platelet aggregation, and were at considerably higher risk of aspirin resistance than noncarriers (odds ratio=8.233, 95% CI: 1.590-42.638). A considerable portion (11.66%) of Chinese ischemic stroke patients are insensitive to aspirin treatment, which may be correlated with the MDR1 C3435T, TBXA2R (rs1131882), and PLA2G7 (rs1051931-rs7756935) polymorphisms.

  20. Platelet chemokines in vascular disease

    PubMed Central

    Gleissner, Christian A.; von Hundelshausen, Philipp; Ley, Klaus

    2009-01-01

    Platelets are a rich source of different chemokines and express chemokine receptors. CXCL4 is highly abundant in platelets and involved in promoting monocyte arrest from rolling and monocyte differentiation to macrophages. CXCL4 can also associate with CCL5 and amplify its effect on monocytes. The megakaryocyte CXCL7 gene product is proteolytically cleaved into the strong neutrophil chemoattractant, NAP-2, which has also been implicated in repair cell homing to vascular lesions. Platelet adhesion can induce release of CCL2 and CXCL8 from endothelial cells. Conversely, the chemokines CCL17, CCL22 and CXCL12 made by other cells amplify platelet activation. Platelet chemokines enhance recruitment of various hematopoietic cells to the vascular wall, fostering processes such as neointima formation, atherosclerosis, and thrombosis but also vessel repair and regeneration after vascular injury. PMID:18723831

  1. A genetically-engineered von Willebrand disease type 2B mouse model displays defects in hemostasis and inflammation.

    PubMed

    Adam, Frédéric; Casari, Caterina; Prévost, Nicolas; Kauskot, Alexandre; Loubière, Cécile; Legendre, Paulette; Repérant, Christelle; Baruch, Dominique; Rosa, Jean-Philippe; Bryckaert, Marijke; de Groot, Philip G; Christophe, Olivier D; Lenting, Peter J; Denis, Cécile V

    2016-05-23

    von Willebrand disease (VWD)-type 2B is characterized by gain-of-function mutations in the von Willebrand factor (VWF) A1-domain, leading to increased affinity for its platelet-receptor, glycoprotein Ibα. We engineered the first knock-in (KI) murine model for VWD-type 2B by introducing the p.V1316M mutation in murine VWF. Homozygous KI-mice replicated human VWD-type 2B with macrothrombocytopenia (platelet counts reduced by 55%, platelet volume increased by 44%), circulating platelet-aggregates and a severe bleeding tendency. Also, vessel occlusion was deficient in the FeCl3-induced thrombosis model. Platelet aggregation induced by thrombin or collagen was defective for KI-mice at all doses. KI-mice manifested a loss of high molecular weight multimers and increased multimer degradation. In a model of VWF-string formation, the number of platelets/string and string-lifetime were surprisingly enhanced in KI-mice, suggesting that proteolysis of VWF/p.V1316M is differentially regulated in the circulation versus the endothelial surface. Furthermore, we observed increased leukocyte recruitment during an inflammatory response induced by the reverse passive Arthus reaction. This points to an active role of VWF/p.V1316M in the exfiltration of leukocytes under inflammatory conditions. In conclusion, our genetically-engineered VWD-type 2B mice represent an original model to study the consequences of spontaneous VWF-platelet interactions and the physiopathology of this human disease.

  2. Platelet aggregation inhibitors from Philippine marine invertebrate samples screened in a new microplate assay.

    PubMed

    Pimentel, Sheila Marie V; Bojo, Zenaida P; Roberto, Amy V D; Lazaro, Jose Enrico H; Mangalindan, Gina C; Florentino, Leila M; Lim-Navarro, Pilar; Tasdemir, Deniz; Ireland, Chris M; Concepcion, Gisela P

    2003-01-01

    A new microplate assay for Ca(2+)-induced platelet aggregation as detected by Giemsa dye was used to screen marine invertebrate samples from the Philippines for inhibitors of human platelet aggregation. Out of 261 crude methanol extracts of marine sponges and tunicates, 25 inhibited aggregation at 2 mg/ml. Inhibition of agonist-induced aggregation in an aggregometer was used to confirm results of the microplate assay and to determine the specific mode of inhibition of 2 samples. The marine sponge Xestospongia sp. yielded a xestospongin/araguspongine-type molecule that inhibited collagen-induced aggregation by 87% at 2 micro g/ml, and epinephrine-induced aggregation by 78% at 20 micro g/ml, while the marine sponge Aplysina sp. yielded 5,6-dibromotryptamine, which inhibited epinephrine-induced aggregation by 51% at 20 micro g/ml. In this study we have found that the microplate assay is a simple, inexpensive, yet useful preliminary tool to qualitatively screen a large number of marine samples for antiplatelet aggregation activity.

  3. Effect of diazepam and clonazepam on the function of isolated rat platelet and neutrophil.

    PubMed

    Rajtar, Grazyna; Zółkowska, Dorota; Kleinrok, Zdzisław

    2002-04-01

    Benzodiazepine binding sites distinct from the GABA-receptor-chloride-complex in the central nervous system have been recognized in many peripheral tissues, but their physiological role remains unexplained. Our study was undertaken to examine the effects of diazepam, clonazepam, and PK 11195, a peripheral benzodiazepine receptor antagonist, on the functional and biochemical responses of platelets and neutrophils stimulated by different physiological agonists. The experiments were conducted on isolated washed rat platelets activated by arachidonic acid (AA), adenosine 5'-diphosphate (ADP), or thrombin and on isolated rat neutrophils activated by a chemotactic peptide, formyl methionyl leucyl phenylalanine (fMLP). The results showed that neither diazepam nor clonazepam nor PK 11195 alone augmented the response of resting platelets or modified neutrophil response, but diazepam and clonazepam in a concentration-dependent manner inhibited thrombin, ADP or AA-stimulated platelet aggregation and the thrombin-induced increase in free intracellular Ca2+. Both drugs also exerted an inhibitory effect on reactive oxygen species (ROS) produced by fMLP-stimulated neutrophils. However, diazepam was about 10 times more effective than clonazepam. PK11195 did not influence platelet and neutrophil function stimulated by agonists, but reversed the inhibitory action of both benzodiazepines on platelet activation and ROS production. The results indicated that in vitro diazepam, and in a much smaller degree clonazepam, may down-regulate platelet activation and release of some proinflammatory mediators by stimulated neutrophils. These effects are probably exerted by a specific benzodiazepine binding sites.

  4. Platelet rich plasma for the management of hair loss: Better alone or in combination?

    PubMed

    Anitua, Eduardo; Pino, Ander; Jaén, Pedro; Navarro, Mª Rogelia

    2018-06-14

    Platelet-rich plasma (PRP) and autologous protein-based treatments have recently emerged as a potential therapeutic approach for hair loss-related disorders including androgenetic alopecia and alopecia areata. The safety and efficacy of repeated intradermal injections of PRP has proved to promote hair growth in a number of randomized clinical trials. Biologically active proteins and cytokines released upon platelet activation have shown to induce folliculogenesis and activate the anagen growing phase of dormant bulbs. Interestingly, further studies have revealed that combining PRP with other hair loss-related products may enhance the final performance of the treatment. These synergistic approaches include Food and Drug Administration (FDA) approved drugs such as finasteride or minoxidil, bioactive macromolecules and cell-based therapies. Here, recent research involving alone or combined therapy with platelet-rich plasma for the management of hair loss-related disorders are outlined and future prospects are discussed. © 2018 Wiley Periodicals, Inc.

  5. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    PubMed

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  6. Method for the simulation of blood platelet shape and its evolution during activation

    PubMed Central

    Muliukov, Artem R.; Litvinenko, Alena L.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Maltsev, Valeri P.

    2018-01-01

    We present a simple physically based quantitative model of blood platelet shape and its evolution during agonist-induced activation. The model is based on the consideration of two major cytoskeletal elements: the marginal band of microtubules and the submembrane cortex. Mathematically, we consider the problem of minimization of surface area constrained to confine the marginal band and a certain cellular volume. For resting platelets, the marginal band appears as a peripheral ring, allowing for the analytical solution of the minimization problem. Upon activation, the marginal band coils out of plane and forms 3D convoluted structure. We show that its shape is well approximated by an overcurved circle, a mathematical concept of closed curve with constant excessive curvature. Possible mechanisms leading to such marginal band coiling are discussed, resulting in simple parametric expression for the marginal band shape during platelet activation. The excessive curvature of marginal band is a convenient state variable which tracks the progress of activation. The cell surface is determined using numerical optimization. The shapes are strictly mathematically defined by only three parameters and show good agreement with literature data. They can be utilized in simulation of platelets interaction with different physical fields, e.g. for the description of hydrodynamic and mechanical properties of platelets, leading to better understanding of platelets margination and adhesion and thrombus formation in blood flow. It would also facilitate precise characterization of platelets in clinical diagnosis, where a novel optical model is needed for the correct solution of inverse light-scattering problem. PMID:29518073

  7. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance.

    PubMed

    Xu, Peipei; Zuo, Huaqin; Zhou, Rongfu; Wang, Fan; Liu, Xu; Ouyang, Jian; Chen, Bing

    2017-08-29

    B-cell lymphoma accounts for approximately 85% of all adult non-Hodgkin's lymphoma cases. Doxorubicin (DOX) is an indispensable drug for the treatment of non-Hodgkin's lymphoma. However, DOX causes severe cardiotoxicity, which limits its use in conventional treatment strategies. In this study, we developed a novel drug delivery system for lymphoma treatment: DOX-loaded platelets that were conjugated with anti-CD22 monoclonal antibodies (mAbs) (DOX-platelet-CD22). Platelets are bio- and immune-compatible drug carriers that can prolong the circulation time of drugs. Anti-CD22 mAb-labeled platelets can precisely deliver DOX to tumor cells. Our in vitro and in vivo experiments showed the enhanced antitumor activity and attenuated cardiotoxicity of DOX when delivered as DOX-platelet-CD22. Compared with other delivery systems, the uptake of DOX-platelet-CD22 by macrophage-like cells decreased. Moreover, DOX-platelet-CD22 showed platelet properties, such as tumor cell-induced platelet aggregation. Therefore, targeted chemotherapy that is mediated by DOX-platelet-CD22 is a promising option for lymphoma treatment.

  8. Behavior of platelets stained by 5,6-CF-encapsulated PEGylated liposomes after laser irradiation of vessel wall: an in-vivo model for studying site-selective delivery of diagnostic or therapeutic agents

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Begu, Sylvie; Buys, Bruno; Tourne-Peteilh, Corine; Devoisselle, Jean-Marie

    2001-05-01

    Vascular endothelium serves as an extensive interface between circulating blood and various tissues and organs of the body. As such, it offers an accessible target for blood-borne pharmacological and genetic manipulations that can mediate both local and systemic effects. Thus, targeting of liposomes to activated vascular endothelial cells may provide a strategy for site-selective delivery in the vascular system with broad therapeutic applicability. This study aimed to evaluate an intravital fluorescence imaging technique to visualize in-situ and in real-time the activation of platelets after staining by 5,6-CF- encapsulated PEGylated liposomes injected intravenously. The study was performed on skin by using a dorsal skin-fold chamber implanted in golden hamsters using intravital microscopy. The skin micro circulation was observed with an intravital microscope (using x25 and x40 magnification) fitted with a Xenon light source and an epi-fluorescence assembly. An ultra-high sensitivity video-camera mounted on the microscope projected the image onto a monitor, and the images were recorded for play-back analysis with a digital video cassette recorder. An inflammatory response was induced by an Argon laser emitting at 514.5nm. The 80micrometers laser beam was focused on a vessel and its position was controlled with the microscope imaging system, it was possible to see individual platelets flowing in blood vessels. As liposomes were labeled with a fluorescent probe which was hydrophilic (located in the aqueous phase), the fluorescence of platelets was due only to the uptake of liposomes. After laser irradiation, platelets activation at sites of vascular injury was obtained. Tethering, translocation of some platelets inside the irradiated zone were clearly seen. At last, detachment and extravasation of platelets were observed. A perivascular fluorescence confirmed that platelets migrated across the basal lamina into the dermal connective tissue. In conclusion, staining of platelets using 5,6-CF-encapsulated PEGylated liposomes injected intravenously presents the following advantages: i) in-situ labeling, ii) use of hydrophilic marker located in an aqueous compartment within the platelet, iii) as the release of the fluorescence marker is slow due to the formulation of liposomes, labeling of platelets could be observed during the whole experiment. Laser irradiation of blood vessels in vivo can induce the different phases of platelet activation: i) recruitment, ii) adhesion, iii) detachment, iv) transmigration. The combination of these techniques (platelet staining with PEGylated liposomes, intravital fluorescence microscopy, laser irradiation) provides a powerful tool to study local inflammation, platelet activation and behavior of liposomes in situ and in real time at an inflammation site. These observations could be considered as a preliminary approach to study the targeting of drugs to an endothelium under inflammation environment.

  9. The platelet-activating factor acetylhydrolase gene derived from Trichoderma harzianum induces maize resistance to Curvularia lunata through the jasmonic acid signaling pathway.

    PubMed

    Yu, Chuanjin; Fan, Lili; Gao, Jinxin; Wang, Meng; Wu, Qiong; Tang, Jun; Li, Yaqian; Chen, Jie

    2015-01-01

    Platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum was upregulated by the interaction of T. harzianum with maize roots or the foliar pathogen Curvularia lunata. PAF-AH was associated with chitinase and cellulase expressions, but especially with chitinase, because its activity in the KO40 transformant (PAF-AH disruption transformant) was lower, compared with the wild-type strain T28. The result demonstrated that the colonization of maize roots by T. harzianum induced systemic protection of leaves inoculated with C. lunata. Such protection was associated with the expression of inducible jasmonic acid pathway-related genes. Moreover, the data from liquid chromatography-mass spectrometry confirmed that the concentration of jasmonic acid in maize leaves was associated with the expression level of defense-related genes, suggesting that PAF-AH induced resistance to the foliar pathogen. Our findings showed that PAF-AH had an important function in inducing systemic resistance to maize leaf spot pathogen.

  10. The polyphenol-rich extracts from black chokeberry and grape seeds impair changes in the platelet adhesion and aggregation induced by a model of hyperhomocysteinemia.

    PubMed

    Malinowska, Joanna; Oleszek, Wieslaw; Stochmal, Anna; Olas, Beata

    2013-04-01

    The mechanism action of the polyphenol-rich extracts from berries of Aronia melanocarpa (black chokeberry) and from grape seeds in the defence against homocysteine (Hcy) and its derivatives action in blood platelets is still unknown. In this study, the influence of the aronia extract and grape seeds extract (GSE) on the platelet adhesion to collagen and fibrinogen and the platelet aggregation during a model of hyperhomocysteinemia was investigated. The aim of our study in vitro was also to investigate superoxide anion radicals (O₂⁻•) production after incubation of platelets with Hcy, HTL and the aronia extract and GSE during a model of hyperhomocysteinemia (induced by reduced form of homocysteine at final dose of 100 μM) and the most reactive form of Hcy--its cyclic thioester, homocysteine thiolactone (HTL, 1 μM). Moreover, the additional aim of our study was also to establish and compare the influence of the aronia extract, GSE and resveratrol (3,4',5-trihydroxystilben), a phenolic compound, which has been supposed to be beneficial for the prevention of cardiovascular events, on selected steps of platelet activation. The effects of tested extracts on adhesion of blood platelets to collagen and fibrinogen were determined according to Tuszynski and Murphy. The platelet aggregation was determined by turbidimetry method using a Chrono-log Lumi-aggregometer. We have observed that HTL, like its precursor-Hcy stimulated the generation of O₂⁻• (measured by the superoxide dismutase-inhibitable reduction of cytochrome c) in platelets and caused an augmentation of the platelet adhesion and aggregation induced by the strong physiological agonist-thrombin. Our present results in vitro also demonstrated that the aronia extract and grape seeds extract reduced the toxicity action of Hcy and HTL on blood platelet adhesion to collagen and fibrinogen, the platelet aggregation and superoxide anion radicals production in platelets, suggesting its potential protective effects on hemostasis during hyperhomocysteinemia. In the comparative studies, the aronia extract was found to be more effective antiplatelet factors, than GSE or resveratrol during a model of hyperhomocysteinemia. It gives hopes for development of diet supplements, which may be important during hyperhomocysteinemia.

  11. Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization.

    PubMed

    Saller, François; Burnier, Laurent; Schapira, Marc; Angelillo-Scherrer, Anne

    2006-01-01

    Growth arrest-specific gene 6 (gas6) product enhances the formation of stable platelet macroaggregates in response to various agonists. To determine whether Gas6 amplifies the response to known platelet agonists through one or more of its receptor tyrosine kinases of the Tyro3 family, mice deficient in any one of the Gas6 receptors (Gas6-Rs: Tyro3, Axl, or Mer) were submitted to thrombosis challenge and their platelet function. The loss of any one of the Gas6-Rs protects mice against thromboembolism induced by collagen-epinephrine and stasis-induced thrombosis. Importantly, these mice do not suffer spontaneous bleeding and have a normal bleeding time but a tendency to repetitively re-bleed after transient hemostasis. Re-bleeding in mice lacking any one of the Gas6-Rs is not due to thrombocytopenia or coagulopathy but to a platelet dysfunction characterized by a lack of the second wave of platelet aggregation and an impaired clot retraction, at least in part by reducing outside-in alpha(IIb)beta(3) signaling and platelet granule secretion. The early release of Gas6 by agonists perpetuates platelet activation through its three receptors, reinforcing outside-in alpha(IIb)beta(3) signaling by activation of PI3K and Akt signaling and stimulation of tyrosine phosphorylation of the beta(3) integrin. Furthermore, "trapping" Gas6 prevents pathological thrombosis, which indicates that blocking this novel cross-talk between the Gas6-Rs and alpha(IIb)beta(3) integrin may constitute a novel target for antithrombotic therapy.

  12. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    PubMed

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P <0.01). P2Y 12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P <0.05). Using a FeCl 3 -injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P <0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y 12 receptor expression in diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus. © 2017 American Heart Association, Inc.

