NASA Astrophysics Data System (ADS)
Chen, Daqiang; Shen, Xiahong; Tong, Bing; Zhu, Xiaoxiao; Feng, Tao
With the increasing competition in logistics industry and promotion of lower logistics costs requirements, the construction of logistics information matching platform for highway transportation plays an important role, and the accuracy of platform design is the key to successful operation or not. Based on survey results of logistics service providers, customers and regulation authorities to access to information and in-depth information demand analysis of logistics information matching platform for highway transportation in Zhejiang province, a survey analysis for framework of logistics information matching platform for highway transportation is provided.
Using Socrative as an Online Homework Platform to Increase Students' Exam Scores
ERIC Educational Resources Information Center
Balta, Nuri; Perera-Rodríguez, Víctor-Hugo; Hervás-Gómez, Carlos
2018-01-01
Socrative is an online assessment and student response tool that provides opportunities to increase student engagement in the classroom. We used Socrative as an online homework completing platform to increase students' exam scores in physics. To explore the relationships among factors and the educational effectiveness of Socrative, data from 85…
Development of a virtual multidisciplinary lung cancer tumor board in a community setting.
Stevenson, Marvaretta M; Irwin, Tonia; Lowry, Terry; Ahmed, Maleka Z; Walden, Thomas L; Watson, Melanie; Sutton, Linda
2013-05-01
Creating an effective platform for multidisciplinary tumor conferences can be challenging in the rural community setting. The Duke Cancer Network created an Internet-based platform for a multidisciplinary conference to enhance the care of patients with lung cancer. This conference incorporates providers from different physical locations within a rural community and affiliated providers from a university-based cancer center 2 hours away. An electronic Web conferencing tool connects providers aurally and visually. Conferences were set up using a commercially available Web conferencing platform. The video platform provides a secure Web site coupled with a secure teleconference platform to ensure patient confidentiality. Multiple disciplines are invited to participate, including radiology, radiation oncology, thoracic surgery, pathology, and medical oncology. Participants only need telephone access and Internet connection to participate. Patient histories and physicals are presented, and the Web conferencing platform allows radiologic and histologic images to be reviewed. Treatment plans for patients are discussed, allowing providers to coordinate care among the different subspecialties. Patients who need referral to the affiliated university-based cancer center for specialized services are identified. Pertinent treatment guidelines and journal articles are reviewed. On average, there are 10 participants with one to two cases presented per session. The use of a Web conferencing platform allows subspecialty providers throughout the community and hours away to discuss lung cancer patient cases. This platform increases convenience for providers, eliminating travel to a central location. Coordination of care for patients requiring multidisciplinary care is facilitated, shortening evaluation time before definitive treatment plan.
Development of a Virtual Multidisciplinary Lung Cancer Tumor Board in a Community Setting
Stevenson, Marvaretta M.; Irwin, Tonia; Lowry, Terry; Ahmed, Maleka Z.; Walden, Thomas L.; Watson, Melanie; Sutton, Linda
2013-01-01
Purpose: Creating an effective platform for multidisciplinary tumor conferences can be challenging in the rural community setting. The Duke Cancer Network created an Internet-based platform for a multidisciplinary conference to enhance the care of patients with lung cancer. This conference incorporates providers from different physical locations within a rural community and affiliated providers from a university-based cancer center 2 hours away. An electronic Web conferencing tool connects providers aurally and visually. Methods: Conferences were set up using a commercially available Web conferencing platform. The video platform provides a secure Web site coupled with a secure teleconference platform to ensure patient confidentiality. Multiple disciplines are invited to participate, including radiology, radiation oncology, thoracic surgery, pathology, and medical oncology. Participants only need telephone access and Internet connection to participate. Results: Patient histories and physicals are presented, and the Web conferencing platform allows radiologic and histologic images to be reviewed. Treatment plans for patients are discussed, allowing providers to coordinate care among the different subspecialties. Patients who need referral to the affiliated university-based cancer center for specialized services are identified. Pertinent treatment guidelines and journal articles are reviewed. On average, there are 10 participants with one to two cases presented per session. Conclusion: The use of a Web conferencing platform allows subspecialty providers throughout the community and hours away to discuss lung cancer patient cases. This platform increases convenience for providers, eliminating travel to a central location. Coordination of care for patients requiring multidisciplinary care is facilitated, shortening evaluation time before definitive treatment plan. PMID:23942505
Integrated testing system FiTest for diagnosis of PCBA
NASA Astrophysics Data System (ADS)
Bogdan, Arkadiusz; Lesniak, Adam
2016-12-01
This article presents the innovative integrated testing system FiTest for automatic, quick inspection of printed circuit board assemblies (PCBA) manufactured in Surface Mount Technology (SMT). Integration of Automatic Optical Inspection (AOI), In-Circuit Tests (ICT) and Functional Circuit Tests (FCT) resulted in universal hardware platform for testing variety of electronic circuits. The platform provides increased test coverage, decreased level of false calls and optimization of test duration. The platform is equipped with powerful algorithms performing tests in a stable and repetitive way and providing effective management of diagnosis.
Modular HPC I/O characterization with Darshan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Shane; Carns, Philip; Harms, Kevin
2016-11-13
Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientificmore » applications and computing platforms calls for greater flexibililty and scope in I/O characterization.« less
Enhanced Rescue Lift Capability
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
TMAP - A Versatile Mobile Robot
NASA Astrophysics Data System (ADS)
Weiss, Joel A.; Simmons, Richard K.
1989-03-01
TMAP, the Teleoperated Mobile All-purpose Platform, provides the Army with a low cost, light weight, flexibly designed, modularly expandable platform for support of maneuver forces and light infantry units. The highly mobile, four wheel drive, diesel-hydraulic platform is controllable at distances of up to 4km from a portable operator control unit using either fiber optic or RF control links. The Martin Marietta TMAP system is based on a hierarchical task decomposition Real-time Control System architecture that readily supports interchange of mission packages and provides the capability for simple incorporation of supervisory control concepts leading to increased system autonomy and resulting force multiplication. TMAP has been designed to support a variety of missions including target designation, anti-armor, anti-air, countermine, and reconnaissance/surveillance. As a target designation system TMAP will provide the soldier with increased survivability and effectiveness by providing substantial combat standoff, and the firepower effectiveness of several manual designator operators. Force-on-force analysis of simulated TMAP engagements indicate that TMAP should provide significant force multiplication for the Army in Air-Land Battle 2000.
Open Marketplace for Simulation Software on the Basis of a Web Platform
NASA Astrophysics Data System (ADS)
Kryukov, A. P.; Demichev, A. P.
2016-02-01
The focus in development of a new generation of middleware shifts from the global grid systems to building convenient and efficient web platforms for remote access to individual computing resources. Further line of their development, suggested in this work, is related not only with the quantitative increase in their number and with the expansion of scientific, engineering, and manufacturing areas in which they are used, but also with improved technology for remote deployment of application software on the resources interacting with the web platforms. Currently, the services for providers of application software in the context of scientific-oriented web platforms is not developed enough. The proposed in this work new web platforms of application software market should have all the features of the existing web platforms for submissions of jobs to remote resources plus the provision of specific web services for interaction on market principles between the providers and consumers of application packages. The suggested approach will be approved on the example of simulation applications in the field of nonlinear optics.
Telemedicine and the sharing economy: the "Uber" for healthcare.
Miller, Brian J; Moore, Derek W; Schmidt, Chester W
2016-12-01
Telehealth platforms, which include both competitors and complements to traditional care delivery, will offer many benefits for both consumers and clinicians, and may promote increased specialization and competition in service delivery. Traditional medical services providers face a challenge similar to that faced by traditional taxicabs after Uber entered the marketplace: how to compete with a connection services platform that threatens to disrupt existing, regulated, and licensed service providers.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
VA's Integrated Imaging System on three platforms.
Dayhoff, R E; Maloney, D L; Majurski, W J
1992-01-01
The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability.
VA's Integrated Imaging System on three platforms.
Dayhoff, R. E.; Maloney, D. L.; Majurski, W. J.
1992-01-01
The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability. PMID:1482983
NASA Astrophysics Data System (ADS)
Counts, J. W.; Jorry, S.; Jouet, G.
