Science.gov

Sample records for platelets induces rejection

  1. Mechanisms of Alloimmunization and Subsequent Bone Marrow Transplantation Rejection Induced by Platelet Transfusion in a Murine Model

    PubMed Central

    Patel, Seema R; Smith, Nicole H; Kapp, Linda; Zimring, James C

    2015-01-01

    For many non-malignant hematological disorders, HLA-matched bone marrow transplantation (BMT) is curative. However, due to lack of neoplasia, the toxicity of stringent conditioning regimens is difficult to justify, and reduced-intensity conditioning is used. Unfortunately, current reduced-intensity regimens have high rates of BMT rejection. We have recently reported in a murine model that mHAs on transfused platelet products induce subsequent BMT rejection. Most non-malignant hematological disorders require transfusion support prior to BMT and the rate of BMT rejection in humans correlates to the number of transfusions given. Herein, we perform a mechanistic analysis of platelet transfusion induced BMT rejection and report that unlike exposure to alloantigens during transplantation, platelet transfusion primes alloimmunity but does not stimulate full effector function. Subsequent BMT is itself an additional and distinct immunizing event, which does not induce rejection without antecedent priming from transfusion. Both CD4+ and CD8+ T cells are required for priming during platelet transfusion, but only CD8+ T cells are required for BMT rejection. In neither case are antibodies required for rejection to occur. PMID:22300526

  2. Platelets in Early Antibody-Mediated Rejection of Renal Transplants

    PubMed Central

    Kuo, Hsiao-Hsuan; Fan, Ran; Dvorina, Nina; Chiesa-Vottero, Andres

    2015-01-01

    Antibody-mediated rejection is a major complication in renal transplantation. The pathologic manifestations of acute antibody-mediated rejection that has progressed to functional impairment of a renal transplant have been defined in clinical biopsy specimens. However, the initial stages of the process are difficult to resolve with the unavoidable variables of clinical studies. We devised a model of renal transplantation to elucidate the initial stages of humoral rejection. Kidneys were orthotopically allografted to immunodeficient mice. After perioperative inflammation subsided, donor-specific alloantibodies were passively transferred to the recipient. Within 1 hour after a single transfer of antibodies, C4d was deposited diffusely on capillaries, and von Willebrand factor released from endothelial cells coated intravascular platelet aggregates. Platelet-transported inflammatory mediators platelet factor 4 and serotonin accumulated in the graft at 100- to 1000-fold higher concentrations compared with other platelet-transported chemokines. Activated platelets that expressed P-selectin attached to vascular endothelium and macrophages. These intragraft inflammatory changes were accompanied by evidence of acute endothelial injury. Repeated transfers of alloantibodies over 1 week sustained high levels of platelet factor 4 and serotonin. Platelet depletion decreased platelet mediators and altered the accumulation of macrophages. These data indicate that platelets augment early inflammation in response to donor-specific antibodies and that platelet-derived mediators may be markers of evolving alloantibody responses. PMID:25145937

  3. CTLA4-Ig Prevents Alloantibody Production and BMT Rejection in Response to Platelet Transfusions in Mice

    PubMed Central

    Gilson, Christopher R; Patel, Seema R; Zimring, James C

    2014-01-01

    Background Platelet transfusions can induce humoral and cellular alloimmunity. Anti-HLA antibodies can render patients refractory to subsequent transfusion, and both alloantibodies and cellular alloimmunity can contribute to subsequent bone marrow transplant rejection. Currently, there are no approved therapeutic interventions to prevent alloimmunization to platelet transfusions other than leukoreduction. Targeted blockade of T cell costimulation has shown great promise in inhibiting alloimmunity in the setting of transplantation, but has not been explored in the context of platelet transfusion. Study Design and Methods We tested the hypothesis that the costimulatory blockade reagent CTLA4-Ig would prevent alloreactivity against major and minor alloantigens on transfused platelets. BALB/c (H-2d) mice and C57BL/6 (H-2b) mice were used as platelet donors and transfusion recipients, respectively. Alloantibodies were measured by indirect immunofluorescence using BALB/c platelets and splenocytes as targets. Bone marrow transplants were carried out under reduced intensity conditioning using BALB/b (H-2b) donors and C57BL/6 (H-2b) recipients to model HLA identical transplants. Experimental groups were given CTLA4-Ig (before or after platelet transfusion) with control groups receiving isotype matched antibody. Results CTLA4-Ig abrogated both humoral alloimmunization (anti-H-2d antibodies) and transfusion induced bone marrow transplant rejection. Whereas a single dose of CTLA4-Ig at time of transfusion prevented alloimmunization to subsequent platelet transfusions, administration of CTLA4-Ig after initial platelet transfusion was ineffective. Delaying treatment until after platelet transfusion failed to prevent bone marrow transplant rejection. Conclusions These findings demonstrate a novel strategy using an FDA approved drug that has the potential to prevent the clinical sequela of alloimmunization to platelet transfusions. PMID:22321003

  4. Lovastatin induces platelet apoptosis.

    PubMed

    Zhao, Qing; Li, Ming; Chen, Mengxing; Zhou, Ling; Zhao, Lili; Hu, Renping; Yan, Rong; Dai, Kesheng

    2016-03-01

    Statins are widely used in the prevention of atherosclerosis and treatment of coronary artery disease because of pleiotropic effects on thrombosis. Thrombocytopenia and hemorrhage occurred in some statin-treated patients, but the reason remains unclear. In the current study, we show that lovastatin dose-dependently induces depolarization of mitochondrial inner transmembrane potential, leading to up-regulation of Bak, down-regulation of Bcl-XL, and activation of caspase-3/8/9. Lovastatin treatment did not increase the surface expression of P-selectin or PAC-1 binding but led to strongly reduced collagen- and thrombin-induced platelet aggregation. The integrin αIIbβ3 antagonist, RGDS, inhibited lovastatin-induced apoptosis in both human platelets and Chinese hamster ovary (CHO) cells stably expressing integrin αIIbβ3. The number of circulating platelets in mice was significantly reduced after intraperitoneal injections with lovastatin. Taken together, these data indicate that lovastatin induced caspase-dependent platelet apoptosis. Lovastatin does not incur platelet activation, whereas impairs platelet function and reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia and hemorrhage in patients treated with statins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    SciTech Connect

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. State Univ. of New York, Buffalo )

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  6. Early diagnosis of acute postoperative renal transplant rejection by indium-111-labeled platelet scintigraphy

    SciTech Connect

    Tisdale, P.L.; Collier, B.D.; Kauffman, H.M.; Adams, M.B.; Isitman, A.T.; Hellman, R.S.; Hoffmann, R.G.; Rao, S.A.; Joestgen, T.; Krohn, L.

    1986-08-01

    A prospective evaluation of /sup 111/In-labeled platelet scintigraphy (IPS) for the early diagnosis of acute postoperative renal transplant rejection (TR) was undertaken. The results of IPS were compared with in vitro biochemical tests, the clinical finding of graft tenderness, and combined (/sup 99m/Tc)DTPA and (/sup 131/I)orthoiodohippurate scintigraphy. With a sensitivity of 0.93 and a specificity of 0.95, IPS provided otherwise unavailable diagnostic information. Furthermore, postoperative IPS was a good predictor of long-term allograft survival.

  7. Thrombospondin-induced adhesion of human platelets.

    PubMed Central

    Tuszynski, G P; Kowalska, M A

    1991-01-01

    Washed human unactivated platelets attached and spread on thrombospondin (TSP)-coated microtiter plates. Platelet adhesion was promoted by divalent cations Mn2+, Mg2+, and Ca2+ as compared to buffer having all divalent cations complexed with EDTA. TSP-dependent adhesion was inhibited by anti-TSP fab fragments, an anti-TSP monoclonal antibody, an RGD-containing peptide, complex-specific anti-glycoprotein (GP)IIb-IIIa monoclonal antibodies (A2A9 or AP-2) and anti-VLA-2 monoclonal antibodies (6F1 and Gi9), but not by rabbit preimmune fab fragments, mouse IgG, an anti-GPIIIa monoclonal antibody, or monoclonal antibodies against either the human vitronectin receptor, glycocalicin, or GPIV. At saturating concentrations, anti-GPIIb-IIIa inhibited adhesion by 40-60%. Glanzman's thrombasthenic platelets, which lack GPIIb-IIIa, adhered to TSP to the same extent as anti-GPIIb-IIIa-treated normal platelets or 40-60% as well as untreated normal platelets. Antibody 6F1 (5-10 micrograms/ml) inhibited platelet adhesion of both normal and thrombasthenic platelets by 84-100%. Both VLA-2 antibodies also inhibited collagen-induced platelet adhesion, but had no effect on fibronectin-induced adhesion of normal platelets. These data indicate that platelets specifically adhere to TSP and that this adhesion is mediated through GPIIb-IIIa and/or VLA-2. Images PMID:2010551

  8. Reactions Induced by Platelet Transfusions

    PubMed Central

    Kiefel, Volker

    2008-01-01

    Summary Platelet transfusions play a central role in therapeutic regimens for patients with hematologic/oncologic diseases who develop severe thrombocytopenia either in the course of their disease or following cytostatic therapy. Like other blood components, platelet transfusions have achieved a high degree of safety as far as transmission of viral diseases is concerned. However, transfusion of platelet concentrates is accompanied by a high frequency of febrile and anaphylactoid reactions. In rare cases, recipients of platelet concentrates are threatened by severe reactions as septic complications due to bacterial contamination of platelet concentrates, transfusion-related acute lung injury and severe anaphylactic episodes. PMID:21512624

  9. Accurate diagnosis of renal transplant rejection by indium-111 platelet imaging despite postoperative cyclosporin therapy

    SciTech Connect

    Collier, B.D.; Adams, M.B.; Kauffman, H.M.; Trembath, L.; Hoffmann, R.G.; Tisdale, P.L.; Rao, S.A.; Hellman, R.S.; Isitman, A.T.

    1988-08-01

    Previous reports indicate that In-111 platelet scintigraphy (IPS) is a reliable test for the early diagnosis of acute post-operative renal transplant rejection (TR). However, the recent introduction of cyclosporin for post-transplantation immunosuppression requires that the diagnostic efficacy of IPS once again be established. Therefore, a prospective IPS study of 73 post-operative renal transplant recipients was conducted. Fourty-nine patients received cyclosporin and 24 patients did not receive this drug. Between these two patient groups, there were no significant differences in the diagnostic sensitivities (0.86 vs 0.80) and specificities (0.93 vs 0.84) with which TR was identified. We conclude that during the first two weeks following renal transplantation the cyclosporin treatment regimen used at our institution does not limit the reliability of IPS as a test for TR.

  10. CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia

    PubMed Central

    Qiu, Jihua; Liu, Xuena; Li, Xiaoqing; Zhang, Xu; Han, Panpan; Zhou, Hai; Shao, Linlin; Hou, Yu; Min, Yanan; Kong, Zhangyuan; Wang, Yawen; Wei, Yu; Liu, Xinguang; Ni, Heyu; Peng, Jun; Hou, Ming

    2016-01-01

    In addition to antiplatelet autoantibodies, CD8+ cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8+ T cells induce platelet desialylation in ITP remains unclear. Here, we investigated the cytotoxicity of CD8+ T cells towards platelets and platelet desialylation in ITP. We found that the desialylation of fresh platelets was significantly higher in ITP patients with positive cytotoxicity of CD8+ T cells than those without cytotoxicity and controls. In vitro, CD8+ T cells from ITP patients with positive cytotoxicity induced significant platelet desialylation, neuraminidase-1 expression on the platelet surface, and platelet phagocytosis by hepatocytes. To study platelet survival and clearance in vivo, CD61 knockout mice were immunized and their CD8+ splenocytes were used. Platelets co-cultured with these CD8+ splenocytes demonstrated decreased survival in the circulation and increased phagocytosis in the liver. Both neuraminidase inhibitor and ASGPRs competitor significantly improved platelet survival and abrogated platelet clearance caused by CD8+ splenocytes. These findings suggest that CD8+ T cells induce platelet desialylation and platelet clearance in the liver in ITP, which may be a novel mechanism of ITP. PMID:27321376

  11. Transfusion-induced bone marrow transplant rejection due to minor histocompatibility antigens.

    PubMed

    Patel, Seema R; Zimring, James C

    2013-10-01

    Traditionally, alloimmunization to transfused blood products has focused exclusively on recipient antibodies recognizing donor alloantigens present on the cell surface. Accordingly, the immunologic sequelae of alloimmunization have been antibody mediated effects (ie, hemolytic transfusion reactions, platelet refractoriness, anti-HLA and anti-HNA effects, etc). However, in addition to the above sequelae, there is also a correlation between the number of antecedent transfusions in humans and the rate of bone marrow transplant (BMT) rejection-under reduced intensity conditioning with HLA-matched or HLA-identical marrow. Bone marrow transplant of this nature is the only existing cure for a series of nonmalignant hematologic diseases (eg, sickle cell disease, thalassemias, etc); however, rejection remains a clinical problem. It has been hypothesized that transfusion induces subsequent BMT rejection through immunization. Studies in animal models have observed the same effect and have demonstrated that transfusion-induced BMT rejection can occur in response to alloimmunization. However, unlike traditional antibody responses, sensitization in this case results in cellular immune effects, involving populations such as T cell or natural killer cells. In this case, rejection occurs in the absence of alloantibodies and would not be detected by existing immune-hematologic methods. We review human and animal studies in light of the hypothesis that, for distinct clinical populations, enhanced rejection of BMT may be an unappreciated adverse consequence of transfusion, which current blood bank methodologies are unable to detect. © 2013.

  12. Transfusion Induced Bone Marrow Transplant Rejection Due to Minor Histocompatibility Antigens

    PubMed Central

    Patel, Seema R; Zimring, James C

    2014-01-01

    Traditionally, alloimmunization to transfused blood products has focused exclusively upon recipient antibodies recognizing donor alloantigens present on the cell surface. Accordingly, the immunological sequelae of alloimmunization have been antibody mediated effects (i.e. hemolytic transfusion reactions, platelet refractoriness, anti-HLA and anti-HNA effects, etc.). However, in addition to the above sequelae, there is also a correlation between the number of antecedent transfusions in humans and the rate of bone marrow transplant (BMT) rejection - under reduced intensity conditioning with HLA matched or HLA identical marrow. BMT of this nature is the only existing cure for a series of non-malignant hematological diseases (e.g. sickle cell disease, thalassemias, etc.); however, rejection remains a clinical problem. It has been hypothesized that transfusion induces subsequent BMT rejection through immunization. Studies in animal models have observed the same effect and have demonstrated that transfusion induced BMT rejection can occur in response to alloimmunization. However, unlike traditional antibody responses, sensitization in this case results in cellular immune effects, involving populations such as T cell or NK cells. In this case, rejection occurs in the absence of alloantibodies, and would not be detected by existing immune-hematological methods. We review human and animal studies in light of the hypothesis that, for distinct clinical populations, enhanced rejection of BMT may be an unappreciated adverse consequence of transfusion which current blood bank methodologies are unable to detect. PMID:24090731

  13. Serotonin enhances platelet procoagulant properties and their activation induced during platelet tissue factor uptake.

    PubMed

    Lopez-Vilchez, Irene; Diaz-Ricart, Maribel; White, James G; Escolar, Gines; Galan, Ana M

    2009-11-01

    Circulating tissue factor (TF) has been linked to thrombus propagation. Our group demonstrated that platelets possess mechanisms to capture TF-rich microvesicles (TF-MVs). Serotonin facilitates the development of platelets with increased procoagulant activity. An enhanced platelet serotonin uptake has been identified with increased cardiovascular risk. We have investigated the involvement of serotonergic mechanisms facilitating the interaction of human platelets with TF-MVs. Inhibitory strategies aimed at blocking serotonin and coagulation mechanisms were also studied. Standard aggregometry, flow cytometry, electron microscopy, and thrombin generation assays were performed. TF-MVs induced platelet aggregation in heparinized platelet-rich plasma (PRP) samples; this aggregation was further accelerated by serotonin. In washed platelets, serotonin enhanced platelet aggregation to TF-MVs with a maximum peak of 55.9 +/- 1.8 vs. 48.7 +/- 2.1% (P < 0.05). Inhibitory strategies with a selective serotonin re-uptake inhibitor and with lepirudin decreased these aggregations. Ultrastructural analysis revealed that serotonin induced platelet pseudopodia formation, thus facilitating the engulfment of TF-MVs. In general, serotonin significantly enhanced (P < 0.05) thrombin generation and the expression of activation markers and procoagulant activity in platelets measured for TF-MVs alone. Serotonin enhances the interaction of platelets with TF-MVs, increases platelet activation, and potentiates their overall procoagulant activity. The present results could have significant implications in thrombus formation and in the thrombogenic profile of pathological situations with increased cardiovascular risk.

  14. A simple method for activating the platelets used in microfluidic platelet aggregation tests: Stirring-induced platelet activation.

    PubMed

    Lee, Hoyoon; Kim, Gyehyu; Lim, Chaeseung; Lee, ByoungKwon; Shin, Sehyun

    2016-11-01

    High-shear stimulation is well known as one of the key factors affecting platelet activation and aggregation, which can lead to the formation of a thrombus. In one of our previous studies, we introduced migration distance-based platelet function analysis in a microfluidic system. In this study, we set out to examine the effects of stirring on shear-induced platelet activation and aggregation in a chamber system by using a rotating stirrer. We found that the rotating stirrer caused not only rotational shear flow but also a strong radial secondary flow. The latter flow led to efficient mixing in the chamber. Moreover, the rotational flow led to the generation of shear stress, the magnitude of which can be controlled to activate the platelets. Activated platelets tend to aggregate themselves. The maximum platelet aggregation was observed at a critical shear rate of 3100 s(-1), regardless of the stirrer shape. Furthermore, the time taken to attain maximum aggregation was significantly shortened when using a wide stirrer (30 s) instead of a narrow one (180 s). When using a flat stirrer, the non-uniform shear field in the chamber system was resolved with the radial secondary flow-induced mixing; thus, most of the platelets were homogenously activated. The stirring-induced platelet activation mechanism was experimentally confirmed in a microfluidic system for a platelet aggregation test while monitoring the migration distance until the microfluidic channel is occluded. Our findings indicate that the present system, consisting of a rotating stirrer and a confined chamber, provides effective shear stimulation for activating platelets and inducing platelet aggregates.

  15. A simple method for activating the platelets used in microfluidic platelet aggregation tests: Stirring-induced platelet activation

    PubMed Central

    Lee, Hoyoon; Kim, Gyehyu; Lim, Chaeseung; Lee, ByoungKwon; Shin, Sehyun

    2016-01-01

    High-shear stimulation is well known as one of the key factors affecting platelet activation and aggregation, which can lead to the formation of a thrombus. In one of our previous studies, we introduced migration distance-based platelet function analysis in a microfluidic system. In this study, we set out to examine the effects of stirring on shear-induced platelet activation and aggregation in a chamber system by using a rotating stirrer. We found that the rotating stirrer caused not only rotational shear flow but also a strong radial secondary flow. The latter flow led to efficient mixing in the chamber. Moreover, the rotational flow led to the generation of shear stress, the magnitude of which can be controlled to activate the platelets. Activated platelets tend to aggregate themselves. The maximum platelet aggregation was observed at a critical shear rate of 3100 s−1, regardless of the stirrer shape. Furthermore, the time taken to attain maximum aggregation was significantly shortened when using a wide stirrer (30 s) instead of a narrow one (180 s). When using a flat stirrer, the non-uniform shear field in the chamber system was resolved with the radial secondary flow-induced mixing; thus, most of the platelets were homogenously activated. The stirring-induced platelet activation mechanism was experimentally confirmed in a microfluidic system for a platelet aggregation test while monitoring the migration distance until the microfluidic channel is occluded. Our findings indicate that the present system, consisting of a rotating stirrer and a confined chamber, provides effective shear stimulation for activating platelets and inducing platelet aggregates. PMID:28058084

  16. Increased platelet adhesion under flow conditions is induced by both thalassemic platelets and red blood cells.

    PubMed

    Goldschmidt, Neta; Spectre, Galia; Brill, Alexander; Zelig, Orly; Goldfarb, Ada; Rachmilewitz, Eliezer; Varon, David

    2008-11-01

    Thromboembolic complications are not uncommon in thalassemia. Previous studies suggest increased platelet aggregation and a potential role of pathological changes in the red blood cell (RBC) lipid membrane, induced by oxidative stress. In the present study, platelet adhesion and the effect of thalassemic RBC on platelet adhesion under flow conditions were evaluated, using the Cone and Plate (let) Analyzer(CPA). Twenty-two beta-thalassemia patients and 22 blood type-matched healthy controls were studied. An increased platelet adhesion (% surface coverage, SC), was observed in patients as compared to controls (p < 0.05). When platelet count and haematocrit were normalized by autologous reconstitution, a significant increase in platelet aggregation (average size, AS) was observed (p < 0.05). Increased platelet adhesion (SC and AS), was demonstrated in six patients with a history of thrombosis as compared to 16 patients without any history of thrombosis (p < or = 0.007) and in 17 splenectomized patients as compared to five non-splenectomized patients (p = 0.003). In reconstitution studies, thalassemic RBC mixed with normal platelet-rich plasma significantly increased platelet adhesion compared to normal RBC (SC p < 0.03, AS p < 0.02). Thalassemic platelets reconstituted with normal RBC, had increased aggregation (AS, p < 0.004) in comparison with normal platelets. The results indicate that increased platelet adhesion in beta-thalassemia is induced by both platelets and RBC. Increased platelet adhesion correlated with clinical thrombotic events and thus may suggest a mechanism of thrombosis in thalassemic patients. The potential application of the CPA in identifying thalassemic patients with high risk for thrombosis should be studied prospectively in a larger cohort of patients.

  17. Radiation-induced volatile hydrocarbon production in platelets

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  18. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation

    PubMed Central

    Zhang, Shengwei; Wang, Junping; Chen, Shaolong; Yin, Jiye; Pan, Zhiyuan; Liu, Keke; Li, Lin; Zheng, Yuling; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS. PMID:27800304

  19. Platelets protect lung from injury induced by systemic inflammatory response

    PubMed Central

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  20. Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries

    PubMed Central

    2011-01-01

    Background Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α- + γ- + δ-tocotrienols) on in vivo platelet thrombosis and ex vivo platelet aggregation (PA) after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model). Results Collagen-induced platelet aggregation (PA) in platelet rich plasma (PRP) was decreased markedly after treatment with α-tocotrienol (59%; P < 0.001) and TRF (92%; P < 0.001). α-Tocopherol treatment was less effective, producing only a 22% (P < 0.05) decrease in PA. Adenosine diphosphate-induced (ADP) PA was also decreased after treatment with α-tocotrienol (34%; P < 0.05) and TRF (42%; P < 0.025). These results also indicate that intravenously administered tocotrienols were significantly better than tocopherols in inhibiting cyclic flow reductions (CFRs), a measure of the acute platelet-mediated thrombus formation. Tocotrienols (TRF) given intravenously (10 mg/kg), abolished CFRs after a mean of 68 min (range 22 -130 min), and this abolition of CFRs was sustained throughout the monitoring period (50 - 160 min). Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets). However, treatment with

  1. CD32-mediated platelet aggregation in vitro by anti-thymocyte globulin: implication of therapy-induced in vivo thrombocytopenia.

    PubMed

    Ankersmit, Hendrik Jan; Roth, Georg Alexander; Moser, Bernhard; Zuckermann, Andreas; Brunner, Markus; Rosin, Christiane; Buchta, Christoph; Bielek, Edith; Schmid, Werner; Jensen-Jarolim, Erika; Wolner, Ernst; Boltz-Nitulescu, George; Volf, Ivo

    2003-06-01

    Induction therapy with polyclonal antithymocyte-globulin (ATG) is widely used in the prophylaxis and treatment of acute cardiac-allograft rejection. Thrombocytopenia, however, is a major side-effect of ATG therapy and its mechanisms are poorly understood. The influence of ATG on platelet aggregation was studied aggregometrically, expression of platelet surface activation antigens CD62P and CD63 was determined by flow cytometry analysis, and electron microscopy was utilized to determine thrombocyte morphology. Treatment of platelets with ATG markedly induced aggregation, whereas OKT3 or anti-IL-2R antibodies did not. Furthermore, platelets incubated with ATG featured an up-regulation of the surface activation markers CD62P and CD63, secretion of platelet-bound sCD40L (CD154) and increased signs of aggregation in electron microscopy analysis. The capacity of ATG to induce platelet aggregation was completely blocked by antibodies against the low-affinity Fc IgG receptor (CD32). Since blocking of CD32 abrogates platelet aggregation, we suggest that CD32 plays a crucial role in ATG-induced thrombocytopenia.

  2. Radiation-induced volatile hydrocarbon production in platelets. Scientific report

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Thrombocytopenia plays an important role in the development of the post-irradiation hemorrhagic syndrome. Although destruction of platelet precursors in bone marrow is a major effect of high-dose radiation exposure, the effects of radiation on preformed platelets are unclear. The latter is also of concern with respect to blood-banking practices since platelets are often irradiated at doses in the range of 20-50 Gy before transfusions to prevent graft-versus-host disease. With increasing emphasis on allogenic and autologous bone-marrow transplantation, transfusions of irradiated platelets are likely to rise. Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  3. Generation of functional platelets from canine induced pluripotent stem cells.

    PubMed

    Nishimura, Toshiya; Hatoya, Shingo; Kanegi, Ryoji; Sugiura, Kikuya; Wijewardana, Viskam; Kuwamura, Mitsuru; Tanaka, Miyuu; Yamate, Jyoji; Izawa, Takeshi; Takahashi, Masahiro; Kawate, Noritoshi; Tamada, Hiromichi; Imai, Hiroshi; Inaba, Toshio

    2013-07-15

    Thrombocytopenia (TTP) is a blood disease common to canines and human beings. Currently, there is no valid therapy for this disease except blood transfusion. In this study, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine embryonic fibroblasts, and a novel protocol for creating mature megakaryocytes (MKs) and functional platelets from ciPSCs. The ciPSCs were generated using lentiviral vectors, and differentiated into MKs and platelets on OP9 stromal cells supplemented with growth factors. Our ciPSCs presented in a tightly domed shape and showed expression of a critical pluripotency marker, REX1, and normal karyotype. Additionally, ciPSCs differentiated into cells derived from three germ layers via the formation of an embryoid body. The MKs derived from ciPSCs had hyperploidy and transformed into proplatelets. The proplatelets released platelets early on that expressed specific MK and platelet marker CD41/61. Interestingly, these platelets, when activated with adenosine diphosphate or thrombin, bind to fibrinogen. Moreover, electron microscopy showed that the platelets had the same ultrastructure as peripheral platelets. Thus, we have demonstrated for the first time the generation of ciPSCs that are capable of differentiating into MKs and release functional platelets in vitro. Our system for differentiating ciPSCs into MKs and platelets promises a critical therapy for canine TTP and appears to be extensible in principle to resolve human TTP.

  4. Intravenous immunoglobulins induce CD32-mediated platelet aggregation in vitro.

    PubMed

    Pollreisz, A; Assinger, A; Hacker, S; Hoetzenecker, K; Schmid, W; Lang, G; Wolfsberger, M; Steinlechner, B; Bielek, E; Lalla, E; Klepetko, W; Volf, I; Ankersmit, H J

    2008-09-01

    Intravenous immunoglobulins (IVIg) and cytomegalovirus immunoglobulins (CMVIg) are currently finding increased acceptance in clinical states of high immune activity and in transplant recipients. A rare side-effect of their application is intravascular thrombosis, which is thought to be related to pre-existing hyperviscosity. In a previous study we have shown that rabbit antithymocyte globulin causes platelet aggregation in vitro via the Fc IgG receptor (CD32). To investigate if IVIg and CMVIg have the potential to cause CD32-dependent platelet aggregation. The influence of CMVIg or IVIg on platelets pre-incubated with or without monoclonal antibody AT10 was studied in an aggregometer. Expression of platelet surface activation marker CD62P was determined by fluorescence-activated cell sorting analysis and presence of soluble CD40L (sCD40L) was evaluated by enzyme-linked immunosorbent assay. All in vitro experiments were performed using platelet concentrates from the blood bank, at therapeutic concentrations of immunoglobulins. Results Incubation of platelets with CMVIg and IVIg markedly induced platelet aggregation, and increased expression of CD62P and secretion of sCD40L. The capacity of CMVIg and IVIg to induce platelet aggregation was completely abrogated by adding the blocking antibody AT10 directed against the low-affinity Fc IgG receptor (CD32). Our results suggest that CMVIg and IVIg solutions with activating Fc domains are able to bind CD32 on platelets and cause platelet aggregation in vitro. These results indicate a mechanism by which in vivo intravascular thrombosis may be explained and suggest caution with concomitant use of packed platelets and IVIg in autoimmune diseases in the clinical setting.

  5. Injury-induced allograft rejection: A rendezvous with evolution.

    PubMed

    Land, Walter G

    2013-01-01

    Modern immunology, in many ways, is based on three major paradigms: the clonal selection theory, the pattern recognition theory, and the danger/injury theory. The last theory holds that any cell stress and tissue injury, including allograft injury, via induction of damage-associated molecular patterns, induces immunity, including alloimmunity, leading to allograft rejection. On the other hand, the concept precludes that non-self per se induces immunity as proposed by the two former theories. Recently, the danger/injury model has gained considerable acceptance by immunologists, in particular as promoted by new insights into the function of the mammalian gut microbiota, representing a huge assemblage of non-self. Harboring microbiota by hosts is characterized by the fact that harmless noninjurious commensal microbes are protected by innate immunity-based tolerance, whereas intestinal injury-causing pathogenic microbes are immunologically attacked. Plausibility and validity of the danger/injury concept is stringently supported by observations of similar phenomena across the tree of life: the ability of the immune system to discriminate between harmful life-threatening non-self to induce immunity and harmless beneficial non-self to induce tolerance has apparently emerged during evolution. Immune defense responses to injuring/injured non-self (e.g., as reflected by plant resistance to biotic and abiotic stresses on one hand, and allograft rejection on the other hand) as well as immunity-controlled protection of beneficial non-self (e.g., as reflected by microbiota and the fetus of placental mammals) are processes in the interest of evolution and, thus, evolved under pressure across the phylogenetic tree.

  6. Creatine kinase inhibits ADP-induced platelet aggregation

    PubMed Central

    Horjus, D. L.; Nieuwland, R.; Boateng, K. B.; Schaap, M. C. L.; van Montfrans, G. A.; Clark, J. F.; Sturk, A.; Brewster, L. M.

    2014-01-01

    Bleeding risk with antiplatelet therapy is an increasing clinical challenge. However, the inter-individual variation in this risk is poorly understood. We assessed whether the level of plasma creatine kinase, the enzyme that utilizes ADP and phosphocreatine to rapidly regenerate ATP, may modulate bleeding risk through a dose-dependent inhibition of ADP-induced platelet activation. Exogenous creatine kinase (500 to 4000 IU/L, phosphocreatine 5 mM) added to human plasma induced a dose-dependent reduction to complete inhibition of ADP-induced platelet aggregation. Accordingly, endogenous plasma creatine kinase, studied in 9 healthy men (mean age 27.9 y, SE 3.3; creatine kinase 115 to 859 IU/L, median 358), was associated with reduced ADP-induced platelet aggregation (Spearman's rank correlation coefficient, −0.6; p < 0.05). After exercise, at an endogenous creatine kinase level of 4664, ADP-induced platelet aggregation was undetectable, normalizing after rest, with a concomitant reduction of creatine kinase to normal values. Thus, creatine kinase reduces ADP-induced platelet activation. This may promote bleeding, in particular when patients use platelet P2Y12 ADP receptor inhibitors. PMID:25298190

  7. Platelets

    MedlinePlus

    ... common disorder of platelet function is caused by aspirin. Aspirin blocks one of the steps required for platelets to stick together. This effect of aspirin is what makes it an effective treatment for ...

  8. High shear flow induces migration of adherent human platelets.

    PubMed

    Kraemer, Bjoern F; Schmidt, Christine; Urban, Benjamin; Bigalke, Boris; Schwanitz, Laura; Koch, Miriam; Seizer, Peter; Schaller, Martin; Gawaz, Meinrad; Lindemann, Stephan

    2011-01-01

    Shear forces are generated in all parts of the vascular system and contribute directly and indirectly to vascular disease progression. Endothelial cells are able to adapt to flow conditions, and are known to polarize and migrate in response to shear forces. Platelets exposed to shear stress are activated and release bioactive molecules from their alpha granules. So far, platelets have been considered to be static cells that do not leave the site of tight adhesion. However, we have recently been able to demonstrate the capacity of platelets to migrate in response to stromal derived factor-1 (SDF-1). In this project, we have demonstrated that platelets accumulate in areas with a high concentration of SDF-1 under flow conditions and respond to high shear stress by cellular polarization, cytoskeletal reorganisation, and flow-directed migration. In this context, we have shown increased Wiskott-Aldrich Syndrome protein (WASP) phosphorylation and intracellular redistribution of focal adhesion kinase (FAK) under high-shear stress conditions. The effect of flow-induced platelet migration has not previously been recognized and offers a new role for platelets as mobile cells. Their migratory potential may enable platelets to cover intimal lesions and contribute to vascular repair.

  9. High Fat Diet-induced Obesity Enhances Allograft Rejection

    PubMed Central

    Molinero, Luciana L; Yin, Dengping; Lei, Kevin; Chen, Luqiu; Wang, Ying; Chong, Anita S; Alegre, Maria-Luisa

    2016-01-01

    Background Obesity promotes a state of low-grade inflammation that exacerbates chronic inflammatory diseases such as asthma and inflammatory bowel disease. In transplantation, the survival of organs transplanted into obese patients is reduced compared to allografts in lean recipients. However, whether this is due to increased alloimmunity remains to be addressed conclusively. Methods We used a mouse model of high fat diet (HFD)-induced obesity and assessed immune responses to allogeneic stimulation in vitro, allogeneic splenocyte immunization in vivo, and allogeneic heart transplantation. Results Our results indicate that HFD altered the composition and phenotype of splenic antigen-presenting cells (APCs) that led to their enhanced capacity to stimulate T cells. Immunization with allogeneic splenocytes in vivo resulted in increased alloreactivity, as determined by IFNγ production. Moreover, cardiac allograft rejection in HFD mice was modestly accelerated compared to aged-matched control animals fed a low fat diet (LFD), correlating with enhanced alloreactive T cell function. Conclusions Our results highlight the increased alloresponse triggered by HFD-induced obesity and its negative impact on transplant outcome. PMID:27007226

  10. High-Fat Diet-Induced Obesity Enhances Allograft Rejection.

    PubMed

    Molinero, Luciana L; Yin, Dengping; Lei, Yuk Man; Chen, Luqiu; Wang, Ying; Chong, Anita S; Alegre, Maria-Luisa

    2016-05-01

    Obesity promotes a state of low-grade inflammation that exacerbates chronic inflammatory diseases, such as asthma and inflammatory bowel disease. In transplantation, the survival of organs transplanted into obese patients is reduced compared with allografts in lean recipients. However, whether this is due to increased alloimmunity remains to be addressed conclusively. We used a mouse model of high-fat diet (HFD)-induced obesity and assessed immune responses to allogeneic stimulation in vitro, allogeneic splenocyte immunization in vivo, and allogeneic heart transplantation. Our results indicate that HFD altered the composition and phenotype of splenic antigen-presenting cells that led to their enhanced capacity to stimulate T cells. Immunization with allogeneic splenocytes in vivo resulted in increased alloreactivity, as determined by IFNγ production. Moreover, cardiac allograft rejection in HFD mice was modestly accelerated compared to aged-matched control animals fed a low-fat diet, correlating with enhanced alloreactive T cell function. Our results highlight the increased alloresponse triggered by HFD-induced obesity and its negative impact on transplant outcome.

  11. Nanoparticle-induced platelet aggregation and vascular thrombosis.

    PubMed

    Radomski, Anna; Jurasz, Paul; Alonso-Escolano, David; Drews, Magdalena; Morandi, Maria; Malinski, Tadeusz; Radomski, Marek W

    2005-11-01

    Ever increasing use of engineered carbon nanoparticles in nanopharmacology for selective imaging, sensor or drug delivery systems has increased the potential for blood platelet-nanoparticle interactions. We studied the effects of engineered and combustion-derived carbon nanoparticles on human platelet aggregation in vitro and rat vascular thrombosis in vivo. Multiplewall (MWNT), singlewall (SWNT) nanotubes, C60 fullerenes (C60CS) and mixed carbon nanoparticles (MCN) (0.2-300 microg ml(-1)) were investigated. Nanoparticles were compared with standard urban particulate matter (SRM1648, average size 1.4 microm). Platelet function was studied using lumi aggregometry, phase-contrast, immunofluorescence and transmission electron microscopy, flow cytometry, zymography and pharmacological inhibitors of platelet aggregation. Vascular thrombosis was induced by ferric chloride and the rate of thrombosis was measured, in the presence of carbon particles, with an ultrasonic flow probe. Carbon particles, except C60CS, stimulated platelet aggregation (MCN>or=SWNT>MWNT>SRM1648) and accelerated the rate of vascular thrombosis in rat carotid arteries with a similar rank order of efficacy. All particles resulted in upregulation of GPIIb/IIIa in platelets. In contrast, particles differentially affected the release of platelet granules, as well as the activity of thromboxane-, ADP, matrix metalloproteinase- and protein kinase C-dependent pathways of aggregation. Furthermore, particle-induced aggregation was inhibited by prostacyclin and S-nitroso-glutathione, but not by aspirin. Thus, some carbon nanoparticles and microparticles have the ability to activate platelets and enhance vascular thrombosis. These observations are of importance for the pharmacological use of carbon nanoparticles and pathology of urban particulate matter.

  12. Transgenic, inducible RNAi in megakaryocytes and platelets in mice

    PubMed Central

    TAKIGUCHI, M.; JAMES, C.; JOSEFSSON, E. C.; CARMICHAEL, C. L.; PREMSRIRUT, P. K.; LOWE, S. W.; HAMILTON, J. R.; HUANG, D. C. S.; KILE, B. T.; DICKINS, R. A.

    2012-01-01

    Summary Background RNA interference (RNAi) is a powerful tool for suppressing gene function. The tetracycline (tet)-regulated expression system has recently been adapted to allow inducible RNAi in mice, however its efficiency in a particular cell type in vivo depends on a transgenic tet transactivator expression pattern and is often highly variable. Objective We aimed to establish a transgenic strategy that allows efficient and inducible gene knockdown in particular hematopoietic lineages in mice. Methods and results Using a tet-regulated reporter gene strategy, we found that transgenic mice expressing the rtTA (tet-on) transactivator under control of the cytomegalovirus (CMV) promoter (CMV-rtTA mice) display inducible reporter gene expression with unusual and near-complete efficiency in megakaryocytes and platelets. To test whether the CMV-rtTA transgene can drive inducible and efficient gene knockdown within this lineage, we generated a novel mouse strain harboring a tet-regulated short hairpin RNA (shRNA) targeting Bcl-xL, a pro-survival Bcl-2 family member known to be essential for maintaining platelet survival. Doxycycline treatment of adult mice carrying both transgenes induces shRNA expression, depletes Bcl-xL in megakaryocytes and triggers severe thrombocytopenia, whereas doxycycline withdrawal shuts off shRNA expression, normalizes Bcl-xL levels and restores platelet numbers. These effects are akin to those observed with drugs that target Bcl-xL, clearly demonstrating that this transgenic system allows efficient and inducible inhibition of genes in megakaryocytes and platelets. Conclusions We have established a novel transgenic strategy for inducible gene knockdown inmegakaryocytes and platelets that will be useful for characterizing genes involved in platelet production and function in adult mice. PMID:21138522

  13. Ristocetin-Induced Platelet Aggregation (RIPA) and RIPA Mixing Studies.

    PubMed

    Frontroth, Juan Pablo; Favaloro, Emmanuel J

    2017-01-01

    Ristocetin-induced platelet aggregation (RIPA) is used as an in vitro test to determine the presence and integrity of the platelet glycoprotein (GP) Ibα-V-IX complex and von Willebrand factor (VWF) interaction and is usually performed using platelet-rich plasma (PRP). Impairment in the response of VWF/GPIbα-V-IX is measured with reference to several established concentrations of ristocetin and may indicate defects in VWF or in GPIbα-V-IX function. RIPA-based mixing studies comprise an additional approach to testing this interaction to help define whether defects identified by RIPA lie in VWF or in GPIbα-V-IX. For example, the correction of an abnormal RIPA trace after mixing PRP with normal plasma and rechallenging with ristocetin at 1.0 mg/mL suggests VWF function/quantity defect. RIPA mixing studies at lower doses of ristocetin (0.5 mg/mL) are recommended for discrimination of von Willebrand disease type 2B (VWD2B) from the rarer platelet-type (PT) VWD and for the phenotypic laboratory diagnosis of VWD2B. The demonstration of a plasma factor capable of inducing platelet aggregation at such low doses of ristocetin represents the hallmark for the phenotypic laboratory diagnosis of VWD2B. Moreover, since both VWD2B and PT-VWD may present with thrombocytopenia, RIPA-based mixing studies are also useful in thrombocytopenic patients in whom RIPA testing is difficult to assess.

  14. Serum-induced platelet procoagulant activity: an assay for the characterization of prothrombotic disorders.

    PubMed

    Warner, M N; Pavord, S; Moore, J C; Warkentin, T E; Hayward, C P; Kelton, J G

    1999-02-01

    Platelets contribute to hemostasis by forming a platelet plug and by providing a procoagulant surface for the assembly and activation of the coagulation factors. The contribution of platelets to prothrombotic disorders has been difficult to analyze. Recently an assay was reported that measured the procoagulant activity of test platelets by making the platelet lipid surface the limiting factor in the production of thrombin. In this report we describe a novel technique, based on this assay, that we used to study patient serum factors that activate control platelets and in turn initiate measurable procoagulant activity. Using this assay we investigated a group of patients with prothrombotic disorders. The patient test serum was incubated with normal platelets in the presence of activated factor Xa. The resultant thrombin was measured in a chromogenic assay. The rate-limiting step was the presence of any potential platelet-activating factors, such as antibodies in the heat-treated test serum, that would allow the Xa to bind to the platelet phospholipid surface. Serum samples from patients with heparin-induced thrombocytopenia (HIT) and the anti-phospholipid antibody syndrome enhanced platelet procoagulant activity, while samples from patients with idiopathic thrombocytopenic purpura and disseminated intravascular coagulation (DIC) did not. HIT serum samples also induced platelet activation, as measured by platelet microparticle shedding, carbon 14-labeled serotonin release, and platelet aggregation. The measurement of serum-induced platelet procoagulant activity provides a method for the investigation of circulating platelet agonists in prothrombotic disorders.

  15. Peer Rejection Cues Induce Cardiac Slowing after Transition into Adolescence

    ERIC Educational Resources Information Center

    Gunther Moor, Bregtje; Bos, Marieke G. N.; Crone, Eveline A.; van der Molen, Maurits W.

    2014-01-01

    The present study examined developmental and gender differences in sensitivity to peer rejection across the transition into adolescence by examining beat-by-beat heart rate responses. Children between the ages of 8 and 14 years were presented with unfamiliar faces of age-matched peers and were asked to predict whether they would be liked by the…

  16. Peer Rejection Cues Induce Cardiac Slowing after Transition into Adolescence

    ERIC Educational Resources Information Center

    Gunther Moor, Bregtje; Bos, Marieke G. N.; Crone, Eveline A.; van der Molen, Maurits W.

    2014-01-01

    The present study examined developmental and gender differences in sensitivity to peer rejection across the transition into adolescence by examining beat-by-beat heart rate responses. Children between the ages of 8 and 14 years were presented with unfamiliar faces of age-matched peers and were asked to predict whether they would be liked by the…

  17. Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner.

    PubMed

    Watson, Ben R; White, Nathan A; Taylor, Kirk A; Howes, Joanna-Marie; Malcor, Jean-Daniel M; Bihan, Dominique; Sage, Stewart O; Farndale, Richard W; Pugh, Nicholas

    2016-01-01

    Following platelet adhesion and primary activation at sites of vascular injury, secondary platelet activation is induced by soluble platelet agonists, such as ADP, ATP, thrombin and thromboxane. Zinc ions are also released from platelets and damaged cells and have been shown to act as a platelet agonist. However, the mechanism of zinc-induced platelet activation is not well understood. Here we show that exogenous zinc gains access to the platelet cytosol and induces full platelet aggregation that is dependent on platelet protein tyrosine phosphorylation, PKC and integrin αIIbβ3 activity and is mediated by granule release and secondary signalling. ZnSO4 increased the binding affinity of GpVI, but not integrin α2β1. Low concentrations of ZnSO4 potentiated platelet aggregation by collagen-related peptide (CRP-XL), thrombin and adrenaline. Chelation of intracellular zinc reduced platelet aggregation induced by a number of different agonists, inhibited zinc-induced tyrosine phosphorylation and inhibited platelet activation in whole blood under physiologically relevant flow conditions. Our data are consistent with a transmembrane signalling role for zinc in platelet activation during thrombus formation.

  18. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    PubMed

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that

  19. An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets.

    PubMed

    Sánchez Guiu, I M; Martínez-Martinez, I; Martínez, C; Navarro-Fernandez, J; García-Candel, F; Ferrer-Marín, F; Vicente, V; Watson, S P; Andrews, R K; Gardiner, E E; Lozano, M L; Rivera, J

    2015-08-01

    Platelet cold agglutinins (PCA) cause pseudothrombocytopenia, spurious thrombocytopenia due to ex vivo platelet clumping, complicating clinical diagnosis, but mechanisms and consequences of PCA are not well defined. Here, we characterised an atypical immunoglobulin (Ig)M PCA in a 37-year-old woman with lifelong bleeding and chronic moderate thrombocytopenia, that induces activation and aggregation of autologous or allogeneic platelets via interaction with platelet glycoprotein (GP)VI. Patient temperature-dependent pseudothrombocytopenia was EDTA-independent, but was prevented by integrin αIIbβ3 blockade. Unstimulated patient platelets revealed elevated levels of bound IgM, increased expression of activation markers (P-selectin and CD63), low GPVI levels and abnormally high thromboxane (TX)A2 production. Patient serum induced temperature- and αIIbβ3-dependent decrease of platelet count in allogeneic donor citrated platelet-rich plasma (PRP), but not in PRP from Glanzmann's thrombasthenia or afibrinogenaemia patients. In allogeneic platelets, patient plasma induced shape change, P-selectin and CD63 expression, (14)C-serotonin release, and TXA2 production. Activation was not inhibited by aspirin, cangrelor or blocking anti-Fc receptor (FcγRIIA) antibody, but was abrogated by inhibitors of Src and Syk, and by a soluble GPVI-Fc fusion protein. GPVI-deficient platelets were not activated by patient plasma. These data provide the first evidence for an IgM PCA causing platelet activation/aggregation via GPVI. The PCA activity persisted over a five-year follow-up period, supporting a causative role in patient chronic thrombocytopenia and bleeding.

  20. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced

  1. Alloantibody induced platelet responses in transplants: potent mediators in small packages.

    PubMed

    Kuo, Hsiao-Hsuan; Morrell, Craig N; Baldwin, William M

    2012-12-01

    The early histological studies of organ allografts noted platelets attached to vascular endothelium. Platelets adhere to vessels before any morphological evidence of endothelial injury. Subsequently, in vitro and in vivo experiments have demonstrated that alloantibodies can induce exocytosis of von Willebrand factor and P-selectin from endothelial cells and attachment of platelets within minutes. Platelets also adhere to and stimulate leukocytes. These interactions are increased by complement activation. After attachment platelets degranulate, releasing preformed mediators. Some chemokines stored together in platelet granules can form heteromers with synergistic functions. Heteromers containing platelet factor 4 (PF4; CXCL4) are specific to platelets and provide insights to unique platelet functions and opportunities for therapeutic intervention. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  3. Drug-induced antibodies: interaction of the drug with a polymorphic platelet-antigen.

    PubMed

    Claas, F H; Langerak, J; de Beer, L L; van Rood, J J

    1981-01-01

    Preincubation of donor platelets with ticarcillin will prevent the reactivity of a platelet antibody against these platelets, whereas no influence was observed on antisera against HLA, 5A, 5b and ZWa. The implications for the mechanism of drug-induced antibodies with restricted specificity will be discussed.

  4. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation.

    PubMed

    Badrnya, Sigrun; Schrottmaier, Waltraud C; Kral, Julia B; Yaiw, Koon-Chu; Volf, Ivo; Schabbauer, Gernot; Söderberg-Nauclér, Cecilia; Assinger, Alice

    2014-03-01

    A growing body of evidence indicates that platelets contribute to the onset and progression of atherosclerosis by modulating immune responses. We aimed to elucidate the effects of oxidized low-density lipoprotein (OxLDL) on platelet-monocyte interactions and the consequences of these interactions on platelet phagocytosis, chemokine release, monocyte extravasation, and foam cell formation. Confocal microscopy and flow cytometric analysis revealed that in vitro and in vivo stimulation with OxLDL resulted in rapid formation of platelet-monocyte aggregates, with a preference for CD16+ monocyte subsets. This platelet-monocyte interaction facilitated OxLDL uptake by monocytes, in a process that involved platelet CD36-OxLDL interaction, release of chemokines, such as CXC motif ligand 4, direct platelet-monocyte interaction, and phagocytosis of platelets. Inhibition of cyclooxygenase with acetylsalicylic acid and antagonists of ADP receptors, P2Y1 and P2Y12, partly abrogated OxLDL-induced platelet-monocyte aggregates and platelet-mediated lipid uptake in monocytes. Platelets also enhanced OxLDL-induced monocyte transmigration across an endothelial monolayer via direct interaction with monocytes in a transwell assay. Importantly, in LDLR(-/-) mice, platelet depletion resulted in a significant decrease of peritoneal macrophage recruitment and foam cell formation in a thioglycollate-elicited peritonitis model. In platelet-depleted wild-type mice, transfusion of ex vivo OxLDL-stimulated platelets induced monocyte extravasation to a higher extent when compared with resting platelets. Our results on OxLDL-mediated platelet-monocyte aggregate formation, which promoted phenotypic changes in monocytes, monocyte extravasation and enhanced foam cell formation in vitro and in vivo, provide a novel mechanism for how platelets potentiate key steps of atherosclerotic plaque development and plaque destabilization.

  5. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  6. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    PubMed Central

    Chesnutt, Jennifer K W; Han, Hai-Chao

    2013-01-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD), and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion, and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD, and arteriole tortuosity play important roles in platelet activation and thrombus formation. PMID:23974300

  7. Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts.

    PubMed

    Gorbacheva, Victoria; Fan, Ran; Fairchild, Robert L; Baldwin, William M; Valujskikh, Anna

    2016-11-01

    Despite advances in immunosuppression, antibody-mediated rejection is a serious threat to allograft survival. Alloreactive memory helper T cells can induce potent alloantibody responses and often associate with poor graft outcome. Nevertheless, the ability of memory T cells to elicit well characterized manifestations of antibody-mediated rejection has not been tested. We investigated helper functions of memory CD4 T cells in a mouse model of renal transplantation. Whereas the majority of unsensitized C57Bl/6 recipients spontaneously accepted fully MHC-mismatched A/J renal allografts, recipients containing donor-reactive memory CD4 T cells rapidly lost allograft function. Increased serum creatinine levels, high serum titers of donor-specific alloantibody, minimal T cell infiltration, and intense C4d deposition in the grafts of sensitized recipients fulfilled all diagnostic criteria for acute renal antibody-mediated rejection in humans. IFNγ neutralization did not prevent the renal allograft rejection induced by memory helper T cells, and CD8 T cell depletion at the time of transplantation or depletion of both CD4 and CD8 T cells also did not prevent the renal allograft rejection induced by memory helper T cells starting at day 4 after transplantation. However, B cell depletion inhibited alloantibody generation and significantly extended allograft survival, indicating that donor-specific alloantibodies (not T cells) were the critical effector mechanism of renal allograft rejection induced by memory CD4 T cells. Our studies provide direct evidence that recipient T cell sensitization may result in antibody-mediated rejection of renal allografts and introduce a physiologically relevant animal model with which to investigate mechanisms of antibody-mediated rejection and novel therapeutic approaches for its prevention and treatment. Copyright © 2016 by the American Society of Nephrology.

  8. Effect of remote ischemic preconditioning on platelet activation and reactivity induced by ablation for atrial fibrillation.

    PubMed

    Stazi, Alessandra; Scalone, Giancarla; Laurito, Marianna; Milo, Maria; Pelargonio, Gemma; Narducci, Maria Lucia; Parrinello, Rossella; Figliozzi, Stefano; Bencardino, Gianluigi; Perna, Francesco; Lanza, Gaetano A; Crea, Filippo

    2014-01-07

    Radiofrequency ablation of atrial fibrillation has been associated with some risk of thromboembolic events. Previous studies showed that preventive short episodes of forearm ischemia (remote ischemic preconditioning [IPC]) reduce exercise-induced platelet reactivity. In this study, we assessed whether remote IPC has any effect on platelet activation induced by radiofrequency ablation of atrial fibrillation. We randomized 19 patients (age, 54.7±11 years; 17 male) undergoing radiofrequency catheter ablation of paroxysmal atrial fibrillation to receive remote IPC or sham intermittent forearm ischemia (control subjects) before the procedure. Blood venous samples were collected before and after remote IPC/sham ischemia, at the end of the ablation procedure, and 24 hours later. Platelet activation and reactivity were assessed by flow cytometry by measuring monocyte-platelet aggregate formation, platelet CD41 in the monocyte-platelet aggregate gate, and platelet CD41 and CD62 in the platelet gate in the absence and presence of ADP stimulation. At baseline, there were no differences between groups in platelet variables. Radiofrequency ablation induced platelet activation in both groups, which persisted after 24 hours. However, compared with control subjects, remote IPC patients showed a lower increase in all platelet variables, including monocyte-platelet aggregate formation (P<0.0001), CD41 in the monocyte-platelet aggregate gate (P=0.002), and CD41 (P<0.0001) and CD62 (P=0.002) in the platelet gate. Compared with control subjects, remote IPC was also associated with a significantly lower ADP-induced increase in all platelet markers. Our data show that remote IPC before radiofrequency catheter ablation for paroxysmal atrial fibrillation significantly reduces the increased platelet activation and reactivity associated with the procedure.

  9. Clinical application of radiolabelled platelets

    SciTech Connect

    Kessler, C. )

    1990-01-01

    This book presents papers on the clinical applications of radiolabelled platelets. The papers are grouped into six sections on platelet labelling techniques, radiolabelled platelets in cardiology, monitoring of antiplatelet therapy, platelet scintigraphy in stroke patients, platelet scintigraphy in angiology, and platelet scintigraphy in hematology and other clinical applications, including renal transplant rejection.

  10. Reversibility of thrombin-induced decrease in platelet glycoprotein Ib function.

    PubMed

    Lu, H; Menashi, S; Garcia, I; Cramer, E M; Li, H; Tenza, D; De Romeuf, C; Soria, J; Soria, C

    1993-09-01

    Thrombin induces a redistribution of glycoprotein (GP) Ib/GP IX complex from the platelet surface into the surface connected canalicular system (SCCS). This redistribution results in a reduced interaction of platelet GP Ib with von Willebrand factor (vWF) bound to subendothelium leading to impaired platelet adhesion. In this study we show that the platelet aggregation and degranulation require concentrations of thrombin above 0.05 U/ml, while the decrease in GP Ib function (about 50% of control value), as determined by ristocetin induced platelet agglutination, can be induced by lower concentrations (0.01-0.04 U/ml). Moreover, we show that when adding thrombin inhibitors to the platelets preincubated with < 0.04 U/ml thrombin for 5 min, their agglutinability by ristocetin was gradually recovered within 30 min, indicating that in these conditions the decrease in platelet adhesiveness is reversible. Immuno-electromicroscopic study showed that this restoration of platelet GP Ib function was associated with a reversed translocation of GP Ib from the SCCS to the plasma membrane. The data obtained from counting gold particles showed that the ratio of GP Ib immunolabelling on the external membrane versus that on the SCCS was 3.31 +/- 0.90 for resting platelets, down-regulated to 0.84 +/- 0.13 (P < 0.05 versus resting platelets) for the platelets treated with 0.04 U/ml thrombin and returned to 2.63 +/- 2.21 (P > 0.05 versus resting platelets) after incubation for 30 min with hirudin. However, the translocation of GP Ib was poorly reversed by thrombin inhibitors when higher concentrations of thrombin were used which induced platelet aggregation and large extent of degranulation. We conclude that thrombin affects platelets in a dose dependent manner, and that at low concentrations the decrease in platelet GP Ib related function is a reversible phenomenon.

  11. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  12. Platelet Dynamics during Natural and Pharmacologically Induced Torpor and Forced Hypothermia

    PubMed Central

    de Vrij, Edwin L.; Vogelaar, Pieter C.; Goris, Maaike; Houwertjes, Martin C.; Herwig, Annika; Dugbartey, George J.; Boerema, Ate S.; Strijkstra, Arjen M.; Bouma, Hjalmar R.; Henning, Robert H.

    2014-01-01

    Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5′-AMP in mice did not induce thrombocytopenia, possibly because 5′-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets

  13. BH3-mimetic ABT-737 induces strong mitochondrial membrane depolarization in platelets but only weakly stimulates apoptotic morphological changes, platelet shrinkage and microparticle formation.

    PubMed

    Gyulkhandanyan, Armen V; Mutlu, Asuman; Allen, David J; Freedman, John; Leytin, Valery

    2014-01-01

    Depolarization of mitochondrial inner transmembrane potential (ΔΨm) is a key biochemical manifestation of the intrinsic apoptosis pathway in anucleate platelets. Little is known, however, about the relationship between ΔΨm depolarization and downstream morphological manifestations of platelet apoptosis, cell shrinkage and microparticle (MP) formation. To elucidate this relationship in human platelets. Using flow cytometry, we analyzed ΔΨm depolarization, platelet shrinkage and MP formation in platelets treated with BH3-mimetic ABT-737 and calcium ionophore A23187, well-known inducers of intrinsic platelet apoptosis. We found that at optimal treatment conditions (90min, 37°C) both ABT-737 and A23187 induce ΔΨm depolarization in the majority (88-94%) of platelets and strongly increase intracellular free calcium. In contrast, effects of A23187 and ABT-737 on platelet shrinkage and MP formation are quite different. A23187 strongly stimulates cell shrinkage and MP formation, whereas ABT-737 only weakly induces these events (10-20% of the effect seen with A23187, P<0.0001). These data indicate that a high level of ΔΨm depolarization and intracellular free calcium does not obligatorily ensure strong platelet shrinkage and MP formation. Since ABT-737 efficiently induces clearance of platelets from the circulation, our results suggest that platelet clearance may occur in the absence of the morphological manifestations of apoptosis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Iron-induced platelet aggregation measurement: a novel method to measure platelet function in stenting for ST segment elevation myocardial infarction.

    PubMed

    Smit, J J J; van Oeveren, W; Ottervanger, J P; Slingerland, R J; Remijn, J A; Zijlstra, F; van 't Hof, A W J

    2009-02-01

    Iron and (stainless) steel are potent platelet aggregation activators, and may be involved in stent thrombosis, a serious complication after intracoronary stenting. Current platelet function tests are suboptimal, because of inappropriate agonists and/or lack of reproducibility. We tested the feasibility and reproducibility of a novel platelet function test using stainless steel as an agonist and compared it with other platelet function tests. In 111 patients with acute ST segment elevation myocardial infarction (STEMI), duplo measurements of iron (Fe)-induced platelet aggregation (FIPA) were performed after clopidogrel, acetylsalicylic acid and/or tirofiban treatment. Within 1 h, citrated blood samples drawn from the femoral sheath before primary percutaneous coronary intervention were added to 100 mg of low carbon steel and after 5 s mixing with vortex, the samples were incubated for 15 min. The ratio between the non-aggregated platelets in the agonist sample and platelets in a reference sample was calculated as the platelet aggregation inhibition. FIPA measurement was highly reproducible (correlation coefficient (R)=0.942, P<0.001 between duplo samples). FIPA correlated well with adenosine diphosphate-induced platelet aggregation (R=0.83, P<0.001) but weakly with platelet function analyser-100 bleeding time (R=0.56, P<0.001). FIPA could be measured in patients in which platelet aggregation could not be measured by platelet function analyser-100 or after adenosine diphosphate. This study showed good reproducibility of a novel platelet function test using stainless steel as an agonist and showed correlation with validated platelet function tests. We found that the novel platelet function test is a suitable test for measurement of platelet aggregation inhibition in patients undergoing stenting for STEMI, even when they are taking multiple antiplatelet regimens.

  15. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive.

  16. Myosin light chain phosphorylation is correlated with cold-induced changes in platelet shape.

    PubMed

    Kawakami, H; Higashihara, M; Ohsaka, M; Miyazaki, K; Ikebe, M; Hirano, H

    2001-12-01

    Chilling induces shape changes in platelets from disks to spheres with abundant filopodia. Such changes were time-dependent and correlated well with the phosphorylation of 20-kDa myosin light chain (LC20). Both the shape changes and the phosphorylation were reversible. After the platelets had been chilled, myosin became incorporated into the Triton X-insoluble fraction. When the chilled platelets were immunocytochemically stained, anti-myosin antibody was localized with filamentous structures inside the filopodia. These results suggest that LC20 phosphorylation and subsequent interactions with actin filaments play a crucial role in the cold-induced changes in platelet shape and in the formation of filopodia.

  17. Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells

    PubMed Central

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N.; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R.; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A.; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. PMID:25418726

  18. Scalable generation of universal platelets from human induced pluripotent stem cells.

    PubMed

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-11-11

    Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.

  19. FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli.

    PubMed

    Berlacher, Mark D; Vieth, Joshua A; Heflin, Brittany C; Gay, Steven R; Antczak, Adam J; Tasma, Brian E; Boardman, Holly J; Singh, Navinderjit; Montel, Angela H; Kahaleh, M Bashar; Worth, Randall G

    2013-01-01

    Platelets are known for their important role in hemostasis, however their significance in other functions, including inflammation and infection, are becoming more apparent. Patients with systemic lupus erythematosus (SLE) are known to have circulating IgG complexes in their blood and are highly susceptible to thrombotic events. Because platelets express a single receptor for IgG, we tested the hypothesis that ligation of this receptor (FcγRIIa) induces platelet hypersensitivity to thrombotic stimuli. Platelets from SLE patients were considerably more sensitive to thrombin compared to healthy volunteers, and this correlated with elevated levels of surface IgG on SLE platelets. To test whether FcγRIIa ligation stimulated thrombin hypersensitivity, platelets from healthy volunteers were incubated with buffer or heat-aggregated IgG, then stimulated with increasing concentrations of thrombin. Interestingly, heat-aggregated IgG-stimulated platelets, but not buffer-treated platelets, were hypersensitive to thrombin, and hypersensitivity was blocked by an anti-FcγRIIa monoclonal antibody (mAb). Thrombin hypersensitivity was not due to changes in thrombin receptor expression (GPIbα or PAR1) but is dependent on activation of shared signaling molecules. These observations suggest that ligation of platelet FcγRIIa by IgG complexes induces a hypersensitive state whereby small changes in thrombotic stimuli may result in platelet activation and subsequent vascular complications such as transient ischemic attacks or stroke.