  13. A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets

    PubMed Central

    Redondo, Pedro C; Harper, Alan G S; Salido, Ginés M; Pariente, Jose A; Sage, Stewart O; Rosado, Juan A

    2004-01-01

    Store-mediated Ca2+ entry (SMCE) is a major mechanism for Ca2+ influx in non-excitable cells. Recently, a conformational coupling mechanism allowing coupling between transient receptor potential channels (TRPCs) and IP3 receptors has been proposed to activate SMCE. Here we have investigated the role of two soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs), which are involved in membrane trafficking and docking, in SMCE in human platelets. We found that the synaptosome-associated protein (SNAP-25) and the vesicle-associated membrane proteins (VAMP) coimmunoprecipitate with hTRPC1 in platelets. Treatment with botulinum toxin (BoNT) E or with tetanus toxin (TeTx), induced cleavage and inactivation of SNAP-25 and VAMPs, respectively. BoNTs significantly reduced thapsigargin- (TG) and agonist-evoked SMCE. Treatment with BoNTs once SMCE had been activated decreased Ca2+ entry, indicating that SNAP-25 is required for the activation and maintenance of SMCE. In contrast, treatment with TeTx had no effect on either the activation or the maintenance of SMCE in platelets. Finally, treatment with BoNT E impaired the coupling between naturally expressed hTRPC1 and IP3 receptor type II in platelets. From these findings we suggest SNAP-25 has a role in SMCE in human platelets. PMID:15121806

  14. Stereochemistry- and concentration-dependent effects of phosphatidylserine enrichment on platelet function.

    PubMed

    Meyer, Audrey F; Gruba, Sarah M; Kim, Donghyuk; Meyer, Ben M; Koseoglu, Secil; Dalluge, Joseph J; Haynes, Christy L

    2017-08-01

    Platelets are small (1-2μm in diameter), circulating anuclear cell fragments with important roles in hemostasis and thrombosis that provide an excellent platform for studying the role of membrane components in cellular communication. Platelets use several forms of communication including exocytosis of three distinct granule populations, formation of bioactive lipid mediators, and shape change (allowing for adhesion). This work explores the role of stereochemistry and concentration of exogenous phosphatidylserine (PS) on platelet exocytosis and adhesion. PS, most commonly found in the phosphatidyl-l-serine (l-PS) form, is exposed on the outer leaflet of the cell membrane after the platelet is activated. Knowledge about the impact of exogenous phosphatidylserine on cell-to-cell communication is limited (particularly concentration and stereochemistry effects). This study found that platelets incubated in l-PS or phosphatidyl-d-serine (d-PS) are enriched to the same extent with their respective incubated PS. All levels of l-PS enrichment also showed an increase in platelet cholesterol, but only the 50μM d-PS incubation showed an increase in cholesterol. The uptake of d-PS induced the secretion of granules and manufactured platelet activating factor (PAF) in otherwise unstimulated platelets. The uptake of l-PS had a greater impact on platelet stimulation by decreasing both the amount of δ-granule secretion and the amount of PAF that was manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oxidized LDL activates blood platelets through CD36/NOX2–mediated inhibition of the cGMP/protein kinase G signaling cascade

    PubMed Central

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S.; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36−/− murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2−/− mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3′,5′-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling. PMID:25710879

  16. A Novel Variant in the Platelet Endothelial Aggregation Receptor-1 Gene is Associated with Increased Platelet Aggregabili

    PubMed Central

    Herrera-Galeano, J. Enrique; Becker, Diane M.; Wilson, Alexander F.; Yanek, Lisa R.; Bray, Paul; Vaidya, Dhananjay; Faraday, Nauder; Becker, Lewis C

    2009-01-01

    Objective: Platelet endothelial aggregation receptor-1 (PEAR1) is a recently identified platelet transmembrane protein that becomes activated by platelet contact. We looked for novel genetic variants in PEAR1 and studied their association with agonist-induced native platelet aggregation and with aspirin's inhibitory effect on platelets. Methods and Results: We genotyped PEAR1 for 10 single nucleotide polymorphisms (SNPs), selected for optimal gene coverage at a density of 4kb, in 1486 apparently healthy individuals from two generations of families with premature CAD. Subjects had a mean age of 45 years; 62% were white and 38% African American. Platelet aggregation to collagen, epinephrine, and ADP was measured in platelet rich plasma, at baseline and after 2 weeks of aspirin (ASA, 81 mg/day), and genotype-phenotype associations were examined separately by ethnicity using multivariable generalized linear models adjusted for covariates. The C allele of SNP rs2768759 [A/C], located in the promoter region of the gene, was common in whites and uncommon in African Americans (allele frequency 70.2% vs 17.7%). The C allele was generally associated in both ethnic groups with increased aggregation of native platelets to each agonist. Following ASA, the associations were stronger and more consistent, and remained significant when post ASA aggregation was adjusted for baseline aggregation, consistent with a relationship between the C allele and reduced platelet responsiveness to ASA. The PEAR1 SNP explained up to 6.9% of the locus specific genetic variance in African Americans and up to 2.5% of the genetic variance in whites following ASA. Conclusion: PEAR1 appears to play an important role in agonist-induced platelet aggregation and in the response to ASA in both whites and African Americans. PMID:18511696

  17. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis.

    PubMed

    Padmanabhan, Anand; Jones, Curtis G; Bougie, Daniel W; Curtis, Brian R; McFarland, Janice G; Wang, Demin; Aster, Richard H

    2015-01-01

    Antibodies specific for platelet factor 4 (PF4)/heparin complexes are the hallmark of heparin-induced thrombocytopenia and thrombosis (HIT), but many antibody-positive patients have normal platelet counts. The basis for this is not fully understood, but it is believed that antibodies testing positive in the serotonin release assay (SRA) are the most likely to cause disease. We addressed this issue by characterizing PF4-dependent binding of HIT antibodies to intact platelets and found that most antibodies testing positive in the SRA, but none of those testing negative, bind to and activate platelets when PF4 is present without any requirement for heparin (P < .0001). Binding of SRA-positive antibodies to platelets was inhibited by chondroitinase ABC digestion (P < .05) and by the addition of chondroitin-4-sulfate (CS) or heparin in excess quantities. The findings suggest that although all HIT antibodies recognize PF4 in a complex with heparin, only a subset of these antibodies recognize more subtle epitopes induced in PF4 when it binds to CS, the major platelet glycosaminoglycan. Antibodies having this property could explain "delayed HIT" seen in some individuals after discontinuation of heparin and the high risk for thrombosis that persists for weeks in patients recovered from HIT. © 2015 by The American Society of Hematology.

  18. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis

    PubMed Central

    Jones, Curtis G.; Bougie, Daniel W.; Curtis, Brian R.; McFarland, Janice G.; Wang, Demin; Aster, Richard H.

    2015-01-01

    Antibodies specific for platelet factor 4 (PF4)/heparin complexes are the hallmark of heparin-induced thrombocytopenia and thrombosis (HIT), but many antibody-positive patients have normal platelet counts. The basis for this is not fully understood, but it is believed that antibodies testing positive in the serotonin release assay (SRA) are the most likely to cause disease. We addressed this issue by characterizing PF4-dependent binding of HIT antibodies to intact platelets and found that most antibodies testing positive in the SRA, but none of those testing negative, bind to and activate platelets when PF4 is present without any requirement for heparin (P < .0001). Binding of SRA-positive antibodies to platelets was inhibited by chondroitinase ABC digestion (P < .05) and by the addition of chondroitin-4-sulfate (CS) or heparin in excess quantities. The findings suggest that although all HIT antibodies recognize PF4 in a complex with heparin, only a subset of these antibodies recognize more subtle epitopes induced in PF4 when it binds to CS, the major platelet glycosaminoglycan. Antibodies having this property could explain “delayed HIT” seen in some individuals after discontinuation of heparin and the high risk for thrombosis that persists for weeks in patients recovered from HIT. PMID:25342714

  19. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development

    PubMed Central

    Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut

    2015-01-01

    Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015

  20. Defining Platelet Function During Polytrauma

    DTIC Science & Technology

    2013-02-01

    calibrated automated thrombography, 3. Platelet-induced clot contraction and using viscoelastic measures such as TEG with Platelet Mapping™ and, 4. Flow...using calibrated automated thrombography (CAT). 3. Platelet-induced clot contraction and using viscoelastic measures such as TEG with Platelet Mapping...formation (such as Hemodyne’s platelet contractile force measurement and thromboelastrography). The degree to which certain injury patterns as well as

  1. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    PubMed

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  2. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    PubMed Central

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  3. High fat diet induces adhesion of platelets to endothelium in two models of dyslipidemia.

    PubMed

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik; Moore-Carrasco, Rodrigo

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE(-/-) mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE(-/-) mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate.

  4. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation

    PubMed Central

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  5. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.

    PubMed

    Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M

    2013-05-10

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

  6. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    PubMed

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  7. Quercetin changes purinergic enzyme activities and oxidative profile in platelets of rats with hypothyroidism.

    PubMed

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Zanini, Daniela; Cardoso, Andréia M; Abadalla, Fátima H; Thomé, Gustavo R; Murussi, Camila; Polachini, Carla R N; Delenogare, Diéssica P; Loro, Vania L; Morsch, Vera M; Schetinger, Maria R C

    2016-12-01

    Diseases related to thyroid hormones have been extensively studied because affect a large number of individuals, and these hormones participate in the regulation of the whole organism homeostasis. However, little is known about the involvement of purinergic signaling related to oxidative stress in hypothyroidism and possible therapeutic adjuncts for treatment of this disorder. Thus, the present study investigates the effects of quercetin on NTPDase, 5'-nucleotidase and adenosine deaminase activities, platelet aggregation and oxidative profile in platelets of rats with methimazole (MMI)-induced hypothyroidism. Methimazole at a concentration of 20mg/100mL was administered for 90days. From the second month the animals received quercetin 10 or 25mg/kg for 60days. Results showed that: Ecto-5'-nucleotidase activity decreased in methimazole/water group and the treatment with quercetin 25mg/kg decreased NTPDase, 5'-nucleotidase and adenosine deaminase activities. Moreover, platelet aggregation increased in methimazole/water group. Lipid peroxidation increased while superoxide dismutase and catalase activities decreased, but, interestingly, the treatment with quercetin reversed these changes. These results demonstrated that quercetin modulates adenine nucleotide hydrolysis decreasing the ADP formation and adenosine deamination. At the same time quercetin improves the oxidative profile, as well as reduces platelet aggregation, which together with the modulation in the nucleotides levels can contribute to the prevention of platelet disorders. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T; Ishikawa, M

    1986-01-01

    A partially purified toxin (pCrTX) was obtained from the tentacles of the jellyfish, Carybdea rastonii. When pCrTX (3 X 10(-8) - 3 X 10(-7) g/ml) was added to citrated platelet-rich plasma, aggregation was produced in a concentration-dependent manner. Scanning electron microscopic examination revealed that both pCrTX and collagen produced aggregates of platelets possessing many pseudopods. The concentration which produced 50% aggregation for pCrTX was 1.8 X 10(-7) g/ml, as compared to 2.3 X 10(-6) g/ml for collagen. The pCrTX-induced aggregation was only slightly inhibited by indomethacin and quinacrine in concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. pCrTX was less active in washed platelets suspended in Ca2+ free medium, whereas the pCrTX-induced aggregation was significantly augmented in the presence of Ca2+. The augmentation of aggregation by Ca2+ was only slightly attenuated by pretreatment with 100 microM verapamil. pCrTX significantly increased the concentration of cytoplasmic free Ca2+ ([Ca2+]i) and depolarized the platelet membrane in concentrations that produced aggregation. The increase in [Ca2+]i caused by pCrTX was little affected by verapamil. The depolarization by pCrTX was unchanged in the presence or absence of Ca2+, or by sodium or potassium transport inhibitors. The movement of 22Na+ into platelets was significantly increased by pCrTX. This increase in the movement of 22N+ into platelets was unaffected by tetrodotoxin. On the other hand, pCrTX-induced aggregation, depolarization and the increase in [Ca2+]i were all significantly attenuated in low Na+ medium. These results suggest that pCrTX causes a massive depolarization by increasing cation permeability indiscriminately and this generalized depolarization permits an inward movement of calcium down an electrochemical gradient which, in turn triggers platelet aggregation.

  9. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.

    PubMed

    Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Shin, Sehyun

    2011-10-07

    Platelet separation from blood is essential for biochemical analyses and clinical diagnosis. In this article, we propose a method to separate platelets from undiluted whole blood using standing surface acoustic waves (SSAWs) in a microfluidic device. A polydimethylsiloxane (PDMS) microfluidic channel was fabricated and integrated with interdigitated transducer (IDT) electrodes patterned on a piezoelectric substrate. To avoid shear-induced activation of platelets, the blood sample flow was hydrodynamically focused by introducing sheath flow from two side-inlets and pressure nodes were designed to locate at side walls. By means of flow cytometric analysis, the RBC clearance ratio from whole blood was found to be over 99% and the purity of platelets was close to 98%. Conclusively, the present technique using SSAWs can directly separate platelets from undiluted whole blood with higher purity than other methods.

  10. BH3-mimetic ABT-737 induces strong mitochondrial membrane depolarization in platelets but only weakly stimulates apoptotic morphological changes, platelet shrinkage and microparticle formation.

    PubMed

    Gyulkhandanyan, Armen V; Mutlu, Asuman; Allen, David J; Freedman, John; Leytin, Valery

    2014-01-01

    Depolarization of mitochondrial inner transmembrane potential (ΔΨm) is a key biochemical manifestation of the intrinsic apoptosis pathway in anucleate platelets. Little is known, however, about the relationship between ΔΨm depolarization and downstream morphological manifestations of platelet apoptosis, cell shrinkage and microparticle (MP) formation. To elucidate this relationship in human platelets. Using flow cytometry, we analyzed ΔΨm depolarization, platelet shrinkage and MP formation in platelets treated with BH3-mimetic ABT-737 and calcium ionophore A23187, well-known inducers of intrinsic platelet apoptosis. We found that at optimal treatment conditions (90min, 37°C) both ABT-737 and A23187 induce ΔΨm depolarization in the majority (88-94%) of platelets and strongly increase intracellular free calcium. In contrast, effects of A23187 and ABT-737 on platelet shrinkage and MP formation are quite different. A23187 strongly stimulates cell shrinkage and MP formation, whereas ABT-737 only weakly induces these events (10-20% of the effect seen with A23187, P<0.0001). These data indicate that a high level of ΔΨm depolarization and intracellular free calcium does not obligatorily ensure strong platelet shrinkage and MP formation. Since ABT-737 efficiently induces clearance of platelets from the circulation, our results suggest that platelet clearance may occur in the absence of the morphological manifestations of apoptosis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets.

    PubMed

    Wan, Ling-Shu; Xu, Zhi-Kang

    2009-04-01

    Fibrous membranes (nonwoven meshes) prepared via electrospinning technique have great potential in tissue engineering. This work is the first study on the behaviors of blood platelets at the nanostructured surface generated by electrospinning. Poly[acrylonitrile-co-(N-vinyl-2-pyrrolidone)] (PANCNVP) that shows excellent antiplatelet adhesion ability was directly electrospun onto its dense membrane surface. Polyacrylonitrile (PAN) samples were used as controls. The depth as well as the density of the nanofibers can be easily controlled. The results showed that the PANCNVP dense membrane certainly suppressed the activation and adhesion of platelets. However, whether the nanofibers and underlying membranes were composed of PAN or PANCNVP, the nanostructured surfaces promoted the activation, adhesion, and orientation of platelets. It was also found that, if the space between fibers was too large or the depth of fibers was too small, the nanostructured surface did not change the property of antiplatelet adhesion of PANCNVP. The promotion of activation and adhesion of platelets was obviously due to the presence of nanofibers, which induced the changes of surface topography and charge. Copyright 2008 Wiley Periodicals, Inc.

  12. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study

    PubMed Central

    Sawardekar, Swapna B.; Patel, Tejal C.; Uchil, Dinesh

    2016-01-01

    Introduction: The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Materials and Methods: Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 105/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5’- diphosphate (ADP) (2.5 μM/L) and collagen Results: All the concentrations of lycopene (4–12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. Conclusion: The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation. PMID:26997718

  13. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    PubMed

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  14. The interaction of vasoactive substances during exercise modulates platelet aggregation in hypertension and coronary artery disease

    PubMed Central

    Petidis, Konstantinos; Douma, Stella; Doumas, Michael; Basagiannis, Ilias; Vogiatzis, Konstantinos; Zamboulis, Chrysanthos

    2008-01-01

    Background Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function. Methods Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A2, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise. Results Our results during exercise showed a) platelet activation (increased thromboxane B2, TXB2), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups). Conclusion Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB2 levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications. PMID:18505546

  15. Numerical investigation of the effects of channel geometry on platelet activation and blood damage.

    PubMed

    Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P

    2011-02-01

    Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.

  16. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    PubMed

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  17. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    PubMed

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  18. Early storage lesions in apheresis platelets are induced by the activation of the integrin αIIbβ₃ and focal adhesion signaling pathways.

    PubMed

    Thiele, Thomas; Iuga, Cristina; Janetzky, Susann; Schwertz, Hansjorg; Gesell Salazar, Manuela; Fürll, Birgit; Völker, Uwe; Greinacher, Andreas; Steil, Leif

    2012-12-05

    Production and storage of platelet concentrates (PC) induce protein changes in platelets leading to impaired platelet function. This study aimed to identify signaling pathways involved in the development of early platelet storage lesions in apheresis-PCs stored in plasma or additive solution (PAS). Apheresis-PCs from four donors were stored in plasma or in PAS at 22°C (n=4 each). Platelets were analyzed at day 0 (production day) and after 1, 6 and 9 days of storage. Platelet response to agonists (TRAP, collagen, ADP) and to hypotonic shock decreased, CD62P expression increased in both storage media over time. Using DIGE 1550 protein spots were monitored and compared to baseline values at day 0. Platelets in plasma displayed changes in 352 spots (166/day 1, 263/day 6 and 201/day 9); in PAS 325 spots changed (202/day 1, 221/day 6, 200/day 9). LC-ESI-MS/MS analysis of 405 platelet proteins revealed 32 proteins changed during storage in plasma (9/day 1, 15/day 6 and 26/day 9) and 28 in PAS (5/day 1, 20/day 6, 26/day 9). Ingenuity pathway analysis found integrin-αII(b)β(3) and focal adhesion signaling pathways involved in early alterations, being confirmed by Western blotting. Corresponding mRNAs in platelets were identified by next generation sequencing for 84 changed proteins. Integrin-αII(b)β(3) and focal adhesion signaling cause irreversible early storage lesions in apheresis platelets. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Antithrombin activity of an algal polysaccharide.

    PubMed

    Trento, F; Cattaneo, F; Pescador, R; Porta, R; Ferro, L

    2001-06-01

    In an effort to reduce the risks of a possible iatrogenic transmission of bovine spongiform encephalitis (BSE) through the use of bovine-derived medicinal products, we patented in the USA in 1999 a polysaccharide from brown algae, endowed with interesting pharmacological activities: (a) concentration-dependent inhibition of thromboplastin or cephalin-kaolin-induced thrombin generation from platelets, (b) concentration-dependent inhibition of thrombin-induced platelet aggregation, (c) thrombin has hypotensive effect, which was blunted and zeroed by our fucansulfate in a dose-dependent way, (d) when aortae are stimulated with thrombin, they become stickier for polymorphonucleated leukocytes (PMNs); our fucansulfate decreased concentration-dependently, PMNs sticking to autologous rabbit aortae, (e) dose-dependent inhibition of thrombin-induced thrombosis. All the above data suggest that our fucansulfate could be a heparin substitute endowed with antithrombotic and anti-inflammatory activities, devoid or the problems caused to heparin by its animal origin, i.e., possible prion protein contamination.