2017-12-01
Newly analyzed bathymetric, seismic, and core data from carbonate-topped seamounts in the Mozambique Channel reveals a variety of depositional processes and products operating on platform slopes and adjacent basins. Mass transport complexes (including turbidites and debrites), leveed channel systems with basin-floor fans, and contourites are imaged in high resolution in both seafloor maps and cross-section, and show both differences and similarities compared with platform slopes in the Bahamas and elsewhere. In some, though not all, platforms, increased sedimentation can be observed on the leeward margins, and slope rugosity may be asymmetric with respect to prevailing wind direction. Deposition is also controlled by glacial-interglacial cycles; cores taken from the lower slopes (3000+ m water depth) of carbonate platforms reveal a causative relationship between sea level and aragonite export to the deep ocean. δ18O isotopes from planktonic and benthic foraminifera of two 27-meter cores, reveal a high-resolution, continuous depositional record of carbonate sediment dating back to 1.2 Ma. Sea level rise, as determined by correlation with the LR04 benthic stack, is coincident with increased aragonite flux from platform tops. Gravity flow deposits are also affected by platform flooding—the frequency of turbidite/debrite deposits on pinnacle slopes increases during highstand, although such deposits are also present during glacial episodes. The results reported here are the first record of highstand shedding in the southern Indian Ocean, and provide the longest Quaternary sediment record to date in the region, including the Mid-Brunhes transition (MIS 11) that serves as an analog for the current climate conditions. In addition, this is the first study to describe sedimentation on the slopes of these platforms, providing an important point of comparison that has the potential to influence source-to-sink carbonate facies models.
Learning in the "Platform Society": Disassembling an Educational Data Assemblage
ERIC Educational Resources Information Center
Williamson, Ben
2017-01-01
Schools are increasingly involved in diverse forms of student data collection. This article provides a sociotechnical survey of a data assemblage used in education. ClassDojo is a commercial platform for tracking students' behaviour data in classrooms and a social media network for connecting teachers, students, and parents. The hybridization of…
Computer-Assisted Analysis of Near-Bottom Photos for Benthic Habitat Studies
2006-09-01
navigated survey platform greatly increases the efficiency of image analysis and provides new insight about the relationships between benthic organisms...increase in the efficiency of image analysis for benthic habitat studies, and provides the opportunity to assess small scale spatial distribution of
PCR/LDR/universal array platforms for the diagnosis of infectious disease.
Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M; Barany, Francis
2010-01-01
Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections.
PCR/LDR/Universal Array Platforms for the Diagnosis of Infectious Disease
Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M.; Barany, Francis
2015-01-01
Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections. PMID:20217576
EdREC: Design and Development of Adaptive Platform for Scaling-up Flipped Mastery Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautam, Thakur
EdREC is an adaptive learning and management platform designed to enhance the adoption of differential classroom and mastery flipped learning in K-12 school system. The platform is an innovative approach to teaching and learning that addresses education needs of each student separately by providing customized education plans and adaptive learning methodologies that tunes to the students abilities as well as giving students freedom to learn in their own way. On one side, EdREC provides innovative ways to help students learn; on the other side, it reduces educators' workload and empowers them to understand their students better. EdREC comes with amore » state-of-the-art computer algorithm package that enables educators to store and retrieve their students' information and augment their abilities to individualize student attention, get real-time feedback about student education progress, and provide corrective actions. The platform provides approaches to design and develop a differential classroom concept that frees much needed time by the teachers to focus more on the students at the individual level and to increase communication and collaboration opportunities among them.« less
Terlizzi, Antonio; Bevilacqua, Stanislao; Scuderi, Danilo; Fiorentino, Dario; Guarnieri, Giuseppe; Giangrande, Adriana; Licciano, Margherita; Felline, Serena; Fraschetti, Simonetta
2008-07-01
The exploitation of fossil fuels in the Mediterranean Sea will likely lead to an increase in the number of offshore platforms, a recognized threat for marine biodiversity. To date, in this basin, few attempts have been made to assess the impact of offshore gas and oil platforms on the biodiversity of benthic assemblages. Here, we adopted a structured experimental design coupled with high taxonomic resolution to outline putative effects of gas platforms on soft-bottom macrofauna assemblages in the North Ionian Sea. The analysis was based on a total of 20,295 specimens of 405 taxa, almost entirely identified at species level. Multivariate and univariate analyses showed idiosyncratic patterns of assemblage change with increasing distance from the platforms. Potential reasons underlying such inconsistency are analyzed and the view that structured experimental monitoring is a crucial tool to quantify the extent and magnitude of potential threats and to provide sound baseline information on biodiversity patterns is supported.
2008-07-01
SimSCORM Opdrachtnummer Trainingsconcepten voor Defensie Datum Programmanummer Projectnummer juli 2008 V406 032.13224 Auteur (s) ir H.L.H. de Penning...simulators can provide learners with powerful and realistic learning environments: whereas e-learning systems provide them with interactive, mostly theory ...practice and theory , in both learning and evaluation, is becoming increasingly important. From a learner’s point of view, a powerful learning environment
A Multi-Technology Communication Platform for Urban Mobile Sensing.
Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana
2018-04-12
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
NASA Astrophysics Data System (ADS)
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-11-01
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b
2014-01-01
Background Due to ongoing rise in need for care for people with chronic diseases and lagging increase in number of care providers, alternative forms of care provision and self-management support are needed. Empowering patients through an online care platform could help to improve patients’ self-management and reduce the burden on the healthcare system. Methods Access to laboratory results and educational modules on diabetes will be offered through a platform for subjects with type 2 diabetes mellitus treated in primary care. Differences in socio-demographic and clinical characteristics between subjects expressing interest vs. disinterest to use the platform will be explored. Platform usage will be tracked and compared. Patient satisfaction and quality of life will be measured by validated questionnaires and economic analyses will be performed. Discussion This study is designed to assess the feasibility of use of an online platform in routine primary healthcare for subjects with type 2 diabetes mellitus in the Netherlands, and to study effects of use of the platform on treatment satisfaction, quality of life and clinical parameters. Although providing access to a online platform is not a novel intervention, usage and effects have not yet been studied in this patient population. Trial registration Trial registration: NCT01570140. PMID:24593656
ERIC Educational Resources Information Center
Brookbank, Elizabeth
2015-01-01
The majority of college students use social media of some kind, and academic libraries are increasingly using social media to reach them. Although studies have analyzed which platforms academic libraries most commonly use and case studies have provided examples of how libraries use specific platforms, there are few examinations of the usage habits…
ERIC Educational Resources Information Center
Igado, Manuel Fandos
2010-01-01
This work provides some considerations that complements the scarcity of researches this field of knowledge of the e-learning specifically referred to secondary education. Distance training programmes (both open source code and not) are becoming increasingly more popular, especially in higher level education. However, there are very few cases of…
Platform for intraoperative analysis of video streams
NASA Astrophysics Data System (ADS)
Clements, Logan; Galloway, Robert L., Jr.
2004-05-01
Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.
IAServ: an intelligent home care web services platform in a cloud for aging-in-place.
Su, Chuan-Jun; Chiang, Chang-Yu
2013-11-12
As the elderly population has been rapidly expanding and the core tax-paying population has been shrinking, the need for adequate elderly health and housing services continues to grow while the resources to provide such services are becoming increasingly scarce. Thus, increasing the efficiency of the delivery of healthcare services through the use of modern technology is a pressing issue. The seamless integration of such enabling technologies as ontology, intelligent agents, web services, and cloud computing is transforming healthcare from hospital-based treatments to home-based self-care and preventive care. A ubiquitous healthcare platform based on this technological integration, which synergizes service providers with patients' needs to be developed to provide personalized healthcare services at the right time, in the right place, and the right manner. This paper presents the development and overall architecture of IAServ (the Intelligent Aging-in-place Home care Web Services Platform) to provide personalized healthcare service ubiquitously in a cloud computing setting to support the most desirable and cost-efficient method of care for the aged-aging in place. The IAServ is expected to offer intelligent, pervasive, accurate and contextually-aware personal care services. Architecturally the implemented IAServ leverages web services and cloud computing to provide economic, scalable, and robust healthcare services over the Internet.