  20. Platelet inhibition of human lymphocyte PHA-induced blastoid transformation.

    PubMed

    Cress, D C; Metcalf, W K

    1975-01-01

    The reduced PHA responsiveness of human lymphocytes obtained from heparinized as compared to defibrinated blood has been shown to be due to platelet contamination in the former. Inhibition of blastoid transformation and lymphocyte death is directly related to the number of platelets added to a culture. Divalent ions partially reduce this platelet inhibitor phenomenon but do not block if completely. The "toxic" platelet components appear to be localized in the membranes and particulate matter after homogenization and hard centrifugation. Comparative studies of PHA transformation must control platelet contamination of the cultures in order to avoid severe difficulties of interpretation.

  1. Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation

    PubMed Central

    Jurasz, Paul; Alonso-Escolano, David; Radomski, Marek W

    2004-01-01

    During haematogenous metastasis, cancer cells migrate to the vasculature and interact with platelets resulting in tumour cell-induced platelet aggregation (TCIPA). We review: The biological and clinical significance of TCIPA; Molecular mechanisms involved in platelet aggregation by cancer cells; Strategies for pharmacological regulation of these interactions. We conclude that pharmacological regulation of platelet–cancer cell interactions may reduce the impact of TCIPA on cancer biology. PMID:15492016

  2. Effects of Low Temperature on Shear-Induced Platelet Aggregation and Activation

    DTIC Science & Technology

    2004-08-01

    indirectly altering properties of other cells and blood viscosity.5 We find that platelet aggregation in PRP, which excludes erythrocytes and...Effects of Low Temperature on Shear-Induced Platelet Aggregation and Activation Jian-ning Zhang, MD, PhD, Jennifer Wood, PhD, MPH, Angela L. Bergeron...dilation/constriction, and fluid resuscitation. Methods: Using a cone-plate viscome- ter, we have examined platelet activation and aggregation in response to

  3. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  4. Glatiramer Acetate (Copaxone) Modulates Platelet Activation and Inhibits Thrombin-Induced Calcium Influx: Possible Role of Copaxone in Targeting Platelets during Autoimmune Neuroinflammation

    PubMed Central

    Starossom, Sarah C.; Veremeyko, Tatyana; Dukhinova, Marina; Yung, Amanda W. Y.; Ponomarev, Eugene D.

    2014-01-01

    Background Glatiramer acetate (GA, Copaxone, Copolymer-1) is an FDA approved drug for the treatment of MS and it is very effective in suppressing neuroinflammation in experimental autoimmune encephalitis (EAE), an animal model of MS. Although this drug was designed to inhibit pathogenic T cells, the exact mechanism of EAE/MS suppression by GA is still not well understood. Previously we presented evidence that platelets become activated and promote neuroinflammation in EAE, suggesting a possible pathogenic role of platelets in MS and EAE. We hypothesized that GA could inhibit neuroinflammation by affecting not only immune cells but also platelets. Methodology/Principal Findings We investigated the effect of GA on the activation of human platelets in vitro: calcium influx, platelet aggregation and expression of activation markers. Our results in human platelets were confirmed by in-vitro and in-vivo studies of modulation of functions of platelets in mouse model. We found that GA inhibited thrombin-induced calcium influx in human and mouse platelets. GA also decreased thrombin-induced CD31, CD62P, CD63, and active form of αIIbβ3 integrin surface expression and formation of platelet aggregates for both mouse and human platelets, and prolonged the bleeding time in mice by 2.7-fold. In addition, we found that GA decreased the extent of macrophage activation induced by co-culture of macrophages with platelets. Conclusions GA inhibited the activation of platelets, which suggests a new mechanism of GA action in suppression of EAE/MS by targeting platelets and possibly preventing their interaction with immune cells such as macrophages. Furthermore, the reduction in platelet activation by GA may have additional cardiovascular benefits to prevent thrombosis. PMID:24788965

  5. Glatiramer acetate (copaxone) modulates platelet activation and inhibits thrombin-induced calcium influx: possible role of copaxone in targeting platelets during autoimmune neuroinflammation.

    PubMed

    Starossom, Sarah C; Veremeyko, Tatyana; Dukhinova, Marina; Yung, Amanda W Y; Ponomarev, Eugene D

    2014-01-01

    Glatiramer acetate (GA, Copaxone, Copolymer-1) is an FDA approved drug for the treatment of MS and it is very effective in suppressing neuroinflammation in experimental autoimmune encephalitis (EAE), an animal model of MS. Although this drug was designed to inhibit pathogenic T cells, the exact mechanism of EAE/MS suppression by GA is still not well understood. Previously we presented evidence that platelets become activated and promote neuroinflammation in EAE, suggesting a possible pathogenic role of platelets in MS and EAE. We hypothesized that GA could inhibit neuroinflammation by affecting not only immune cells but also platelets. We investigated the effect of GA on the activation of human platelets in vitro: calcium influx, platelet aggregation and expression of activation markers. Our results in human platelets were confirmed by in-vitro and in-vivo studies of modulation of functions of platelets in mouse model. We found that GA inhibited thrombin-induced calcium influx in human and mouse platelets. GA also decreased thrombin-induced CD31, CD62P, CD63, and active form of αIIbβ3 integrin surface expression and formation of platelet aggregates for both mouse and human platelets, and prolonged the bleeding time in mice by 2.7-fold. In addition, we found that GA decreased the extent of macrophage activation induced by co-culture of macrophages with platelets. GA inhibited the activation of platelets, which suggests a new mechanism of GA action in suppression of EAE/MS by targeting platelets and possibly preventing their interaction with immune cells such as macrophages. Furthermore, the reduction in platelet activation by GA may have additional cardiovascular benefits to prevent thrombosis.

  6. Epicatechin and Catechin Modulate Endothelial Activation Induced by Platelets of Patients with Peripheral Artery Disease

    PubMed Central

    Carnevale, R.; Loffredo, L.; Nocella, C.; Bartimoccia, S.; Bucci, T.; De Falco, E.; Peruzzi, M.; Chimenti, I.; Biondi-Zoccai, G.; Pignatelli, P.; Violi, F.; Frati, G.

    2014-01-01

    Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets. PMID:25180068

  7. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease.

    PubMed

    Carnevale, R; Loffredo, L; Nocella, C; Bartimoccia, S; Bucci, T; De Falco, E; Peruzzi, M; Chimenti, I; Biondi-Zoccai, G; Pignatelli, P; Violi, F; Frati, G

    2014-01-01

    Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets.

  8. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    SciTech Connect

    Morison, W.L.; Kelley, S.P.

    1985-02-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans.

  9. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    SciTech Connect

    Svensson Holm, Ann-Charlotte B.; Bengtsson, Torbjoern; Grenegard, Magnus; Lindstroem, Eva G.

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  10. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    SciTech Connect

    Streeter, P.R.; Fortner, G.W.

    1986-03-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes.

  11. Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes.

    PubMed

    Schmidt, Roland; Bültmann, Andreas; Fischel, Sina; Gillitzer, Angelika; Cullen, Paul; Walch, Axel; Jost, Philipp; Ungerer, Martin; Tolley, Neal D; Lindemann, Stephan; Gawaz, Meinrad; Schömig, Albert; May, Andreas E

    2008-02-15

    In atherosclerosis, circulating platelets interact with endothelial cells and monocytes, leading to cell activation and enhanced recruitment of leukocytes into the vascular wall. The invasion of monocytes is accompanied by overexpression of matrix metalloproteinases (MMPs), which are thought to promote atherosclerosis and trigger plaque rupture. Following interaction with itself, the extracellular matrix metalloproteinase inducer (EMMPRIN) induces MMP synthesis via a little-known intracellular pathway. Recently, we showed upregulation of EMMPRIN on monocytes during acute myocardial infarction. EMMPRIN also stimulates secretion of MMP-9 by monocytes and of MMP-2 by smooth muscle cells, indicating that it may be an important regulator of MMP activity. Expression of EMMPRIN on platelets has not been described until now. Here, we demonstrate that resting platelets show low surface expression of EMMPRIN, which is upregulated by various platelet stimulators (flow cytometry). EMMPRIN is located in the open canalicular system and in alpha granules of platelets (according to electron microscopy and sucrose gradient ultracentrifugation). Platelet stimulation with recombinant EMMPRIN-Fc induced surface expression of CD40L and P-selectin (according to flow cytometry), suggesting that EMMPRIN-EMMPRIN interaction activates platelets. Coincubation of platelets with monocytes induced EMMPRIN-mediated nuclear factor kappaB activation (according to Western blot) in monocytes with increased MMP-9 (zymography), interleukin-6, and tumor necrosis factor-alpha secretion (according to ELISA) by monocytes. In conclusion, EMMPRIN displays a new platelet receptor that is upregulated on activated platelets. Binding of EMMPRIN to platelets fosters platelet degranulation. Platelet-monocyte interactions via EMMPRIN stimulate nuclear factor kappaB-driven inflammatory pathways in monocytes, such as MMP and cytokine induction. Thus, EMMPRIN may represent a novel target to diminish the burden of

  12. Induced pluripotent stem cell-derived gamete-associated proteins incite rejection of induced pluripotent stem cells in syngeneic mice.

    PubMed

    Kim, Eun-Mi; Manzar, Gohar; Zavazava, Nicholas

    2017-02-10

    The safety of induced pluripotent stem cells (iPSCs) in autologous recipients has been questioned after iPSCs, but not embryonic stem cells (ESCs), were reported to be rejected in syngeneic mice. This important topic has remained controversial because there has not been a mechanistic explanation for this phenomenon. Here, we hypothesize that iPSCs, but not ESCs, readily differentiate into gamete-forming cells that express meiotic antigens normally found in immune-privileged gonads. Because peripheral blood T cells are not tolerized to these antigens in the thymus, gamete-associated-proteins (GAPs) sensitize T cells leading to rejection. Here, we provide evidence that GAPs expressed in iPSC teratomas, but not in ESC teratomas, are responsible for the immunological rejection of iPSCs. Furthermore, silencing the expression of Stra8, 'the master regulator of meiosis', in iPSCs, using short hairpin RNA led to significant abrogation of the rejection of iPSCs, supporting our central hypothesis that GAPs expressed after initiation of meiosis in iPSCs were responsible for rejection. In contrast to iPSCs, iPSC-derivatives, such as haematopoietic progenitor cells, are able to engraft long-term into syngeneic recipients because they no longer express GAPs. Our findings, for the first time, provide a unifying explanation of why iPSCs, but not ESCs, are rejected in syngeneic recipients, ending the current controversy on the safety of iPSCs and their derivatives.

  13. Platelet activation during exercise induced asthma: effect of prophylaxis with cromoglycate and salbutamol.

    PubMed Central

    Johnson, C E; Belfield, P W; Davis, S; Cooke, N J; Spencer, A; Davies, J A

    1986-01-01

    Peak expiratory flow (PEF) and plasma concentrations of platelet factor 4 and beta thromboglobulin were measured before and after exercise in nine asthmatic patients and 12 non-asthmatic volunteers. Exercise was preceded by administration in random order of either placebo, salbutamol 200 micrograms, or sodium cromoglycate 2 mg from a pressurised inhaler. In control subjects there were minimal changes in PEF and plasma concentrations of platelet factor 4 and beta thromboglobulin. In the asthmatic patients the typical changes in PEF were seen on exercise; plasma concentrations of platelet factor 4 and beta thromboglobulin rose significantly in parallel, the rise preceding the fall in PEF. The changes in peak flow and platelet activation induced by exercise were attenuated by prior administration of salbutamol or cromoglycate. These results indicate that exercise induced asthma is associated with a rise in platelet release products similar to that observed in antigen induced asthma. PMID:2943049

  14. Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor

    PubMed Central

    Deng, Wei; Xu, Yan; Chen, Wenchun; Paul, David S.; Syed, Anum K.; Dragovich, Matthew A.; Liang, Xin; Zakas, Philip; Berndt, Michael C.; Di Paola, Jorge; Ware, Jerry; Lanza, Francois; Doering, Christopher B.; Bergmeier, Wolfgang; Zhang, X. Frank; Li, Renhao

    2016-01-01

    Mechanisms by which blood cells sense shear stress are poorly characterized. In platelets, glycoprotein (GP)Ib–IX receptor complex has been long suggested to be a shear sensor and receptor. Recently, a relatively unstable and mechanosensitive domain in the GPIbα subunit of GPIb–IX was identified. Here we show that binding of its ligand, von Willebrand factor, under physiological shear stress induces unfolding of this mechanosensory domain (MSD) on the platelet surface. The unfolded MSD, particularly the juxtamembrane ‘Trigger' sequence therein, leads to intracellular signalling and rapid platelet clearance. These results illustrate the initial molecular event underlying platelet shear sensing and provide a mechanism linking GPIb–IX to platelet clearance. Our results have implications on the mechanism of platelet activation, and on the pathophysiology of von Willebrand disease and related thrombocytopenic disorders. The mechanosensation via receptor unfolding may be applicable for many other cell adhesion receptors. PMID:27670775

  15. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    PubMed Central

    Schmidt, Rene; Staats, Petra; Groneberg, David A; Wagner, Ulrich

    2008-01-01

    Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B) are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists. PMID:18289370

  16. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo

    PubMed Central

    Weth, Daniela; Benetti, Camilla; Rauch, Caroline; Gstraunthaler, Gerhard; Schmidt, Helmut; Geisslinger, Gerd; Sabbadini, Roger; Proia, Richard L.; Kress, Michaela

    2015-01-01

    At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P). It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (105/μl, 106/μl, 107/μl) and assessed in mice with different genetic backgrounds (WT, S1P1fl/fl, SNS-S1P1−/−, S1P3−/−). Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL) was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralization of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P. PMID:25954148

  17. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets.

    PubMed

    Shamova, Ekaterina V; Gorudko, Irina V; Drozd, Elizaveta S; Chizhik, Sergey A; Martinovich, Grigory G; Cherenkevich, Sergey N; Timoshenko, Alexander V

    2011-02-01

    Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05 μM to 6 mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts.

  18. Nanomolar concentrations of adrenaline induce platelet adhesion in vitro.

    PubMed

    Eriksson, Andreas C; Whiss, Per A

    2013-01-01

    Adrenaline is a platelet activator having a resting plasma concentration of <1 nmol/l that increases to a few nmol/l during stress. However, most in vitro assays only detect effects of adrenaline in micromolar concentrations. This makes it difficult to estimate the relevance of in vitro data for the in vivo situation. The aim of this study was to investigate experimental conditions in vitro that could detect platelet effects of adrenaline in nanomolar concentrations. Platelet adhesion to albumin and collagen was evaluated with a static platelet adhesion assay. Our results show that 10 nmol/l adrenaline induced platelet adhesion to albumin in platelet-rich plasma (PRP) prepared at 140 × g, while 100 nmol/l was necessary in order to increase adhesion of platelets prepared at 220 × g. The mean platelet volume was increased after preparation at 140 × g, suggesting that large reactive platelets contributed to the increased adrenaline sensitivity. At optimal Mg(2+)-concentration, adhesion to collagen was increased by 10 nmol/l adrenaline irrespective of centrifugal force applied during PRP preparation. More specifically, we defined two populations where adhesion to collagen was increased by 10 nmol/l adrenaline either upon centrifugation at 140 × g but not 220 × g or vice versa. In some experiments, platelet adhesion to collagen was induced by 3 nmol/l adrenaline, which corresponds to concentrations achieved during stress in vivo. In summary, the static adhesion assay is able to detect platelet activating effects of adrenaline very close to physiological concentrations. This is rare for in vitro assays and motivates further research about adrenergic signalling in platelets.

  19. Selective deficiency in collagen-induced platelet aggregation during L-asparaginase therapy.

    PubMed

    Shapiro, R S; Gerrard, J M; Ramsay, N K; Nesbit, M E; Coccia, P F; Stoddard, S F; Plow, E F; White, J G; Krivit, W

    1980-01-01

    Platelet aggregation studies were performed on 10 pediatric patients with acute lymphoblastic leukemia (ALL) receiving induction therapy with vincristine, prednisone, and L-asparaginase. An isolated abnormality in platelet aggregation in response to collagen was found in all patients during the course of therapy. Platelet aggregation in response to collagen normalized following the discontinuation of L-asparaginase, while patients were still on vincristine and prednisone. In contrast to the abnormal collagen response, platelet aggregation induced by epinephrine, arachidonic acid, adenosine diphosphate (ADP), and thrombin were normal both during and following therapy. In the one patient with a normal platelet count before therapy, aggregation induced by all agents was normal. This selective abnormality in collagen aggregation therefore appears to result from therapy, with the use of L-asparaginase in particular being implicated.

  20. Platelet-activating factor-induced increases in glucose kinetics

    SciTech Connect

    Lang, C.H.; Dobrescu, C.; Hargrove, D.M.; Bagby, G.J.; Spitzer, J.J. )

    1988-02-01

    Platelet-activating factor (PAF) is a postulated mediator of many of the early hemodynamic effects of endotoxin. The aim of the present study was to determine whether in vivo administration of PAF could produce alterations in whole-body glucose metabolism that would mimic those seen during endotoxemia. Glucose kinetics were assessed in chronically catheterized conscious rats by the constant infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose before and for 4 h after either a bolus injection or a constant infusion of PAF. The bolus injection of PAF elevated the rate of glucose appearance (R{sub a}; 44%) for 1.5 h. The lower PAF infusion rate decreased blood pressure 11% to 104 mmHg, whereas the higher infusion rate decreased pressure 34% to 77 mmHg. Both PAF infusion rates produced elevations in plasma glucose and glucose R{sub a} throughout the 4-h infusion period in a dose-related manner. The PAF infusions also induced dose-related increases in plasma glucagon and catecholamine levels throughout the infusion period. Because the constant infusion of PAF did stimulate many of the hemodynamic and metabolic alterations produced by endotoxin, this study provides additional support for the potential importance of PAF as a mediator of the early hemodynamic and metabolic sequela of endotoxin shock. Furthermore, the PAF-induced changes in glucose metabolism appear to be mediated by the resultant elevation in plasma catecholamines.

  1. Experimental acute pancreatitis induced by platelet activating factor in rabbits.

    PubMed Central

    Emanuelli, G.; Montrucchio, G.; Gaia, E.; Dughera, L.; Corvetti, G.; Gubetta, L.

    1989-01-01

    This study indicates that a single injection of platelet activating factor (PAF, 50-500 ng) into the superior pancreaticoduodenal artery of rabbits induces dose-dependent morphologic alterations of pancreatic tissue and increases serum amylase levels, both consistent with the development of an acute pancreatitis. The main histologic findings observed by light microscopy 24-72 hours after the injection of PAF were edema, polymorphonuclear neutrophil infiltration, cell vacuolization, and acinar cell necrosis. Fat cell necrosis was present in 30% of animals. By electron microscopy an increase of the number of zymogen granules in the apical region of acinar cells was observed 3 hours after PAF challenge. At 24-72 hours, many acinar cells showed vacuoles containing myelinlike figures, zymogen granules, and cellular debris. Pancreatic lesions developed in the area supplied by the artery injected with PAF and they were completely antagonized by the pretreatment of rabbits with CV 3988, a specific antagonist of PAF. In addition, the significant protective effect of atropine suggests a potential role for cholinergic mechanisms in the pancreatic alterations induced by PAF. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2464939

  2. Activation induced morphological changes and integrin αIIbβ3 activity of living platelets.

    PubMed

    Posch, Sandra; Neundlinger, Isabel; Leitner, Michael; Siostrzonek, Peter; Panzer, Simon; Hinterdorfer, Peter; Ebner, Andreas

    2013-04-01

    Platelets are essential in hemostasis. Upon activation they undergo a shape-change accompanied with receptor presentation. Atomic force microscopy (AFM) imaging and single molecule force spectroscopy (SMFS) were used as powerful tools for exploring morphological changes as well as receptor activities of platelets. Imaging time series was accomplished with and without fixation steps at the single platelet level. Hereby the response of mechanical stimulation of the platelet by the AFM cantilever tip was directly observed. We demonstrate that living and fixed platelets develop filopodia after a short activation time followed by their disappearance including cellular bleb formation. Thereafter a second filopodia formation (filopodia extrusion) was observed; those filopodia subsequently disappeared again, and finally platelets detached from the support due to cell death. We determined the influence of mechanical stress on the chronology of morphological changes of platelets and demonstrated shear force induced filopodia formation. Through recordings over several hours, topographical AFM images over the full platelet lifetime - from early activation up to apoptosis - are presented. SMFS measurements on living platelets allowed determining the activation state of the most prominent membrane receptor integrin αIIbβ3 at all different phases of activation. αIIbβ3 was fully activated, independent of the morphological state.

  3. Anti-platelet therapy is efficacious in treating endometriosis induced in mouse.

    PubMed

    Guo, Sun-Wei; Ding, Ding; Liu, Xishi

    2016-10-01

    In light of recent findings showing that platelets play important roles in the development of endometriosis in general and in fibrogenesis in particular, this study investigated the efficacy of Ozagrel, a TXA2 synthase inhibitor, in a murine model of endometriosis. In addition, another mouse experiment was conducted to evaluate the effect of timing of platelet depletion and of sequential depletion of platelets and macrophages on the development of endometriosis. It was found that both the Ozagrel treatment and different platelet depletion schemes resulted in significant reduction in lesion growth (all P-values <0.01) along with improved hyperalgesia in mice with induced endometriosis. They also significantly reduced the expression of markers of proliferation, angiogenesis, inflammation and fibrosis as well as decreased macrophage infiltration in endometriotic lesions (all P-values <0.05). Compared with untreated mice, pre-emptive depletion of platelets as well as platelet depletion after induction resulted in significant reduction in lesion weight (both P-values <0.001), while sequential depletion of platelets and macrophages yielded similar reduction. These results, in conjunction with other roles that platelets play in the development of endometriosis, strongly argue for the potential of anti-platelet therapy in treating endometriosis. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Saluk-Juszczak, Joanna; Zieliński, Tomasz

    2002-08-15

    Resveratrol (3, 4', 5-trihydroxystilbene), a natural polyphenol, is found in some plants that are used in human nutrition. Grapes are a major source for resveratrol, and a significant amount can also be found in red wine. Several experimental studies have demonstrated biological properties of resveratrol, especially its anti-inflammatory, antioxidant, anti-platelet and antitumor effects. In the present study, we investigated the first step of platelet activation-platelet adhesion stimulated by lipopolysaccharide (LPS) from Proteus mirabilis (weak stimulator) and thrombin (strong activator) in the presence of resveratrol. Our studies show that endotoxin (0.3 microg/10(8) platelets), like thrombin (0.2 U/10(8) platelets), induced the adhesion of platelets (expressed as absorbance of cell attached proteins) to collagen and fibrinogen. Preincubation of washed platelets with resveratrol at physiological plasma concentrations (25-100 microg/ml, 30 min, 37 degrees C) had an inhibitory effect on adhesion of platelets to collagen after activation by LPS alone or LPS with thrombin. The strongest effect on this process was caused by resveratrol at the concentration of 100 microg/ml. Pretreatment of platelets with resveratrol (25-100 microg/ml, 30 min, 37 degrees C) had also inhibitory effects on adhesion of platelets to fibrinogen after stimulation of these cells by LPS alone or by LPS with thrombin at the same concentration. In conclusion, we suggest that resveratrol present in human diet may be an important compound responsible for the reduction of platelet adhesion and changed reactivity of blood platelets in inflammatory process.

  5. Effects of anticoagulant on pH, ionized calcium concentration, and agonist-induced platelet aggregation in canine platelet-rich plasma

    PubMed Central

    Callan, Mary Beth; Shofer, Frances S.; Catalfamo, James L.

    2014-01-01

    Objective To compare effects of 3.8% sodium citrate and anticoagulant citrate dextrose solution National Institutes of Health formula A (ACD-A) on pH, extracellular ionized calcium (iCa) concentration, and platelet aggregation in canine platelet-rich plasma (PRP). Sample Population Samples from 12 dogs Procedures Blood samples were collected into 3.8% sodium citrate (dilution, 1:9) and ACD-A (dilution, 1:5). Platelet function, pH, and iCa concentration were evaluated in PRP Platelet agonists were ADP γ-thrombin, and convulxin; final concentrations of each were 20μM, 100nM, and 20nM, respectively. Washed platelets were used to evaluate effects of varying the pH and iCa concentration. Results Mean pH and iCa concentration were significantly greater in 3.8% sodium citrate PRP than ACD-A PRP Platelet aggregation induced by ADP and γ-thrombin was markedly diminished in ACD-A PRP compared with results for 3.8% sodium citrate PRP Anticoagulant had no effect on amplitude of convulxin-induced platelet aggregation. In washed platelet suspensions (pH, 7.4), there were no differences in amplitude of platelet aggregation induced by convulxin or γ-thrombin at various iCa concentrations. Varying the pH had no effect on amplitude of aggregation induced by convulxin or γ-thrombin, but the aggregation rate increased with increasing pH for both agonists. Conclusions and Clinical Relevance Aggregation of canine platelets induced by ADP and γ-thrombin was negligible in ACD-A PRP which suggested an increase in extraplatelet hydrogen ion concentration inhibits signaling triggered by these agonists but not by convulxin. Choice of anticoagulant may influence results of in vitro evaluation of platelet function, which can lead to erroneous conclusions. PMID:19335102

  6. Effects of anticoagulant on pH, ionized calcium concentration, and agonist-induced platelet aggregation in canine platelet-rich plasma.

    PubMed

    Callan, Mary Beth; Shofer, Frances S; Catalfamo, James L

    2009-04-01

    OBJECTIVE-To compare effects of 3.8% sodium citrate and anticoagulant citrate dextrose solution National Institutes of Health formula A (ACD-A) on pH, extracellular ionized calcium (iCa) concentration, and platelet aggregation in canine platelet-rich plasma (PRP). SAMPLE POPULATION-Samples from 12 dogs. PROCEDURES-Blood samples were collected into 3.8% sodium citrate (dilution, 1:9) and ACD-A (dilution, 1:5). Platelet function, pH, and iCa concentration were evaluated in PRP. Platelet agonists were ADP, gamma-thrombin, and convulxin; final concentrations of each were 20microm, 100nM, and 20nM, respectively. Washed platelets were used to evaluate effects of varying the pH and iCa concentration. RESULTS-Mean pH and iCa concentration were significantly greater in 3.8% sodium citrate PRP than ACD-A PRP. Platelet aggregation induced by ADP and gamma-thrombin was markedly diminished in ACD-A PRP, compared with results for 3.8% sodium citrate PRP. Anticoagulant had no effect on amplitude of convulxin-induced platelet aggregation. In washed platelet suspensions (pH, 7.4), there were no differences in amplitude of platelet aggregation induced by convulxin or gamma-thrombin at various iCa concentrations. Varying the pH had no effect on amplitude of aggregation induced by convulxin or gamma-thrombin, but the aggregation rate increased with increasing pH for both agonists. CONCLUSIONS AND CLINICAL RELEVANCE-Aggregation of canine platelets induced by ADP and gamma-thrombin was negligible in ACD-A PRP, which suggested an increase in extraplatelet hydrogen ion concentration inhibits signaling triggered by these agonists but not by convulxin. Choice of anticoagulant may influence results of in vitro evaluation of platelet function, which can lead to erroneous conclusions.

  7. Sirtuin Inhibition Induces Apoptosis-like Changes in Platelets and Thrombocytopenia.

    PubMed

    Kumari, Sharda; Chaurasia, Susheel N; Nayak, Manasa K; Mallick, Ram L; Dash, Debabrata

    2015-05-08

    Sirtuins are evolutionarily conserved NAD(+)-dependent acetyl-lysine deacetylases that belong to class III type histone deacetylases. In humans, seven sirtuin isoforms (Sirt1 to Sirt7) have been identified. Sirtinol, a cell-permeable lactone ring derived from naphthol, is a dual Sirt1/Sirt2 inhibitor of low potency, whereas EX-527 is a potent and selective Sirt1 inhibitor. Here we demonstrate that Sirt1, Sirt2, and Sirt3 are expressed in enucleate platelets. Both sirtinol and EX-527 induced apoptosis-like changes in platelets, as revealed by enhanced annexin V binding, reactive oxygen species production, and drop in mitochondrial transmembrane potential. These changes were associated with increased phagocytic clearance of the platelets by macrophages. Expression of acetylated p53 and the conformationally active form of Bax were found to be significantly higher in both sirtinol- and EX-527-treated platelets, implicating the p53-Bax axis in apoptosis induced by sirtuin inhibitors. Administration of either sirtinol or EX-527 in mice led to a reduction in both platelet count and the number of reticulated platelets. Our results, for the first time, implicate sirtuins as a central player in the determination of platelet aging. Because sirtuin inhibitors are being evaluated for their antitumor activity, this study refocuses attention on the potential side effect of sirtuin inhibition in delimiting platelet life span and management of thrombosis.

  8. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets

    PubMed Central

    Kraemer, Bjoern F.; Campbell, Robert A.; Schwertz, Hansjörg; Franks, Zechariah G.; Vieira de Abreu, Adriana; Grundler, Katharina; Kile, Benjamin T.; Dhakal, Bijaya K.; Rondina, Matthew T.; Kahr, Walter H. A.; Mulvey, Matthew A.; Blaylock, Robert C.; Zimmerman, Guy A.

    2012-01-01

    Bacteria can enter the bloodstream in response to infectious insults. Bacteremia elicits several immune and clinical complications, including thrombocytopenia. A primary cause of thrombocytopenia is shortened survival of platelets. We demonstrate that pathogenic bacteria induce apoptotic events in platelets that include calpain-mediated degradation of Bcl-xL, an essential regulator of platelet survival. Specifically, bloodstream bacterial isolates from patients with sepsis induce lateral condensation of actin, impair mitochondrial membrane potential, and degrade Bcl-xL protein in platelets. Bcl-xL protein degradation is enhanced when platelets are exposed to pathogenic Escherichia coli that produce the pore-forming toxin α-hemolysin, a response that is markedly attenuated when the gene is deleted from E coli. We also found that nonpathogenic E coli gain degrading activity when they are forced to express α-hemolysin. Like α-hemolysin, purified α-toxin readily degrades Bcl-xL protein in platelets, as do clinical Staphylococcus aureus isolates that produce α-toxin. Inhibition of calpain activity, but not the proteasome, rescues Bcl-xL protein degradation in platelets coincubated with pathogenic E coli including α-hemolysin producing strains. This is the first evidence that pathogenic bacteria can trigger activation of the platelet intrinsic apoptosis program and our results suggest a new mechanism by which bacterial pathogens might cause thrombocytopenia in patients with bloodstream infections. PMID:23086749

  9. A note on the use of Quin2 in studying shear-induced platelet aggregation.

    PubMed

    Giorgio, T D; Hellums, J D

    1986-02-01

    Quin2, a calcium ion chelator which can penetrate plasma membranes, was used to study the role of intracellular calcium ion concentration in mediating shear-induced platelet activation. Washed platelet suspensions were subjected to various levels of uniform, known shear stress in a cone and plate viscometer in the absence of added agonists. Additional samples were aggregated in response to chemical platelet agonists in a conventional aggregometer. The aggregometer response of Quin2-containing platelets to collagen, thrombin and ADP exhibited increased lag time and reduced maximum rate of aggregation in comparison to controls. However, the extent of aggregation of the Quin2-containing platelets eventually reached the same level as that of the controls. Very different results were obtained for aggregation by shear stress in the viscometer. Shear-induced aggregation was significantly suppressed by Quin2 treatment at both short (30 seconds) and long (300 seconds) times of exposure to the shear field. Shear-induced dense granular release and cellular lysis were unaltered by Quin2 treatment at 30 second exposure times, but both were significantly increased by Quin2 treatment at 300 second exposure times. These results suggest that intracellular calcium ion mobilization is an important early step in shear-induced platelet activation. Additionally, Quin2 appears to have effects resulting in increased platelet fragility. Thus, the findings raise questions on the suitability of Quin2 as an intracellular calcium ion probe in studies in shear fields.

  10. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation

    PubMed Central

    Zarbock, Alexander; Singbartl, Kai; Ley, Klaus

    2006-01-01

    Acute lung injury (ALI) causes high mortality, but its molecular mechanisms are poorly understood. Acid aspiration is a frequent cause of ALI, leading to neutrophil sequestration, increased permeability, and deterioration of gas exchange. We investigated the role of platelet-neutrophil interactions in a murine model of acid-induced ALI. Acid aspiration induced P-selectin–dependent platelet-neutrophil interactions in blood and in lung capillaries. Reducing circulating platelets or blocking P-selectin halted the development of ALI. Bone marrow chimeras showed that platelet, not endothelial, P-selectin was responsible for the injury. The interaction of platelets with neutrophils and endothelia was associated with TXA2 formation, with detrimental effects on permeability and tissue function. Activated platelets induced endothelial expression of ICAM-1 and increased neutrophil adhesion. Inhibition of platelet-neutrophil aggregation improved gas exchange, reduced neutrophil recruitment and permeability, and prolonged survival. The key findings were confirmed in a sepsis-induced model of ALI. These findings may translate into improved clinical treatments for ALI. PMID:17143330

  11. Inhibition of chronic rejection by antibody induced vascular accommodation in fully allogeneic heart allografts.

    PubMed

    Semiletova, Natalya V; Shen, Xiu-Da; Baibakov, Boris; Feldman, Daniel M; Mukherjee, Kaushik; Frank, Jonathan M; Stepkowski, Stainslaw M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Ghobrial, Rafik M

    2005-12-15

    The potential role of altered antibody responses as an effector protective mechanism to induce graft accommodation has been widely investigated in xenogeneic responses. Here we investigate the protective effects of antibody binding to vascular endothelium in a fully mismatched allogeneic model of heart transplantation. ACI recipients of WF cardiac grafts were treated either with allochimeric [alpha1h ]-RT1.A class I major histocompatibility complex (MHC) extracts (1 mg/rat, p.v. day 0) or high dose of CsA (10 mg/kg/day, p.o., day 0-6). Cardiac allografts were evaluated at 100 days posttransplant by immunohistology for evidence of chronic rejection and/or vascular accommodation. Activation of apoptotic or antiapoptotic mechanisms was verified by DNA fragmentation (TUNEL) analysis. Allochimeric therapy resulted in inhibition of chronic rejection, absence of neointimal formation and induction of vascular accommodation of fully allogeneic WF hearts in ACI hosts. Such accommodation was evident by IgG and IgM vascular endothelial binding and marked reduction of DNA fragmentation. In contrast, CsA therapy resulted in marked neointimal proliferation, without evidence of vascular accommodation. Immunohistochemical analysis failed to demonstrate vascular endothelial antibody binding. Further, severe chronic rejection following CsA treatment was accompanied by marked DNA fragmentation. Alteration of humoral immunity induces vascular accommodation in allogeneic transplantation. Vascular accommodation is the underlying mechanism for inhibition allograft vasculopathy following allochimeric MHC class I therapy.

  12. Atomic Scale Structure of (001) Hydrogen-Induced Platelets in Germanium

    NASA Astrophysics Data System (ADS)

    David, Marie-Laure; Pizzagalli, Laurent; Pailloux, Fréderic; Barbot, Jean François

    2009-04-01

    An accurate characterization of the structure of hydrogen-induced platelets is a prerequisite for investigating both hydrogen aggregation and formation of larger defects. On the basis of quantitative high resolution transmission electron microscopy experiments combined with extensive first principles calculations, we present a model for the atomic structure of (001) hydrogen-induced platelets in germanium. It involves broken Ge-Ge bonds in the [001] direction that are dihydride passivated, vacancies, and trapped H2 molecules, showing that the species involved in platelet formation depend on the habit plane. This model explains all previous experimental observations.

  13. C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke

    PubMed Central

    Li, Zongdong; Nardi, Michael A.; Li, Yong-Sheng; Zhang, Wei; Pan, Ruimin; Dang, Suying; Yee, Herman; Quartermain, David; Jonas, Saran

    2009-01-01

    Anti-platelet integrin GPIIIa49-66 antibody (Ab) induces complement-independent platelet oxidative fragmentation and death by generation of platelet peroxide following NADPH oxidase activation. A C-terminal 385–amino acid fragment of ADAMTS-18 (a disintegrin metalloproteinase with thrombospondin motifs produced in endothelial cells) induces oxidative platelet fragmentation in an identical kinetic fashion as anti–GPIIIa49-66 Ab. Endothelial cell ADAMTS-18 secretion is enhanced by thrombin and activated by thrombin cleavage to fragment platelets. Platelet aggregates produced ex vivo with ADP or collagen and fibrinogen are destroyed by the C-terminal ADAMTS-18 fragment. Anti–ADAMTS-18 Ab shortens the tail vein bleeding time. The C-terminal fragment protects against FeCI3-induced carotid artery thrombosis as well as cerebral infarction in a postischemic stroke model. Thus, a new mechanism is proposed for platelet thrombus clearance, via platelet oxidative fragmentation induced by thrombin cleavage of ADAMTS-18. PMID:19218546

  14. The influence of erythrocyte aggregation on induced platelet aggregation.

    PubMed

    Ott, C; Lardi, E; Schulzki, T; Reinhart, W H

    2010-01-01

    Red blood cells (RBCs) affect platelet aggregation in flowing blood (primary hemostasis). We tested the hypothesis that RBC aggregation could influence platelet aggregation. RBC aggregation was altered in vitro by: (i) changing plasma aggregatory properties with 3.7 g% dextran 40 (D40), 3.0 g% dextran 70 (D70) or 1.55 g% dextran 500 (D500); (ii) changing RBC aggregatory properties by incubating RBCs in 50 mU/ml neuraminidase for 60 min (reduction of the surface sialic acid content, thus reducing electrostatic repulsion) and subsequent RBC resuspension in platelet rich plasma (PRP) containing 1 g% dextran 70. RBC aggregation was assessed with the sedimentation rate (ESR). Platelet aggregation was measured: (i) in flowing whole blood with a platelet function analyzer PFA-100(R), which simulates in vivo conditions with RBCs flowing in the center and platelets along the wall, where they adhere to collagen and aggregate; and (ii) in a Chrono-log 700 Aggregometer, which measures changes of impedance by platelet aggregation in whole blood or changes in light transmission in PRP. We found that RBC aggregation increased with increasing molecular weight of dextran (ESR: 4 +/- 3 mm/h, 34 +/- 14 mm/h and 89 +/- 23 mm/hfor D40, D70 and D500, respectively, p < 0.0001) and with neuraminidase-treated RBCs (76 +/- 27 mm/h vs 27 +/- 8 mm/h, respectively, p < 0.0001). Platelet aggregation measured in whole blood under flow conditions (PFA-100) and without flow (Chronolog Aggregometer) was not affected by RBC aggregation. Our data suggest that RBC aggregation does not affect platelet aggregation in vitro and plays no role in primary hemostasis.

  15. Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice

    PubMed Central

    Miyakawa, Kazuhisa; Joshi, Nikita; Sullivan, Bradley P.; Albee, Ryan; Brandenberger, Christina; Jaeschke, Hartmut; McGill, Mitchell R.; Scott, Michael A.; Ganey, Patricia E.; Luyendyk, James P.

    2015-01-01

    Acetaminophen (APAP)-induced liver injury in humans is associated with robust coagulation cascade activation and thrombocytopenia. However, it is not known whether coagulation-driven platelet activation participates in APAP hepatotoxicity. Here, we found that APAP overdose in mice caused liver damage accompanied by significant thrombocytopenia and accumulation of platelets in the liver. These changes were attenuated by administration of the direct thrombin inhibitor lepirudin. Platelet depletion with an anti-CD41 antibody also significantly reduced APAP-mediated liver injury and thrombin generation, indicated by the concentration of thrombin-antithrombin (TAT) complexes in plasma. Compared with APAP-treated wild-type mice, biomarkers of hepatocellular and endothelial damage, plasma TAT concentration, and hepatic platelet accumulation were reduced in mice lacking protease-activated receptor (PAR)-4, which mediates thrombin signaling in mouse platelets. However, selective hematopoietic cell PAR-4 deficiency did not affect APAP-induced liver injury or plasma TAT levels. These results suggest that interconnections between coagulation and hepatic platelet accumulation promote APAP-induced liver injury, independent of platelet PAR-4 signaling. Moreover, the results highlight a potential contribution of nonhematopoietic cell PAR-4 signaling to APAP hepatotoxicity. PMID:26179083

  16. Platelets play an important role in TNF-induced microvascular endothelial cell pathology.

    PubMed Central

    Lou, J.; Donati, Y. R.; Juillard, P.; Giroud, C.; Vesin, C.; Mili, N.; Grau, G. E.

    1997-01-01

    Tumor necrosis factor-alpha (TNF) is known to be an important mediator in the pathogenesis of several inflammatory diseases. Vascular endothelial cells represent a major target of TNF effects. Platelet sequestration has been found in brain microvessels during experimental cerebral malaria and lung in experimental pulmonary fibrosis, implying that it may participate in TNF-dependent microvascular pathology. In this study, we investigated the mechanisms of platelet-endothelial interaction, using co-cultures between platelets and TNF-activated mouse brain microvascular endothelial cells (MVECs). Adhesion and fusion of platelets to MVECs was evidenced by electron microscopy, dye transfer, and flow cytometry. It was induced by TNF and interferon-gamma and depended on LFA-1 expressed on the platelet surface and ICAM-1 expressed on MVECs. The adhesion and fusion also led to the transfer of platelet markers on the MVEC surface, rendering these more adherent for leukocytes, and to an enhanced MVEC sensitivity to TNF-induced injury. These results suggest that platelets can participate in TNF-induced microvascular pathology. Images Figure 2 Figure 3 Figure 6 PMID:9358766

  17. Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model.

    PubMed

    Desmarets, Maxime; Cadwell, Chantel M; Peterson, Kenneth R; Neades, Renee; Zimring, James C

    2009-09-10

    When successful, human leukocyte antigen (HLA)-matched bone marrow transplantation with reduced-intensity conditioning is a cure for several nonmalignant hematologic disorders that require chronic transfusion, such as sickle cell disease and aplastic anemia. However, there are unusually high bone marrow transplant (BMT) rejection rates in these patients. Rejection correlates with the number of transfusions before bone marrow transplantation, and it has been hypothesized that preimmunization to antigens on transfused blood may prime BMT rejection. Using a novel mouse model of red blood cell (RBC) transfusion and major histocompatibility complex-matched bone marrow transplantation, we report that transfusion of RBC products induced BMT rejection across minor histocompatibility antigen (mHA) barriers. It has been proposed that contaminating leukocytes are responsible for transfusion-induced BMT rejection; however, filter leukoreduction did not prevent rejection in the current studies. Moreover, we generated a novel transgenic mouse with RBC-specific expression of a model mHA and demonstrated that transfusion of RBCs induced a CD8(+) T-cell response. Together, these data suggest that mHAs on RBCs themselves are capable of inducing BMT rejection. Cellular immunization to mHAs is neither monitored nor managed by current transfusion medicine practice; however, the current data suggest that mHAs on RBCs may represent an unappreciated and significant consequence of RBC transfusion.

  18. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    SciTech Connect

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M.; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  19. Heparin-induced thrombocytopenia: the role of platelets genetic polymorphisms.

    PubMed

    Pamela, Scarparo; Anna Maria, Lombardi; Elena, Duner; Giovanni, Malerba; Emanuele, Allemand; Silvia, Vettore; Carmen, Blumentritt; Andreas, Greinacher; Fabrizio, Fabris

    2013-01-01

    Heparin-induced thrombocytopenia (HIT) is a severe complication of heparin therapy, characterized by thrombocytopenia and an increased risk for thrombotic complications secondary to the formation of IgG antibodies (Ab), recognizing a complex of heparin (H) and PF4. Using the 4T clinical score for HIT and the presence of heparin-associated Ab assayed by enzyme-linked immunosorbent assay and heparin-induced platelet aggregation, we define the phenotype of three groups of patients: 51 H/PF4/Ab patients with antibodies and without thrombocytopenia; 50 patients with thrombocytopenia (HIT) and 53 patients with thrombosis (HITT). In these patients we studied four polymorphisms: FcγRIIA-H131R, GpIIb/IIIa-HP-1, PECAM1-L125V (in linkage-disequilibrium with S563N and R670G), and FcγRIIIA-F158V, to understand if these variations may influence the different phenotypes of the patients. There were no difference in genotype or allele frequencies between controls and the three groups of patients. Afterward, we created a genotype score for multiple risk alleles for thrombosis considering as risk genotype FcγRIIA R/R131, HPA-1a/b, and PECAM1-V/V125. These polymorphisms were overrepresented in HITT patients, ascertained by a permutation test (10 000 replicates) p = 0.0198 for the two-single-nucleotide polymorphism (SNP) model and p = 0.0119 for the three-SNP model. The calculated odds ratio for thrombosis was 4.01[CI: 2.30-6.96] in the case of the presence of two at risk genotypes and 8.002 [CI: 4.59-13.93] if all the three at risk genotypes were present. In conclusion these polymorphisms could contribute to the risk of thrombotic complications in HIT.

  20. Membrane phase transition of intact human platelets: correlation with cold-induced activation.

    PubMed

    Tablin, F; Oliver, A E; Walker, N J; Crowe, L M; Crowe, J H

    1996-08-01

    Using Fourier transform infrared spectroscopy (FTIR), we have determined the phase transition temperature (Tm) of lipids in intact human platelets and have shown that it occurs between 15 and 18 degrees C, the temperature at which cold activation of platelets has previously been reported (Zucker and Borrelli, 1954, Blood, 28:602-608; White and Krivit, 1967, Blood, 30:625-635). The temperature at which the platelets pass through Tm is highly correlated with initial platelet shape change. However, shape change continues after the cells have passed through the phase transition. Cold-induced activation has previously prevented long-term storage of platelets at 4 degrees C. Antifreeze glycoproteins (AFGPs) isolated from polar fishes previously have been used to prevent ice crystal growth during freezing of tissues as well as leakage of solutes from liposomes as they were chilled through their Tm. We sought to determine if these AFGPs were able to stabilize platelets for long-term storage at 4 degrees C. Incubating platelets with antifreeze glycoproteins during long-term storage and rapid rewarming to 37 degrees C abrogated granule secretion associated with cold activation in a dose-dependent manner. This work suggests that AFGPs may be a possible solute for use in long-term low temperature storage of platelets.

  1. Platelet factors induce chemotactic migration of murine mammary adenocarcinoma cells with different metastatic capabilities.

    PubMed Central

    Sarach, M. A.; Rovasio, R. A.; Eynard, A. R.

    1993-01-01

    The chemotactic response of neoplastic cells (NC) induced by soluble platelet factors was investigated. NC suspensions isolated from murine mammary gland adenocarcinomas having different metastatic capabilities were incubated in Boyden's chambers and challenged with (1) 'Early Platelet Factors' (EP), obtained from the soluble fraction of recently collagen-activated human platelets, and (2) 'Late Platelet Factors' (LP), isolated after 24 hours incubation of the platelet aggregates. Chemotaxis was expressed as the distance travelled by NC through nitrocellulose filters. NC isolated from M3, the tumour line having the stronger metastatic potential, showed a significant chemotactic response towards LP factors, whereas NC from the M2 line exhibiting the lower metastatic behaviour, showed a chemotactic response towards EP factors. Both tumour cell lines lacked motion capability towards the well known chemoattractant peptide N-f-Met-Leu-Phe-Phe as well as to serum, plasma, collagen type I or culture medium. The different chemotactic response of both tumour lines when they were challenged by concentration gradients of factors released by early or late collagen-activated human platelets, confirm a relationship between platelet activity and metastatic capabilities and suggests that platelet chemoattractants might play a role in the metastatic dissemination of these mammary gland adenocarcinomas. Images Figure 1 PMID:8217786

  2. Platelet functional and transcriptional changes induced by intralipid infusion.

    PubMed

    Beaulieu, Lea M; Vitseva, Olga; Tanriverdi, Kahraman; Kucukural, Alper; Mick, Eric; Hamburg, Naomi; Vita, Joseph; Freedman, Jane E

    2016-06-02

    Multiple studies have shown the effects of long-term exposure to high-fat or western diets on the vascular system. There is limited knowledge on the acute effects of high circulating fat levels, specifically on platelets, which have a role in many processes, including thrombosis and inflammation. This study investigated the effects of acute, high-fat exposure on platelet function and transcript profile. Twenty healthy participants were given an intravenous infusion of 20% Intralipid emulsion and heparin over 6 hours. Blood samples were taken prior to and the day after infusion to measure platelet function and transcript expression levels. Platelet aggregation was not significantly affected by Intralipid infusion, but, when mitochondria function was inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or oligomycin, platelet aggregation was higher in the post-infusion state compared to baseline. Through RNA sequencing, and verified by RT-qPCR, 902 miRNAs and 617 mRNAs were affected by Intralipid infusion. MicroRNAs increased include miR-4259 and miR-346, while miR-517b and miR-517c are both decreased. Pathway analysis identified two clusters significantly enriched, including cell motility. In conclusion, acute exposure to high fat affects mitochondrial-dependent platelet function, as well as the transcript profile.

  3. SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets.

    PubMed

    Kim, Yun Hak; Bae, Jin Ung; Kim, In Suk; Chang, Chulhun L; Oh, Sae Ock; Kim, Chi Dae

    2016-12-01

    SIRT1, a class III histone deacetylase, is critically involved in cellular response to stress and modulates cardiovascular risk factors. However, its role in thrombus formation is largely unknown. Thus, this study investigated the effect of SIRT1 on pulmonary thrombus formation, and then identified its role in the modulation of platelet aggregation. In isolated human platelets, cell aggregation was increased by various platelet activators, such as platelet activating factor (PAF), arachidonic acid (AA), ADP, and thrombin. AA- and PAF-mediated platelet aggregations were suppressed by WEB2086, a PAF receptor (PAFR) antagonist. Pulmonary thrombus formation induced by PAF or AA was also attenuated by WEB2086, suggesting that PAFR plays a key role in AA-induced platelet aggregation. In platelets isolated from SIRT1-TG mice as well as in platelets treated with resveratrol or reSIRT1, PAFR expression was decreased, whereas this expressional downregulation by SIRT1 activators was inhibited in platelets treated with MG132 (a proteasome inhibitor) or NH4Cl (a lysosome inhibitor). Furthermore, platelet aggregation induced by AA was markedly attenuated by resveratrol and reSIRT1. Likewise, the increased pulmonary thrombus formation in mice treated with AA was also attenuated by SIRT1 activators. In line with these results, pulmonary thrombus formation was markedly attenuated in SIRT1-TG mice. Taken together, this study showed that SIRT1 downregulates PAFR expression on platelets via proteasomal and lysosomal pathways, and that this downregulation inhibits platelet aggregation in vitro and pulmonary thrombus formation in vivo.

  4. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    PubMed

    Egan, Karl; Crowley, Darragh; Smyth, Paul; O'Toole, Sharon; Spillane, Cathy; Martin, Cara; Gallagher, Michael; Canney, Aoife; Norris, Lucy; Conlon, Niamh; McEvoy, Lynda; Ffrench, Brendan; Stordal, Britta; Keegan, Helen; Finn, Stephen; McEneaney, Victoria; Laios, Alex; Ducrée, Jens; Dunne, Eimear; Smith, Leila; Berndt, Michael; Sheils, Orla; Kenny, Dermot; O'Leary, John

    2011-01-01

    Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  5. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation.

    PubMed

    Zhang, Jian-ning; Bergeron, Angela L; Yu, Qinghua; Sun, Carol; McBride, Latresha; Bray, Paul F; Dong, Jing-fei

    2003-10-01

    Platelet functions are increasingly measured under flow conditions to account for blood hydrodynamic effects. Typically, these studies involve exposing platelets to high shear stress for periods significantly longer than would occur in vivo. In the current study, we demonstrate that the platelet response to high shear depends on the duration of shear exposure. In response to a 100 dyn/cm2 shear stress for periods less than 10-20 sec, platelets in PRP or washed platelets were aggregated, but minimally activated as demonstrated by P-selectin expression and binding of the activation-dependent alphaIIbbeta3 antibody PAC-1 to sheared platelets. Furthermore, platelet aggregation under such short pulses of high shear was subjected to rapid disaggregation. The disaggregated platelets could be re-aggregated by ADP in a pattern similar to unsheared platelets. In comparison, platelets that are exposed to high shear for longer than 20 sec are activated and aggregated irreversibly. In contrast, platelet activation and aggregation were significantly greater in whole blood with significantly less disaggregation. The enhancement is likely via increased collision frequency of platelet-platelet interaction and duration of platelet-platelet association due to high cell density. It may also be attributed to the ADP release from other cells such as red blood cells because increased platelet aggregation in whole blood was partially inhibited by ADP blockage. These studies demonstrate that platelets have a higher threshold for shear stress than previously believed. In a pathologically relevant timeframe, high shear alone is likely to be insufficient in inducing platelet activation and aggregation, but acts synergistically with other stimuli.

  6. Atherosclerosis proceeds independently of thrombin-induced platelet activation in ApoE-/- mice

    PubMed Central

    Hamilton, J.R.; Cornelissen, I.; Mountford, J.K.; Coughlin, S.R.

    2009-01-01

    Platelet activation has long been postulated to contribute to the development of atherosclerotic plaques, although the mechanism by which this might occur remains unknown. Thrombin is a potent platelet activator and transfusion of thrombin-activated platelets into mice increases plaque formation, suggesting that thrombin-induced platelet activation might contribute to platelet-dependent atherosclerosis. Platelets from protease-activated receptor 4-deficient (Par4-/-) mice fail to respond to thrombin. To determine whether thrombin-activated platelets play a necessary role in a model of atherogenesis, we compared plaque formation and progression in Par4+/+ and Par4-/- mice in the atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) background. Littermate Par4+/+ and Par4-/- mice, all ApoE-/-, were placed on a Western diet (21% fat, 0.15% cholesterol) for 5 or 10 weeks. The percent of aortic lumenal surface covered by plaques in Par4+/+ and Par4-/- mice was not different at either time point (2.2 ± 0.3% vs. 2.5 ± 0.2% and 5.1 ± 0.4% vs. 5.6 ± 0.4% after 5 and 10 weeks, respectively). Further, no differences were detected in the cross-sectional area of plaques measured at the aortic root (1.53 ± 0.17 vs. 1.66 ± 0.16 × 105 μm2 and 12.56 ± 1.23 vs. 13.03 ± 0.55 × 105 μm2 after 5 and10 weeks, respectively). These findings indicate that thrombin-mediated platelet activation is not required for the early development of atherosclerotic plaques in the ApoE-/- mouse model and suggest that, if platelet activation is required for plaque formation under these experimental conditions, platelet activators other than thrombin suffice. PMID:19217621

  7. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species†

    PubMed Central

    Yuan, Hengjie; Houck, Katie L.; Tian, Ye; Bharadwaj, Uddalak; Hull, Ken; Zhou, Zhou; Zhou, Mingzhao; Wu, Xiaoping; Tweardy, David J.; Romo, Daniel; Fu, Xiaoyun; Zhang, Yanjun; Zhang, Jianning; Dong, Jing-fei

    2015-01-01

    Background Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known. Objective We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen. Results PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect. Conclusions PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals. PMID:26645674

  8. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles.

    PubMed

    Tafelmeier, M; Fischer, A; Orsó, E; Konovalova, T; Böttcher, A; Liebisch, G; Matysik, S; Schmitz, G

    2017-05-01

    Stored platelet concentrates (PLCs) for therapeutic purpose, develop a platelet storage lesion (PSL), characterized by impaired platelet (PLT) viability and function, platelet extracellular vesicle (PL-EV) release and profound lipidomic changes. Whereas oxidized low-density lipoprotein (oxLDL) activates PLTs and promotes atherosclerosis, effects linked to oxidized high-density lipoprotein (oxHDL) are poorly characterized. PLCs from blood donors were treated with native (nHDL) or mildly oxidized HDL (moxHDL) for 5days under blood banking conditions. Flow cytometry, nanoparticle tracking analysis (NTA), aggregometry, immunoblot analysis and mass spectrometry were carried out to analyze PL-EV and platelet exosomes (PL-EX) release, PLT aggregation, protein expression, and PLT and plasma lipid composition. In comparison to total nHDL, moxHDL significantly decreased PL-EV release by -36% after 5days of PLT storage and partially reversed agonist-induced PLT aggregation. PL-EV release positively correlated with PLT aggregation. MoxHDL improved PLT membrane lipid homeostasis through enhanced uptake of lysophospholipids and their remodeling to corresponding phospholipid species. This also appeared for sphingomyelin (SM) and d18:0/d18:1 sphingosine-1-phosphate (S1P) at the expense of ceramide (Cer) and hexosylceramide (HexCer) leading to reduced Cer/S1P ratio as PLT-viability indicator. This membrane remodeling was associated with increased content of CD36 and maturation of scavenger receptor-B1 (SR-B1) protein in secreted PL-EVs. MoxHDL, more potently than nHDL, improves PLT-membrane lipid homeostasis, partially antagonizes PL-EV release and agonist-induced PLT aggregation. Altogether, this may be the result of more efficient phospho- and sphingolipid remodeling mediated by CD36 and SR-B1 in the absence of ABCA1 on PLTs. As in vitro supplement in PLCs, moxHDL has the potential to improve PLC quality and to prolong storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Platelet Aggregation and Mental Stress Induced Myocardial Ischemia: Results from the REMIT Study

    PubMed Central

    Jiang, Wei; Boyle, Stephen H.; Ortel, Thomas L.; Samad, Zainab; Velazquez, Eric J.; Harrison, Robert W.; Wilson, Jennifer; Kuhn, Cynthia; Williams, Redford B.; O’Connor, Christopher M.; Becker, Richard C.

    2015-01-01

    BACKGROUND Mental stress-induced myocardial ischemia (MSIMI) is common in patients with ischemic heart disease (IHD) and associated with a poorer cardiovascular prognosis. Platelet hyperactivity is an important factor in acute coronary syndrome. This study examined associations between MSIMI and resting and mental stress-induced platelet activity. METHODS Eligible patients with clinically stable IHD underwent a battery of 3 mental stress tests during the recruitment phase of REMIT (Responses of Myocardial Ischemia to Escitalopram Treatment) study. MSIMI was assessed by echocardiography and electrocardiography. Ex vivo platelet aggregation in response to ADP, epinephrine, collagen, serotonin, and combinations of serotonin plus ADP, epinephrine, and collagen were evaluated as was platelet serotonin transporter expression. RESULTS Of the 270 participants who completed mental stress testing, and had both resting and post-stress platelet aggregation evaluation, 43.33% (N=117) met criteria for MSIMI and 18.15% (N=49) had normal left ventricular response to stress (NLVR). The MSIMI group, relative to the NLVR groups, demonstrated heightened mental stress-induced aggregation responses, as measured by area under the curve, to collagen 10 μM (6.95[5.54] vs. −14.23[8.75].; p=0.045), epinephrine 10 μM (12.84[4.84] vs. −6.40[7.61].; p=0.037) and to serotonin 10 μM plus ADP 1 μM (6.64[5.29] vs. −27.34[8.34]; p < .001). The resting platelet aggregation and serotonin transporter expression, however, were not different between the two groups. CONCLUSIONS These findings suggest that the dynamic change of platelet aggregation caused by mental stress may underlie MSIMI. While the importance of these findings requires additional investigation, they raise concern given the recognized relationship between mental stress-induced platelet hyperactivity and cardiovascular events in patients with IHD. PMID:25819856

  10. MHC antigen expression and cellular response in spontaneous and induced rejection of intracerebral neural xenografts in neonatal rats.

    PubMed

    Pollack, I F; Lund, R D; Rao, K

    1990-01-01

    Fetal mouse retinae transplanted to the mesencephalon of neonatal rats generally survive for prolonged periods of time without immune suppression suggesting that such grafts enjoy a degree of immunological privilege. A small, but consistent percentage of these transplants, however, ultimately undergo spontaneous rejection. In addition, rejection can be induced by (1) systemically sensitizing the host to the donor antigens by placing a mouse skin graft or (2) producing a local degenerative process adjacent to the graft by removing the host eye contralateral to the side of the retinal transplant. To elucidate the immunological events that underly spontaneous and induced rejection in this system, we examined the distribution of lymphocytes, astrocytes, microglia, and cells expressing major histocompatibility complex (MHC) antigens in unrejected grafts, in transplants showing spontaneous rejection, and in grafts undergoing induced rejection. In unrejected grafts, increased astrocytic and microglial staining was seen around the photoreceptor layer of the graft and at the graft-host interface, but no lymphocytes and only occasional cells expressing MHC antigens were detected. In contrast, spontaneously rejecting grafts showed widespread MHC, lymphocytic, astrocytic, and microglial immunoreactivity that extended well beyond the limits of the transplant into the surrounding host brain. Skin graft-induced rejection produced a temporally consistent, comparatively localized enhancement of astrocytic, microglial and MHC immunoreactivity and infiltration of lymphocytes. Four to five days after skin grafting, before neural graft rejection was detectable histologically, MHC immunoreactivity was demonstrated within the transplant coinciding with the presence of small numbers of lymphocytes and an increase in microglial staining. By 8 days, grafts had undergone profound necrosis. Intense astrocytosis, microglial staining, MHC immunoreactivity, and perivascular lymphocytic cuffing

  11. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    SciTech Connect

    Lan, Yann-Wen E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng; Chen, Chii-Dong E-mail: ywlan@phys.sinica.edu.tw; Chang, Wen-Hao; Li, Yuan-Yao

    2014-09-08

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  12. Cholesterol-induced stimulation of platelet aggregation is prevented by a hempseed-enriched diet.