  20. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation.

    PubMed

    Lopes-Pires, M Elisa; Casarin, André L; Pereira-Cunha, Fernanda G; Lorand-Metze, Irene; Antunes, Edson; Marcondes, Sisi

    2012-01-01

    High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.

  1. Effect of platelet-derived β-thromboglobulins on coagulation.

    PubMed

    Egan, Karl; van Geffen, Johanna P; Ma, Hui; Kevane, Barry; Lennon, Aine; Allen, Seamus; Neary, Elaine; Parsons, Martin; Maguire, Patricia; Wynne, Kieran; O' Kennedy, Richard; Heemskerk, Johan W M; Áinle, Fionnuala Ní

    2017-06-01

    β-thromboglobulins are derived from the cleavage of the CXC chemokine platelet basic protein and are released in high concentrations by activated platelets. Platelet-derived β-thromboglobulins (βTG) share 70% homology with platelet factor 4 (PF4), another CXC chemokine released by activated platelets. PF4 modulates coagulation by inhibiting heparin-antithrombin interactions, promoting protein C activation, and attenuating the activity of activated protein C. In contrast, the effect of βTG on coagulation is unknown. Clotting times, thrombin generation, chromogenic clotting factor assays, and surface plasmon resonance (SPR) were used to assess the effect of purified βTG on coagulation. In normal pooled plasma, βTG shortened the lagtime and time to peak thrombin generation of tissue factor (TF)-dependent and TF-independent thrombin generation. In factor VIII and factor IX-deficient plasmas, βTG induced thrombin generation in the absence of a TF stimulus and in the presence of anti-TF and factor VIIa inhibitory antibodies. The procoagulant effect was not observed when thrombin generation was independent of factor X activation (supplementation of factor X-deficient plasma with factor Xa). Cleavage of a factor Xa-specific chromogenic substrate was observed when βTG was incubated with factor X, suggesting a direct interaction between βTG and factor X. Using SPR, βTG were found to bind to immobilised factor X in a dose dependent manner. βTG modulate coagulation in vitro via an interaction with factor X. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

    PubMed

    AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B

    2008-06-01

    Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

  3. Additive solutions differentially affect metabolic and functional parameters of platelet concentrates.

    PubMed

    Leitner, G C; List, J; Horvath, M; Eichelberger, B; Panzer, S; Jilma-Stohlawetz, P

    2016-01-01

    Pathogen inactivation (PI) of platelet concentrates with extension of shelf life to 7 days requires the use of platelet additive solutions (PAS). We examined the quality of platelets resuspended in three different PAS stored for up to 7 days. Twelve triple adult dose platelet concentrates (PC) were collected using the TrimaAccel® collection system. Each highly concentrated product was divided into three equal parts, and the additive solutions (Composol® or SSP+® or Intersol™) were added to a final concentration of 56% PAS and 44% plasma. Samples were drawn on days 1, 5 and 7 to measure pH, glucose, lactate dehydrogenase (LDH), lactate, mean platelet volume (MPV) and the aggregation response to collagen and the thrombin receptor agonist peptide-6. Further, p-selectin expression on platelets was assessed. No statistically significant changes were observed for pH and MPV during 7 days of storage in all PAS containing PCs, whereas glucose decreased and LDH and lactate increased over time (P < 0·05). These changes were particularly evident in Intersol PCs on days 5 and 7 compared with Composol® PCs or SSP+® PCs (P < 0·05). Platelets from Intersol PCs exhibited the highest baseline activation of p-selectin and showed reduced collagen- and TRAP-6-induced aggregation. Resuspension of platelets in Intersol for 7 days results in increased platelet activation and platelet metabolism compared with SSP+® or Composol®. Further clinical studies are needed to evaluate whether the observed differences in PAS-PCs affect the recovery rate or the life span of transfused platelets. © 2015 International Society of Blood Transfusion.

  4. Prolonging shelf-life of platelets by low-level laser

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Lu, Min; Wu, Mei X.

    2018-02-01

    It remains significant challenges to extend a shelf life of platelets beyond the conventional five days. Unlike red blood cells that can be stored at 4°C for a few weeks, platelets are stored at room temperature only, which results in a gradual loss of their quality owing to a switch of energy metabolism from aerobic oxidative phosphorylation toward anaerobic glycolysis. Given the well-documented beneficial effect of near infrared low-level laser (LLL) on mitochondrial functions in a variety of cells under stress, we explored a potential for LLL to extend the shelf life of platelets beyond the five days. We found that exposure of a platelet-containing storage bag to LLL at 830nm at 0.5J/cm2 prior to storage could significantly retain a pH value and viability of the platelets stored within the bag under a standard condition for eight days with improved quality compared to those platelets stored similarly for five days in controls. LLL inhibited reactive oxygen species (ROS) and lactate production, but sustained ATP production, mitochondrial membrane potential, and morphology in the stored platelets. While preserving their metabolic activity, LLL didn't activate platelets but increased their aggregation capacity and in vivo survival as suggested by similar levels of surface CD62p expression and enhanced agonist-induced aggregation and recovery following infusion in the presence compared to the absence of LLL treatment. This simple, addition-free, cost-effective, noninvasive laser illumination can be readily incorporated into the current platelet storage system to prolong shelf life of platelets with improved quality of stored platelets.

  5. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    PubMed

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  6. An inhibitor of collagen-stimulated platelet activation from the salivary glands of the Haementeria officinalis leech. I. Identification, isolation, and characterization.

    PubMed

    Connolly, T M; Jacobs, J W; Condra, C

    1992-04-05

    A protein that blocks collagen-stimulated platelet aggregation has been identified and isolated from the soluble fraction of salivary glands from Haementeria officinalis leeches. We have named this protein leech antiplatelet protein (LAPP). LAPP was isolated from soluble crude salivary gland extract by heparin-agarose, size exclusion, and C18 reverse phase high-performance chromatography. Its molecular weight is approximately 16,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reduced and nonreduced conditions. The sequences of peptides generated by V8 digestion of LAPP as well as its amino acid composition suggested no homology to other known proteins. The IC50 for LAPP to inhibit platelet aggregation was approximately 60 nM. This inhibitory activity is specific for collagen-induced aggregation. Platelet aggregation in response to ADP, arachidonic acid, U46619, thrombin, and ionophore A23187 was not inhibited by LAPP at a concentration that blocked platelet aggregation to collagen by 100%. In contrast, crude salivary gland-soluble extract contained activity(ies) which inhibited aggregation to all these agonists except thrombin at 1 unit/ml and 2 microM A23187. Thus, the H. officinalis leech has evolved multiple mechanisms to prevent hemostasis, including an inhibitor of collagen-stimulated platelet aggregation. The identification and isolation of LAPP demonstrates the existence of a new type of platelet inhibitor that should be useful to better understand the mechanism of collagen stimulation of platelets.

  7. Inhibitory effects of 2'-hydroxychalcones on rat lens aldose reductase and rat platelet aggregation.

    PubMed

    Lim, S S; Jung, S H; Ji, J; Shin, K H; Keum, S R

    2000-11-01

    Inhibitory effects of synthetic 2'-hydroxychalcone derivatives on rat lens aldose reductase (RLAR) and on platelet aggregation were investigated for the prevention or the treatment of chronic diabetic complications. 5'-chloro-4,2'-dihydroxychalcone (8) and 5'-chloro-3,2'-dihydroxychalcone (27) exhibited a potent inhibitory effect on rat platelet aggregation induced by ADP (IC50=0.10 and 0.06 mg/ml, respectively) and collagen (IC50=44 and 16 microg/ml, respectively) but showed relatively weak inhibitory activities on RLAR.

  8. Effect of atherosclerosis on endothelium-dependent inhibition of platelet activation in humans.

    PubMed

    Diodati, J G; Dakak, N; Gilligan, D M; Quyyumi, A A

    1998-07-07

    We investigated whether luminal release of nitric oxide (NO) contributes to inhibition of platelet activation and whether these effects are reduced in patients with atherosclerosis. Femoral blood flow velocity and ex vivo whole blood platelet aggregation by impedance aggregometry were measured in femoral venous blood during femoral arterial infusion of acetylcholine (ACh; 30 microg/min) in 30 patients, 19 of whom had angiographic atherosclerosis. Measurements were repeated with sodium nitroprusside (40 microg/min), L-arginine (160 micromol/min), and N(G)-monomethyl-L-arginine (L-NMMA; 16 micromol/min). There was significant inhibition of collagen-induced platelet aggregation with ACh (45+/-9.5% lower, P<0.001), and this inhibition was greater in patients without atherosclerosis (68.7+/-10.4% reduction) than in those with atherosclerosis (32.5+/-8.1%, P=0.04). The magnitude of inhibition correlated with vasodilation with ACh, indicating an association between the smooth muscle and antiplatelet effects of endothelium-dependent stimulation. Neither L-NMMA nor sodium nitroprusside altered platelet aggregation. L-Arginine inhibited platelet aggregation equally in vitro (34+/-8% reduction, P<0.01) and in vivo (37+/-13% reduction, P<0.01). Stimulation of NO release into the vascular lumen with ACh inhibits platelet aggregation, an effect that is attenuated in patients with atherosclerosis and endothelial dysfunction. Basal NO release does not appear to contribute to platelet passivation in vivo. L-Arginine inhibited platelet aggregation by its direct action on platelets. These findings provide a pathophysiological basis for the observed increase in thrombotic events in atherosclerosis. Use of L-arginine and other strategies to improve endothelial NO activity may impact favorably on thrombotic events in atherosclerosis.

  9. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction.

    PubMed

    Popa, Miruna; Tahir, Sibgha; Elrod, Julia; Kim, Su Hwan; Leuschner, Florian; Kessler, Thorsten; Bugert, Peter; Pohl, Ulrich; Wagner, Andreas H; Hecker, Markus

    2018-06-12

    Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.

  10. Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation.

    PubMed

    Daniel, James L; Dangelmaier, Carol A; Mada, Sripal; Buitrago, Lorena; Jin, Jianguo; Langdon, Wallace Y; Tsygankov, Alexander Y; Kunapuli, Satya P; Sanjay, Archana

    2010-06-04

    Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cgamma2 (PLCgamma2) and Bruton's tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b(-/-)) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca(2+) mobilization. A parallel inhibition is found for activation of PLCgamma2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCgamma2. When Cbl-b(-/-) mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.

  11. Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity.

    PubMed

    Gibson, Kyle R; Neilson, Ilene L; Barrett, Fiona; Winterburn, Tim J; Sharma, Sushma; MacRury, Sandra M; Megson, Ian L

    2009-10-01

    N-Acetylcysteine (NAC) is a frequently used "antioxidant" in vitro, but the concentrations applied rarely correlate with those encountered with oral dosing in vivo. Here, we investigated the in vitro antioxidant and antiplatelet properties of NAC at concentrations (10-100 microM) that are achievable in plasma with tolerable oral dosing. The impact of NAC pretreatment (2 hours) on aggregation of platelets from healthy volunteers in response to thrombin and adenosine diphosphate and on platelet-derived nitric oxide (NO) was examined. NAC was found to be a weak reducing agent and a poor antioxidant compared with glutathione (reduced form) (GSH). However, platelets treated with NAC showed enhanced antioxidant activity and depression of reactive oxygen species generation associated with increases in intraplatelet GSH levels. An approximately 2-fold increase in NO synthase-derived nitrite was observed with 10 microM NAC treatment, but the effect was not concentration dependent. Finally, NAC significantly reduced both thrombin-induced and adenosine diphosphate-induced platelet aggregation. NAC should be considered a weak antioxidant that requires prior conversion to GSH to convey antioxidant and antithrombotic benefit at therapeutically relevant concentrations. Our results suggest that NAC might be an effective antiplatelet agent in conditions where increased oxidative stress contributes to heightened risk of thrombosis but only if the intraplatelet machinery to convert it to GSH is functional.

  12. Relationship between high on aspirin platelet reactivity and oxidative stress in coronary artery by-pass grafted patients.

    PubMed

    Kuliczkowski, Wiktor; Golanski, Ryszard; Bijak, Michal; Boryczka, Katarzyna; Kaczmarski, Jacek; Watala, Cezary; Golanski, Jacek

    2016-03-01

    The aim of the study was to assess the responsiveness of blood platelets to acetylsalicylic acid (ASA) in patients following coronary artery bypass grafting (CABG) surgery with relation to oxidative and antioxidative plasma status. The study included 37 patients treated with the CABG procedure. During the first 24 h after CABG patients were given 300 mg of ASA with the following dose of 150 mg daily. The blood was collected before the procedure and 10 days after. Whole blood platelet aggregation induced with arachidonic acid, collagen and adenosine diphosphate (ADP) was performed together with whole blood generation of thromboxane B2 (TxB2). Oxidative stress was measured before and 10 days after CABG with total oxidative plasma status (TOS) and total antioxidative status of the plasma (TAS). TOS/TAS index was calculated. We observed a significant increase in the TOS and TOS/TAS index and ADP-induced aggregation 10 days after CABG in comparison with its level before operation. There was a significant decrease in the arachidonic acid-induced aggregation and serum TxB2 level. Patients with ADP-induced and collagen-induced aggregation in the upper quartile had significantly higher TOS and TOS/TAS index before (ADP) and after the operation (ADP and collagen). There were 19 patients (51%) with high on aspirin platelet reactivity after CABG who had also higher TOS and TOS/TAS index and lower TAS value in comparison with aspirin responders. Despite ASA use, increased oxidative stress after CABG can overcome its antiplatelet effect and increase platelet activation through other pathways.

  13. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    PubMed

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  14. CXCL4-platelet factor 4, heparin-induced thrombocytopenia and cancer.

    PubMed

    Sandset, Per Morten

    2012-04-01

    Platelet factor 4 (CXCL4-PF4) is a chemokine that binds to and neutralizes heparin and other negatively charged proteoglycans, but is also involved in angiogenesis and cancer development. In some patients exposed to heparin, antibodies are generated against the CXCL-PF4/heparin complex that may activate platelets and coagulation and lead to thrombocytopenia and arterial or venous thrombosis, a condition commonly named heparin induced thrombocytopenia (HIT). HIT has been investigated in numerous clinical settings, but there is limited data on the epidemiology and phenotype of HIT in cancer patients. The present review describes the role of CXCL4-PF4 in cancer, the immunobiology, clinical presentation and diagnosis of HIT, and the specific problems faced in cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. In vivo imaging visualizes discoid platelet aggregations without endothelium disruption and implicates contribution of inflammatory cytokine and integrin signaling.

    PubMed

    Nishimura, Satoshi; Manabe, Ichiro; Nagasaki, Mika; Kakuta, Shigeru; Iwakura, Yoichiro; Takayama, Naoya; Ooehara, Jun; Otsu, Makoto; Kamiya, Akihide; Petrich, Brian G; Urano, Tetsumei; Kadono, Takafumi; Sato, Shinichi; Aiba, Atsu; Yamashita, Hiroshi; Sugiura, Seiryo; Kadowaki, Takashi; Nakauchi, Hiromitsu; Eto, Koji; Nagai, Ryozo

    2012-02-23

    The mechanism by which thrombotic vessel occlusion occurs independently of plaque development or endothelial cell (EC) disruption remains unclear, largely because of an inability to visualize the formation of thrombus, especially at the single-platelet level in real time. Here we demonstrate that rapidly developing thrombi composed of discoid platelets can be induced in the mesenteric capillaries, arterioles, and large-sized arteries of living mice, enabling characterization of the kinetics of thrombosis initiation and the multicellular interrelationships during thrombus development. Platelet aggregation without EC disruption was triggered by reactive oxygen species (ROS) photochemically induced by moderate power laser irradiation. The inflammatory cytokines TNF-α and IL-1 could be key components of the EC response, acting through regulation of VWF mobilization to the cell surface. Thrombus formation was then initiated by the binding of platelet GPIbα to endothelial VWF in our model, and this effect was inhibited by the ROS scavenger N-acetylcysteine. Actin linker talin-dependent activation of alphaIIb-beta3 integrin or Rac1 in platelets was required for late-phase thrombus stability. Our novel imaging technology illustrates the molecular mechanism underlying inflammation-based thrombus formation by discoid platelets on undisrupted ECs and suggests control of ROS could be a useful therapeutic target for the prevention of thrombotic diseases.

  16. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922).

    PubMed

    Zheng, Zhaohua; Pinson, Jo-Anne; Mountford, Simon J; Orive, Stephanie; Schoenwaelder, Simone M; Shackleford, David; Powell, Andrew; Nelson, Erin M; Hamilton, Justin R; Jackson, Shaun P; Jennings, Ian G; Thompson, Philip E

    2016-10-21

    A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies. MIPS-9922, 10 potently inhibited ADP-induced washed platelet aggregation. It also inhibited integrin αIIbβ3 activation and αIIbβ3 dependent platelet adhesion to immobilized vWF under high shear. It prevented arterial thrombus formation in the in vivo electrolytic mouse model of thrombosis without inducing prolonged bleeding or excess blood loss. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibα, Glycoprotein VI, and Glycoprotein IIb/IIIa.

    PubMed

    Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-07

    The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.

  18. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP.

    PubMed

    Lee, Dong-Ha; Kwon, Hyuk-Woo; Kim, Hyun-Hong; Lim, Deok Hwi; Nam, Gi Suk; Shin, Jung-Hae; Kim, Yun-Yi; Kim, Jong-Lae; Lee, Jong-Jin; Kwon, Ho-Kyun; Park, Hwa-Jin

    2015-01-01

    In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca(2+)]i mobilization, and increased cAMP level and IP3RI (Ser(1756)) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca(2+)]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser(1756)) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser(157)), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser(1756)) phosphorylation to inhibit [Ca(2+)]i mobilization and, VASP (Ser(157)) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

  19. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation.

    PubMed

    Potter, Timothy M; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A

    2018-01-01

    Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.