IAServ: An Intelligent Home Care Web Services Platform in a Cloud for Aging-in-Place
Su, Chuan-Jun; Chiang, Chang-Yu
2013-01-01
As the elderly population has been rapidly expanding and the core tax-paying population has been shrinking, the need for adequate elderly health and housing services continues to grow while the resources to provide such services are becoming increasingly scarce. Thus, increasing the efficiency of the delivery of healthcare services through the use of modern technology is a pressing issue. The seamless integration of such enabling technologies as ontology, intelligent agents, web services, and cloud computing is transforming healthcare from hospital-based treatments to home-based self-care and preventive care. A ubiquitous healthcare platform based on this technological integration, which synergizes service providers with patients’ needs to be developed to provide personalized healthcare services at the right time, in the right place, and the right manner. This paper presents the development and overall architecture of IAServ (the Intelligent Aging-in-place Home care Web Services Platform) to provide personalized healthcare service ubiquitously in a cloud computing setting to support the most desirable and cost-efficient method of care for the aged-aging in place. The IAServ is expected to offer intelligent, pervasive, accurate and contextually-aware personal care services. Architecturally the implemented IAServ leverages web services and cloud computing to provide economic, scalable, and robust healthcare services over the Internet. PMID:24225647
Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.
Digital Platforms as Factor Transforming Management Models in Businesses and Industries
NASA Astrophysics Data System (ADS)
Dimitrakiev, D.; Molodchik, A. V.
2018-05-01
Increasingly, digital platforms are built into the value chain, acting as an intermediary between the manufacturer and the consumer. The paper presents tendencies and features of business model transformation in connection with management of the new digital technologies. The limitations of traditional business models and the capabilities of business models based on digital platforms and self-organization were revealed. In the study, the viability of the new business model for the dental industry was confirmed and the new concept of the branch self-organizing control system based on the information platform, blockchain, cryptocurrency and reward of target consumer is offered, including mechanisms that make the model attractive for both the consumer and the service provider.
Data integration: Combined imaging and electrophysiology data in the cloud.
Kini, Lohith G; Davis, Kathryn A; Wagenaar, Joost B
2016-01-01
There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file formats. IEEG.org provides high- and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. Copyright © 2015 Elsevier Inc. All rights reserved.
Data integration: Combined Imaging and Electrophysiology data in the cloud
Kini, Lohith G.; Davis, Kathryn A.; Wagenaar, Joost B.
2015-01-01
There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file-formats. IEEG.org provides high and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. PMID:26044858
Online platforms to teach Nutrition Education to children: a non-systematic review.
Domínguez Rodríguez, Alejandro; Cebolla Marti, Ausiàs Josep; Oliver-Gasch, Elia; Baños-Rivera, Rosa María
2016-11-29
Childhood obesity is now considered a worldwide problem. Nutrition Education (NE) has been identified as a key factor in preventing overweight and obesity in children. In recent years, there has been an increase in the interest in innovative ways to teach this knowledge to children, mainly through the use of the Internet. Review and analyze the available evidence about programs focused on NE for children through the use of the Internet. Three different ways were found to deliver NE over the Internet to children: platforms designed to communicate with other peers or professionals; platforms designed to provide NE through the contents included in the web tool; and platforms designed to provide NE through the contents included in the web tool and automated feedback. Most of these programs were effective in achieving the objectives established. Although the use of Internet platforms to teach NE to children has been shown to be effective, the amount of evidence is still scarce. Some of the main advantages the Internet provides are: the opportunity to put the children in contact with education and health professionals; children can keep a record of the food consumed; and it is a more attractive and interesting way for children to learn NE, compared to traditional methods.
A Multi-Technology Communication Platform for Urban Mobile Sensing
Almeida, Rodrigo; Oliveira, Rui
2018-01-01
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network. PMID:29649175
A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform
NASA Astrophysics Data System (ADS)
Klaus, K.; Post, K.; Lawrence, S. J.
2012-12-01
Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.
Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload
NASA Technical Reports Server (NTRS)
Conners, Timothy R.
1997-01-01
NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.
NASA Technical Reports Server (NTRS)
Chase, R.; Cote, C.; Davis, R. E.; Dugan, J.; Frame, D. D.; Halpern, D.; Kerut, E.; Kirk, R.; Mcgoldrick, L.; Mcwilliams, J. C.
1983-01-01
The present and future use of satellites to locate offshore platforms and relay data from in situ sensors to shore was examined. A system of the ARGOS type will satisfy the increasing demand for oceanographic information through data relay and platform location. The improved ship navigation provided by the Global Positioning System (GPS) will allow direct observation of currents from underway ships. Ocean systems are described and demand estimates on satellite systems are determined. The capabilities of the ARGOS system is assessed, including anticipated demand in the next decade.
Industrial platforms--a unique feature of the European Commission's biotechnology R&D programme.
Aguilar, A; Ingemansson, T; Hogan, S; Magnien, E
1998-09-01
The European Commission's research, technological development and demonstration programmes aim to strengthen European research and technological development, and to increase the competitiveness of European industries. The creation and development of Industrial Platforms play an important role in these processes by improving the transition from research to commercial application. Industrial Platforms are technology-based industrial groupings established by industry with the aims of enabling the exploitation or dissemination of research results, encouraging academic-industrial collaborations and providing their members with a means of voicing their opinion on present and future research policies.
Miniature in vivo robotics and novel robotic surgical platforms.
Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry
2009-05-01
Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.
SPEKTROP DPU: optoelectronic platform for fast multispectral imaging
NASA Astrophysics Data System (ADS)
Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin
2010-09-01
In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.
GIS Application System Design Applied to Information Monitoring
NASA Astrophysics Data System (ADS)
Qun, Zhou; Yujin, Yuan; Yuena, Kang
Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.
Dagan, Noa; Beskin, Daniel; Brezis, Mayer; Reis, Ben Y
2015-10-05
Social networking sites (SNSs) such as Facebook have the potential to enhance online public health interventions, in part, as they provide social exposure and reinforcement. The objective of the study was to evaluate whether social exposure provided by SNSs enhances the effects of online public health interventions. As a sample intervention, we developed Food Hero, an online platform for nutritional education in which players feed a virtual character according to their own nutritional needs and complete a set of virtual sport challenges. The platform was developed in 2 versions: a "private version" in which a user can see only his or her own score, and a "social version" in which a user can see other players' scores, including preexisting Facebook friends. We assessed changes in participants' nutritional knowledge using 4 quiz scores and 3 menu-assembly scores. Monitoring feeding and exercising attempts assessed engagement with the platform. The 2 versions of the platform were randomly assigned between a study group (30 members receiving the social version) and a control group (33 members, private version). The study group's performance on the quizzes gradually increased over time, relative to that of the control group, becoming significantly higher by the fourth quiz (P=.02). Furthermore, the study group's menu-assembly scores improved over time compared to the first score, whereas the control group's performance deteriorated. Study group members spent an average of 3:40 minutes assembling each menu compared to 2:50 minutes in the control group, and performed an average of 1.58 daily sport challenges, compared to 1.21 in the control group (P=.03). This work focused on isolating the SNSs' social effects in order to help guide future online interventions. Our results indicate that the social exposure provided by SNSs is associated with increased engagement and learning in an online nutritional educational platform.
Geostationary multipurpose platforms
NASA Technical Reports Server (NTRS)
Bekey, I.; Bowman, R. M.
1981-01-01
In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.
Patient Recruitment 2.0: Become a Partner in the Patient Journey Using Digital Media
Lindemann, Michael; Freeman, Tobe; Kilchenmann, Timothy; Harrison, Shuree; Chan, Margaret; Wygonik, Mark; Haines, Lea
2016-01-01
We describe a digital platform, Pioneering Healthcare, designed to inform and empower people who are impacted by lung cancer. The platform enables Roche to support an online conversation with patients and caregivers about lung cancer, and about the role of lung cancer clinical studies in the development of future treatment options. This conversation is live and ongoing on the platform. It provides insights about the views and motivations of patients, and about how to better support patients pursuing treatment for life-threatening illness. We discuss the strategies used to deploy Pioneering Healthcare, and the advantages of using digital platforms for raising disease awareness, increasing patient engagement and, ultimately, for boosting patient enrollment into clinical trials. PMID:26818938
The Combat Cloud: Enabling Multi-Domain Command and Control Across the Range of Military Operations
2017-03-01
and joint by their very nature.3 The Combat Cloud architecture will enable MDC2 by increasing the interoperability of existing networks...order to provide operating platforms with a robust architecture that communicates with relevant players, operates at reduced levels of connectivity...responsibility or aircraft platform, and a Combat Cloud architecture helps focus thought toward achieving efficient MDC2 and effects rather than
NASA Astrophysics Data System (ADS)
Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo
2014-05-01
The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.
Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges
Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun
2015-01-01
The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061
1980-05-15
antenna platform . Moving 320.1 MHz from antenna B to antenna G at the GATR site would reduce the lobing structure for this frequency and provide more...uniform coverage. Providing increased antenna separation by spacing only four antennas along the east and west sides of the antenna platform would also...E~ 0 / C4 Is- / It /;/ ,iK 4 I’~ / / ~;~:;’/if ~4Co j0 I i0 - - - -L C4- j Wix L -,> 3-4 = x GZ li i Iz 3 0 Cc -, A25-4 L Attachment 25 ooLa I.- 0
Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung
2015-12-14
Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.
Interdisciplinary Approach: A Lever to Business Innovation
ERIC Educational Resources Information Center
Razmak, Jamil; Bélanger, Charles H.
2016-01-01
The advances in interdisciplinary studies are driving universities to utilize their available resources to efficiently enable development processes and provide increasing examples of research while gradually allocating the disciplines' resources. Ultimately, this trend asks universities to provide a platform of integrated disciplines, along with…
A software platform for continuum modeling of ion channels based on unstructured mesh
NASA Astrophysics Data System (ADS)
Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.
2014-01-01
Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.
Recent Advancements in Atmospheric Measurements Made from NASA Airborne Science Platforms
NASA Astrophysics Data System (ADS)
Schill, S.; Bennett, J.; Edmond, K.; Finch, P.; Rainer, S.; Schaller, E. L.; Stith, E.; Van Gilst, D.; Webster, A.; Yang, M. Y.
2017-12-01
Techniques for making atmospheric measurements are as wide-ranging as the atmosphere is complex. From in situ measurements made by land, sea, or air, to remote sensing data collected by satellites orbiting the Earth, atmospheric measurements have been paramount in advancing the combined understanding of our planet. To date, many of these advancements have been enabled by NASA Airborne Science platforms, which provide unique opportunities to make these measurements in remote regions, and to compare them with an ever-increasing archive of remote satellite data. Here, we discuss recent advances and current capabilities of the National Suborbital Research Center (NSRC) which provides comprehensive instrumentation and data system support on a variety of NASA airborne research platforms. Application of these methods to a number of diverse science missions, as well as upcoming project opportunities, will also be discussed.
Using digital media to promote kidney disease education.
Goldstein, Karen; Briggs, Michael; Oleynik, Veronica; Cullen, Mac; Jones, Jewel; Newman, Eileen; Narva, Andrew
2013-07-01
Health-care providers and patients increasingly turn to the Internet-websites as well as social media platforms-for health-related information and support. Informed by research on audience behaviors and preferences related to digital health information, the National Kidney Disease Education Program (NKDEP) developed a comprehensive and user-friendly digital ecosystem featuring content and platforms relevant for each audience. NKDEP's analysis of website metrics and social media conversation mapping related to CKD revealed gaps and opportunities, informing the development of a digital strategy to position NKDEP as a trustworthy digital source for evidence-based kidney disease information. NKDEP launched a redesigned website (www.nkdep.nih.gov) with enhanced content for multiple audiences as well as a complementary social media presence on Twitter and Facebook serving to drive traffic to the website as well as actively engage target audiences in conversations about kidney disease. The results included improved website metrics and increasing social media engagement among consumers and health-care providers. NKDEP will continue to monitor trends, explore new directions, and work to improve communication across digital platforms. Published by Elsevier Inc.
D.R.O.P. The Durable Reconnaissance and Observation Platform
NASA Technical Reports Server (NTRS)
McKenzie, Clifford; Parness, Aaron
2012-01-01
The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb concrete surfaces up to 85deg at a rate of 25cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters. DROP is manufactured using a combination of selective laser sintering (SLS) and shape deposition manufacturing (SDM) techniques. The platform uses a two-wheel, two-motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from linear to rotary applications, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspines ability to opportunistically grip rough surfaces. Various aspects of prototype design and performance are discussed, including the climbing mechanism, body design, and impact survival.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
Future of antibody purification.
Low, Duncan; O'Leary, Rhona; Pujar, Narahari S
2007-03-15
Antibody purification seems to be safely ensconced in a platform, now well-established by way of multiple commercialized antibody processes. However, natural evolution compels us to peer into the future. This is driven not only by a large, projected increase in the number of antibody therapies, but also by dramatic improvements in upstream productivity, and process economics. Although disruptive technologies have yet escaped downstream processes, evolution of the so-called platform is already evident in antibody processes in late-stage development. Here we perform a wide survey of technologies that are competing to be part of that platform, and provide our [inherently dangerous] assessment of those that have the most promise.
Xu, Dongrong; Hao, Xuejun; Wang, Zhishun; Duan, Yunsuo; Liu, Feng; Marsh, Rachel; Yu, Shan; Peterson, Bradley S.
2015-01-01
An increasing number of functional brain imaging studies are employing computer-based virtual reality (VR) to study changes in brain activity during the performance of high-level psychological and cognitive tasks. We report the development of a VR radial arm maze that adapts for human use in a scanning environment with the same general experimental design of behavioral tasks as that has been used with remarkable effectiveness for the study of multiple memory systems in rodents. The software platform is independent of specific computer hardware and operating systems, as we aim to provide shared access to this technology by the research community. We hope that doing so will provide greater standardization of software platform and study paradigm that will reduce variability and improve the comparability of findings across studies. We report the details of the design and implementation of this platform and provide information for downloading of the system for demonstration and research applications. PMID:26366052
NASA Astrophysics Data System (ADS)
Thau, D.
2017-12-01
For the past seven years, Google has made petabytes of Earth observation data, and the tools to analyze it, freely available to researchers around the world via cloud computing. These data and tools were initially available via Google Earth Engine and are increasingly available on the Google Cloud Platform. We have introduced a number of APIs for both the analysis and presentation of geospatial data that have been successfully used to create impactful datasets and web applications, including studies of global surface water availability, global tree cover change, and crop yield estimation. Each of these projects used the cloud to analyze thousands to millions of Landsat scenes. The APIs support a range of publishing options, from outputting imagery and data for inclusion in papers, to providing tools for full scale web applications that provide analysis tools of their own. Over the course of developing these tools, we have learned a number of lessons about how to build a publicly available cloud platform for geospatial analysis, and about how the characteristics of an API can affect the kinds of impacts a platform can enable. This study will present an overview of how Google Earth Engine works and how Google's geospatial capabilities are extending to Google Cloud Platform. We will provide a number of case studies describing how these platforms, and the data they host, have been leveraged to build impactful decision support tools used by governments, researchers, and other institutions, and we will describe how the available APIs have shaped (or constrained) those tools. [Image Credit: Tyler A. Erickson
Concepts for a geostationary-like polar mission
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; Anderson, Pamela; Carrea, Laura; Dobke, Benjamin; Embury, Owen; Merchant, Chris; Bensi, Paolo
2014-10-01
An evidence-led scientific case for development of a space-based polar remote sensing platform at geostationary-like (GEO-like) altitudes is developed through methods including a data user survey. Whilst a GEO platform provides a nearstatic perspective, multiple platforms are required to provide circumferential coverage. Systems for achieving GEO-like polar observation likewise require multiple platforms however the perspective is non-stationery. A key choice is between designs that provide complete polar view from a single platform at any given instant, and designs where this is obtained by compositing partial views from multiple sensors. Users foresee an increased challenge in extracting geophysical information from composite images and consider the use of non-composited images advantageous. Users also find the placement of apogee over the pole to be preferable to the alternative scenarios. Thus, a clear majority of data users find the "Taranis" orbit concept to be better than a critical inclination orbit, due to the improved perspective offered. The geophysical products that would benefit from a GEO-like polar platform are mainly estimated from radiances in the visible/near infrared and thermal parts of the electromagnetic spectrum, which is consistent with currently proven technologies from GEO. Based on the survey results, needs analysis, and current technology proven from GEO, scientific and observation requirements are developed along with two instrument concepts with eight and four channels, based on Flexible Combined Imager heritage. It is found that an operational system could, mostly likely, be deployed from an Ariane 5 ES to a 16-hour orbit, while a proof-of-concept system could be deployed from a Soyuz launch to the same orbit.