    PubMed

    Prociuk, M A; Edel, A L; Richard, M N; Gavel, N T; Ander, B P; Dupasquier, C M C; Pierce, G N

    2008-04-01

    Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate. Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation. This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions. Male New Zealand white rabbits were fed one of 6 dietary interventions: regular control diet (RG); control diet + 10% hempseed (HP); control diet + 10% partially delipidated hempseed (DHP); control diet + 0.5% cholesterol (OL); control diet + 0.5% cholesterol + 10% hempseed (OLHP); control diet + 5% coconut oil (CO). After 8 weeks, blood was collected to measure ADP- and collagen-induced platelet aggregation and plasma levels of fatty acids, cholesterol, and triglycerides. The hempseed-fed animals (HP and OLHP) displayed elevated plasma levels of PUFAs and a prominent enhancement in 18:3n-6 (gamma-linolenic acid, GLA) levels, a unique PUFA found in hempseed. The cholesterol-supplemented groups (OL and OLHP) had significantly elevated plasma levels of cholesterol and triglycerides, but platelet aggregation was significantly augmented only in the OL group. The addition of hempseed to this diet (OLHP) normalized aggregation. The direct addition of GLA to the OL platelet samples blocked the cholesterol-induced stimulation of platelet aggregation. The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels. This normalization is not due to a reduction in plasma cholesterol levels, but may be partly due to increased levels of plasma GLA.

  13. Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.

    2009-01-01

    The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.

  14. Constitutively activated phosphatidylinositol 3-kinase primes platelets from patients with chronic myelogenous leukemia for thrombopoietin-induced aggregation.

    PubMed

    Kubota, Y; Tanaka, T; Ohnishi, H; Kitanaka, A; Okutani, Y; Taminato, T; Ishida, T; Kamano, H

    2004-06-01

    In this study, we examined the effect of thrombopoietin (TPO) on the aggregation of platelets from 40 patients with myeloproliferative disorders (MPDs), including 17 patients with chronic myelogenous leukemia in the chronic phase (CML-CP), 10 with polycythemia vera, 10 with essential thrombocythemia, and three with myelofibrosis. TPO by itself dose-dependently induced the aggregation of platelets from patients with CML-CP but not from those with other MPDs or with CML-CP in cytogenetical complete remission. The expression of CD63 in CML-CP platelets was induced by TPO treatment. Phosphatidylinositol 3-kinase (PI3-kinase) was constitutively activated in CML-CP platelets. Pretreatment with PI3-kinase inhibitors (wortmannin and LY294002) dose-dependently inhibited TPO-induced aggregation of CML-CP platelets. The Abl kinase inhibitor imatinib mesylate and the Jak inhibitor AG490 suppressed TPO-induced aggregation of CML-CP platelets. Pretreatment with imatinib mesylate, but not with AG490, inhibited the activity of PI3-kinase in CML-CP platelets. In addition, tyrosine phosphorylation of Jak2 was undetected in CML-CP platelets before TPO treatment. These findings indicate that the constitutive activation of PI3-kinase primes CML-CP platelets for the aggregation induced by TPO, and that Bcr-Abl, but not Jak family protein tyrosine kinases, are involved in the constitutive activation of PI3-kinase in CML-CP platelets.

  15. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion.

    PubMed

    Zou, Yuquan; Lai, Benjamin F L; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2010-12-08

    Poly(N,N-dimethylacrylamide) (PDMA) brushes are successfully grown from unplasticized poly(vinyl chloride) (uPVC) by well-controlled surface-initiated atom transfer radical polymerization (SI-ATRP). Molecular weights of the grafted PDMA brushes vary from ≈ 35,000 to 2,170000 Da, while the graft density ranges from 0.08 to 1.13 chains · nm(-2). The polydispersity of the grafted PDMA brushes is controlled within 1.20 to 1.80. Platelet activation (expression of CD62) and adhesion studies reveal that the graft densities of the PDMA brushes play an important role in controlling interfacial properties. PDMA brushes with graft densities between 0.35 and 0.50 chains · nm(-2) induce a significantly reduced platelet activation compared to unmodified uPVC. Moreover, the surface adhesion of platelets on uPVC is significantly reduced by the densely grafted PDMA brushes. PDMA brushes that have high molecular weights lead to a relatively lower platelet activation compared to low-molecular-weight brushes. However, the graft density of the brush is more important than molecular weight in controlling platelet interactions with PVC. PDMA brushes do not produce any significant platelet consumption in platelet rich plasma. Up to a seven-fold decrease in the number of platelets adhered on high graft density brushes is observed compared to the bare PVC surface. Unlike the bare PVC, platelets do not form pseudopodes or change morphology on PDMA brush-coated surfaces. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    SciTech Connect

    Aherne, T.; Price, D.C.; Yee, E.S.; Hsieh, W.R.; Ebert, P.A.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue blood content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.

  17. Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets.

    PubMed

    Olas, Beata; Nowak, Paweł; Wachowicz, Barbara

    2004-01-01

    The peroxynitrite anion (ONOO-) is a reactive species produced in the reaction between the superoxide anion (O2*-) and nitric oxide (*NO). ONOO- is involved in several pathological conditions such as inflammation, arteriosclerosis, and neurodegenerative and cardiovascular disorders. Our earlier results showed that ONOO- inhibits different steps of blood platelet activation and causes the depletion of platelet thiols. In this study, we investigated the effects of resveratrol (3, 4', 5-trihydroxystilbene) and other antioxidants (uric acid and deferoxamine (DFO)) on the level of low molecular thiols such as glutathione, cysteine and cysteinylglycine (in reduced and oxidized form) in blood platelets treated with ONOO-. Our results showed that ONOO- (100 microM, 2 min) induces changes in these thiols (measured by HPLC method); these changes are diminished in the presence of resveratrol. Preincubation of human platelets with resveratrol at a concentration of 100 microM (30 min) has a protective effect against the oxidation of platelet thiols induced by ONOO- or its intermediate. The other tested antioxidants also have a protectory action. In conclusion, we suggest that the resveratrol present in the human diet may partially protect -SH groups from oxidation and may be responsible for redox regulation and control in platelets.

  18. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis

    PubMed Central

    Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-01-01

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  19. Synthesis of huaicarbon A/B and their activating effects on platelet glycoprotein VI receptor to mediate collagen-induced platelet aggregation

    PubMed Central

    Yu, Hongli; Chen, Yeqing; Wu, Hao; Wang, Kuilong; Liu, Liping; Zhang, Xingde

    2017-01-01

    Quercetin and rhamnose were efficiently converted into huaicarbon A/B by heating at 250°C for 10-15 min or at 200°C for 25-30 min. With the optimum molar ratio of quercetin/rhamnose (1:3), huaicarbon A and B yields reached 25% and 16% respectively after heating at 250°C, with 55% quercetin conversion. Huaicarbon A/B both promoted washed platelet aggregation dose-dependently, which was antagonized by an inhibitor of glycoprotein VI (GPVI) receptor. Similarly, they both promoted collagen-induced platelet aggregation in platelet-rich plasma in dose-dependent manners. According to the S type dose-response model, EC50 values of huaicarbon A and huaicarbon B were calculated as 33.48 μM and 48.73 μM respectively. They induced intracellular Ca2+ accumulation that was specifically blocked by GPVI antagonist. Huaicarbon A/B enhanced intracellular Ca2+ accumulation and facilitated collagen-induced platelet aggregation, which were blocked by GPVI antagonist. They were conducive to collagen-induced platelet aggregation by activating platelet GPVI receptor. PMID:28337278

  20. Peptide LSARLAF induces integrin β3 dependent outside-in signaling in platelets

    PubMed Central

    Niu, Haixia; Xu, Zhenlu; Li, Ding; Zhang, Lin; Wang, Kemin; Taylor, Donald B.; Liu, Junling; Gartner, T. Kent

    2012-01-01

    Introduction Peptide LSARLAF (LSA) can bind and activate integrin αIIbβ3 in the absence of ‘inside-out’ signal. The active αIIbβ3 mediates ‘outside-in’ signaling that elicits platelet aggregation, granule secretion and TxA2 production. Here we identify the membrane glycoproteins which mediate LSA-induced platelet activation other than αIIbβ3, and determine the roles of Src, PLCγ2, FcRγ-chain, and SLP-76 in LSA-induced platelet activation. Method Ligand-receptor binding assay was performed to study the effect of peptide LSA or its control peptide FRALASL (FRA) on integrins binding to their ligands. Spreading of CHO cells expressing αIIbβ3 or αVβ3 on immobilized fibrinogen was measured in the presence of LSA or FRA. Washed β3, Src, FcRγ-chain, LAT and SLP-76 deficient platelets aggregation and secretion were tested in response to LSA. Results Ligand-receptor binding assay indicated that LSA promoted the binding of multiple ligands to αIIbβ3 or αVβ3. LSA also enhanced CHO cells with αIIbβ3 or αVβ3 expression spreading on immobilized fibrinogen. β3 deficient platelets failed to aggregate and secrete in response to LSA. The phosphorylation of PLCγ2 and Syk was also β3 dependent. Src, FcRγ-chain, LAT and SLP-76 deficient platelets did not aggregate, secrete ATP or produce TxA2 in response to LSA. Conclusion LSA-induced platelet activation is β3 dependent, and signaling molecules Src, FcRγ-chain, SLP-76 and LAT play crucial roles in LSA-induced β3 mediated signaling. PMID:22482832

  1. DPIV prediction of flow induced platelet activation-comparison to numerical predictions.

    PubMed

    Raz, Sagi; Einav, Shmuel; Alemu, Yared; Bluestein, Danny

    2007-04-01

    Flow induced platelet activation (PA) can lead to platelet aggregation, deposition onto the blood vessel wall, and thrombus formation. PA was thoroughly studied under unidirectional flow conditions. However, in regions of complex flow, where the platelet is exposed to varying levels of shear stress for varying durations, the relationship between flow and PA is not well understood. Numerical models were developed for studying flow induced PA resulting from stress histories along Lagrangian trajectories in the flow field. However, experimental validation techniques such as Digital Particle Image Velocimetry (DPIV) were not extended to include such models. In this study, a general experimental tool for PA analysis by means of continuous DPIV was utilized and compared to numerical simulation in a model of coronary stenosis. A scaled up (5:1) 84% eccentric and axisymetric coronary stenosis model was used for analysis of shear stress and exposure time along particle trajectories. Flow induced PA was measured using the PA State (PAS) assay. An algorithm for computing the PA level in pertinent trajectories was developed as a tool for extracting information from DPIV measurements for predicting the flow induced thrombogenic potential. CFD, DPIV and PAS assay results agreed well in predicting the level of PA. In addition, the same trend predicted by the DPIV was measured in vitro using the Platelet Activity State (PAS) assay, namely, that the symmetric stenosis activated the platelets more as compared to the eccentric stenosis.

  2. Collagen-induced binding to human platelets of platelet-derived growth factor leading to inhibition of P43 and P20 phosphorylation

    SciTech Connect

    Bryckaert, M.C.; Rendu, F.; Tobelem, G.; Wasteson, A.

    1989-03-15

    Platelet-derived growth factor (PDGF) is known to inhibit collagen-induced platelet aggregation. Collagen-induced binding of /sup 125/I-PDGF to human washed platelets was therefore investigated. It was found to be time-dependent, reaching a plateau at 20 degrees C after 30 min, collagen concentration-dependent, specifically inhibited by unlabeled PDGF, and saturable. Scatchard plot analysis showed a single class of sites with 3000 +/- 450 molecules bound/cell and an apparent KD of 1.2 +/- 0.2 10(-8) M. The effects of PDGF on collagen-induced phosphoinositide breakdown and protein phosphorylation were also investigated. At 50 ng/ml PDGF, a concentration which completely inhibited collagen-induced aggregation, the breakdown of (/sup 32/P)phosphatidylinositol 4,5-biphosphate (PIP2) and (/sup 32/P)phosphatidylinositol 4-phosphate (PIP) was observed, but the subsequent replenishment of (/sup 32/P)PIP2 was inhibited. The same PDGF concentration totally inhibited collagen-induced phosphatidic acid formation. PDGF also completely prevented phosphorylation of P43 and P20, as a result of protein kinase C activation consecutive to phosphoinositide metabolism. These results suggest that a specific PDGF receptor can be induced by collagen, and PDGF can effect the early events of collagen-induced platelet activation by inhibiting PIP2 resynthesis and P43 and P20 phosphorylation. It is concluded that PDGF might be involved in a negative feed-back control of platelet activation.

  3. Inhibitory effects of Atractylodis lanceae rhizoma and Poria on collagen- or thromboxane A2-induced aggregation in rabbit platelets.

    PubMed

    Nasu, Yuiko; Iwashita, Masaya; Saito, Masaki; Fushiya, Shinji; Nakahata, Norimichi

    2009-05-01

    Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.

  4. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    PubMed

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts (P < .001) and higher D-dimer levels (P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens (P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P =010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  5. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    SciTech Connect

    Winocour, P.D.; Colwell, J.A.

    1985-05-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis.

  6. P2y12 Receptor Promotes Pressure Overload-Induced Cardiac Remodeling via Platelet-Driven Inflammation in Mice.

    PubMed

    Wu, Lujin; Zhao, Fujie; Dai, Meiyan; Li, Huaping; Chen, Chen; Nie, Jiali; Wang, Peihua; Wang, Dao Wen

    2017-10-01

    Inflammation plays a critical role in adverse cardiac remodeling and heart failure. The P2y12 receptor is one of the predominant activating receptors for platelets, thus initiating inflammatory responses under various diseases. In this study, we investigated the functional significance of P2y12-mediated platelet activation in pressure overload-induced cardiac remodeling. Notably, P2y12 knockout (P2y12(-/-)) mice exhibited suppressed transverse aortic constriction-induced changes in cardiac hypertrophy, collagen synthesis, inflammatory cell recruitment, and cardiac dysfunction. Activated platelets and platelet-leukocyte aggregates were markedly downregulated in P2y12 knockout mice compared with wild-type counterparts after transverse aortic constriction. Moreover, bone marrow chimera experiments revealed that wild-type recipients of P2y12 knockout bone marrow markedly improved cardiac function and attenuated cardiac remodeling, reversed by wild-type platelets reinjection. Platelet depletion and P-selectin inhibition mimicked these protective effects by limiting the interaction between activated platelets and leukocytes. Furthermore, activated wild-type platelets directly induced cardiomyocyte hypertrophy and collagen synthesis via α-granule exocytosis, vanished in P2y12 knockout platelets or those administered anti-NSF (N-ethlymalimide-sensitive factor) antibodies. The results suggest that P2y12-mediated platelet activation promotes cardiac remodeling by triggering a series of inflammatory changes and interacting with leukocytes and endotheliocytes. © 2017 American Heart Association, Inc.

  7. The proteasome regulates collagen-induced platelet aggregation via nuclear-factor-kappa-B (NFĸB) activation.

    PubMed

    Grundler, Katharina; Rotter, Raffaela; Tilley, Sloane; Pircher, Joachim; Czermak, Thomas; Yakac, Mustaf; Gaitzsch, Erik; Massberg, Steffen; Krötz, Florian; Sohn, Hae-Young; Pohl, Ulrich; Mannell, Hanna; Kraemer, Bjoern F

    2016-12-01

    Platelets possess critical hemostatic functions in the system of thrombosis and hemostasis, which can be affected by a multitude of external factors. Previous research has shown that platelets have the capacity to synthesize proteins de novo and more recently a multicatalytic protein complex, the proteasome, has been discovered in platelets. Due to its vital function for cellular integrity, the proteasome has become a therapeutic target for anti-proliferative drug therapies in cancer. Clinically thrombocytopenia is a frequent side-effect, but the aggregatory function of platelets also appears to be affected. Little is known however about underlying regulatory mechanisms and functional aspects of proteasome inhibition on platelets. Our study aims to investigate the role of the proteasome in regulating collagen-induced platelet aggregation and its interaction with NFkB in this context. Using fluorescence activity assays, platelet aggregometry and immunoblotting, we investigate regulatory interactions of the proteasome and Nuclear-factor-kappa-B (NFkB) in collagen-induced platelet aggregation. We show that collagen induces proteasome activation in platelets and collagen-induced platelet aggregation can be reduced with proteasome inhibition by the specific inhibitor epoxomicin. This effect does not depend on Rho-kinase/ROCK activation or thromboxane release, but rather depends on NFkB activation. Inhibition of the proteasome prevented cleavage of NFκB-inhibitor protein IκBα and decreased NFκB activity after collagen stimulation. Inhibition of the NFκB-pathway in return reduced collagen-induced platelet proteasome activity and cleavage of proteasome substrates. This work offers novel explanations how the proteasome influences collagen-dependent platelet aggregation by involving non-genomic functions of NFkB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of shear on in vitro platelet and leukocyte material-induced activation.

    PubMed

    Chang, Xiaojian; Gorbet, Maud

    2013-09-01

    The failure to understand the mechanisms of biomaterial-associated thrombosis prevents us from improving the blood compatibility of stents and mechanical heart valves. Blood-material interactions trigger a complex series of events and anticoagulant and anti-platelet therapies are needed to reduce the risks of thrombotic complications with most cardiovascular materials. While material interaction with platelets has been widely studied, little is currently known on material-induced leukocyte activation in the presence of shear. In vitro experiments were performed to assess the effect of flow on blood cell activation induced by medical grade metals, ST316L and TiAl6V4. Blood was circulated in flow chambers preloaded with or without metal wires at shear rates of 100, 500, and 1500 s⁻¹. Platelet and leukocyte activation, leukocyte-platelet aggregation, and tissue factor expression on monocytes were measured by flow cytometry. Metal surfaces were characterized by scanning electron microscopy. Under physiological shear rates, no significant platelet microparticle formation was observed. However, significant CD11b up-regulation, leukocyte-platelet aggregates, and tissue factor expression were observed at 100 s⁻¹. As shear rate increased to 1500 s⁻¹, leukocyte activation reduced to control values. TiAl6V4-induced leukocyte activation was generally lower than that of ST316L. Adhesion significantly decreased with increasing shear rate to 1500 s⁻¹. In blood, increase within physiological shear rates led to a significant reduction in in vitro material-induced leukocyte activation, suggesting that difference between material biocompatibility may be better identified at low shear rates or under pathological shear conditions.

  9. Streptococcus sanguis-Induced Platelet Clotting in Rabbits and Hemodynamic and Cardiopulmonary Consequences

    PubMed Central

    Meyer, Maurice W.; Gong, Ke; Herzberg, Mark C.

    1998-01-01

    By mimicking hemostatic structural domains of collagen, Streptococcus sanguis (aggregation-positive phenotype; Agg+) induces platelets to aggregate in vitro. To test the hypothesis that aggregation occurs in vivo, S. sanguis (Agg+ or Agg− suspension) was infused intravenously into rabbits. The extent of hemodynamic and cardiopulmonary changes and the fate of circulating platelets were Agg+ strain dose dependent. Within 45 to 50 s of the start of infusion, 40 × 108 CFU of the Agg+ strain caused increased blood pressure. Thirty seconds after infusion, other changes occurred. Intermittent electrocardiographic abnormalities (13 of 15 rabbits), ST-segment depression (10 of 15 rabbits), and preventricular contractions (7 of 15 rabbits) manifested at 3 to 7 min, with frequencies dose dependent. Respiratory rate and cardiac contractility increased during this phase. Blood catecholamine concentration, thrombocytopenia, accumulation of 111Indium-labeled platelets in the lungs, and ventricular axis deviation also showed dose dependency. Rabbits were unaffected by inoculation of an Agg− strain. Therefore, Agg+ S. sanguis induced platelet aggregation in vitro. Platelet clots caused hemodynamic changes, acute pulmonary hypertension, and cardiac abnormalities, including ischemia. PMID:9826372

  10. Platelet participation in the pathogenesis of dermonecrosis induced by Loxosceles gaucho venom.

    PubMed

    Tavares, F L; Peichoto, M E; Marcelino, J R; Barbaro, K C; Cirillo, M C; Santoro, M L; Sano-Martins, I S

    2016-06-01

    Loxosceles gaucho spider venom induces in vitro platelet activation and marked thrombocytopenia in rabbits. Herein, we investigated the involvement of platelets in the development of the dermonecrosis induced by L. gaucho venom, using thrombocytopenic rabbits as a model. L. gaucho venom evoked a drop in platelet and neutrophil counts 4 h after venom injection. Ecchymotic areas at the site of venom inoculation were noticed as soon as 4 h in thrombocytopenic animals but not in animals with initial normal platelet counts. After 5 days, areas of scars in thrombocytopenic animals were also larger, evidencing the marked development of lesions in the condition of thrombocytopenia. Histologically, local hemorrhage, collagen fiber disorganization, and edema were more severe in thrombocytopenic animals. Leukocyte infiltration, predominantly due to polymorphonuclears, was observed in the presence or not of thrombocytopenia. Thrombus formation was demonstrated by immunohistochemistry at the microvasculature, and it occurred even under marked thrombocytopenia. Taken together, platelets have an important role in minimizing not only the hemorrhagic phenomena but also the inflammatory and wound-healing processes, suggesting that cutaneous loxoscelism may be aggravated under thrombocytopenic conditions.

  11. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs

    PubMed Central

    Nagasaki, Mika; Kunishima, Shinji; Sawaguchi, Akira; Sakata, Asuka; Sakaguchi, Hiroyasu; Ohmori, Tsukasa; Manabe, Ichiro; Italiano, Joseph E.; Ryu, Tomiko; Takayama, Naoya; Komuro, Issei; Kadowaki, Takashi; Nagai, Ryozo

    2015-01-01

    Intravital visualization of thrombopoiesis revealed that formation of proplatelets, which are cytoplasmic protrusions in bone marrow megakaryocytes (MKs), is dominant in the steady state. However, it was unclear whether this is the only path to platelet biogenesis. We have identified an alternative MK rupture, which entails rapid cytoplasmic fragmentation and release of much larger numbers of platelets, primarily into blood vessels, which is morphologically and temporally different than typical FasL-induced apoptosis. Serum levels of the inflammatory cytokine IL-1α were acutely elevated after platelet loss or administration of an inflammatory stimulus to mice, whereas the MK-regulator thrombopoietin (TPO) was not elevated. Moreover, IL-1α administration rapidly induced MK rupture–dependent thrombopoiesis and increased platelet counts. IL-1α–IL-1R1 signaling activated caspase-3, which reduced plasma membrane stability and appeared to inhibit regulated tubulin expression and proplatelet formation, and ultimately led to MK rupture. Collectively, it appears the balance between TPO and IL-1α determines the MK cellular programming for thrombopoiesis in response to acute and chronic platelet needs. PMID:25963822

  12. Leukoreduced red blood cell transfusions do not induce platelet glycoprotein antibodies in patients with sickle cell disease.

    PubMed

    Nickel, Robert Sheppard; Winkler, Anne M; Horan, John T; Hendrickson, Jeanne E

    2016-09-01

    Alloimmunization to red blood cell (RBC) antigens after transfusion is well described in patients with sickle cell disease (SCD). We recently demonstrated that leukocyte-reduced RBC transfusions appeared to induce human leukocyte antigen (HLA) antibodies in some children with SCD; now, we hypothesize that residual platelets contained in transfused RBC products may lead to platelet glycoprotein antibody formation. A cross-sectional study was conducted among never pregnant pediatric patients with SCD who either had received many RBC transfusions or had never received any transfusions. Serum was tested for antibodies to platelet-specific glycoproteins using a commercial enzyme immunoassay. Platelet-specific glycoprotein antibodies were found in 12 of 90 patients (13%) in the transfused group versus 5 of 24 patients (21%) in the never transfused group (p = 0.35). The prevalence of antibodies as well as the median standardized optical density for these two groups was not significantly different for any of the studied platelet glycoprotein antigens. There was no association with the presence of platelet-specific glycoprotein antibodies with either RBC or HLA antibodies. Leukocyte-reduced RBC transfusions do not appear to induce platelet-specific glycoprotein antibodies. The positive platelet-specific glycoprotein antibody results from this study may represent platelet autoantibodies, platelet alloantibodies, or false-positive reactions. A better understanding of the immunobiology of patients with SCD at baseline and after blood product exposure may help improve future transfusion and transplantation. © 2016 AABB.

  13. Mouse model of alloimmune-induced vascular rejection and transplant arteriosclerosis.

    PubMed

    Enns, Winnie; von Rossum, Anna; Choy, Jonathan

    2015-05-17

    Vascular rejection that leads to transplant arteriosclerosis (TA) is the leading representation of chronic heart transplant failure. In TA, the immune system of the recipient causes damage of the arterial wall and dysfunction of endothelial cells and smooth muscle cells. This triggers a pathological repair response that is characterized by intimal thickening and luminal occlusion. Understanding the mechanisms by which the immune system causes vasculature rejection and TA may inform the development of novel ways to manage graft failure. Here, we describe a mouse aortic interposition model that can be used to study the pathogenic mechanisms of vascular rejection and TA. The model involves grafting of an aortic segment from a donor animal into an allogeneic recipient. Rejection of the artery segment involves alloimmune reactions and results in arterial changes that resemble vascular rejection. The basic technical approach we describe can be used with different mouse strains and targeted interventions to answer specific questions related to vascular rejection and TA.

  14. Dual role of the p38 MAPK/cPLA2 pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists

    PubMed Central

    Rukoyatkina, N; Mindukshev, I; Walter, U; Gambaryan, S

    2013-01-01

    p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase A2 (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions. PMID:24263105

  15. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets.

    PubMed

    Schoenwaelder, Simone M; Jarman, Kate E; Gardiner, Elizabeth E; Hua, My; Qiao, Jianlin; White, Michael J; Josefsson, Emma C; Alwis, Imala; Ono, Akiko; Willcox, Abbey; Andrews, Robert K; Mason, Kylie D; Salem, Hatem H; Huang, David C S; Kile, Benjamin T; Roberts, Andrew W; Jackson, Shaun P

    2011-08-11

    BH3 mimetics are a new class of proapo-ptotic anticancer agents that have shown considerable promise in preclinical animal models and early-stage human trials. These agents act by inhibiting the pro-survival function of one or more Bcl-2-related proteins. Agents that inhibit Bcl-x(L) induce rapid platelet death that leads to thrombocytopenia; however, their impact on the function of residual circulating platelets remains unclear. In this study, we demonstrate that the BH3 mimetics, ABT-737 or ABT-263, induce a time- and dose-dependent decrease in platelet adhesive function that correlates with ectodomain shedding of the major platelet adhesion receptors, glycoprotein Ibα and glycoprotein VI, and functional down-regulation of integrin α(IIb)β(3). Analysis of platelets from mice treated with higher doses of BH3 mimetics revealed the presence of a subpopulation of circulating platelets undergoing cell death that have impaired activation responses to soluble agonists. Functional analysis of platelets by intravital microscopy revealed a time-dependent defect in platelet aggregation at sites of vascular injury that correlated with an increase in tail bleeding time. Overall, these studies demonstrate that Bcl-x(L)-inhibitory BH3 mimetics not only induce thrombocytopenia but also a transient thrombocytopathy that can undermine the hemostatic function of platelets.

  16. PLATELET-ASSOCIATED NAD(P)H OXIDASE CONTRIBUTES TO THE THROMBOGENIC PHENOTYPE INDUCED BY HYPERCHOLESTEROLEMIA

    PubMed Central

    Stokes, Karen Y.; Russell, Janice M.; Jennings, Merilyn H.; Alexander, J. Steven; Granger., D. Neil

    2007-01-01

    Elevated cholesterol levels promote pro-inflammatory and prothrombogenic responses in venules and impaired endothelium-dependent arteriolar dilation. Although NAD(P)H oxidase-derived superoxide has been implicated in the altered vascular responses to hypercholesterolemia, it remains unclear whether this oxidative pathway mediates the associated arteriolar dysfunction and platelet adhesion in venules. Platelet and leukocyte adhesion in cremasteric postcapillary venules, and arteriolar dilation responses to acetylcholine were monitored in wild-type (WT), Cu,Zn-superoxide dismutase transgenic (SOD-TgN) and NAD(P)H oxidase-knockout (gp91phox-/-) mice placed on normal (ND) or high cholesterol (HC) diet for 2 wk. HC elicited increased platelet and leukocyte adhesion in WT mice, versus ND. Cytosolic subunits of NAD(P)H oxidase (p47phox and p67phox) were expressed in platelets. This was not altered by hypercholesterolemia, however platelets and leukocytes from HC mice exhibited elevated generation of reactive oxygen species when compared to ND mice. Hypercholesterolemia-induced leukocyte recruitment was attenuated in SOD-TgN-HC and gp91phox-/--HC mice. Recruitment of platelets derived from WT-HC mice in venules of SOD-TgN-HC or gp91phox-/--HC recipients was comparable to ND levels. Adhesion of SOD-TgN-HC platelets paralleled the leukocyte response and was attenuated in SOD-TgN-HC recipients, but not in WT-HC recipients. However, gp91phox-/--HC platelets exhibited low levels of adhesion comparable to WT-ND in both hypercholesterolemic gp91phox-/- and WT recipients. Arteriolar dysfunction was evident in WT-HC mice, compared to WT-ND. Overexpression of SOD or, to a lesser extent, gp91phox deficiency, restored arteriolar vasorelaxation responses towards WT-ND levels. These findings reveal a novel role for platelet-associated NAD(P)H oxidase in producing the thrombogenic phenotype in hypercholesterolemia and demonstrate that NAD(P)H oxidase-derived superoxide mediates the HC-induced

  17. Plasma concentrations of endotoxin and platelet activation in the developmental stage of oligofructose-induced laminitis.

    PubMed

    Bailey, S R; Adair, H S; Reinemeyer, C R; Morgan, S J; Brooks, A C; Longhofer, S L; Elliott, J

    2009-06-15

    The link between the fermentation of carbohydrate in the equine large intestine and the development of acute laminitis is poorly understood. Absorption of endotoxin (lipopolysaccharide; LPS) into the plasma has been observed in one experimental model of laminitis, but does not cause laminitis when administered alone. Thus, the potential role of endotoxin is unclear. Platelet activation has previously been demonstrated in the developmental stage of laminitis. Equine platelets are more sensitive than leukocytes to activation by endotoxin, and can be activated directly by LPS in the low pg/ml range, activating p38 MAP kinase and releasing serotonin (5-HT) and thromboxane. The objectives of this study were firstly to determine whether endotoxin and platelet activation could be measured in the plasma of horses in the developmental phase of laminitis induced with oligofructose. Secondly, the time course of events involving platelet activation and platelet-derived vasoactive mediator production was investigated. Laminitis was induced in six Standardbred horses by the administration of 10 g/kg bwt of oligofructose. Plasma samples were obtained every 4h, and platelet pellets were obtained by centrifugation. LPS was measured using a kinetic limulus amebocyte lysate assay, and platelet activation was assessed by Western blotting for the phosphorylated form of p38 MAP kinase. Plasma 5-HT was assayed by HPLC with electrochemical detection and thromboxane B(2) was measured by radioimmunoassay. Clinical signs of laminitis and histopathologic changes were observed in lamellar sections from five of the six horses. Onset of lameness was between 20 and 30 h after the administration of oligofructose. LPS increased above the limit of detection (0.6 pg/ml) to reach a peak of 2.4+/-1.0 pg/ml at 8 h. TNFalpha was also detectable in the plasma from 12 to 24 h. There was a time-dependent increase in platelet p38 MAPK phosphorylation, which peaked at approximately 12 h (3.8+/-1.3 fold

  18. High fat diet induces adhesion of platelets to endothelium in two models of dyslipidemia.

    PubMed

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik; Moore-Carrasco, Rodrigo

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE(-/-) mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE(-/-) mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate.

  19. Functional Comparison of Induced Pluripotent Stem Cell- and Blood-Derived GPIIbIIIa Deficient Platelets

    PubMed Central

    Haas, Jessica; Sandrock-Lang, Kirstin; Gärtner, Florian; Jung, Christian Billy; Zieger, Barbara; Parrotta, Elvira; Kurnik, Karin; Sinnecker, Daniel; Wanner, Gerhard; Laugwitz, Karl-Ludwig; Massberg, Steffen; Moretti, Alessandra

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application. PMID:25607928

  20. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    PubMed Central

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  1. [Neurologic complications induced by the treatment of the acute renal allograft rejection with the monoclonal antibody OKT3].

    PubMed

    Fernández, O; Romero, F; Bravo, M; Burgos, D; Cabello, M; González-Molina, M

    1993-10-01

    The treatment of the acute renal allograft rejection with the monoclonal antibody orthoclone OKT3 produces both systemic and neurologic alterations. In a series of 21 patients with an acute renal allograft rejection treated with this monoclonal antibody, 20 with a renal allograft transplantation and one with a renal and pancreatic allograft transplantation, 29% referred headache associated with fever and vomiting, and 14.2% presented severe neurological alterations induced by the treatment. We stress the need to know these secondary effects to differentiate them from other central nervous system disorders, particularly those of infectious origin.

  2. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    SciTech Connect

    Burroughs, S.F.; Johnson, G.J. )

    1990-04-01

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of (14C)-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with (3H)-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist (3H)-U46619 and antagonist (3H)-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ((Ca2+)i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in (Ca2+)i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.

  3. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    PubMed

    Gudat, F; Laubscher, A; Otten, U; Pletscher, A

    1981-11-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas the effect of NGF was not influenced. 3 An oxidized NGF-derivative without biological activity did not cause a shape change reaction, neither did epidermal growth factor. 4 Prostaglandin E1 (PGE1) and pretreatment of the platelets with 3% butanol, which counteract the shape changes caused by 5-hydroxytryptamine (5-HT) and adenosine 3',5'-diphosphate, also antagonized those induced by NGF and SP. Neither heparin nor methysergide, an antagonist of 5-HT-receptors, influenced the shape change induced by NGF or SP. The action of NGF was also antagonized by a specific antibody to NGF. 5 Thymopoietin, like the basic polypeptide polyornithine (mol. wt. 40,000) was not antagonized by PGE1 and butanol. Heparin, which counteracted the effect of polyornithine, did not influence that of thymopoietin. 6 In conclusion, different modes of action are involved in the shape change of blood platelets induced by polypeptides and proteins. SP and NGF may act by stimulating specific membrane receptors.

  4. The Role of Platelet Factor 4 in Radiation-Induced Thrombocytopenia

    SciTech Connect

    Lambert, Michele P.; Xiao Liqing; Nguyen, Yvonne; Kowalska, M. Anna; Poncz, Mortimer

    2011-08-01

    Purpose: Factors affecting the severity of radiation-induced thrombocytopenia (RIT) are not well described. We address whether platelet factor 4 (PF4; a negative paracrine for megakaryopoiesis) affects platelet recovery postradiation. Methods and Materials: Using conditioned media from irradiated bone marrow (BM) cells from transgenic mice overexpressing human (h) PF4 (hPF4+), megakaryocyte colony formation was assessed in the presence of this conditioned media and PF4 blocking agents. In a model of radiation-induced thrombocytopenia, irradiated mice with varying PF4 expression levels were treated with anti-hPF4 and/or thrombopoietin (TPO), and platelet count recovery and survival were examined. Results: Conditioned media from irradiated BM from hPF4+ mice inhibited megakaryocyte colony formation, suggesting that PF4 is a negative paracrine released in RIT. Blocking with an anti-hPF4 antibody restored colony formation of BM grown in the presence of hPF4+ irradiated media, as did antibodies that block the megakaryocyte receptor for PF4, low-density lipoprotein receptor-related protein 1 (LRP1). Irradiated PF4 knockout mice had higher nadir platelet counts than irradiated hPF4+/knockout litter mates (651 vs. 328 x 106/mcL, p = 0.02) and recovered earlier (15 days vs. 22 days, respectively, p <0.02). When irradiated hPF4+ mice were treated with anti-hPF4 antibody and/or TPO, they showed less severe thrombocytopenia than untreated mice, with improved survival and time to platelet recovery, but no additive effect was seen. Conclusions: Our studies show that in RIT, damaged megakaryocytes release PF4 locally, inhibiting platelet recovery. Blocking PF4 enhances recovery while released PF4 from megakaryocytes limits TPO efficacy, potentially because of increased release of PF4 stimulated by TPO. The clinical value of blocking this negative paracrine pathway post-RIT remains to be determined.

  5. Effector Mechanisms of Rejection

    PubMed Central

    Moreau, Aurélie; Varey, Emilie; Anegon, Ignacio; Cuturi, Maria-Cristina

    2013-01-01

    Organ transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejection and act either as effector, regulatory, or memory cells. On the other hand, nonspecific cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies, chemokines, and complement molecules in graft rejection is discussed in this article. The understanding of the different components involved in graft rejection is essential as some of them are used in the clinic as biomarkers to detect and quantify the level of rejection. PMID:24186491

  6. Imaging the elastic modulus of human platelets during thrombin-induced activation using scanning ion conductance microscopy.

    PubMed

    Rheinlaender, Johannes; Vogel, Sebastian; Seifert, Jan; Schächtele, Marc; Borst, Oliver; Lang, Florian; Gawaz, Meinrad; Schäffer, Tilman E

    2015-02-01

    Platelet activation plays a critical role in haemostasis and thrombosis. It is well-known that platelets generate contractile forces during activation. However, their mechanical material properties have rarely been investigated. Here, we use scanning ion conductance microscopy (SICM) to visualise morphological and mechanical properties of live human platelets at high spatial resolution. We found that their mean elastic modulus decreases during thrombin-induced activation by about a factor of two. We observed a similar softening of platelets during cytochalasin D-induced cytoskeleton depolymerisation. However, thrombin-induced temporal and spatial modulations of the elastic modulus were substantially different from cytochalasin D-mediated changes. We thereby provide new insights into the mechanics of haemostasis and establish SICM as a novel imaging platform for the ex vivo investigation of the mechanical properties of live platelets.

  7. Long-Term Tolerance to Kidney Allografts after Induced Rejection of Donor Hematopoietic Chimerism in a Preclinical Canine Model

    PubMed Central

    Graves, Scott S.; Mathes, David W.; Georges, George E.; Kuhr, Christian S.; Chang, Jeff; Butts, Tiffany M.; Storb, Rainer

    2012-01-01

    Background Allogeneic hematopoietic cell transplantation provides a reliable method for inducing tolerance towards solid organ grafts. However, this procedure can result in graft-versus-host disease (GVHD) thereby limiting its application. Here we test the hypothesis that mixed chimerism can be intentionally reverted to host hematopoiesis without rejection of a kidney graft. Methods Recipient dogs were given 2 Gy total body irradiation (TBI) before and a short course of immunosuppression after marrow infusion from dog leukocyte antigen-identical littermates. All dogs achieved stable mixed chimerism. After a mean of 20 weeks, one cohort of dogs received kidney transplants from their respective marrow donors. Subsequently, recipients were reconditioned with 2 Gy TBI and given autologous granulocyte-colony stimulating factor-mobilized leukocytes (recipient leukocyte infusion) that had been collected before marrow transplant. Results Dogs receiving a second TBI and recipient leukocyte infusion without a kidney transplant rejected their donor hematopoietic graft within 3 weeks. Dogs that received kidney grafts, followed by a second TBI and recipient leukocyte infusion, rejected their marrow graft without rejecting their transplanted kidneys for periods greater than one year. Conclusion Mixed chimerism may be clinically reverted to 100% recipient without rejection of a kidney allograft. This finding may have application towards minimizing the risk of GVHD in solid organ transplant patients given hematopoietic cell transplantation from HLA-identical donors. PMID:22929594

  8. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa.

    PubMed

    Al-Tamimi, Mohammad; Grigoriadis, George; Tran, Huy; Paul, Eldho; Servadei, Patricia; Berndt, Michael C; Gardiner, Elizabeth E; Andrews, Robert K

    2011-04-07

    This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation.

  9. Inhibition of glutamate receptors reduces the homocysteine-induced whole blood platelet aggregation but does not affect superoxide anion generation or platelet membrane fluidization.

    PubMed

    Karolczak, Kamil; Pieniazek, Anna; Watala, Cezary

    2017-01-01

    Homocysteine (Hcy) is an excitotoxic amino acid. It is potentially possible to prevent Hcy-induced toxicity, including haemostatic impairments, by antagonizing glutaminergic receptors. Using impedance aggregometry with arachidonate and collagen as platelet agonists, we tested whether the blockade of platelet NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptors with their inhibitors: MK-801 (dizocilpine hydrogen maleate, [5R,10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine), CNQX (7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile) and UBP-302 (2-{[3-[(2S)-2-amino-2-carboxyethyl]-2,6-dioxo-3,6-dihydropyrimidin 1(2H)-yl]methyl}benzoic acid) may hamper Hcy-dependent platelet aggregation. All the tested compounds significantly inhibited Hcy-augmented aggregation of blood platelets stimulated either with arachidonate or collagen. Hcy stimulated the generation of superoxide anion in whole blood samples in a concentration-dependent manner; however, this process appeared as independent on ionotropic glutamate receptors, as well as on NADPH oxidase and protein kinase C, and was not apparently associated with the extent of either arachidonate- or collagen-dependent platelet aggregation. Moreover, Hcy acted as a significant fluidizer of surface (more hydrophilic) and inner (more hydrophobic) regions of platelet membrane lipid bilayer, when used at the concentration range from 10 to 50 µmol/l. However, this effect was independent on the Hcy action through glutamate ionotropic receptors, since there was no effects of MK-801, CNQX or UBP-302 on Hcy-mediated membrane fluidization. In conclusion, Hcy-induced changes in whole blood platelet aggregation are mediated through the ionotopic excitotoxic receptors, although the detailed mechanisms underlying such interactions remain to be elucidated.

  10. Effect of the crude extract of Cestrum parqui on carrageenin-induced rat paw oedema and aggregation of human blood platelets.

    PubMed

    Shehnaz, D; Hamid, F; Baqai, F T; Uddin Ahmad, V

    1999-08-01

    An extract of Cestrum parqui aerial parts in methanol:water (1:1) showed inhibition of carrageenin-induced oedema. The aggregation of human blood platelets induced by adenosine diphosphate and platelet activating factor was also inhibited (IC(50)s were 3 and 2 mg/mL, respectively). On the contrary, the extract did not inhibit arachidonic acid-mediated platelet aggregation.

  11. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Majsterek, Ireneusz; Blasiak, Janusz

    2005-07-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic compound found in grapes and wine, has been shown to have anti-inflammatory, anti-oxidant, anti-tumor and anti-platelet activities. Using different methods, we show that resveratrol reduces oxidative stress induced by cisplatin (cis-diamminedichloroplatinum II) and selenium-cisplatin conjugate ([NH(3)](2)Pt(SeO(3)), Se-Pt) in human blood platelets, lymphocytes and plasma. Resveratrol decreased the production of 8-epi-prostaglandin F(2) (a biomarker of lipid peroxidation) in control blood platelets and platelets treated with platinum compounds (10 microg/ml), and markedly reduced activities of different anti-oxidative enzymes (glutathione peroxidase, superoxide dismutase and catalase) in these cells. A combined action of resveratrol and Se-Pt evoked a significant decrease of DNA damage (measured by comet assay) in lymphocytes compared with cells treated with Se-Pt only. Resveratrol also caused a distinct reduction of total anti-oxidant level in plasma after incubation with platinum compounds. Therefore, anti-oxidative activity of resveratrol may diminish oxidative stress and damage to cellular biomolecules (lipids, proteins and DNA) induced by platinum compounds.

  12. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

    PubMed

    Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V

    2017-05-01

    The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca(2+) mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation.

  13. Endotoxic lipid A induces intracellular Ca2+ increase in human platelets.

    PubMed Central

    Romano, M; Molino, M; Cerletti, C

    1991-01-01

    The activation of protein kinase C by endotoxic lipid A was observed with both intact platelets and in a cell-free system [Romano & Hawiger (1990) J. Biol. Chem. 265, 1765-1770]. We have now studied the action of lipid A on intracellular Ca2+ concentration ([Ca2+]i). Lipid A induced a concentration-dependent rise in [Ca2+]i in human platelets loaded with fura-2, which reached a maximum at 37.1 +/- 3.8 s (tmax). Maximum [Ca2+]i levels, observed at 30 microM lipid A, were 432 +/- 60 nM. EGTA (2 mM) or NiCl2 (1 mM) each decreased the lipid A-dependent elevation of [Ca2+]i by 50-60% without significant modification of tmax, but shortening the time for 50% recovery (t50) from greater than 400 s to 113.1 +/- 29.1 s and 54 +/- 2.1 s, respectively. Quenching of the fura-2 signal was also observed in lipid A-stimulated platelets resuspended with MnCl2 (1 mM), suggesting that both mobilization and external influx of Ca2+ occur. Intracellular Ca2+ mobilization depended on release from Ins(1,4,5)P3-sensitive stores, since Ins(1,4,5)P3 accumulation was detected in lipid A-activated platelets. Staurosporine, an inhibitor of protein kinase C, blocked the [Ca2+]i rise generated by lipid A in platelets [concn. giving 50% inhibition (IC50) = 0.1 microM], prolonging the tmax. to 54.7 +/- 5.1 s, but decreasing the t50 to 157.5 +/- 31.8 s. Staurosporine also suppressed InsP3 accumulation (IC50 = 0.15 microM). These results suggest that platelet activation by lipid A involves an interaction between [Ca2+]i elevation and protein kinase C activation. PMID:1909116

  14. A continuous infusion of a minor histocompatibility antigen-immunodominant peptide induces a delay of male skin graft rejection.

    PubMed

    Sireci, Guido; Barera, Annalisa; Macaluso, Pasquale; Di Sano, Caterina; Bonanno, Cesira T; Pio La Manna, Marco; Di Liberto, Diana; Dieli, Francesco; Salerno, Alfredo

    2009-01-01

    We previously reported that an inhibition of antigen-specific Interferon-gamma release and cytotoxicity occurs after a continuous infusion of an HY immunodominant peptide although this treatment is not able to cause a significant delay of male skin grafts rejection. In vivo administration of high doses of an HY peptide, through mini-osmotic pumps, in naïve female mice was used to study the effects on the male skin grafts rejection. A continuous infusion of 1mg of an HY peptide induces a significant delay of male skin graft rejection. In vitro HY-specific Interferon-gamma release was inhibited adding peptide-specific suppressor cells: the ability to inhibit Interferon-gamma release was evident when two HY peptides were present on the same dendritic cells indicating that the suppressor cells exert "linked-suppression". The phenotype of the suppressor cells is CD8(+)CD28(-) and these cells express more CD62 ligand and FOXP3 than controls. Suppressor cells were able to cause a significant delay of rejection of male skin grafts when injected in naive female mice. The inhibitory effects of these suppressor cells seem to be due to the impairment of antigen presentation; down-regulation of B7 molecules on dendritic cells occurred. Taken all together, our data demonstrate that a continuous infusion of an immunodominant HY peptide induces a T CD8 suppressor subset able to inhibit immune responses to male tissues and cells.

  15. The naphthoquinone plumbagin suppresses ADP-induced rat platelet aggregation through P2Y1-PLC signaling pathway.

    PubMed

    Zhang, Qianrui; Liao, Xiaoyan; Wu, Fangjian

    2017-03-01

    Plumbagin (PLB) isolated from Plumbago zeylanica L (Plumbaginaceae) was evaluated for the suppressive effect and mechanism on ADP induced rat platelet aggregation. Adult male SD rats were randomly divided into control group, clopidogrel group, PLB 25mg/kg group and PLB 50mg/kg group. Clopidogrel (13.5mg/kg per day) and PLB (25 and 50mg/kg per day) were orally given to experimental rats by gavage for seven consecutive days. The antiplatelet properties were assessed by measuring the ADP-induced platelet aggregation rate (Aggmax). The level of cAMP in platelets before aggregation was determined by ELISA. The protein expression of pAkt, Akt, pPLC β3 and PLC β3 in platelets was measured by western blot. Our data indicated that PLB (25 and 50mg/kg) significantly inhibited ADP-induced rat platelet aggregation as well as clopidogrel (13.5mg/kg) in a dose dependent manner compared with the control group. PLB (25 and 50mg/kg) remarkably reduced the ADP-induced PLC β3 phosphorylation but not Akt in platelets as compared with the control group. The present study suggests that PLB exerts a suppressive effect on ADP-induced rat platelet aggregation, at least in part, through P2Y1-PLC signaling pathway.

  16. Dynamic redistribution of major platelet surface receptors after contact-induced platelet activation and spreading. An immunoelectron microscopy study.

    PubMed Central

    Kieffer, N.; Guichard, J.; Breton-Gorius, J.

    1992-01-01

    The authors used an immunogold labeling procedure to investigate the redistribution of platelet receptors and their ligands on the surface of contact-activated adherent platelets before and after thrombin stimulation. During the initial stage of platelet adhesion, a typical segregation of receptors occurred. Gold particles identifying glycoprotein (GP) Ib (CD42b) and GPIIb-IIIa (CD41a) remained distributed over the entire platelet surface, whereas gold particles identifying GPIa-IIa (CDw 49b) and GPIV (CD36) were found essentially overlying the granulomere; p24 (CD9) was present at the peripheral platelet rim and over the cell body. An increased labeling of GPIIb-IIIa, GPIV and p24 was also observed on pseudopods, with GPIIb-IIIa and GPIV concentrated at the enlarged extremities and at sites of contact between two platelets, whereas GPIb was absent from pseudopods. After thrombin stimulation of adherent platelets, GPIb underwent a relocation to the cell center, in contrast to GPIIb-IIIa which still remained randomly distributed over the cell body. To investigate whether ligand distribution paralleled this receptor segregation, platelet released von Willebrand factor (vWF), fibrinogen (Fg) and thrombospondin (TSP) were visualized. During the early stages of platelet activation, surface labeling for all three adhesive proteins was minimal and almost undetectable. Occasionally, intragranular Fg and vWF was accessible to gold-coupled antibodies, with vWF exhibiting the typical eccentric alpha-granular localization. At later stages of activation and especially after thrombin stimulation, no surface labeling for vWF was observed, whereas immunogold particles identifying vWF were still present inside enlarged clear vacuoles. In contrast, labeling of Fg and TSP was increased over the granulomere and extended to the cell periphery and the pseudopods, but was absent from the hyalomere, despite the presence of GPIIb-IIIa molecules. Double labeling experiments showed

  17. Effects of different anticoagulants on human platelet size distribution and serotonin (5-HT) induced shape change and uptake kinetics.

    PubMed

    Malmgren, R; Beving, H; Olsson, P

    1985-06-15

    The effect of collecting blood with disodium ethylene diamine tetraacetate (EDTA), citrate (NAC) or acid sodium citrate-dextrose (ACD) as anticoagulants on platelet count and size distribution was investigated. No difference between the three preparations regarding platelet count was found in whole blood. Preparation of platelet-rich plasma (PRP) significantly reduced the platelet count in NAC-PRP (p less than 0.01) to a value of 288 X 10(9)/l compared to those of 365 X 10(9)/l and 368 X 10(9)/l in EDTA and ACD blood respectively. A significant shift in the platelet size in EDTA-PRP towards larger cell volumes was observed. There were no differences in the size distribution pattern between NAC-PRP and ACD-PRP in spite of the differences in platelet count. Platelet 5-HT uptake kinetics in EDTA-PRP showed a 50 per cent reduction in both Km and Vmax compared to that in ACD-PRP. The study shows that the receptor mediating 5-HT induced shape change has a direct opposite pH dependence than that of the 5-HT carrier. Interference of receptor-mediated responses in 5-HT uptake studies in human platelets is clearly minimized at a lowered pH. The finding is probably of importance in disorders associated with platelet hyperaggregability.

  18. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice.

    PubMed

    Gros, Angèle; Syvannarath, Varouna; Lamrani, Lamia; Ollivier, Véronique; Loyau, Stéphane; Goerge, Tobias; Nieswandt, Bernhard; Jandrot-Perrus, Martine; Ho-Tin-Noé, Benoît

    2015-08-20

    Platelets protect vascular integrity during inflammation. Recent evidence suggests that this action is independent of thrombus formation and requires the engagement of glycoprotein VI (GPVI), but it remains unclear how platelets prevent inflammatory bleeding. We investigated whether platelets and GPVI act primarily by preventing detrimental effects of neutrophils using models of immune complex (IC)-mediated inflammation in mice immunodepleted in platelets and/or neutrophils or deficient in GPVI. Depletion of neutrophils prevented bleeding in thrombocytopenic and GPVI(-/-) mice during IC-mediated dermatitis. GPVI deficiency did not modify neutrophil recruitment, which was reduced by thrombocytopenia. Neutrophil cytotoxic activities were reduced in thrombocytopenic and GPVI(-/-) mice during IC-mediated inflammation. Intravital microscopy revealed that in this setting, intravascular binding sites for platelets were exposed by neutrophils, and GPVI supported the recruitment of individual platelets to these spots. Furthermore, the platelet secretory response accompanying IC-mediated inflammation was partly mediated by GPVI, and blocking of GPVI signaling impaired the vasculoprotective action of platelets. Together, our results show that GPVI plays a dual role in inflammation by enhancing neutrophil-damaging activities while supporting the activation and hemostatic adhesion of single platelets to neutrophil-induced vascular breaches.

  19. Effect of diltiazem and low-dose aspirin on platelet aggregation and ATP release induced by paired agonists.

    PubMed

    Zucker, M L; Budd, S E; Dollar, L E; Chernoff, S B; Altman, R

    1993-08-02

    The authors studied the effects of diltiazem, administered alone and together with low-dose aspirin, on the platelet response to paired agonists. After a baseline period, 25 healthy volunteers were given oral diltiazem for 1 week (120, 240, or 360 mg/day), and then crossed over randomly between 1 week on diltiazem plus aspirin (81 mg/day), and 1 week on aspirin (81 mg/day) alone. Platelet function was tested on 2 consecutive days in each period. Synergistic platelet aggregation and ATP release were obtained at baseline using a subthreshold concentration of arachidonic acid combined with platelet activating factor, ADP, or epinephrine. Diltiazem resulted in significant decrease from baseline in platelet aggregation and ATP release using the arachidonic acid-epinephrine combination (35% and 40% decrease, respectively, p < 0.01) and a significant decrease in aggregation using the arachidonic acid-ADP combination (22% decrease, p < 0.01). The effects were neither dose-related, nor accompanied by any significant change in serum thromboxane B2 levels or bleeding times. There was no significant difference between the effects of aspirin alone and aspirin plus diltiazem on the synergistic platelet aggregation and ATP release induced by the paired agonists, or on thromboxane B2 levels or bleeding times. Diltiazem administered in vivo partially inhibits the synergistic platelet aggregation and ATP release induced by paired agonists; however, in contrast to a previous in vitro study it does not potentiate the platelet-inhibitory effect of aspirin.

  20. Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness

    PubMed Central

    Vallée, Nicolas; Ignatescu, Mihaela; Bourdon, Lionel

    2011-01-01

    Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg−1·day−1, n = 30), Clo (50 mg·kg−1·day−1, n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (−4,5% with Clo, −19.5% with ASA, −19,9% with Hep, and −29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin

  1. Three-dimentional simulation of flow-induced platelet activation in artificial heart valves

    NASA Astrophysics Data System (ADS)

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.

  2. Platelet lysate induces in vitro wound healing of human keratinocytes associated with a strong proinflammatory response.

    PubMed

    El Backly, Rania; Ulivi, Valentina; Tonachini, Laura; Cancedda, Ranieri; Descalzi, Fiorella; Mastrogiacomo, Maddalena

    2011-07-01

    Platelet lysates (PL), which are derived from platelets, are cocktails of growth factors and cytokines that can promote tissue regeneration. Until today, most studies have focused on growth factor content of platelets rather than on their potential as a reservoir of mediators and cytokines. Taking advantage of an in vitro scratch assay performed under both normal and inflammatory conditions, in the present work, we report that at physiologic concentrations, PL enhanced wound closure rates of NCTC 2544 human keratinocytes. This effect was clearly detectable 6 h after wounding. Moreover, PL induced a strong cell actin cytoskeletal re-organization that persisted up to 24 h. The accelerated wound closure promoted by PL, in either presence or absence of serum, was associated with a high expression of the inflammatory cytokine interleukin-8. Further, after 24 h PL treatment, confluent keratinocytes also expressed low amounts of interleukin-8 and of the antimicrobial peptide neutrophil gelatinase-associated lipocalin, which dramatically increased under inflammatory conditions. These effects were associated with activation of the inflammatory pathways, p38 mitogen-activated protein kinase, and NF-κB. Our findings support the concept that platelet-derived preparations could accelerate regeneration of difficult-to-heal wounds by triggering an inflammatory cascade and having an antimicrobial role.

  3. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats

    PubMed Central

    Yeom, Eunseop; Byeon, Hyeokjun; Lee, Sang Joon

    2016-01-01

    Diabetes mellitus with abnormal glucose concentration is associated with changes in hemorheological properties, endothelial function, and platelets hyperactivity. Disturbances may significantly be responsible for diabetes-related vascular complications. In this study, hemorheological and hemodynamic properties were measured according to diabetic duration after streptozotocin treatment in rats. For ex vivo measurements, an extracorporeal model was adopted. Flow rate and blood viscosity were measured using a microfluidic device. Erythrocyte aggregation and morphological parameters of erythrocytes were measured by modified erythrocyte sedimentation rate and the phase-contrast holography under in vitro conditions. The platelet aggregation and mean pressure in the femoral artery were estimated under ex vivo conditions. Hemorheological properties including blood viscosity, erythrocyte aggregation and shape parameters for the control group are significantly different with those for diabetic groups. The changes with respect to diabetic duration were relatively unnoticeable. However, the platelet aggregation is strongly dependent on the diabetic duration. Based on these results, hyperglycemia exposure may induce hemorheological variations in early stages of diabetes mellitus. High platelet aggregation may become more pronounced according to the diabetic duration caused by variations in hemorheological properties resulting in endothelial dysfunction. This study would be helpful in understanding the effects of diabetic duration on biophysical properties. PMID:26898237

  4. Inability of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 to induce human platelet aggregation in vitro.

    PubMed

    Zhou, J S; Rutherfurd, K J; Gill, H S

    2005-11-01

    Platelet aggregation contributes to the pathogenesis of infective endocarditis, and aggregation of platelets induced by lactobacilli is thought to be an important contributory factor in the development and progression of Lactobacillus endocarditis. The main purpose of this study was to examine the effect of immunity-enhancing probiotic strains Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 on the activation and aggregation of human blood platelets. Whole blood samples from healthy individuals were incubated in vitro with HN001 or HN019 and subsequently labeled with platelet-specific monoclonal antibodies, fluorescein isothiocyanate-conjugated anti-CD41a (expressed on normal platelets), and phycoerythrin-streptavidin-conjugated anti-CD62p (expressed on activated platelets) before analysis by flow cytometry. Platelet-rich plasma was used to assist the gating of the platelet cluster. ADP and epinephrine were used as the physiological platelet activation agonists. Platelet aggregation-inducing strain Streptococcus sanguis 133-79 was used as a positive control strain. The mean fluorescence intensity of phycoerythrin and the percentage of platelets expressing the CD62p marker were used to assess the degree of platelet activation. The percentage of CD62p-positive platelets and the light scatter profiles of the agonist-activated platelets were used to identify the occurrence and degree of platelet aggregation. HN001 and HN019 had no effect on spontaneous platelet activation and aggregation; they also failed to exacerbate the platelet aggregation activity induced by ADP and epinephrine. Therefore, these test probiotic strains HN001 and HN019 are less likely to participate in the pathogenesis of infective endocarditis or other thrombotic disorders with regard to platelet aggregation factors.

  5. Ex vivo recapitulation of trauma-induced coagulopathy and assessment of trauma patient platelet function under flow using microfluidic technology

    PubMed Central

    Li, Ruizhi; Elmongy, Hanna; Sims, Carrie; Diamond, Scott L.

    2015-01-01

    Background Relevant to trauma induced coagulopathy (TIC) diagnostics, microfluidic assays allow controlled hemodynamics for testing of platelet and coagulation function using whole blood. Methods Hemodilution or hyperfibrinolysis was studied under flow with modified healthy whole blood. Furthermore, platelet function was also measured using whole blood from trauma patients admitted to a Level 1 Trauma center. Platelet deposition was measured with PPACK-inhibited blood perfused over collagen surfaces at a wall shear rate of 200 s−1, while platelet/fibrin deposition was measured with corn trypsin inhibitor (CTI)-treated blood perfused over TF/collagen. Results In hemodilution studies, PPACK-treated blood displayed almost no platelet deposition when diluted to 10% Hct with saline, platelet poor plasma (PPP), or platelet rich plasma (PRP). Using similar dilutions, platelet/fibrin deposition was essentially absent for CTI-treated blood perfused over TF/collagen. To mimic hyperfibrinolysis during trauma, exogenous tPA (50 nM) was added to blood prior to perfusion over TF/collagen. At both venous and arterial flows, the generation and subsequent lysis of fibrin was detectable within 6 min, with lysis blocked by addition of the plasmin inhibitor, ε-aminocaproic acid. Microfluidic assay of PPACK-inhibited whole blood from trauma patients revealed striking defects in collagen response and secondary platelet aggregation in 14 of 21 patients, while platelet hyperfunction was detected in 3 of 20 patients. Conclusions Rapid microfluidic detection of (i) hemodilution-dependent impairment of clotting, (ii) clot instability due to lysis, (iii) blockade of fibrinolysis, or (iv) platelet dysfunction during trauma may provide novel diagnostic opportunities to predict TIC risk. Level of Evidence Level IV Study type Diagnostic Test PMID:27082706

  6. Transfusion of Human Platelets Treated with Mirasol Pathogen Reduction Technology Does Not Induce Acute Lung Injury in Mice.

    PubMed

    Caudrillier, Axelle; Mallavia, Beñat; Rouse, Lindsay; Marschner, Susanne; Looney, Mark R

    2015-01-01

    Pathogen reduction technology (PRT) has been developed in an effort to make the blood supply safer, but there is controversy as to whether it may induce structural or functional changes to platelets that could lead to acute lung injury after transfusion. In this study, we used a commercial PRT system to treat human platelets that were then transfused into immunodeficient mice, and the development of acute lung injury was determined. P-selectin expression was higher in the Mirasol PRT-treated platelets compared to control platelets on storage day 5, but not storage day 1. Transfusion of control vs. Mirasol PRT-treated platelets (day 5 of storage, 109 platelets per mouse) into NOD/SCID mice did not result in lung injury, however transfusion of storage day 5 platelets treated with thrombin receptor-activating peptide increased both extravascular lung water and lung vascular permeability. Transfusion of day 1 platelets did not produce lung injury in any group, and LPS priming 24 hours before transfusion had no effect on lung injury. In a model of transfusion-related acute lung injury, NOD/SCID mice were susceptible to acute lung injury when challenged with H-2Kd monoclonal antibody vs. isotype control antibody. Using lung intravital microscopy, we did not detect a difference in the dynamic retention of platelets in the lung circulation in control vs. Mirasol PRT-treated groups. In conclusion, Mirasol PRT produced an increase in P-selectin expression that is storage-dependent, but transfusion of human platelets treated with Mirasol PRT into immunodeficient mice did not result in greater platelet retention in the lungs or the development of acute lung injury.