  20. RNA sequencing enables systematic identification of platelet transcriptomic alterations in NSCLC patients.

    PubMed

    Zhang, Qun; Hu, Huan; Liu, Hongda; Jin, Jiajia; Zhu, Peiyuan; Wang, Shujun; Shen, Kaikai; Hu, Yangbo; Li, Zhou; Zhan, Ping; Zhu, Suhua; Fan, Hang; Zhang, Jianya; Lv, Tangfeng; Song, Yong

    2018-05-29

    Platelets are implicated as key players in the metastatic dissemination of tumor cells. Previous evidence demonstrated platelets retained cytoplasmic RNAs with physiologically activity, splicing pre-mRNA to mRNA and translating into functional proteins in response to external stimulation. Recently, platelets gene profile of healthy or diseased individuals were characterized with the help of RNA sequencing (RNA-Seq) in some studies, leading to new insights into the mechanisms underlying disease pathogenesis. In this study, we performed RNA-seq in platelets from 7 healthy individuals and 15 non-small cell lung cancer (NSCLC) patients. Our data revealed a subset of near universal differently expressed gene (DEG) profiles in platelets of metastatic NSCLC compared to healthy individuals, including 626 up-regulated RNAs (mRNAs and ncRNAs) and 1497 down-regulated genes. The significant over-expressed genes showed enrichment in focal adhesion, platelets activation, gap junction and adherens junction pathways. The DEGs also included previously reported tumor-related genes such as PDGFR, VEGF, EGF, etc., verifying the consistence and significance of platelet RNA-Seq in oncology study. We also validated several up-regulated DEGs involved in tumor cell-induced platelet aggregation (TCIPA) and tumorigenesis. Additionally, transcriptomic comparison analyses of NSCLC subgroups were conducted. Between non-metastatic and metastatic NSCLC patients, 526 platelet DEGs were identified with the most altered expression. The outcomes from subgroup analysis between lung adenocarcinoma and lung squamous cell carcinoma demonstrated the diagnostic potential of platelet RNA-Seq on distinguishing tumor histological types. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Synthesis and antiplatelet effects of the new antithrombotic agent aspalatone with low ulcerogenicity.

    PubMed

    Han, B H; Suh, D Y; Yang, H O; Park, Y H; Kang, Y H; Kim, Y C

    1994-10-01

    A new compound, aspalatone (acetylsalicylic acid maltol ester), was synthesized by esterification of acetylsalicylic acid (ASA) and maltol, an antioxidant, and studied for its bleeding time prolongation effect in rats, for its antiplatelet aggregation activity in vitro and ex vivo in rats, and for its antithrombotic activity in vivo using the mouse thromboembolism test. Aspalatone treatment (15 mg/kg p.o.) for 10 days prolonged bleeding time by 57% (p < 0.005) in Sprague-Dawley rats vs control, while ASA treatment (15 mg/kg p.o.) prolonged by 44%. At the low dose of 15 mg/kg p.o. at least 8 days of treatment were necessary for aspalatone and ASA to prolong the bleeding time significantly. On the other hand, salicylic acid maltol ester which lacks the acetyl group did not significantly affect bleeding time at a dose of 15 mg/kg. Aspalatone produced a potent inhibition of collagen-induced platelet aggregation in vitro with IC50 of 1.8 x 10(-4) mol/l, but, similar to ASA, did not significantly inhibit ADP-induced aggregation. The ability of oral aspalatone to inhibit platelet aggregation in rats ex vivo was compared with other reference antiplatelet drugs. Relative potency was ASA > dipyridamole approximately equal to aspalatone > ticlopidine. A single dose of aspalatone potently prevented death due to collagen-induced platelet aggregation in mice in vivo with ED50 value of 32 mg/kg p.o., but failed to prevent death due to ADP-induced platelet aggregation. When given for 10 days, aspalatone prevented collagen-induced death by 90% (p < 0.001) at 20 mg/kg, and this antithrombotic effect lasted after 4 days of wash-out period.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dual Therapy with Aspirin and Cilostazol May Improve Platelet Aggregation in Noncardioembolic Stroke Patients: A Pilot Study.

    PubMed

    Ohnuki, Yoichi; Ohnuki, Yuko; Kohara, Saori; Shimizu, Mie; Takizawa, Shunya

    2017-01-01

    Objective Some previous studies have found clinical benefit of dual antiplatelet therapy with aspirin and cilostazol for prevention of secondary stroke, but the physiological mechanism involved remains unknown. We aimed to clarify the effects of aspirin/cilostazol therapy on the platelet and endothelial functions of patients with acute noncardioembolic ischemic stroke, in comparison to patients who were treated with aspirin alone. Methods The present randomized prospective pilot study enrolled 24 patients within a week after the onset of noncardioembolic ischemic stroke. The patients were randomly allocated to receive aspirin (100 mg/day) (A group; 11 patients) or cilostazol (200 mg/day) plus aspirin (100 mg/day) (CA group; 13 patients). We measured platelet aggregation, platelet activation, and the thrombomodulin (TM), highly sensitive C-reactive protein (hs-CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and von Willebrand (vWF) antigen levels and vWF activity over a 4-week period after enrollment. Results There was no significant difference in the platelet functions of the A and CA groups. However, the platelet aggregation induced by adenosine diphosphate (ADP) was decreased at 2 and 4 weeks (p<0.05) after treatment in comparison to the pre-treatment values in the CA group, but not in the A group. Platelet activation, and the hs-CRP, TM, ICAM-1, VCAM-1 and vWF values did not significantly decrease after treatment in either group. Conclusion Although there were no significant differences in platelet aggregation, platelet activation or the endothelial biomarker levels of the A and CA groups, dual therapy with aspirin and cilostazol inhibited platelet aggregation in comparison to the pre-treatment values, similarly to patients who received aspirin alone. This may suggest the clinical usefulness of dual therapy with aspirin and cilostazol in the treatment of patients with noncardioembolic ischemic stroke.

  3. Contrasting effects of pseudoephedrine and papaverine in dextran sodium sulfate-induced colitis.

    PubMed

    Harris, Norman R; Specian, Robert D; Carter, Patsy R; Morgan, Georgia A

    2008-03-01

    Dextran sodium sulfate (DSS) induces submucosal arteriolar constriction that reduces blood flow to the intestine, and the relevance of this decrease in flow needs further investigation. In the present study we examined the effects of a vasoconstrictor (pseudoephedrine) and a vasodilator (papaverine) on the outcome of DSS-induced colitis. Mice were given DSS in drinking water for 6 days, with enemas on days 0, 1, 3, and 5 containing pseudoephedrine, papaverine, or no drug. At the conclusion of the 6-day protocol a disease activity index comprising weight loss, stool consistency, and rectal bleeding was evaluated, along with intravital microscopy observations of submucosal venular leukocyte and platelet adherence in the proximal colon and terminal ileum. Pseudoephedrine and papaverine had several contrasting effects on the outcome of DSS ingestion: pseudoephedrine induced the highest levels of weight loss, loose stools, venular platelet adherence, and overall disease activity index, while papaverine induced the highest levels of venular leukocyte adherence, but the lowest levels of rectal bleeding, loose stools, and overall disease activity index. The results suggest that vasoconstriction worsens the pathological consequences of DSS in the mouse model of colitis.

  4. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burroughs, S.F.; Johnson, G.J.

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of (14C)-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; butmore » no irreversible inhibition of alpha 2 adrenergic receptors, measured with (3H)-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist (3H)-U46619 and antagonist (3H)-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ((Ca2+)i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in (Ca2+)i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.« less

  5. Oral Exposure to Phytomonas serpens Attenuates Thrombocytopenia and Leukopenia during Acute Infection with Trypanosoma cruzi

    PubMed Central

    da Silva, Rosiane V.; Malvezi, Aparecida D.; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H.; Yamauchi, Lucy M.; Yamada-Ogatta, Sueli F.; Rizzo, Luiz V.; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease. PMID:23844182

  6. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi.

    PubMed

    da Silva, Rosiane V; Malvezi, Aparecida D; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F; Rizzo, Luiz V; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.

  7. Integrity of Induced Pluripotent Stem Cell (iPSC) Derived Megakaryocytes as Assessed by Genetic and Transcriptomic Analysis

    PubMed Central

    Kammers, Kai; Taub, Margaret A.; Ruczinski, Ingo; Martin, Joshua; Yanek, Lisa R.; Frazee, Alyssa; Gao, Yongxing; Hoyle, Dixie; Faraday, Nauder; Becker, Diane M.; Cheng, Linzhao; Wang, Zack Z.; Leek, Jeff T.; Becker, Lewis C.; Mathias, Rasika A.

    2017-01-01

    Previously, we have described our feeder-free, xeno-free approach to generate megakaryocytes (MKs) in culture from human induced pluripotent stem cells (iPSCs). Here, we focus specifically on the integrity of these MKs using: (1) genotype discordance between parent cell DNA to iPSC cell DNA and onward to the differentiated MK DNA; (2) genomic structural integrity using copy number variation (CNV); and (3) transcriptomic signatures of the derived MK lines compared to the iPSC lines. We detected a very low rate of genotype discordance; estimates were 0.0001%-0.01%, well below the genotyping error rate for our assay (0.37%). No CNVs were generated in the iPSCs that were subsequently passed on to the MKs. Finally, we observed highly biologically relevant gene sets as being upregulated in MKs relative to the iPSCs: platelet activation, blood coagulation, megakaryocyte development, platelet formation, platelet degranulation, and platelet aggregation. These data strongly support the integrity of the derived MK lines. PMID:28107356

  8. Pneumolysin mediates heterotypic aggregation of neutrophils and platelets in vitro.

    PubMed

    Nel, Jan G; Durandt, Chrisna; Theron, Annette J; Tintinger, Gregory R; Pool, Roger; Richards, Guy A; Mitchell, Timothy J; Feldman, Charles; Anderson, Ronald

    2017-06-01

    Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A 2 (TxA 2 ) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. The effects of recombinant Ply (10-80 ng mL -1 ) on the production of PAF and TxA 2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA 2 , achieving statistical significance at ≥20 ng mL -1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL -1 of the toxin, but did not involve either PAF or TxA 2 . Ply induces synthesis of PAF and TxA 2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation.

    PubMed

    Chang, Yi; Hsu, Wen-Hsien; Lu, Wan-Jung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Geraldine, Pitchairaj; Lin, Kuan-Hung; Sheu, Joen-Rong

    2015-01-01

    CME-1 is a polysaccharide purified from the mycelia of medicinal mushroom Cordyceps sinensis, its molecular weight was determined to be 27.6 kDa by using nuclear magnetic resonance and gas chromatography-mass spectrometry. The initiation of arterial thromboses is relevant to various cardiovascular diseases (CVDs) and is believed to involve platelet activation. Our recent study exhibited that CME-1 has potent antiplatelet activity via the activation of adenylate cyclase/cyclic AMP ex vivo and in vivo. The aggregometry, and immunoblotting were used in this study. In this study, the mechanisms of CME-1 in platelet activation is further investigated and found that CME-1 inhibited platelet aggregation as well as the ATP-release reaction, relative intracellular [Ca(+2)] mobilization, and the phosphorylation of phospholipase C (PLC)γ2 and protein kinase C (PKC) stimulated by collagen. CME-1 has no effects on inhibiting either convulxin, an agonist of glycoprotein VI, or aggretin, an agonist of integrin α2β1 stimulated platelet aggregation. Moreover, this compound markedly diminished thrombin and arachidonic acid (AA) induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 2, c-Jun N-terminal kinase 1, and Akt. Treatment with SQ22536, an inhibitor of adenylate cyclase, markedly diminished the CME-1-mediated increasing of cyclic AMP level and reversed prostaglandin E1- or CME-1-mediated inhibition of platelet aggregation and p38 MAPK and Akt phosphorylation stimulated by thrombin or AA. Furthermore, phosphodiesterase activity of human platelets was not altered by CME-1. The crucial finding of this study is that the antiplatelet activity of CME-1 may initially inhibit the PLCγ2-PKC-p47 cascade, and inhibit PI3-kinase/Akt and MAPK phosphorylation through adenylate cyclase/ cyclic AMP activation, then inhibit intracellular [Ca(+2)] mobilization, and, ultimately, inhibit platelet activation. The novel role of CME-1 in antiplatelet activity indicates that this compound exhibits high therapeutic potential for treating or preventing CVDs.

  10. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation.

    PubMed

    Launay, Jean-Marie; Del Pino, Muriel; Chironi, Gilles; Callebert, Jacques; Peoc'h, Katell; Mégnien, Jean-Louis; Mallet, Jacques; Simon, Alain; Rendu, Francine

    2009-11-23

    Postulating that serotonin (5-HT), released from smoking-activated platelets could be involved in smoking-induced vascular modifications, we studied its catabolism in a series of 115 men distributed as current smokers (S), never smokers (NS) and former smokers (FS) who had stopped smoking for a mean of 13 years. 5-HT, monoamine oxidase (MAO-B) activities and amounts were measured in platelets, and 5-hydroxyindolacetic acid (5-HIAA)--the 5-HT/MAO catabolite--in plasma samples. Both platelet 5-HT and plasma 5-HIAA levels were correlated with the 10-year cardiovascular Framingham relative risk (P<0.01), but these correlations became non-significant after adjustment for smoking status, underlining that the determining risk factor among those taken into account in the Framingham risk calculation was smoking. Surprisingly, the platelet 5-HT content was similar in S and NS but lower in FS with a parallel higher plasma level of 5-HIAA in FS. This was unforeseen since MAO-B activity was inhibited during smoking (P<0.00001). It was, however, consistent with a higher enzyme protein concentration found in S and FS than in NS (P<0.001). It thus appears that MAO inhibition during smoking was compensated by a higher synthesis. To investigate the persistent increase in MAO-B protein concentration, a study of the methylation of its gene promoter was undertaken in a small supplementary cohort of similar subjects. We found that the methylation frequency of the MAOB gene promoter was markedly lower (P<0.0001) for S and FS vs. NS due to cigarette smoke-induced increase of nucleic acid demethylase activity. This is one of the first reports that smoking induces an epigenetic modification. A better understanding of the epigenome may help to further elucidate the physiopathology and the development of new therapeutic approaches to tobacco addiction. The results could have a larger impact than cardiovascular damage, considering that MAO-dependent 5-HT catabolism is also involved in addiction, predisposition to cancer, behaviour and mental health.

  11. Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation.

    PubMed

    Rull, Gurvinder; Mohd-Zain, Zetty N; Shiel, Julian; Lundberg, Martina H; Collier, David J; Johnston, Atholl; Warner, Timothy D; Corder, Roger

    2015-08-01

    Regular consumption of chocolate and cocoa products has been linked to reduced cardiovascular mortality. This study compared the effects of high flavanol dark chocolate (HFDC; 1064mg flavanols/day for 6weeks) and low flavanol dark chocolate (LFDC; 88mg flavanols/day for 6weeks) on blood pressure, heart rate, vascular function and platelet aggregation in men with pre-hypertension or mild hypertension. Vascular function was assessed by pulse wave analysis using radial artery applanation tonometry in combination with inhaled salbutamol (0.4mg) to assess changes due to endothelium-dependent vasodilatation. HFDC did not significantly reduce blood pressure compared to baseline or LFDC. Heart rate was increased by LFDC compared to baseline, but not by HFDC. Vascular responses to salbutamol tended to be greater after HFDC. Platelet aggregation induced by collagen or the thromboxane analogue U46619 was unchanged after LFDC or HFDC, whereas both chocolates reduced responses to ADP and the thrombin receptor activator peptide, SFLLRNamide (TRAP6), relative to baseline. Pre-incubation of platelets with theobromine also attenuated platelet aggregation induced by ADP or TRAP6. We conclude that consumption of HFDC confers modest improvements in cardiovascular function. Platelet aggregation is modulated by a flavanol-independent mechanism that is likely due to theobromine. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: ex vivo and in vivo studies.

    PubMed

    Jayakumar, Thanasekaran; Chen, Wei-Fan; Lu, Wan-Jung; Chou, Duen-Suey; Hsiao, George; Hsu, Chung-Yi; Sheu, Joen-Rong; Hsieh, Cheng-Ying

    2013-06-01

    Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca(2+) mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH(●)) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH(●) formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Von Willebrand's disease with spontaneous platelet aggregation induced by an abnormal plasma von Willebrand factor.

    PubMed Central

    Grainick, H R; Williams, S B; McKeown, L P; Rick, M E; Maisonneuve, P; Jenneau, C; Sultan, Y

    1985-01-01

    We have investigated and characterized the abnormalities in four unrelated patients with von Willebrand's disease (vWd) who have (a) enhanced ristocetin-induced platelet aggregation (RIPA) at low ristocetin concentrations, (b) absence of the largest plasma von Willebrand factor (vWf) multimers, and (c) thrombocytopenia. The platelet-rich plasma of these patients aggregates spontaneously without the addition of any agonists. When isolated normal platelets are resuspended in patient plasma spontaneous aggregation occurs; however, the patients' plasmas did not induce platelet aggregation of normal washed formalinized platelets. When the patients' platelets are suspended in normal plasma, spontaneous aggregation is not observed. The spontaneous platelet aggregation (SPA) is associated with dense granule secretion as measured by ATP release and alpha granule release as measured by beta-thromboglobulin and platelet factor 4 release. The SPA is totally inhibited by 5 mM EDTA, prostaglandin I2, and dibutryl cyclic AMP, while it is only partially inhibited by 1 mM EDTA, acetylsalicylic acid, or apyrase. A monoclonal antibody directed against glycoprotein Ib (GPIb) and/or a monoclonal antibody against the glycoprotein IIb/IIIa (GPIIb/IIIa) complex totally inhibits the SPA. The vWf was isolated from the plasma of one of these patients. The purified vWf induced platelet aggregation of normal platelets resuspended in either normal or severe vWd plasma, but the vWf did not induce platelet aggregation of normal platelets resuspended in afibrinognemic plasma. Sialic acid and galactose quantification of the patient's vWf revealed approximately a 50% reduction compared with normal vWf. These studies indicate that a form of vWd exists, which is characterized by SPA that is induced by the abnormal plasma vWf. The SPA is dependent on the presence of plasma fibrinogen, and the availability of the GPIb and the GPIIb/IIIa complex. In this variant form of vWd the abnormal vWf causes enhanced RIPA, SPA, and thrombocytopenia. Images PMID:2932469

  14. Selective protein adsorption modulates platelet adhesion and activation to oligo(ethylene glycol)-terminated self-assembled monolayers with C18 ligands.

    PubMed

    Gonçalves, Inês C; Martins, M Cristina L; Barbosa, Mário A; Naeemi, Esmaeel; Ratner, Buddy D

    2009-06-01

    This study focuses on the selective binding of albumin to a nanostructured surfaces to inhibit other blood proteins from adsorbing thereby reducing platelet adhesion and activation. Tetra (ethylene-glycol)-terminated self-assembled monolayers (EG4 SAMs) with different percentages of C18 ligands on the surface were characterized by contact angle measurements, X-ray photoelectron microscopy, infrared reflection-absorption spectroscopy, and ellipsometry. A specific surface (2.5% C18 SAM) was found to be selective for human serum albumin (HSA) in the presence of both albumin and fibrinogen (HFG). The importance of this concentration of C18 ligands was stressed in reversibility studies since that surface exchanged almost all the preadsorbed HSA by HSA in solution, but not by HFG. The effect of protein adsorption in the subsequent adhesion and activation of platelets was studied by pre-immersing the surfaces in albumin and plasma before contact with platelets. Scanning electron microscopy and glutaraldehyde induced fluorescence technique images showed that as surfaces got more hydrophobic due to the immobilization of C18 ligands, the number of adherent platelets increased and their morphology changed from round to fully spread. Pre-immersion in HSA led to an 80% decrease in platelet adhesion and reduction of activation. Pre-immersion in 1% plasma was only relevant in 2.5% C18 SAMs since this was the only surface that demonstrated less adhesion of platelets comparing with buffer pre-immersion. However, they still adsorb more platelets then when HSA was preadsorbed. This was confirmed in competition studies between HSA and plasma that suggested that other plasma proteins were also adsorbing to this surface. 2008 Wiley Periodicals, Inc.