Marcelino, Isabel; Lopes, David; Reis, Michael; Silva, Fernando; Laza, Rosalía; Pereira, António
2015-01-01
World's aging population is rising and the elderly are increasingly isolated socially and geographically. As a consequence, in many situations, they need assistance that is not granted in time. In this paper, we present a solution that follows the CRISP-DM methodology to detect the elderly's behavior pattern deviations that may indicate possible risk situations. To obtain these patterns, many variables are aggregated to ensure the alert system reliability and minimize eventual false positive alert situations. These variables comprehend information provided by body area network (BAN), by environment sensors, and also by the elderly's interaction in a service provider platform, called eServices--Elderly Support Service Platform. eServices is a scalable platform aggregating a service ecosystem developed specially for elderly people. This pattern recognition will further activate the adequate response. With the system evolution, it will learn to predict potential danger situations for a specified user, acting preventively and ensuring the elderly's safety and well-being. As the eServices platform is still in development, synthetic data, based on real data sample and empiric knowledge, is being used to populate the initial dataset. The presented work is a proof of concept of knowledge extraction using the eServices platform information. Regardless of not using real data, this work proves to be an asset, achieving a good performance in preventing alert situations.
Marcelino, Isabel; Laza, Rosalía
2015-01-01
World's aging population is rising and the elderly are increasingly isolated socially and geographically. As a consequence, in many situations, they need assistance that is not granted in time. In this paper, we present a solution that follows the CRISP-DM methodology to detect the elderly's behavior pattern deviations that may indicate possible risk situations. To obtain these patterns, many variables are aggregated to ensure the alert system reliability and minimize eventual false positive alert situations. These variables comprehend information provided by body area network (BAN), by environment sensors, and also by the elderly's interaction in a service provider platform, called eServices—Elderly Support Service Platform. eServices is a scalable platform aggregating a service ecosystem developed specially for elderly people. This pattern recognition will further activate the adequate response. With the system evolution, it will learn to predict potential danger situations for a specified user, acting preventively and ensuring the elderly's safety and well-being. As the eServices platform is still in development, synthetic data, based on real data sample and empiric knowledge, is being used to populate the initial dataset. The presented work is a proof of concept of knowledge extraction using the eServices platform information. Regardless of not using real data, this work proves to be an asset, achieving a good performance in preventing alert situations. PMID:25874219
Lab-on-a-chip platforms for quantification of multicellular interactions in bone remodeling.
George, Estee L; Truesdell, Sharon L; York, Spencer L; Saunders, Marnie M
2018-04-01
Researchers have been using lab-on-a-chip systems to isolate factors for study, simulate laboratory analysis and model cellular, tissue and organ level processes. The technology is increasing rapidly, but the bone field has been slow to keep pace. Novel models are needed that have the power and flexibility to investigate the elegant and synchronous multicellular interactions that occur in normal bone turnover and in disease states in which remodeling is implicated. By removing temporal and spatial limitations and enabling quantification of functional outcomes, the platforms should provide unique environments that are more biomimetic than single cell type systems while minimizing complex systemic effects of in vivo models. This manuscript details the development and characterization of lab-on-a-chip platforms for stimulating osteocytes and quantifying bone remodeling. Our platforms provide the foundation for a model that can be used to investigate remodeling interactions as a whole or as a standard mechanotransduction tool by which isolated activity can be quantified as a function of load. Copyright © 2018 Elsevier Inc. All rights reserved.
Frisch, Noreen C; Atherton, Pat; Borycki, Elizabeth M; Mickelson, Grace; Black, Agnes; Novak Lauscher, Helen; Cordeiro, Jennifer
2017-01-01
Virtual platforms using webinars, e-posters, e-newsletters, wikis and blogs connect people who have common interests in new ways. When those individuals are healthcare providers, a professional network that operates on a virtual platform can support their needs for learning, professional development and information currency. The practice of e-learning for continuing professional development is emerging , particularly in nursing where shift work shift inhibits their ability to attend conferences and classes. This article reports the experience of the InspireNet network that provided e-learning models to: 1) provide opportunities for healthcare providers to organize themselves into learning communities through development of electronic communities of practice; 2) support learning on demand; and 3) dramatically increase the reach of educational offerings.
NASA Astrophysics Data System (ADS)
Perez, C. L.; Johnson, J. O.
Rapidly changing world events, the increased number of nations with inter-continental ballistic missile capability, and the proliferation of nuclear weapon technology will increase the number of nuclear threats facing the world today. Monitoring these nation's activities and providing an early warning and/or intercept system via reconnaissance and surveillance satellites and space based weapon platforms is a viable deterrent against a surprise nuclear attack. However, the deployment of satellite and weapon platform assets in space will subject the sensitive electronic equipment to a variety of natural and man-made radiation environments. These include Van Allen Belt protons and electrons; galactic and solar flare protons; and neutrons, gamma rays, and x-rays from intentionally detonated fission and fusion weapons. In this paper, the MASH vl.0 code system is used to estimate the dose to the critical electronics components of an idealized space based weapon platform from neutron and gamma-ray radiation emitted from a thermonuclear weapon detonation in space. Fluence and dose assessments were performed for the platform fully loaded, and in several stages representing limited engagement scenarios. The results indicate vulnerabilities to the Command, Control, and Communication bay instruments from radiation damage for a nuclear weapon detonation for certain source/platform orientations. The distance at which damage occurs will depend on the weapon yield (n,(gamma)/kiloton) and size (kilotons).
Dawidczyk, Charlene M; Kim, Chloe; Park, Jea Ho; Russell, Luisa M; Lee, Kwan Hyi; Pomper, Martin G; Searson, Peter C
2014-08-10
The ability to efficiently deliver a drug to a tumor site is dependent on a wide range of physiologically imposed design constraints. Nanotechnology provides the possibility of creating delivery vehicles where these design constraints can be decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing targeting efficiency and efficacy. Here we review the design strategies of the two FDA-approved antibody-drug conjugates (Brentuximab vedotin and Trastuzumab emtansine) and the four FDA-approved nanoparticle-based drug delivery platforms (Doxil, DaunoXome, Marqibo, and Abraxane) in the context of the challenges associated with systemic targeted delivery of a drug to a solid tumor. The lessons learned from these nanomedicines provide an important insight into the key challenges associated with the development of new platforms for systemic delivery of anti-cancer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Global Social Media Directory. A Resource Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noonan, Christine F.; Piatt, Andrew W.
Social media platforms are internet-based applications focused on broadcasting user-generated content. While primarily web-based, these services are increasingly available on mobile platforms. Communities and individuals share information, photos, music, videos, provide commentary and ratings/reviews, and more. In essence, social media is about sharing information, consuming information, and repurposing content. Social media technologies identified in this report are centered on social networking services, media sharing, blogging and microblogging. The purpose of this Resource Guide is to provide baseline information about use and application of social media platforms around the globe. It is not intended to be comprehensive as social media evolvesmore » on an almost daily basis. The long-term goal of this work is to identify social media information about all geographic regions and nations. The primary objective is that of understanding the evolution and spread of social networking and user-generated content technologies internationally.« less
Fiber Optic Sensors for Structural Health Monitoring of Air Platforms
Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping
2011-01-01
Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816
MSG: Microgravity Science Glovebox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baugher, C.R.; Ramachandran, N.; Roark, W.
1996-12-31
The capabilities of the Space Station glovebox facility is described. Tentatively scheduled to be launched in 1999, this facility called the Microgravity Sciences Glovebox (MSG), will provide a robust and sophisticated platform for doing microgravity experiments on the Space Station. It will provide an environment not only for testing and evaluating experiment concepts, but also serve as a platform for doing fairly comprehensive science investigations. Its design has evolved substantially from the middeck glovebox, now flown on Space Shuttle missions, not only in increased experiment volume but also in significant capability enhancements. The system concept, functionality and architecture are discussedmore » along with technical information that will benefit potential science investigators.« less
Online sea ice data platform: www.seaiceportal.de
NASA Astrophysics Data System (ADS)
Nicolaus, Marcel; Asseng, Jölund; Bartsch, Annekathrin; Bräuer, Benny; Fritzsch, Bernadette; Grosfeld, Klaus; Hendricks, Stefan; Hiller, Wolfgang; Heygster, Georg; Krumpen, Thomas; Melsheimer, Christian; Ricker, Robert; Treffeisen, Renate; Weigelt, Marietta; Nicolaus, Anja; Lemke, Peter
2016-04-01
There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archive data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback.