  7. Distinguishing between anti-platelet factor 4/heparin antibodies that can and cannot cause heparin-induced thrombocytopenia.

    PubMed

    Nazi, I; Arnold, D M; Warkentin, T E; Smith, J W; Staibano, P; Kelton, J G

    2015-10-01

    Many patients exposed to heparin develop antibodies against platelet factor 4 (PF4) and heparin, yet only those antibodies that activate platelets cause heparin-induced thrombocytopenia (HIT). Patients who produce anti-PF4/heparin antibodies without developing HIT either have antibodies that do not cause platelet activation or produce pathogenic antibodies at levels that are insufficient to cause HIT. Understanding the differences between anti-PF4/heparin antibodies with and without HIT will improve test methods and reduce overdiagnosis. To investigate the presence of low levels of platelet-activating antibodies in patients investigated for HIT who had anti-PF4/heparin antibodies but failed to cause platelet activation in the (14) C-serotonin release assay (SRA). We developed a platelet activation assay similar to the SRA using exogenous PF4 without added heparin (PF4-SRA). This assay was able to detect low levels of platelet-activating antibodies. We used this PF4-SRA to test for platelet-activating antibodies in patients investigated for HIT. The PF4-SRA detected platelet-activating antibodies in seven (100%) of seven SRA-positive sera even after the samples were diluted until they were no longer positive in the standard SRA. Platelet-activating antibodies were detected in 14 (36%) of 39 patients who had anti-PF4/heparin antibodies but tested negative in the SRA and did not have clinical HIT. The clinical diagnosis of HIT was confirmed by chart review and concordant with the SRA results. A subset of heparin-treated patients produce subthreshold levels of platelet-activating anti-PF4/heparin antibodies that do not cause HIT. An increase in the titer of these pathogenic antibodies, along with permissive clinical conditions, could lead to HIT. © 2015 International Society on Thrombosis and Haemostasis.

  8. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment.

    PubMed

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-12-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies.

  9. Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregation.

    PubMed

    Senis, Y A; Sangrar, W; Zirngibl, R A; Craig, A W B; Lee, D H; Greer, P A

    2003-05-01

    Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLCgamma2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions.

  10. Effects of oral contraceptives, or lanosterol, on ADP-induced aggregation and binding of /sup 125/I-fibrinogen to rat platelets

    SciTech Connect

    McGregor, L.; Toor, B.; McGregor, J.L.; Renaud, S.; Clemetson, K.J.

    1984-03-01

    The aggregation to ADP and the binding of /sup 125/I-fibrinogen to platelets from rats treated with oral contraceptives or normal platelets treated in vitro with lanosterol were compared to their respective controls. Both types of platelets showed a significant increase in ADP-induced aggregation and in binding of fibrinogen, indicating that the effect of oral contraceptives could be partly due to increased levels of lanosterol in platelet membrane.

  11. Computational evaluation of platelet activation induced by a bioprosthetic heart valve.

    PubMed

    Sirois, Eric; Sun, Wei

    2011-02-01

    It is known that bioprosthetic heart valves (BHVs) have better hemodynamics and lower thromboembolic events compared with their mechanical counterparts; however, patients implanted with BHVs still face the potential of such complications. The risk of a clinical thromboembolism is on average 0.7% per year in patients with tissue valves in sinus rhythm. In this study, we developed a computational fluid dynamic (CFD) model of a BHV implanted in an aortic root and investigated the BHV-induced platelet activation using a damage accumulation model previously applied to mechanical valves. The CFD model was validated against published experimental data, including the flow velocity profile across the valve and the transvalvular pressure drop, and close matches were obtained. Hemodynamic performance measures such as flow velocity, turbulent kinetic energy, and wall shear stress were explored. Lagrangian particle tracking was used to calculate the extent of platelet activation for central bulk flow and flow in the vicinity of the leaflets. A peak flow of 2.22 m/s was observed at 40 msec after peak systole in the vicinity of a fold at the base of the leaflets. With the platelet activation expressed as 0-100% of activation threshold levels, mean damage on one pass was 2.489 × 10(-7)% and maximum damage on one pass was 8.778 × 10(-4)%. Our results suggested that the potential for BHV-induced platelet activation was low and that the leaflet's fully open geometry might play a role in the extent of blood element damage. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    PubMed

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  13. Alleviation of viper venom induced platelet apoptosis by crocin (Crocus sativus): implications for thrombocytopenia in viper bites.

    PubMed

    Santhosh, M Sebastin; Thushara, R M; Hemshekhar, M; Sunitha, K; Devaraja, S; Kemparaju, K; Girish, K S

    2013-11-01

    Viper envenomations are characterized by prominent local and systemic manifestations including hematological alterations. Snake venom metalloproteinases (SVMPs) and phospholipase A2 (PLA2) plays crucial role in the pathophysiology of hemorrhage by targeting/altering the platelets function which may result in thrombocytopenia. Platelets undergo the classic events of mitochondria-mediated apoptotic pathway due to augmented endogenous reactive oxygen species (ROS) levels. The observed anticoagulant effects during viper envenomations could be due to exacerbated platelet apoptosis and thrombocytopenia. Moreover, antivenin treatments are ineffective against the venom-induced oxidative stress; therefore, it necessitates an auxiliary therapy involving antioxidants which can effectively scavenge the endothelium-generated/endogenous ROS and protect the platelets. The present study explored the effects of viper venom on platelet apoptosis and its amelioration by a phytochemical crocin. The study evaluated the Vipera russelli venom-induced apoptotic events including endogenous ROS generation, intracellular Ca(2+) mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation and phosphatidylserine externalization which were effectively mitigated when the venom was pre-treated with crocin. The study highlights one of the less studied features of venom-induced secondary complications i.e. platelet apoptosis and sheds light on the underlying basis for venom-induced thrombocytopenia, systemic hemorrhage and in vivo anticoagulant effect.

  14. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer.

    PubMed

    Zhou, Jun; Yuan, Jiang; Zang, Xiaopeng; Shen, Jian; Lin, Sicong

    2005-03-10

    Platelet adhesion and protein adsorption on the silicone rubber film grafted with N,N'-dimethyl-N-methacryloyloxyethyl-N-(2-carboxyethyl) ammonium (DMMCA) was studied. The grafting was carried out by means of ozone-induced method and was confirmed by ATR-FTIR and XPS investigations. The grafted films possessed relatively hydrophilic surface revealed by contact angle measurement. The blood compatibility of the grafted film was evaluated in vitro by platelet adhesion in platelet-rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG) using silicone film as the reference. No substantial platelet adhesion was observed for the grafted films incubated in PRP for 60 and 180 min. The protein absorption was also significantly reduced after incubated in bovine fibrinogen for 60 min. Both the results indicated that the blood compatibility of silicone rubber was greatly improved by ozone-induced grafting of carboxybetaine zwitterionic polymer onto its surface.

  15. Vancomycin-induced Immune Thrombocytopenia Proven by the Detection of Vancomycin-dependent Anti-platelet Antibody with Flow Cytometry

    PubMed Central

    Yamanouchi, Jun; Hato, Takaaki; Shiraishi, Sanshiro; Takeuchi, Kazuto; Yakushijin, Yoshihiro; Yasukawa, Masaki

    2016-01-01

    Vancomycin-induced thrombocytopenia is a rare adverse reaction that may be overlooked because no specific diagnostic test is currently available. We herein report a patient with vancomycin-induced immune thrombocytopenia who was diagnosed by the detection of vancomycin-dependent anti-platelet antibody with flow cytometry. An IgG antibody in the patient's serum reacted with platelets only in the presence of vancomycin. Severe thrombocytopenia gave rise to life-threatening gastrointestinal bleeding, which was quickly resolved after effective platelet transfusion following the cessation of vancomycin administration. This report suggests that the flow cytometric test is useful for the differential diagnosis of thrombocytopenia and platelet transfusion should be performed after the cessation of vancomycin administration. PMID:27746445

  16. Inducible costimulatory molecule deficiency induced imbalance of Treg and Th17/Th2 delays rejection reaction in mice undergoing allogeneic tracheal transplantation

    PubMed Central

    Xu, Jingsong; Wu, Yu; Wang, Guifang; Qin, Yanghua; Zhu, Li; Tang, Gusheng; Shen, Qian

    2014-01-01

    Objective: This study aimed to investigate the role of inducible costimulatory molecule (ICOS) pathway in the rejection reaction of mice undergoing allogeneic tracheal transplantation. Methods: The bronchus was separated from wide-type (WT) BalB/c mice and transplanted into WT BalB/c mice, C57 mice and icos-/- mice to prepare the obliterative bronchiolitis (OB) animal model. The transplanted bronchus was pathologically examined; flow cytometry was done to detect the T cell subsets and activity of the bronchus and spleen of recipient mice. Results: 21 d after transplantation, evident rejection reaction was observed and the proportion of Th2 and Th17 cells increased significantly in the bronchus and spleen in C57 mice receiving allogeneic tracheal transplantation when compared with mice with autologous transplantation, but the proportion of Treg cells was comparable between them. When compared with WT BalB/c mice, the proportion of Th2, Th17 and Treg cells reduced markedly and rejection reaction was attenuated in icos-/- mice receiving tracheal transplantation, although rejection reaction was still noted. Conclusion: icos knockout may delay the rejection reaction after tracheal transplantation, which might be ascribed to the imbalance among Th2, Th17 and Treg cells. PMID:25628788

  17. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    PubMed

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  18. Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide.

    PubMed

    Jensen, Baard Olav; Selheim, Frode; Døskeland, Stein Ove; Gear, Adrian R L; Holmsen, Holm

    2004-11-01

    The thrombin-induced platelet shape change was blocked by nitric oxide (NO), as revealed by scanning electron microscopy, light transmission, and resistive-particle volume determination. The inhibitory effect of NO was accompanied by an increase in levels of both cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) and phosphorylation of the vasodilator-stimulated phosphoprotein (VASP). However, the inhibition of the shape change was only mimicked by cAMP analogs (Sp-5,6-DClcBIMPS, 8-AHA-cAMP, and 8-CPT-cAMP) and not by cGMP analogs (8-Br-PET-cGMP, 8-Br-cGMP, and 8-pCPT-cGMP). The effect of NO on the thrombin-induced shape change was prevented by the protein kinase A (PKA) antagonists Rp-8-Br-cAMPS and Rp-cAMPS. The protein kinase G (PKG) antagonist Rp-8-CPT-cGMPS strongly inhibited PKG-mediated 46-kDa VASP Ser239 phosphorylation, but did not inhibit the thrombin-induced shape change or the PKA-mediated VASP Ser157 phosphorylation. Whereas an inhibitor of cyclic nucleotide phosphodiesterase (PDE) 3A (milrinone) mimicked the effect of NO, inhibitors of PDE2 (erythro-9-(2-hydroxy-3-nonyl)adenine) and PDE5 (dipyridamole) were poorly effective. We concluded that (1) NO was a potent and reversible inhibitor of the platelet shape change, (2) the shape change was reversible, (3) the inhibitory effect of NO was mediated through activation of PKA, (4) the onset of the NO effect coincided with VASP Ser157 phosphorylation, and (5) removal of NO and platelet shape change coincided with VASP Ser157 dephosphorylation. These findings are compatible with elevation of cGMP by NO in a compartment close to PDE3A, PKA, and VASP, leading to a local increase of cAMP able to block thrombin-induced shape change.

  19. A severe Mycoplasma pneumoniae pneumonia inducing an acute antibody-mediated pulmonary graft rejection

    PubMed Central

    Démir, Sarah; Saison, Julien; Sénéchal, Agathe; Mornex, Jean-Francois

    2017-01-01

    A 40-year-old cystic fibrosis woman with a history of double-lung transplantation 2 years previously was admitted for a progressive respiratory distress. Physical examination revealed fever (39°C) and diffuse bilateral lung crackles. Laboratory findings included severe hypoxemia and inflammatory syndrome. Bronchoalveolar lavage and serological test were positive for mycoplasma pneumonia. As the patient did not improve after 3 days of antibiotics and donor-specific HLA antibodies had been detected, an acute antibody-mediated graft rejection was treated with high-dose corticosteroids, plasma exchange, intravenous immunoglobulin, and rituximab. The patient rapidly improved. Unfortunately, 6 months after this episode, she developed a bronchiolitis obliterans syndrome with a dependence to noninvasive ventilator leading to the indication of retransplantation. This case illustrates the possible relationship between infection and humoral rejection. These two diagnoses should be promptly investigated and systematically treated in lung transplant recipients. PMID:28144069

  20. Platelet PlA2 Polymorphism and the risk for thrombosis in heparin-induced thrombocytopenia.

    PubMed

    Harris, Kenneth; Nguyen, Phan; Van Cott, Elizabeth M

    2008-02-01

    Platelet glycoprotein (GP) IIb/IIIa has an important role in platelet aggregation. A polymorphism of platelet GPIIIa (PlA2, also called HPA1b) has been associated with a higher risk of thrombosis, but its implication in heparin-induced thrombocytopenia (HIT) is unclear. To investigate the hypothesis that the PlA2 polymorphism influences the prothrombotic effects of HIT, we conducted a prospective study of 66 consecutive patients with a laboratory diagnosis of HIT. The end point of the study was the diagnosis of a thrombus within 30 days of the positive HIT test result. The Diagnostica Stago (Asnières, France) enzyme-linked immunosorbent assay was used to detect HIT antibodies, and a polymerase chain reaction assay was used to detect the PlA2 polymorphism. Of the 66 patients, thrombotic complications developed in 27 (41%). Patients with the PlA2 allele demonstrated a significantly higher thrombosis risk than did patients without (69% vs 32%; P = .0088; odds ratio, 4.68; 95% confidence interval, 1.39-15.72). The risk was stronger for arterial thrombosis and for patients 60 years or older. There was a significant association between the PlA2 polymorphism of GPIIIa and the risk of thrombosis in patients with HIT antibodies.

  1. Foraging leaf-cutting ants learn to reject Vitis vinifera ssp. vinifera plants that emit herbivore-induced volatiles.

    PubMed

    Thiele, Theresa; Kost, Christian; Roces, Flavio; Wirth, Rainer

    2014-06-01

    Leaf-cutting ants (LCAs) are dominant herbivores of the Neotropics, as well as economically important pests. Their foraging ecology and patterns/mechanisms of food selection have received considerable attention. Recently, it has been documented that LCAs exhibit a delayed rejection of previously accepted food plants following treatment with a fungicide that makes the plants unsuitable as substrate for their symbiotic fungus. Here, we investigated whether LCAs similarly reject plants with induced chemical defenses, by combining analysis of volatile emissions with dual-choice bioassays that used LCA subcolonies (Atta sexdens L.). On seven consecutive days, foraging ants were given the choice between leaf disks from untreated control plants and test plants of Vitis vinifera ssp. vinifera L. treated with the phytohormone jasmonic acid (JA) to mimic herbivore attack. Chemical analysis revealed the emission of a characteristic set of herbivore-induced volatile organic compounds (VOC) from JA-induced plants. Dual-choice experiments indicated that workers did not show any preference initially, but that they avoided JA-treated plants from day five onwards. Our finding that A. sexdens foragers learn to avoid VOC-emitting plants, which are likely detrimental to their symbiotic fungus, represents the first evidence for avoidance learning in attine ants toward plants with induced defenses.

  2. Serotonin-induced mate rejection in the female cabbage butterfly, Pieris rapae crucivora

    NASA Astrophysics Data System (ADS)

    Obara, Yoshiaki; Fukano, Yuya; Watanabe, Kenta; Ozawa, Gaku; Sasaki, Ken

    2011-11-01

    Virgin female cabbage butterflies, Pieris rapae crucivora, accept and mate with courting males, whereas mated females reject them and assume the "mate refusal posture". This study tested whether the biogenic amines, serotonin (5HT), dopamine (DA), and octopamine (OA), were responsible for this change in behavior. The results showed that 2-3-day-old virgin females fed with 5HT rejected courting males significantly more frequently compared with controls fed on sucrose. In contrast, the proportions of courting males rejected by virgin females fed with either DA or OA did not differ from sucrose-fed controls. Oral application of each amine resulted in significantly increased levels of the amine applied (or its metabolite) in the brain. The results strongly suggest that 5HT or a 5HT metabolite may be responsible for the post-mating change in behavioral response of 2-3-day-old virgin females to courting males. Similar effects of 5HT treatment were observed in 6-8-day-old virgin females, but in this case the results were only marginally different from the controls, suggesting that the effect may decline with increasing female age.

  3. Chronic lead treatment accelerates photochemically induced platelet aggregation in cerebral microvessels of mice, in vivo

    SciTech Connect

    Al Dhaheri, A.H.; El-Sabban, F.; Fahim, M.A.

    1995-04-01

    Effects of two chronic treatment levels with lead on platelet aggregation in cerebral (pial) microcirculation of the mouse were investigated. Exposure to lead was made by subcutaneous injections for 7 days of lead acetate dissolved in 5% glucose solution, vehicle. Two doses of lead were used, a low dose of 0.1 mg/kg and a high dose of 1.0 mg/kg. Adult male mice were divided into three groups, 10 each; one group was injected with vehicle (control), another was injected with the low dose, and the third was injected with the high dose. Additional mice were used for the determination of hematological parameters and for the lead level in serum of the three groups. On the eighth day, platelet aggregation in pial microvessels of these groups of mice was carried out in vivo. Animals were anesthetized (urethane, 1-2 mg/g, ip), the trachea was intubated, and a craniotomy was performed. Platelet aggregation in pial microvessels was induced photochemically, by activation of circulating sodium fluorescein (0.1 mg/25 g, iv) with an intense mercury light. The time required for the first platelet aggregate to appear in pial arterioles was significantly shorter in the lead-treated mice than in control. This effect was in a dose-dependent manner; 113 {+-} 44 sec for low dose and 71 {+-} 18 sec for high dose vs 155 {+-} 25 sec for control, P < 0.02 and P < 0.001, respectively. Between the two lead-treated groups, the high dose significantly (P < 0.05) shortened the time to first aggregate. These data evidenced an increased susceptibility to cerebrovascular thrombosis as a result of exposure to lead. 26 refs., 4 figs., 2 tabs.

  4. Collagen-induced platelet activation mainly involves the protein kinase C pathway.

    PubMed Central

    Karniguian, A; Grelac, F; Levy-Toledano, S; Legrand, Y J; Rendu, F

    1990-01-01

    This study analyses early biochemical events in collagen-induced platelet activation. An early metabolic event occurring during the lag phase was the activation of PtdIns(4,5)P2-specific phospholipase C. Phosphatidic acid (PtdOH) formation, phosphorylation of P43 and P20, thromboxane B2 (TXB2) synthesis and platelet secretion began after the lag phase, and were similarly time-dependent, except for TXB2 synthesis, which was delayed. Collagen induced extensive P43 phosphorylation, whereas P20 phosphorylation was weak and always lower than with thrombin. The dose-response curves of P43 phosphorylation and granule secretion were similar, and both reached a peak at 7.5 micrograms of collagen/ml, a dose which induced half-maximal PtdOH and TXB2 formation. Sphingosine, assumed to inhibit protein kinase C, inhibited P43 phosphorylation and secretion in parallel. However, sphingosine was not specific for protein kinase C, since a 15 microM concentration, which did not inhibit P43 phosphorylation, blocked TXB2 synthesis by 50%. Sphingosine did not affect PtdOH formation at all, even at 100 microM, suggesting that collagen itself induced this PtdOH formation, independently of TXB2 generation. The absence of external Ca2+ allowed the cleavage of polyphosphoinositides and the accumulation of InsP3 to occur, but impaired P43 phosphorylation, PtdOH and TXB2 formation, and secretion; these were only restored by adding 0.11 microM-Ca2+. In conclusion, stimulation of platelet membrane receptors for collagen initiates a PtdInsP2-specific phospholipase C activation, which is independent of external Ca2+, and might be the immediate receptor-linked response. A Ca2+ influx is indispensable to the triggering of subsequent platelet responses. This stimulation predominantly involves the protein kinase C pathway associated with secretion, and appears not to be mediated by TXB2, at least during its initial stage. Images Fig. 6. PMID:2163606

  5. Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin

    PubMed Central

    Medina, Carlos; Harmon, Shona; Inkielewicz, Iwona; Santos-Martinez, Maria Jose; Jones, Michael; Cantwell, Paula; Bazou, Despina; Ledwidge, Mark; Radomski, Marek W; Gilmer, John F

    2012-01-01

    BACKGROUND AND PURPOSE Tumour cell-induced platelet aggregation (TCIPA) facilitates cancer cell invasion, angiogenesis and the formation of metastatic foci. TCIPA can be modulated by pharmacological inhibitors of MMP-2 and ADP; however, the COX inhibitor aspirin did not prevent TCIPA. In this study, we have tested the pharmacological effects of a new group of isosorbide-based aspirin prodrugs on TCIPA. EXPERIMENTAL APPROACH TCIPA was induced in human platelets by mixing with human adenocarcinoma or fibrosarcoma cells under no flow and flow conditions. The release of gelatinases and P-selectin expression during TCIPA were studied by zymography and flow cytometry respectively. KEY RESULTS Tumour cells caused platelet aggregation. This aggregation resulted in the release of MMP-2 and a significant up-regulation of P-selectin on platelets, indicative of platelet activation. Pharmacological modulation of TCIPA revealed that ST0702, one of the aspirin prodrugs, down-regulated TCIPA while aspirin was ineffective. The deacetylated metabolite of ST0702, 5-nicotinate salicylate (ST0702 salicylate), down-regulated both ADP-stimulated platelet aggregation and TCIPA. CONCLUSIONS AND IMPLICATIONS Our results show that ST0702 was an effective inhibitor of TCIPA in vitro. Its deacetylated metabolite may contribute to the effects of ST0702 by inhibiting ADP-mediated TCIPA. PMID:22122360

  6. Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro.

    PubMed

    Schär, Michael O; Diaz-Romero, Jose; Kohl, Sandro; Zumstein, Matthias A; Nesic, Dobrila

    2015-05-01

    Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF

  7. The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering

    PubMed Central

    1987-01-01

    Platelet aggregation requires the binding of fibrinogen to its receptor, a heterodimer consisting of the plasma-membrane glycoproteins (GP) IIb and IIIa. Although the GPIIb-IIIa complex is present on the surface of unstimulated platelets, it binds fibrinogen only after platelet activation. We have used an immunogold-surface replica technique to study the distribution of GPIIb-IIIa and bound fibrinogen over broad areas of surface membranes in unstimulated, as well as thrombin-activated and ADP-activated human platelets. We found that the immunogold-labeled GPIIb-IIIa was monodispersed over the surface of unstimulated platelets, although the cell surface lacked immunoreactive fibrinogen. On thrombin-stimulated platelets, approximately 65% of the GPIIb-IIIa molecules were in clusters within the plane of the membrane. Fibrinogen, which had been released from the alpha-granules of these cells, bound to GPIIb-IIIa on the cell surface and was similarly clustered. To determine whether the receptors clustered before ligand binding, or as a consequence thereof, we studied the surface distribution of GPIIb-IIIa after stimulation with ADP, which causes activation of the fibrinogen receptor function of GPIIb-IIIa without inducing the release of fibrinogen. In the absence of added fibrinogen, the unoccupied, yet binding-competent receptors on ADP-stimulated platelets were monodispersed. The addition of fibrinogen caused the GPIIb-IIIa molecules to cluster on the cell surface. Clustering was also induced by the addition of the GPIIb-IIIa-binding domains of fibrinogen, namely the tetrapeptide Arg-Gly-Asp-Ser on the alpha-chain or the gamma-chain decapeptide gamma 402-411. These results show that receptor occupancy causes clustering of GPIIb-IIIa in activated platelets. PMID:3584243

  8. Novel antiplatelet activity of protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation.

    PubMed

    Kim, Keunyoung; Bae, Ok-Nam; Lim, Kyung-Min; Noh, Ji-Yoon; Kang, Seojin; Chung, Ka Young; Chung, Jin-Ho

    2012-12-01

    Bleeding is the most common and serious adverse effect of currently available antiplatelet drugs. Many efforts are being made to develop novel antithrombotic agents without bleeding risks. Shear stress-induced platelet aggregation (SIPA), which occurs under abnormally high shear stress, plays a crucial role in the development of arterial thrombotic diseases. Here, we demonstrate that protocatechuic acid (PCA), a bioactive phytochemical from Lonicera (honeysuckle) flowers, selectively and potently inhibits high shear (>10,000 s(-1))-induced platelet aggregation. In isolated human platelets, PCA decreased SIPA and attenuated accompanying platelet activation, including intracellular calcium mobilization, granule secretion, and adhesion receptor expression. The anti-SIPA effect of PCA was mediated through blockade of von Willebrand factor binding to activated glycoprotein Ib, a primary and initial event for the accomplishment of SIPA. Conspicuously, PCA did not inhibit platelet aggregation induced by other endogenous agonists like collagen, thrombin, or ADP that are important in both pathological thrombosis and normal hemostasis. Antithrombotic effects of PCA were confirmed in vivo in a rat arterial thrombosis model, where PCA significantly delayed the arterial occlusion induced by FeCl(3). Of particular note, PCA did not increase bleeding times in a rat tail transection model, whereas conventional antiplatelet drugs, aspirin, and clopidogrel substantially prolonged it. Collectively, these results suggest that PCA may be a novel antiplatelet agent that can prevent thrombosis without increasing bleeding risks.

  9. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    PubMed Central

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  10. Sepsis induced by cecal ligation and perforation (CLP) alters nucleotidase activities in platelets of rats.

    PubMed

    Pereira, Renata S; Bertoncheli, Claudia M; Adefegha, Stephen A; Castilhos, Lívia G; Silveira, Karine L; Rezer, João Felipe P; Doleski, Pedro H; Abdalla, Fátima H; Santos, Karen F; Leal, Claudio A M; Santos, Roberto C V; Casali, Emerson A; Moritz, Cesar E J; Stainki, Daniel R; Leal, Daniela B R

    2017-10-01

    Sepsis is a potentially lethal condition, and it is associated with platelet alterations. The present study sought to investigate the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'-nucleotidase, and ecto-adenosine deaminase (E-ADA) in the platelets of rats that were induced with sepsis. Male Wistar rats were divided into three groups of ten animals each: a negative control group (normal; NC); a group that underwent surgical procedures (sham); and a group that underwent cecal ligation and perforation (CLP). The induction of sepsis was confirmed by bacteremia, and the causative pathogen identified was Escherichia coli. Hematological parameters showed leukocytosis and thrombocytopenia in animals in the septic group. The results also revealed that there were significant (p < 0.05) increases in adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolyses, and in the deamination of adenosine in the CLP group compared to the sham and control groups. Conversely, ADP hydrolysis was significantly decreased (p < 0.05) in the CLP group compared to the sham and control groups. Purine levels were analyzed by high-performance liquid chromatography (HPLC) in serum samples from control, sham, and CLP groups. Increased concentrations of ATP, adenosine, and inosine were found in the CLP group compared to the sham and control groups. Conversely, the concentrations of ADP and AMP in the CPL group were not significantly altered. We suggest that alterations in hematological parameters, nucleotide hydrolysis in platelets, and nucleotide concentrations in serum samples of rats with induced sepsis may be related to thromboembolic events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preventing Rejection

    MedlinePlus

    ... medications work best. These medications work in different phases of the immune response to minimize side effects ... effective immunosuppression. Clinical immunosuppression usually occurs in three phases: induction, maintenance and anti-rejection. Reference and Publication ...

  12. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets.

    PubMed

    Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono-Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi; Eto, Koji

    2017-03-01

    Donor-independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature-dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen-activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC-derived GPIbα(+) platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP-457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP-457 blocked GPIbα shedding from iPSC platelets at a lower half-maximal inhibitory concentration than panmetalloproteinase inhibitor GM-6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP-457 exhibited improved GPIbα-dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP-457 exerted better hemostatic function in vivo. Our findings suggest that KP-457, unlike GM-6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC-derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720-730.

  13. Xenotransplantation of human cultured parathyroid progenitor cells into mouse peritoneum does not induce rejection reaction.

    PubMed

    Nawrot, Ireneusz; Woźniewicz, Bogdan; Szmidt, Jacek; Śladowski, Dariusz; Zając, Krzysztof; Chudziński, Witold

    2014-01-01

    Parathyroid progenitor cells devoid of immunogenic antigens were used for human allotransplantation. Although there were many potential reasons for the expiry of transplant activity in humans, we decided to exclude a subclinical form of rejection reaction, and test the rejection reaction in an animal model. Experiments were carried out on 40 conventional male mice in their third month of life. The animals were housed in groups of 10 per cage in 4 cages with fitted water dispensers and fed a conventional diet based on standard pellet food. They were divided into four groups of 10 animals each, three experimental groups and one control group. Identified progenitor cells were stored in a cell bank. After testing the phenotype, viability, and absence of immunogenic properties, the cells were transplanted into mouse peritoneum cavity. Animals were observed for 9 weeks. At 9 weeks of observation, the mean serum PTH concentration in the experimental groups was 2.0-2.5 pg/ml, while in the control group it did not exceed 1.5 pg/ml. The immunohistochemical assays demonstrated that millions of viable cells with a phenotype identical to the endocrine cells had survived in the peritoneum. Histologic specimens from different internal organs stained for PTH revealed positive cells labelled with anti-PTH Ab in the intestinal lamina, brain, liver, and spleen. In the present paper we have demonstrated that xenotransplantation may be used as a model for an explanation of the immunogenic properties of cells generated from postnatal organs for regenerative therapy.

  14. Protein Kinase C isoform epsilon (ε) negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets

    PubMed Central

    Bynagari-Settipalli, Yamini S; Lakhani, Parth; Jin, Jianguo; Bhavaraju, Kamala; Rico, Mario C.; Kim, Soochong; Woulfe, Donna; Kunapuli, Satya P

    2012-01-01

    Objective Members of Protein Kinase C (PKC) family are shown to positively and negatively regulate platelet activation. Although positive regulatory roles are extensively studied, negative regulatory roles of PKCs are poorly understood. In this study we investigated the mechanism and specific isoforms involved in PKC-mediated negative regulation of ADP-induced functional responses. Methods and Results A pan-PKC inhibitor GF109203X potentiated ADP-induced cPLA2 phosphorylation and thromboxane generation, as well as ERK activation and intracellular calcium (Ca2+i) mobilization, two signaling molecules, upstream of cPLA2 activation. Thus, PKCs inhibit cPLA2 activation by inhibiting ERK and Ca2+i mobilization. Since, the inhibitor of Classical PKC isoforms, GO-6976 did not affect ADP-mediated thromboxane generation, we investigated the role of novel class of PKC isoforms. ADP- induced thromboxane generation, calcium mobilization and ERK phosphorylation were potentiated in PKCε null murine platelets compared to platelets from wild type (WT) littermates. Interestingly, when thromboxane release is blocked, ADP-induced aggregation in PKCε KO and WT was similar, suggesting that PKCε does not affect ADP-induced aggregation directly. PKCε knockout mice exhibited shorter times to occlusion in FeCl3-induced arterial injury model and shorter bleeding times in tail bleeding experiments. Conclusion We conclude that PKCε negatively regulates ADP-induced thromboxane generation in platelets and offers protection against thrombosis. PMID:22362759

  15. Regulation of hormone-induced Ca sup 2+ mobilization in the human platelets

    SciTech Connect

    Crouch, M.F.; Lapetina, E.G. )

    1990-03-01

    {alpha}-Thrombin, {gamma}-thrombin, and platelet-activating factor each stimulated the mobilization of intracellular Ca{sup 2+} stores in aspirin-treated human platelets. This was followed by desensitization of the receptors, as shown by the return of the Ca{sup 2+} level to basal values and by the fact that a subsequent addition of a second different agonist, but not the same agonist, could again elicit a response. Epinephrine, acting on {alpha}{sub 2}-adrenergic receptors, was by itself ineffective at mobilizing Ca{sup 2+} stores. However, when added after the thrombin-induced response, epinephrine could evoke a considerable release of Ca{sup 2+} from cellular stores. This appeared to be due to epinephrine recoupling thrombin receptors to phospholipase C. In support of this, epinephrine was able to induce the formation of inositol triphosphate when added after the response to thrombin had also become desensitized. Alone, epinephrine was without effect. Pre-activation of protein kinase C with the phorbol ester abolished these effects of epinephrine, suggesting that epinephrine was working by activating a protein which could be inactivated by phosphorylation. The current work is to characterize this protein that may be a member of the G{sub i}, GTP-binding protein family.

  16. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation.

    PubMed

    Arimura, Shin-ichiro; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Abeyama, Kazuhiro; Tabata, Masashi; Shimoda, Toru; Ogomi, Daisuke; Matsusaki, Michiya; Kato, Shinya; Ito, Takashi; Sugihara, Kazumasa; Akashi, Mitsuru; Hashiguchi, Teruto; Maruyama, Ikuro

    2007-05-01

    We reported earlier that hydroxyapatite (HA) formed on/in agarose gels (HA/agarose) produced by alternate soaking process is a bone-filling material possessing osteoconductive and hemostatic effects. This process could allow us to make bone-like apatite that was formed on/in organic polymer hydrogel matrices. Here, we investigated the mechanism of hemostasis induced by HA/agarose and found that HA/agarose, but not agarose or HA powder, significantly shortened activated partial thromboplastin time (APTT). While HA/agarose did not show significant platelet aggregation, it markedly enhanced adenosine diphosphate (ADP)-induced platelet aggregation. Moreover, Western blot analysis revealed selective adsorption of vitronectin onto HA/agarose. We also observed marked differences between HA powder and HA/agarose in their XRD patterns. The crystallinity of HA powder was much higher compared to that of HA/agarose. Furthermore, 50-100 nm of tube-form aggregations was observed in HA powder on the other hand 100-200 nm of particles was observed in HA/agarose by SEM observation. Thus 100-200 nm of low crystallized particles on the surface structure of HA/agarose may play an important role in hemostasis. Our results demonstrated a crucial role of HA/agarose in the mechanism of hemostasis and suggested a potential role for HA/agarose as a bone-grafting material.

  17. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    SciTech Connect

    Walker, G.; Bourguignon, L.Y. )

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  18. Inhibitory effects and mechanisms of high molecular-weight phlorotannins from Sargassum thunbergii on ADP-induced platelet aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Yuxi; Wang, Changyun; Li, Jing; Guo, Qi; Qi, Hongtao

    2009-09-01

    We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA ( P<0.01) and increasing the synthesis of 6-keto-PGF1α, thus changing the plasma TXB2/6-keto-PGF1α balance when the platelets were activated ( P<0.01). Therefore, STP altered AA metabolism and these findings partly revealed the molecular mechanism by which STP inhibits ADP-induced platelet aggregation.

  19. Platelet and endothelial cell P-selectin are required for host defense against Klebsiella pneumoniae-induced pneumosepsis.

    PubMed

    de Stoppelaar, S F; Van't Veer, C; Roelofs, J J T H; Claushuis, T A M; de Boer, O J; Tanck, M W T; Hoogendijk, A J; van der Poll, T

    2015-06-01

    Sepsis is associated with activation of platelets and endothelial cells accompanied by enhanced P-selectin surface expression. Both platelet- and endothelial P-selectin have been associated with leukocyte recruitment and induction of inflammatory alterations. Klebsiella (K.) pneumoniae is a common human sepsis pathogen, particularly in the context of pneumonia. Wild-type (WT) and P-selectin-deficient (Selp(-/-) ) mice or bone marrow chimeric mice were infected with K. pneumoniae via the airways to induce pneumosepsis. Mice were sacrificed during early (12 h after infection) or late-stage (44 h) sepsis for analyses, or followed in a survival study. Selp(-/-) mice displayed 10-1000-fold higher bacterial burdens in the lungs, blood and distant organs during late-stage sepsis. P-selectin deficiency did not influence leukocyte recruitment to the lungs, but was associated with decreased platelet-monocyte complexes and increased cytokine release. Bone marrow transfer studies revealed a role for both platelet and endothelial cell P-selectin as mice deficient in platelet or endothelial cell P-selectin displayed an intermediate phenotype in bacterial loads and survival compared with full wild-type or full knockout control mice. Both platelet and endothelial cell P-selectin contribute to host defense during Klebsiella pneumosepsis. © 2015 International Society on Thrombosis and Haemostasis.

  20. Prostaglandin E1-induced deconsolidation of thrombin-activated platelet aggregates I: ultrastructure-computer image analysis.

    PubMed

    Salganicoff, L; Russo, M A; Sevy, R W

    1999-06-15

    We have compared, at an ultrastructural-computer image morphometric level, the relaxation induced by Mg-ethylene-bis-oxyethylenenitrilo-tetracetic acid and prostaglandin E1 on a model of a thrombin-activated platelet aggregate. Mg-ethylene-bisoxyethylenenitrilo-tetracetic acid produced a small increase of 5.0% of the intercellular space over the control levels, and a decrease of 10.0+/-1.3% of the cross-sectional area of the platelets, with no apparent cytoskeletal alterations. In contrast, the prostaglandin El-treated preparation shows a 360% increase in the intercellular space and a decrease of the average platelet cross-sectional area of 30.0+/-2.0% with marked cytoskeletal alterations. We use the term "deconsolidation" to describe this effect. The enlargement of the intercellular space allows the observation of two types of contacts: (1) a type S (segmental) complex, of approximately 200-nm length that maintains a narrow interplatelet gap of 20-30 nm, filled with a dense intercellular material, and (2) a type R (reticular) complex, formed by scant focal regions of the plasma membrane from opposing platelets that are connected through a mesh of fibrillar or granular material contained within a variable-size space. We hypothesize that deconsolidation is caused by fluid loss from the platelets into the intercellular space. As a result, platelet volume decreases and intercellular space increases.

  1. Phage-Derived Protein Induces Increased Platelet Activation and Is Associated with Mortality in Patients with Invasive Pneumococcal Disease

    PubMed Central

    Cremers, Amelieke J.; van der Gaast-de Jongh, Christa E.; Ferwerda, Gerben; Meis, Jacques F.; Roeleveld, Nel; Bentley, Stephen D.; Pastura, Alexander S.; van Hijum, Sacha A. F. T.; van der Ven, Andre J.; de Mast, Quirijn; Zomer, Aldert

    2017-01-01

    ABSTRACT To improve our understanding about the severity of invasive pneumococcal disease (IPD), we investigated the association between the genotype of Streptococcus pneumoniae and disease outcomes for 349 bacteremic patients. A pneumococcal genome-wide association study (GWAS) demonstrated a strong correlation between 30-day mortality and the presence of the phage-derived gene pblB, encoding a platelet-binding protein whose effects on platelet activation were previously unknown. Platelets are increasingly recognized as key players of the innate immune system, and in sepsis, excessive platelet activation contributes to microvascular obstruction, tissue hypoperfusion, and finally multiorgan failure, leading to mortality. Our in vitro studies revealed that pblB expression was induced by fluoroquinolones but not by the beta-lactam antibiotic penicillin G. Subsequently, we determined pblB induction and platelet activation by incubating whole blood with the wild type or a pblB knockout mutant in the presence or absence of antibiotics commonly administered to our patient cohort. pblB-dependent enhancement of platelet activation, as measured by increased expression of the α-granule protein P-selectin, the binding of fibrinogen to the activated αIIbβ3 receptor, and the formation of platelet-monocyte complex occurred irrespective of antibiotic exposure. In conclusion, the presence of pblB on the pneumococcal chromosome potentially leads to increased mortality in patients with an invasive S. pneumoniae infection, which may be explained by enhanced platelet activation. This study highlights the clinical utility of a bacterial GWAS, followed by functional characterization, to identify bacterial factors involved in disease severity. PMID:28096486

  2. Post-translational modification of manganese superoxide dismutase in acutely rejecting cardiac transplants: role of inducible nitric oxide synthase.

    PubMed

    Nilakantan, Vani; Halligan, Nadine L N; Nguyen, Thanh K; Hilton, Gail; Khanna, Ashwani K; Roza, Allan M; Johnson, Christopher P; Adams, Mark B; Griffith, Owen W; Pieper, Galen M

    2005-10-01

    Nitration of a critical tyrosine residue in the active site of manganese superoxide dismutase (MnSOD) can lead to enzyme inactivation. In this study, we examined the effect of inducible nitric oxide synthase (iNOS) on MnSOD expression, activity and nitration in acutely rejecting cardiac transplants. Lewis (isograft) or Wistar-Furth (allograft) donor hearts were transplanted into Lewis recipient rats. Some rats received L-N6-(1-iminoethyl) lysine (l-NIL), a specific iNOS inhibitor. Protein nitration was determined by immunohistochemical, Western blot and slot-blot analyses. MnSOD enzyme activity and gene expression were determined using Western, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoprecipitation techniques. MnSOD protein levels were decreased 50% by post-operative day 6 (POD 6), which was prevented by L-NIL. RT-PCR analysis indicated that this decrease could not be explained by any changes in MnSOD mRNA. MnSOD enzyme activity but not protein was decreased at POD 5 in untreated allografts. The loss of MnSOD activity at POD 5 was also prevented by L-NIL. Immunoreactive nitrotyrosine was apparent in untreated allografts at POD 6. Slot-blot analysis indicated that nitrotyrosine formation in allografts could be blocked by L-NIL. Nitration of MnSOD was evident upon immunoprecipitation of MnSOD followed by Western blotting for nitrotyrosine. These results suggest that the decreased MnSOD enzyme activity in acutely rejecting cardiac allografts can be attributed to a post-translational modification related to nitration arising via an iNOS-dependent pathway. This could be a potential major source of amplified oxidative stress in acute graft rejection.

  3. Differential Inhibition of Human Atherosclerotic Plaque–Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies

    PubMed Central

    Jamasbi, Janina; Megens, Remco T.A.; Bianchini, Mariaelvy; Münch, Götz; Ungerer, Martin; Faussner, Alexander; Sherman, Shachar; Walker, Adam; Goyal, Pankaj; Jung, Stephanie; Brandl, Richard; Weber, Christian; Lorenz, Reinhard; Farndale, Richard; Elia, Natalie; Siess, Wolfgang

    2015-01-01

    Background Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential. Objectives This study sought to compare compounds interfering with platelet GPVI–atherosclerotic plaque interaction to improve current antiatherothrombotic therapy. Methods Human atherosclerotic plaque–induced platelet aggregation was measured in anticoagulated blood under static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F, a human recombinant sFab against GPVI dimers. Results GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by 93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow, upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to GPVI-Fc–free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release. Conclusions Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s) suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding. The compound-specific differences

  4. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    PubMed

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.

  5. Thrombocytopenia in dogs induced by granulocyte-macrophage colony-stimulating factor: increased destruction of circulating platelets.

    PubMed

    Nash, R A; Burstein, S A; Storb, R; Yang, W; Abrams, K; Appelbaum, F R; Boone, T; Deeg, H J; Durack, L D; Schuening, F G

    1995-09-01

    Administration of recombinant canine granulocyte-macrophage colony-stimulating factor (rcGM-CSF) to normal dogs in previous studies induced an increase in peripheral blood neutrophils and a dose-dependent decrease in platelet counts. In six dogs that received the highest tested dose of rcGM-CSF (50 micrograms/kg/d) for a minimum of 12 days, the mean nadir of the platelet count was 46,000/microL (range, 4,000 to 91,000/microL) on day 9 +/- 1.1 after starting therapy, compared with a mean baseline platelet count of 398,000/microL (range, 240,000 to 555,000/microL). In three dogs, survival of autologous 111In-labeled platelets was reduced from a mean of 4.9 days to 1.3 days during the administration of rcGM-CSF. Biodistribution studies with gamma camera imaging indicated that there was an increase in mean hepatic uptake during the administration of rcGM-CSF, from 15% to 44% of the total injected 111In-labeled platelets at 2 hours, whereas splenic uptake was not significantly changed. In contrast, in two evaluable dogs who were recipients of 111In-labeled platelets from matched allogeneic donors receiving rcGM-CSF, platelet survival was not reduced and no increased hepatic uptake was noted. A third dog became alloimmunized to the matched donor platelets and was not evaluable. Immunohistologic studies of liver and spleen were performed with monoclonal antibodies specific for canine gpIIb/IIIa and P-selectin in dogs treated with rcGM-CSF and compared with untreated controls. On treatment, a marked reduction of platelets in the red pulp of the spleen was evident, and in general, the presence of platelet antigen in the liver was unchanged. Therefore, platelets were not being sequestered, but destroyed in the liver and spleen. The platelet antigens, P-selectin and gpIIb/IIIa, were identified in association with Kupffer cells in the liver, but no difference in the number of distribution of these Kupffer cells was found between controls and rcGM-CSF-treated dogs. In the

  6. A serotonin-induced N-glycan switch regulates platelet aggregation

    PubMed Central

    Mercado, Charles P.; Quintero, Maritza V.; Li, Yicong; Singh, Preeti; Byrd, Alicia K.; Talabnin, Krajang; Ishihara, Mayumi; Azadi, Parastoo; Rusch, Nancy J.; Kuberan, Balagurunathan; Maroteaux, Luc; Kilic, Fusun

    2013-01-01

    Serotonin (5-HT) is a multifunctional signaling molecule that plays different roles in a concentration-dependent manner. We demonstrated that elevated levels of plasma 5-HT accelerate platelet aggregation resulting in a hypercoagulable state in which the platelet surface becomes occupied by several glycoproteins. Here we study the novel hypothesis that an elevated level of plasma 5-HT results in modification of the content of N-glycans on the platelet surface and this abnormality is associated with platelet aggregation. Mass spectrometry of total surface glycoproteins on platelets isolated from wild-type mice infused for 24 hours with saline or 5-HT revealed that the content of glycoproteins on platelets from 5-HT-infused mice switched from predominantly N-acetyl-neuraminic acid (Neu5Ac) to N-glycolyl-neuraminic acid (Neu5Gc). Cytidine monophosphate-N-acetylneuraminate hydroxylase (CMAH) synthesizes Neu5Gc from Neu5Ac. Up-regulation of Neu5Gc content on the platelet surface resulted from an increase in the catalytic function, not expression, of CMAH in platelets of 5-HT-infused mice. The highest level of Neu5Gc was observed in platelets of 5-HT-infused, 5-HT transporter-knock out mice, suggesting that the surface delineated 5-HT receptor on platelets may promote CMAH catalytic activity. These new findings link elevated levels of plasma 5-HT to altered platelet N-glycan content, a previously unrecognized abnormality that may favor platelet aggregation. PMID:24077408

  7. A serotonin-induced N-glycan switch regulates platelet aggregation.

    PubMed

    Mercado, Charles P; Quintero, Maritza V; Li, Yicong; Singh, Preeti; Byrd, Alicia K; Talabnin, Krajang; Ishihara, Mayumi; Azadi, Parastoo; Rusch, Nancy J; Kuberan, Balagurunathan; Maroteaux, Luc; Kilic, Fusun

    2013-09-30

    Serotonin (5-HT) is a multifunctional signaling molecule that plays different roles in a concentration-dependent manner. We demonstrated that elevated levels of plasma 5-HT accelerate platelet aggregation resulting in a hypercoagulable state in which the platelet surface becomes occupied by several glycoproteins. Here we study the novel hypothesis that an elevated level of plasma 5-HT results in modification of the content of N-glycans on the platelet surface and this abnormality is associated with platelet aggregation. Mass spectrometry of total surface glycoproteins on platelets isolated from wild-type mice infused for 24 hours with saline or 5-HT revealed that the content of glycoproteins on platelets from 5-HT-infused mice switched from predominantly N-acetyl-neuraminic acid (Neu5Ac) to N-glycolyl-neuraminic acid (Neu5Gc). Cytidine monophosphate-N-acetylneuraminate hydroxylase (CMAH) synthesizes Neu5Gc from Neu5Ac. Up-regulation of Neu5Gc content on the platelet surface resulted from an increase in the catalytic function, not expression, of CMAH in platelets of 5-HT-infused mice. The highest level of Neu5Gc was observed in platelets of 5-HT-infused, 5-HT transporter-knock out mice, suggesting that the surface delineated 5-HT receptor on platelets may promote CMAH catalytic activity. These new findings link elevated levels of plasma 5-HT to altered platelet N-glycan content, a previously unrecognized abnormality that may favor platelet aggregation.

  8. Inducible expression of indoleamine 2,3-dioxygenase attenuates acute rejection of tissue-engineered lung allografts in rats.

    PubMed

    Ebrahimi, Ammar; Kardar, Gholam Ali; Teimoori-Toolabi, Ladan; Toolabi, LadanTeimoori; Ghanbari, Hossein; Sadroddiny, Esmaeil

    2016-01-15

    Lung disease remains one of the principal causes of death worldwide and the incidence of pulmonary diseases is increasing. Complexity in treatments and shortage of donors leads us to develop new ways for lung disease treatment. One promising strategy is preparing engineered lung for transplantation. In this context, employing new immunosuppression strategies which suppresses immune system locally rather than systemic improves transplant survival. This tends to reduce the difficulties in transplant rejection and the systemic impact of the use of immunosuppressive drugs which causes side effects such as serious infections and malignancies. In our study examining the immunosuppressive effects of IDO expression, we produced rat lung tissues with the help of decellularized tissue, differentiating medium and rat mesenchymal stem cells. Transduction of these cells by IDO expressing lentiviruses provided inducible and local expression of this gene. To examine immunosuppressive properties of IDO expression by these tissues, we transplanted these allografts into rats and, subsequently, evaluated cytokine expression and histopathological properties. Expression of inflammatory cytokines IFNγ and TNFα were significantly downregulated in IDO expressing allograft. Moreover, acute rejection score of this experimental group was also lower comparing other two groups and mRNA levels of FOXP3, a regulatory T cell marker, upregulated in IDO expressing group. However, infiltrating lymphocyte counting did not show significant difference between groups. This study demonstrates that IDO gene transfer into engineered lung allograft tissues significantly attenuates acute allograft damage suggesting local therapy with IDO as a strategy to reduce the need for systemic immunosuppression and, thereby, its side effects.

  9. Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito.

    PubMed

    Yoshida, Shigeto; Sudo, Toshiki; Niimi, Masashi; Tao, Lian; Sun, Bing; Kambayashi, Junichi; Watanabe, Hiroyuki; Luo, Enjie; Matsuoka, Hiroyuki

    2008-02-15

    During blood feeding, mosquitoes inject saliva containing a mixture of molecules that inactivate or inhibit various components of the hemostatic response to the bite injury as well as the inflammatory reactions produced by the bite, to facilitate the ingestion of blood. However, the molecular functions of the individual saliva components remain largely unknown. Here, we describe anopheline antiplatelet protein (AAPP) isolated from the saliva of Anopheles stephensi, a human malaria vector mosquito. AAPP exhibited a strong and specific inhibitory activity toward collagen-induced platelet aggregation. The inhibitory mechanism involves direct binding of AAPP to collagen, which blocks platelet adhesion to collagen and inhibits the subsequent increase in intracellular Ca(2+) concentration ([Ca(2+)]i). The binding of AAPP to collagen effectively blocked platelet adhesion via glycoprotein VI (GPVI) and integrin alpha(2)beta(1). Cell adhesion assay showed that AAPP inhibited the binding of GPVI to collagen type I and III without direct effect on GPVI. Moreover, intravenously administered recombinant AAPP strongly inhibited collagen-induced platelet aggregation ex vivo in rats. In summary, AAPP is a malaria vector mosquito-derived specific antagonist of receptors that mediate the adhesion of platelets to collagen. Our study may provide important insights for elucidating the effects of mosquito blood feeding against host hemostasis.

  10. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells

    PubMed Central

    Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu

    2010-01-01

    Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095

  11. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity.

    PubMed

    Luzak, Boguslawa; Kassassir, Hassan; Rój, Edward; Stanczyk, Lidia; Watala, Cezary; Golanski, Jacek

    2017-02-01

    Hop cones (Humulus lupulus L.), very rich source of phenolic compounds, possessing anticancer, antioxidant and anti-inflammatory activities, are considered as beneficial diet ingredients improving human health. In this study, the antiplatelet action of xanthohumol (XN), the principal flavonoid in hop cones, was investigated. XN significantly attenuated ADP-induced blood platelet aggregation (97.2 ± 35.7 AU for 6 μg/ml of XN vs. 120.4 ± 30.1 AU for 0.17% dimethyl sulfoxide (DMSO), p < 0.001) and significantly reduced the expression of fibrinogen receptor (activated form of GPIIbIIIa) on platelets' surface (47.6 ± 15.8 for 1.5 μg/ml XN, 44.6 ± 17.3% for 3 μg/ml XN vs. 54.5 ± 19.2% for control or 43.3 ± 18.4% for 6 μg/ml XN vs. 49.7 ± 19.4% for 0.17% DMSO, p < 0.05 or less). These findings suggest that the phenolic compounds originating from hops (XN) have a novel role as antiplatelet agents and can likely be used as dietary supplements in prophylactic approaches.

  12. Alloimmune refractoriness to platelet transfusions.

    PubMed

    Sandler, S G

    1997-11-01

    Patients who are transfused on multiple occasions with red cells or platelets may develop platelet-reactive alloantibodies and experience decreased clinical responsiveness to platelet transfusion. This situation, conventionally described as "refractoriness to platelet transfusions," is defined by an unsatisfactory low post-transfusion platelet count increment. If antibodies to HLAs are detected, improved clinical outcomes may result from transfusions of HLA-matched or donor-recipient cross-matched platelets. Because refractoriness is an expected, frequently occurring phenomenon, prevention of HLA alloimmunization is an important management strategy. Prevention strategies include efforts to decrease the number of transfusions, filtration of cellular components to reduce the number of HLA-bearing leukocytes, or pretransfusion ultraviolet B irradiation of cellular components to decrease their immunogenicity. Other investigational approaches include reducing the expression of HLAs on transfused platelets, inducing a transient reticuloendothelial system blockade by infusions of specialized immunoglobulin products, or transfusing semisynthetic platelet substitutes (thromboerythrocytes, thrombospheres) or modified platelets (infusible platelet membranes, lyophilized platelets).

  13. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation.

    PubMed

    Vanassche, Thomas; Kauskot, Alexandre; Verhaegen, Jan; Peetermans, Willy E; van Ryn, Joanne; Schneewind, Olaf; Hoylaerts, Marc F; Verhamme, Peter

    2012-06-01

    Interactions of Staphylococcus aureus (S. aureus) and platelets play an important role in the pathogenesis of intravascular infections such as infective endocarditis (IE). A typical feature of S. aureus is the ability to generate thrombin activity through the secretion of two prothrombin activating molecules, staphylocoagulase and von Willebrand factor-binding protein (vWbp), which bind to human prothrombin to form the enzymatically active staphylothrombin complex. The role of staphylothrombin in the interaction between S. aureus and platelets has not yet been studied. We found that in contrast with thrombin, staphylothrombin did not directly activate human platelets. However, the staphylothrombin-mediated conversion of fibrinogen to fibrin initiated platelet aggregation and secondary activation and facilitated S. aureus-platelet interactions. Both the genetic absence of staphylocoagulase and vWbp and pharmacological inhibition of staphylothrombin increased the lag time to aggregation, and reduced platelet trapping by S. aureus in high shear stress conditions. The combined inhibition of staphylothrombin and immunoglobulin binding to platelets completely abolished the ability of S. aureus to aggregate platelets in vitro. In conclusion, although staphylothrombin did not directly activate platelets, the formation of a fibrin scaffold facilitated bacteria-platelet interaction, and the inhibition of staphylothrombin resulted in a reduced activation of platelets by S. aureus.

  14. In vitro shear stress-induced platelet activation: sensitivity of human and bovine blood.

    PubMed

    Lu, Qijin; Hofferbert, Bryan V; Koo, Grace; Malinauskas, Richard A

    2013-10-01

    As platelet activation plays a critical role in physiological hemostasis and pathological thrombosis, it is important in the overall hemocompatibility evaluation of new medical devices and biomaterials to assess their effects on platelet function. However, there are currently no widely accepted in vitro test methods to perform this assessment. In an effort to develop effective platelet tests for potential use in medical device evaluation, this study compared the sensitivity of platelet responses to shear stress stimulation of human and bovine blood using multiple platelet activation markers. Fresh whole blood samples anticoagulated with heparin or anticoagulant citrate dextrose, solution A (ACDA) were exposed to shear stresses up to 40 Pa for 2 min using a cone-and-plate rheometer model. Platelet activation was characterized by platelet counts, platelet surface P-selectin expression, and serotonin release into blood plasma. The results indicated that exposure to shear stresses above 20 Pa caused significant changes in all three of the platelet markers for human blood and that the changes were usually greater with ACDA anticoagulation than with heparin. In contrast, for bovine blood, the markers did not change with shear stress stimulation except for plasma serotonin in heparin anticoagulated blood. The differences observed between human and bovine platelet responses suggest that the value of using bovine blood for in vitro platelet testing to evaluate devices may be limited.

  15. The Heparin-Induced Thrombocytopenia and Thrombosis Syndrome: Treatment with Intraarterial Urokinase and Systemic Platelet Aggregation Inhibitors

    SciTech Connect

    Murphy, Kenneth D.; McCrohan, Gerard; DeMarta, Deborah A.; Shirodkar, Nitin B.; Kwon, Oun J.; Chopra, Paramjit S.

    1996-03-15

    We report a case of the heparin-induced thrombocytopenia and thrombosis syndrome presenting with acute ischemia of a lower limb. The patient was successfully treated by withdrawal of heparin products, intraarterial urokinase, and platelet anti-aggregation therapy consisting of Dextran and aspirin.

  16. EDTA-induced changes in platelet structure and function: adhesion and spreading.

    PubMed

    White, J G; Escolar, G

    2000-02-01

    Ethylenediamine tetraacetic acid (EDTA) is an effective anticoagulant, but unfortunately causes structural, biochemical and functional damage to human platelets. Some of the functional injuries, such as adhesion to and spreading on surfaces, are considered irreversible. The present investigation has evaluated that hypothesis. Our findings indicate that platelets from EDTA platelet-rich plasma (PRP) or CCD PRP to which EDTA has been added do not adhere to glass or plastic surfaces. However, when platelets from EDTA PRP or CCD PRP containing added EDTA are washed and resuspended under conditions reported to cause irreversible dissociation of the fibrinogen receptor, GPIIb/IIIa, then washed and resuspended in buffer containing Ca2+ and Mg2+ ions will adhere and spread in the same manner as platelets not exposed to EDTA. The ability to recover adhesive function may explain why EDTA platelets are able to sustain clot retraction as well as CCD platelets.

  17. Rejected applications

    PubMed Central

    2014-01-01

    Objective: To review membership application materials (especially rejected applications) to the American Academy of Neurology (AAN) during its formative years (1947–1953). Methods: Detailed study of materials in the AAN Historical Collection. Results: The author identified 73 rejected applications. Rejected applicants (71 male, 2 female) lived in 25 states. The largest number was for the Associate membership category (49). These were individuals “in related fields who have made and are making contributions to the field of neurology.” By contrast, few applicants to Active membership or Fellowship status were rejected. The largest numbers of rejectees were neuropsychiatrists (19), neurosurgeons (16), and psychiatrists (14). Conclusion: The AAN, established in the late 1940s, was a small and politically vulnerable organization. A defining feature of the fledgling society was its inclusiveness; its membership was less restrictive than that of the older American Neurological Association. At the same time, the society needed to preserve its core as a neurologic society rather than one of psychiatry or neurosurgery. Hence, the balance between inclusiveness and exclusive identity was a difficult one to maintain. The Associate membership category, more than any other, was at the heart of this issue of self-definition. Associate members were largely practitioners of psychiatry or neurosurgery. Their membership was a source of consternation and was to be carefully been held in check during these critical formative years. PMID:24944256

  18. Giant Platelets in Platelet Donors – A Blessing in Disguise?

    PubMed Central

    Choudhury, Nabajyoti; Ray, Deepanjan

    2015-01-01

    Introduction Inherited thrombocytopenias, including inherited giant platelet disorders (IGPD) are relatively rare, but their prevalence is probably underestimated. Harris platelet syndrome, the most common IGPD reported from Indian subcontinent, mostly from eastern part, is characterised by a low platelet count, high mean platelet volume (MPV) and absence of bleeding. Aim A short study was conducted to assess the prevalence of giant platelets in voluntary donors of single donor platelets (SDP) and analyse the effect of transfusion of such SDPs in patients. Materials and Methods Voluntary donors of SDPs were screened as per standard guidelines prior to the procedure. A complete blood count (including MPV) along with a peripheral smear was done. A total of 45 donors were screened for plateletpheresis. Following plateletpheresis from these donors, a platelet count from the collection bag was done after one hour. The SDP was transfused as a single unit or divided into two and transfused to the same patient at two different occasions, as per clinical need. Platelet counts on pateints were done after one hour and the platelet recovery was noted. Results Out of the 45 donors who were screened, 30 (66.67%) were found to have giant platelets. It was observed that the pre procedure platelet counts in donors having giant platelets were relatively low (1.5 -1.7 lacs) and so also the platelet yield (2.7-3x1011) compared to donors who did not, but the post transfusion platelet recovery was greater. Conclusion Since presence of giant platelets has been seen to be common in the Eastern part of India, a peripheral smear examination should always be considered during screening of plateletpheresis donors to avoid rejecting donors with giant platelets whose platelet counts are given falsely low by autoanalysers. PMID:26266124

  19. Hodgkin lymphoma cell lines bind to platelets. Incubation with platelets induces CD15 and P-selectin dependent adhesion of the cell lines to Human Umbilical Vein Endothelial cells (HUVEC)

    PubMed Central

    Ohana, Ofra Malka; Ozer, Janet; Prinsloo, Isebrand; Benharroch, Daniel; Gopas, Jacob

    2015-01-01

    Hodgkin's lymphoma is believed to spread in an orderly fashion within the lymphatic compartment. In a minority of cases, after reaching the spleen, the neoplasm disseminates, reminiscent of metastasis. In the spleen, the Hodgkin-Reed-Sternberg tumor cells come across platelets in the blood vessels and mainly in the splenic red pulp. Based on this knowledge, we investigated the possibility of platelets inducing cell adhesion in Hodgkin's lymphoma cell lines. We showed that L428 and KMH-2 cells strongly adhere to thrombin-activated platelets. Cell adhesion to platelets is partially dependent on CD15 antigens (LewisX), mainly sialyl-CD15, and P-selectin. KMH-2, as compared to L428 cells, showed increased binding due to its differential high expression of the sialyl-CD15. As a consequence of incubation with platelets, KMH-2 cells also produced increased amounts of tumor necrosis factors α (TNFα) followed by enhanced binding to human vascular endothelial cells (HUVEC). Incubation of both cell lines with activated platelets also induced activation of AP-1 transcription complex. Our findings are consistent with the concept that platelets play a critical role in the dissemination of HRS cells in HL, predominantly in the spleen, by increasing cell adhesion and thus promoting their proliferative and migratory properties beyond the lymphatic system. PMID:26418972

  20. Hodgkin lymphoma cell lines bind to platelets. Incubation with platelets induces CD15 and P-selectin dependent adhesion of the cell lines to Human Umbilical Vein Endothelial cells (HUVEC).