  15. Application of Feedback System Control Optimization Technique in Combined Use of Dual Antiplatelet Therapy and Herbal Medicines

    PubMed Central

    Liu, Wang; Li, Yu-Long; Feng, Mu-Ting; Zhao, Yu-Wei; Ding, Xianting; He, Ben; Liu, Xuan

    2018-01-01

    Aim: Combined use of herbal medicines in patients underwent dual antiplatelet therapy (DAPT) might cause bleeding or thrombosis because herbal medicines with anti-platelet activities may exhibit interactions with DAPT. In this study, we tried to use a feedback system control (FSC) optimization technique to optimize dose strategy and clarify possible interactions in combined use of DAPT and herbal medicines. Methods: Herbal medicines with reported anti-platelet activities were selected by searching related references in Pubmed. Experimental anti-platelet activities of representative compounds originated from these herbal medicines were investigated using in vitro assay, namely ADP-induced aggregation of rat platelet-rich-plasma. FSC scheme hybridized artificial intelligence calculation and bench experiments to iteratively optimize 4-drug combination and 2-drug combination from these drug candidates. Results: Totally 68 herbal medicines were reported to have anti-platelet activities. In the present study, 7 representative compounds from these herbal medicines were selected to study combinatorial drug optimization together with DAPT, i.e., aspirin and ticagrelor. FSC technique first down-selected 9 drug candidates to the most significant 5 drugs. Then, FSC further secured 4 drugs in the optimal combination, including aspirin, ticagrelor, ferulic acid from DangGui, and forskolin from MaoHouQiaoRuiHua. Finally, FSC quantitatively estimated the possible interactions between aspirin:ticagrelor, aspirin:ferulic acid, ticagrelor:forskolin, and ferulic acid:forskolin. The estimation was further verified by experimentally determined Combination Index (CI) values. Conclusion: Results of the present study suggested that FSC optimization technique could be used in optimization of anti-platelet drug combinations and might be helpful in designing personal anti-platelet therapy strategy. Furthermore, FSC analysis could also identify interactions between different drugs which might provide useful information for research of signal cascades in platelet. PMID:29780330

  16. The 29-kDa proteins phosphorylated ion thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M.E.; Yan Zhu; O'Neill, S.

    Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less

  17. Platelet Glycoprotein lb-1X and Malignancy

    DTIC Science & Technology

    2011-09-01

    Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci...JM, Hakim J, de Prost D. Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves...interactions in vitro. (14) The extrinsic pathway of coagulation triggered by factor VII ( FVII ) and tissue factor can be activated in cancer patients. (15

  18. Steam-cooking rapidly destroys and reverses onion-induced antiplatelet activity

    PubMed Central

    2012-01-01

    Background Foods in the diet that can aid in the prevention of diseases are of major interest. Onions are key ingredients in many cuisines around the world and moreover, onion demand has trended higher over the past three decades. An important pharmacological aspect of onion is the ability to inhibit platelet aggregation. Raw onions inhibit platelet aggregation; however, when onions are boiled or heated, antiplatelet activity may be abolished. Methods Onion quarters were steamed for 0, 1, 3, 6, 10, and 15 min. The in vitro antiplatelet activity of a yellow hybrid storage onion was examined at these times on the blood of 12 human subjects using in vitro whole blood aggregometry. Results Contrary to findings reported for boiling, antiplatelet activity was destroyed between 3 and 6 min of steaming, and at 10 min of steaming, cooked onions stimulated platelet activity. Extracts from cooked onion had the potential to reverse the inhibitory effect on blood platelets by 25%. Responses were consistent across all donors. Total polyphenolic concentration and soluble solids were not affected by steaming time. Conclusions The potential value of cooked onion preparations may result in destruction or reversal of antiplatelet activity, without affecting the polyphenolic concentration. PMID:22992282

  19. Steam-cooking rapidly destroys and reverses onion-induced antiplatelet activity.

    PubMed

    Hansen, Emilie A; Folts, John D; Goldman, Irwin L

    2012-09-20

    Foods in the diet that can aid in the prevention of diseases are of major interest. Onions are key ingredients in many cuisines around the world and moreover, onion demand has trended higher over the past three decades. An important pharmacological aspect of onion is the ability to inhibit platelet aggregation. Raw onions inhibit platelet aggregation; however, when onions are boiled or heated, antiplatelet activity may be abolished. Onion quarters were steamed for 0, 1, 3, 6, 10, and 15 min. The in vitro antiplatelet activity of a yellow hybrid storage onion was examined at these times on the blood of 12 human subjects using in vitro whole blood aggregometry. Contrary to findings reported for boiling, antiplatelet activity was destroyed between 3 and 6 min of steaming, and at 10 min of steaming, cooked onions stimulated platelet activity. Extracts from cooked onion had the potential to reverse the inhibitory effect on blood platelets by 25%. Responses were consistent across all donors. Total polyphenolic concentration and soluble solids were not affected by steaming time. The potential value of cooked onion preparations may result in destruction or reversal of antiplatelet activity, without affecting the polyphenolic concentration.

  20. A novel antiplatelet antibody therapy that induces cAMP-dependent endocytosis of the GPVI/Fc receptor γ-chain complex

    PubMed Central

    Takayama, Hiroshi; Hosaka, Yoshitaka; Nakayama, Kazuyuki; Shirakawa, Kamon; Naitoh, Katsuki; Matsusue, Tomokazu; Shinozaki, Mikihiko; Honda, Motoyasu; Yatagai, Yukiko; Kawahara, Tetsushi; Hirose, Jiro; Yokoyama, Tooru; Kurihara, Michiru; Furusako, Shoji

    2008-01-01

    Platelet adhesion to vascular subendothelium, mediated in part by interactions between collagen and glycoprotein VI (GPVI) complexed with Fc receptor γ-chain, is crucial for thrombus formation. Antiplatelet therapy benefits patients with various thrombotic and ischemic diseases, but the safety and efficacy of existing treatments are limited. Recent data suggest GPVI as a promising target for a novel antiplatelet therapy, for example, GPVI-specific Abs that deplete GPVI from the surface of platelets. Here, we characterized GPVI-specific auto-Abs (YA-Abs) from the first reported patient with ongoing platelet GPVI deficiency caused by the YA-Abs. To obtain experimentally useful human GPVI–specific mAbs with characteristics similar to YA-Abs, we generated human GPVI–specific mouse mAbs and selected 2 representative mAbs, mF1201 and mF1232, whose binding to GPVI was inhibited by YA-Abs. In vitro, mF1201, but not mF1232, induced human platelet activation and GPVI shedding, and mF1232 inhibited collagen-induced human platelet aggregation. Administration of mF1201 and mF1232 to monkeys caused GPVI immunodepletion with and without both significant thrombocytopenia and GPVI shedding, respectively. When a human/mouse chimeric form of mF1232 (cF1232) was labeled with a fluorescent endocytosis probe and administered to monkeys, fluorescence increased in circulating platelets and surface GPVI was lost. Loss of platelet surface GPVI mediated by cF1232 was successfully reproduced in vitro in the presence of a cAMP-elevating agent. Thus, we have characterized cAMP-dependent endocytosis of GPVI mediated by a human GPVI–specific mAb as what we believe to be a novel antiplatelet therapy. PMID:18382762

  1. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking

    PubMed Central

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A.; Moncman, Carole L.

    2016-01-01

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate–ribosylation factor 6 (Arf6) is a small guanosine triphosphate–binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)–labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. PMID:26738539

  2. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking.

    PubMed

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A; Moncman, Carole L; Whiteheart, Sidney W

    2016-03-17

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate-ribosylation factor 6 (Arf6) is a small guanosine triphosphate-binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)-labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. © 2016 by The American Society of Hematology.

  3. Platelets promote cartilage repair and chondrocyte proliferation via ADP in a rodent model of osteoarthritis.

    PubMed

    Zhou, Qi; Xu, Chunhua; Cheng, Xingyao; Liu, Yangyang; Yue, Ming; Hu, Mengjiao; Luo, Dongjiao; Niu, Yuxi; Ouyang, Hongwei; Ji, Jiansong; Hu, Hu

    2016-01-01

    Osteoarthritis (OA) is the most common age-related degenerative joint disease and platelet-rich plasma (PRP) has been shown to be beneficial in OA. Therefore, in this study, we aimed to investigate the effects of platelets on chondrocytes and the underlying mechanisms. Anabolic and catabolic activity and the proliferation rate of chondrocytes were evaluated after co-culture with platelets. Chondrocyte gene expression was measured by real-time PCR. Chondrocyte protein expression and phosphorylation were measured by western blot. Chondrocytes treated with or without platelets were transplanted into a rat model of OA induced by intra-articular injection of monosodium iodoacetate and the repair of articular cartilage was evaluated macroscopically and histologically. Platelets significantly promoted the proliferation of chondrocytes, while mildly influencing anabolic and catabolic activity. Chondrocytes co-cultured with platelets showed significantly increased production of bone morphogenetic protein 7 (BMP7). The autocrine/paracrine effect of BMP7 was responsible for the increased proliferation of chondrocytes, via the ERK/CDK1/cyclin B1 signaling pathway. Transplantation of platelet-treated chondrocytes showed better cartilage repair in the OA model. Platelet-derived ADP was identified as the major mediator to promote the production of BMP7 and the proliferation of chondrocytes, through the ADP receptor P2Y1. Finally, direct injection of α,β-methyleneadenosine-5'-diphosphate into OA joints also enhanced cartilage repair. This study has identified that platelet-derived ADP, but not ATP, is the key mediator for platelet-promoted chondrocyte proliferation and cartilage repair in osteoarthritis. This finding may provide a key explanation for the therapeutic effect of platelets in OA and help shaping a strategy to improve OA therapy.

  4. Synthetic Strategies for Engineering Intravenous Hemostats

    PubMed Central

    Chan, Leslie W.-G.; White, Nathan J.; Pun, Suzie H.

    2015-01-01

    While there are currently many well-established topical hemostatic agents for field administration, there are still limited tools to staunch bleeding at less accessible injury sites. Current clinical methods of restoring hemostasis after large volume blood loss include platelet and clotting factor transfusion, which have respective drawbacks of short shelf-life and risk of viral transmission. Therefore, synthetic hemostatic agents that can be delivered intravenously and encourage stable clot formation after localizing to sites of vascular injury are particularly appealing. In the past three decades, platelet substitutes have been prepared using drug delivery vehicles such as liposomes and PLGA nanoparticles that have been modified to mimic platelet properties. Additionally, structural considerations such as particle size, shape, and flexibility have been addressed in a number of reports. Since platelets are the first responders after vascular injury, platelet substitutes represent an important class of intravenous hemostats under development. More recently, materials affecting fibrin formation have been introduced to induce faster or more stable blood clot formation through fibrin crosslinking. Fibrin represents a major structural component in the final blood clot, and a fibrin-based hemostatic mechanism acting downstream of initial platelet plug formation may be a safer alternative to platelets to avoid undesired thrombotic activity. This review explores intravenous hemostats under development and strategies to optimize their clotting activity. PMID:25803791

  5. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2017-07-01

    Hyperglycemia has been suggested to play a role in the increased platelet resistance to antiplatelet therapy in patients with diabetes mellitus. Exposure to high glucose impairs platelet inhibition by aspirin. It has been found that antioxidant agents reduce the effect of glucose, confirming the involvement of reactive oxygen species (ROS) in the effect of glucose. The aim of the study was to examine the mechanism of ROS increase by high glucose in aspirin-treated platelets. Platelet aggregation was measured by the optical method, and the production of ROS was detected using luminol-dependent horseradish peroxidase-enhanced chemiluminescence. We found that glucose did not affect ADP-induced platelet aggregation. However, it reduced the effect of aspirin on platelet aggregation, which was accompanied by an increase in ROS generation. The inhibition of NAD(P)H oxidase (NOX) prevented the glucose effect and ROS generation. The same result was recorded after the inhibition of p38 mitogen-activated protein kinases (p38 MAPK), phospholipase A 2 (PLA 2 ) or 12-lipoxygenase (12-LOX). The inhibition of TxA 2 receptor did not decrease the effect of glucose indicating that the effect was not caused by activation of TxA 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The neuropeptide substance P stimulates the effector functions of platelets.

    PubMed Central

    Damonneville, M; Monté, D; Auriault, C; Capron, A

    1990-01-01

    Sensory neuropeptides, such as substance P, appear as potent mediators of various immunological reactions, and inhibit or stimulate a wide range of functions of immune inflammatory cells. Platelets were recently shown to participate as effector cells in an IgE or lymphokine-dependent killing of parasites. Substance P and its carboxy-terminal fragment SP (4-11) induce the cytotoxic activity of platelets towards the larvae of Schistosoma mansoni, respectively, by 90% and 40%, whereas the modified C terminal SP, the SP-free acid, exhibits no effect on the platelets. The neuropeptide effects occur at low doses (10(-8) M), are specific as shown by inhibition studies with a substance P antagonist, the D-SP. Binding data obtained after flow cytofluorometry with FITC-SP lead to the conclusion that SP binds specifically to about 20% of the homogenous population of platelets. Moreover, IgE could modulate the SP-dependent functions of platelets since the pre-incubation with myeloma human IgE or with AP2 monoclonal antibodies--known to inhibit the IgE-dependent killing of these cells-leads to a dramatic decrease of the SP dependent cytotoxic activity of platelets towards the larvae. These findings identify a potent mechanism for nervous system regulation of host defence responses. PMID:1696868

  7. Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases.

    PubMed

    Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe

    2012-01-01

    Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists ("priming effect"). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.

  8. Complement component 5 promotes lethal thrombosis

    PubMed Central

    Mizuno, Tomohiro; Yoshioka, Kengo; Mizuno, Masashi; Shimizu, Mie; Nagano, Fumihiko; Okuda, Tomoyuki; Tsuboi, Naotake; Maruyama, Shoichi; Nagamatsu, Tadashi; Imai, Masaki

    2017-01-01

    Extracellular histones promote platelet aggregation and thrombosis; this is followed by induction of coagulation disorder, which results in exhaustion of coagulation factors. Complement component 5 (C5) is known to be associated with platelet aggregation and coagulation system activation. To date, the pathological mechanism underlying liver injury has remained unclear. Here, we investigated whether C5 promotes liver injury associated with histone-induced lethal thrombosis. C5-sufficient and C5-deficient mice received single tail vein injections of purified, unfractionated histones obtained from calf thymus (45–75 μg/g). Subsequently, the mice were monitored for survival for up to 72 h. Based on the survival data, the 45 μg/g dose was used for analysis of blood cell count, liver function, blood coagulation ability, and promotion of platelet aggregation and platelet/leukocyte aggregate (PLA) production by extracellular histones. C5-deficient mice were protected from lethal thrombosis and had milder thrombocytopenia, consumptive coagulopathy, and liver injury with embolism and lower PLA production than C5-sufficient mice. These results indicate that C5 is associated with coagulation disorders, PLA production, and embolism-induced liver injury. In conclusion, C5 promotes liver injury associated with histone-induced lethal thrombosis. PMID:28205538

  9. Postprandial changes in platelet function and coagulation factors after high-fat meals with different fatty acid compositions.

    PubMed

    Freese, R; Mutanen, M

    1995-09-01

    To compare the postprandial effects of three oils differing in their fatty acid composition on platelet aggregation and coagulation. The oils studied were low-erucic acid rapeseed oil (RO, oleic acid 54% of fatty acids), sunflower oil (SO, linoleic acid 64% of fatty acids) and butter oil (BO, saturated fatty acids 62% of fatty acids). The postprandial effects of three fat-loads were followed for 5 h. Division of Nutrition, University of Helsinki. Twelve healthy female subjects (aged 23-38 years) were recruited among university students and employees. Postprandial lipaemia was induced by high-fat meals containing fat (RO, SO or BO) 1 g/kg of body weight, skim-milk powder, sugar, strawberries, and water. Each subject ingested each meal in three separate mornings after an overnight fast. The order of the meals was randomised. Blood samples were taken before and 1, 2.5, and 5 h after the test meal. All three test meals similarly affected platelet aggregation in platelet-rich plasma. Aggregation induced by collagen (0.6, 1 and 2.5 micrograms/ml) decreased during the 5-h period after the meals (P = 0.000). ADP-induced aggregation did not change during the follow-up period after any meal (P = 0.105-0.483). All fat loads increased factor VII coagulant activity (F VII:C) (P = 0.000), but in plasma fibrinogen concentration (P = 0.155) or antithrombin III activity (P = 0.278) no postprandial changes were found. These results show that high-fat meals have acute effects on platelet function and F VII:C in healthy women and that these effects are not mediated through the fatty acid composition of the meals.

  10. Mitochondrial Changes in Platelets Are Not Related to Those in Skeletal Muscle during Human Septic Shock

    PubMed Central

    Protti, Alessandro; Fortunato, Francesco; Caspani, Maria L.; Pluderi, Mauro; Lucchini, Valeria; Grimoldi, Nadia; Solimeno, Luigi P.; Fagiolari, Gigliola; Ciscato, Patrizia; Zella, Samis M. A.; Moggio, Maurizio; Comi, Giacomo P.; Gattinoni, Luciano

    2014-01-01

    Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs. PMID:24787741

  11. Evaluation of flow cytometric HIT assays in relation to an IgG-Specific immunoassay and clinical outcome.

    PubMed

    Kerényi, Adrienne; Beke Debreceni, Ildikó; Oláh, Zsolt; Ilonczai, Péter; Bereczky, Zsuzsanna; Nagy, Béla; Muszbek, László; Kappelmayer, János

    2017-09-01

    Heparin-induced thrombocytopenia (HIT) is a severe side effect of heparin treatment caused by platelet activating IgG antibodies generated against the platelet factor 4 (PF4)-heparin complex. Thrombocytopenia and thrombosis are the leading clinical symptoms of HIT. The clinical pretest probability of HIT was evaluated by the 4T score system. Laboratory testing of HIT was performed by immunological detection of antibodies against PF4-heparin complex (EIA) and two functional assays. Heparin-dependent activation of donor platelets by patient plasma was detected by flow cytometry. Increased binding of Annexin-V to platelets and elevated number of platelet-derived microparticles (PMP) were the indicators of platelet activation. EIA for IgG isotype HIT antibodies was performed in 405 suspected HIT patients. Based on negative EIA results, HIT was excluded in 365 (90%) of cases. In 40 patients with positive EIA test result functional tests were performed. Platelet activating antibodies were detected in 17 cases by Annexin V binding. PMP count analysis provided nearly identical results. The probability of a positive flow cytometric assay result was higher in patients with elevated antibody titer. 71% of patients with positive EIA and functional assay had thrombosis. EIA is an important first line laboratory test in the diagnosis of HIT; however, HIT must be confirmed by a functional test. Annexin V binding and PMP assays using flow cytometry are functional HIT tests convenient in a clinical diagnostic laboratory. The positive results of functional assays may predict the onset of thrombosis. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  12. Agonist-induced platelet reactivity correlates with bleeding in haemato-oncological patients.