Collaborative Wikipedia Projects in the Virtual Classroom
ERIC Educational Resources Information Center
Kenny, A. J.; Wolt, J. D.; Hurd, H. S.
2013-01-01
Wikipedia is a web-based, free-content encyclopedia that is openly editable and, thus, provides a unique platform for collaborations. Wikipedia projects are increasingly being integrated into upper-level courses across the country to explore advanced concepts, communicate science, and provide high-quality information to the public. Here we outline…
Yu, Yao; Hu, Hao; Bohlender, Ryan J; Hu, Fulan; Chen, Jiun-Sheng; Holt, Carson; Fowler, Jerry; Guthery, Stephen L; Scheet, Paul; Hildebrandt, Michelle A T; Yandell, Mark; Huff, Chad D
2018-04-06
High-throughput sequencing data are increasingly being made available to the research community for secondary analyses, providing new opportunities for large-scale association studies. However, heterogeneity in target capture and sequencing technologies often introduce strong technological stratification biases that overwhelm subtle signals of association in studies of complex traits. Here, we introduce the Cross-Platform Association Toolkit, XPAT, which provides a suite of tools designed to support and conduct large-scale association studies with heterogeneous sequencing datasets. XPAT includes tools to support cross-platform aware variant calling, quality control filtering, gene-based association testing and rare variant effect size estimation. To evaluate the performance of XPAT, we conducted case-control association studies for three diseases, including 783 breast cancer cases, 272 ovarian cancer cases, 205 Crohn disease cases and 3507 shared controls (including 1722 females) using sequencing data from multiple sources. XPAT greatly reduced Type I error inflation in the case-control analyses, while replicating many previously identified disease-gene associations. We also show that association tests conducted with XPAT using cross-platform data have comparable performance to tests using matched platform data. XPAT enables new association studies that combine existing sequencing datasets to identify genetic loci associated with common diseases and other complex traits.
Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon
2016-01-01
Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.
Mining Social Media and Web Searches For Disease Detection
Yang, Y. Tony; Horneffer, Michael; DiLisio, Nicole
2013-01-01
Web-based social media is increasingly being used across different settings in the health care industry. The increased frequency in the use of the Internet via computer or mobile devices provides an opportunity for social media to be the medium through which people can be provided with valuable health information quickly and directly. While traditional methods of detection relied predominately on hierarchical or bureaucratic lines of communication, these often failed to yield timely and accurate epidemiological intelligence. New web-based platforms promise increased opportunities for a more timely and accurate spreading of information and analysis. This article aims to provide an overview and discussion of the availability of timely and accurate information. It is especially useful for the rapid identification of an outbreak of an infectious disease that is necessary to promptly and effectively develop public health responses. These web-based platforms include search queries, data mining of web and social media, process and analysis of blogs containing epidemic key words, text mining, and geographical information system data analyses. These new sources of analysis and information are intended to complement traditional sources of epidemic intelligence. Despite the attractiveness of these new approaches, further study is needed to determine the accuracy of blogger statements, as increases in public participation may not necessarily mean the information provided is more accurate. PMID:25170475
Mining social media and web searches for disease detection.
Yang, Y Tony; Horneffer, Michael; DiLisio, Nicole
2013-04-28
Web-based social media is increasingly being used across different settings in the health care industry. The increased frequency in the use of the Internet via computer or mobile devices provides an opportunity for social media to be the medium through which people can be provided with valuable health information quickly and directly. While traditional methods of detection relied predominately on hierarchical or bureaucratic lines of communication, these often failed to yield timely and accurate epidemiological intelligence. New web-based platforms promise increased opportunities for a more timely and accurate spreading of information and analysis. This article aims to provide an overview and discussion of the availability of timely and accurate information. It is especially useful for the rapid identification of an outbreak of an infectious disease that is necessary to promptly and effectively develop public health responses. These web-based platforms include search queries, data mining of web and social media, process and analysis of blogs containing epidemic key words, text mining, and geographical information system data analyses. These new sources of analysis and information are intended to complement traditional sources of epidemic intelligence. Despite the attractiveness of these new approaches, further study is needed to determine the accuracy of blogger statements, as increases in public participation may not necessarily mean the information provided is more accurate.
Zhang, Yiye; Padman, Rema
2017-01-01
Patients with multiple chronic conditions (MCC) pose an increasingly complex health management challenge worldwide, particularly due to the significant gap in our understanding of how to provide coordinated care. Drawing on our prior research on learning data-driven clinical pathways from actual practice data, this paper describes a prototype, interactive platform for visualizing the pathways of MCC to support shared decision making. Created using Python web framework, JavaScript library and our clinical pathway learning algorithm, the visualization platform allows clinicians and patients to learn the dominant patterns of co-progression of multiple clinical events from their own data, and interactively explore and interpret the pathways. We demonstrate functionalities of the platform using a cluster of 36 patients, identified from a dataset of 1,084 patients, who are diagnosed with at least chronic kidney disease, hypertension, and diabetes. Future evaluation studies will explore the use of this platform to better understand and manage MCC.
Imaging cytometry in a plastic ultra-mobile system
NASA Astrophysics Data System (ADS)
Martínez Vázquez, R.; Trotta, G.; Paturzo, M.; Volpe, A.; Bernava, G.; Basile, V.; Ancona, A.; Ferraro, P.; Fassi, I.; Osellame, R.
2017-03-01
We present a cost-effective and highly-portable plastic prototype that can be interfaced with a cell phone to implement an optofluidic imaging cytometry platform. It is based on a PMMA microfluidic chip that fits inside an opto-mechanical platform fabricated by a 3D printer. The fluorescence excitation and imaging is performed using the LED and the CMOS from the cell phone increasing the compactness of the system. A custom developed application is used to analyze the images and provide a value of particle concentration.
Surface-enhanced chiroptical spectroscopy with superchiral surface waves.
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2018-07-01
We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.
The evolving potential of companion diagnostics.
Khoury, Joseph D
2016-01-01
The scope of companion diagnostics in cancer has undergone significant shifts in the past few years, with increased development of targeted therapies and novel testing platforms. This has provided new opportunities to effect unprecedented paradigm shifts in the application of personalized medicine principles for patients with cancer. These shifts involve assay platforms, analytes, regulations, and therapeutic approaches. As opportunities involving each of these facets of companion diagnostics expand, close collaborations between key stakeholders should be enhanced to ensure optimal performance characteristics and patient outcomes.
NASA Astrophysics Data System (ADS)
Ormerod, R.; Scholl, M.
2017-12-01
Rapid evolution is occurring in the monitoring and assessment of air emissions and their impacts. The development of next generation lower cost sensor technologies creates the potential for much more intensive and far-reaching monitoring networks that provide spatially rich data. While much attention at present is being directed at the types and performance characteristics of sensor technologies, it is important also that the full potential of rich data sources be realized. Parallel to sensor developments, software platforms to display and manage data in real time are increasingly common adjuncts to sensor networks. However, the full value of data can be realized by extending platform capabilities to include complex scientific functions that are integrated into an action-oriented management framework. Depending on the purpose and nature of a monitoring network, there will be a variety of potential uses of the data or its derivatives, for example: statistical analysis for policy development, event analysis, real-time issue management including emergency response and complaints, and predictive management. Moving these functions into an on-demand, optionally mobile, environment greatly increases the value and accessibility of the data. Increased interplay between monitoring data and decision-making in an operational environment is optimised by a system that is designed with equal weight on technical robustness and user experience. A system now being used by several regulatory agencies and a larger number of industries in the US, Latin America, Europe, Australia and Asia has been developed to provide a wide range of on-demand decision-support in addition to the basic data collection, display and management that most platforms offer. With stable multi-year operation, the platform, known as Envirosuite, is assisting organisations to both reduce operating costs and improve environmental performance. Some current examples of its application across a range of applications for regulatory and industry organisations is described and demonstrated.