    PubMed

    Ohana, Ofra Malka; Ozer, Janet; Prinsloo, Isebrand; Benharroch, Daniel; Gopas, Jacob

    2015-01-01

    Hodgkin's lymphoma is believed to spread in an orderly fashion within the lymphatic compartment. In a minority of cases, after reaching the spleen, the neoplasm disseminates, reminiscent of metastasis. In the spleen, the Hodgkin-Reed-Sternberg tumor cells come across platelets in the blood vessels and mainly in the splenic red pulp. Based on this knowledge, we investigated the possibility of platelets inducing cell adhesion in Hodgkin's lymphoma cell lines. We showed that L428 and KMH-2 cells strongly adhere to thrombin-activated platelets. Cell adhesion to platelets is partially dependent on CD15 antigens (Lewis(X)), mainly sialyl-CD15, and P-selectin. KMH-2, as compared to L428 cells, showed increased binding due to its differential high expression of the sialyl-CD15. As a consequence of incubation with platelets, KMH-2 cells also produced increased amounts of tumor necrosis factors α (TNFα) followed by enhanced binding to human vascular endothelial cells (HUVEC). Incubation of both cell lines with activated platelets also induced activation of AP-1 transcription complex. Our findings are consistent with the concept that platelets play a critical role in the dissemination of HRS cells in HL, predominantly in the spleen, by increasing cell adhesion and thus promoting their proliferative and migratory properties beyond the lymphatic system.

  1. A case report of pseudo grey platelet syndrome with citrate-induced pseudothrombocytopenia: those artifacts may interfere in the platelet numeration and lead to critical misdiagnosis.

    PubMed

    Herb, Agathe; Maurer, Maxime; Alamome, Isabelle; Bihl, Pierre-Adrien; Ghiura, Cosmina; Hurstel, Rémy

    2017-08-01

    The pseudo grey platelet syndrome is a rare artifact due to the degranulation of platelets caused, in vitro, by EDTA. This phenomenon is likely to disturb the platelet numeration and it is essential not to mistake it for a grey syndrome platelet, which is a constitutional thrombopathy with macrothrombopenia, in order to avoid specialized tests, or even misdiagnosis. Indeed, these two entities are cytologically alike, as grey platelets are found on the blood smear of a sample collected on EDTA in both cases. We here describe the case of a patient admitted in Colmar's Hospital for a chronic thrombocytopenia, associating both a pseudothrombocytopenia and a pseudo grey platelet syndrome.

  2. Platelet activating factor induces dopamine release in PC-12 cell line

    SciTech Connect

    Bussolino, F.; Tessari, F.; Turrini, F.; Braquet, P.; Camussi, G.; Prosdocimi, M.; Bosia, A. Institut Henri Beaufour, Le Plessis Robinson )

    1988-10-01

    The ability of platelet activating factor (PAF) to stimulate dopamine release and modify calcium homeostasis in PC-12 cell line was studied. PAF-induced dopamine release is related to its molecular form, with only the R-form steric configuration ((R)PAF), but not its S-form or its 2-lyso derivative, effective at being active. In addition, PAF acts at very low concentrations in a dose-dependent manner (0.1-30 nM). Preincubation with PAF receptor antagonists (CV-3988 and BN52021) as well as the specific desensitization of PC-12 cells to (R)PAF abolish the (R)PAF-induced dopamine release. Several lines of evidence suggest that dopamine release is dependent on a (R)PAF-induced calcium influx and efflux modulation. Dopamine release by PC-12 cells challenged with (R)PAF is associated with a rapid {sup 45}Ca influx and efflux and a rise in cytoplasmic calcium concentrations ((Ca{sup 2+}){sub i}) evaluated by using the calcium indicators fura-2 and quin2. At 30 nM (R)PAF, the absence of extracellular calcium inhibits the dopamine release but not the rise of (Ca{sup 2+}){sub i} from the internal stores, suggesting the importance of calcium influx in (R)PAF-induced dopamine release. PAF, which has been reported to be synthesized by stimulated neuronal cells may thus have a physiological modulatory role on cells with neurosecretory properties.

  3. Marine Benthic Diatoms Contain Compounds Able to Induce Leukemia Cell Death and Modulate Blood Platelet Activity

    PubMed Central

    Prestegard, Siv Kristin; Oftedal, Linn; Coyne, Rosie Theresa; Nygaard, Gyrid; Skjærven, Kaja Helvik; Knutsen, Gjert; Døskeland, Stein Ove; Herfindal, Lars

    2009-01-01

    In spite of the high abundance and species diversity of diatoms, only a few bioactive compounds from them have been described. The present study reveals a high number of mammalian cell death inducing substances in biofilm-associated diatoms sampled from the intertidal zone. Extracts from the genera Melosira, Amphora, Phaeodactylum and Nitzschia were all found to induce leukemia cell death, with either classical apoptotic or autophagic features. Several extracts also contained inhibitors of thrombin-induced blood platelet activation. Some of this activity was caused by a high content of adenosine in the diatoms, ranging from 0.07 to 0.31 μg/mg dry weight. However, most of the bioactivity was adenosine deaminase-resistant. An adenosine deaminase-resistant active fraction from one of the extracts was partially purified and shown to induce apoptosis with a distinct phenotype. The results show that benthic diatoms typically found in the intertidal zone may represent a richer source of interesting bioactive compounds than hitherto recognized. PMID:20098602

  4. Platelet-derived growth factor B induces senescence and transformation in normal human fibroblasts.

    PubMed

    Vindrieux, David; Gras, Baptiste; Garcia-Belinchon, Merce; Mourah, Samia; Lebbe, Céleste; Augert, Arnaud; Bernard, David

    2013-07-01

    Normal cells enter a senescent state upon aberrant oncogenic signals and this response inhibits tumor initiation and progression. It is now well admitted that intracellular and membrane localized oncogenes can illicit oncogene induced senescence. However, the effect of mitogenic growth factor on cellular senescence is so far largely unknown. Here we show that normal human dermal fibroblasts display a complex response to Platelet derived growth factor B (PDGFB) expression. Indeed, PDGFB expression induces, in the same cell population, both senescence and cellular transformation. Remarkably both populations are sustained with passages suggesting that transformed cells eventually enter a senescent state. This senescence state is p53 dependent as inhibiting the p53 pathway blocks the ability of PDGFB to induce senescence and results in strong cellular transformation increase upon PDGFB expression. The relevance of these observations is supported by the fact that human dermatofibrosarcoma protuberans, skin tumors arising from constitutive PDGFB production with little aggressiveness, also display some senescence hallmarks. Together these data support the view that PDGFB, a mitogenic growth factor, has a limited ability to induce senescence. We propose that this low level of senescence might decrease the transforming ability of this factor without totally abolishing it.

  5. Effects of Platelet-Rich Plasma on Kidney Regeneration in Gentamicin-Induced Nephrotoxicity

    PubMed Central

    2017-01-01

    Platelet-rich plasma (PRP) as a source of growth factors may induce tissue repairing and improve fibrosis. This study aimed to assess the effects of PRP on kidney regeneration and fibrosis in gentamicin (GM)-induced nephrotoxicity rat model by stereological study. Thirty-two male rats were selected. Nephrotoxicity was induced in animals by administration of GM (80 mg/kg/daily, intraperitoneally [IP], 8 day) and animals were treated by PRP (100 µL, intra-cortical injection using surgical microscopy, single dose). Blood samples were collected for determine blood urea nitrogen (BUN) and creatinine (Cr) before and after PRP therapy. At the end of experiment, right kidneys were sectioned by Isotropic Uniform Random (IUR) method and stained with H & E and Masson’s Trichrome. The stereological methods were used for estimating the changes in different structures of kidney. PRP increased the number of epithelial cells in convoluted tubules, and decreased the volume of connective tissue, renal corpuscles and glomeruli in GM-treated animals (P < 0.05). Our findings indicate that PRP had beneficial effects on proliferation of epithelial cells in convoluted tubules and ameliorated GM-induced fibrosis. PMID:27914126

  6. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction

    PubMed Central

    Jones, Letitia D.; Jackson, Joseph W.; Maggirwar, Sanjay B.

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND. PMID:26986758

  7. Cystamine immobilization on TiO 2 film surfaces and the influence on inhibition of collagen-induced platelet activation

    NASA Astrophysics Data System (ADS)

    Zhou, Yujuan; Weng, Yajun; Zhang, Liping; Jing, Fengjuan; Huang, Nan; Chen, Junying

    2011-12-01

    Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO 2 films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO 2 films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.

  8. Circulating primers enhance platelet function and induce resistance to antiplatelet therapy

    PubMed Central

    Blair, T A; Moore, S F; Hers, I

    2015-01-01

    Background Aspirin and P2Y12 antagonists are antiplatelet compounds that are used clinically in patients with thrombosis. However, some patients are ‘resistant’ to antiplatelet therapy, which increases their risk of developing acute coronary syndromes. These patients often present with an underlying condition that is associated with altered levels of circulating platelet primers and platelet hyperactivity. Platelet primers cannot stimulate platelet activation, but, in combination with physiologic stimuli, significantly enhance platelet function. Objectives To explore the role of platelet primers in resistance to antiplatelet therapy, and to evaluate whether phosphoinositide 3-kinase (PI3K) contributes to this process. Methods and Results We used platelet aggregation, thromboxane A2 production and ex vivo thrombus formation as functional readouts of platelet activity. Platelets were treated with the potent P2Y12 inhibitor AR-C66096, aspirin, or a combination of both, in the presence or absence of the platelet primers insulin-like growth factor-1 (IGF-1) and thrombopoietin (TPO), or the Gz-coupled receptor ligand epinephrine. We found that platelet primers largely overcame the inhibitory effects of antiplatelet compounds on platelet functional responses. IGF-1-mediated and TPO-mediated, but not epinephrine-mediated, enhancements in the presence of antiplatelet drugs were blocked by the PI3K inhibitors wortmannin and LY294002. Conclusions These results demonstrate that platelet primers can contribute to antiplatelet resistance. Furthermore, our data demonstrate that there are PI3K-dependent and PI3K-independent mechanisms driving primer-mediated resistance to antiplatelet therapy. PMID:26039631

  9. CD8(+) effector memory T cells induce acute rejection of allogeneic heart retransplants in mice possibly through activating expression of inflammatory cytokines.

    PubMed

    Du, Gang; Yang, Nuo; Gong, Wenlin; Fang, Yuan; He, Jian; Zhou, Nuo; Lu, Xiaoling; Zhao, Yongxiang

    2017-06-01

    To investigate the effects of CD8(+) memory T (Tm) cells and CD8(+) effector memory T (Tem) cells on the results of allogeneic heart retransplantations performed in mice. A skin transplantation model was used to generate sensitized splenic CD8(+) Tem cells for infusion into BALB/c mice. One week after infusion, the BALB/c mice underwent allogeneic heart transplantation in the abdominal cavity. Cyclosporin A was administered via intraperitoneal injection starting one day prior to transplantation to arrest immunological rejection of the transplanted heart. The effects of sensitized CD8(+) Tem cells on allogeneic heart graft rejection were examined by monitoring survival of the transplanted hearts, the infiltration of effector memory CD8(+) T cells into myocardium, and expressions of inflammatory cytokines in blood serum. Adoptive transfer of sensitized CD8(+) Tem cells prior to transplantation induced an acute rejection response which decreased the survival of transplanted hearts. The rejection response was accompanied by an infiltration of CD8(+) Tem cells into the transplanted myocardial tissue. Additionally, infusion of sensitized CD8(+) Tem cells induced markedly increased expressions of IL-2 and IFN-γ, and decreased expression of TGF-β in the transplanted hearts, as well as higher levels of IFN-γ and CXCL-9 in blood serum. The infusion of sensitized CD8(+) Tem cells induced an acute graft rejection response and decreased the survival of grafted hearts by regulating the expressions of inflammatory cytokines including CXCL-9, IL-2, and INF-γ. Cyclosporin A had no therapeutic effect on the graft rejection response induced by sensitized CD8(+) Tem cells. Copyright © 2017. Published by Elsevier Inc.

  10. Platelet activating factor-induced expression of p21 is correlated with histone acetylation

    PubMed Central

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M.; Liu, Jingwei; Neelapu, Sattva S.; Ullrich, Stephen E.

    2017-01-01

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome. PMID:28157211

  11. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells

    PubMed Central

    Gorbea, Enrique; Ullrich, Stephen E.

    2015-01-01

    Ultraviolet (UV) radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by up regulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression, so we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 up-regulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome. PMID:26316070

  12. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells.

    PubMed

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Gorbea, Enrique; Ullrich, Stephen E

    2015-12-01

    UV radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes has a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by upregulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression; therefore, we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF, and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 upregulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome.

  13. Platelet activating factor-induced expression of p21 is correlated with histone acetylation.

    PubMed

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M; Liu, Jingwei; Neelapu, Sattva S; Ullrich, Stephen E

    2017-02-03

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome.

  14. Differential changes in platelet reactivity induced by acute physical compared to persistent mental stress.

    PubMed

    Hüfner, Katharina; Koudouovoh-Tripp, Pia; Kandler, Christina; Hochstrasser, Tanja; Malik, Peter; Giesinger, Johannes; Semenitz, Barbara; Humpel, Christian; Sperner-Unterweger, Barbara

    2015-11-01

    Platelets are important in hemostasis, but also contain adhesion molecules, pro-inflammatory and immune-modulatory compounds, as well as most of the serotonin outside the central nervous system. Dysbalance in the serotonin pathways is involved in the pathogenesis of depressive symptoms. Thus, changes in platelet aggregation and content of bioactive compounds are of interest when investigating physiological stress-related mental processes as well as stress-related psychiatric diseases such as depression. In the present study, a characterization of platelet reactivity in acute physical and persistent mental stress was performed (aggregation, serotonin and serotonin 2A-receptor, P-selectin, CD40 ligand, matrix metalloproteinase-2 and -9 (MMP-2 and -9), platelet/endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), β-thromboglobulin (β-TG) and platelet factor 4 (PF-4). Acute physical stress increased platelet aggregability while leaving platelet content of bioactive compounds unchanged. Persistent mental stress led to changes in platelet content of bioactive compounds and serotonin 2A-receptor only. The values of most bioactive compounds correlated with each other. Acute physical and persistent mental stress influences platelets through distinct pathways, leading to differential changes in aggregability and content of bioactive compounds.

  15. Platelet interaction with polymerizing fibrin.

    PubMed

    Niewiarowski, S; Regoeczi, E; Stewart, G J; Senyl, A F; Mustard, J F

    1972-03-01

    Interaction of washed pig, rabbit, or human platelets with fibrinogen was studied during its transition to fibrin using photometric, isotopic, and electron microscopic techniques. Untreated fibrinogen and fully polymerized fibrin had no detectable effect on platelets. Fibrinogen, incubated with low concentrations of reptilase or thrombin, formed intermediate products which readily became associated with platelets and caused their aggregation. Neutralization of the thrombin did not prevent this interaction. In the absence of fibrinogen, reptilase did not affect platelets. The interaction of polymerizing fibrin with platelets was accompanied by small losses of platelet constituents (serotonin, adenine nucleotides, platelet factor 4, and lactic dehydrogenase). This loss did not appear to be the result of the platelet release reaction. Inhibitors of the release reaction or of adenosine diphosphate (ADP)-induced aggregation did not prevent the interaction of platelets with polymerizing fibrin. Apyrase or prostaglandin E(1) (PGE(1)) reduced the extent of platelet aggregation by polymerizing fibrin, but the amount of protein associated with platelets was slightly increased. The interaction of polymerizing fibrin with platelets was completely inhibited by ethylenediaminetetraacetate (EDTA) or ethylene glycol bis (beta-aminoethyl ether) N, N,N',N'-tetraacetic acid (EGTA).Fibers formed in solutions of polymerizing fibrin were larger in the presence than in the absence of washed platelets, suggesting that platelets affect fibrin polymerization. The adherence of platelets to polymerizing fibrin may be responsible for the establishment of links between platelets and fibrin in hemostatic plugs and thrombi.

  16. Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα.

    PubMed

    Carrim, Naadiya; Arthur, Jane F; Hamilton, Justin R; Gardiner, Elizabeth E; Andrews, Robert K; Moran, Niamh; Berndt, Michael C; Metharom, Pat

    2015-12-01

    Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Thrombin, a potent platelet activator, can signal through GPIbα and protease-activated receptor (PAR) 1 and PAR4 on human platelets, and recently has been implicated in the generation of ROS. While ROS are known to have key roles in intra-platelet signalling and subsequent platelet activation, the precise receptors and signalling pathways involved in thrombin-induced ROS generation have yet to be fully elucidated. To investigate the relative contribution of platelet GPIbα and PARs to thrombin-induced reactive oxygen species (ROS) generation. Highly specific antagonists targeting PAR1 and PAR4, and the GPIbα-cleaving enzyme, Naja kaouthia (Nk) protease, were used in quantitative flow cytometry assays of thrombin-induced ROS production. Antagonists of PAR4 but not PAR1, inhibited thrombin-derived ROS generation. Removal of the GPIbα ligand binding region attenuated PAR4-induced and completely inhibited thrombin-induced ROS formation. Similarly, PAR4 deficiency in mice abolished thrombin-induced ROS generation. Additionally, GPIbα and PAR4-dependent ROS formation were shown to be mediated through focal adhesion kinase (FAK) and NADPH oxidase 1 (NOX1) proteins. Both GPIbα and PAR4 are required for thrombin-induced ROS formation, suggesting a novel functional cooperation between GPIbα and PAR4. Our study identifies a novel role for PAR4 in mediating thrombin-induced ROS production that was not shared by PAR1. This suggests an independent signalling pathway in platelet activation that may be targeted therapeutically. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer.

    PubMed

    Adams, Sylvia; Kozhaya, Lina; Martiniuk, Frank; Meng, Tze-Chiang; Chiriboga, Luis; Liebes, Leonard; Hochman, Tsivia; Shuman, Nicholas; Axelrod, Deborah; Speyer, James; Novik, Yelena; Tiersten, Amy; Goldberg, Judith D; Formenti, Silvia C; Bhardwaj, Nina; Unutmaz, Derya; Demaria, Sandra

    2012-12-15

    Skin metastases of breast cancer remain a therapeutic challenge. Toll-like receptor 7 agonist imiquimod is an immune response modifier and can induce immune-mediated rejection of primary skin malignancies when topically applied. Here we tested the hypothesis that topical imiquimod stimulates local antitumor immunity and induces the regression of breast cancer skin metastases. A prospective clinical trial was designed to evaluate the local tumor response rate of breast cancer skin metastases treated with topical imiquimod, applied 5 d/wk for 8 weeks. Safety and immunologic correlates were secondary objectives. Ten patients were enrolled and completed the study. Imiquimod treatment was well tolerated, with only grade 1 to 2 transient local and systemic side effects consistent with imiquimod's immunomodulatory effects. Two patients achieved a partial response [20%; 95% confidence interval (CI), 3%-56%]. Responders showed histologic tumor regression with evidence of an immune-mediated response, showed by changes in the tumor lymphocytic infiltrate and locally produced cytokines. Topical imiquimod is a beneficial treatment modality for breast cancer metastatic to skin/chest wall and is well tolerated. Importantly, imiquimod can promote a proimmunogenic tumor microenvironment in breast cancer. Preclinical data generated by our group suggest superior results with a combination of imiquimod and ionizing radiation and we are currently testing in patients whether the combination can further improve antitumor immune and clinical responses. ©2012 AACR.

  18. Teratocarcinomas Arising from Allogeneic Induced Pluripotent Stem Cell-Derived Cardiac Tissue Constructs Provoked Host Immune Rejection in Mice

    PubMed Central

    Kawamura, Ai; Miyagawa, Shigeru; Fukushima, Satsuki; Kawamura, Takuji; Kashiyama, Noriyuki; Ito, Emiko; Watabe, Tadashi; Masuda, Shigeo; Toda, Koichi; Hatazawa, Jun; Morii, Eiichi; Sawa, Yoshiki

    2016-01-01

    Transplantation of induced pluripotent stem cell-derived cardiac tissue constructs is a promising regenerative treatment for cardiac failure: however, its tumourigenic potential is concerning. We hypothesised that the tumourigenic potential may be eliminated by the host immune response after allogeneic cell transplantation. Scaffold-free iPSC-derived cardaic tissue sheets of C57BL/6 mouse origin were transplanted into the cardiac surface of syngeneic C57BL/6 mice and allogeneic BALB/c mice with or without tacrolimus injection. Syngeneic mice and tacrolimus-injected immunosuppressed allogeneic mice formed teratocarcinomas with identical phenotypes, characteristic, and time courses, as assessed by imaging tools including 18F-fluorodeoxyglucose-positron emission tomography. In contrast, temporarily immunosuppressed allogeneic mice, following cessation of tacrolimus injection displayed diminished progression of the teratocarcinoma, accompanied by an accumulation of CD4/CD8-positive T cells, and finally achieved complete elimination of the teratocarcinoma. Our results indicated that malignant teratocarcinomas arising from induced pluripotent stem cell-derived cardiac tissue constructs provoked T cell-related host immune rejection to arrest tumour growth in murine allogeneic transplantation models. PMID:26763872

  19. Apixaban, a direct factor Xa inhibitor, inhibits tissue-factor induced human platelet aggregation in vitro: comparison with direct inhibitors of factor VIIa, XIa and thrombin.

    PubMed

    Wong, Pancras C; Jiang, Xiaosui

    2010-08-01

    Apixaban is an oral, direct and highly selective factor Xa (FXa) inhibitor in late-stage clinical development. This study evaluated the in vitro effect of apixaban on human platelet aggregation induced by thrombin derived via the extrinsic pathway. Direct inhibitors of FXa (rivaroxaban), FVIIa (BMS-593214), thrombin (dabigatran, argatroban) and FXIa (BMS-262084) were included for comparison. Citrated human platelets-rich plasma (PRP) was treated with 50 mg/ml corn trypsin inhibitor (to block the contact factor pathway) and 3 mM H-Gly-Pro-Arg-Pro-OH-AcOH (to prevent fibrin polymerisation). Human tissue factor (TF) (Innovin; dilution 1:1,000 to 1:1,500) plus 7.5 mM CaCl2 was added to PRP pre-incubated with vehicle or increasing concentrations of inhibitors. The TF-induced platelet aggregation was measured by optical aggregometry. TF produced 85 +/- 3% aggregation of human platelets in the vehicle-treated group (n=10). Apixaban and other factor inhibitors, except the FXIa inhibitor, inhibited TF-induced platelet aggregation with IC50 (nM) values as follows: 4 +/- 1 (apixaban), 8 +/- 2 (rivaroxaban), 13 +/- 1 (BMS-593214), 46 +/- 1 (dabigatran) and 79 +/- 1 (argatroban). BMS-262084 (IC50 = 2.8 nM vs. human FXIa) had no effect on TF-induced platelet aggregation at 10 microM. These inhibitors at 10 microM had no effect on platelet aggregation induced by ADP and collagen, as expected from their mechanism of action. This study demonstrates that inhibition of thrombin generation by blocking upstream proteases (FVIIa and FXa) in the blood coagulation cascade is as effective as direct thrombin inhibition in preventing TF-induced platelet aggregation. Under these experimental conditions, a FXIa inhibitor did not prevent TF-induced platelet aggregation.

  20. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis

    PubMed Central

    1994-01-01

    Tumor necrosis factor (TNF) alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Therefore, it was suggested that the angiogenic properties of this agent might be consequent to the production of secondary mediators. Since TNF-alpha stimulates the synthesis of platelet-activating factor (PAF) by monocytes and endothelial cells, we investigated the possible involvement of PAF in the angiogenic effect of TNF-alpha. Angiogenesis was studied in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model the angiogenesis induced by TNF-alpha was shown to be inhibited by WEB 2170, a specific PAF receptor antagonist. Moreover, in mice injected with TNF-alpha, PAF was detected within the Matrigel, 6 and 24 h after TNF-alpha injection. The synthesis of PAF within the Matrigel was concomitant with the early migration of endothelial cells and infiltration of monocytes. No infiltration of lymphocytes or polymorphonuclear leukocytes was observed. Synthetic PAF as well as PAF extracted and purified from mice challenged with TNF-alpha induced a rapid angiogenic response, inhibited by WEB 2170. These results suggest that the angiogenic effect of TNF-alpha is, at least in part, mediated by PAF synthesized from monocytes and/or endothelial cells infiltrating the Matrigel plug. PMID:7516414

  1. Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets

    SciTech Connect

    Beek, D. van der; Petukhov, A.V.; Vroege, G.J.; Lekkerkerker, H.N.W.; Davidson, P.; Ferre, J.; Jamet, J.P.; Wensink, H.H.; Bras, W.

    2006-04-15

    The magnetic-field-induced orientational order in the isotropic phase of colloidal gibbsite [Al(OH){sub 3}] platelets is studied by means of optical birefringence and small-angle x-ray scattering (SAXS) techniques. The suspensions display field-induced ordering at moderate field strengths (a few Tesla), which increases with increasing particle concentration. The gibbsite particles align their normals perpendicular to the magnetic field and hence possess a negative anisotropy of their diamagnetic susceptibility {delta}{chi}. The results can be described following a simple, Onsager-like approach. A simplified model is derived that allows one to obtain the orientational distribution function directly from the scattering data. However, it leads to an underestimate of the diamagnetic susceptibility anisotropy {delta}{chi}. This accounts for the difference between the {delta}{chi} values provided by the two experimental techniques (SAXS and magneto-optics). The order of magnitude {delta}{chi}{approx}10{sup -22} J/T{sup 2} lies in between that of goethite suspensions and that of suspensions of organic particles.

  2. Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro

    PubMed Central

    2014-01-01

    Background Thrombocytopenia has been reported to be associated with small size HCCs, and thrombocytosis to be associated with large size HCCs. The aim was to examine the effects of platelets in relation to HCC cell growth. Methods The effects of time-expired pooled normal human platelets were examined on human HCC cell line growth and invasion. Results Blood platelet numbers increased with increasing HCC tumor size and portal vein invasion. Platelet extracts enhanced cell growth in 4 human HCC cell lines, as well as cell migration, medium AFP levels and decreased apoptosis. Cell invasion was significantly enhanced, using a Matrigel-coated trans-well membrane and3D (Real-Time Imaging) invasion assay. Western blots showed that platelets caused enhanced phospho-ERK and phospho–JNK signaling and anti-apoptotic effect with increase of Bcl-xL (anti-apoptotic marker) and decrease of Bid (pro-apoptotic marker) levels. Their growth effects were blocked by a JNK inhibitor. Conclusions Platelets stimulated growth and invasion of several HCC cell lines in vitro, suggesting that platelets or platelet growth factors could be a potential pharmacological target. PMID:24468103

  3. Lectin-induced activation of platelets may require only limited phosphorylation of the 47K protein

    SciTech Connect

    Ganguly, C.; Chelladurai, M.; Ganguly, P.

    1986-05-01

    Wheat germ agglutinin (WGA) is an N-acetylglucosamine (Glc-NAc) specific lectin which can activate platelets. Like thrombin, stimulation of platelets by WGA is accompanied by enhanced phosphorylation of two polypeptides of M/sub r/ 47K and 20K. Addition of GlcNAc at different time intervals arrested that aggregation of platelets by WGA and paralleled the modification of phosphorylation of the 47K polypeptide. So, the phosphorylation of the 47K polypeptide may regulate the WGA-receptor mediated stimulation of platelets. However, the ratio of phosphoserine to phosphothreonine in the 47K protein was markedly different in WGA-activated than thrombin-stimulated platelets. Thus, the molecular mechanism of action of thrombin and WGA could be different. To explore this idea, /sup 32/P/sub i/-labeled platelets were stimulated with WGA and the activation arrested with N-acetyl-glucosamine at different times. Two-dimensional gel electrophoresis of total protein at 5s showed only two phosphorylated species of 47K protein. At 60s, maximally four phosphorylated species were noted. In contrast, with thrombin using the same technique, seven to nine phosphorylated components have been reported. These results suggest that the different activators of platelets may act by different mechanisms. In addition, activation of platelets may require only limited levels of phosphorylation of the 47K polypeptide.

  4. Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion

    NASA Astrophysics Data System (ADS)

    Crowl Erickson, Lindsay; Fogelson, Aaron

    2009-11-01

    Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.

  5. Interaction with damaged vessel wall in vivo in humans induces platelets to express CD40L resulting in endothelial activation with no effect of aspirin intake.

    PubMed

    Giannini, Silvia; Falcinelli, Emanuela; Bury, Loredana; Guglielmini, Giuseppe; Rossi, Roberta; Momi, Stefania; Gresele, Paolo

    2011-06-01

    Activated platelets express CD40L on their plasma membrane and release the soluble fragment sCD40L. The interaction between platelet surface CD40L and endothelial cell CD40 leads to the activation of endothelium contributing to atherothrombosis. Few studies have directly demonstrated an increased expression of platelet CD40L in conditions of in vivo platelet activation in humans, and no data are available on its relevance for endothelial activation. We aimed to assess whether platelets activated in vivo at a localized site of vascular injury in humans express CD40L and release sCD40L, whether the level of platelet CD40L expression attained in vivo is sufficient to induce endothelial activation, and whether platelet CD40L expression is inhibited by aspirin intake. We used the skin-bleeding-time test as a model to study the interaction between platelets and a damaged vessel wall by measuring CD40L in the blood emerging from a skin wound in vivo in healthy volunteers. In some experiments, shed blood was analyzed before and 1 h after the intake of 500 mg of aspirin. Platelets from the bleeding-time blood express CD40L and release soluble sCD40L, in a time-dependent way. In vivo platelet CD40L expression was mild but sufficient to induce VCAM-1 expression and IL-8 secretion in coincubation experiments with cultured human endothelial cells. Moreover, platelets recovered from the bleeding-time blood activated endothelial cells; an anti-CD40L antibody blocked this effect. On the contrary, the amount of sCD40L released by activated platelets at a localized site of vascular injury did not reach the concentrations required to induce endothelial cell activation. Soluble monocyte chemoattractant protein-1, a marker of endothelium activation, was increased in shed blood and correlated with platelet CD40L expression. Aspirin intake did not inhibit CD40L expression by platelets in vivo. We concluded that CD40L expressed by platelets in vivo in humans upon contact with a damaged

  6. [Platelet count in the cat].

    PubMed

    Moritz, A; Hoffmann, C

    1997-11-01

    The technique of collecting blood samples is primarily responsible for the appearance of platelet-agglomeration in cats. Blood obtained by the conventional way ("one syringe technology", drips of blood) caused in 52% of the cases an activation of the large and therefore active thrombocytes however. Rejection of the first 2-5 ml blood for the platelet count ("two syringe technology") reduced the rate of platelet-agglomeration significantly. No big differences in platelet-agglomeration were found with regard to the place used for collecting blood (V. cephalica antebrachii/V. jugularis). Platelet-agglutination was observed with Li-Heparin, K-EDTA, Na-Citrat or ACD anticoagulated blood samples. Citrat (Na-Citrat, ACD) seemed to have a stabilizing effect on feline thrombocytes as has been described for human thrombocytes. The platelet count in cats should be performed within 30 minutes.

  7. CdTe quantum dots induce activation of human platelets: implications for nanoparticle hemocompatibility.

    PubMed

    Samuel, Stephen P; Santos-Martinez, Maria J; Medina, Carlos; Jain, Namrata; Radomski, Marek W; Prina-Mello, Adriele; Volkov, Yuri

    2015-01-01

    New nanomaterials intended for systemic administration have raised concerns regarding their biocompatibility and hemocompatibility. Quantum dots (QD) nanoparticles have been used for diagnostics, and recent work suggests their use for in vivo molecular and cellular imaging. However, the hemocompatibility of QDs and their constituent components has not been fully elucidated. In the present study, comprehensive investigation of QD-platelet interactions is presented. These interactions were shown using transmission electron microscopy. The effects of QDs on platelet function were investigated using light aggregometry, quartz crystal microbalance with dissipation, flow cytometry, and gelatin zymography. Platelet morphology was also analyzed by phase-contrast, immunofluorescence, atomic-force and transmission electron microscopy. We show that the QDs bind to platelet plasma membrane with the resultant upregulation of glycoprotein IIb/IIIa and P-selectin receptors, and release of matrix metalloproteinase-2. These findings unravel for the first time the mechanism of functional response of platelets to ultrasmall QDs in vitro.

  8. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    SciTech Connect

    Meyers, K.M.; Boehme, M.; Inbar, O.

    1982-10-01

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.

  9. Ex vivo recapitulation of trauma-induced coagulopathy and preliminary assessment of trauma patient platelet function under flow using microfluidic technology.

    PubMed

    Li, Ruizhi; Elmongy, Hanna; Sims, Carrie; Diamond, Scott L

    2016-03-01

    Relevant to trauma-induced coagulopathy diagnostics, microfluidic assays allow controlled hemodynamics for testing of platelet and coagulation function using whole blood. Hemodilution or hyperfibrinolysis was studied under flow with modified healthy whole blood. Furthermore, platelet function was also measured using whole blood from trauma patients admitted to a Level I trauma center. Platelet deposition was measured with PPACK-inhibited blood perfused over collagen surfaces at a wall shear rate of 200 s, whereas platelet/fibrin deposition was measured with corn trypsin inhibitor-treated blood perfused over tissue factor (TF)/collagen. In hemodilution studies, PPACK-treated blood displayed almost no platelet deposition when diluted to 10% hematocrit with saline, platelet-poor plasma, or platelet-rich plasma. Using similar dilutions, platelet/fibrin deposition was essentially absent for corn trypsin inhibitor-treated blood perfused over TF/collagen. To mimic hyperfibrinolysis during trauma, exogenous tissue plasminogen activator (50 nM) was added to blood before perfusion over TF/collagen. At both venous and arterial flows, the generation and subsequent lysis of fibrin were detectable within 6 minutes, with lysis blocked by addition of the plasmin inhibitor, ε-aminocaproic acid. Microfluidic assay of PPACK-inhibited whole blood from trauma patients revealed striking defects in collagen response and secondary platelet aggregation in 14 of 21 patients, whereas platelet hyperfunction was detected in three of 20 patients. Rapid microfluidic detection of (1) hemodilution-dependent impairment of clotting, (2) clot instability because of lysis, (3) blockade of fibrinolysis, or (4) platelet dysfunction during trauma may provide novel diagnostic opportunities to predict trauma-induced coagulopathy risk.

  10. The Adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding

    PubMed Central

    Sivaraman, Balakrishnan; Latour, Robert A.

    2009-01-01

    Although albumin (Alb) is the most abundant plasma protein, it is considered to be non-adhesive to platelets, as it lacks any known amino acid sequences for binding platelet receptors. Recent studies have suggested that platelets adhere to adsorbed Alb by mechanisms linked to its conformational state. To definitively address this issue we used circular dichroism (CD) spectropolarimetry to characterize the conformation of Alb adsorbed on a broad range of surface chemistries from a wide range of Alb solution concentrations, with platelet adhesion examined using a lactate dehydrogenase (LDH) assay and scanning electron microscopy (SEM). Our results prove that platelets bind to adsorbed Alb through receptor-mediated processes, with binding sites in Alb exposed and/or formed by adsorption-induced protein unfolding. Most importantly, beyond a critical degree of unfolding, the platelet adhesion levels correlated strongly with the adsorption-induced unfolding in Alb. The blockage of Arg-Gly-Asp (RGD) specific platelet receptors using an Arg-Gly-Asp-Ser (RGDS) peptide led to significant inhibition of platelet adhesion to adsorbed Alb, with the extent of inhibition and morphology of adherent platelets being similar for both Alb and Fg. Chemical neutralization of arginine (Arg) residues in the adsorbed Alb layer inhibited platelet–Alb interactions significantly, indicating that Arg residues play a prominent role in mediating platelet adhesion to Alb. These results provide deeper insight into the molecular mechanisms that mediate the interactions of platelets with adsorbed proteins, and how to control these interactions to improve the blood compatibility of biomaterials for cardiovascular applications. PMID:19864017

  11. Suilysin-induced Platelet-Neutrophil Complexes Formation is Triggered by Pore Formation-dependent Calcium Influx

    PubMed Central

    Zhang, Shengwei; Zheng, Yuling; Chen, Shaolong; Huang, Shujing; Liu, Keke; Lv, Qingyu; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Platelet activation and platelet–neutrophil interactions have been found to be involved in inflammation, organ failure and soft-tissue necrosis in bacterial infections. Streptococcus suis, an emerging human pathogen, can cause streptococcal toxic-shock syndrome (STSS) similarly to Streptococcus pyogenes. Currently, S. suis–platelet interactions are poorly understood. Here, we found that suilysin (SLY), the S. suis cholesterol-dependent cytolysin (CDC), was the sole stimulus of S. suis that induced platelet-neutrophil complexes (PNC) formation. Furthermore, P-selectin released in α-granules mediated PNC formation. This process was triggered by the SLY-induced pore forming-dependent Ca2+ influx. Moreover, we demonstrated that the Ca2+ influx triggered an MLCK-dependent pathway playing critical roles in P-selectin activation and PNC formation, however, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signalling were not involved. Additionally, the “outside-in” signalling had a smaller effect on the SLY-induced P-selectin release and PNC formation. Interestingly, other CDCs including pneumolysin and streptolysin O have also been found to induce PNC formation in a pore forming-dependent Ca2+ influx manner. It is possible that the bacterial CDC-mediated PNC formation is a similar response mechanism used by a wide range of bacteria. These findings may provide useful insight for discovering potential therapeutic targets for S. suis-associated STSS. PMID:27830834

  12. Differential effect of the inhibition of Grb2-SH3 interactions in platelet activation induced by thrombin and by Fc receptor engagement.

    PubMed Central

    Saci, Abdelhafid; Liu, Wang-Qing; Vidal, Michel; Garbay, Christiane; Rendu, Francine; Bachelot-Loza, Christilla

    2002-01-01

    The adaptor protein Grb2 (growth factor receptor-bound protein 2) is involved in cell proliferation via the Ras signalling pathway. In order to study the role of Grb2 in blood platelet responses, we used a peptide containing two proline-rich sequences derived from Sos (peptidimer), which binds to Grb2-Src homology 3 domain (SH3) with a high affinity, and hence inhibits Grb2-SH3-mediated protein interactions. Platelet aggregation and 5-hydroxytryptamine (serotonin) release measured in the presence of the peptidimer were: (i) significantly decreased when induced by thrombin; and (ii) potentiated when induced by the engagement of the Fc receptor. In thrombin-activated platelets, the Grb2-SH2 domain formed an association with the beta3 subunit of the alphaIIb-beta3 integrin (GPIIb-IIIa), Shc, Syk, Src and SHP1 (SH2-containing phosphotyrosine phosphatase 1), whereas these associations did not occur after the engagement of the receptor for the Fc domain of IgG (FcgammaRIIa) or in resting platelets. Grb2-SH3 domains formed an association with the proline-rich sequences of Sos and Cbl in both resting and activated platelets, since the peptidimer abolished these associations. Inhibition of both fibrinogen binding and platelet aggregation by the peptide RGDS (Arg-Gly-Asp-Ser) had no effect on thrombin-induced Grb2-SH2 domain association with the aforementioned signalling molecules, indicating that these associations occurred during thrombin-induced 'inside-out' signalling. Platelet aggregation induced by direct activation via alphaIIb-beta3 ('outside-in' signalling) was potentiated by the peptidimer. The results show that inhibition of Grb2-SH3 interactions with signal-transduction proteins down-regulates thrombin-induced platelet activation, but also potentiates Fc receptor- and alphaIIb-beta3-mediated platelet activation. PMID:11964172

  13. High Residual Collagen-Induced Platelet Reactivity Predicts Development of Restenosis in the Superficial Femoral Artery After Percutaneous Transluminal Angioplasty in Claudicant Patients

    SciTech Connect

    Gary, Thomas; Prüller, Florian Raggam, Reinhard; Mahla, Elisabeth; Eller, Philipp Hafner, Franz Brodmann, Marianne

    2016-02-15

    PurposeAlthough platelet reactivity is routinely inhibited with aspirin after percutaneous angioplasty (PTA) in peripheral arteries, the restenosis rate in the superficial femoral artery (SFA) is high. Interaction of activated platelets and the endothelium in the region of intervention could be one reason for this as collagen in the subendothelium activates platelets.Materials and MethodsA prospective study evaluating on-site platelet reactivity during PTA and its influence on the development of restenosis with a total of 30 patients scheduled for PTA of the SFA. Arterial blood was taken from the PTA site after SFA; platelet function was evaluated with light transmission aggregometry. After 3, 6, 12, and 24 months, duplex sonography was performed and the restenosis rate evaluated.ResultsEight out of 30 patients developed a hemodynamically relevant restenosis (>50 % lumen narrowing) in the PTA region during the 24-month follow-up period. High residual collagen-induced platelet reactivity defined as AUC >30 was a significant predictor for the development of restenosis [adjusted odds ratio 11.8 (9.4, 14.2); P = .04].ConclusionsHigh residual collagen-induced platelet reactivity at the interventional site predicts development of restenosis after PTA of the SFA. Platelet function testing may be useful for identifying patients at risk.

  14. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    PubMed

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  15. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    PubMed Central

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  16. Platelet preservation: agitation and containers.

    PubMed

    van der Meer, Pieter F; de Korte, Dirk

    2011-06-01

    For platelets to maintain their in vitro quality and in vivo effectiveness, they need to be stored at room temperature with gentle agitation in gas-permeable containers. The mode of agitation affects the quality of the platelets, and a gentle method of agitation, either a circular or a flat bed movement, provides the best results. Tumblers or elliptical agitators induce platelet activation and subsequent damage. As long as the platelets remain in suspension, the agitation speed is not important. Agitation of the platelet concentrates ensures that the platelets are continuously oxygenated, that sufficient oxygen can enter the storage container and that excess carbon dioxide can be expelled. During transportation of platelet concentrates, nowadays over long distances where they are held without controlled agitation, platelets may tolerate a certain period without agitation. However, evidence is accumulating that during the time without agitation, local hypoxia surrounding the platelets may induce irreversible harm to the platelets. Over the decades, more gas-permeable plastics have been used to manufacture platelet containers. The use of different plastics and their influence on the platelet quality both in vitro and in vivo is discussed. The improved gas-permeability has allowed the extension of platelet storage from 3 days in the early 1980s, to currently at least 7 days. In the light of new developments, particularly the introduction of pathogen reduction techniques, the use of platelet additive solutions and the availability of improved automated separators, further (renewed) research in this area is warranted.

  17. Fc receptor triggering induces expression of surface activation antigens and release of platelet-activating factor in large granular lymphocytes.

    PubMed Central

    Malavasi, F; Tetta, C; Funaro, A; Bellone, G; Ferrero, E; Franzone, A C; Dellabona, P; Rusci, R; Matera, L; Camussi, G

    1986-01-01

    Triggering of large granular lymphocyte (LGL) Fc receptor with a specific monoclonal antibody (AB8.28) linked to an insoluble matrix induces cell activation, as witnessed by expression of HLA class II (DR and DQ) molecules and interleukin 2 receptor. Moreover, this event is accompanied by a concomitant release of platelet-activating factor by LGL. We conclude that the Fc receptor molecule identified by mAb AB8.28 represents a trigger for LGL activation. PMID:3085094

  18. Platelet activating factor produced in vitro by Kaposi's sarcoma cells induces and sustains in vivo angiogenesis.

    PubMed Central

    Bussolino, F; Arese, M; Montrucchio, G; Barra, L; Primo, L; Benelli, R; Sanavio, F; Aglietta, M; Ghigo, D; Rola-Pleszczynski, M R

    1995-01-01

    Imbalance in the network of soluble mediators may play a pivotal role in the pathogenesis of Kaposi's sarcoma (KS). In this study, we demonstrated that KS cells grown in vitro produced and in part released platelet activating factor (PAF), a powerful lipid mediator of inflammation and cell-to-cell communication. IL-1, TNF, and thrombin enhanced the synthesis of PAF. PAF receptor mRNA and specific, high affinity binding site for PAF were present in KS cells. Nanomolar concentration of PAF stimulated the chemotaxis and chemokinesis of KS cells, endothelial cells, and vascular smooth muscle cells. The migration response to PAF was inhibited by WEB 2170, a hetrazepinoic PAF receptor antagonist. Because neoangiogenesis is essential for the growth and progression of KS and since PAF can activate vascular endothelial cells, we examined the potential role of PAF as an instrumental mediator of angiogenesis associated with KS. Conditioned medium (CM) from KS cells (KS-CM) or KS cells themselves induced angiogenesis and macrophage recruitment in a murine model in which Matrigel was injected subcutaneously. These effects were inhibited by treating mice with WEB 2170. Synthetic PAF or natural PAF extracted from plasma of patients with classical KS also induced angiogenesis, which in turn was inhibited by WEB 2170. The action of PAF was amplified by expression of other angiogenic factors and chemokines: these included basic and acidic fibroblast growth factor, placental growth factor, vascular endothelial growth factor and its specific receptor flk-1, hepatocyte growth factor, KC, and macrophage inflammatory protein-2. Treatment with WEB 2170 abolished the expression of the transcripts of these molecules within Matrigel containing KS-CM. These results indicate that PAF may cooperate with other angiogenic molecules and chemokines in inducing vascular development in KS. Images PMID:7543496

  19. Proteomic analysis of the porcine platelet proteome and alterations induced by thrombin activation.

    PubMed

    Esteso, Gloria; Mora, María Isabel; Garrido, Juan José; Corrales, Fernando; Moreno, Angela

    2008-12-02

    Platelets are enucleated cells derived from bone marrow megakaryocytes and defects in platelet functions could be involved in many cardiovascular diseases. Proteomics can be used to provide a new insight in the study of these platelet functions and can help to identify the biochemical events underlying platelet activation. In this study, we have obtained a reference 2-DE map of porcine platelet proteins. A large number of cytoskeletal and metabolic proteins were found as well as some proteins related to cell mobility and immunological functions. Other proteins implicated in the cell signalling process, transport or apoptosis were also identified. Moreover, we have analysed, by 2D-DIGE methodology, quantitative modifications of platelet proteins following their activation by thrombin. 26 spots exhibited statistically significant differences, and a total of 16 spots corresponding to 13 different proteins were successfully identified. Using Ingenuity Pathway Analysis, the association of the deregulated proteins with canonical pathways highlighted two major pathways; coagulation system and integrin signalling. These results confirm that this proteomic approach (based on 2D-DIGE, mass spectrometry and bioinformatic and pathway databases) has proved to be a powerful tool when applied to studying signalling pathways that could play a relevant role in the activation of platelets.

  20. Statin-induced changes in mitochondrial respiration in blood platelets in rats and human with dyslipidemia.

    PubMed

    Vevera, J; Fišar, Z; Nekovářová, T; Vrablík, M; Zlatohlávek, L; Hroudová, J; Singh, N; Raboch, J; Valeš, K

    2016-11-23

    3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used drugs for lowering blood lipid levels and preventing cardiovascular diseases. However, statins can have serious adverse effects, which may be related to development of mitochondrial dysfunctions. The aim of study was to demonstrate the in vivo effect of high and therapeutic doses of statins on mitochondrial respiration in blood platelets. Model approach was used in the study. Simvastatin was administered to rats at a high dose for 4 weeks. Humans were treated with therapeutic doses of rosuvastatin or atorvastatin for 6 weeks. Platelet mitochondrial respiration was measured using high-resolution respirometry. In rats, a significantly lower physiological respiratory rate was found in intact platelets of simvastatin-treated rats compared to controls. In humans, no significant changes in mitochondrial respiration were detected in intact platelets; however, decreased complex I-linked respiration was observed after statin treatment in permeabilized platelets. We propose that the small in vivo effect of statins on platelet energy metabolism can be attributed to drug effects on complex I of the electron transport system. Both intact and permeabilized platelets can be used as a readily available biological model to study changes in cellular energy metabolism in patients treated with statins.

  1. Effects of atorvastatin on ADP-, arachidonic acid-, collagen-, and epinephrine-induced platelet aggregation.

    PubMed

    Zhao, Lei; Liu, Demin; Liu, Bin; Hu, Haijuan; Cui, Wei

    2017-02-01

    Objective Atorvastatin reduces the incidence of cardiovascular events. However, the effects of atorvastatin on platelet aggregation are unknown. Methods Blood samples were obtained from 126 healthy volunteers. Prepared isolated platelet suspensions were adjusted with saline to three different concentrations of 100 × 10(9), 300 × 10(9), and 600 × 10(9) platelets/L. Platelet samples were incubated with atorvastatin (10(-7 )mol/L, 10(-6 )mol/L or 10(-5 )mol/L), and stimulated with ADP (10 µmol/L), arachidonic acid (0.5 mmol/L), collagen (2 µg/mL), and epinephrine (1 mg/mL). The maximal amplitude of aggregation and the curve slope were measured by electric impedance aggregometry. Results Atorvastatin inhibited platelet aggregation at moderate (300 × 10(9)/L) and high (600 × 10(9)/L) concentrations. However, an inhibitory effect of atorvastatin at low concentrations (100 × 10(9)/L) was not observed. Conclusions The study shows that atorvastatin inhibits platelet aggregation in vitro, and this inhibitory effect is related to platelet concentrations.

  2. Platelet-activating Factor does not Mediate UVB-induced Local Immune Suppression

    PubMed Central

    Sahu, Ravi P.; Yao, Yongxue; Konger, Raymond L.; Travers, Jeffrey B.

    2012-01-01

    The lipid mediator Platelet-activating factor (PAF) and oxidized glycerophosphocholine PAF agonists produced by UVB have been demonstrated to play a pivotal role in UVB-mediated systemic immunosuppression. Importantly, employing the ability of distant UVB irradiation to inhibit contact hypersensitivity (CHS) responses to the chemical antigen dinitrofluorobenzene (DNFB) to an area of unirradiated murine skin, we and others have demonstrated that UVB-mediated systemic immunosuppression was only observed in PAF-R expressing wild type (WT) mice and not in PAF-R-knockout (Pafr−/−) mice. As it is not known if PAF is involved in UVB-mediated local immunosuppression, these studies compared local UVB on CHS responses in WT versus Pafr−/− mice. We demonstrate that the application of DNFB onto UVB exposed (locally) area of mouse skin resulted in a similar significant inhibition of subsequent CHS responses in both WT and Pafr−/− mice compared to sham-irradiated control mice. Furthermore, the expression of langerin, a marker for the presence of Langerhans cells was substantially reduced equally in the epidermal ears of UVB-irradiated WT and Pafr−/− mice compared to their respective sham control groups. These findings indicate that the PAF-R is not involved UVB-induced local immunosuppression. PMID:22211638

  3. Low-density lipoprotein apheresis reduces platelet factor 4 on the surface of platelets: a possible protective mechanism against heparin-induced thrombocytopenia and thrombosis.

    PubMed

    Tanhehco, Yvette C; Rux, Ann H; Sachais, Bruce S

    2011-05-01

    Heparin-induced thrombocytopenia and thrombosis (HITT) is characterized by thrombocytopenia due to the formation of antibodies against heparin : platelet factor 4 (PF4) complexes. Despite the exposure to heparin during treatment and predisposition of patients with atherosclerosis to HITT, HITT in patients undergoing low-density lipoprotein (LDL) apheresis is rare. We investigated the possibility that LDL apheresis decreases PF4 on platelet (PLT) surfaces and/or plasma HITT antibody levels, either of which would disfavor HITT. We enrolled 25 patients undergoing LDL apheresis at the Hospital of the University of Pennsylvania. Blood samples were drawn before and after treatment. Plasma samples were drawn proximal and distal to the LA-15 treatment column. PF4, HITT antibodies, heparin levels, and P-selectin were measured. No patient had clinical symptoms of HITT. The LA-15 column was found to efficiently remove PF4. PF4 levels in peripheral blood plasma did not change significantly after LDL apheresis. However, PLT surface PF4 significantly decreased after treatment. HITT antibodies were found in only two patients and were nonfunctional. PLT surface P-selectin did not change during treatment. We have demonstrated that LDL apheresis via dextran sulfate absorption removes plasma PF4 and reduces the amount of PF4 on the surface of circulating PLTs. Reduced surface PF4 may decrease antibody formation and/or recognition by HITT antibodies. These data provide a potential explanation for the near lack of HITT in hypercholesterolemic patients undergoing LDL apheresis. They also suggest the possibility that LDL apheresis using dextran sulfate adsorption may have therapeutic value in the treatment of HITT. © 2010 American Association of Blood Banks.

  4. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets

    PubMed Central

    Luo, Mao; Li, Rong; Ren, Meiping; Chen, Ni; Deng, Xin; Tan, Xiaoyong; Li, Yongjie; Zeng, Min; Yang, Yan; Wan, Qin; Wu, Jianbo

    2016-01-01

    Type 2 diabetic mellitus (DM2) is associated with accelerated thrombotic complications and is characterized by high levels of plasminogen activator inhibitor-1 (PAI-1). Recent studies show that human platelets have high levels of miR-30c and synthesize considerable active PAI-1. The underlying mechanism of how PAI-1 expression is upregulated in DM2 is poorly understood. We now report that hyperglycaemia-induced repression of miR-30c increases PAI-1 expression and thrombus formation in DM2. Bioinformatic analysis and identification of miRNA targets were assessed using luciferase assays, quantitative real-time PCR and western blots in vitro and in vivo. The changes in miR-30c and PAI-1 levels were identified in platelets from healthy and diabetic individuals. We found that miR-30c directly targeted the 3′ UTR of PAI-1 and negatively regulated its expression. miR-30c was negatively correlated with glucose and HbA1c levels in DM2. In HFD-fed diabetic mice, increasing miR-30c expression by lenti-miR-30c significantly decreased the PAI-1 expression and prolonged the time to occlusion in an arterial thrombosis model. Platelet depletion/reinfusion experiments generating mice with selective ablation of PAI-1 demonstrate a major contribution by platelet-derived PAI-1 in the treatment of lenti-miR-30c to thrombus formation. These results provide important implications regarding the regulation of fibrinolysis by platelet miRNA under diabetic mellitus. PMID:27819307

  5. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan

    PubMed Central

    Jiang, Peng; Loyau, Stéphane; Tchitchinadze, Maria; Ropers, Jacques; Jondeau, Guillaume; Jandrot-Perrus, Martine

    2015-01-01

    Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II) type I receptor (AT1R) antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2) receptor (TP) and the glycoprotein VI (GPVI). Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg.mL-1 and 10 μg.mL-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day) on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25) and non-treated (n=30) patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy. Trial Registration ClinicalTrials.gov NCT00763893 PMID:26052700

  6. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    SciTech Connect

    Bae, Ok-Nam; Lim, Kyung-Min; Chung, Jin-Ho

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resulted in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.

  7. Effects of platelet-rich plasma on liver regeneration in CCl4-induced hepatotoxicity model.

    PubMed

    Mafi, Afsaneh; Dehghani, Farzaneh; Moghadam, Abbas; Noorafshan, Ali; Vojdani, Zahra; Talaei-Khozani, Tahereh

    2016-12-01

    Numerous bioactive growth factors and cytokines in platelet-rich plasma (PRP) have recently made it an attractive biomaterial for therapeutic purposes. These growth factors have the potential to regenerate the injured tissues. The aim of this study was to investigate the therapeutic effects of PRP in hepatotoxic animal model. Hepatotoxicity was induced in rats by oral administration of 4 mL/kg/week of CCl4 diluted 1:1 in corn oil for 10 weeks. To confirm the hepatotoxicity, 24 h after the last CCl4 administration, blood samples were collected via cardiac puncture to assess the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total protein, and total bilirubin. Twenty-four hours after blood collection, the experimental animals received a single injection of PRP (1 mL) via the anterior mesenteric vein. One week later, all biochemical tests were performed again, and the rats were scarified and their livers were removed, prepared histologically, and stained. The stereological analyses were performed to evaluate the effects of PRP on histopathological features of CCl4-treated livers. The results were compared statistically with the corresponding control and CCl4+normal saline (NS)-treated animals. A significant decrease in the number and volume of hepatocytes (p = 0.01), and also a reduction in the volume of sinusoids (p = 0.001) and connective tissue (p = 0.04), were observed in the PRP-treated animals compared with the CCl4+NS-treated ones. Our findings demonstrated that application of PRP had beneficial effects on CCl4-induced fibrosis; however, it had detrimental effects on the total number of hepatocytes and the volume of hepatocytes and sinusoidal spaces.

  8. Enhanced Shear-induced Platelet Aggregation Due to Low-temperature Storage

    DTIC Science & Technology

    2013-07-01

    rheometer. PLT aggregation was measured using a flow cytometer as an increase in the forward scatter-side scatter population which is bigger and...500, 2500, or 10,000/second for 120 seconds at 37°C, and PLT aggregation was measured. (A) Flow cytometric plots for the measurement of PLT...platelet aggregation and microaggregate formation in whole blood by flow cytometry. Platelets 2004;15:85-93. 26. Shankaran H, Alexandridis P

  9. Venous hypertension induces increased platelet reactivity and accumulation in patients with chronic venous insufficiency.

    PubMed

    Lu, Xinwu; Chen, Yujie; Huang, Yin; Li, Weimin; Jiang, Mier

    2006-01-01

    The objective of this study was to determine whether there are changes in platelet activation and rheology in patients with chronic venous insufficiency (CVI) and what their impact is on this disease. Anticoagulated peripheral venous blood collected from 21 patients with CVI and 13 normal control subjects in different bodily positions was incubated either with 0.5 mumol/L adenosine diphosphate (ADP) or without agonist and analyzed by whole blood flow cytometry. Soluble P-selectin was analyzed in obtained sera by enzyme-linked immunosorbent assay. Platelet count was determined by a whole blood analyzer. Circulating platelets were more reactive to stimulation with 0.5 mumol/L ADP in patients with CVI compared with control subjects. There was no statistically significant change in platelet activation without ADP and the level of soluble P-selectin as a function of posture. Under simulated venous hypertension, platelet accumulation was observed in patients with CVI. Patients with CVI had increased platelet reactivity and accumulation during orthostasis, suggesting this might be a contributory factor to CVI pathogenesis.

  10. The membrane attack complex of complement contributes to plasmin-induced synthesis of platelet-activating factor by endothelial cells and neutrophils

    PubMed Central

    Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-01-01

    Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia–reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated. PMID:12871223

  11. Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances.

    PubMed

    Södergren, Anna L; Svensson Holm, Ann-Charlotte B; Ramström, Sofia; Lindström, Eva G; Grenegård, Magnus; Öllinger, Karin

    2016-01-01

    Exocytosis of lysosomal contents from platelets has been speculated to participate in clearance of thrombi and vessel wall remodelling. The mechanisms that regulate lysosomal exocytosis in platelets are, however, still unclear. The aim of this study was to identify the pathways underlying platelet lysosomal secretion and elucidate how this process is controlled by platelet inhibitors. We found that high concentrations of thrombin induced partial lysosomal exocytosis as assessed by analysis of the activity of released N-acetyl-β-glucosaminidase (NAG) and by identifying the fraction of platelets exposing the lysosomal-associated membrane protein (LAMP)-1 on the cell surface by flow cytometry. Stimulation of thrombin receptors PAR1 or PAR4 with specific peptides was equally effective in inducing LAMP-1 surface expression. Notably, lysosomal exocytosis in response to thrombin was significantly reduced if the secondary activation by ADP was inhibited by the P2Y12 antagonist cangrelor, while inhibition of thromboxane A2 formation by treatment with acetylsalicylic acid was of minor importance in this regard. Moreover, the NO-releasing drug S-nitroso-N-acetyl penicillamine (SNAP) or the cyclic AMP-elevating eicosanoid prostaglandin I2 (PGI2) significantly suppressed lysosomal exocytosis. We conclude that platelet inhibitors that mimic functional endothelium such as PGI2 or NO efficiently counteract lysosomal exocytosis. Furthermore, we suggest that secondary release of ADP and concomitant signaling via PAR1/4- and P2Y12 receptors is important for efficient platelet lysosomal exocytosis by thrombin.

  12. ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis.

    PubMed

    Machado, Gloria-Beatriz S; de Assis, Maria-Cristina; Leão, Robson; Saliba, Alessandra M; Silva, Mauricio C A; Suassuna, Jose H; de Oliveira, Albanita V; Plotkowski, Maria-Cristina

    2010-03-01

    To address the question whether ExoU, a Pseudomonas aeruginosa cytotoxin with phospholipase A2 activity, can induce hemostatic abnormalities during the course of pneumosepsis, mice were instilled i.t. with the ExoU-producing PA103 P. aeruginosa or with a mutant obtained by deletion of the exoU gene. Control animals were instilled with sterile vehicle. To assess the role of ExoU in animal survival, mice were evaluated for 72 h. In all the other experiments, animals were studied at 24 h after infection. PA103-infected mice showed significantly higher mortality rate, lower blood leukocyte concentration, and higher platelet concentration and hematocrit than animals infected with the bacterial mutant, as well as evidences of increased vascular permeability and plasma leakage, which were confirmed by our finding of higher protein concentration in bronchoalveolar lavage fluids and by the Evans blue dye assay. Platelets from PA103-infected mice demonstrated features of activation, assessed by the flow cytometric detection of higher percentage of P-selectin expression and of platelet-derived microparticles as well as by the enzyme immunoassay detection of increased thromboxane A2 concentration in animal plasma. Histopathology of lung and kidney sections from PA103-infected mice exhibited evidences of thrombus formation that were not detected in sections of animals from the other groups. Our results demonstrate the ability of ExoU to induce vascular hyperpermeability, platelet activation, and thrombus formation during P. aeruginosa pneumosepsis, and we speculate that this ability may contribute to the reported poor outcome of patients with severe infection by ExoU-producing P. aeruginosa.

  13. Early storage lesions in apheresis platelets are induced by the activation of the integrin αIIbβ₃ and focal adhesion signaling pathways.