    PubMed

    Batman, B; van Bladel, E R; van Hamersveld, M; Pasker-de Jong, P C M; Korporaal, S J A; Urbanus, R T; Roest, M; Boven, L A; Fijnheer, R

    2017-11-01

    Prophylactic platelet transfusions are administered to prevent bleeding in haemato-oncological patients. However, bleeding still occurs, despite these transfusions. This practice is costly and not without risk. Better predictors of bleeding are needed, and flow cytometric evaluation of platelet function might aid the clinician in identifying patients at risk of bleeding. This evaluation can be performed within the hour and is not hampered by low platelet count. Our objective was to assess a possible correlation between bleeding and platelet function in thrombocytopenic haemato-oncological patients. Inclusion was possible for admitted haemato-oncology patients aged 18 years and above. Furthermore, an expected need for platelet transfusions was necessary. Bleeding was graded according to the WHO bleeding scale. Platelet reactivity to stimulation by either adenosine diphosphate (ADP), cross-linked collagen-related peptide (CRP-xL), PAR1- or PAR4-activating peptide (AP) was measured using flow cytometry. A total of 114 evaluations were available from 21 consecutive patients. Platelet reactivity in response to stimulation by all four studied agonists was inversely correlated with significant bleeding. Odds ratios (OR) for bleeding were 0·28 for every unit increase in median fluorescence intensity (MFI) [95% confidence interval (CI) 0·11-0·73] for ADP; 0·59 [0·40-0·87] for CRP-xL; 0·59 [0·37-0·94] for PAR1-AP; and 0·43 [0·23-0·79] for PAR4-AP. The platelet count was not correlated with bleeding (OR 0·99 [0·96-1·02]). Agonist-induced platelet reactivity was significantly correlated to bleeding. Platelet function testing could provide a basis for a personalized transfusion regimen, in which platelet transfusions are limited to those at risk of bleeding. © 2017 International Society of Blood Transfusion.

  13. Mapuche herbal medicine inhibits blood platelet aggregation.

    PubMed

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H(2)O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H(2)O) were substantial and confirmed by inhibition of platelet surface activation markers.

  14. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation

    PubMed Central

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H2O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H2O) were substantial and confirmed by inhibition of platelet surface activation markers. PMID:22028732

  15. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    PubMed

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  16. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome.

    PubMed

    Blanchet, X; Cesarek, K; Brandt, J; Herwald, H; Teupser, D; Küchenhoff, H; Karshovska, E; Mause, S F; Siess, W; Wasmuth, H; Soehnlein, O; Koenen, R R; Weber, C; von Hundelshausen, P

    2014-12-01

    Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute coronary syndrome (ACS), its medical treatment, concomitant clinical or laboratory parameters, and predictive for the progression of coronary artery disease (CAD). In an observational study, the association of various factors with plasma concentrations of platelet chemokines and neutrophil mediators in 204 patients, either upon admission with ACS and 6 hours later or without ACS or CAD, was determined by multiple linear regression. Mediator release was further analysed after activation of blood with ACS-associated triggers such as plaque material. CXCL4, CXCL4L1, CCL5, MPO and azurocidin levels were elevated in ACS. CXCL4 and CCL5 but not CXCL4L1 or MPO were associated with platelet counts and CRP. CXCL4 (in association with heparin treatment) and MPO declined over 6 hours during ACS. Elevated CCL5 was associated with a progression of CAD. Incubating blood with plaque material, PAR1 and PAR4 activation induced a marked release of CXCL4 and CCL5, whereas CXCL4L1 and MPO were hardly or not altered. Platelet chemokines and neutrophil products are concomitantly elevated in ACS and differentially modulated by heparin treatment. CCL5 levels during ACS predict a progression of preexisting CAD. Platelet-derived products appear to dominate the inflammatory response during ACS, adding to the emerging evidence that ACS per se may promote vascular inflammation.

  17. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.

    PubMed

    Kargl, Julia; Brown, Andrew J; Andersen, Liisa; Dorn, Georg; Schicho, Rudolf; Waldhoer, Maria; Heinemann, Akos

    2013-07-01

    The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyrazol-5-yl] benzoic acid) is a selective GPR55 antagonist. In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney (HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca²⁺ release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2 (CB₁ or CB₂). CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor κ of activated B cells (NF-κB) and serum response element, translocation of NFAT and NF-κB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.

  18. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease.

    PubMed

    Marques, Patrice; Collado, Aida; Escudero, Paula; Rius, Cristina; González, Cruz; Servera, Emilio; Piqueras, Laura; Sanz, Maria-Jesus

    2017-01-01

    Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet-leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients ( n  = 35) presented greater numbers of activated circulating platelets (PAC-1 + and P-selectin + ) expressing CXCL16 and CXCR6 as compared with age-matched controls ( n  = 17), with a higher number of CXCR6 + -platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6 + -platelet-leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet-leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte-arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients.

  19. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice

    PubMed Central

    Lu, Shi-Jiang; Li, Feng; Yin, Hong; Feng, Qiang; Kimbrel, Erin A; Hahm, Eunsil; Thon, Jonathan N; Wang, Wei; Italiano, Joseph E; Cho, Jaehyung; Lanza, Robert

    2011-01-01

    Platelets play an essential role in hemostasis and atherothrombosis. Owing to their short storage time, there is constant demand for this life-saving blood component. In this study, we report that it is feasible to generate functional megakaryocytes and platelets from human embryonic stem cells (hESCs) on a large scale. Differential-interference contrast and electron microscopy analyses showed that ultrastructural and morphological features of hESC-derived platelets were indistinguishable from those of normal blood platelets. In functional assays, hESC-derived platelets responded to thrombin stimulation, formed microaggregates, and facilitated clot formation/retraction in vitro. Live cell microscopy demonstrated that hESC-platelets formed lamellipodia and filopodia in response to thrombin activation, and tethered to each other as observed in normal blood. Using real-time intravital imaging with high-speed video microscopy, we have also shown that hESC-derived platelets contribute to developing thrombi at sites of laser-induced vascular injury in mice, providing the first evidence for in vivo functionality of hESC-derived platelets. These results represent an important step toward generating an unlimited supply of platelets for transfusion. Since platelets contain no genetic material, they are ideal candidates for early clinical translation involving human pluripotent stem cells. PMID:21221130

  20. Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice

    PubMed Central

    Wolf, Karen; Braun, Attila; Haining, Elizabeth J.; Tseng, Yu-Lun; Kraft, Peter; Schuhmann, Michael K.; Gotru, Sanjeev K.; Chen, Wenchun; Hermanns, Heike M.; Stoll, Guido; Lesch, Klaus-Peter; Nieswandt, Bernhard

    2016-01-01

    Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt-/-) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt-/- platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca2+ entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt-/- platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt-/- mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt-/- mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. PMID:26800051

  1. Tailor-made purified human platelet lysate concentrated in neurotrophins for treatment of Parkinson's disease.

    PubMed

    Chou, Ming-Li; Wu, Joe-Wei; Gouel, Flore; Jonneaux, Aurélie; Timmerman, Kelly; Renn, Ting-Yi; Laloux, Charlotte; Chang, Hung-Ming; Lin, Liang-Tzung; Devedjian, Jean-Christophe; Devos, David; Burnouf, Thierry

    2017-10-01

    Human platelet lysates (PLs), which contain multiple neurotrophins, have been proposed for treating neurodegenerative disorders, including Parkinson's disease (PD). However, current PLs suspended in plasma have high protein content and contain fibrinogen/fibrin and, following activation, also proteolytic and thrombogenic enzymes. Upon brain administration, such PLs may saturate the cerebrospinal fluid and exert neurotoxicity. We assessed whether purified PLs, concentrated in neurotrophins, protected dopaminergic neurons in PD models. Platelet concentrates were collected by apheresis and centrifuged to eliminate plasma and recover the platelets. Platelets were lysed by freeze-thaw cycles, and the 10-fold concentrated platelet pellet lysates (PPLs) were heat-treated (at 56 °C for 30 min). The heat-treated PPLs were low in total proteins, depleted in both plasma and platelet fibrinogen, and devoid of thrombogenic and proteolytic activities. They exerted very high neuroprotective activity when non-oncogenic, Lund human mesencephalic (LUHMES) cells that had differentiated into dopaminergic neurons were exposed to the MPP + neurotoxin. Heat treatment improved the neuroprotection and inactivated the neurotoxic blood-borne hepatitis C virus. PPL did not induce inflammation in BV2 microglial cells and inhibited COX-2 expression upon lipopolysaccharide exposure. Intranasal administration in mice revealed (a) diffusion of neurotrophins in the striatum and cortex, and (b) MPTP intoxication neuroprotection in the substantia nigra and striatum and the absence of neuroinflammation. These dedicated heat-treated PPLs can be a safe and valuable candidate for a therapeutic strategy for PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells.

    PubMed

    Orellana, Renan; Kato, Sumie; Erices, Rafaela; Bravo, María Loreto; Gonzalez, Pamela; Oliva, Bárbara; Cubillos, Sofía; Valdivia, Andrés; Ibañez, Carolina; Brañes, Jorge; Barriga, María Isabel; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Castellon, Enrique; Hidalgo, Patricia; Trigo, Cesar; Panes, Olga; Pereira, Jaime; Mezzano, Diego; Cuello, Mauricio A; Owen, Gareth I

    2015-04-15

    An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.

  3. The effect of defibrotide on thromboembolism in the pulmonary vasculature of mice and rabbits and in the cerebral vasculature of rabbits.

    PubMed Central

    Paul, W.; Gresele, P.; Momi, S.; Bianchi, G.; Page, C. P.

    1993-01-01

    1. Administration of bovine thrombin (100 u kg-1) into the carotid artery of rabbits induces a sustained accumulation of 111 Indium-labelled platelets within the cranial vasculature over the subsequent 3 h. 2. Intracarotid (i.c.) administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.c. thrombin (100 u kg-1) significantly reduces the ability of thrombin to induce cranial thromboembolism in rabbits. 3. Intravenous (i.v.) administration of thrombin (20 u kg-1) in rabbits induces a reversible accumulation of radiolabelled platelets into the thoracic circulation which is significantly reduced by i.v. administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.v. thrombin. In contrast, platelet accumulation in response to adenosine diphosphate (ADP; 20 micrograms kg-1, i.v.) or platelet activating factor (PAF; 50 ng kg-1, i.v.) is not significantly affected by this treatment. 4. Intravenous administration of the nitric oxide (NO)-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg kg-1) potentiates platelet accumulation induced by low dose thrombin (10 u kg-1, i.v.) within the pulmonary vasculature of rabbits. The potentiated response is significantly abrogated following pretreatment with defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h, i.v.). 5. Intravenous injection of human thrombin (1250 u kg-1) to mice induces death within the majority of animals which is significantly reduced by pretreatment with defibrotide (150-175 mg kg-1, i.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8306102

  4. Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion

    NASA Astrophysics Data System (ADS)

    Crowl Erickson, Lindsay; Fogelson, Aaron

    2009-11-01

    Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.

  5. Effects of extracts and isolated compounds from safflower on some index of promoting blood circulation and regulating menstruation.

    PubMed

    Yao, Dong; Wang, Zheng; Miao, Li; Wang, Linyan

    2016-09-15

    Carthamus tinctorius is used as one of the Traditional Chinese Medicine (TCM) materials in prescriptions and composite to promote blood circulation to remove blood stasis, regulate menstruation and alleviate pain for over 2500 years. Modern pharmacological experiments have demonstrated that safflower has wide-reaching biological activities, including dilating coronary artery, modulating immune system, improving myocardial ischemia, anticoagulation and thromboprophylaxis, antioxidation, antihypoxic, antiaging, antifatigue, antiinflammation, anti-hepatic fibrosis, antitumor, analgesia, etc. Platelet aggregation of safflower extract and main constituents in safflower were determined by PAF-induced or ADP-induced platelet aggregation in vitro. Anticoagulation activity was measured by clotting assay of thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) according to the methods provided by the biological reagents provider (Sun Biochemical). Antioxidant effects of safflower were assessed using DPPH radical-scavenging activity test, ABTS radical-scavenging activity test and ferric reducing antioxidant power test. In addition, rats ovary granulosa cell proliferation activity was used for the bio-activity index on regulate menstruation of safflower. Safflower extract at the concentration of 0.7g/mL (P<0.001) and 0.5g/mL (P<0.01) had significantly antagonistic effect on PAF-induced platelet aggregation, compared with negative control. And the anti-platelet aggregation of 0.7g/mL safflower extract was significantly stronger than that of positive control (P<0.001). 0.7g/mL of hydroxysafflor yellow A (P<0.01), anhydrosafflor yellow B (P<0.05), 6-hydroxykaempferol-3-O-rutinoside (P<0.05), keampferol-3-O-β-rutinoside (P<0.01) had significant effect on platelet aggregation compared with negative control. Safflower extract at the concentration of 0.5g/mL (P<0.001) and 0.125g/mL (P<0.01) could significantly inhibit ADP-induced platelet aggregation, compared with negative control. And antagonistic effect of safflower extract was significantly stronger than the effect of positive control (P<0.001). Adenosine (P<0.001), anhydrosafflor yellow B (P<0.01) and 6-hydroxykaempferol-3-O-rutinoside (P<0.01) at the concentration of 0.5g/mL had significant effect on ADP-induced platelet aggregation compared with negative control. 0.125g/mL of adenosine (P<0.05) had significant effect on ADP-induced platelet aggregation compared with negative control. The effect of 0.5g/mL adenosine (P<0.01) and 6-hydroxykaempferol-3-O-rutinoside (P<0.05) was significantly stronger than that of positive control. Safflower extract at the concentration of 0.7mg/mL (P<0.001) and 0.5mg/mL (P<0.001) had significantly anticoagulation activity in PT, TT and APTT, compared with negative control. However, the respective compound didn't have significant effect on PT and TT at experiment concentration. At the concentration of 0.7mg/mL, hydroxysafflor yellow A (P<0.01), 6-hydroxykaempferol-3,6,7-tri-O-β-d-glucoside (P<0.05), 6-hydroxyapigenin-6-O-glucoside-7-O-glucuronide (P<0.01), anhydrosafflor yellow B (P<0.001), 6-hydroxykaempferol-3-O-rutinoside (P<0.05) and keampferol-3-O-β-rutinoside (P<0.05) significantly prolonged APTT, compared with negative control. At the concentration of 0.5mg/mL, hydroxysafflor yellow A (P<0.05), 6-hydroxyapigenin-6-O-glucoside-7-O-glucuronide (P<0.05), anhydrosafflor yellow B (P<0.001), 6-hydroxykaempferol-3-O-rutinoside (P<0.05) and keampferol-3-O-β-rutinoside (P<0.05) could significantly prolong APTT, compared with negative control. From the results of DPPH, ABTS radical scavenging activity test and Fe(3+) reduction power test, 5mg/mL, 2.5mg/mL and 1.25mg/mL safflower extract had antioxidant effects. Every compound with each concentration (5mg/mL, 2.5mg/mL and 1.25mg/mL) had significant effect on Fe(3+) reduction power (P<0.001 vs. negative control). Safflower extract, cytidine, 6-hydroxy-kaempferol-3,6-di-O-β-d-glucoside-7-O-β-d-glucuronide, 6-hydroxykaemp-ferol-3,6,7-tri-O-β-D-glucoside and keampferol-3-O-β-rutinoside significantly promoted ovarian granulosa cell proliferation. Based on previous researches, the activities of safflower extract and pure compounds isolated from safflower were studied in this paper. This study found some compounds with the effects of anti-platelet aggregation, anticoagulation, antioxidation and ovarian granulosa cell proliferation, and further revealed the possible pharmacological mechanism of safflower. Copyright © 2016. Published by Elsevier Ireland Ltd.

  6. Triflavin, an Arg‐Gly‐Asp‐containing Antiplatelet Peptide Inhibits Cell‐substratum Adhesion and Melanoma Cell‐induced Lung Colonization

    PubMed Central

    Sheu, Joen R.; Lin, Chao H.; Chung, Jih L.; Teng, Che M.

    1992-01-01

    Triflavin, an Arg‐Gly‐Asp (RGD) containing peptide purified from Trimeresurus flavoviridis snake venom, inhibits human platelet aggregation by blocking fibrinogen binding to fibrinogen receptors associated with glycoprotein Ilb/IIIa complex. In this study, we show that triflavin (1‐30 μg/mouse) inhibits B16‐F10 melanoma cell‐induced lung colonization in C57BL/6 mice in a dose‐dependent manner. In vitro, triflavin dose‐dependently inhibits adhesion of B16‐F10 melanoma cells to extracellular matrices (ECMs; i.e., fibronectin, fibrinogen, vitronectin, and collagen type I). Triflavin is approximately 600‐800 times more potent than GRGDS at inhibiting cell adhesion. In addition, triflavin dose‐dependently inhibits B16‐F10 cell‐induced platelet aggregation. These results imply that the inhibitory effect of triflavin on the adhesion of tumor cells to ECMs (e.g., fibronectin, vitronectin and collagen type I) and/or tumor cell‐induced platelet aggregation may be partially responsible for its antimetastatic activity in C57BL/6 mice. PMID:1399825

  7. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.

    PubMed

    Zheng, Huimei; Wang, Xuexiang; Guo, Pengfei; Ge, Wanzhong; Yan, Qinfeng; Gao, Weiqiang; Xi, Yongmei; Yang, Xiaohang

    2017-05-01

    In Drosophila, fat-body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat-body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage, as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat-body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat-body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila . © FASEB.

  8. Atomic description of the immune complex involved in heparin-induced thrombocytopenia

    DOE PAGES

    Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; ...

    2015-09-22

    Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Bindingmore » of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.« less

  9. "Platelet-associated regulatory system (PARS)" with particular reference to female reproduction.