NASA Astrophysics Data System (ADS)
Johnson, S. P.; Rohrer, M. E.
2017-12-01
The application of scientific research pertaining to satellite imaging and data processing has facilitated the development of dynamic methodologies and tools that utilize nanosatellites and analytical platforms to address the increasing scope, scale, and intensity of emerging environmental threats to national security. While the use of remotely sensed data to monitor the environment at local and global scales is not a novel proposition, the application of advances in nanosatellites and analytical platforms are capable of overcoming the data availability and accessibility barriers that have historically impeded the timely detection, identification, and monitoring of these stressors. Commercial and university-based applications of these technologies were used to identify and evaluate their capacity as security-motivated environmental monitoring tools. Presently, nanosatellites can provide consumers with 1-meter resolution imaging, frequent revisits, and customizable tasking, allowing users to define an appropriate temporal scale for high resolution data collection that meets their operational needs. Analytical platforms are capable of ingesting increasingly large and diverse volumes of data, delivering complex analyses in the form of interpretation-ready data products and solutions. The synchronous advancement of these technologies creates the capability of analytical platforms to deliver interpretable products from persistently collected high-resolution data that meet varying temporal and geographic scale requirements. In terms of emerging environmental threats, these advances translate into customizable and flexible tools that can respond to and accommodate the evolving nature of environmental stressors. This presentation will demonstrate the capability of nanosatellites and analytical platforms to provide timely, relevant, and actionable information that enables environmental analysts and stakeholders to make informed decisions regarding the prevention, intervention, and prediction of emerging environmental threats.
3D shape measurement system developed on mobile platform
NASA Astrophysics Data System (ADS)
Wu, Zhoujie; Chang, Meng; Shi, Bowen; Zhang, Qican
2017-02-01
Three-dimensional (3-D) shape measurement technology based on structured light has become one hot research field inspired by the increasing requirements. Many methods have been implemented and applied in the industry applications, but most of their equipments are large and complex, cannot be portable. Meanwhile, the popularity of the smart mobile terminals, such as smart phones, provides a platform for the miniaturization and portability of this technology. The measurement system based on phase-shift algorithm and Gray-code pattern under the Android platform on a mobile phone is mainly studied and developed, and it has been encapsulated into a mobile phone application in order to reconstruct 3-D shape data in the employed smart phone easily and quickly. The experimental results of two measured object are given in this paper and demonstrate the application we developed in the mobile platform is effective.
Bringing eCare platforms to the market.
Vannieuwenborg, Frederic; Van der Auwermeulen, Thomas; Van Ooteghem, Jan; Jacobs, An; Verbugge, Sofie; Colle, Didier
2017-09-01
Due to changes in the demographic situation of most Western European countries, interest in Information and Communication Technologies (ICT)-supported care services is growing fast. eCare services that foster better care information exchange, social involvement, lifestyle monitoring services, etc., offered via ICT platforms, integrated in the homes of the elderly are believed to be cost-effective. Additionally, they could lead to an increased quality of life of both care receiver and (in)formal caregiver. Currently, adoption and integration of these eCare platforms (eCPs) is slowed down by several barriers such as unclear added value, a lack of regulations, or lack of sustainable financial models. In this work, the added value of eCPs is identified for the several involved key actors such as the care receiver, the (in)formal care providers, and the home care organizations. In a second step, several go-to-market strategies are formulated. Because the gap between the current way of providing home care and providing home care supported by a fully integrated eCP seems too big to bridge in one effort, a migration path is provided for stepwise integration and adoption of eCPs in the current way of home care provisioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi
We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressuresmore » in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.« less
Iridium: Global OTH data communications for high altitude scientific ballooning
NASA Astrophysics Data System (ADS)
Denney, A.
While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.
Online Sea Ice Knowledge and Data Platform: www.seaiceportal.de
NASA Astrophysics Data System (ADS)
Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Nicolaus, A.; Ricker, R.; Weigelt, M.
2016-12-01
There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous ice-tethered platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback and are open for potential new partners.
Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin
2014-05-16
Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.
NASA Astrophysics Data System (ADS)
Hugo, Wim
2013-04-01
Over the past 3 years, SAEON has worked with a number of stakeholders and funders to establish a shared platform for the management of dissemination of E&EO research outputs, data sets, and services. This platform is strongly aligned with GEO principles and architecture, allowing direct integration with the GEOSS Broker. The platform has two important characteristics: 1. It reduces the cost and lead time of provision of similar infrastructure for future initiatives. 2. The platform is domain-agnostic to some degree, and can be used for non E&EO applications. Projects to achive this is under way at present. The paper describes the application of the platform for a variety of user communities and initiatives (SAEON Data Portal, South African Earth Observation System, Risk and Vulnerability Atlas, BioEnergy Atlas, National Spatial Information Framework, ICSU World Data System Components, and many more), and demonstrates use cases utilising a distributed, service oriented architecture. Significant improvements have been made to the interoperability functions available to end users and content providers, and these are demonstrated and discussed in detail. Functions include • Creation and persistence of composite maps, as well as time series or scatter charts, supporting a variety of standardized data sources. • Search facilities have been extended to allow analysis and filtering of primary search results, and to deal with large meta-data collections. • In addition, data sources, data listings, news items, images, search results, and other platform content can, with increasing flexibility, be accessed as standardized services that are processed in standardized clients, allowing creation of a rich user interface, and permitting the inclusion of platform functionality into external websites and resources. This shift to explicit service-oriented, peer-to-peer architecture is a preparation for increased distributed processing and content composition, and will support the concept of virtualization of 'science gateways' based on the platform, in support of a growing number of domains and initiatives.
Ogura, Akio; Hayashi, Norio; Negishi, Tohru; Watanabe, Haruyuki
2018-05-09
Medical staff must be able to perform accurate initial interpretations of radiography to prevent diagnostic errors. Education in medical image interpretation is an ongoing need that is addressed by text-based and e-learning platforms. The effectiveness of these methods has been previously reported. Here, we describe the effectiveness of an e-learning platform used for medical image interpretation education. Ten third-year medical students without previous experience in chest radiography interpretation were provided with e-learning instructions. Accuracy of diagnosis using chest radiography was provided before and after e-learning education. We measured detection accuracy for two image groups: nodular shadow and ground-glass shadow. We also distributed the e-learning system to the two groups and analyzed the effectiveness of education for both types of image shadow. The mean correct answer rate after the 2-week e-learning period increased from 34.5 to 72.7%. Diagnosis of the ground glass shadow improved significantly more than that of the mass shadow. Education using the e-leaning platform is effective for interpretation of chest radiography results. E-learning is particularly effective for the interpretation of chest radiography images containing ground glass shadow.
Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Leeuwen, Brian P.; Eldridge, John M.
Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
ARV robotic technologies (ART): a risk reduction effort for future unmanned systems
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2006-05-01
The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.
NASA Astrophysics Data System (ADS)
Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Ricker, R.; Weigelt, M.
2016-12-01
The combination of multi-disciplinary sea ice science and the rising demand of society for up-to-date information and user customized products places emphasis on creating new ways of communication between science and society. The new knowledge platform is a contribution to the cross-linking of scientifically qualified information on climate change, and focuses on the theme: `sea ice' in both Polar Regions. With this platform, the science opens to these changing societal demands. It is the first comprehensive German speaking knowledge platform on sea ice; the platform went online in 2013. The web site delivers popularized information for the general public as well as scientific data meant primarily for the more expert readers and scientists. It also provides various tools allowing for visitor interaction. The demand for the web site indicates a high level of interest from both the general public and experts. It communicates science-based information to improve awareness and understanding of sea ice related research. The principle concept of the new knowledge platform is based on three pillars: (1) sea ice knowledge and background information, (2) data portal with visualizations, and (3) expert knowledge, latest research results and press releases. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous ice-tethered platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. We will present the portal, its content and function, but we are also asking for direct user feedback and are open for potential new partners.
Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.
Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge
2014-05-01
Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.
Simulator platform motion -- the need revisited
DOT National Transportation Integrated Search
1997-05-13
The need to provide increased access to flight simulator training for U.S. regional airlines, which historically have been limited by cost considerations in the use of such equipment for pilot recurrent training, is discussed. In light of that need, ...