    PubMed

    Thiele, Thomas; Iuga, Cristina; Janetzky, Susann; Schwertz, Hansjorg; Gesell Salazar, Manuela; Fürll, Birgit; Völker, Uwe; Greinacher, Andreas; Steil, Leif

    2012-12-05

    Production and storage of platelet concentrates (PC) induce protein changes in platelets leading to impaired platelet function. This study aimed to identify signaling pathways involved in the development of early platelet storage lesions in apheresis-PCs stored in plasma or additive solution (PAS). Apheresis-PCs from four donors were stored in plasma or in PAS at 22°C (n=4 each). Platelets were analyzed at day 0 (production day) and after 1, 6 and 9 days of storage. Platelet response to agonists (TRAP, collagen, ADP) and to hypotonic shock decreased, CD62P expression increased in both storage media over time. Using DIGE 1550 protein spots were monitored and compared to baseline values at day 0. Platelets in plasma displayed changes in 352 spots (166/day 1, 263/day 6 and 201/day 9); in PAS 325 spots changed (202/day 1, 221/day 6, 200/day 9). LC-ESI-MS/MS analysis of 405 platelet proteins revealed 32 proteins changed during storage in plasma (9/day 1, 15/day 6 and 26/day 9) and 28 in PAS (5/day 1, 20/day 6, 26/day 9). Ingenuity pathway analysis found integrin-αII(b)β(3) and focal adhesion signaling pathways involved in early alterations, being confirmed by Western blotting. Corresponding mRNAs in platelets were identified by next generation sequencing for 84 changed proteins. Integrin-αII(b)β(3) and focal adhesion signaling cause irreversible early storage lesions in apheresis platelets. This article is part of a Special Issue entitled: Integrated omics.

  14. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

    PubMed

    Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M

    2010-05-13

    Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

  15. Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat.

    PubMed

    MacKendrick, W; Caplan, M; Hsueh, W

    1993-08-01

    Platelet-activating factor (PAF) causes bowel necrosis in animal models that is histologically identical to that seen in neonatal necrotizing enterocolitis, but little is known about endogenous mechanisms that might protect against PAF-induced bowel injury. We hypothesized that endogenous nitric oxide might represent such a protective mechanism. Adult male Sprague-Dawley rats were pretreated with 2.5 mg/kg NG-nitro-L-arginine methyl ester (L-NAME), a potent nitric oxide synthase inhibitor, and given injections of 1.5 micrograms/kg PAF 15 min later. Animals treated with normal saline placebo, L-NAME alone, and PAF alone were also studied. Superior mesenteric artery blood flow and blood pressure were continuously recorded. At the end of 2 h or upon death of the animal, hematocrit was measured and intestinal samples were taken for histologic examination and determination of myeloperoxidase activity, a measure of intestinal neutrophil content. Compared with animals given PAF alone, animals pretreated with L-NAME followed by PAF developed significantly worse bowel injury (median injury scores: 2.5 versus 0.5, p = 0.005), hemoconcentration (final hematocrit 65.2 +/- 2.0% versus 53.9 +/- 1.0%, p < 0.001), and intestinal myeloperoxidase activity (12.45 +/- 1.94 U/g versus 6.51 +/- 0.57 U/g, p < 0.01). The last two effects were further accentuated when 10 mg/kg L-NAME was given before PAF. Treatment with sodium nitroprusside, a nitric oxide donor, for 10 min before and after PAF administration reversed the effects of L-NAME. Animals pretreated with phenylephrine rather than L-NAME did not develop worse injury than animals treated with PAF alone despite comparable reductions in superior mesenteric blood flow before PAF treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    SciTech Connect

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-15

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation.

  17. Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin.

    PubMed Central

    Gelbard, H A; Nottet, H S; Swindells, S; Jett, M; Dzenko, K A; Genis, P; White, R; Wang, L; Choi, Y B; Zhang, D

    1994-01-01

    The pathogenesis of central nervous system disease during human immunodeficiency virus type 1 (HIV-1) infection revolves around productive viral infection of brain macrophages and microglia. Neuronal losses in the cortex and subcortical gray matter accompany macrophage infection. The question of how viral infection of brain macrophages ultimately leads to central nervous system (CNS) pathology remains unanswered. Our previous work demonstrated high-level production of tumor necrosis factor alpha, interleukin 1 beta, arachidonic acid metabolites, and platelet-activating factor (PAF) from HIV-infected monocytes and astroglia (H. E. Gendelman, P. Genis, M. Jett, and H. S. L. M. Nottet, in E. Major, ed., Technical Advances in AIDS Research in the Nervous System, in press; P. Genis, M. Jett, E. W. Bernton, H. A. Gelbard, K. Dzenko, R. Keane, L. Resnick, D. J. Volsky, L. G. Epstein, and H. E. Gendelman, J. Exp. Med. 176:1703-1718, 1992). These factors, together, were neurotoxic. The relative role(s) of each of these candidate neurotoxins in HIV-1-related CNS dysfunction was not unraveled by these initial experiments. We now report that PAF is produced during HIV-1-infected monocyte-astroglia interactions. PAF was detected at high levels in CSF of HIV-1-infected patients with immunosuppression and signs of CNS dysfunction. The biologic significance of the results for neurological disease was determined by addition of PAF to cultures of primary human fetal cortical or rat postnatal retinal ganglion neurons. Here, PAF at concentrations of > or = 300 pg/ml produced neuronal death. The N-methyl-D-aspartate receptor antagonist MK-801 or memantine partially blocked the neurotoxic effects of PAF. The identification of PAF as an HIV-1-induced neurotoxin provides new insights into how HIV-1 causes neurological impairment and how it may ultimately be ameliorated. PMID:8207837

  18. The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin.

    PubMed Central

    Si-Tahar, M; Renesto, P; Falet, H; Rendu, F; Chignard, M

    1996-01-01

    Cathepsin G, an enzyme released by stimulated polymorphonuclear neutrophils, and thrombin are two human proteinases which potently trigger platelet activation. Unlike thrombin, the mechanisms by which cathepsin G initiates platelet activation have yet to be elucidated. The involvement of the phospholipase C (PLC)/protein kinase C (PKC) pathway in cathepsin G-induced activation was investigated and compared with stimulation by thrombin. Exposure of 5-[14C]hydroxytryptamine-labelled platelets to cathepsin G, in the presence of acetylsalicylic acid and phosphocreatine/creatine kinase, induced platelet aggregation and degranulation in a concentration-dependent manner (0.1-3.0 microM). Time-course studies (0-180 s) comparing equivalent concentrations of cathepsin G (3 microM) and thrombin (0.5 unit/ml) resulted in very similar transient hydrolysis of phosphatidylinositol 4,5-bisphosphate and steady accumulation of phosphatidic acid. In addition cathepsin G, like thrombin, initiated the production of inositol phosphates. The neutrophil-derived proteinase also induced phosphorylation of both the myosin light chain and pleckstrin, a substrate for PKC, to levels similar to those observed in platelets challenged with thrombin. Inhibition of PKC by GF 109203X, a specific inhibitor, suppressed platelet aggregation and degranulation to the same extent for both proteinases. Using fura 2-loaded platelets, the rise in the cytosolic free Ca2+ concentration induced by cathepsin G was shown to result, as for thrombin, from both mobilization of internal stores and Ca2+ entry across the plasma membrane. These findings provide evidence that cathepsin G stimulates the PLC/PKC pathway as potently as does thrombin, independently of thromboxane A2 formation and ADP release, and that this pathway is required for platelet functional responses. PMID:8573071

  19. Low Molecular Weight Heparin Induced Skin Necrosis without Platelet Fall Revealing Immunoallergic Heparin Induced Thrombocytopenia

    PubMed Central

    Godet, Thomas; Perbet, Sébastien; Lebreton, Aurélien; Gayraud, Guillaume; Cayot, Sophie; Tremblay, Aymeric; Ravinet, Aurélie; Christophe, Sébastien; Guérin, Renaud; Pascal, Julien; Jabaudon, Matthieu; Hassan, Amr; Sapin, Anne-Françoise; Bazin, Jean-Etienne; Constantin, Jean-Michel

    2013-01-01

    Low molecular weight heparins (LMWH) are commonly used in the ICU setting for thromboprophylaxis as well as curative decoagulation as required during renal replacement therapy (RRT). A rare adverse event revealing immunoallergic LMWH induced thrombopenia (HIT) is skin necrosis at injection sites. We report the case of a patient presenting with skin necrosis witnessing an HIT after RRT, without thrombocytopenia. The mechanism remains unclear. Anti-PF4/heparin antibodies, functional tests (HIPA and/or SRA), and skin biopsy are of great help to evaluate differential diagnosis with a low pretest probability 4T's score. PMID:24307958

  20. [Induction of native platelets aggregation by incubation media of the UV irradiated leukocytes: possible role of the photo-induced ADP release].

    PubMed

    Anosov, A K; Gorbach, M M

    2014-01-01

    It is shown that during incubation after UV irradiation (22-24 hours at 7-9 degrees C) irradiated isolated rabbit leukocytes release the compound(s) which induces platelets aggregation in the native platelet rich plasma. Treatment of the incubation media of irradiated leukocytes by heat (5 minutes at 100 degrees C) does not significantly change its pro-aggregation activity. Treatment of the platelet-rich plasma by the incubation media of irradiated leukocytes without stirring induces the refractoriness of platelets to ADP. The platelets treated by ADP without stirring do not react to the incubation media of irradiated leukocytes. The absorption spectrum of the incubation media of irradiated leukocytes has the maximum at 260 nm similar to that of the absorption spectra of ADP. It is possible that UVradiation induces the ADP release from leukocytes during post-irradiation incubation. Accumulation of this substance in the incubation media may be the cause of its pro-aggregation activity for native blood platelets.

  1. Platelet-rich plasma induces annulus fibrosus cell proliferation and matrix production.

    PubMed

    Pirvu, T N; Schroeder, J E; Peroglio, M; Verrier, S; Kaplan, L; Richards, R G; Alini, M; Grad, S

    2014-04-01

    Platelet-rich plasma (PRP) contains growth factors and creates a 3D structure upon clotting; PRP or platelet lysate (PL) might be considered for annulus fibrosus (AF) repair. Bovine AF cells were cultured with 25% PRP, 50% PRP, 25% PL, 50% PL, or 10% FBS. After 2 and 4 days, DNA, glycosaminoglycan (GAG), and mRNA levels were analyzed. Histology was performed after injection of PRP into an AF defect in a whole disc ex vivo. By day 4, significant increases in DNA content were observed in all treatment groups. All groups also showed elevated GAG synthesis, with highest amounts at 50% PL. Collagen I and II expression was similar between groups; aggrecan, decorin, and versican expression was highest at 25% PL. Injection of PRP into the AF defect resulted in an increased matrix synthesis. Platelet-rich preparations increased the matrix production and cell number and may therefore be considered to promote AF repair.

  2. Thrombin-induced translocation of GLUT3 glucose transporters in human platelets.

    PubMed Central

    Sorbara, L R; Davies-Hill, T M; Koehler-Stec, E M; Vannucci, S J; Horne, M K; Simpson, I A

    1997-01-01

    Platelets derive most of their energy from anaerobic glycolysis; during activation this requirement rises approx. 3-fold. To accommodate the high glucose flux, platelets express extremely high concentrations (155+/-18 pmol/mg of membrane protein) of the most active glucose transporter isoform, GLUT3. Thrombin, a potent platelet activator, was found to stimulate 2-deoxyglucose transport activity 3-5-fold within 10 min at 25 degrees C, with a half-time of 1-2 min. To determine the mechanism underlying the increase in glucose transport activity, an impermeant photolabel, [2-3H]2N-4-(1-azi-2,2,2-trifluoethyl)benzoyl-1,3, -bis-(d-mannose-4-ylozy)-2-propylamine, was used to covalently bind glucose transporters accessible to the extracellular milieu. In response to thrombin, the level of transporter labelling increased 2.7-fold with a half-time of 1-2 min. This suggests a translocation of GLUT3 transporters from an intracellular site to the plasma membrane in a manner analogous to that seen for the translocation of GLUT4 in insulin-stimulated rat adipose cells. To investigate whether a similar signalling pathway was involved in both systems, platelets and adipose cells were exposed to staurosporin and wortmannin, two inhibitors of GLUT4 translocation in adipose cells. Thrombin stimulation of glucose transport activity in platelets was more sensitive to staurosporin inhibition than was insulin-stimulated transport activity in adipose cells, but it was totally insensitive to wortmannin. This indicates that the GLUT3 translocation in platelets is mediated by a protein kinase C not by a phosphatidylinositol 3-kinase mechanism. In support of this contention, the phorbol ester PMA, which specifically activates protein kinase C, fully stimulated glucose transport activity in platelets and was equally sensitive to inhibition by staurosporin. This study provides a cellular mechanism by which platelets enhance their capacity to import glucose to fulfil the increased energy demands

  3. Inhibitory effects of Bulnesia sarmienti aqueous extract on agonist-induced platelet activation and thrombus formation involves mitogen-activated protein kinases.

    PubMed

    Kamruzzaman, S M; Endale, Mehari; Oh, Won Jun; Park, Seung-Chun; Kim, Kil-Soo; Hong, Joo Heon; Kwak, Yi-Seong; Yun, Bong-Sik; Rhee, Man Hee

    2010-08-09

    B. sarmienti has long been recognized in folk medicine as a medicinal plant with various medicinal uses. Traditionally, it has been appreciated for the skin-healing properties of its essence. The bark has also been employed to treat stomach and cardiovascular disorders and reported to have antitumor, antioxidant and anti-inflammatory activities. However, information on its antiplatelet activity is limited. To examined the effects of B. sarmienti aqueous extract (BSAE) in platelet physiology. The anti-platelet activity of BSAE was studied using rat platelets for in vitro determination of the extract effect on agonist-induced platelet aggregation, ATP secretion, [Ca(2+)](i) mobilization and MAP kinase phosphorylation. The extract in vivo effects was also examined in arterio-venous shunt thrombus formation in rats, and tail bleeding time in mice. HPLC chromatographic analysis revealed that B. sarmienti extract contained (+)-catechin (C), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), and (-)-epicatechin gallate (ECG). BSAE, significantly and dose dependently, inhibited collagen, thrombin, or ADP-induced platelet aggregation. The 50 percent inhibitory concentrations (IC(50)) of the extract for collagen, thrombin and ADP-induced platelet aggregation were 45.3+/-2.6, 100+/-5.6 and 110+/-4.6 microg/ml, respectively. Collagen activated ATP release and thrombin-induced intracellular Ca(2+) concentration were reduced in BSAE-treated platelets. In addition, the extract in vivo activity showed that BSAE at 100 mg/kg significantly attenuated thrombus formation in rat extracorporeal shunt model while mice tail bleeding time was not affected. Moreover, BSAE attenuated p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. BSAE inhibits platelet activation, granule secretion, aggregation, and thrombus formation without affecting bleeding time, and that this effect is mediated

  4. Hierarchical change in antioxidant enzyme gene expression and activity in acute cardiac rejection: role of inducible nitric oxide synthase.

    PubMed

    Nilakantan, Vani; Zhou, Xianghua; Hilton, Gail; Roza, Allan M; Adams, Mark B; Johnson, Christopher P; Pieper, Galen M

    2005-02-01

    Reactive oxygen and nitrogen may mediate inflammation injury, but the status of the antioxidant defense system that might influence this process is unknown. In the present study, we examined the expression profile of the antioxidant enzymes, manganese superoxide dismutase (MnSOD), catalase and glutathione peroxidase (GPX) in acutely rejecting cardiac allografts and the potential role of inducible nitric oxide synthase (iNOS) in modulating antioxidant gene expression and activity. Donor hearts from Lewis (isograft) or Wistar-Furth (allograft) rats were transplanted into Lewis recipient rats. A subset of the allografts received L-N6-(1-imino-ethyl) lysine (L-NIL), a specific iNOS inhibitor, beginning the day of surgery until the day of harvesting. Catalase and glutathione peroxidase (GPX) protein levels were significantly decreased by postoperative day 4 (POD4) and postoperative day 5 (POD5), respectively, in allografts compared to isografts. While CuZn superoxide dismutase (CuZn SOD) levels were unchanged, there was a 50% decrease in MnSOD protein in allografts at postoperative day 6 (POD6). The sequential loss in antioxidant protein levels was not due to transcriptional regulation since there was no change in RNA levels for any of the genes tested. L-NIL did not alter catalase protein; however, the loss of MnSOD protein at POD6 was prevented by L-NIL. Consistent with a decrease in antioxidant protein levels, there was a sequential loss in enzyme activity for MnSOD, catalase and GPX. L-NIL however, restored MnSOD and GPX activities but not catalase activity. Treatment with CsA restored both protein and enzyme activities of GPX and MnSOD but not catalase. These results indicate that the loss in MnSOD and GPX protein and activity in allografts occurs via an iNOS-dependent mechanism whereas the decrease in catalase appears to be iNOS-independent. This suggests a differential role for iNOS in regulating post-translational modification of individual antioxidant enzymes

  5. The polyphenol-rich extracts from black chokeberry and grape seeds impair changes in the platelet adhesion and aggregation induced by a model of hyperhomocysteinemia.

    PubMed

    Malinowska, Joanna; Oleszek, Wieslaw; Stochmal, Anna; Olas, Beata

    2013-04-01

    The mechanism action of the polyphenol-rich extracts from berries of Aronia melanocarpa (black chokeberry) and from grape seeds in the defence against homocysteine (Hcy) and its derivatives action in blood platelets is still unknown. In this study, the influence of the aronia extract and grape seeds extract (GSE) on the platelet adhesion to collagen and fibrinogen and the platelet aggregation during a model of hyperhomocysteinemia was investigated. The aim of our study in vitro was also to investigate superoxide anion radicals (O₂⁻•) production after incubation of platelets with Hcy, HTL and the aronia extract and GSE during a model of hyperhomocysteinemia (induced by reduced form of homocysteine at final dose of 100 μM) and the most reactive form of Hcy--its cyclic thioester, homocysteine thiolactone (HTL, 1 μM). Moreover, the additional aim of our study was also to establish and compare the influence of the aronia extract, GSE and resveratrol (3,4',5-trihydroxystilben), a phenolic compound, which has been supposed to be beneficial for the prevention of cardiovascular events, on selected steps of platelet activation. The effects of tested extracts on adhesion of blood platelets to collagen and fibrinogen were determined according to Tuszynski and Murphy. The platelet aggregation was determined by turbidimetry method using a Chrono-log Lumi-aggregometer. We have observed that HTL, like its precursor-Hcy stimulated the generation of O₂⁻• (measured by the superoxide dismutase-inhibitable reduction of cytochrome c) in platelets and caused an augmentation of the platelet adhesion and aggregation induced by the strong physiological agonist-thrombin. Our present results in vitro also demonstrated that the aronia extract and grape seeds extract reduced the toxicity action of Hcy and HTL on blood platelet adhesion to collagen and fibrinogen, the platelet aggregation and superoxide anion radicals production in platelets, suggesting its potential protective

  6. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration.

    PubMed Central

    Bell, D N; Spain, S; Goldsmith, H L

    1989-01-01

    The effect of shear rate on the adenosine diphosphate-induced aggregation of human platelets in Poiseuille flow was studied using the method described in part I (Bell, D.N., S. Spain, and H.L. Goldsmith. 1989. Biophys. J. 56:817-828). The rate and extent of aggregation in citrated platelet-rich plasma were measured over a range of mean transit time from 0.2 to 8.6 s and mean tube shear rate, G, from 41.9 to 1,920 s-1. At 0.2 microM ADP, changes in the single platelet concentration with time suggest that more than one type of platelet-platelet bond mediates platelet aggregation at physiological shear rates. At low G, a high initial rate of aggregation reflects the formation of a weak bond of high affinity, the strength of which diminishes with time. Here, the fraction of collisions yielding stable doublets, the collision efficiency, reached a maximum of 26%. The collision efficiency decreased with increasing G and was accompanied by a progressive delay in the onset of aggregation. However, the gradual expression of a more shear rate-resistant bond at high shear rates and long mean transit times produced a subsequent increase in collision efficiency and a corresponding increase in the rate of aggregation. Although the collision efficiencies here were less than 1%, the high collision frequencies were able to sustain a high rate of aggregation. At 0.2 microM ADP, aggregate size generally decreased with increasing G. At 1.0 microM ADP, aggregate size was still limited at high shear rates even though the rate of single platelet aggregation was much higher than at 0.2 microM ADP. Platelet aggregation was greater for female than for male donors, an effect related to differences in the hematocrit of donors before preparing platelet-rich plasma. PMID:2605299

  7. Moderate red wine and grape juice consumption modulates the hydrolysis of the adenine nucleotides and decreases platelet aggregation in streptozotocin-induced diabetic rats.

    PubMed

    Schmatz, Roberta; Mann, Thaís R; Spanevello, Roselia; Machado, Michel M; Zanini, Daniela; Pimentel, Victor C; Stefanello, Naiara; Martins, Caroline C; Cardoso, Andréia M; Bagatini, Margarete; Gutierres, Jessié; Leal, Claudio A M; Pereira, Luciane B; Mazzanti, Cinthia; Schetinger, Maria R; Morsch, Vera M

    2013-03-01

    This study investigated the ex vivo effects of the moderate red wine (RW) and grape juice (GJ) consumption, and the in vitro effects of the resveratrol, caffeic acid, gallic acid, quercetin, and rutin on NTPDase (nucleoside triphosphate diphosphohydrolase), ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5'-nucleotidase, and adenosine deaminase (ADA) activities in platelets and platelet aggregation from streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 10): control/saline, control/GJ, control/RW, diabetic/saline, diabetic/GJ, and diabetic/RW. RW and GJ were administered for 45 days; after this period, the blood was collected for experimental determinations. Results showed that NTPDase, E-NPP, 5'-nucleotidase, and ADA activities as well as platelet aggregation were increased in the diabetic/saline group compared to the control/saline group. Treatment with RW and GJ increased ectonucleotidases activities and prevented the increase in the ADA activity in the diabetic/GJ and diabetic/RW groups. Platelet aggregation was also decreased by the treatment with RW and GJ in the diabetic/GJ and diabetic/RW groups. In the in vitro tests, resveratrol, caffeic acid, and gallic acid increased ATP, ADP, and AMP hydrolysis, while quercetin and rutin decreased the hydrolysis of these nucleotides in platelets of diabetic rats. The ADA activity and platelet aggregation were reduced in platelets of diabetic rats in the presence of all polyphenols tested in vitro. These findings suggest that RW, GJ, and all polyphenols tested were able to modulate the ectoenzymes activities. Moreover, a decrease in the platelet aggregation was observed and it could contribute to the prevention of platelet abnormality, and consequently vascular complications in diabetic state.

  8. Alkali-induced corneal stromal melting prevention by a novel platelet-activating factor receptor antagonist.

    PubMed

    He, Jiucheng; Bazan, Nicolas G; Bazan, Haydee E P

    2006-01-01

    To evaluate the effect of LAU0901 (2,4,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid ester), a novel platelet-activating factor (PAF) receptor antagonist, on a rabbit model of severe corneal alkali injury. Adult New Zealand albino rabbits were anesthetized and the right eyes were injured with 2N sodium hydroxide for 60 seconds using a 12-mm plastic well, then rinsed. After the injury, 10 rabbits were treated topically with LAU0901 every 2 hours 4 times per day and received a subconjunctival injection of 200 microL of LAU0901 once per week and 10 rabbits were treated with vehicle the same way. Over the course of 4 weeks, the corneas were examined daily by slitlamp microscopy and corneal ulcers were graded with a clinical scoring system. Ten additional rabbits were treated as described but 1 rabbit from each group was killed at 1, 3, 7, 14, or 21 days after injury. The corneas were processed for histopathologic and immunofluorescence examination. Persistent epithelial defects were present in both groups from day 5 postinjury, but from day 9 through day 25, the average clinical scores of both epithelial defects and stromal ulcerations in the vehicle-treated eyes were significantly higher than those in the LAU0901-treated eyes (P<.01). By day 28, 90% of the eyes in the vehicle-treated group perforated, while only 20% of the eyes in the LAU0901-treated group developed deep ulceration and none were perforated. Histologic examination showed that the corneas treated with LAU0901 for 4 weeks were completely reepithelialized, with fewer inflammatory polymorphonuclear leukocytes and more repair fibroblasts (myofibroblasts) in the stroma as compared with those treated with vehicle. LAU0901 inhibits corneal ulceration and perforation in a severe alkali-burn model in the rabbit. In the cornea, PAF is a strong inflammatory mediator, a chemotactic to inflammatory polymorphonuclear leukocytes, and an inducer of several proteases that degrade the extracellular matrix

  9. Platelet Donation

    MedlinePlus

    ... donating platelets, can I still donate blood? What blood types should donate platelets? Can I donate plasma at ... Community Learn About Blood Blood Facts and Statistics Blood Types Blood Components What Happens to Donated Blood Blood ...

  10. The Platelet Function Defect of Cardiopulmonary Bypass.

    DTIC Science & Technology

    1992-11-24

    fibrinolytic and coagulation systems occur during CPB,1 a platelet function defect is generally considered to be the primary CPB-induced hemostatic...platelets.39 OKM5 (provided by Dr. Patricia Rao, Ortho Diagnostic Systems , Raritan, NJ) is directed against platelet membrane GPIV.40 Flow Cytometric...22 after degranulation.7-14-16-18 Utilizing washed platelet systems , Nieuwenhuis et al.14 found a modest increase during CPB of the platelet

  11. Prolonged antispasmodic effect in isolated radial artery graft and pronounced platelet inhibition induced by the inodilator drug, levosimendan.

    PubMed

    Ambrus, Nóra; Szolnoky, Jenő; Pollesello, Piero; Kun, Attila; Varró, András; Papp, J Gyula; Pataricza, János

    2012-03-01

    Radial artery frequently develops spasm and requires vasodilator therapy during coronary artery bypass graft surgery (CABG). Levosimendan was recently shown to oppose 5-hydroxytryptamine-induced contraction of radial artery (RA) grafts. The aim of the present study was to explore whether levosimendan retains its vasodilatory capacity following in vitro pre-incubation of RA segments with the inodilator. A possible cumulative effect of the drug in human platelets was also studied. Human isolated RA segments were pre-incubated in 0.16 μmol/L levosimendan containing solution or in 0.9% NaCl, Bretschneider, 5% albumin and a 5% human serum protein solution (Biseko) as controls for 45 min. Contractions were induced by three consecutive administrations of 5-hydroxytryptamine (0.31 μM) 45, 90 and 120 min. after exchanging the pre-incubation solutions with Krebs-Henseleit solution, uniformly. Receptor-independent contractions (KCl, 80 mmol/L), endothelium-dependent (acetylcholine, 1 μmol/L) and independent relaxations (papaverine, 100 μmol/L) were also investigated. Washed human platelets were pre-incubated with levosimendan (0.06 μmol/L) for 2 or 15 min. and aggregated with thrombin (0.1 IU/mL). Contractions of RA grafts induced by 5-hydroxytryptamine were significantly smaller 45 min. and 90 min. after the replacement of levosimendan with Krebs-Henseleit solution. Biseko solution also decreased the contraction of the graft at 45 min. Contractions did not change in time following the pre-incubations of radial arteries with 0.9% NaCl, Bretschneider and 5% albumin solutions. The grafts remained intact as assessed by their maximum contractions and endothelium-dependent and endothelium-independent relaxations at the end of the investigations. Platelets revealed larger anti-aggregatory effect to levosimendan following the enhancement of the incubation time. Results indicate that the antispasmodic and anti-aggregatory effects of levosimendan

  12. Human Platelets and Factor XI

    PubMed Central

    Lipscomb, Myatt S.; Walsh, Peter N.

    1979-01-01

    Because human platelets participate in the contact phase of intrinsic coagulation and contain a Factor XI-like coagulant activity, the nature of the Factor XI-like activity was examined and compared with purified plasma Factor XI. The platelet factor XI-like activity was sedimented with the particulate fraction of a platelet lysate, was inactivated by heat (t1/2 3.5 min, 56°C), was not a nonspecific phospholipid activity, and was destroyed by treatment with Triton X-100. Isolated platelet membranes were four-fold enriched in Factor XI activity and similarly enriched in plasma membrane marker enzymes. The Factor XI-like activity of platelet membranes was detected only when assayed in the presence of kaolin, which suggests that it is present in an unactivated form and can participate in contact activation. Concanavalin A inhibited the Factor XI-like activity of platelet lysates and platelet membranes but not of plasma or purified Factor XI. A platelet membrane-Factor XI complex was isolated after incubation of membranes with purified Factor XI. The Factor XI activity of the platelet membrane-plasma Factor XI complex was inhibited by concanavalin A, whereas unbound plasma Factor XI retained activity. An antibody raised against plasma Factor XI inhibited the in vitro Factor XI activity of plasma and of the platelet membrane-plasma Factor XI complex but had no effect on the endogenous Factor XI-like activity of washed lysed platelets or isolated platelet membranes. Washed platelets and isolated platelet membranes obtained from a Factor XI-deficient donor without a history of excessive bleeding had normal quantities of platelet Factor XI-like activity and normal behavior in the contact phase of coagulation (collagen-induced coagulant activity). These results indicate that platelet membranes contain an endogenous Factor XI-like activity that is functionally distinct from plasma Factor XI. PMID:447822

  13. Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition.

    PubMed

    Piel, S; Ehinger, J K; Elmér, E; Hansson, M J

    2015-01-01

    Metformin is a widely used antidiabetic drug associated with the rare side effect of lactic acidosis which has been proposed to be linked to drug-induced mitochondrial dysfunction. Using respirometry, the aim of this study was to evaluate mitochondrial toxicity of metformin to human blood cells in relation to that of phenformin, a biguanide analogue withdrawn in most countries due to a high incidence of lactic acidosis. Peripheral blood mononuclear cells and platelets were isolated from healthy volunteers, and integrated mitochondrial function was studied in permeabilized and intact cells using high-resolution respirometry. A wide concentration range of metformin (0.1-100 mm) and phenformin (25-500 μm) was investigated for dose- and time-dependent effects on respiratory capacities, lactate production and pH. Metformin induced respiratory inhibition at complex I in peripheral blood mononuclear cells and platelets (IC50 0.45 mm and 1.2 mm respectively). Phenformin was about 20-fold more potent in complex I inhibition of platelets than metformin. Metformin further demonstrated a dose- and time-dependent respiratory inhibition and augmented lactate release at a concentration of 1 mm and higher. Respirometry of human peripheral blood cells readily detected respiratory inhibition by metformin and phenformin specific to complex I, providing a suitable model for probing drug toxicity. Lactate production was increased at concentrations relevant for clinical metformin intoxication, indicating mitochondrial inhibition as a direct causative pathophysiological mechanism. Relative to clinical dosing, phenformin displayed a more potent respiratory inhibition than metformin, possibly explaining the higher incidence of lactic acidosis in phenformin-treated patients. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  15. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation

    PubMed Central

    Stokol, Tracy; Serpa, Priscila B. S.; Zahid, Muhammad N.; Brooks, Marjory B.

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1–0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  16. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation.

    PubMed

    Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  17. Severing corneal nerves in one eye induces sympathetic loss of immune privilege and promotes rejection of future corneal allografts placed in either eye

    PubMed Central

    Paunicka, Kathryn J.; Mellon, Jessamee; Robertson, Danielle; Petroll, Matthew; Brown, Joseph R.; Niederkorn, Jerry Y.

    2015-01-01

    Less than 10% of corneal allografts undergo rejection even though HLA matching is not performed. However, second corneal transplants experience a three-fold increase in rejection, which is not due to prior sensitization to histocompatibility antigens shared by the first and second transplants since corneal grafts are selected at random without histocompatibility matching. Using a mouse model of penetrating keratoplasty we found that 50% of the initial corneal transplants survived, yet 100% of the subsequent corneal allografts (unrelated to the first graft) placed in the opposite eye underwent rejection. The severing of corneal nerves that occurs during surgery induced substance P (SP) secretion in both eyes, which disabled T regulatory cells that are required for allograft survival. Administration of an SP antagonist restored immune privilege and promoted graft survival. Thus, corneal surgery produces a sympathetic response that permanently abolishes immune privilege of subsequent corneal allografts, even those placed in the opposite eye and expressing a completely different array of foreign histocompatibility antigens from the first corneal graft. PMID:25872977

  18. Taurine and platelet aggregation

    SciTech Connect

    Nauss-Karol, C.; VanderWende, C.; Gaut, Z.N.

    1986-03-01

    Taurine is a putative neurotransmitter or neuromodulator. The endogenous taurine concentration in human platelets, determined by amino acid analysis, is 15 ..mu..M/g. In spite of this high level, taurine is actively accumulated. Uptake is saturable, Na/sup +/ and temperature dependent, and suppressed by metabolic inhibitors, structural analogues, and several classes of centrally active substances. High, medium and low affinity transport processes have been characterized, and the platelet may represent a model system for taurine transport in the CNS. When platelets were incubated with /sup 14/C-taurine for 30 minutes, then resuspended in fresh medium and reincubated for one hour, essentially all of the taurine was retained within the cells. Taurine, at concentrations ranging from 10-1000 ..mu..M, had no effect on platelet aggregation induced by ADP or epinephrine. However, taurine may have a role in platelet aggregation since 35-39% of the taurine taken up by human platelets appears to be secreted during the release reaction induced by low concentrations of either epinephrine or ADP, respectively. This release phenomenon would imply that part of the taurine taken up is stored directly in the dense bodies of the platelet.

  19. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection.

    PubMed

    Dieudé, Mélanie; Bell, Christina; Turgeon, Julie; Beillevaire, Deborah; Pomerleau, Luc; Yang, Bing; Hamelin, Katia; Qi, Shijie; Pallet, Nicolas; Béland, Chanel; Dhahri, Wahiba; Cailhier, Jean-François; Rousseau, Matthieu; Duchez, Anne-Claire; Lévesque, Tania; Lau, Arthur; Rondeau, Christiane; Gingras, Diane; Muruve, Danie; Rivard, Alain; Cardinal, Héloise; Perreault, Claude; Desjardins, Michel; Boilard, Éric; Thibault, Pierre; Hébert, Marie-Josée

    2015-12-16

    Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. Copyright © 2015, American Association for the Advancement of Science.

  20. Regulation of murine megakaryocyte size and ploidy by non-platelet-dependent mechanisms in radiation-induced megakaryocytopenia

    SciTech Connect

    Ebbe, S. )

    1991-09-01

    Megakaryocytic macrocytosis was evaluated in mice after irradiation with 6.5 Gy 60Co gamma rays. During the second and third months after sublethal irradiation, one or more of the following abnormalities of thrombocytopoiesis was present: thrombocytopenia, megakaryocytopenia, macromegakaryocytosis, a shift to higher ploidies, and enlargement of cells within ploidy groups. After transfusion-induced thrombocytosis, reductions in megakaryocyte size were delayed or absent relative to non-irradiated mice, and there was more of a tendency to shift to lower values for megakaryocyte ploidy. Mice with radiation-induced megakaryocytopenia failed to show rebound thrombocytosis during recovery from immunothrombocytopenia, in spite of further increases in megakaryocyte size and ploidy. The findings support the hypotheses that numbers of megakaryocytes may influence the regulation of megakaryocytopoiesis even when there is an excess of platelets and that ploidy distribution is not the sole determinant of the average size of a population of megakaryocytes. After irradiation, persistent megakaryocytopenia may not severely affect platelet production under steady-state conditions, but the ability of the marrow to respond to homeostatic regulation is compromised.

  1. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  2. Rapid tyrosine phosphorylation and activation of Bruton's tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking.

    PubMed

    Oda, A; Ikeda, Y; Ochs, H D; Druker, B J; Ozaki, K; Handa, M; Ariga, T; Sakiyama, Y; Witte, O N; Wahl, M I

    2000-03-01

    Stimulation of the platelet nonintegrin collagen receptor, glycoprotein VI, evokes a signaling response similar to that induced by antigen receptor activation in B and T lymphocytes. A key transducer of the lymphocyte signaling pathways is the Bruton's tyrosine kinase (Btk)/Tec kinase family, which connects receptors to the elevation of intracellular-free calcium levels. An important signaling function for Btk in collagen-induced platelet activation in vitro was recently demonstrated by other researchers using Btk-deficient platelets from patients with X-linked agammaglobulinemia (XLA). Since Btk-deficiency does not induce an overt platelet-based bleeding disorder in vivo, collagen receptor responses may include other Btk/Tec kinase family members in normal platelets. Both Btk and Tec had increased tyrosine following stimulation of collagen receptors or CD32 cross-linking. Data from kinetic analyses and inhibitor studies and the use of phosphopeptide-specific antibodies recognizing 2 Btk regulatory phosphorylated tyrosine residues suggest a mechanism for coordinate recruitment of Btk and Tec through the immunoreceptor tyrosine-based activation motif, Src family kinases, and phosphatidylinositol 3-kinase. In XLA platelets, collagen treatment increased tyrosine phosphorylation of Tec and several other signaling proteins, including Lyn, Fyb, Slp-76, and the Wiskott-Aldrich syndrome protein. This indicates that important elements of the collagen signaling pathway proximal and distal to Btk and Tec are preserved despite the lack of functional Btk. The results are consistent with the conclusion that activation of Tec may sustain XLA platelet function in vivo, while some in vitro assays of nonintegrin collagen receptor signaling through the Btk/Tec kinase family reflect the additive dosage of the transducers. (Blood. 2000;95:1663-1670)

  3. Immune complex induced pancreatitis: effect of BN 52021, a selective antagonist of platelet-activating factor.

    PubMed

    Jancar, S; De Giaccobi, G; Mariano, M; Mencia-Huerta, J M; Sirois, P; Braquet, P

    1988-05-01

    A model of acute pancreatitis was developed by induction of an immune complex mediated hypersensitivity reaction in rats. This acute inflammatory reaction was characterized by intense interstitial edema, neutrophil infiltration and margination, and congestion of small vessels whereas serum amylase levels remained unchanged. Microscopic examination of the pancreatic tissue revealed the presence of immune complex deposition around blood vessels and ducts. Vascular permeability, as measured by Evan's blue extravasation increased by 6 fold. In addition, circulating platelets dropped to 50% of normal levels. Injection of platelet-activating factor (PAF) in the peritoneal cavity of rats also produced an increase in vascular permeability in the pancreas. A selective PAF-antagonist, BN 52021 reduced by approximately 50% the increase in vascular permeability produced by immune complex in the pancreas as well as that elicited by intraperitoneal injection of PAF. These results suggest that PAF plays a role in the pathological manifestations of immune complex-mediated pancreatitis.

  4. Coronary vasoconstriction in the rat, isolated perfused heart induced by platelet-activating factor is mediated by leukotriene C4.

    PubMed Central

    Piper, P. J.; Stewart, A. G.

    1986-01-01

    Platelet-activating factor (Paf, 0.04-4.50 nmol) dose-dependently induced coronary vasoconstriction and decreased cardiac contractility in rat, isolated perfused hearts and concomitantly released leukotriene-like bioactivity into the cardiac effluent. Platelet-activating factor (0.9 nmol) induced an increase in 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), PGF2 alpha, PGE2 and thromboxane B2 (TXB2) measured by radioimmunoassay (RIA) of cardiac effluents following partial purification using C18 Sep-Paks. The leukotriene-like bioactivity released by Paf was identified as leukotriene C4 (LTC4) using a combination of isolation on reverse phase-h.p.l.c. (r.p.h.p.l.c.) and quantitation by RIA. In addition, LTB4 was also identified by r.p.h.p.l.c. and the levels, determined by RIA, were within the range having biological activity. The release of cyclo-oxygenase products by Paf was prevented by indomethacin (2.8 microM), markedly attenuated by diethylcarbamazine (7.7 mM) but unaffected by FPL 55712 (1.9 microM)-pretreatment. Furthermore, LTC4 (50 pmol) did not increase the release of the cyclo-oxygenase products measured. The release of LTB4 and LTC4 appeared to be unaffected by indomethacin pretreatment whereas diethylcarbamazine-pretreatment markedly inhibited release. The coronary vasoconstriction induced by Paf (0.9 nmol) was attenuated by pretreatment with indomethacin or diethylcarbamazine, whereas FPL 55712 caused a marked inhibition of the response. In contrast, the decrease in cardiac contractility was prevented by indomethacin or diethylcarbamazine and unaffected by FPL 55712 pretreatment. It is concluded that LTC4 may be largely responsible for the coronary vasoconstriction induced by Paf with cyclo-oxygenase products having a possible modulatory role whereas the latter appear to be involved in the Paf-induced decrease in cardiac contractility. PMID:3091131

  5. In vivo enrichment of genetically manipulated platelets corrects the murine hemophilic phenotype and induces immune tolerance even using a low MOI

    PubMed Central

    Schroeder, J. A.; Chen, Y.; Fang, J.; Wilcox, D. A.; Shi, Q.

    2014-01-01

    Summary Background Our previous studies have demonstrated that platelet-specific gene delivery to hematopoietic stem cells can induce sustained therapeutic levels of platelet-FVIII expression in hemophilia A (HA) mice. Objective In this study, we aimed to enhance platelet-FVIII expression while minimizing potential toxicities. Methods A novel lentiviral vector (LV), which harbors dual genes, the FVIII gene driven by the αIIb promoter (2bF8) and a drug-resistance gene, the MGMTP140K cassette, was constructed. Platelet-FVIII expression in HA mice was introduced by transduction of HSCs and transplantation. The recipients were treated with O6-benzylguanine followed by 1,3-bis-2 chloroethyl-1-nitrosourea monthly for 3 or 4 times. Animals were analyzed by PCR, qPCR, FVIII:C assays, and inhibitor assays. Phenotypic correction was assessed by tail clipping tests and ROTEM analysis. Results Even using a low MOI (multiplicity of infection) of 1 and a non-myeloablative conditioning regimen, after in vivo selection, the levels of platelet-FVIII expression in recipients increased to 4.33 ± 5.48 mU per 108 platelets (n = 16), which were 19.7-fold higher than the levels obtained from the recipients before treatment. qPCR results confirmed that 2bF8/MGMT-LV-transduced cells were effectively enriched after drug-selective treatment. Fifteen of 16 treated animals survived tail clipping. Blood loss and whole blood clotting time were normalized in the treated recipients. Notably, no anti-FVIII antibodies were detected in the treated animals even after rhF8 challenge. Conclusion we have established an effective in vivo selective system that allows us to enrich 2bF8LV-transduced cells, enhancing platelet-FVIII expression while reducing the potential toxicities associated with platelet gene therapy. PMID:24931217

  6. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  7. Effect of some cyclooxygenase inhibitors on the increase in guanosine 3′:5′-cyclic monophosphate induced by NO-donors in human whole platelets

    PubMed Central

    Failli, Paola; Cecchi, Enrica; Tosti-Guerra, Cristina; Mugelli, Alessandro; Laffi, Giacomo; Zilletti, Lucilla; Giotti, Alberto

    1998-01-01

    The effect of the NSAIDs indomethacin, indoprofen, diclofenac and acetylsalicylic acid on the increase in guanosine 3′:5′-cyclic monophosphate (cyclic GMP) induced by nitric oxide-donor agents was tested in human whole platelets and in platelet crude homogenate.In whole platelets, indomethacin reduced the increase in cyclic GMP induced by the nitric oxide-donors (NO-donors) sodium nitroprusside (NaNP) and S-nitroso-N-acetylpenicillamine (SNAP) in a dose-dependent way, its IC50 being 13.7 μM and 15.8 μM, respectively.Of the other cyclooxygenase inhibitors tested, only indoprofen reduced the increase in cyclic GMP induced by both NO-donors in a dose-dependent way (IC50=32.7 μM, NaNP and 25.0 μM, SNAP), while acetylsalicylic acid (up to 1000 μM) and diclofenac (up to 100 μM) were ineffective.However, in platelet crude homogenate neither indomethacin nor indoprofen reduced the cyclic GMP production.Indomethacin (10 μM), indoprofen (30 μM), diclofenac (100 μM) and acetylsalicylic acid (1000 μM) showed a comparable efficacy in inhibiting platelet thromboxane B2 (TXB2) production, suggesting that the inhibitory effect of indomethacin and indoprofen on the increase in cyclic GMP induced by both NO-donors was not mediated by inhibition of cyclooxygenase.In vitro, the NSAIDs analysed did not interfere with nitrite production of SNAP.The unhomogeneous behaviour of NSAIDs on the increase in cyclic GMP induced by NO-donors in whole platelets may contribute to the different pharmacological and toxicological characteristics of the drugs, providing new knowledge on the effect of indomethacin and indoprofen. PMID:9579743

  8. Variability of the thrombin- and ADP-induced Ca2+ response among human platelets measured using fluo-3 and fluorescent videomicroscopy.

    PubMed

    Tao, J; Rose, B; Haynes, D H

    1996-05-28

    The intracellular free Ca2+ concentration ([Ca2+]cyt) of individual human platelets localized between siliconized glass cover slips was determined at rest and after stimulation with thrombin and ADP using the Ca2+ indicator fluo-3 (0.97 +/- 0.30 mmol/l cell volume) with fluorescence video microscopy. Resting [Ca2+]cyt in the presence of 2 mM external Ca2+ showed only small inter-platelet variability ([Ca2+]cyt = 86 +/- 30 (S.D.) nM). Resting [Ca2+]cyt of individual fluo-3-loaded platelets measured as a function of time had a S.D. of 10 nM or 12% (S.D./mean). Individual platelets showed no affinity for the siliconized support and their [Ca2+]cyt showed no tendency to oscillate in either the resting or in the activated state. When 0.2 U/ml thrombin or 20 microM ADP were added, all platelets showed a characteristic Ca2+ transient whereby [Ca2+]cyt increased to peak values within 8-12 sec and then declined. The Ca2+ transients measured with fluo-3 were in approximate synchrony but peak [Ca2+]cyt values showed large inter-platelet variability. The ensemble average peak [Ca2+]cyt for thrombin and ADP were 672 +/- 619 (S.D.) nM and 640 +/- 642 (S.D.) nM, respectively. Thus inter-platelet variations (S.D./mean) were 92% or 100% as large as the average measured values. Mathematically-constructed averages of the single platelet experiments agreed reasonably well with platelet-averaged values obtained in parallel experiments with stirred platelet suspensions in a plastic cuvette, measured with a conventional spectrofluorometer. Peak [Ca2+]cyt values reflecting dense tubular Ca2+ release alone (external Ca2+ removed) also showed large interplatelet variation (171 +/- 105 (S.D.) nM with thrombin and 183 +/- 134 (S.D.) nM with ADP). Dense tubular Ca2+ release induced by cyclopiazonic acid (a dense tubular Ca2+-ATPase inhibitor) gave peak [Ca2+]cyt of 289 +/- 170 nM. Thus the size of the dense tubular Ca2+ pool has an inter-platelet variation of 59% (S.D./mean). Variability of

  9. Heterogenous graft rejection pathways in class I major histocompatibility complex-disparate combinations and their differential susceptibility to immunomodulation induced by intravenous presensitization with relevant alloantigens

    PubMed Central

    1991-01-01

    The present study investigates the heterogeneity of graft rejection pathways in class I major histocompatibility complex (MHC)-disparate combinations and the susceptibility of each pathway to immunomodulation induced by intravenous presensitization with alloantigens. Depletion of CD8+ T cells was induced by repeated administration of anti-CD8 monoclonal antibody. CD8+ T cell-depleted mice failed to generate anti- allo class I MHC cytotoxic T cell (CTL) responses but exhibited anti- allo class I MHC T cell responses, such as mixed lymphocyte reaction (MLR)/IL-2 production, that were induced by CD4+ T cells. In contrast, donor-specific intravenous presensitization (DSP), as a model of donor- specific transfusion, induced almost complete elimination of CD4+ and CD8+ T cell-mediated MLR/IL-2 production, whereas this regimen did not affect the generation of CTL responses induced by DSP-resistant elements (CD8+ CTL precursors and CD4+ CTL helpers). Prolongation of skin graft survival was not induced by either of the above two regimens alone, but by the combination of these. Prolonged graft survival was obtained irrespective of whether the administration of anti-CD8 antibody capable of eliminating CTL was started before or after DSP. The combination of DSP with injection of anti-CD4 antibody also effectively prolonged graft survival. However, this was the case only when the injection of antibody was started before DSP, because such antibody administration was capable of inhibiting the generation of CTL responses by eliminating DSP-resistant CD4+ CTL helpers. These results indicate that (a) the graft rejection in class I-disparate combinations is induced by CD8+ CTL-involved and -independent pathways that are resistant and susceptible to DSP, respectively; (b) DSP contributes to, but is not sufficient for, the prolongation of graft survival; and (c) the suppression of graft rejection requires an additional treatment for reducing DSP-resistant CTL responses. The results are

  10. Quantification of the Blood Platelet Reactivity in the ADP-Induced Model of Non-Lethal Pulmonary Thromboembolism in Mice with the Use of Laser Doppler Flowmetry

    PubMed Central

    Przygodzki, Tomasz; Talar, Marcin; Blazejczyk, Agnieszka; Kalchenko, Vyacheslav; Watala, Cezary

    2016-01-01

    Introduction The paper describes an alternative method for quantification of in vivo ADP-induced thromboembolism. The aim of the studies was to develop a method of quantification which would not require either extravasation or labelling of platelets. Our proposed approach is based on the monitoring of changes of blood flow with the use of laser Doppler flowmetry. Materials and Methods Mice of C57Bl strain were used in the study. ADP was injected to the vena cava and blood flow was monitored with the use of a laser Doppler flowmeter in the mesentery. Measurements in platelet-depleted mice, mice pretreated with cangrelor, an ADP receptor antagonist, and eptifibatide, a blocker of fibrinogen binding to GPIIbIIIa, were conducted as the proof-of-concept in the performed experiments. Intravital microscopy and ex vivo imaging of organs was performed to identify the sites of aggregate formation resulting from ADP injection. Results The injection of ADP resulted in a dose-dependent reduction of the blood flow in the mesentery. These responses were fully attributable to blood platelet aggregation, as shown by the lack of the effect in platelet-depleted mice, and significantly reduced responses in mice pretreated with cangrelor and eptifibatide. No platelet aggregate formation in mesenteric vessels was revealed by intravital microscopy, while ex vivo imaging showed accumulation of fluorescent labelled platelets in the lung. Conclusions Injection of ADP to the venous system results in the formation of platelet aggregates predominantly in the lung. This results in reversible blood flow cessation in peripheral blood vessels. The measurement of this blood flow cessation in the mesentery allows indirect measurement of ADP-induced pulmonary thromboembolism. We suggest that this approach can be useful for in vivo screening for antiplatelet drug candidates. PMID:26751810

  11. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion.

    PubMed

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver

    2016-05-01

    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  12. Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis, and hypothermia: Impact on blood coagulation and platelet function.

    PubMed

    Shenkman, Boris; Budnik, Ivan; Einav, Yulia; Hauschner, Hagit; Andrejchin, Mykhaylo; Martinowitz, Uriel

    2017-02-01

    Trauma-induced coagulopathy (TIC) is commonly seen among patients with severe injury. The dynamic process of TIC is characterized by variability of the features of the disease. A model of TIC was created. Hemodilution was produced by mixing the blood with 40% Tris/saline solution, fibrinolysis by treating the blood with 160 ng/mL tPA, acidosis by adding 1.2 mg/mL lactic acid achieving pH 7.0 to 7.1, and hypothermia by running the assay at 31°C. Intact blood tested at 37°C served as control. Clot formation was evaluated using rotation thromboelastometry. Platelet adhesion and aggregation were assayed at a shear rate of 1800 s using Impact-R device. Clotting time was not affected by any of the TIC constituents used. Clotting initiation was reduced by hemodilution and further reduced by additive hypothermia. The propagation phase of blood clotting was reduced by hemodilution, further reduced by additive hypothermia, and maximally reduced if additionally combined with fibrinolysis. No effect of fibrinolysis on clot propagation was observed at 37°C. Maximum clot firmness was reduced by hemodilution, further reduced by additive fibrinolysis, and maximally reduced if additionally combined with hypothermia. No effect of hypothermia on clot strength was observed in the absence of fibrinolysis. Platelet adhesion (percentage of surface coverage) and aggregation (aggregate size) under flow condition were reduced by hemodilution and further reduced by additive acidosis. Introduction of tPA to diluted blood had no effect on platelet function. The study revealed a differential effect of TIC constituents-hemodilution, hypothermia, fibrinolysis, and acidosis-on clot formation and platelet function. The effect of one factor may influence that of another factor. These data may be helpful to better understand the pathogenesis of TIC and to elaborate an individually tailored treatment strategy. A new model of TIC is created. Contribution of various constituents to pathogenesis of

  13. Effects of L- and D-arginine and some related esters on the cytosolic mechanisms of alpha-thrombin-induced human platelet activation.

    PubMed Central

    Failli, P.; Cecchi, E.; Ruocco, C.; Fazzini, A.; Giotti, A.

    1993-01-01

    1. In Fura-2 preloaded human platelets, the increase in cytosolic calcium induced by alpha-thrombin was reduced by some L- and D-arginine ester compounds the IC50 (microM) values of which were 7.4 for TAEE, 56.9 for BAEE, 77.6 for TAME, 560 for T(d)AME, 656.3 for L-ArgOMe and 2206.7 for D-ArgOMe. alpha-tosyl-L-Arginine, L- and D-arginine were inactive. 2. The inhibitory activity of the L-arginine esters was not modified when platelets were pretreated with 100 microM N omega-monomethyl-L-arginine. 3. The L-arginine esters did not increase cyclic GMP content in platelets either in the presence or absence of indomethacin and apyrase at rest and after alpha-thrombin stimulation. 4. The kinetic parameters of platelet Na+/H+ antiporter (amiloride-inhibitable, evaluated after cytosolic nigericin-induced acidification) were modified by L- and D-arginine esters, while the native amino acids were ineffective. 5. The inhibitory effects of the L- and D-arginine esters on platelet activation appear to be mainly due to their inhibitory effect on Na+/H+ antiporter. PMID:8220881

  14. Spontaneous heparin-induced thrombocytopenia syndrome without any proximate heparin exposure, infection, or inflammatory condition: Atypical clinical features with heparin-dependent platelet activating antibodies.

    PubMed

    Okata, Takuya; Miyata, Shigeki; Miyashita, Fumio; Maeda, Takuma; Toyoda, Kazunori

    2015-01-01

    Recent studies suggest that a thromboembolic disorder resembling heparin-induced thrombocytopenia (HIT), so-called spontaneous HIT syndrome, can occur in patients without any history of heparin exposure. It is likely due to anti-platelet factor 4 (PF4)/polyanion antibodies induced by other polyanions, such as bacterial surfaces and nucleic acids. We describe an atypical case of spontaneous HIT syndrome. A 70-year-old man suddenly presented with acute cerebral sinus thrombosis (CST). Soon after the initiation of unfractionated heparin (UFH) for the treatment of CST, his platelet count fell precipitously and he developed deep vein thrombosis, a clinical picture consistent with rapid-onset HIT but without any proximate episodes of heparin exposure, infection, trauma, surgery, or other acute illness. Antigen assays and a washed platelet activation assay indicated that the patient already possessed anti-PF4/heparin IgG antibodies with heparin-dependent platelet activation properties on admission. Cessation of UFH and initiation of argatroban resulted in prompt recovery of his platelet count without further thromboembolic events. We identified two similar cases in the literature. However, these patients do not meet the recently proposed criteria for spontaneous HIT syndrome. Even in atypical cases, however, inappropriate or delayed diagnosis of HIT appears to be associated with worse outcomes. We propose that these atypical cases should be included in the category of spontaneous HIT syndrome.

  15. Early diagnosis of acute postoperative renal transplant rejection

    SciTech Connect

    Tisdale, P.L.; Collier, B.D.; Kauffman, H.M.; Adams, M.B.; Isitman, A.T.; Hellman, R.S.; Rao, S.A.; Joestgen, T.; Krohn, L.

    1985-05-01

    A prospective evaluation of In-111 labeled autologous platelet scintigraphy for the early diagnosis of acute postoperative renal transplant rejection was undertaken. To date, 28 consecutive patients between 7 and 14 days post-op have been injected with 500..mu..Ci of In-111 platelets followed by imaging at 24 and 48 hours. Activity within the renal transplant exceeding activity in the adjacent iliac vessels was considered to be evidence of rejection, and both chemical evidence and clinical impression of rejection at 5 days after completion of imaging was accepted as proof of ongoing or incipient rejection at the time of scintigraphy. In addition, to visual inspection, independent quantitative analysis compared the area-normalized activity over the transplant with the adjacent iliac vessels (normal <1.0). For 5 patients, positive In-111 scintigraphy was present before convincing clinical evidence of rejection. In-111 platelet scintigraphy is useful not only to confirm the clinical diagnosis of rejection but also to establish the early, pre-clinical diagnosis of incipient acute postoperative renal transplant rejection.

  16. Detection of cardiac transplant rejection with radiolabeled lymphocytes. [Rats

    SciTech Connect

    Bergmann, S.R.; Lerch, R.A.; Carlson, E.M.; Saffitz, J.E.; Sobel, B.E.

    1982-03-01

    To determine whether rejections of cardiac transplants could be detected specifically and non-invasively by lymphocytes labeled with indium-111 (111In), we studied 36 allogeneic and 14 isogeneic heterotopic cardiac transplants in rats. Allogeneic grafts accumulated autologous 111In-lymphocytes, detectable scintigraphically 24 hours after i.v. injection of the labeled cells. At the time of peak histologic rejection, the allogeneic grafts accumulated 92. +/- 4.8 times more activity than the native hearts (determined by well counting). The tissue-to-blood ratio in the rejecting transplants was 3.7 +/- 2.2; total uptake by the graft was 2.9 +/- 2.1% of the injected dose. Autoradiography confirmed that graft radioactivity was associated with labeled lymphocytes. In contrast, isogeneic grafts showed no signs of rejection and did not accumulate radioactivity. Because conventionally isolated and labeled lymphocytes are often contaminated with platelets, we prepared both 111In-platelets and purified 111In-lymphocytes for use in additional experiments. Allogeneic grafts accumulated platelets and purified lymphocytes independently. Thus, deposition of immunologically active cells in the rejecting graft representing specific pathophysiologic events can be detected. The results suggest that rejection of cardiac transplants can be detected noninvasively, potentially facilitating objective early clinical detection of rejection and titration of antirejection therapy.

  17. Immune tolerance induced by platelet-targeted factor VIII gene therapy in hemophilia A mice is CD4 T cell mediated.

    PubMed

    Chen, Y; Luo, X; Schroeder, J A; Chen, J; Baumgartner, C K; Hu, J; Shi, Q

    2017-10-01

    Essentials The immune response is a significant concern in gene therapy. Platelet-targeted gene therapy can restore hemostasis and induce immune tolerance. CD4 T cell compartment is tolerized after platelet gene therapy. Preconditioning regimen affects immune tolerance induction in platelet gene therapy. Background Immune responses are a major concern in gene therapy. Our previous studies demonstrated that platelet-targeted factor VIII (FVIII) (2bF8) gene therapy together with in vivo drug selection of transduced cells can rescue the bleeding diathesis and induce immune tolerance in FVIII(null) mice. Objective To investigate whether non-selectable 2bF8 lentiviral vector (LV) for the induction of platelet-FVIII expression is sufficient to induce immune tolerance and how immune tolerance is induced after 2bF8LV gene therapy. Methods Platelet-FVIII expression was introduced by 2bF8LV transduction and transplantation. FVIII assays and tail bleeding tests were used to confirm the success of platelet gene therapy. Animals were challenged with rhF8 to explore if immune tolerance was induced after gene therapy. Treg cell analysis, T-cell proliferation assay and memory B-cell-mediated ELISPOT assay were used to investigate the potential mechanisms of immune tolerance. Results We showed that platelet-FVIII expression was sustained and the bleeding diathesis was restored in FVIII(null) mice after 2bF8LV gene therapy. None of the transduced recipients developed anti-FVIII inhibitory antibodies in the groups preconditioned with 660 cGy irradiation or busulfan plus ATG treatment even after rhF8 challenge. Treg cells significantly increased in 2bF8LV-transduced recipients and the immune tolerance developed was transferable. CD4(+) T cells from treated animals failed to proliferate in response to rhF8 re-stimulation, but memory B cells could differentiate into antibody secreting cells in 2bF8LV-transduced recipients. Conclusion 2bF8LV gene transfer without in vivo selection of

  18. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers

    PubMed Central

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response. PMID:25013355

  19. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers.

    PubMed

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica; Burgos, Rafael Agustín

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response.

  20. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  1. Impact of reticulated platelets on antiplatelet response to thienopyridines is independent of platelet turnover.

    PubMed

    Stratz, Christian; Nührenberg, Thomas; Amann, Michael; Cederqvist, Marco; Kleiner, Pascal; Valina, Christian M; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-10-28

    Reticulated platelets are associated with impaired antiplatelet response to thienopyridines. It is uncertain whether this interaction is caused by a decreased drug exposure due to high platelet turnover reflected by elevated levels of reticulated platelets or by intrinsic properties of reticulated platelets. This study sought to investigate if the impact of reticulated platelets on early antiplatelet response to thienopyridines is mainly caused by platelet turnover as previously suggested. Elective patients undergoing coronary intervention were randomised to loading with clopidogrel 600 mg or prasugrel 60 mg (n=200). Adenosine diphosphate (ADP)-induced platelet reactivity was determined by impedance aggregometry before, at 30, 60, 90, and 120 minutes and at day 1 after loading. Immature platelet count was assessed as marker of reticulated platelets by flow cytometry. Platelet reactivity increased with rising levels of immature platelet count in both groups. This effect was more distinctive in patients on clopidogrel as compared to patients on prasugrel. Overall, immature platelet count correlated well with on-treatment platelet reactivity at all time-points (p < 0.001). These correlations did not change over time in the entire cohort as well as in patients treated with clopidogrel or prasugrel indicating an effect independent of platelet turnover (comparison of correlations 120 minutes/day 1: p = 0.64). In conclusion, the association of immature platelet count with impaired antiplatelet response to thienopyridines is similar early and late after loading. This finding suggests as main underlying mechanism another effect of reticulated platelets on thienopyridines than platelet turnover.

  2. Thrombin-activated platelets induce proliferation of human skin fibroblasts by stimulating autocrine production of insulin-like growth factor-1.

    PubMed

    Giacco, Ferdinando; Perruolo, Giuseppe; D'Agostino, Elio; Fratellanza, Giorgio; Perna, Enzo; Misso, Saverio; Saldalamacchia, Gennaro; Oriente, Francesco; Fiory, Francesca; Miele, Claudia; Formisano, Salvatore; Beguinot, Francesco; Formisano, Pietro

    2006-11-01

    Platelet components have found successful clinical utilization to initiate or to accelerate tissue-repair mechanisms. However, the molecular pathways by which platelet factors contribute to tissue regeneration have not been fully elucidated. We have studied the effect of thrombin-activated platelets (TAPs) on cell growth in vivo and in cultured cell systems. Application of TAPs to ulcerative skin lesions of diabetic patients induced local activation of ERK1/2 and Akt/PKB. Moreover, when applied to cultured human skin fibroblasts, TAPs promoted cell growth and DNA synthesis and activated platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF)-1 receptor tyrosine kinases. PDGF was released by TAPs and rapidly achieved a plateau. At variance, the release of IGF-1 was mainly provided by the TAPs-stimulated fibroblasts and progressively increased up to 48 h. The PDGF-R blocker Ag1296 reduced the activation of Akt/PKB and, at a lesser extent, of ERK1/2. Conversely, inhibition of IGF-1 signaling by Ag1024 and expression of a dominant-negative IGF-1R mutant selectively reduced the stimulation of ERK1/2 by TAPs and fibroblast-released factors, with minor changes of Akt/PKB activity. Thus, platelet factors promote fibroblast growth by acutely activating Akt/PKB and ERK1/2. Sustained activation of ERK1/2, however, requires autocrine production of IGF-1 by TAPs-stimulated fibroblasts.