    PubMed

    Bódis, József; Papp, Szilárd; Vermes, István; Sulyok, Endre; Tamás, Péter; Farkas, Bálint; Zámbó, Katalin; Hatzipetros, Ioannis; Kovács, Gábor L

    2014-01-01

    Blood platelets play an essential role in hemostasis, thrombosis and coagulation of blood. Beyond these classic functions their involvement in inflammatory, neoplastic and immune processes was also investigated. It is well known, that platelets have an armament of soluble molecules, factors, mediators, chemokines, cytokines and neurotransmitters in their granules, and have multiple adhesion molecules and receptors on their surface. Selected relevant literature and own views and experiences as clinical observations have been used. Considering that platelets are indispensable in numerous homeostatic endocrine functions, it is reasonable to suppose that a platelet-associated regulatory system (PARS) may exist; internal or external triggers and/or stimuli may complement and connect regulatory pathways aimed towards target tissues and/or cells. The signal (PAF, or other tissue/cell specific factors) comes from the stimulated (by the e.g., hypophyseal hormones, bacteria, external factors, etc.) organs or cells, and activates platelets. Platelet activation means their aggregation, sludge formation, furthermore the release of the for-mentioned biologically very powerful factors, which can locally amplify and deepen the tissue specific cell reactions. If this process is impaired or inhibited for any reason, the specifically stimulated organ shows hypofunction. When PARS is upregulated, organ hyperfunction may occur that culminate in severe diseases. Based on clinical and experimental evidences we propose that platelets modulate the function of hypothalamo-hypophyseal-ovarian system. Specifically, hypothalamic GnRH releases FSH from the anterior pituitary, which induces and stimulates follicular and oocyte maturation and steroid hormone secretion in the ovary. At the same time follicular cells enhance PAF production. Through these pathways activated platelets are accumulated in the follicular vessels surrounding the follicle and due to its released soluble molecules (factors, mediators, chemokines, cytokines, neurotransmitters) locally increase oocyte maturation and hormone secretion. Therefore we suggest that platelets are not only a small participant but may be the conductor or active mediator of this complex regulatory system which has several unrevealed mechanisms. In other words platelets are corpuscular messengers, or are more than a member of the family providing hemostasis.

  10. [Adjusting Platelet Counts for Platelet Aggregation Tests].

    PubMed

    Ling, Li-Qin; Yang, Xin-Chun; Chen, Hao; Liu, Chao-Nan; Chen, Si; Jiang, Hong; Jin, Ya-Xiong; Zhou, Jing

    2018-03-01

    To explore a better method to adjust platelet counts for light transmission aggregometry (LTA). Blood samples from 36 healthy participants aged from 18 to 50 yr. were collected.Platelet-rich plasma (PRP) was diluted using platelet-poor plasma (PPP) and physiological saline (PS),respectively,in a ratio of 1.5,2,2.5 and 3 times. Platelet aggregation was induced by adenosine diphosphate (ADP),arachidonic acid (ARA),collagen (COL), epinephrine (EPI),or ristocetin (RIS). The maximal aggregation rates (MAs) of different approaches were compared. We also compared the MAs induced by RIS between PRP-obtained-PPP and whole blood-obtained-PPP (2 100× g, 5 min). Compared with the original PRP,the MAs induced by ADP,ARA,and EPI decreased in PPP-adjusted PRP (significant at 2-3 times dilution ratio, P <0.05),but not in PS-adjusted PRP ( P >0.05). The MA induced by RIS decreased in PS-adjusted PRP (significant at all dilution ratios, P <0.05),but not in PPP-adjusted PRP ( P >0.05). No changes in the MA induced by COL were found in PS-adjusted PRP and PPP-adjusted PRP ( P >0.05). Whole blood-obtained-PPP (2 100× g, 5 min) had the same MA induced by ristocetin compared with PRP-obtained-PPP ( P >0.05). PS is recommended for adjusting platelets counts for platelet aggregation induced by ADP,ARA,COL and EPI. Whole blood-obtained-PPP (2 100 × g, 5 min) is recommended for RIS-induced aggregation as a matter of convenience. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  11. Aspirin influences megakaryocytic gene expression leading to up-regulation of multidrug resistance protein-4 in human platelets

    PubMed Central

    Massimi, Isabella; Guerriero, Raffaella; Lotti, Lavinia Vittoria; Lulli, Valentina; Borgognone, Alessandra; Romani, Federico; Barillà, Francesco; Gaudio, Carlo; Gabbianelli, Marco; Frati, Luigi; Pulcinelli, Fabio M

    2014-01-01

    Aim The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after by-pass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-α (PPARα). Methods The effects induced by aspirin or PPARα agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). Results In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPARα expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPARα-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. Conclusions The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients. PMID:24902864

  12. Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton.

    PubMed Central

    Rosado, J A; Graves, D; Sage, S O

    2000-01-01

    We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other cells, we have now investigated the possible involvement of tyrosine kinases in the secretion-like-coupling model. Treatment of platelets with thrombin or thapsigargin induced actin polymerization by a calcium-independent pathway. Methyl 2,5-dihydroxycinnamate, a tyrosine kinase inhibitor, prevented thrombin- or thapsigargin-induced actin polymerization. The effects of tyrosine kinases in store-mediated Ca(2+) entry were found to be entirely dependent on the actin cytoskeleton. PP1, an inhibitor of the Src family of proteins, partially inhibited store-mediated Ca(2+) entry. In addition, depletion of intracellular Ca(2+) stores stimulated cytoskeletal association of the cytoplasmic tyrosine kinase pp60(src), a process that was sensitive to treatment with cytochalasin D and PP1, but not to inhibition of Ras proteins using prenylcysteine analogues. Finally, combined inhibition of both Ras proteins and tyrosine kinases resulted in complete inhibition of Ca(2+) entry, suggesting that these two families of proteins have independent effects in the activation of store-mediated Ca(2+) entry in human platelets. PMID:11023829

  13. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage

    PubMed Central

    D’Atri, L. P.; Etulain, J.; Rivadeneyra, L.; Lapponi, M. J.; Centurion, M.; Cheng, K.; Yin, H.; Schattner, M.

    2015-01-01

    Summary Background In addition to their key role in hemostasis, platelets and megakaryocytes also regulate immune and inflammatory responses, in part through their expression of Toll-like receptors (TLRs). Among the TLRs, TLR3 recognizes double-stranded (ds) RNA associated with viral infection. Thrombocytopenia is a frequent complication of viral infection. However, the expression and functionality of TLR3 in megakaryocytes and platelets is not yet well understood. Objective To study the expression and functionality of TLR3 in the megakaryocytic lineage. Methods and Results RT-PCR, flow cytometric, and immunofluorescence assays showed that TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets. Immunoblotting assays showed that stimulation of megakaryocytes with two synthetic agonists of TLR3, Poly(I:C) and Poly(A:U), activated the NF-κB, PI3K/Akt, ERK1/2, and p38 pathways. TLR3-megakaryocyte activation resulted in reduced platelet production in vitro and IFN-β release through the PI3K/Akt and NF-κB signaling pathways. TLR3 ligands potentiated the aggregation mediated by classical platelet agonists. This effect was also observed for ATP release, but not for P-selectin or CD40L membrane exposure, indicating that TLR3 activation was not involved in alpha granule release. In addition, TLR3 agonists induced activation of the NF-κB, PI3K/Akt, and ERK1/2 pathways in platelets. Reduction of platelet production and platelet fibrinogen binding mediated by Poly(I:C) or Poly(A:U) were prevented by the presence of an inhibitor of TLR3/dsRNA complex. Conclusions Our findings indicate that functional TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets, and suggest a potential role for this receptor in the megakaryo/thrombopoiesis alterations that occur in viral infections. PMID:25594115

  14. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Manami; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510; Kitajima, Kenji

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit{sup −}Tie2{sup −}CD41{sup +} Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41{sup +}CD42b{sup +}CD61{sup +} platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstratedmore » that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit{sup −}Tie2{sup −}CD41{sup +}. •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.« less

  15. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates

    PubMed Central

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Background Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Methods Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Results Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl2, and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). Conclusions These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction. PMID:27900155

  16. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates.

    PubMed

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl 2 , and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl 2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction.

  17. An Inherited Platelet Function Defect in Basset Hounds

    PubMed Central

    Johnstone, I. B.; Lotz, F.

    1979-01-01

    An inherited platelet function defect occurring in a family of basset hounds has been described. The trait is transmitted as an autosomal characteristic and appears to be expressed clinically only in the homozygous state. The characteristics of this platelet defect include: 1) marked bleeding tendencies and prolonged skin bleeding times in either male or female dogs. 2) normal blood coagulation mechanism. 3) adequate numbers of circulating platelets which appear morphologically normal by light microscopy. 4) normal whole blood clot retraction. 5) deficient in vivo platelet consumption and in vitro platelet retention in glass bead columns. 6) defective ADP-induced platelet aggregation in homozygotes, apparently normal ADP response in heterozygotes, and defective collagen-induced platelet aggregation in both. PMID:509382

  18. Inhibitory Effects of Cytosolic Ca(2+) Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets.

    PubMed

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Lee, Dong-Ha; Park, Hwa-Jin

    2015-01-01

    Intracellular Ca(2+) ([Ca(2+)] i ) is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca(2+)-antagonistic effect of ginsenoside Ro (G-Ro), an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca(2+)] i , which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI) (Ser(1756)) to inhibit [Ca(2+)] i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser(1756)) by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa), indicating inhibition of Ca(2+) influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser(1756)) phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa) to decrease thrombin-elevated [Ca(2+)] i , which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca(2+)-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  19. A novel β-lactam derivative, albactam from the flowers of Albizia lebbeck with platelets anti-aggregatory activity in vitro.

    PubMed

    El-Gamal, Ali Ali; Abd-El-Halim, Mohamed Farag; Kalil, Ashraf Taha; Basudan, Omer Ahmed; Al-Rehaily, Adnan Jathlan; Ahmad, Mohamed Shamim; El-Tahir, Kamal Hussin; Al-Massarani, Shaza Mohamed; Abdel-Mageed, Wael Moustafa

    2015-03-01

    A novel β-lactam derivative, albactam, was isolated from the alcoholic extract of the flowers of Albizia lebbeck. It showed a significant anti-aggregatory activity against adenosine diphosphate and arachidonic acid induced guinea-pigs' platelets aggregation in vitro. Six more known compounds were also isolated and fully characterized by measuring 1D and 2D NMR, two of them are the triterpenes β-amyrin and 11α, 12α-oxidotaraxerol, two ceramide derivatives and two flavonoids, kampferol 3-O-rutinoside and rutin.

  20. Megakaryocytic Smad4 Regulates Platelet Function through Syk and ROCK2 Expression.

    PubMed

    Wang, Yanhua; Jiang, Lirong; Mo, Xi; Lan, Yu; Yang, Xiao; Liu, Xinyi; Zhang, Jian; Zhu, Li; Liu, Junling; Wu, Xiaolin

    2017-09-01

    Smad4, a key transcription factor in the transforming growth factor- β signaling pathway, is involved in a variety of cell physiologic and pathologic processes. Here, we characterized megakaryocyte/platelet-specific Smad4 deficiency in mice to elucidate its effect on platelet function. We found that megakaryocyte/platelet-specific loss of Smad4 caused mild thrombocytopenia and significantly extended first occlusion time and tail bleeding time in mice. Smad4-deficient platelets showed reduced agonist-induced platelet aggregation. Further studies showed that a severe defect was seen in integrin α IIb β 3 -mediated bidirectional (inside-out and outside-in) signaling in Smad4-deficient platelets, as evidenced by reduced fibrinogen binding and α -granule secretion, suppressed platelet spreading and clot retraction. Microarray analysis showed that the expression levels of multiple genes were altered in Smad4-deficient platelets. Among these genes, spleen tyrosine kinase (Syk) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) were downregulated several times as confirmed by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Further research showed that Smad4 directly regulates ROCK2 transcription but indirectly regulates Syk. Megakaryocyte/platelet-specific Smad4 deficiency caused decreased expression levels of Syk and ROCK2 in platelets. These results suggest potential links among Smad4 deficiency, attenuated Syk, and ROCK2 expression and defective platelet activation. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a sufficient level for triggering potentiation. Once the synaptic efficacy has changed, it becomes a long-lasting phenomenon only through a subsequent action of platelet-activating factor.

  2. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced aggregation compared to the control group (c 10 ± 8, d 9 ± 7, r 10 ± 8 AU*min, p = 0.810). The antiplatelet effects of ASA and clopidogrel monitored by AA- or ADP-induced platelet aggregation were not affected by NOAC therapy.

  3. Inhibition of Megakaryocyte Differentiation by Antibody-Drug Conjugates (ADCs) is Mediated by Macropinocytosis: Implications for ADC-induced Thrombocytopenia.

    PubMed

    Zhao, Hui; Gulesserian, Sara; Ganesan, Sathish Kumar; Ou, Jimmy; Morrison, Karen; Zeng, Zhilan; Robles, Veronica; Snyder, Josh; Do, Lisa; Aviña, Hector; Karki, Sher; Stover, David R; Doñate, Fernando

    2017-09-01

    Thrombocytopenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC), including AGS-16C3F, an ADC targeting ENPP3 (ectonucleotide pyrophosphatase/phosphodiesterase-3) and trastuzumab emtansine (T-DM1). This study aims to elucidate the mechanism of action of ADC-induced thrombocytopenia. ENPP3 expression in platelets and megakaryocytes (MK) was investigated and shown to be negative. The direct effect of AGS-16C3F on platelets was evaluated using platelet rich plasma following the expression of platelet activation markers. Effects of AGS-16C3F, T-DM1, and control ADCs on maturing megakaryocytes were evaluated in an in vitro system in which human hematopoietic stem cells (HSC) were differentiated into MKs. AGS-16C3F, like T-DM1, did not affect platelets directly, but inhibited MK differentiation by the activity of Cys-mcMMAF, its active metabolite. FcγRIIA did not appear to play an important role in ADC cytotoxicity to differentiating MKs. AGS-16C3F, cytotoxic to MKs, did not bind to FcγRIIA on MKs. Blocking the interaction of T-DM1 with FcγRIIA did not prevent the inhibition of MK differentiation and IgG1-mcMMAF was not as cytotoxic to MKs despite binding to FcγRIIA. Several lines of evidence suggest that internalization of AGS-16C3F into MKs is mediated by macropinocytosis. Macropinocytosis activity of differentiating HSCs correlated with cell sensitivity to AGS-16C3F. AGS-16C3F was colocalized with a macropinocytosis marker, dextran-Texas Red in differentiating MKs. Ethyl isopropyl amiloride (EIPA), a macropinocytosis inhibitor, blocked internalization of dextran-Texas Red and AGS-16C3F. These data support the notion that inhibition of MK differentiation via macropinocytosis-mediated internalization plays a role in ADC-induced thrombocytopenia. Mol Cancer Ther; 16(9); 1877-86. ©2017 AACR See related article by Zhao et al., p. 1866 . ©2017 American Association for Cancer Research.

  4. Procoagulant expression in platelets and defects leading to clinical disorders.

    PubMed

    Solum, N O

    1999-12-01

    Hemostasis is a result of interactions between fibrillar structures in the damaged vessel wall, soluble components in plasma, and cellular elements in blood represented mainly by platelets and platelet-derived material. During formation of a platelet plug at the damaged vessel wall, factors IXa and VIIIa form the "tenase" complex, leading to activation of factor X on the surface of activated platelets. Subsequently, factors Xa and Va form the "prothrombinase" complex, which catalyzes the formation of thrombin from prothrombin, leading to fibrin formation. An enhanced expression of negatively charged phosphatidylserine in the outer membrane leaflet resulting from a breakdown of the phospholipid asymmetry is essential for the formation of the procoagulant surface. An ATP-driven and inward-acting aminophospholipid "translocase" and a "floppase" counterbalancing this have been postulated to maintain the dynamic state of phospholipid asymmetry. A phospholipid-nonspecific "scramblase," believed to be responsible for the fast breakdown of the asymmetry during cell activation, has recently been isolated from erythrocytes, cloned, and characterized. An intracellular calcium-binding segment and one or more thioesterified fatty acids are probably of importance for calcium-induced activation of this transporter protein. Cytosolic calcium ions also activate the calcium-dependent protease calpain associated with shedding of microvesicles from the transformed platelet membrane. These are shed with a procoagulant surface and with surface-exposed P-selectin from the alpha-granules. Theoretically, therefore, microvesicles can be involved in both coagulation and inflammation. Scott syndrome is probably caused by a defect in the activation of an otherwise normal scramblase, resulting in a relatively severe bleeding tendency. In Stormorken syndrome, the patients demonstrate a spontaneous surface expression of aminophospholipids. Activated platelets and the presence of procoagulant microvesicles have been demonstrated in several clinical conditions, such as thrombotic and idiopathic thrombocytopenia, disseminated intravascular coagulation, and HIV-1 infection, and have been found to be associated with fibrin in thrombosis. Procoagulant microvesicles may also be formed from other cells as a result of apoptosis.

  5. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.

    PubMed

    Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M

    2004-10-29

    Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.

  6. CLONING, EXPRESSION, AND HEMOSTATIC ACTIVITIES OF A DISINTEGRIN, r-MOJASTIN 1, FROM THE MOHAVE RATTLESNAKE (Crotalus scutulatus scutulatus)

    PubMed Central

    Sánchez, Elda E.; Lucena, Sara E.; Reyes, Steven; Soto, Julio G.; Cantu, Esteban; Lopez-Johnston, Juan Carlos; Guerrero, Belsy; Salazar, Ana Maria; Rodríguez-Acosta, Alexis; Galán, Jacob A.; Tao, W. Andy; Pérez, John C.

    2012-01-01

    Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.9509 kDa. PMID:20598348

  7. Comparison of the inhibitory effects of cilostazol, acetylsalicylic acid and ticlopidine on platelet functions ex vivo. Randomized, double-blind cross-over study.

    PubMed

    Ikeda, Y; Kikuchi, M; Murakami, H; Satoh, K; Murata, M; Watanabe, K; Ando, Y

    1987-05-01

    A randomized double-blind cross-over study was conducted to determine the inhibitory effects of acetylsalicylic acid (ASA), ticlopidine (TP) and cilostazol (OPC-13013; in the following briefly called CS), a new antithrombotic agent on platelet functions ex vivo. Nine patients with cerebral thrombosis were enrolled in this study. Patients were given each of the three drugs for one week in a complete cross-over design according to a randomization schedule, followed by a wash-out period with a placebo for one week. It was found that CS and TP significantly inhibited platelet aggregation induced by ADP. Collagen- and arachidonic acid-induced platelet aggregation was all inhibited by CS, TP and ASA. Duncan's multiple range test to compare the anti-platelet effects of the three drugs revealed that: CS greater than ASA and TP greater than ASA in inhibiting ADP-induced platelet aggregation and CS greater than TP and ASA greater than TP in inhibiting arachidonic acid-induced platelet aggregation. These results may suggest that CS is superior to ASA and TP in inhibiting platelet aggregation ex vivo.