  3. Typing for human platelet alloantigens.

    PubMed

    Juji, T; Saji, H; Satake, M; Tokunaga, K

    1999-01-01

    Antibodies to platelet alloantigens, and sometimes to isoantigens, induce severe clinical problems such as neonatal alloimmune thrombocytopenia (NAIT), post-transfusion purpura (PTP) and refractoriness to platelet transfusions (PTR). For example, NAIT affects approximately 1 in 5,000 live births. It is essential, therefore, to screen pregnant women for platelet antibodies in order to save babies' lives. Almost 40 years ago, two platelet alloantigen systems were discovered using relatively simple methods, namely the platelet agglutination test and the complement fixation test. However, these methods were not sensitive enough to identify all antibodies in mothers and patients, even in those with severe clinical problems. Tremendous effort has been devoted to establish more sensitive and reliable methods. In recent years, excellent new serological and immunochemical methods have been established and several new platelet antigen systems have been discovered. Simultaneously, newly developed molecular genetic techniques have been introduced for the typing and analysis of human platelet alloantigen systems. These methods allow DNA typing for cases in which serological typing is not available. In this article, the history of studies on human platelet alloantigen systems and isoantigens, the nomenclature of platelet alloantigen systems and their alleles, the present status of antibody detection and typing techniques and, finally, ethnic variations in platelet antigen profiles are reviewed.

  4. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2.

    PubMed

    Jang, Ji Yong; Min, Ji Hyun; Wang, Su Bin; Chae, Yun Hee; Baek, Jin Young; Kim, Myunghee; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-12-01

    Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.

  5. Combination of monoclonal antibodies with DST inhibits accelerated rejection mediated by memory T cells to induce long-lived heart allograft acceptance in mice.

    PubMed

    Shao, Wei; Chen, Jibing; Dai, Helong; Peng, Yuanzheng; Wang, Feng; Xia, Junjie; Thorlacius, Henrik; Zhu, Qi; Qi, Zhongquan

    2011-08-30

    Donor-reactive memory T cells mediated accelerated rejection is known as a barrier to the survival of transplanted organs. We investigated the combination of different monoclonal antibodies (mAbs) and donor-specific transfusion (DST) in memory T cells-based adoptive mice model. In the presence of donor-reactive memory T cells, the mean survival time (MST) of grafts in the anti-CD40L/LFA-1/DST group was 49.8d. Adding anti-CD44/CD70 mAbs to anti-CD40L/LFA-1/DST treatment. The MST was more than 100 d (MST>100 d). Compared with anti-CD40L/LFA-1/DST group, anti-CD40L/LFA-1/CD44/CD70/DST group notably reduced the expansion of memory T cells, enhanced the proportion of CD4+Foxp3+ regulatory T cells (Tregs) and suppressed donor-specific responses. Our data suggest that anti-CD40L/LFA-1/CD44/CD70mAbs and DST can synergistically inhibit accelerated rejection mediated by memory T cells to induce long-lived heart allograft acceptance in mice.

  6. The effect of polyphenolic-polysaccharide conjugates from selected medicinal plants of Asteraceae family on the peroxynitrite-induced changes in blood platelet proteins.

    PubMed

    Saluk-Juszczak, Joanna; Pawlaczyk, Izabela; Olas, Beata; Kołodziejczyk, Joanna; Ponczek, Michal; Nowak, Pawel; Tsirigotis-Wołoszczak, Marta; Wachowicz, Barbara; Gancarz, Roman

    2010-12-01

    Lots of plants belonging to Asteraceae family are very popular in folk medicine in Poland. These plants are also known as being rich in acidic polysaccharides, due to the presence of hexuronic acids or its derivatives. Our preliminary experiments have shown that the extract from Conyza canadensis L. possesses various biological activity, including antiplatelet, antiocoagulant and antioxidant properties. The aim of our study was to assess if macromolecular glycoconjugates from selected herbal plants of Asteraceae family: Achillea millefolium L., Arnica montana L., Echinacea purpurea L., Solidago virgaurea L., Chamomilla recutita (L.) Rauschert., and Conyza canadensis L. protect platelet proteins against nitrative and oxidative damage induced by peroxynitrite, which is responsible for oxidative/nitrative modifications of platelet proteins: the formation of 3-nitrotyrosine and carbonyl groups. These modifications may lead to changes of blood platelet functions and can have pathological consequences. The role of these different medicinal plants in the defence against oxidative/nitrative stress in human platelets is still unknown, therefore the oxidative damage to platelet proteins induced by peroxynitrite and protectory effects of tested conjugates by the estimation of carbonyl group level and nitrotyrosine formation (a marker of protein nitration) were studied in vitro. The antioxidative properties of the polyphenolic-polysaccharide conjugates from selected tested medicinal plants were also compared with the action of a well characterized antioxidative commercial polyphenol - resveratrol (3,4',5-trihydroxystilbene). The obtained results demonstrate that the compounds from herbal plants: A. millefolium, A. montana, E. purpurea, C. recutita, S. virgaurea, possess antioxidative properties and protect platelet proteins against peroxynitrite toxicity in vitro, similar to the glycoconjugates from C. canadensis. However, in the comparative studies, the polyphenolic

  7. Platelet fibrinogen

    PubMed Central

    Castaldi, P. A.; Caen, J.

    1965-01-01

    Platelet fibrinogen has been studied in normal, thrombasthenic, and hypofibrinogenaemic subjects. It has been differentiated into adsorbed (plasma) and extractable (intraplatelet) fractions. Isotopic studies suggest that exchange does not occur between intraplatelet and plasma fibrinogen and it appears possible that the intra-platelet fraction may be derived from the megakaryocyte. Six of nine thrombasthenic patients were found to have a severe deficiency of both adsorbed and extractable fibrinogen. Since the remaining three had near-normal platelet fibrinogen and all nine failed to aggregate it is improbable that the failure to adsorb fibrinogen is responsible for the defect in aggregation. Magnesium partially corrects adhesion to fibrin and clot retraction by these platelets, but has not been found to influence their fibrinogen adsorption. It is considered that the basic platelet surface defect, of varying severity, is responsible for the abnormalities of adsorption, aggregation, and adhesion in thrombasthenia. In the case of congenital hypofibrinogenaemia, fibrinogen transfusion corrects the long bleeding time, platelet-adsorbed fibrinogen, and the ability of platelets to spread on glass. It is possible that fibrinogen influences the surface properties of human platelets, although the final mechanism is not determined. Images PMID:5835438

  8. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes: III. Shear and extrinsic fibrinogen-dependent effects.

    PubMed

    Goldsmith, H L; Frojmovic, M M; Braovac, S; McIntosh, F; Wong, T

    1994-01-01

    The effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23 degrees C was studied using a previously described double infusion technique and resistive particle counter size analysis. Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 x 10(5) microliters-1; (17)] with [fibrinogen] from 0 to 1.2 microM, the rate and extent of aggregation with 0.7 microM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, G, = 41.9, 335 and 1,335 s-1. As measured by the decrease in singlet concentration, aggregation at 1.2 microM fibrinogen increased with increasing G up to 1,335 s-1, in contrast to that previously reported in citrated plasma, in which aggregation reached a maximum at G = 335 s-1. Without added fibrinogen, there was no aggregation at G = 41.9 s-1; at G = 335 s-1, there was significant aggregation but with an initial lag time, aggregation increasing further at G = 1,335 s-1. Without added fibrinogen, aggregation was abolished at all G upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab')2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37 degrees C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab')2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of

  9. Protective effect of platelet activating factor antagonists on cultured endothelial cell lysis induced by elastase or activated neutrophils.

    PubMed Central

    Renesto, P.; Vicart, P.; Paulin, D.; Chignard, M.

    1996-01-01

    1. The mechanism(s) responsible for injury of endothelial cells induced by human leukocyte elastase (HLE) was investigated in an immortalized venous human endothelial cell line (IVEC). 2. First, the proteinase concentrations and incubation delays necessary to trigger a significant IVEC cytotoxicity were determined by chromium assays. Thus, exposure of IVEC for 6 h to 10 micrograms ml-1 HLE resulted in 22 +/- 2.8% lysis and 36.4 +/- 5.4% detachment (mean +/- s.e. mean; n = 4; P < 0.05). 3. WEB 2086, a specific platelet-activating factor (PAF) receptor antagonist, induced a significant concentration-dependent decrease of such a lysis (39.6 +/- 7.7% protection at 100 microM; n = 4). This potential role for PAF was confirmed with two other antagonists of this lipid mediator, i.e., BN 52021 and RP 48740. 4. Finally, we demonstrated that pretreatment of IVEC with WEB 2086 protected significantly against cell lysis induced by stimulated human neutrophils, an experimental model in which HLE participates. PMID:8851508

  10. Platelet-activating factor induces cell cycle arrest and disrupts the DNA damage response in mast cells

    PubMed Central

    Puebla-Osorio, N; Damiani, E; Bover, L; Ullrich, S E

    2015-01-01

    Platelet-activating factor (PAF) is a potent phospholipid modulator of inflammation that has diverse physiological and pathological functions. Previously, we demonstrated that PAF has an essential role in ultraviolet (UV)-induced immunosuppression and reduces the repair of damaged DNA, suggesting that UV-induced PAF is contributing to skin cancer initiation by inducing immune suppression and also affecting a proper DNA damage response. The exact role of PAF in modulating cell proliferation, differentiation or transformation is unclear. Here, we investigated the mechanism(s) by which PAF affects the cell cycle and impairs early DNA damage response. PAF arrests proliferation in transformed and nontransformed human mast cells by reducing the expression of cyclin-B1 and promoting the expression of p21. PAF-treated cells show a dose-dependent cell cycle arrest mainly at G2–M, and a decrease in the DNA damage response elements MCPH1/BRIT-1 and ataxia telangiectasia and rad related (ATR). In addition, PAF disrupts the localization of p-ataxia telangiectasia mutated (p-ATM), and phosphorylated-ataxia telangiectasia and rad related (p-ATR) at the site of DNA damage. Whereas the potent effect on cell cycle arrest may imply a tumor suppressor activity for PAF, the impairment of proper DNA damage response might implicate PAF as a tumor promoter. The outcome of these diverse effects may be dependent on specific cues in the microenvironment. PMID:25950475

  11. The effect of platelet activating factor antagonist on ozone-induced airway inflammation and bronchial hyperresponsiveness in guinea pigs

    SciTech Connect

    Tan, W.C.; Bethel, R.A. )

    1992-10-01

    We investigated the role of platelet-activating factor (PAF) in ozone-induced airway responses by examining the effects of L659,989, a potent PAF antagonist, on bronchial hyperresponsiveness and airway inflammation. Twenty-four male guinea pigs were studied in four equal groups. Total lung resistance (RL) in intubated and spontaneously breathing animals was measured in a constant-volume body plethysmograph. Dose-response curves to methacholine were determined in all animals at the start of the experiment. These were repeated on a separate day after the following types of treatments: air exposure in Group 1, intraperitoneally administered alcohol and air exposure in Group 2; intraperitoneally administered alcohol and ozone exposure in Group 3, and intraperitoneally administered L659,989 (a specific PAF antagonist), 5 mg/kg dissolved in alcohol, and ozone exposure in Group 4. Bronchoalveolar lavage (BAL) was performed after the second methacholine challenge, and the bronchial mucosa was also examined for inflammatory cells. Exposure to 3 ppm ozone for 2 h resulted in a three-doubling concentration increase in bronchial responsiveness, which was not significantly inhibited by prior treatment with L659,989. Ozone induced a 1.8-fold increase in BAL total cell count, increased eosinophilic influx into the airways, and increased eosinophilic infiltration in the bronchial mucosa, which were all not inhibited by L659,989 pretreatment. The results suggest that PAF may not have an essential role in ozone-induced airway hyperresponsiveness and nonallergic airway inflammation.

  12. Acetal phosphatidic acids: novel platelet aggregating agents.

    PubMed

    Brammer, J P; Maguire, M H; Walaszek, E J; Wiley, R A

    1983-05-01

    1 Palmitaldehyde, olealdehyde and linolealdehyde acetal phosphatidic acids induced rapid shape change and dose-dependent biphasic aggregation of human platelets in platelet-rich plasma; aggregation was reversible at low doses and irreversible at high doses of the acetal phosphatidic acids. The palmitaldehyde congener elicited monophasic dose-dependent aggregation of sheep platelets in platelet-rich plasma.2 The threshold concentration for palmitaldehyde acetal phosphatidic acid (PGAP)-induced platelet aggregation was 2.5-5 muM for human platelets and 0.25-0.5 muM for sheep platelets. PGAP was 4-5 times as potent versus human platelets as the olealdehyde and linolealdehyde acetal phosphatidic acids, which were equipotent.3 PGAP-induced irreversible aggregation of [(14)C]-5-hydroxytryptamine ([(14)C]-5-HT)-labelled human platelets in platelet-rich plasma was accompanied by release of 44.0+/-2.4% (s.e.) of the platelet [(14)C]-5-HT; reversible aggregation was not associated with release. In contrast, PGAP-induced release of [(14)C]-5-HT-labelled sheep platelets was dose-dependent.4 The adenosine diphosphate (ADP) antagonist, 2-methylthio-AMP, and the cyclo-oxygenase inhibitor, aspirin, abolished PGAP-induced second phase aggregation and release in human platelets but did not affect the first, reversible, phase of aggregation. Both the first and second phases of PGAP-induced aggregation were abolished by chlorpromazine, by the phospholipase A(2) inhibitor, mepacrine, and by nmolar concentrations of prostaglandin E(1) (PGE(1)); these agents abolished the second, but not the first phase of ADP-induced aggregation.5 The related phospholipids, lecithin, lysolecithin and phosphatidic acid, at <100 muM, neither induced aggregation of human platelets in platelet-rich plasma, nor modified PGAP-induced aggregation; 1-palmityl lysophosphatidic acid elicited aggregation of human platelets at a threshold concentration of 100 muM.6 It is concluded that the acetal phosphatidic acids

  13. Dengue platelets meet Sir Arthur Conan Doyle.

    PubMed

    Bray, Paul F

    2013-11-14

    In this issue of Blood, Hottz et al provide compelling evidence that dengue virus (DV) induces (1) platelet synthesis of interleukin-1b (IL-1b); (2) platelet-derived IL-1b–containing microvesicles (MVs) that increase vascular permeability; and (3) DV-triggered inflammasome activation in platelets.

  14. Shear stress-induced pH increase in plasma is mediated by a decrease in P(CO(2)): the increase in pH enhances shear stress-induced P-selectin expression in platelets.

    PubMed

    Chung, Ka-Young; Lim, Kyung-Min; Chung, Seung-Min; Lee, Moo-Yeol; Noh, Ji-Yoon; Bae, Ok-Nam; Chung, Jin-Ho

    2006-05-01

    To investigate shear stress-induced platelet activation, the cone-plate viscometer or the Couette rotational viscometer has been widely used. In a previous report, it was shown that shearing platelet-rich plasma using a Couette rotational viscometer could lead to an increase in pH by CO(2) release. However, any clear mechanism has not been provided. In this study, we examined whether shearing cell free plasma only using a cone-plate viscometer can also induce pH increase and studied the underlying mechanism of shear-induced pH increase by directly measuring total CO(2) (T(CO(2))) and CO(2) tension (P(CO(2))). When human plasma was sheared using a cone-plate viscometer, the pH of the human plasma increased time- and shear rate-dependently. Although T(CO(2)) of human plasma was not affected, P(CO(2)) was decreased by shearing, indicating that the decreased P(CO(2)) is associated with a pH increase of plasma. In addition, the pH of bicarbonate-containing suspension buffer was also shown to be increased by shearing; suggesting that the platelet studies using suspension buffers containing bicarbonate could be affected similarly. The effects of pH changes on shear stress-induced platelet activation were also investigated in the same in vitro systems. While shear stress-induced platelet aggregation was not affected by the pH changes, P-selectin expression was significantly increased in accordance with the pH increase. In conclusion, shear stress using a cone-plate viscometer induces pH increase in plasma or bicarbonate-containing suspension buffer through a P(CO(2)) decrease and the pH changes alone can contribute to platelet activation by enhancing shear stress-induced P-selectin expression.

  15. Morulustatin, A Disintegrin that Inhibits ADP-Induced Platelet Aggregation, Isolated from the Mexican Tamaulipan Rock Rattlesnake (Crotalus lepidus morulus).

    PubMed

    Borja, Miguel; Galan, Jacob Anthony; Cantu, Esteban; Zugasti-Cruz, Alejandro; Rodríguez-Acosta, Alexis; Lazcano, David; Lucena, Sara; Suntravat, Montamas; Sánchez, Y Elda Eliza

    2016-01-01

    The Tamaulipan rock rattlesnake (Crotalus lepidus morulus) is a montane snake that occurs in the humid pine-oak forest and the upper cloud forest of the Sierra Madre Oriental in southwestern Tamaulipas, central Nuevo Leon, and southeastern Coahuila in Mexico. Venom from this rattlesnake was fractionated by High-Performance Liquid Chromatography for the purpose of discovering disintegrin molecules. Disintegrins are non-enzymatic, small molecular weight peptides that interfere with cell-cell and cell-matrix interactions by binding to various cell receptors. Eleven fractions were collected by anion exchange chromatography and pooled into six groups (I, II, III, IV, V, and VI). Proteins of the six groups were analyzed by SDS-PAGE and western blot using antibodies raised against a disintegrin. The antibodies recognized different protein bands in five (II, III, IV, V, and VI) of six groups in a molecular mass range of 7 to 105 kDa. Western blot analysis revealed fewer protein bands in the higher molecular mass range and two bands in the disintegrin weight range in group II compared with the other four groups. Proteins in group II were further separated into nine fractions using reverse phase C18 chromatography. Fraction 4 inhibited platelet aggregation and was named morulustatin, which exhibited a single band with a molecular mass of approximately 7 kDa. Mass spectrometry analysis of fraction 4 revealed the identification of disintegrin peptides LRPGAQCADGLCCDQCR (MH+ 2035.84) and AGEECDCGSPANCCDAATCK (MH+ 2328.82). Morulustatin inhibited ADP-induced platelet aggregation in human whole blood and was concentration-dependent with an IC50 of 89.5 nM ± 12.

  16. Morulustatin, A Disintegrin that Inhibits ADP-Induced Platelet Aggregation, Isolated from the Mexican Tamaulipan Rock Rattlesnake (Crotalus lepidus morulus)

    PubMed Central

    Borja, Miguel; Galan, Jacob Anthony; Cantu, Esteban; Zugasti-Cruz, Alejandro; Rodríguez-Acosta, Alexis; Lazcano, David; Lucena, Sara; Suntravat, Montamas; Sánchez, y Elda Eliza

    2016-01-01

    The Tamaulipan rock rattlesnake (Crotalus lepidus morulus) is a montane snake that occurs in the humid pine-oak forest and the upper cloud forest of the Sierra Madre Oriental in southwestern Tamaulipas, central Nuevo Leon, and southeastern Coahuila in Mexico. Venom from this rattlesnake was fractionated by High-Performance Liquid Chromatography for the purpose of discovering disintegrin molecules. Disintegrins are non-enzymatic, small molecular weight peptides that interfere with cell-cell and cell-matrix interactions by binding to various cell receptors. Eleven fractions were collected by anion exchange chromatography and pooled into six groups (I, II, III, IV, V, and VI). Proteins of the six groups were analyzed by SDS-PAGE and western blot using antibodies raised against a disintegrin. The antibodies recognized different protein bands in five (II, III, IV, V, and VI) of six groups in a molecular mass range of 7 to 105 kDa. Western blot analysis revealed fewer protein bands in the higher molecular mass range and two bands in the disintegrin weight range in group II compared with the other four groups. Proteins in group II were further separated into nine fractions using reverse phase C18 chromatography. Fraction 4 inhibited platelet aggregation and was named morulustatin, which exhibited a single band with a molecular mass of approximately 7 kDa. Mass spectrometry analysis of fraction 4 revealed the identification of disintegrin peptides LRPGAQCADGLCCDQCR (MH+ 2035.84) and AGEECDCGSPANCCDAATCK (MH+ 2328.82). Morulustatin inhibited ADP-induced platelet aggregation in human whole blood and was concentration-dependent with an IC50 of 89.5 nM ± 12. PMID:28713196

  17. Antibodies Targeting Hsa and PadA Prevent Platelet Aggregation and Protect Rats against Experimental Endocarditis Induced by Streptococcus gordonii.

    PubMed

    Mancini, Stefano; Menzi, Carmen; Oechslin, Frank; Moreillon, Philippe; Entenza, José Manuel

    2016-12-01

    Streptococcus gordonii and related species of oral viridans group streptococci (VGS) are common etiological agents of infective endocarditis (IE). We explored vaccination as a strategy to prevent VGS-IE, using a novel antigen-presenting system based on non-genetically modified Lactococcus lactis displaying vaccinogens on its surface. Hsa and PadA are surface-located S. gordonii proteins implicated in platelet adhesion and aggregation, which are key steps in the pathogenesis of IE. This function makes them ideal targets for vaccination against VGS-IE. In the present study, we report the use of nonliving L. lactis displaying at its surface the N-terminal region of Hsa or PadA by means of the cell wall binding domain of Lactobacillus casei A2 phage lysine LysA2 (Hsa-LysA2 and PadA-LysA2, respectively) and investigation of their ability to elicit antibodies in rats and to protect them from S. gordonii experimental IE. Immunized and control animals with catheter-induced sterile aortic valve vegetations were inoculated with 10(6) CFU of S. gordonii The presence of IE was evaluated 24 h later. Immunization of rats with L. lactis Hsa-LysA2, L. lactis PadA-LysA2, or both protected 6/11 (55%), 6/11 (55%), and 11/12 (91%) animals, respectively, from S. gordonii IE (P < 0.05 versus controls). Protection correlated with the induction of high levels of functional antibodies against both Hsa and PadA that delayed or totally inhibited platelet aggregation by S. gordonii These results support the value of L. lactis as a system for antigen delivery and of Hsa and PadA as promising candidates for a vaccine against VGS-IE. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Antibodies Targeting Hsa and PadA Prevent Platelet Aggregation and Protect Rats against Experimental Endocarditis Induced by Streptococcus gordonii

    PubMed Central

    Mancini, Stefano; Menzi, Carmen; Oechslin, Frank; Moreillon, Philippe

    2016-01-01

    Streptococcus gordonii and related species of oral viridans group streptococci (VGS) are common etiological agents of infective endocarditis (IE). We explored vaccination as a strategy to prevent VGS-IE, using a novel antigen-presenting system based on non-genetically modified Lactococcus lactis displaying vaccinogens on its surface. Hsa and PadA are surface-located S. gordonii proteins implicated in platelet adhesion and aggregation, which are key steps in the pathogenesis of IE. This function makes them ideal targets for vaccination against VGS-IE. In the present study, we report the use of nonliving L. lactis displaying at its surface the N-terminal region of Hsa or PadA by means of the cell wall binding domain of Lactobacillus casei A2 phage lysine LysA2 (Hsa-LysA2 and PadA-LysA2, respectively) and investigation of their ability to elicit antibodies in rats and to protect them from S. gordonii experimental IE. Immunized and control animals with catheter-induced sterile aortic valve vegetations were inoculated with 106 CFU of S. gordonii. The presence of IE was evaluated 24 h later. Immunization of rats with L. lactis Hsa-LysA2, L. lactis PadA-LysA2, or both protected 6/11 (55%), 6/11 (55%), and 11/12 (91%) animals, respectively, from S. gordonii IE (P < 0.05 versus controls). Protection correlated with the induction of high levels of functional antibodies against both Hsa and PadA that delayed or totally inhibited platelet aggregation by S. gordonii. These results support the value of L. lactis as a system for antigen delivery and of Hsa and PadA as promising candidates for a vaccine against VGS-IE. PMID:27736784

  19. The role of fibrinogen A alpha chains in ADP-induced platelet aggregation in the presence of fibrinogen molecules containing gamma' chains.

    PubMed

    Amrani, D L; Newman, P J; Meh, D; Mosesson, M W

    1988-09-01

    Human plasma fibrinogen (Fgn) is heterogenous with respect to the size of its gamma chains, which differ in that residues 408 to 411 of gammaA chains (93% of total) are replaced in gamma' chains by a unique 20 amino acid sequence (gamma408 to gamma427). In this study, we compared the contribution to adenosine diphosphate (ADP)-induced platelet aggregation of the A alpha chains in Fgn molecules containing predominantly (fraction 1-2) or exclusively (peak 1 Fgn) gammaA chains with that of molecules containing approximately 50% gamma' chains (peak 2 Fgn). Using washed human platelets, we confirmed that the number of peak 2 Fgn molecules binding to platelets in the presence of ADP was about half the number of peak 1 Fgn molecules (18,962 +/- 2,298 v 44,366 +/- 16,096 molecules per platelet), and that isolated S-carboxymethylated (SCM) gammaA chains supported ADP-induced platelet aggregation nearly as well as peak 1 Fgn. In contrast, SCM-gamma' chains alone supported aggregation poorly, whereas a mixture of SCM-gammaA and gamma' chains (1:1 ratio) gave intermediate results. Despite the findings with isolated SCM-gamma' chains, we found that peak 2 Fgn supported platelet aggregation nearly as well as peak 1 Fgn. However, peak 2 Fgn from which carboxy (COOH)-terminal A alpha chain segments had been removed by digestion with plasmin showed a markedly decreased platelet aggregation potential. Peak 1 Fgn core fraction from an 88% to 90% coagulable plasmin digest, or Fgn fraction 1-9, which has a high gammaA/gamma' chain ratio (93:7), but lacks COOH-terminal regions of A alpha chains, supported platelet aggregation to the same extent as did intact peak 2 Fgn. These findings indicate that Fgn molecules containing gamma' chains can approach the aggregation potential of Fgn molecules containing predominantly or exclusively gammaA chains only if intact A alpha chains are also present.

  20. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  1. Oxygen free-radical scavengers and immune destruction of murine islets in allograft rejection and multiple low-dose streptozocin-induced insulitis.

    PubMed

    Mendola, J; Wright, J R; Lacy, P E

    1989-03-01

    We examined the effects of desferrioxamine (DFX), a potent inhibitor of the formation of oxygen-derived hydroxyl radicals, and nicotinamide (NIC), a poly(ADP-ribose) synthetase inhibitor and a weak free-radical scavenger, on two models of immune destruction of murine islets [i.e., allograft rejection and multiple low-dose streptozocin (STZ)-induced insulitis]. Freshly isolated or low-temperature-cultured BALB/cJ islets were transplanted beneath the kidney capsules of C57BL/6J recipients. The recipients were treated with NIC alone (500 mg.kg-1.day-1), DFX alone (4.2 mg/day x 14 days), or NIC + DFX. Only recipients treated with NIC + DFX, receiving cultured islets, showed a mean graft survival time significantly longer than control mice receiving freshly isolated or cultured islets. Control CD-1 mice treated with multiple low doses of STZ developed insulitis and diabetes. Treatment with NIC alone, DFX alone, or NIC + DFX decreased the severity of hyperglycemia relative to the controls. Treatment with DFX alone was more effective than NIC alone or NIC + DFX. Only the group treated with DFX alone had a lower incidence of diabetes (mean plasma glucose level greater than 200 mg/dl) than the controls after 4 wk. Histologically, islets from control mice showed severe insulitis, islet destruction, and absence of stainable insulin, whereas islets from DFX-treated mice showed only mild peri-insulitis and a relative preservation of beta-cell granulation. Our study showed that NIC and DFX partially protect islets from immune destruction in allograft rejection and in low-dose STZ-induced insulitis. Apparently, hydroxyl radicals play important roles in both of these models.

  2. PLATELET FORMATION

    PubMed Central

    Thon, Jonathan N.; Italiano, Joseph E.

    2010-01-01

    Thrombocytopenia is the underlying cause of a number of major clinical conditions and genetic disorders worldwide. While therapeutic agents that bind and stimulate the thrombopoietin receptor are currently available, the development of drugs that directly stimulate megakaryocytes to generate platelets has lagged behind. To improve the management of thrombocytopenia, we will need to define the cell biological pathways that drive the production of platelets from megakaryocytes. This review integrates the latest research of platelet biogenesis and focuses on the molecular pathways that power and regulate proplatelet production. PMID:20620432

  3. [Polyserositic syndromes and/or sectorial dysventilation with platelet activation induced by immunoallergic etiopathogenesis].

    PubMed

    De Luca, L

    1989-01-01

    The author from a study of 5 dysventilatorial syndromes (bronchiolitis-PNX, pneumomediastinal aerial cystis of lung) and 5 polysierositic syndromes pleuritis and peritonitis) evices that all these syndromes show in the anamnesis or in present a viral infection from influenzal virus or rubeola. In addition to that, the Authors shows the presence of a food allergy asserted by RAST and/or Skin Prick Tests or FBST (Food Bronchostimulation test) and the introduction of a food allergen during the viral infection, and a great platelet's activation. The Author, besides, shows the association normal VES and normal neutrophil cells in the dysventilatorial syndrome and high VES, and high neutrophil cells in the polysierositic syndromes; in all cases the negativity of culture exams. Starting from these points she worked out a new etiopathogenetic theory: the viral localization on the Peyer's plates cause the expression on the epithelial surface of the gut's cells of SELF HLA II type recognition. The food allergens' introduction causes a great reaction of II, III, IV, VI type which involves the bronchus, alveolus, and the serous epithelium by PAF activation, in all cases and in the polisierositic syndrome a neutrophil activation as well. The author advices to prize the importance of cortisone therapy and of exclusion of food allergen by diet, besides advices the antibiotic therapy for covering only.

  4. Effect of sildenafil on platelet function and platelet cGMP of patients with erectile dysfunction.

    PubMed

    Akand, M; Gencer, E; Yaman, Ö; Erişgen, G; Tekin, D; Özdiler, E

    2015-12-01

    To investigate the effect of sildenafil on platelet function and cyclic guanosine monophosphate (cGMP) levels in patients with erectile dysfunction, we evaluated the association between erectile function and platelet responses after administration of 100 mg sildenafil. Erectile responses were monitored after 8 daily doses of the drug. Adenosine diphosphate (ADP) and collagen-induced platelet aggregation and simultaneous adenosine triphosphate (ATP) release and cGMP levels were determined before and after sildenafil therapy. Basal levels for platelet aggregation, ATP release and cGMP were compared with age-matched controls. There was no difference among basal levels of platelet responses between patients and controls, except for ADP-induced platelet aggregation (P = 0.04). It was significantly higher in the patient group. Analysis of the responses to sildenafil revealed that for the patients who showed a positive erectile response, there was a significant increase in platelet cGMP (P = 0.028) and a decrease in ADP-induced platelet aggregation (P = 0.04). However, for those who showed a negative or poor erectile response, there was no change in platelet cGMP levels and platelet functions. Sildenafil did not affect collagen-induced platelet responses although cGMP levels of the responders increased. It is concluded that sildenafil increases platelet cGMP in the patients with positive erectile response. Therefore, it has been speculated that platelet cGMP may be used as an index for erectile response.

  5. The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats.

    PubMed

    Caplan, M S; Hedlund, E; Hill, N; MacKendrick, W

    1994-02-01

    Nitric oxide is an endothelium-derived relaxing factor that promotes capillary integrity, inhibits leukocyte adherence and activation, and scavenges oxygen radicals. Because these effects are important in experimental intestinal injury, we studied the role of NO inhibition on hypoxia-induced bowel necrosis in the rat and investigated the interaction between platelet-activating factor (PAF) and NO in this model. Sprague-Dawley rats were treated with either hypoxia, NO synthase inhibition (NG-methyl-L-arginine [LNMA] or NG-nitro-L-arginine methyl ester [L-NAME]), hypoxia+LNMA, hypoxia+LNMA+NO donors, or hypoxia+LNMA+PAF receptor inhibition. Evaluations included blood pressure, superior mesenteric artery blood flow, arterial blood gases, histological intestinal injury, intestinal myeloperoxidase activity, and intestinal PAF activity. We found that hypoxia alone for 90 minutes (10% O2, partial O2 pressure = 45 mm Hg) or LNMA alone had no detrimental effects. However, hypoxia+LNMA together caused hypotension, metabolic acidosis, intestinal injury, increased intestinal myeloperoxidase activity, and elevated intestinal PAF concentrations that were prevented by exogenous L-arginine. Furthermore, the hypotension and intestinal injury was prevented by PAF receptor blockade. We conclude that endogenous NO protects the intestine from hypoxia-induced inflammation and injury, and the balance between local PAF and NO modulates the outcome of hypoxia-stressed intestine.

  6. Prevotella intermedia induces severe bacteremic pneumococcal pneumonia in mice with upregulated platelet-activating factor receptor expression.

    PubMed

    Nagaoka, Kentaro; Yanagihara, Katsunori; Morinaga, Yoshitomo; Nakamura, Shigeki; Harada, Tatsuhiko; Hasegawa, Hiroo; Izumikawa, Koichi; Ishimatsu, Yuji; Kakeya, Hiroshi; Nishimura, Masaharu; Kohno, Shigeru

    2014-02-01

    Streptococcus pneumoniae is the leading cause of respiratory infection worldwide. Although oral hygiene has been considered a risk factor for developing pneumonia, the relationship between oral bacteria and pneumococcal infection is unknown. In this study, we examined the synergic effects of Prevotella intermedia, a major periodontopathic bacterium, on pneumococcal pneumonia. The synergic effects of the supernatant of P. intermedia (PiSup) on pneumococcal pneumonia were investigated in mice, and the stimulation of pneumococcal adhesion to human alveolar (A549) cells by PiSup was assessed. The effects of PiSup on platelet-activating factor receptor (PAFR) transcript levels in vitro and in vivo were analyzed by quantitative real-time PCR, and the differences between the effects of pneumococcal infection induced by various periodontopathic bacterial species were verified in mice. Mice inoculated with S. pneumoniae plus PiSup exhibited a significantly lower survival rate, higher bacterial loads in the lungs, spleen, and blood, and higher inflammatory cytokine levels in the bronchoalveolar lavage fluid (macrophage inflammatory protein 2 and tumor necrosis factor alpha) than those infected without PiSup. In A549 cells, PiSup increased pneumococcal adhesion and PAFR transcript levels. PiSup also increased lung PAFR transcript levels in mice. Similar effects were not observed in the supernatants of Porphyromonas gingivalis or Fusobacterium nucleatum. Thus, P. intermedia has the potential to induce severe bacteremic pneumococcal pneumonia with enhanced pneumococcal adhesion to lower airway cells.

  7. Prevotella intermedia Induces Severe Bacteremic Pneumococcal Pneumonia in Mice with Upregulated Platelet-Activating Factor Receptor Expression

    PubMed Central

    Nagaoka, Kentaro; Morinaga, Yoshitomo; Nakamura, Shigeki; Harada, Tatsuhiko; Hasegawa, Hiroo; Izumikawa, Koichi; Ishimatsu, Yuji; Kakeya, Hiroshi; Nishimura, Masaharu; Kohno, Shigeru

    2014-01-01

    Streptococcus pneumoniae is the leading cause of respiratory infection worldwide. Although oral hygiene has been considered a risk factor for developing pneumonia, the relationship between oral bacteria and pneumococcal infection is unknown. In this study, we examined the synergic effects of Prevotella intermedia, a major periodontopathic bacterium, on pneumococcal pneumonia. The synergic effects of the supernatant of P. intermedia (PiSup) on pneumococcal pneumonia were investigated in mice, and the stimulation of pneumococcal adhesion to human alveolar (A549) cells by PiSup was assessed. The effects of PiSup on platelet-activating factor receptor (PAFR) transcript levels in vitro and in vivo were analyzed by quantitative real-time PCR, and the differences between the effects of pneumococcal infection induced by various periodontopathic bacterial species were verified in mice. Mice inoculated with S. pneumoniae plus PiSup exhibited a significantly lower survival rate, higher bacterial loads in the lungs, spleen, and blood, and higher inflammatory cytokine levels in the bronchoalveolar lavage fluid (macrophage inflammatory protein 2 and tumor necrosis factor alpha) than those infected without PiSup. In A549 cells, PiSup increased pneumococcal adhesion and PAFR transcript levels. PiSup also increased lung PAFR transcript levels in mice. Similar effects were not observed in the supernatants of Porphyromonas gingivalis or Fusobacterium nucleatum. Thus, P. intermedia has the potential to induce severe bacteremic pneumococcal pneumonia with enhanced pneumococcal adhesion to lower airway cells. PMID:24478074

  8. Contact- and agonist-regulated microvesiculation of human platelets.

    PubMed

    Zhang, Yanjun; Liu, Xiao; Liu, Li; Zaske, Ana-Maria; Zhou, Zhou; Fu, Yuanyuan; Yang, Xi; Conyers, Jodie L; Li, Min; Dong, Jing-fei; Zhang, Jianning

    2013-08-01

    After exposure to an agonist, platelets are activated and become aggregated. They also shed membrane microparticles that participate in the pathogenesis of thrombosis, hyper-coagulation and inflammation. However, microvesiculation can potentially disrupt the integrity of platelet aggregation by shedding the membrane receptors and phosphatidylserine critical for forming and stabilising a platelet clot. We tested the hypothesis that adhesion and microvesiculation are functions of different subsets of platelets at the time of haemostasis by real-time monitoring of agonist-induced morphological changes and microvesiculation of human platelets.We identified two types of platelets that are adherent to fibrinogen: a high density bubble shape (HDBS) and low-density spread shape (LDSS). Adenosine diphosphate (ADP) predominantly induced HDBS platelets to vesiculate, whereas LDSS platelets were highly resistant to such vesiculation. Thrombin-receptor activating peptide (TRAP) stabilised platelets against microvesiculation by promoting a rapid HDBS-to-LDSS morphological transition. These activities of ADP and TRAP were reversed for platelets in suspension, independent of an engagement integrin αIIbβ3. As the result of membrane contact, LDSS platelets inhibited the microvesiculation of HDBS platelets in response to ADP. Aspirin and clopidogrel inhibited ADP-induced microvesiculation through different mechanisms. These results suggest that platelet aggregation and microvesiculation occur in different subsets of platelets and are differently regulated by agonists, platelet-platelets and platelet-fibrinogen interactions.

  9. Interdependence of Platelet-Derived Growth Factor and Estrogen-Signaling Pathways in Inducing Neonatal Rat Testicular Gonocytes Proliferation1

    PubMed Central

    Thuillier, Raphael; Mazer, Monty; Manku, Gurpreet; Boisvert, Annie; Wang, Yan; Culty, Martine

    2010-01-01

    We previously found that platelet-derived growth factor (PDGF) and 17beta-estradiol stimulate gonocyte proliferation in a dose-dependent, nonadditive manner. In the present study, we report that gonocytes express RAF1, MAP2K1, and MAPK1/3. Inhibition of RAF1 and MAP2K1/2, but not phosphoinositide-3-kinase, blocked PDGF-induced proliferation. AG-370, an inhibitor of PDGF receptor kinase activity, suppressed not only PDGF-induced proliferation but also that induced by 17beta-estradiol. In addition, RAF1 and MAP2K1/2 inhibitors blocked 17beta-estradiol-activated proliferation. The estrogen receptor antagonist ICI 182780 inhibited both the effects of 17beta-estradiol and PDGF. PDGF lost its stimulatory effect when steroid-depleted serum or no serum was used. Similarly, 17beta-estradiol did not induce gonocyte proliferation in the absence of PDGF. The xenoestrogens genistein, bisphenol A, and DES, but not coumestrol, stimulated gonocyte proliferation in a dose-dependent and PDGF-dependent manner similarly to 17beta-estradiol. Their effects were blocked by ICI 182780, suggesting that they act via the estrogen receptor. AG-370 blocked genistein and bisphenol A effects, demonstrating their requirement of PDGF receptor activation in a manner similar to 17beta-estradiol. These results demonstrate the interdependence of PDGF and estrogen pathways in stimulating in vitro gonocyte proliferation, suggesting that this critical step in gonocyte development might be regulated in vivo by the coordinated action of PDGF and estrogen. Thus, the inappropriate exposure of gonocytes to xenoestrogens might disrupt the crosstalk between the two pathways and potentially interfere with gonocyte development. PMID:20089883

  10. Protein kinase A regulates 3-phosphatidylinositide dynamics during platelet-derived growth factor-induced membrane ruffling and chemotaxis.

    PubMed

    Deming, Paula B; Campbell, Shirley L; Baldor, Linda C; Howe, Alan K

    2008-12-12

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.

  11. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    PubMed Central

    Bate, Clive; Rumbold, Louis; Williams, Alun

    2007-01-01

    Background Platelet-activating factor (PAF) is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD). Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin) prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF. PMID:17233902

  12. Effect of photodynamic therapy on mouse platelets

    NASA Astrophysics Data System (ADS)

    Zhou, Chuannong; Chi, Shunji; Deng, Jinsheng; Zhang, Hua; Liang, Junlin; Ha, Xian-wen

    1993-06-01

    Normal mice received hematoporphyrin derivative (HpD) i.v. prior to red light irradiation and the platelet-rich plasma was prepared and irradiated by red light. The platelets were processed for EM examination and stereological analysis. It was shown the 16 hrs after irradiation almost all platelets were necrotized; 8 hours after irradiation about one fourth of the platelets were necrotized and the remaining were considerably damaged. Immediately after irradiation a small number of platelets became necrotic and most other platelets were swollen and deformated, showing significantly increased mean area, perimeter and short axis, and mean cell volume and cell surface area. The findings indicate that platelets are highly sensitive to PDT action and can be directly and rapidly damaged by PDT even in the absence of vascular endothelial cells. The early platelet photoactivation may play an important role in the initiation of early vascular damage and microcirculatory alterations induced by PDT in vivo.

  13. Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model

    PubMed Central

    Yue, Yuan; Fan, Tian; Hou, Jian; Chen, Guang-Xian; Liang, Meng-Ya

    2017-01-01

    Cardiac fibrosis is a significant global health problem with limited treatment choices. Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate whether IMA attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors (PDGFR) on isoproterenol (ISO)-induced mice. Adult male C57BL/6 mice were treated with vehicle or ISO ± IMA for one week. After echocardiography examination, the hearts of mice were used for histopathologic, RT-qPCR, and western blot analyses. We found that the ventricular wall thickness, cardiac hypertrophy, and apoptosis were enhanced following ISO treatment. IMA decreased the left ventricular wall thickness, prevented hypertrophy, and inhibited apoptosis induced by ISO. In addition, IMA attenuated the accumulation of collagens and α-smooth muscle actin (α-SMA) (the markers of fibrosis) caused by ISO treatment. Moreover, the expression of fibrosis related genes, and the phosphorylation of PDGFRs in ISO-treated mice hearts were inhibited by IMA as well. However, IMA did not change the expression of the matrix metalloproteinase-9 (MMP-9) in ISO-treated hearts. Furthermore, IMA reduced the expressions of collagens as well as α-SMA caused by activation of PDGFRα in cardiac fibroblasts. Taken together, our data demonstrate that IMA attenuated the cardiac fibrosis by blocking the phosphorylation of PDGFRs in the ISO-induced mice model. This study indicates that IMA could be a potentially therapeutic option for cardiac fibrosis in clinical application. PMID:28570599

  14. Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model.

    PubMed

    Wang, Le-Xun; Yang, Xiao; Yue, Yuan; Fan, Tian; Hou, Jian; Chen, Guang-Xian; Liang, Meng-Ya; Wu, Zhong-Kai

    2017-01-01

    Cardiac fibrosis is a significant global health problem with limited treatment choices. Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate whether IMA attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors (PDGFR) on isoproterenol (ISO)-induced mice. Adult male C57BL/6 mice were treated with vehicle or ISO ± IMA for one week. After echocardiography examination, the hearts of mice were used for histopathologic, RT-qPCR, and western blot analyses. We found that the ventricular wall thickness, cardiac hypertrophy, and apoptosis were enhanced following ISO treatment. IMA decreased the left ventricular wall thickness, prevented hypertrophy, and inhibited apoptosis induced by ISO. In addition, IMA attenuated the accumulation of collagens and α-smooth muscle actin (α-SMA) (the markers of fibrosis) caused by ISO treatment. Moreover, the expression of fibrosis related genes, and the phosphorylation of PDGFRs in ISO-treated mice hearts were inhibited by IMA as well. However, IMA did not change the expression of the matrix metalloproteinase-9 (MMP-9) in ISO-treated hearts. Furthermore, IMA reduced the expressions of collagens as well as α-SMA caused by activation of PDGFRα in cardiac fibroblasts. Taken together, our data demonstrate that IMA attenuated the cardiac fibrosis by blocking the phosphorylation of PDGFRs in the ISO-induced mice model. This study indicates that IMA could be a potentially therapeutic option for cardiac fibrosis in clinical application.

  15. Platelet Activating Factor-Induced Ceramide Micro-Domains Drive Endothelial NOS Activation and Contribute to Barrier Dysfunction

    PubMed Central

    Predescu, Sanda; Knezevic, Ivana; Bardita, Cristina; Neamu, Radu Florin; Brovcovych, Viktor; Predescu, Dan

    2013-01-01

    The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles. PMID:24086643

  16. Selective relocalization and proteasomal downregulation of PKCalpha induced by platelet-activating factor in retinal pigment epithelium.

    PubMed

    Faghiri, Zahra; Bazan, Nicolas G

    2006-01-01

    Protein kinases C (PKCs) are key cell-signaling mediators in retinal physiology and pathophysiology. The cellular localization of PKC isoforms is important in defining their activity and specificity; the present study investigated the modulatory potential of the proinflammatory mediator platelet-activating factor (PAF) on the subcellular distribution of PKCalpha, beta, and delta isotypes. This study used real-time visualization of green fluorescent protein fused to PKCalpha, beta, or delta in the human retinal pigment epithelial (RPE) cell line ARPE-19. In PAF-stimulated ARPE-19 cells, PKCalpha translocated to the plasma membrane and then colocalized with Golgi markers p230 and GM130; PKCbeta translocated to the plasma membrane but not to the Golgi; and PKCdelta translocated to the Golgi. Pretreatment with PKC inhibitor calphostin C abolished the PAF-induced translocation of PKCalpha to the plasma membrane or to the Golgi, but the Golgi inhibitor Brefeldin A only prevented the accumulation of PKCalpha in Golgi, without affecting its membrane relocalization. PAF promoted depletion of PKCalpha and delta isoforms but not that of PKCbeta. Proteasome inhibitors lactacystin and MG-132 prevented the PAF-induced depletion of PKCalpha, but the inhibitor of lysosomal proteolysis E-64d was ineffective in rescuing PKCalpha. These results suggest that the PAF-induced downregulation of PKCalpha occurs principally through the proteasomal pathway. This remarkable PAF-mediated diversity in PKC translocation and downregulation highlights the significance of isotype-specific PKC activation in signaling pathways in ARPE-19 cells. These signaling events may be critical during RPE responses to oxidative stress, inflammation, and retinal degenerations, when PAF production is enhanced.

  17. Hemoglobin interaction with GP1bα induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis

    PubMed Central

    Singhal, Rashi; Annarapu, Gowtham K.; Pandey, Ankita; Chawla, Sheetal; Ojha, Amrita; Gupta, Avinash; Cruz, Miguel A.; Seth, Tulika; Guchhait, Prasenjit

    2015-01-01

    Intravascular hemolysis increases the risk of hypercoagulation and thrombosis in hemolytic disorders. Our study shows a novel mechanism by which extracellular hemoglobin directly affects platelet activation. The binding of Hb to glycoprotein1bα activates platelets. Lower concentrations of Hb (0.37–3 μM) significantly increase the phosphorylation of signaling adapter proteins, such as Lyn, PI3K, AKT, and ERK, and promote platelet aggregation in vitro. Higher concentrations of Hb (3–6 μM) activate the pro-apoptotic proteins Bak, Bax, cytochrome c, caspase-9 and caspase-3, and increase platelet clot formation. Increased plasma Hb activates platelets and promotes their apoptosis, and plays a crucial role in the pathogenesis of aggregation and development of the procoagulant state in hemolytic disorders. Furthermore, we show that in patients with paroxysmal nocturnal hemoglobinuria, a chronic hemolytic disease characterized by recurrent events of intravascular thrombosis and thromboembolism, it is the elevated plasma Hb or platelet surface bound Hb that positively correlates with platelet activation. PMID:26341739

  18. [STRUCTURAL CHARACTERIZATION OF PLATELETS AND PLATELET-DERIVED MICROVESICLES].

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Litvinov, R I

    2016-01-01

    Platelets are the anucleated blood cells, wich together with the fibrin stop bleeding (hemostasis). Cellular microvesicles are membrane-surrounded microparticles released into extracellular space upon activation and/or apoptosis of various cells. Platelet-derived macrovesicles from the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the pathophysiology of platelet-derived macrovesicles, mechanisms of their formation and structural details remain poorly understood. Here we investigated the ultrastructure of parental platelets and platelet-derived microvesicles formed in vitro by quiescent cells as well as by cells stimulated with one of the following activators: arachidonic acid, ADP, thrombin, calcium ionophore A23187. Using transmission electron microscopy of human platelets and isolated microvesicles, we analyzed the intracellular origin, steps of formation, structural diversity, and size distributions of the subcellular particles. We have revealed that thrombin, unlike other stimuli, not only induced vesiculation of the plasma membrane but also caused break-up of the cells followed by formation of microparticles that are comparable with microvesicles by size. A fraction of these microparticles contained cellular organelles surrounded by a thin membrane. The size of platelet-derived macrovesicles varied from 30 nm to 500 nm, however, the size distributions depended on the nature of a cell-activating stimulus. The results obtained provide new information about the formation of platelet-derived macrovesicles and their structural diversity, wich is important to understand their multiple functions in normal and disease states.

  19. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation.

    PubMed

    Salabei, Joshua K; Hill, Bradford G

    2013-01-01

    Vascular smooth muscle cells (VSMCs) develop a highly proliferative and synthetic phenotype in arterial diseases. Because such phenotypic changes are likely integrated with the energetic state of the cell, we hypothesized that changes in cellular metabolism regulate VSMC plasticity. VSMCs were exposed to platelet-derived growth factor-BB (PDGF) and changes in mitochondrial morphology, proliferation, contractile protein expression, and mitochondrial metabolism were examined. Exposure of VSMCs to PDGF resulted in mitochondrial fragmentation and a 50% decrease in the abundance of mitofusin 2. Synthetic VSMCs demonstrated a 20% decrease in glucose oxidation, which was accompanied by an increase in fatty acid oxidation. Results of mitochondrial function assays in permeabilized cells showed few changes due to PDGF treatment in mitochondrial respiratory chain capacity and coupling. Treatment of VSMCs with Mdivi-1-an inhibitor of mitochondrial fission-inhibited PDGF-induced mitochondrial fragmentation by 50% and abolished increases in cell proliferation; however, it failed to prevent PDGF-mediated activation of autophagy and removal of contractile proteins. In addition, treatment with Mdivi-1 reversed changes in fatty acid and glucose oxidation associated with the synthetic phenotype. These results suggest that changes in mitochondrial morphology and bioenergetics underlie the hyperproliferative features of the synthetic VSMC phenotype, but do not affect the degradation of contractile proteins. Mitochondrial fragmentation occurring during the transition to the synthetic phenotype could be a therapeutic target for hyperproliferative vascular disorders.

  20. Autologous leukocyte-reduced platelet-rich plasma therapy for Achilles tendinopathy induced by collagenase in a rabbit model.

    PubMed

    González, Juan C; López, Catalina; Álvarez, María E; Pérez, Jorge E; Carmona, Jorge U

    2016-01-19

    Leukocyte-reduced platelet-rich plasma (LR-PRP) is a therapy for tendinopathy of the Achilles tendon (TAT); however, there is scarce information regarding LR-PRP effects in rabbit models of TAT. We compared, at 4 and 12 weeks (w), the LR-PRP and placebo (PBS) effects on ultrasonography, histology and relative gene expression of collagen types I (COL1A1) and III (COL3A1) and vascular endothelial growth factor (VEGF) in 24 rabbits with TAT induced by collagenase. The rabbits (treated with both treatments) were euthanatised after either 4 or 12 w. A healthy group (HG (n = 6)) was included. At 4 and 12 w, the LR-PRP group had a no statistically different histology score to the HG. At w 4, the COL1A1 expression was significantly higher in the LR-PRP group when compared to HG, and the expression of COL3A1 from both LR-PRP and PBS-treated tendons was significantly higher when compared to the HG. At w 12, the expression of COL3A1 remained significantly higher in the PBS group in comparison to the LR-PRP group and the HG. At w 4, the LR-PRP group presented a significantly higher expression of VEGF when compared to the PBS group and the HG. In conclusion, LR-PRP treatment showed regenerative properties in rabbits with TAT.

  1. Combination of herbal extracts and platelet-rich plasma induced dermal papilla cell proliferation: involvement of ERK and Akt pathways.

    PubMed

    Rastegar, Hosein; Ahmadi Ashtiani, Hamidreza; Aghaei, Mahmoud; Ehsani, Amirohushang; Barikbin, Behrooz

    2013-06-01

    Recently, platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic surgery, treatment for problematic wounds, and dermatology. Specifically, PRP has been tested during hair transplantation to reduce swelling and pain and to increase hair density. We examined the effects of PRP and herbal extracts combination in order to identify potential stimulants of hair growth. PRP was prepared using the double-spin method and applied to dermal papilla cells (DPCs). MTT viability test and BrdU cell proliferation assay were used to study the effect of herbal extracts and PRP on proliferation of DPCs. To understand the mechanisms of herbal extracts and PRP involved in the regulation of hair growth, we evaluated signaling pathways and measured the expressions of ERK and Akt, by Western blot. Combination of herbal extracts and PRP was found to induce significant proliferation of human DPCs at concentrations ranging from 1.5% to 4.5%. The present study shows that herbal extracts and PRP affect the expressions of extracellular signal-regulated kinase (ERK) and Akt in DPCs. In this study, we have shown that combination of herbal extracts and PRP plays an active role in promoting the proliferation of human dermal papilla (DP) cells via the regulation of ERK and Akt proteins, and this may be applicable to the future development of herbal extracts and PRP combination therapeutics to enhance hair growth. © 2013 Wiley Periodicals, Inc.

  2. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related Osteonecrosis of the Jaws

    PubMed Central

    Sarkarat, Farzin; Kalantar Motamedi, Mohammad Hosein; Jahanbani, Jahanfar; Sepehri, Dena; Kahali, Roozbeh; Nematollahi, Zahra

    2014-01-01

    Background: Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a well-known challenging entity warranting management. Platelet-Rich Plasma (PRP) plays an important role in bone biology by enhancing bone repair and regeneration. Objectives: The aim of this animal study was to evaluate the effects of PRP on zoledronic acid-induced BRONJ. Materials and Methods: Seven rats were given 0.04 mg Zoledronic acid intravenously once a week for five weeks. Two weeks later, the animals underwent extraction of their first lower molars, bilaterally. After clinical confirmation of the osteonecrosis, PRP was injected randomly into one of the extraction sockets of each rat. Three weeks later, all rats were sacrificed in order to obtain histological sections. The analysis of epithelialization was performed by McNamar’s test, and the analysis of osteogenesis and angiogenesis was performed by the Wilcoxon Sign Rank test. P value was set at 0.05. Results: We found no significant differences between the two groups regarding the amount of epithelialization, angiogenesis or sequestrum formation (P > 0.05), but a significant difference was seen between the two groups regarding the amount of existing vital bone (P < 0.05). Conclusions: Our study demonstrates positive results (preservation or regeneration of bone) using PRP in treatment of BRONJ. Although PRP may enhance osseous regeneration, long-term follow-ups are required to confirm its benefits. PMID:25032151

  3. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related Osteonecrosis of the Jaws.

    PubMed

    Sarkarat, Farzin; Kalantar Motamedi, Mohammad Hosein; Jahanbani, Jahanfar; Sepehri, Dena; Kahali, Roozbeh; Nematollahi, Zahra

    2014-04-01

    Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a well-known challenging entity warranting management. Platelet-Rich Plasma (PRP) plays an important role in bone biology by enhancing bone repair and regeneration. The aim of this animal study was to evaluate the effects of PRP on zoledronic acid-induced BRONJ. Seven rats were given 0.04 mg Zoledronic acid intravenously once a week for five weeks. Two weeks later, the animals underwent extraction of their first lower molars, bilaterally. After clinical confirmation of the osteonecrosis, PRP was injected randomly into one of the extraction sockets of each rat. Three weeks later, all rats were sacrificed in order to obtain histological sections. The analysis of epithelialization was performed by McNamar's test, and the analysis of osteogenesis and angiogenesis was performed by the Wilcoxon Sign Rank test. P value was set at 0.05. We found no significant differences between the two groups regarding the amount of epithelialization, angiogenesis or sequestrum formation (P > 0.05), but a significant difference was seen between the two groups regarding the amount of existing vital bone (P < 0.05). Our study demonstrates positive results (preservation or regeneration of bone) using PRP in treatment of BRONJ. Although PRP may enhance osseous regeneration, long-term follow-ups are required to confirm its benefits.

  4. Autologous leukocyte-reduced platelet-rich plasma therapy for Achilles tendinopathy induced by collagenase in a rabbit model

    PubMed Central

    González, Juan C.; López, Catalina; Álvarez, María E.; Pérez, Jorge E.; Carmona, Jorge U.

    2016-01-01

    Leukocyte-reduced platelet-rich plasma (LR-PRP) is a therapy for tendinopathy of the Achilles tendon (TAT); however, there is scarce information regarding LR-PRP effects in rabbit models of TAT. We compared, at 4 and 12 weeks (w), the LR-PRP and placebo (PBS) effects on ultrasonography, histology and relative gene expression of collagen types I (COL1A1) and III (COL3A1) and vascular endothelial growth factor (VEGF) in 24 rabbits with TAT induced by collagenase. The rabbits (treated with both treatments) were euthanatised after either 4 or 12 w. A healthy group (HG (n = 6)) was included. At 4 and 12 w, the LR-PRP group had a no statistically different histology score to the HG. At w 4, the COL1A1 expression was significantly higher in the LR-PRP group when compared to HG, and the expression of COL3A1from both LR-PRP and PBS-treated tendons was significantly higher when compared to the HG. At w 12, the expression of COL3A1 remained significantly higher in the PBS group in comparison to the LR-PRP group and the HG. At w 4, the LR-PRP group presented a significantly higher expression of VEGF when compared to the PBS group and the HG. In conclusion, LR-PRP treatment showed regenerative properties in rabbits with TAT. PMID:26781753

  5. Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction.

    PubMed

    Gao, Xiao-Ming; Moore, Xiao-Lei; Liu, Yang; Wang, Xin-Yu; Han, Li-Ping; Su, Yidan; Tsai, Alan; Xu, Qi; Zhang, Ming; Lambert, Gavin W; Kiriazis, Helen; Gao, Wei; Dart, Anthony M; Du, Xiao-Jun

    2016-07-01

    Acute myocardial infarction (AMI) is characterized by a rapid increase in circulating platelet size but the mechanism for this is unclear. Large platelets are hyperactive and associated with adverse clinical outcomes. We determined mean platelet volume (MPV) and platelet-monocyte conjugation (PMC) using blood samples from patients, and blood and the spleen from mice with AMI. We further measured changes in platelet size, PMC, cardiac and splenic contents of platelets and leucocyte infiltration into the mouse heart. In AMI patients, circulating MPV and PMC increased at 1-3 h post-MI and MPV returned to reference levels within 24 h after admission. In mice with MI, increases in platelet size and PMC became evident within 12 h and were sustained up to 72 h. Splenic platelets are bigger than circulating platelets in normal or infarct mice. At 24 h post-MI, splenic platelet storage was halved whereas cardiac platelets increased by 4-fold. Splenectomy attenuated all changes observed in the blood, reduced leucocyte and platelet accumulation in the infarct myocardium, limited infarct size and alleviated cardiac dilatation and dysfunction. AMI-induced elevated circulating levels of adenosine diphosphate and catecholamines in both human and the mouse, which may trigger splenic platelet release. Pharmacological inhibition of angiotensin-converting enzyme, β1-adrenergic receptor or platelet P2Y12 receptor reduced platelet abundance in the murine infarct myocardium albeit having diverse effects on platelet size and PMC. In conclusion, AMI evokes release of splenic platelets, which contributes to the increase in platelet size and PMC and facilitates myocardial accumulation of platelets and leucocytes, thereby promoting post-infarct inflammation.

  6. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  7. The Pentostatin Plus Cyclophosphamide (PC) Non-myeloablative Regimen Induces Durable Host T Cell Functional Deficits and Prevents Murine Marrow Allograft Rejection

    PubMed Central

    Mariotti, Jacopo; Taylor, Justin; Massey, Paul R.; Ryan, Kaitlyn; Foley, Jason; Buxhoeveden, Nicole; Felizardo, Tania C.; Amarnath, Shoba; Mossoba, Miriam E.; Fowler, Daniel H.

    2010-01-01

    In this manuscript, we characterize for the first time an animal model of non-myeloablative bone marrow transplantation (BMT) using the purine analog pentostatin [P]. Other cohorts of mice received a distinct purine analog, fludarabine [F], which we and others have previously evaluated in non-myeloablative murine models. In this project, we have characterized pentostatin for its ability to: (1) operate synergistically with cyclophosphamide [C] to induce host T cell depletion; (2) induce host T cell suppression, as defined by modulation of cytokine secretion in vitro and abrogation of host-versus-graft reactivity (HVGR) in vivo; (3) constrain host T cell recovery post-chemotherapy; and (4) prevent the rejection of T-cell depleted (TCD), fully MHC mismatched bone marrow allografts. Relative to single-agent regimens, combination PC or FC regimens worked synergistically to deplete host CD4+ and CD8+ T cells; PC and FC regimens were developed that yielded similar levels of host T cell and myeloid cell depletion. In the setting of these generally comparable states of host T and myeloid cell depletion, the PC regimen was found to be highly immune suppressive, as evidenced by reduced host T cell capacity to: (1) secrete IL-2 and IFN-γ in vitro; (2) mediate HVGR in vivo; and (3) recover numerically and functionally during a two-week observation period post-chemotherapy. Finally, using B6 hosts treated with the 14-day chemotherapy regimens, the PC regimen more consistently prevented the rejection of BALB/c TCD-allografts than the FC regimen (rate of alloengraftment, 14/15 [93%] of PC-treated recipients vs. 8/14 [57%] of FC-treated recipients; p<0.05); similar results were observed using an 8-day conditioning regimen. These data suggest that host T cell suppression, distinct from T cell depletion, may therefore represent a critical determinant of engraftment after purine analog-based regimens and may also be preferentially attained by use of pentostatin. PMID:21130889

  8. Platelets and angiogenesis in malignancy.

    PubMed

    Sierko, Ewa; Wojtukiewicz, Marek Z

    2004-02-01

    There is increasing evidence that platelets play an important role in the process of tumor angiogenesis. Thrombocytosis is a frequent finding in cancer patients (10-57%). Although the mechanisms underlying thrombocytosis are not yet fully elucidated, tumor-derived factors with thrombopoietin-like activity and growth factors, platelet-derived microparticles, and factors secreted from bone marrow endothelial cells, as well as growth factors released by megakaryocytes (acting via an autocrine loop), are postulated to influence this process. The progression of cancer is associated with hypercoagulability, which results from direct influences of tumor cells and diverse indirect mechanisms. Activated platelets serve as procoagulant surfaces amplifying the coagulation reactions. It is well known that hemostatic proteins are involved in different steps of the angiogenic process. Furthermore, platelets adhering to endothelium facilitate adhesion of mononuclear cells (which exert various proangiogenic activities) to endothelial cells and their transmigration to the extravascular space. It was also documented that platelets induce angiogenesis in vivo. Platelets are a rich source of proangiogenic factors. They also store and release angiogenesis inhibitors. In addition, platelets express surface growth factor receptors, which may regulate the process of angiogenesis. Platelets also contribute directly to the process of basement membrane and extracellular matrix proteolysis by releasing proteinases, or indirectly via inducing endothelial cells and tumor cells to release proteolytic enzymes, as well as through the proteolytic activities of platelet-derived growth factors. The multidirectional activities of platelets in the process of new blood vessel formation during tumor development and metastasis formation may create the possibility of introducing antiplatelet agents for antiangiogenic therapy in cancer patients. Thus far experimental studies employing inhibitors of

  9. Hemolysis after ABO-incompatible platelet transfusions.

    PubMed

    Chow, M P; Yung, C H; Hu, H Y; Tzeng, C H

    1991-08-01

    An 18 year old girl, with acute myeloid leukemia, developed progressive hemolysis after receiving multiple transfusions with ABO-incompatible platelets. It was caused by passive transfusion of anti-A and -B isoagglutinin from the donor plasma. Her hemoglobin level returned to normal after giving group compatible or pooled and reduced volume platelet concentrates. Transfusing group-incompatible platelets is not contraindicated, but donor plasma reduction should be considered for those patients who need prolonged platelet support. Testing for isoagglutinin titer in group O donors is an alternate method to reduce the incidence of plasma-induced hemolysis in group-incompatible platelet transfusions.

  10. Biologic nanoparticles and platelet reactivity

    PubMed Central

    Miller, Virginia M; Hunter, Larry W; Chu, Kevin; Kaul, Vivasvat; Squillace, Phillip D; Lieske, John C; Jayachandran, Muthuvel

    2009-01-01

    Aim Nanosized particles (NPs) enriched in hydroxyapatite and protein isolated from calcified human tissue accelerate occlusion of endothelium-denuded arteries when injected intravenously into rabbits. Since platelet aggregation and secretory processes participate in normal hemostasis, thrombosis and vascular remodeling, experiments were designed to determine if these biologic NPs alter specific platelet functions in vitro. Methods Platelet-rich plasma was prepared from citrate anticoagulated human blood. Platelet aggregation and ATP secretion were monitored in response to thrombin receptor agonists peptide (10 μM) or convulxin (50 μg/ml) prior to and following 15 min incubation with either control solution, human-derived NPs, bovine-derived NPs or crystals of hydroxyapatite at concentrations of 50 and 150 nephelometric turbidity units. Results Incubation of platelets for 15 min with either human- or bovine-derived NPs reduced aggregation induced by thrombin receptor activator peptide and convulxin in a concentration-dependent manner. Hydroxyapatite caused a greater inhibition than either of the biologically derived NPs. Human-derived NPs increased ATP secretion by unstimulated platelets during the 15 min incubation period. Conclusion Effects of bovine-derived and hydroxyapatite NPs on basal release of ATP were both time and concentration dependent. These results suggest that biologic NPs modulate both platelet aggregation and secretion. Biologically derived NPs could modify platelet responses within the vasculature, thereby reducing blood coagulability and the vascular response to injury. PMID:19839809

  11. Identification of key genes induced by platelet-rich plasma in human dermal papilla cells using bioinformatics methods

    PubMed Central

    Shen, Haiyan; Cheng, Hanxiao; Chen, Haihua; Zhang, Jufang

    2016-01-01

    Dermal papilla cells (DPCs) are located at the base of hair follicles, and are known to induce hair follicle regeneration. Platelet-rich plasma (PRP) functions in hair follicle regeneration. To investigate the influence of PRP on DPCs, the present study analyzed RNA-seq data of human hair dermal papilla cells (HHDPCs) that were treated or untreated by PRP. The data included in the RNA-seq were from two normal and two treated HHDPC samples. Following identification by Cuffdiff software, differentially expressed genes (DEGs) underwent enrichment analyses, and protein-protein interaction networks were constructed using Cytoscape software. Additionally, transcription factor (TF)-DEG and TF-long non-coding RNA (lncRNA) regulatory networks were constructed. A total of 178 differentially expressed lncRNA were screened, 365 were upregulated and 142 were downregulated. Notably, upregulated cyclin dependent kinase 1 (CDK1) (degree=76), polo-like kinase 1 (PLK1) (degree=65), cell division cycle 20 (degree=50), cyclin B1 (degree=49), aurora kinase B (degree=47), cyclin dependent kinase 2 (degree=46) and downregulated v-myc avian myelocytomatosis viral oncogene homolog (MYC) (degree=12) had higher degrees in networks. In addition, CCAAT/enhancer binding protein β, E2F transcription factor 1 (E2F1), early growth response 1 and MYC may be key TFs for their target genes, and were enriched in pathways associated with the cell cycle. They may also be involved in cell proliferation via various interactions with other genes, for example CDK1-PLK1 and E2F1→CDK1. These dysregulated genes induced by PRP may affect proliferation of HHDPCs. PMID:27922680

  12. Reversible Hypothermia-Induced Inhibition of Human Platelet Activation in Whole Blood in Vitro and in Vivo

    DTIC Science & Technology

    2007-11-02

    IX complex (the von Willebrand factor receptor) (12), thromboxane Bj generation (the stable metabolite of thromboxane A2) (13), platelet aggregate...6D1 (provided by Dr. Barry S. Coller, SUNY, Stony Brook) is directed against the von Willebrand factor receptor on the glycocalicin portion of the a...Fig 1, panel A) and, after a delay of approximately 20 seconds, downregulation of the platelet surface expression of GPIb (the von Willebrand factor

  13. [Platelet hyperreactivity and antiaggregatory properties of nootropic drugs under conditions of alloxan-induced diabetes in rats].

    PubMed

    Zhiliuk, V I; Levykh, A É; Mamchur, V I

    2012-01-01

    The effects of nootropic drugs (noopept, pentoxifylline, piracetam, pramiracetam, Ginkgo biloba extract, entrop, cerebrocurin and citicoline) on platelet aggregation in rats with experimental diabetes have been studied. It is established that all these drugs exhibit an inhibitory action of various degrees against platelet hyperreactivity under conditions of chronic hyperglycemia. The maximum universality of the antiaggregatory action is characteristic of pramiracetam, entrop and Ginkgo biloba extract.

  14. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-κB Signaling and Increased Arginase-1 Expression

    PubMed Central

    2016-01-01

    We previously reported that mouse bone marrow-derived macrophages (BMDMs) that had been co-cultured with platelets exhibited lower susceptibility to bacterial lipopolysaccharide (LPS) and produced lower levels of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6. The suppression of macrophage responses was mediated, at least in part, by platelet supernatant. In the present study, we assessed phenotypic changes of BMDMs induced by incubation with the supernatant from thrombin-activated platelets (PLT-sup) and found that BMDMs cultured with PLT-sup (PLT-BMDMs) expressed a lower level of inducible NO synthase (iNOS) and a higher level of arginase-1, both of which are involved in the L-arginine metabolism, upon stimulation with LPS or zymosan. We also examined possible modulation of the NF-κB signaling pathway and observed suppression of IκBα phosphorylation and a decrease of NF-κB p65 expression in LPS-stimulated PLT-BMDMs. These results suggest that PLT-sup suppresses inflammatory responses of BMDMs via negative regulation of NF-κB signaling leading to lowered expression of iNOS and enhanced L-arginine catabolism by arginase-1. PMID:27588757

  15. Heparin Causes Platelet Dysfunction and Induces Fibrinolysis Before the Institution of Cardiopulmonary Bypass

    DTIC Science & Technology

    2007-11-02

    Anesthesia was induced with fentanyl and lidocaine and maintained with fentanyl and halothane. After an initial heparin dose of 4 mg/kg, cardiopulmonary...multimer distribution was not altered in patients after infusion of heparin, as measured by visual inspection of vWF antigen on autoradiographs (Figure...Autoradiograph of vWF in normal pool plasma (N), and from three representative patients out of 15, before (A) and after (B) infusion of heparin. Note no

  16. Platelets, glycoprotein Ib-IX, and von Willebrand factor are required for FeCl3-induced occlusive thrombus formation in the inferior vena cava of mice

    PubMed Central

    Joglekar, M.; Ware, Jerry; Xu, Jin; Fitzgerald, Malinda E. C.; Gartner, T. Kent

    2013-01-01

    Venous thromboembolism is a leading cause of death from cardiovascular disease. Despite the importance of the glycoprotein (GP) Ib-IX/von Willebrand factor (vWF) axis in arterial thrombosis, its requirement in venous, not venule thrombosis in response to endothelial injury (not stenosis or stasis) is uncharacterized. GPIbα-vWF participation in FeCl3-induced thrombus formation was evaluated in the inferior vena cava (IVC). Stable, occlusive thrombus formation in response to FeCl3-induced injury of the IVC was studied. FeCl3 (20% FeCl3, 10 minutes)-induced occlusive thrombosis required platelets as confirmed by a lack of occlusion in thrombocytopenic mice, and stable occlusion in control animals. No IVC occlusion was observed using GPIbα-deficient animals, a model of the human Bernard-Soulier syndrome (BSS). Transgenic IL-4R/GPIbα mice (lack murine GPIbα, but express the extracellular domain of the human interleukin (IL)-4 receptor fused to the transmembrane and cytoplasmic domains of human GPIbα), were studied to determine if the absence of IVC occlusion in the BSS mouse was caused by GPIbα extracellular domain deficiency rather than platelet BSS phenotype associated abnormalities. As with GPIbα knock-out (KO) mice, no occlusion was observed in the IVC of IL-4R/GPIbα mice. The IVC of vWF-deficient mice also failed to occlude in response to FeCl3 treatment. The chimeric protein GPIbα(2V)-Fc prevented occlusion, demonstrating that GPIbα-vWF A1 domain interaction is required for FeCl3-induced stable thrombus formation in the IVC. Therefore, FeCl3-induced stable, occlusive thrombus formation in the IVC is platelet, GPIbα-vWF interaction-dependent despite the large diameter and low venous flow rate in the IVC. PMID:22720736

  17. Platelet 5-hydroxytryptamine (5-HT) transporter and 5-HT2A receptor binding after chronic hypercorticosteronemia, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration or neurotoxin-induced depletion of central nervous system 5-HT in the rat.

    PubMed

    Owens, M J; Ballenger, C A; Knight, D L; Nemeroff, C B

    1996-09-01

    There is considerable evidence that the number of platelet 5-hydroxytryptamine (5-HT) transporter binding sites, as measured by [3H]imipramine binding, are significantly decreased, and platelet 5-HT2 receptor density is increased, in drug-free patients with major depression. To investigate whether these changes in the platelet 5-HT transporter or 5-HT2 receptor sites resulted from known or hypothesized biochemical changes observed in major depression, we examined, in the rat, whether a chronic hyperglucocorticoid state, or decreases or increases in central nervous system 5-HT neurotransmission, altered binding of the selective ligands [3H]citalopram and [125I] (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane to platelet and brain 5-HT transporters and 5-HT2 receptors, respectively. Chronic (6 weeks) hypercorticosteronemia did not alter either brain or platelet 5-HT transporter or 5-HT2A receptor binding. Similarly, 8-week administration of the 5-HT2A/5-HT2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, at a dose which down-regulates brain 5-HT2A/2C receptors, did not alter brain or platelet 5-HT transporters or platelet 5-HT2A receptors. Additionally, para-chloroamphetamine-(11 weeks) or fenfluramine-induced chronic (1.5-10 weeks) depletion of central nervous system 5-HT did not alter platelet 5-HT transporter or 5-HT2A receptor binding. Finally, there was no correlation between the number of 5-HT transporters in brain and platelets in any of the control or treatment groups. These findings suggest that the observed changes in platelet 5-HT transporter and 5-HT2A receptor binding in depressed patients are more apt to be of genetic origin (i.e., trait-dependent) rather than an epiphenomenon of hypercortisolemia or altered central nervous system 5-HT status.

  18. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  19. Quinidine, but Not Eicosanoid Antagonists or Dexamethasone, Protect the Gut from Platelet Activating Factor-Induced Vasoconstriction, Edema and Paralysis

    PubMed Central

    Lautenschläger, Ingmar; Frerichs, Inéz; Dombrowsky, Heike; Sarau, Jürgen; Goldmann, Torsten; Zitta, Karina; Albrecht, Martin; Weiler, Norbert; Uhlig, Stefan

    2015-01-01

    Intestinal circulatory disturbances, atony, edema and swelling are of great clinical relevance, but the related mechanisms and possible therapeutic options are poorly characterized, in part because of the difficulties to comprehensively analyze these conditions. To overcome these limitations we have developed a model of the isolated perfused rat small intestine where all of these symptoms can be studied simultaneously. Here we used this model to study the role of eicosanoids, steroids and quinidine in platelet-activating factor (PAF)-induced intestinal disorders. A vascular bolus of PAF (0.5 nmol) triggered release of thromboxane and peptidoleukotrienes into the vascular bed (peak concentration 35 nM and 0.8 nM) and reproduced all symptoms of intestinal failure: mesenteric vasoconstriction, translocation of fluid and macromolecules from the vasculature to the lumen and lymphatics, intestinal edema formation, loss of intestinal peristalsis and decreased galactose uptake. All effects of PAF were abolished by the PAF-receptor antagonist ABT491 (2.5 μM). The COX and LOX inhibitors ASA and AA861 (500 μM, 10 μM) did not exhibit barrier-protective effects and the eicosanoid antagonists SQ29548 and MK571 (10 μM, each) only moderately attenuated the loss of vascular fluid, the redistribution to the lumen and the transfer of FITC dextran to the lumen. The steroid dexamethasone (10 μM) showed no barrier-protective properties and failed to prevent edema formation. Quinidine (100 μM) inhibited the increase in arterial pressure, stabilized all the intestinal barriers, and reduced lymph production and the transfer of FITC dextran to the lymph. While quinidine by itself reduced peristalsis, it also obviated paralysis, preserved intestinal functions and prevented edema formation. We conclude that quinidine exerts multiple protective effects against vasoconstriction, edema formation and paralysis in the intestine. The therapeutic use of quinidine for intestinal ailments

  20. Complexes of heparin and platelet factor 4 specifically stimulate T cells from patients with heparin-induced thrombocytopenia/thrombosis.

    PubMed

    Bacsi, S; De Palma, R; Visentin, G P; Gorski, J; Aster, R H

    1999-07-01

    Heparin-induced thrombocytopenia with thrombosis (HITT) is associated with antibodies specific for complexes consisting of heparin and platelet factor 4 (PF4). Studies in individual patients with HITT have demonstrated immunoglobulin (Ig) class switching from IgM to the IgG or IgA isotypes. This transition is thought to require helper T cells, but no studies of the cellular or molecular basis of this process have yet been reported. To characterize T-cell involvement in HITT, peripheral blood mononuclear cells (PBMC) from two patients with classical HITT obtained shortly after the acute episode were restimulated with heparin:PF4 complexes, PF4 alone, heparin alone, and medium alone in the presence of autologous antigen-presenting cells (APC). Responding T cells were then examined using the technique of "spectratyping," in which sequences encoding CDR3 domains of individual V beta (BV) families are amplified and separated by gel electrophoresis. After 14 days in culture with antigen (heparin:PF4 complexes), but not after culture with PF4, heparin, or medium alone, patient cells, but not cells from normal subjects, preferentially expressed T-cell receptor (TCR)-containing beta chains of the BV 5.1 family. Nucleotide sequencing of BV 5.1 TCR CDR3 showed that each patient had a personal repertoire, but also shared a tetrapeptide motif (PGTG). These findings provide evidence that the humoral immune response associated with HITT is driven by helper T cells that presumably recognize peptides derived from PF4. Identification of a common beta-chain CDR3 motif in responding T cells from each of two patients suggests that a limited number of helper TCRs may be used to mount an antibody response to heparin:PF4 complexes. TCR spectratyping appears to offer a new way to examine the molecular basis of pathologic immune responses and may be useful in further studies of HITT and other immune-mediated hematologic disorders.

  1. Osteogenic differentiation of muscle satellite cells induced by platelet-rich plasma encapsulated in three-dimensional alginate scaffold.

    PubMed

    Huang, Shengyun; Jia, Shanshan; Liu, Guijun; Fang, Dong; Zhang, Dongsheng

    2012-11-01

    Osteogenic potential of muscle satellite cells (MSCs) makes them a possible source of seeding cells for bone tissue engineering. The objective of the present study was to determine the effects of platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of MSCs by encapsulation of PRP into 3-dimensional alginate hydrogel in vitro and in vivo. PRP was obtained from Sprague-Dawley rats using 2 centrifugation techniques. MSCs were expanded and differentiated in the presence or absence of PRP in monolayer and 3-dimensional cultures. Cell viability was evaluated with the use of an MTT proliferation assay after 1, 7, 14, and 21 days of stimulation. Alkaline phosphatase (ALP) activity, calcium deposition, and real-time reverse-transcription polymerase chain reaction (RT-PCR) of osteogenic-related genes were performed to study the effects of PRP on osteogenic differentiation of cultured MSCs by encapsulation of PRP in alginate gel. For in vivo study, the PRP-MSCs-alginate gel mixture was implanted in subcutaneous pockets of nude mice to examine the ectopic bone formation at 2 weeks. After 1, 7, 14, and 21 days of stimulation, PRP significantly promoted MSC proliferation in PRP-alginate gel mixture cultures. ALP activity, calcium deposition, and real-time RT-PCR showed enhanced cell osteogenic differentiation in the PRP-alginate group. Histologic examination demonstrated that large amount of fibrous tissue capsule, collagen, and new vascular growth were detected in the PRP-MSCs-alginate group compared with the alginate and MSCs-alginate groups. The results of this study suggest that MSCs induced by PRP encapsulated in an alginate gel mixture can undergo induction into osteoblastic phenotype both in vitro and in vivo, which makes the production of PRP-enhanced tissue-engineered bone using MSCs possible. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. O-linked carbohydrate of recombinant von Willebrand factor influences ristocetin-induced binding to platelet glycoprotein 1b.

    PubMed Central

    Carew, J A; Quinn, S M; Stoddart, J H; Lynch, D C

    1992-01-01

    By transfecting the full-length cDNA for human von Willebrand factor (vWf) into a line of Chinese hamster ovary cells with a defect in carbohydrate metabolism, we have prepared recombinant vWf specifically lacking O-linked carbohydrates. We have compared this under-glycosylated protein to fully glycosylated recombinant vWf with respect to several structural and binding properties. vWf deficient in O-linked glycans was synthesized, assembled into multimers, and secreted in an apparently normal manner and was not prone to degradation in the extracellular milieu. It did not differ from fully glycosylated vWf in ability to bind to heparin or to collagen type I but did interact less well with glycoprotein 1b on formalin-fixed platelets. This decreased interaction was evidenced in both a lessened overall binding to platelets and in diminished capacity to promote platelet agglutination, in the presence of ristocetin. In contrast, no difference was seen in platelet binding in the presence of botrocetin. These data indicate a possible role for O-linked carbohydrates in the vWf-glycoprotein 1b interaction promoted by ristocetin and suggest that abnormalities in carbohydrate modification might contribute to the altered ristocetin-dependent reactivity between vWf and platelets described for some variant forms of von Willebrand disease. Images PMID:1469086

  3. Response of Northern Elephant Seal platelets to pressure and temperature changes: a comparison with human platelets.

    PubMed

    Field, Cara L; Tablin, Fern

    2012-08-01

    Mammalian blood platelets are activated by physiological agonists such as collagen or thrombin, or by physical stimuli such as cold temperatures and rapid decompression. Marine mammals regularly experience cold temperatures, high pressures and rapid decompression while diving, yet do not appear to suffer from thrombotic events during routine dive activity. We evaluated the effects of cold temperature and high pressure excursions on Northern Elephant Seal (NES) platelets and compared NES platelet response to that of human platelets subjected to identical stimuli. NES platelets undergo cold-induced activation when chilled to 4 °C, and 3 distinct phase transitions can be measured using Fourier Transform Infrared Spectroscopy. NES platelet membrane lipid composition was determined using thin layer chromatography and NES platelets were found to have three times the amount of cholesterol (21% by weight) as human platelets. When exposed to high pressure-rapid decompression excursion, NES platelets did not undergo morphological shape change nor bind increased amounts of fibrinogen, while human platelets were significantly activated by the same excursion. These results demonstrate that while NES platelets are activated by the physical stimulus of cold temperatures, they are resistant to decompression-induced activation. We suggest that the composition of NES platelet membranes may play an important role in preventing pressure-related activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. In vivo platelet activation and platelet hyperreactivity in abacavir-treated HIV-infected patients.

    PubMed

    Falcinelli, Emanuela; Francisci, Daniela; Belfiori, Barbara; Petito, Eleonora; Guglielmini, Giuseppe; Malincarne, Lisa; Mezzasoma, AnnaMaria; Sebastiano, Manuela; Conti, Valentina; Giannini, Silvia; Bonora, Stefano; Baldelli, Franco; Gresele, Paolo

    2013-08-01

    Abacavir (ABC) has been associated with ischaemic cardiovascular events in HIV-infected patients, but the pathogenic mechanisms are unknown. Aim of our study was to assess whether ABC induces in vivo platelet activation and ex vivo platelet hyper-reactivity. In a retrospective, case-control study, in vivo platelet activation markers were measured in 69 HIV-infected patients, before starting therapy and after 6-12 months of either ABC (n=35) or tenofovir (TDF) (n=34), and compared with those from 20 untreated HIV-infected patients. A subgroup of patients was restudied after 28-34 months for ex vivo platelet reactivity. In vivo platelet activation markers were assessed by ELISA or flow cytometry, ex vivo platelet reactivity by light transmission aggregometry (LTA) and PFA-100®. Thein vitro effects of the ABC metabolite, carbovir triphosphate, on aggregation and intra-platelet cGMP were also studied. sPLA2, sPsel and sGPV increased significantly 6-12 months after the beginning of ABC, but not of TDF or of no treatment. Ex vivo platelet function studies showed enhanced LTA, shorter PFA-100® C/ADP closure time and enhanced platelet expression of P-sel and CD40L in the ABC group. The intake of ABC blunted the increase of intraplatelet cGMP induced by nitric oxide (NO) and acutely enhanced collagen-induced aggregation. Preincubation of control platelets with carbovir triphosphate in vitro enhanced platelet aggregation and blunted NO-induced cGMP elevation. In conclusion, treatment with ABC enhances in vivo platelet activation and induces platelet hyperreactivity by blunting the inhibitory effects of NO on platelets. These effects may lead to an increase of ischaemic cardiovascular events.

  5. Blood platelets in the progression of Alzheimer's disease.

    PubMed

    Gowert, Nina S; Donner, Lili; Chatterjee, Madhumita; Eisele, Yvonne S; Towhid, Seyda T; Münzer, Patrick; Walker, Britta; Ogorek, Isabella; Borst, Oliver; Grandoch, Maria; Schaller, Martin; Fischer, Jens W; Gawaz, Meinrad; Weggen, Sascha; Lang, Florian; Jucker, Mathias; Elvers, Margitta

    2014-01-01

    Alzheimer's disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.

  6. A randomized, controlled study on the influence of acetaminophen, diclofenac, or naproxen on aspirin-induced inhibition of platelet aggregation.

    PubMed

    Galliard-Grigioni, Katja S; Reinhart, Walter H

    2009-05-01

    Nonsteroidal anti-inflammatory drugs (NSAID) may interfere with aspirin (acetylsalicylic acid) and increase the risk for cardiovascular events. The clinical relevance is uncertain. The aim of this study was to analyse the influence of a co-administration of aspirin and NSAID on platelet aggregation. In a randomized, placebo controlled trial, eleven healthy volunteers were studied during 4 separate study periods of 4 days each. Individuals were treated on each occasion with 100 mg aspirin daily in combination with either 3 x 1 g acetaminophen, 3 x 50 mg diclofenac, 3 x 250 mg naproxen, or 3 x 1 placebo. Primary hemostasis was assessed with a platelet function analyser (PFA-100), which measures the closure time (CT) of a collagen- and epinephrine-coated pore by aggregating platelets in flowing blood. Naproxen enhanced the anti-aggregatory action of aspirin after 24 h (CT rising from 104+/-16 s at baseline to 212+/-69 s at 24 h, P<0.001), which was not seen with any other drug combination. Diclofenac reduced the anti-aggregatory action of aspirin in the first two days, since the CT did not rise significantly (109+/-19 s, 148+/-56 s, and 168+/-66 s at 0 h, 24 h, 48 h, respectively, P>0.05). Acetaminophen had no effect compared with placebo. After 4 days of treatment platelet aggregation was similarly inhibited by all combinations. We conclude that a co-administration of NSAID and aspirin may interfere with platelet inhibition at the beginning of a treatment with an increase of naproxen and a decrease of diclofenac. This effect is lost after 4 days, suggesting that a regular daily co-administration of NSAID does not have an influence on platelet inhibition by aspirin.

  7. Platelets effects on tumor growth.

    PubMed

    Goubran, Hadi A; Stakiw, Julie; Radosevic, Mirjana; Burnouf, Thierry

    2014-06-01

    Unlike other blood cells, platelets are small anucleate structures derived from marrow megakaryocytes. Thought for almost a century to possess solely hemostatic potentials, platelets, however, play a much wider role in tissue regeneration and repair and interact intimately with tumor cells. On one hand, tumor cells induce platelet aggregation (TCIPA), known to act as the trigger of cancer-associated thrombosis. On the other hand, platelets recruited to the tumor microenvironment interact, directly, with tumor cells, favoring their proliferation, and, indirectly, through the release of a wide palette of growth factors, including angiogenic and mitogenic proteins. In addition, the role of platelets is not solely confined to the primary tumor site. Indeed, they escort tumor cells, helping their intravasation, vascular migration, arrest, and extravasation to the tissues to form distant metastasis. As expected, nonspecific or specific inhibition of platelets and their content represents an attractive novel approach in the fight against cancer. This review illustrates the role played by platelets at primary tumor sites and in the various stages of the metastatic process.

  8. Role of Platelet-Derived Transforming Growth Factor-β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis.

    PubMed

    Ahamed, Jasimuddin; Laurence, Jeffrey

    2017-11-01

    This review evaluates the role of platelet-derived transforming growth factor (TGF)-β1 in oxidative stress-linked pathologic fibrosis, with an emphasis on the heart and kidney, by using ionizing radiation as a clinically relevant stimulus. Current radiation-induced organ fibrosis interventions focus on pan-neutralization of TGF-β or the use of anti-oxidants and anti-proliferative agents, with limited clinical efficacy. Recent Advances: Pathologic fibrosis represents excessive accumulation of collagen and other extracellular matrix (ECM) components after dysregulation of a balance between ECM synthesis and degradation. Targets based on endogenous carbon monoxide (CO) pathways and the use of redox modulators such as N-acetylcysteine present promising alternatives to current therapeutic regimens. Ionizing radiation leads to direct DNA damage and generation of reactive oxygen species (ROS), with TGF-β1 activation via ROS, thrombin generation, platelet activation, and pro-inflammatory signaling promoting myofibroblast accumulation and ECM production. Feed-forward loops, as TGF-β1 promotes ROS, amplify these profibrotic signals, and persistent low-grade inflammation insures their perpetuation. We highlight differential roles for platelet- versus monocyte-derived TGF-β1, establishing links between canonical and noncanonical TGF-β1 signaling pathways in relationship to macrophage polarization and autophagy, and define points where pharmacologic agents can intervene. Additional studies are needed to understand mechanisms underlying the anti-fibrotic effects of current and proposed therapeutics, based on limiting platelet TGF-β1 activity, promotion of macrophage polarization, and facilitation of collagen autophagy. Models incorporating endogenous CO and selective TGF-β1 pathways that impact the initiation and progression of pathologic fibrosis, including nuclear factor erythroid 2-related factor (Nrf2) and redox, are of particular interest. Antioxid. Redox Signal. 27

  9. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans.

    PubMed

    Ungerer, Martin; Rosport, Kai; Bültmann, Andreas; Piechatzek, Richard; Uhland, Kerstin; Schlieper, Peter; Gawaz, Meinrad; Münch, Götz

    2011-05-03

    Blocking of glycoprotein VI-dependent pathways by interfering in vascular collagen sites is commonly seen as an attractive target for an antiplatelet therapy of acute atherosclerotic diseases such as myocardial infarction or stroke. Revacept (soluble dimeric glycoprotein VI-Fc fusion protein) has been shown to reduce platelet adhesion by blocking vascular collagen in plaques or erosion and to be safe in preclinical studies. A dose-escalating clinical phase I study was performed to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of Revacept in humans. In a first-in-humans study, 30 healthy men received a single intravenous administration of 10, 20, 40, 80, or 160 mg Revacept. The serum concentration-time courses of each dosage of Revacept showed a narrow variation and a concentration and time dependence. Revacept did not significantly affect the bleeding time. Collagen-induced platelet aggregation was dose-dependently inhibited up to 48 hours at lower doses and for 7 days after higher dose levels. In contrast, ADP- or thrombin receptor activating peptide-dependent platelet aggregation remained unaltered. There were no relevant drug-related adverse events or drug-related changes in laboratory parameters (biochemistry, hematology, and coagulation parameters). There were no drug-related changes in blood pressure, pulse rate, or ECG parameters (including 24-hour Holter monitoring). No anti-Revacept antibodies were detected. This phase I study demonstrated that Revacept is a safe and well-tolerated new antiplatelet compound with a clear dose-dependent pharmacokinetic profile with specific, dose-related inhibition of platelet aggregation despite completely unaltered general hemostasis. URL: www.clinicaltrials.gov. Unique identifier: NCT 01042964. URL: eudract.ema.europa.eu. Identifier: 2005-004656-12.

  10. Enhanced pyrite rejection in coal flotation

    SciTech Connect

    Tao, D.P.; Lu, M.X.; Richardson, P.E.; Luttrell, G.H.; Adel, G.T.; Yoon, R.H.

    1994-12-31

    Difficulties in rejecting pyrite from coal by flotation primarily result from two mechanisms of particle recovery: attachment and middlings. Attachment of pyrite is the consequence of surface hydrophobicity induced by superficial oxidation; middlings that can float readily are caused by incomplete liberation of pyrite from coal. New flotation schemes have been developed to enhance pyrite rejection. They are referred to as Electrochemically-Enhanced Sulfur Rejection (EESR) and Polymer-Enhanced Sulfur Rejection (PESR) processes. In the EESR process, the formation of hydrophobic products is prevented by electrochemical techniques in which active metals are used as sacrificial anodes to cathodically protect pyrite from oxidation; in the PESR process, hydrophilic polymers is used to mask coal in middlings by specific adsorption on pyrite, and thus depress coal-pyrite middlings.

  11. Paying To Belong: When Does Rejection Trigger Ingratiation?

    PubMed Central

    Romero-Canyas, Rainer; Downey, Geraldine; Reddy, Kavita S.; Rodriguez, Sylvia; Cavanaugh, Timothy J.; Pelayo, Rosemary

    2010-01-01

    Societies and social scientists have long held the belief that exclusion induces ingratiation and conformity, an idea in contradiction with robust empirical evidence linking rejection with hostility and aggression. The classic literatures on ingratiation and conformity help resolve this contradiction by identifying circumstances under which rejection may trigger efforts to ingratiate. Jointly, findings from these literatures suggest that when people are given an opportunity to impress their rejecters, ingratiation is likely after rejection experiences that are harsh and that occur in important situations that threaten the individual’s self-definition. Four studies tested the hypothesis that people high in rejection sensitivity, and therefore dispositionally concerned about rejection, will utilize opportunities to ingratiate after harsh rejection in situations that are self-defining. In three studies of situations that are particularly self-defining for men, rejection predicted ingratiation among men (but not women) who were high in rejection sensitivity. In a fourth study, harsh rejection in a situation particularly self-defining for women predicted ingratiation among highly rejection-sensitive women (but not men). These findings help identify the specific circumstances under which people are willing to act in socially desirable ways toward those who have rejected them harshly. PMID:20649367

  12. THE EFFECT OF ACETYLSALICYLIC ACID ON PLATELET FUNCTION

    PubMed Central

    Evans, Geoffrey; Packham, Marian A.; Nishizawa, Edward E.; Mustard, James F.; Murphy, Edmund A.

    1968-01-01

    Acetylsalicylic acid (ASA, aspirin) and sodium salicylate inhibit platelet aggregation induced by collagen, antigen-antibody complexes, gamma globulin-coated particles or thrombin. These compounds suppress the release of platelet constituents, such as adenosine diphosphate (ADP) and serotonin, induced by such stimuli. Since ASA and sodium salicylate do not inhibit ADP-induced platelet aggregation, it appears that their effect on the action of the other stimuli is due to a decrease in the amount of ADP released. The administration of ASA to rabbits (in doses which inhibited collagen-induced platelet aggregation) impaired hemostasis, prolonged platelet survival, and diminished the amount of deposit formed in an extracorporeal shunt. PMID:4176225

  13. Late acute humoral rejection in low-risk renal transplant recipients induced with an interleukin-2 receptor antagonist and maintained with standard therapy: preliminary communication.

    PubMed

    Morales, J; Contreras, L; Zehnder, C; Pinto, V; Elberg, M; Araneda, S; Herzog, C; Calabran, L; Aguiló, J; Ferrario, M; Buckel, E; Fierro, J A

    2011-01-01

    Low-risk renal transplant recipients treated with standard immunosuppressive therapy including interleukin-2 receptor (IL-2R) antagonist show a low incidence of early rejection episodes but few reports have examined the incidence and severity of late rejection processes. This study evaluated retrospectively cellular and antibody-mediated rejection (AMR) among 42 recipients selected because they showed low panel-reactive-antibodies, short cold ischemia time, no delayed graft function, and therapy including basiliximab (Simulect) induction. The mean observation time was 6.6 years. Sixty-seven percent of donors were deceased. Ten-year patient and death-censored graft survivals were 81% and 78%, respectively. Seven patients lost their kidneys due to nonimmunologic events. The seven recipients who experienced cellular rejection episodes during the first posttransplant year had them reversed with steroids. Five patients displayed late acute AMR causing functional deterioration in four cases including 1 graft loss. De novo sensitization occurred in 48% of recipients including patients without clinical rejection. In conclusion, long-term follow-up of kidney transplant recipients selected by a low immunologic risk showed a persistent risk of de novo sensitization evolving to acute AMR in 11% of cases. Although immunologic events were related to late immunosuppressive reduction, most graft losses were due to nonimmunologic factors.

  14. Insulin enhances platelet activation in vitro.

    PubMed

    Yngen, M; Li, N; Hjemdahl, P; Wallén, N H

    2001-10-15

    Diabetes mellitus is associated with an increased risk of atherothrombotic complications. There is accumulating evidence of platelet hyperreactivity in diabetes, which may be of importance in the pathogenesis of diabetic vascular complications. Platelets possess insulin receptors, but their physiological relevance is not clear, and data on insulin effects on platelet function in the literature are less than consistent. We therefore investigated the influence of insulin on platelet activation in vitro. Fasting blood samples were collected in 20 healthy males, using citrate or hirudin as anticoagulants. Platelet activation was measured as platelet P-selectin expression and fibrinogen binding using whole blood flow cytometry in unstimulated and adenosine diphosphate (ADP) stimulated samples, incubated with 0-10000 microU/ml insulin for 20 min. The effect of insulin (30 or 300 microU/ml, incubated for 3 min) on platelet aggregation was studied using Born aggregometry in platelet-rich plasma (PRP). Insulin enhanced platelet fibrinogen binding more than P-selectin expression in unstimulated and ADP stimulated samples (P<.001 by analysis of variance [ANOVA]; n=20). Insulin (30 or 300 microU/ml) also enhanced ADP-induced platelet aggregation in PRP (P<.01 or P<.001; n=14). The platelet activating effect of insulin was verified in hirudinized samples (n=12), indicating that it was not dependent on unphysiologically low extracellular calcium concentrations. Thus, insulin enhances platelet activation in vitro, independently of extracellular calcium concentrations. Beneficial effects of insulin treatment on platelet function in vivo are probably related to improved metabolic control, rather than to direct platelet stabilizing effects.

  15. Platelet associated antibodies

    MedlinePlus

    ... medlineplus.gov/ency/article/003552.htm Platelet-associated antibodies blood test To use the sharing features on ... JavaScript. This blood test shows if you have antibodies against platelets in your blood. Platelets are a ...

  16. Hormonal contraception and platelet function.

    PubMed

    Saleh, A A; Ginsburg, K A; Duchon, T A; Dorey, L G; Hirata, J; Alshameeri, R S; Dombrowski, M P; Mammen, E F

    1995-05-15

    73 healthy women (29 controls, 25 using OCs, and 19 using Norplant) were selected from the clinic population at North Oakland Medical Center for inclusion in this study after obtaining informed consent. Age, race, height, weight, blood pressure, and cigarette smoking were recorded for each subject. 12 patients were on monophasic OCs while 13 were on triphasic preparations. Both hormonal contraceptive groups had used their particular contraceptive for at least 3 months prior to blood drawing. Platelet tests were performed within 2 hours of sample collection: platelet counts (PLC) and mean platelet volume (MPV) were determined on an Automated Platelet Counter (Baker 810 Platelet Analyzer). Whole blood aggregation was performed on a platelet aggregometer (Chrono-Log, Model 550) using both ADP (ADP, 5 mM) and collagen (COLL, 2 mcg/ml) as inducing agents. Demographic differences were not significant (p 0.05) among the 3 treatment groups, whose average age was 25.3-25.8 years old. Furthermore, no significant differences (p 0.05) in platelet function were detected among controls or subjects receiving either oral contraceptives or Norplant, compared to control patients. The mean platelet counts (X 10/9/L) were 223 for OC users, 231 for Norplant users, and 232 for controls. The respective platelet aggregation (ADP, ohms) values were 12.5, 18.0, and 19.2 as well as (COLL, ohms) 35.6, 40.7, and 39.0. These results demonstrated that there is no evidence for altered platelet function, with the testing methods employed, in women using either Norplant or combination low dose oral contraceptives. To date, several studies have examined this issue, with contradictory reports about the effects of hormonal contraceptives in platelet function. After controlling for differences between various steroid preparations and other such confounding variables, some of these conflicting conclusions could be the result of a lack of uniformity among the methods used to evaluate platelet aggregation

  17. "Science" Rejects Postmodernism.

    ERIC Educational Resources Information Center

    St. Pierre, Elizabeth Adams

    2002-01-01

    The National Research Council report, "Scientific Research in Education," claims to present an inclusive view of sciences in responding to federal attempts to legislate educational research. This article asserts that it narrowly defines science as positivism and methodology as quantitative, rejecting postmodernism and omitting other theories. Uses…

  18. The proteolytic processing of pro-platelet-derived growth factor-A at RRKR(86) by members of the proprotein convertase family is functionally correlated to platelet-derived growth factor-A-induced functions and tumorigenicity.

    PubMed

    Siegfried, Géraldine; Khatib, Abdel-Majid; Benjannet, Suzanne; Chrétien, Michel; Seidah, Nabil G

    2003-04-01

    Although altered expression of platelet-derived growth factor (PDGF)-A is a hallmark of many cancers, the importance of pro-PDGF-A conversion to PDGF-A in tumorigenesis and the cognate protease(s) is unknown. Pro-PDGF-A processing occurs at pairs of basic residues, likely involving the proprotein convertases (PCs). In the colon carcinoma cell line LoVo, we found that Furin is the most potent PDGF-A convertase. Mutation of the PC-site RRKR(86) to ARKA(86) inhibited pro-PDGF-A processing, its receptor tyrosine phosphorylation, and cell proliferation. This processing is also blocked by the PC preprosegments (pps) ppFurin, ppPC5, and ppPACE4, and by the Furin-variants of alpha2-macroglobulin and alpha1-antitrypsin. Chinese hamster ovary cells overexpressing pro-PDGF-A (ARKA(86)) failed to induce tumors in nude mice. Thus, PC-directed inhibitors might represent new agents for therapy in neoplasia induced by PDGF-A.

  19. The Role of Platelet Membrane Phospholipids in the Platelet Release Reaction

    PubMed Central

    Schick, Paul K.; Yu, Byung P.

    1974-01-01

    The structure and function of the platelet surface was probed by phospholipase C (Clostridium perfringens) which hydrolyzes membrane phospholipids, particularly phosphatidylcholine. Platelet phospholipids were susceptible to phospholipase C, and extent of hydrolysis was dependent on concentration of phospholipase C and Ca++. Phospholipase C (0.15 U/ml) with Ca++ (0.55 mM) hydrolyzed 15.6% phospholipids during 5 min. Phospholipase C released platelet serotonin (5HT), ADP, and platelet factor 4. Hydrolysis of 5% phospholipids resulted in release of 70% 5HT. Platelet 5HT release was rapid, occurring within 2 min. Phospholipase C (0.2 U/ml) with Ca++ (0.55 mM) also released 10.35 nmol sotrage pool ADP/109 platelets and 63% platelet factor 4 during 3 min. Phospholipase C did not cause leakage of cytoplasmic metabolic pool ADP, since only 6.6% [3H]ADP was released. Ultrastructural analysis of phospholipase C-modified platelets showed that platelets were intact. After 2% phospholipid hydrolysis, centralization of granules and contraction of microtubules were evident. After 18% phospholipid hydrolysis, there were morphological indications of degranulation. Phospholipase C-induced phospholipid hydrolysis caused the release of ADP and 5HT since: (a) Phospholipase C purified by heating was shown to be free of protease and neuraminidase activity and capable of inducing the platelet release reaction. (b) Antitoxin (Cl. perfringens) neutralized phospholipase C-induced 5HT release which rules out a contaminant. (c) Phosphorylcholine, the hydrolysis product, did not induce platelet 5HT release. This study demonstrates that minimal hydrolysis of platelet phospholipids triggers the release reaction. Our hypothesis is that phospholipids, presumably phosphatidylcholine, are situated at or near active site or “receptor” on the platelet surface and function as the modulator for the release reaction. Images PMID:4371563

  20. Blood platelet kinetics and platelet transfusion.

    PubMed

    Aster, Richard H

    2013-11-01

    The discovery of citrate anticoagulant in the 1920s and the development of plastic packs for blood collection in the 1960s laid the groundwork for platelet transfusion therapy on a scale not previously possible. A major limitation, however, was the finding that platelet concentrates prepared from blood anticoagulated with citrate were unsuitable for transfusion because of platelet clumping. We found that this could be prevented by simply reducing the pH of platelet-rich plasma to about 6.5 prior to centrifugation. We used this approach to characterize platelet kinetics and sites of platelet sequestration in normal and pathologic states and to define the influence of variables such as anticoagulant and ABO incompatibility on post-transfusion platelet recovery. The "acidification" approach enabled much wider use of platelet transfusion therapy until alternative means of producing concentrates suitable for transfusion became available.

  1. Blood platelet kinetics and platelet transfusion

    PubMed Central

    Aster, Richard H.

    2013-01-01

    The discovery of citrate anticoagulant in the 1920s and the development of plastic packs for blood collection in the 1960s laid the groundwork for platelet transfusion therapy on a scale not previously possible. A major limitation, however, was the finding that platelet concentrates prepared from blood anticoagulated with citrate were unsuitable for transfusion because of platelet clumping. We found that this could be prevented by simply reducing the pH of platelet-rich plasma to about 6.5 prior to centrifugation. We used this approach to characterize platelet kinetics and sites of platelet sequestration in normal and pathologic states and to define the influence of variables such as anticoagulant and ABO incompatibility on post-transfusion platelet recovery. The “acidification” approach enabled much wider use of platelet transfusion therapy until alternative means of producing concentrates suitable for transfusion became available. PMID:24177466

  2. The relationship between platelet endothelial cell adhesion molecule-1 and paraquat-induced lung injury in rabbits

    PubMed Central

    Shi, Jing; Hu, Chun-lin; Gao, Yu-feng; Liao, Xiao-xing; Xu, Hope

    2012-01-01

    BACKGROUND: Platelet endothelial cell adhesion molecule-1 (PECAM-1), also known as CD31, is mainly distributed in vascular endothelial cells. Studies have shown that PECAM-1 is a very significant indicator of angiogenesis, and has been used as an indicator for vascular endothelial cells. The present study aimed to explore the relationship between the expression of PECAM-1 and the degree of acute lung injury (ALI) and fibrosis in paraquat (PQ) induced lung injury in rabbits. METHODS: Thirty-six adult New Zealand rabbits were randomly divided into three groups (12 rabbits in each group) according to PQ dosage: 8 mg/kg (group A), 16 mg/kg (group B), and 32 mg/kg (group C). After PQ infusion, the rabbits were monitored for 7 days and then euthanized. The lungs were removed for histological evaluation. Masson staining was used to determine the degree of lung fibrosis (LF), and semi-quantitative immune-histochemistry analysis to determine the expression of PECAM-1. Pearson’s product-moment correlation analysis was performed to evaluate the relationship between the expression of PECAM-1 and the extent of lung injuries expressed by ALI score and degree of LF. RESULTS: Rabbits in the three groups showed apparent poisoning. The rabbits survived longer in group A than in groups B and C (6.47±0.99 days vs. 6.09±1.04 days vs. 4.77±2.04 days) (P<0.05). ALI score was lower in group A than in groups B and C (8.33±1.03 vs. 9.83±1.17 vs. 11.50±1.38) (P<0.05), and there was statistically significant difference between group B and group C (P=0.03). LF was slighter in group A than in groups B and C (31.09%±2.05 % vs. 34.37%±1.62 % vs. 36.54%±0.44%) (P<0.05), and there was statistically significant difference between group B and group C (P=0.026). The PEACAM-1 expression was higher in group A than in groups B and C (20.31%±0.70% vs. 19.34%±0.68% vs. 18.37%±0.46%) (P<0.05), and there was statistically significant difference between group B and group C (P=0.017). Pearson

  3. A role for platelet-derived growth factor in drug-induced chronic ergotism? A case report.

    PubMed

    Pietrogrande, F; Caenazzo, A; Dazzi, F; Polato, G; Girolami, A

    1995-07-01

    Generalized vasoconstriction in chronic ergot poisoning is attributed both to the ergotamine activity on alpha-adrenergic receptors and to its direct action on vascular smooth muscle cells. The authors propose that endothelial wall, chronically damaged by ergot alkaloids, releases platelet-derived growth factor (PDGF), which contributes to vasoconstriction and promotes further arterial obstruction. Their hypothesis is supported by the increased PDGF activity found in plasma of a patient suffering from chronic ergotism.

  4. LC-MS/MS Analysis and Comparison of Oxidative Damages on Peptides Induced by Pathogen Reduction Technologies for Platelets

    NASA Astrophysics Data System (ADS)

    Prudent, Michel; Sonego, Giona; Abonnenc, Mélanie; Tissot, Jean-Daniel; Lion, Niels

    2014-04-01

    Pathogen reduction technologies (PRT) are photochemical processes that use a combination of photosensitizers and UV-light to inactivate pathogens in platelet concentrates (PCs), a blood-derived product used to prevent hemorrhage. However, different studies have questioned the impact of PRT on platelet function and transfusion efficacy, and several proteomic analyses revealed possible oxidative damages to proteins. The present work focused on the oxidative damages produced by the two main PRT on peptides. Model peptides containing residues prone to oxidation (tyrosine, histidine, tryptophane, and cysteine) were irradiated with a combination of amotosalen/UVA (Intercept process) or riboflavin/UVB (Mirasol-like process). Modifications were identified and quantified by liquid chromatography coupled to tandem mass spectrometry. Cysteine-containing peptides formed disulfide bridges (R-SS-R, -2 Da; favored following amotosalen/UVA), sulfenic and sulfonic acids (R-SOH, +16 Da, R-SO3H, +48 Da, favored following riboflavin/UVB) upon treatment and the other amino acids exhibited different oxidations revealed by mass shifts from +4 to +34 Da involving different mechanisms; no photoadducts were detected. These amino acids were not equally affected by the PRT and the combination riboflavin/UVB generated more oxidation than amotosalen/UVA. This work identifies the different types and sites of peptide oxidations under the photochemical treatments and demonstrates that the two PRT may behave differently. The potential impact on proteins and platelet functions may thus be PRT-dependent.

  5. Clovamide-rich extract from Trifolium pallidum reduces oxidative stress-induced damage to blood platelets and plasma.

    PubMed

    Kolodziejczyk, Joanna; Olas, Beata; Wachowicz, Barbara; Szajwaj, Barbara; Stochmal, Anna; Oleszek, Wieslaw

    2011-09-01

    Numerous plants (including clovers) have been widely used in folk medicine for the treatment of different disorders. This in vitro study was designed to examine the antioxidative effects of the clovamide-rich fraction, obtained from aerial parts of Trifolium pallidum, in the protection of blood platelets and plasma against the nitrative and oxidative damage, caused by peroxynitrite (ONOO(-)). Carbonyl groups and 3-nitrotyrosine in blood platelet and plasma proteins were determined by ELISA tests. Thiol groups level was estimated by using 5,5'-dithio-bis(2-nitro-benzoic acid, DTNB). Plasma lipid peroxidation was measured spectrophotometrically as the production of thiobarbituric acid reactive substances. The results from our work indicate that clovamide-rich T. pallidum extract may reveal the protective properties in the prevention against oxidative stress. The presence of clovamide-rich T. pallidum extract (12.5-100 μg/ml) partly inhibited ONOO(-)-mediated protein carbonylation and nitration. All the used concentrations of T. pallidum extract reduced lipid peroxidation in plasma. The antioxidative action of the tested extract in the protection of blood platelet lipids was less effective; the extract at the lowest final concentration (12.5 μg/ml) had no protective effect against lipid peroxidation. The present results indicate that the extract from T. pallidum is likely to be a source of compounds with the antioxidative properties, useful in the prevention against the oxidative stress-related diseases.

  6. Platelet-induced thrombin generation by the calibrated automated thrombogram assay is increased in patients with essential thrombocythemia and polycythemia vera.

    PubMed

    Panova-Noeva, Marina; Marchetti, Marina; Spronk, Henri Maria; Russo, Laura; Diani, Erika; Finazzi, Guido; Finazzi, Good; Salmoiraghi, Silvia; Rambaldi, Alessandro; Rambaldi, Aueesandrd; Barbui, Tiziano; Barbui, Titiano; Ten Cate, Hugo; Ten Cate, Huao; Falanga, Anna

    2011-04-01

    The platelet contribution to the thrombophilic state of patients with myeloproliferative neoplasms (MPNs), i.e., essential thrombocythemia (ET) and polycythemia vera (PV), remains uncertain. In this study we aimed to characterize the thrombin generation (TG) potential expressed by platelets from these subjects, compare it to normal platelets, and identify what factors might be responsible for platelet TG. In a group of 140 MPN patients (80 ET and 60 PV) and 72 healthy subjects, we measured the global procoagulant potential of platelet-rich plasma (PRP) utilizing the TG assay by the calibrated automated thrombogram (CAT). To characterize the procoagulant contribution of platelets in PRP, the TG of both isolated platelets and platelet-poor plasma was measured, and the platelet surface expression of TF was determined. Finally, the activation status of platelets was assessed by the levels of P-selectin expressed on platelet surface. MPN patients had significantly increased PRP and isolated platelet TG potential compared to controls. This was associated to the occurrence of platelet activation. Patients carriers of the JAK2V617F mutation showed the highest values of TG and platelet surface TF and P-selectin. Platelet TG potential was significantly lower in hydroxyurea(HU) compared to non-HU-treated patients and was lowest in HU-treated JAK2V617F carriers. In subjects not receiving HU, platelet TG significantly increased by JAK2V617F allele burden increment (P < 0.05).This study demonstrates a platelet-dependent form of hypercoagulability in MPN patients, particularly in those carriers of the JAK2V617F mutation. The cytoreductive therapy with HU significantly affects this prothrombotic phenotype.

  7. Resistance of established porcine islet xenografts to humoral rejection by hyperimmune sera.

    PubMed

    Gourlay, W A; O'Neil, J J; Hancock, W W; Monaco, A P; Maki, T

    1999-09-27

    Although preformed natural antibodies cause hyperacute rejection of primarily vascularized xenografts, tissue grafts such as skin or islets are revascularized by in-growth of host capillaries and therefore might be resistant to circulating antibodies. We examined the effect of hyperimmune serum and primed T cells on the survival of long-term porcine islet xenografts in diabetic nude mice. Porcine islets were transplanted beneath the kidney capsule of streptozotocin-induced diabetic BALB/c athymic mice. Hyperimmune serum and sensitized splenocytes were prepared by repeated immunization of BALB/c mice with porcine lymph node cells. Splenic T cells were enriched by nylon wool column separation. Tissues were examined by immunohistology using murine- and porcine-specific monoclonal antibodies. Porcine islets survived in nude mice for > 100 days with high levels of circulating porcine C-peptide and maintenance of normoglycemia. Injection of the hyperimmune sera (IgG) into normoglycemic nude mice bearing porcine islets for > 70 days failed to induce rejection despite the continued presence of circulating anti-porcine cytotoxic antibody. Injection of sensitized T cells caused acute rejection of long-term (>140 days) porcine islets, whereas injection of naive T cells had no effect. Histologically, porcine islets removed from mice treated with hyperimmune serum showed no staining for IgG. Long-surviving porcine islet grafts showed strong staining for interleukin (IL)-10 and a lesser amount of IL-4 but no staining for IL-2 or interferon-gamma. Although fresh porcine islets were positive for swine leukocyte antigen class 1 antigen and intercellular adhesion molecule (ICAM)-1 but negative for mouse platelet endothelial cell adhesion molecule and ICAM-2, long-surviving porcine islets showed positive endothelial staining for mouse platelet endothelial cell adhesion molecule and ICAM-2. Established islet xenografts are resistant to hyperimmune serum as a result of a lack of target

  8. Platelet dynamics in three-dimensional simulation of whole blood.

    PubMed

    Vahidkhah, Koohyar; Diamond, Scott L; Bagchi, Prosenjit

    2014-06-03

    A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.

  9. Transfusion of ABO-mismatched platelets leads to early platelet refractoriness.

    PubMed

    Carr, R; Hutton, J L; Jenkins, J A; Lucas, G F; Amphlett, N W

    1990-07-01

    Forty-three consecutive patients previously unexposed to platelets and undergoing treatment for acute leukaemia or autografting for relapsed Hodgkin's lymphoma were randomized to receive transfused platelets of either their own ABO group (OG) or of a major mismatched group (MMG). The 26 evaluable patients were equally distributed between the two study groups. Nine of 13 (69%) MMG patients became refractory with a median onset at transfusion 7 (15 d), compared with only one of 13 (8%) OG patients (P = 0.001). Refractoriness was associated with the formation of high titre isoagglutinins, anti-HLA and platelet specific antibodies. In one patient refractoriness appeared to be due to high titre isoagglutinins alone. Six other patients developed an increase in isoagglutinin titre sufficient to adversely affect platelet increments. Patients receiving ABO-mismatched platelets had a higher incidence of anti-HLA antibodies (5 v. 1) and platelet specific antibodies (4 v. 1). ABO-mismatched platelets transfused prior to the onset of refractoriness resulted in increments similar to those achieved by ABO-matched platelets. The study demonstrates that ABO-mismatched platelets are as effective as matched platelets in patients with low titre isoagglutinins requiring only few transfusions. However, the greater incidence of early refractoriness induced in MMG patients indicates that ABO-mismatched platelets should not be given to patients with marrow failure requiring long-term support.

  10. Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan

    PubMed Central

    Liu, Zhi-Jian; Hoffmeister, Karin M.; Hu, Zhongbo; Mager, Donald E.; Ait-Oudhia, Sihem; Debrincat, Marlyse A.; Pleines, Irina; Josefsson, Emma C.; Kile, Benjamin T.; Italiano, Joseph; Ramsey, Haley; Grozovsky, Renata; Veng-Pedersen, Peter; Chavda, Chaitanya

    2014-01-01

    The fetal/neonatal hematopoietic system must generate enough blood cells to meet the demands of rapid growth. This unique challenge might underlie the high incidence of thrombocytopenia among preterm neonates. In this study, neonatal platelet production and turnover were investigated in newborn mice. Based on a combination of blood volume expansion and increasing platelet counts, the platelet mass increased sevenfold during the first 2 weeks of murine life, a time during which thrombopoiesis shifted from liver to bone marrow. Studies applying in vivo biotinylation and mathematical modeling showed that newborn and adult mice had similar platelet production rates, but neonatal platelets survived 1 day longer in circulation. This prolonged lifespan fully accounted for the rise in platelet counts observed during the second week of murine postnatal life. A study of pro-apoptotic and anti-apoptotic Bcl-2 family proteins showed that neonatal platelets had higher levels of the anti-apoptotic protein Bcl-2 and were more resistant to apoptosis induced by the Bcl-2/Bcl-xL inhibitor ABT-737 than adult platelets. However, genetic ablation or pharmacologic inhibition of Bcl-2 alone did not shorten neonatal platelet survival or reduce platelet counts in newborn mice, indicating the existence of redundant or alternative mechanisms mediating the prolonged lifespan of neonatal platelets. PMID:24599546

  11. Reelin is a platelet protein and functions as a positive regulator of platelet spreading on fibrinogen.

    PubMed

    Tseng, Wei-Lien; Huang, Chien-Ling; Chong, Kowit-Yu; Liao, Chang-Huei; Stern, Arnold; Cheng, Ju-Chien; Tseng, Ching-Ping

    2010-02-01

    Abnormalities of platelet functions have been linked to reelin-impaired neuronal disorders. However, little attention has been given to understanding the interplay between reelin and platelet. In this study, reelin was found to present in the human platelets and megakaryocyte-like leukemic cells. Reelin-binding assays revealed that extracellular reelin can interact with platelets through the receptor belonging to the low density lipoprotein receptor gene family. The reelin-to-platelet interactions enhance platelet spreading on fibrinogen concomitant with the augmentation of lamellipodia formation and F-actin bundling. In contrast, reelin has no effect on integrin alphaIIbbeta3 activation and agonist-induced platelet aggregation. Molecular analysis revealed that the up-regulation of Rac1 activity and the inhibition of protein kinase C delta-Thr505 phosphorylation are important for reelin-mediated enhancement of platelet spreading on fibrinogen. These findings demonstrate for the first time that reelin is present in platelets and the reelin-to-platelet interactions play a novel role in platelet signaling and functions.

  12. Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan.

    PubMed

    Liu, Zhi-Jian; Hoffmeister, Karin M; Hu, Zhongbo; Mager, Donald E; Ait-Oudhia, Sihem; Debrincat, Marlyse A; Pleines, Irina; Josefsson, Emma C; Kile, Benjamin T; Italiano, Joseph; Ramsey, Haley; Grozovsky, Renata; Veng-Pedersen, Peter; Chavda, Chaitanya; Sola-Visner, Martha

    2014-05-29

    The fetal/neonatal hematopoietic system must generate enough blood cells to meet the demands of rapid growth. This unique challenge might underlie the high incidence of thrombocytopenia among preterm neonates. In this study, neonatal platelet production and turnover were investigated in newborn mice. Based on a combination of blood volume expansion and increasing platelet counts, the platelet mass increased sevenfold during the first 2 weeks of murine life, a time during which thrombopoiesis shifted from liver to bone marrow. Studies applying in vivo biotinylation and mathematical modeling showed that newborn and adult mice had similar platelet production rates, but neonatal platelets survived 1 day longer in circulation. This prolonged lifespan fully accounted for the rise in platelet counts observed during the second week of murine postnatal life. A study of pro-apoptotic and anti-apoptotic Bcl-2 family proteins showed that neonatal platelets had higher levels of the anti-apoptotic protein Bcl-2 and were more resistant to apoptosis induced by the Bcl-2/Bcl-xL inhibitor ABT-737 than adult platelets. However, genetic ablation or pharmacologic inhibition of Bcl-2 alone did not shorten neonatal platelet survival or reduce platelet counts in newborn mice, indicating the existence of redundant or alternative mechanisms mediating the prolonged lifespan of neonatal platelets. © 2014 by The American Society of Hematology.

  13. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation

    PubMed Central

    Li, Yu-Tung; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2016-01-01

    Tumours constitute unique microenvironments where various blood cells and factors are exposed as a result of leaky vasculature. In the present study, we report that thrombin enrichment in B16F10 melanoma led to platelet aggregation, and this property was exploited to administer an anticancer cytokine, interferon-gamma induced protein 10 (IP10), through the formation of a platelet-IP10 complex. When intravenously infused, the complex reached platelet microaggregates in the tumour. The responses induced by the complex were solely immune-mediated, and tumour cytotoxicity was not observed. The complex suppressed the growth of mouse melanoma in vivo, while both platelets and the complex suppressed the accumulation of FoxP3+ regulatory T cells in the tumour. These results demonstrated that thrombin-dependent platelet aggregation in B16F10 tumours defines platelets as a vector to deliver anticancer cytokines and provide specific treatment benefits. PMID:27117228

  14. Daily prickly pear consumption improves platelet function.

    PubMed</