  8. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators.

    PubMed Central

    Lau, L F; Pumiglia, K; Côté, Y P; Feinstein, M B

    1994-01-01

    Synthetic thrombin receptor peptides (TRPs), comprising the first 6-14 amino acids of the new N-terminus tethered ligand of the thrombin receptor that is generated by thrombin's proteolytic activity, were reported to activate platelets equally with thrombin itself and are considered to be full agonists [Vu et al. (1991) Cell 64, 1057-1068]. Using aspirin plus ADP-scavengers or the ADP-receptor antagonist adenosine 5'-[alpha-thio]triphosphate to prevent the secondary effects of the potent agonists that are normally released from stimulated platelets (i.e. ADP and thromboxane A2), we assessed the direct actions of thrombin and TRPs (i.e. TRP42-47 and TRP42-55). Compared with thrombin, under these conditions, TRPs: (1) failed to aggregate platelets completely; (2) produced less activation of glycoprotein (GP)IIb-IIIa; (3) did not cause association of GPIIb and pp60c-src with the cytoskeleton; and (4) caused less alpha-granule secretion, phosphorylation of cytoplasmic phospholipase A2, arachidonic acid release and phosphatidyl inositol (PtdOH) production. Furthermore, TRPs induced transient increases in protein phosphorylation mediated by protein kinase C and protein tyrosine phosphorylation, whereas these same responses to thrombin were greater and more sustained. Hirudin added after thrombin accelerated protein dephosphorylation, thereby mimicking the rate of spontaneous dephosphorylation seen after stimulation by TRPs. Platelets totally desensitized to very high concentrations of TRPs, by prior exposure to maximally effective concentrations of the peptides, remained responsive to alpha- and gamma-thrombins. Thrombin-stimulated PtdOH production in permeabilized platelets desensitized to TRPs was abolished by guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), as in normal platelets. These results are discussed in terms of the allosteric Ternary Complex Model for G-protein linked receptors [Samama et al. (1993) J. Biol. Chem. 268, 4625-4636]. We conclude that: (1) TRPs are partial agonists for the thrombin receptor and produce incomplete receptor desensitization in keeping with their lower intrinsic activity; (2) thrombin's effects in platelets, even in TRP-desensitized platelets, are entirely mediated through the recently cloned G-protein linked receptor, and (3) thrombin's ability to produce sustained signals, compared with TRPs, may require the continued progressive proteolytic activation of naive thrombin receptors. Images Figure 3 PMID:7526841

  9. Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo

    PubMed Central

    Takizawa, Hitoshi; Nishimura, Satoshi; Takayama, Naoya; Oda, Atsushi; Nishikii, Hidekazu; Morita, Yohei; Kakinuma, Sei; Yamazaki, Satoshi; Okamura, Satoshi; Tamura, Noriko; Goto, Shinya; Sawaguchi, Akira; Manabe, Ichiro; Takatsu, Kiyoshi; Nakauchi, Hiromitsu; Takaki, Satoshi; Eto, Koji

    2009-01-01

    The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk–/– mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin αIIbβ3–mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk–/– mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk–/– platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the β3 integrin subunit, and reduced binding of Fyn to integrin αIIbβ3. These results provide new insight into the mechanism of αIIbβ3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events. PMID:20038804

  10. Consistent platelet inhibition during long-term maintenance-dose clopidogrel therapy among 359 compliant outpatients with documented vascular disease.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Atar, Dan; Hanley, Dan F

    2007-03-01

    Numerous reports have dichotomized responses after clopidogrel therapy using varying definitions and platelet tests in patients immediately after acute vascular events; however, no large study has assessed platelet characteristics in outpatients receiving long-term treatment for more than 30 days with the maintenance dose (75 mg/d) of clopidogrel. The aim of this study was to describe the responses of ex vivo measures of platelet aggregation and activation to long-term clopidogrel therapy in a large population of outpatients after coronary stenting or ischemic stroke. We conducted a secondary post hoc analysis of a data set represented by presumably compliant patients after coronary stenting (n = 237) or a documented ischemic stroke (n = 122) treated with clopidogrel-and-aspirin combination antiplatelet therapy. The mean duration of treatment was 5.8 months (range 1-21 months). Every patient exhibited a significant inhibition of adenosine diphosphate-induced platelet aggregation (mean 52.9%, range 36%-70%) as compared with the preclopidogrel measures. Inhibition of aggregation strongly correlated with a diminished expression of PECAM-1 (platelet/endothelial cell adhesion molecule 1, r = 0.75), glycoprotein IIb/IIIa (r = 0.62), and PAR-1 (protease-activated receptor 1, r = 0.71). None of the patients developed hyporesponsiveness (reduction from the baseline <15%) or profound inhibition (residual platelet activity <10%). In contrast to the wide variability of responses that exists in the acute setting, long-term therapy with clopidogrel leads to consistent and much less variable platelet inhibition. Lack of nonresponse and profound inhibition with clopidogrel allow for the maintenance of a delicate balance between proven efficacy and acceptable bleeding risks for long-term secondary prevention in outpatients after acute vascular events.

  11. Native Platelet Aggregation and Response to Aspirin in Persons With the Metabolic Syndrome and Its Components

    PubMed Central

    Yanek, Lisa R.; Faraday, Nauder; Moy, Taryn F.; Becker, Lewis C.; Becker, Diane M.

    2009-01-01

    Abstract Background Aspirin chemoprophylaxis for coronary artery disease (CAD) is recommended for persons with the metabolic syndrome. We determined the extent to which persons with increased risk for CAD with and without the metabolic syndrome accrued antiplatelet benefits from aspirin therapy. Methods We examined 2088 apparently healthy persons with a family history of CAD for the components that comprise metabolic syndrome and classified them according to national guidelines as having the metabolic syndrome or not. We assayed whole blood for ex vivo agonist-induced platelet aggregation (collagen, adenosine diphosphate, and arachidonic acid) and assessed a measure of in vivo platelet activation using urinary 11-dehydrothromboxane B2 (TxM), at baseline and after 2 weeks of treatment with 81 mg/day aspirin. Results At baseline, in multivariable analyses adjusted for race, age, sex, and risk factors, persons with metabolic syndrome had more aggregable platelets in response to all three agonists and higher levels of TxM (P < 0.005 for all) compared to those without metabolic syndrome. Postaspirin, although all individuals had lower platelet activation measures, subjects with metabolic syndrome retained higher platelet aggregation to adenosine diphosphate (P = 0.002) and higher TxM (P < 0.001), while aggregation to arachidonic acid (P = 0.12) and collagen (P = 0.08) were marginally different between those with and without the metabolic syndrome. Conclusions Among persons with an increased risk for CAD, metabolic syndrome was independently associated with overall greater platelet aggregation and activation at baseline and lesser, though significant, effect following aspirin, suggesting that low-dose aspirin therapy alone may not be sufficient to provide optimal anti-platelet protection in persons with metabolic syndrome. PMID:19351291

  12. Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex.

    PubMed

    Karim, Zubair A; Hensch, Nicole R; Qasim, Hanan; Alshbool, Fatima Z; Khasawneh, Fadi T

    2018-06-02

    The current work investigates the notion that inducible clustering of signaling mediators of the IKK pathway is important for platelet activation. Thus, while the CARMA1, Bcl10, and MALT1 (CBM) complex is essential for triggering IKK/NF-κB activation upon platelet stimulation, the signals that elicit its formation and downstream effector activation remain elusive. We demonstrate herein that IKKβ is involved in membrane fusion, and serves as a critical protein kinase required for initial formation and the regulation of the CARMA1/MALT1/Bcl10/CBM complex in platelets. We also show that IKKβ regulates these processes via modulation of phosphorylation of Bcl10 and IKKγ polyubiquitination. Collectively, our data demonstrate that IKKβ regulates membrane fusion and the remodeling of the CBM complex formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Abciximab, eptifibatide, and tirofiban exhibit dose-dependent potencies to dissolve platelet aggregates.

    PubMed

    Moser, Martin; Bertram, Ulf; Peter, Karlheinz; Bode, Christoph; Ruef, Johannes

    2003-04-01

    Platelet GPIIb/IIIa antagonists are not only used to prevent platelet aggregation, but also in combination with thrombolytic agents for the treatment of coronary thrombi. Recent data indicate a potential of abciximab alone to dissolve thrombi in vivo. We investigated the potential of abciximab, eptifibatide, and tirofiban to dissolve platelet aggregates in vitro. Adenosine diphosphate (ADP)-induced platelet aggregation could be reversed in a concentration-dependent manner by all three GPIIb/IIIa antagonists when added after the aggregation curve reached half-maximal aggregation. The concentrations chosen are comparable with in vivo plasma concentrations in clinical applications. Disaggregation reached a maximum degree of 72.4% using 0.5 microg/ml tirofiban, 91.5% using 3.75 microg/ml eptifibatide, and 48.4% using 50 microg/ml abciximab (P < 0.05, respectively). A potential fibrinolytic activity of the GPIIb/IIIa antagonists was ruled out by preincubation with aprotinin or by a plasma clot assay. A stable model Chinese hamster ovary (CHO) cell line expressing the activated form of GPIIb/IIIa was used to confirm the disaggregation capacity of GPIIb/IIIa antagonists found in platelets. Not only abciximab, but also eptifibatide and tirofiban have the potential to disaggregate newly formed platelet clusters in vitro. Because enzyme-dependent fibrinolysis does not appear to be involved, competitive removal of fibrinogen by the receptor antagonists is the most likely mechanism.

  14. Bivalirudin and clopidogrel with and without eptifibatide for elective stenting: effects on platelet function, thrombelastographic indexes, and their relation to periprocedural infarction results of the CLEAR PLATELETS-2 (Clopidogrel with Eptifibatide to Arrest the Reactivity of Platelets) study.

    PubMed

    Gurbel, Paul A; Bliden, Kevin P; Saucedo, Jorge F; Suarez, Thomas A; DiChiara, Joseph; Antonino, Mark J; Mahla, Elisabeth; Singla, Anand; Herzog, William R; Bassi, Ashwani K; Hennebry, Thomas A; Gesheff, Tania B; Tantry, Udaya S

    2009-02-24

    The primary objective of this study was to compare the effect of therapy with bivalirudin alone versus bivalirudin plus eptifibatide on platelet reactivity measured by turbidometric aggregometry and thrombin-induced platelet-fibrin clot strength (TIP-FCS) measured by thrombelastography in percutaneous coronary intervention (PCI) patients. The secondary aim was to study the relation of platelet aggregation and TIP-FCS to the occurrence of periprocedural infarction. Bivalirudin is commonly administered alone to clopidogrel naïve (CN) patients and to patients on maintenance clopidogrel therapy (MT) undergoing elective stenting. The effect of adding eptifibatide to bivalirudin on platelet reactivity (PR) and TIP-FCS, and their relation to periprocedural infarction in these patients are unknown. Patients (n = 200) stratified to clopidogrel treatment status were randomly treated with bivalirudin (n = 102) or bivalirudin plus eptifibatide (n = 98). One hundred twenty-eight CN patients were loaded with 600 mg clopidogrel immediately after stenting, and 72 MT patients were not loaded. The PR, TIP-FCS, and myonecrosis markers were serially determined. In CN and MT patients, bivalirudin plus eptifibatide was associated with markedly lower PR at all times (5- and 20-microM adenosine diphosphate-induced, and 15- and 25-microM thrombin receptor activator peptide-induced aggregation; p < 0.001 for all) and reduced mean TIP-FCS (p < 0.05). Patients who had a periprocedural infarction had higher mean 18-h PR (p < 0.0001) and TIP-FCS (p = 0.002). For elective stenting, the addition of eptifibatide to bivalirudin lowered PR to multiple agonists and the tensile strength of the TIP-FCS, 2 measurements strongly associated with periprocedural myonecrosis. Future studies of PR and TIP-FCS for elective stenting may facilitate personalized antiplatelet therapy and enhance the selection of patients for glycoprotein IIb/IIIa blockade. (Peri-Procedural Myocardial Infarction, Platelet Reactivity, Thrombin Generation, and Clot Strength: Differential Effects of Eptifibatide + Bivalirudin Versus Bivalirudin [CLEAR PLATELETS-2]; NCT00370045.

  15. Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation

    PubMed Central

    Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S.; Loveless, Amanda M.; Neculaes, V. Bogdan

    2017-01-01

    Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation. PMID:28746392

  16. Effects of single oral doses of lysine clonixinate and acetylsalicylic acid on platelet functions in man.

    PubMed

    Pallapies, D; Muhs, A; Bertram, L; Rohleder, G; Nagyiványi, P; Peskar, B A

    1996-01-01

    Lysine clonixinate is an analgesic drug with a so far unknown mechanism of action. We have determined its effect on platelet cyclooxygenase in man. Biosynthesis of thromboxane (TX)B2 and prostaglandin (PG)F2 alpha in clotting whole blood ex vivo as well as collagen-induced platelet aggregation measured before and at various time points after oral administration of 125 mg lysine clonixinate were compared to results obtained with 500 mg acetylsalicylic acid (ASA). While biosynthesis of both TXB2 and PGF2 alpha measured radioimmunologically was inhibited significantly 2.5 h, but not 6 h, after administration of lysine clonixinate, inhibition by ASA was much greater and still highly significant after 48 h. Similarly, collagen-induced aggregation of platelet-rich plasma was inhibited for a longer period and to a greater extent after administration of ASA than after lysine clonixinate. Our results indicate that lysine clonixinate is a cyclooxygenase inhibitor of moderate potency. It remains to be investigated whether mechanisms other than inhibition of cyclooxygenase contribute to the analgesic activity of lysine clonixinate.

  17. Effect of protopine on cytosolic Ca2+ in rabbit platelets.

    PubMed

    Shen, Z Q; Chen, Z H; Duan, L

    1999-04-01

    To study the influence of protopine (Pro) on the cytoplasmic free Ca2+ concentration ([Ca2+]i) in rabbit platelets. Measurement of [Ca2+]i of platelets in vitro by Fura 2-AM fluorescence technique. In the presence of CaCl2 1 mmol.L-1, Pro 10, 20, and 40 mumol.L-1 attenuated the rise in [Ca2+]i evoked by ADP from (420 +/- 57) to (320 +/- 26), (264 +/- 21), and (180 +/- 14) nmol.L-1, respectively, by arachidonic acid (AA) from (280 +/- 36) to (210 +/- 17), (184 +/- 21), and (143 +/- 16) nmol.L-1, respectively, and by platelet-activating factor (PAF) from (350 +/- 42) to (282 +/- 31), (223 +/- 30), and (165 +/- 15) nmol.L-1, respectively. In the presence of egtazic acid 1 mmol.L-1, Pro 10, 20, and 40 mumol.L-1 reduced the Ca2+ release induced by ADP, AA, and PAF, respectively. Pro 10, 20, and 40 mumol.L-1 also decreased ADP-, AA-, and PAF-induced Ca2+ influx. Pro inhibited not only Ca2+ release but also the influx of Ca2+.

  18. Anti-thrombotic and anti-inflammatory activities of protopine.

    PubMed

    Saeed, S A; Gilani, A H; Majoo, R U; Shah, B H

    1997-07-01

    The effects of protopine on human platelet aggregation and arachidonic acid (AA) metabolism via cyclooxygenase (COX) and lipoxygenase (LOP) enzymes were examined. Platelet aggregation induced by various platelet agonists (AA, ADP, collagen and PAF) was strongly inhibited by protopine in a concentration-related manner. The IC50 values (microM) of protopine (mean +/- SEM) against: AA; 12 +/- 2: ADP; 9 +/- 2: collagen; 16 +/- 2 and PAF; 11 +/- 1, were much less than those observed for aspirin. In addition, protopine selectively inhibited the synthesis of thromboxane A2 (TXA2) via COX pathway and had no effect on the LOP pathway in platelets. In vivo, pretreatment with protopine (50-100 mg kg-1) protected rabbits from the lethal effects of AA (2 mg kg-1) or PAF (11 micrograms kg-1) in dose-dependent fashion. Protopine (50-100 mg kg-1) also inhibited carrageenan-induced rat paw oedema with a potency of three-fold as compared to aspirin. These results are suggestive that protopine acts as a potent inhibitor of thromboxane synthesis and PAF with anti-inflammatory properties.

  19. Interaction of a chick skin collagen fragment (alpha1-CB5) with human platelets. Biochemical studies during the aggregation and release reaction.

    PubMed

    Chiang, T M; Beachey, E H; Kang, A H

    1975-09-10

    The denatured alpha1(I) chain and the cyanogen bromide peptide, alpha1(I)-CB5, of chick skin collagen cause the release of serotonin and leakage of lactic dehydrogenase from human platelets in a manner similar to the release reaction mediated by adenosine diphosphate and native collagen. These peptides also cause a decrease in the level of adenosine 3':5'-monophosphate (cAMP) in platelets. Adenylate cyclase activity of platelets is partially inhibited by these peptides as well as by native collagen, ADP, and epinephrine, but cAMP phosphodiesterase activity is unaltered by these substances. In contrast, the level of platelet guanosine 3':5'-monophosphate (cGMP) is increased by the collagen peptides as well as the other aggregating agents. The increase is associated with increased guanylate cyclase, but normal cGMP phosphodiesterase activities of platelets. Optical rotatory and viscometric measurements of the alpha1 chains and alpha1-CB5 of chick skin in 0.01 M phosphate/0.15 M sodium chloride, pH 7.4, at various temperatures as a function of time indicate that no detectable renaturation occurs at 37 degrees for at least 30 min of observation. Molecular sieve chromatography of alpha1-CB5 in the phosphate buffer at 37 degrees shows that its elution position is identical to that performed under denaturing conditions (at 45 degrees) with no evidence of higher molecular weight aggregates, and the alpha1-CB5 glycopeptide fraction eluting from the column at the position of its monomer retains the platelet aggregating activity. Additionally, electron microscopic examination of the platelet-rich plasma that had been reacted with these peptides fail to show any ordered collagen structures. These data indicate that the denatured alpha1 chain and alpha1-CB5 glycopeptide of chick skin collagen mediate platelet aggregation through the "physiologic" release reaction in a manner similar to that induced by other aggregating agents such as ADP, epinephrine, or native collagen, and support the conclusion that the aggregating activity of the alpha1 chain and alpha1-CB5 is not likely to be due to the formation of polymerized products.

  20. Thrombopoietin as Biomarker and Mediator of Cardiovascular Damage in Critical Diseases

    PubMed Central

    Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe

    2012-01-01

    Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic. PMID:22577249

Top