Twitter for travel medicine providers.
Mills, Deborah J; Kohl, Sarah E
2016-03-01
Travel medicine practitioners, perhaps more so than medical practitioners working in other areas of medicine, require a constant flow of information to stay up-to-date, and provide best practice information and care to their patients. Many travel medicine providers are unaware of the popularity and potential of the Twitter platform. Twitter use among our travellers, as well as by physicians and health providers, is growing exponentially. There is a rapidly expanding body of published literature on this information tool. This review provides a brief overview of the ways Twitter is being used by health practitioners, the advantages that are peculiar to Twitter as a platform of social media, and how the interested practitioner can get started. Some key points about the dark side of Twitter are highlighted, as well as the potential benefits of using Twitter as a way to disseminate accurate medical information to the public. This article will help readers develop an increased understanding of Twitter as a tool for extracting useful facts and insights from the ever increasing volume of health information. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.
Communicating climate change adaptation information using web-based platforms
NASA Astrophysics Data System (ADS)
Karali, Eleni; Mattern, Kati
2017-07-01
To facilitate progress in climate change adaptation policy and practice, it is important not only to ensure the production of accurate, comprehensive and relevant information, but also the easy, timely and affordable access to it. This can contribute to better-informed decisions and improve the design and implementation of adaptation policies and other relevant initiatives. Web-based platforms can play an important role in communicating and distributing data, information and knowledge that become constantly available, reaching out to a large group of potential users. Indeed in the last decade there has been an extensive increase in the number of platforms developed for this purpose in many fields including climate change adaptation. This short paper concentrates on the web-based adaptation platforms developed in Europe. It provides an overview of the recently emerged landscape, examines the basic characteristics of a set of platforms that operate at national, transnational and European level, and discusses some of the key challenges related to their development, maintenance and overall management. Findings presented in this short paper are discussed in greater detailed in the Technical Report of the European Environment Agency Overview of climate change adaptation platforms in Europe
.
Xi-cam: Flexible High Throughput Data Processing for GISAXS
NASA Astrophysics Data System (ADS)
Pandolfi, Ronald; Kumar, Dinesh; Venkatakrishnan, Singanallur; Sarje, Abinav; Krishnan, Hari; Pellouchoud, Lenson; Ren, Fang; Fournier, Amanda; Jiang, Zhang; Tassone, Christopher; Mehta, Apurva; Sethian, James; Hexemer, Alexander
With increasing capabilities and data demand for GISAXS beamlines, supporting software is under development to handle larger data rates, volumes, and processing needs. We aim to provide a flexible and extensible approach to GISAXS data treatment as a solution to these rising needs. Xi-cam is the CAMERA platform for data management, analysis, and visualization. The core of Xi-cam is an extensible plugin-based GUI platform which provides users an interactive interface to processing algorithms. Plugins are available for SAXS/GISAXS data and data series visualization, as well as forward modeling and simulation through HipGISAXS. With Xi-cam's advanced mode, data processing steps are designed as a graph-based workflow, which can be executed locally or remotely. Remote execution utilizes HPC or de-localized resources, allowing for effective reduction of high-throughput data. Xi-cam is open-source and cross-platform. The processing algorithms in Xi-cam include parallel cpu and gpu processing optimizations, also taking advantage of external processing packages such as pyFAI. Xi-cam is available for download online.
CNV-WebStore: online CNV analysis, storage and interpretation.
Vandeweyer, Geert; Reyniers, Edwin; Wuyts, Wim; Rooms, Liesbeth; Kooy, R Frank
2011-01-05
Microarray technology allows the analysis of genomic aberrations at an ever increasing resolution, making functional interpretation of these vast amounts of data the main bottleneck in routine implementation of high resolution array platforms, and emphasising the need for a centralised and easy to use CNV data management and interpretation system. We present CNV-WebStore, an online platform to streamline the processing and downstream interpretation of microarray data in a clinical context, tailored towards but not limited to the Illumina BeadArray platform. Provided analysis tools include CNV analsyis, parent of origin and uniparental disomy detection. Interpretation tools include data visualisation, gene prioritisation, automated PubMed searching, linking data to several genome browsers and annotation of CNVs based on several public databases. Finally a module is provided for uniform reporting of results. CNV-WebStore is able to present copy number data in an intuitive way to both lab technicians and clinicians, making it a useful tool in daily clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven D. Howe; Robert C. O'Brien; William Taitano
Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations duringmore » its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.« less
Zens, Martin; Grotejohann, Birgit; Tassoni, Adrian; Duttenhoefer, Fabian; Südkamp, Norbert P; Niemeyer, Philipp
2017-05-23
Observational studies have proven to be a valuable resource in medical research, especially when performed on a large scale. Recently, mobile device-based observational studies have been discovered by an increasing number of researchers as a promising new source of information. However, the development and deployment of app-based studies is not trivial and requires profound programming skills. The aim of this project was to develop a modular online research platform that allows researchers to create medical studies for mobile devices without extensive programming skills. The platform approach for a modular research platform consists of three major components. A Web-based platform forms the researchers' main workplace. This platform communicates via a shared database with a platform independent mobile app. Furthermore, a separate Web-based login platform for physicians and other health care professionals is outlined and completes the concept. A prototype of the research platform has been developed and is currently in beta testing. Simple questionnaire studies can be created within minutes and published for testing purposes. Screenshots of an example study are provided, and the general working principle is displayed. In this project, we have created a basis for a novel research platform. The necessity and implications of a modular approach were displayed and an outline for future development given. International researchers are invited and encouraged to participate in this ongoing project. ©Martin Zens, Birgit Grotejohann, Adrian Tassoni, Fabian Duttenhoefer, Norbert P Südkamp, Philipp Niemeyer. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2017.
Li, Pin-Lan; Zhang, Yang
2013-01-01
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.
Turbine blade and non-integral platform with pin attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian X; Eng, Darryl; Marra, John J
Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less
Turbine blade and non-integral platform with pin attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian Xavier; Eng, Darryl; Marra, John J.
2016-08-02
Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less
ERIC Educational Resources Information Center
Davidson, Robyn
2015-01-01
The article "Wiki use that increases communication and collaboration motivation" (Davidson, 2012) appeared in the "Journal of Learning Design," Volume 5, Issue 2 in 2012. Three years on, Robyn Davidson reflects upon her original article. This article gave an account of how wikis were used as a platform to provide an opportunity…
Engineering emergent multicellular behavior through synthetic adhesion
NASA Astrophysics Data System (ADS)
Glass, David; Riedel-Kruse, Ingmar
In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PANDOLFI, RONALD; KUMAR, DINESH; VENKATAKRISHNAN, SINGANALLUR
Xi-CAM aims to provide a community driven platform for multimodal analysis in synchrotron science. The platform core provides a robust plugin infrastructure for extensibility, allowing continuing development to simply add further functionality. Current modules include tools for characterization with (GI)SAXS, Tomography, and XAS. This will continue to serve as a development base as algorithms for multimodal analysis develop. Seamless remote data access, visualization and analysis are key elements of Xi-CAM, and will become critical to synchrotron data infrastructure as expectations for future data volume and acquisition rates rise with continuously increasing throughputs. The highly interactive design elements of Xi-cam willmore » similarly support a generation of users which depend on immediate data quality feedback during high-throughput or burst acquisition modes.« less
Improving healthcare services using web based platform for management of medical case studies.
Ogescu, Cristina; Plaisanu, Claudiu; Udrescu, Florian; Dumitru, Silviu
2008-01-01
The paper presents a web based platform for management of medical cases, support for healthcare specialists in taking the best clinical decision. Research has been oriented mostly on multimedia data management, classification algorithms for querying, retrieving and processing different medical data types (text and images). The medical case studies can be accessed by healthcare specialists and by students as anonymous case studies providing trust and confidentiality in Internet virtual environment. The MIDAS platform develops an intelligent framework to manage sets of medical data (text, static or dynamic images), in order to optimize the diagnosis and the decision process, which will reduce the medical errors and will increase the quality of medical act. MIDAS is an integrated project working on medical information retrieval from heterogeneous, distributed medical multimedia database.
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent
2017-01-01
ABSTRACT The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. PMID:28179406
Scientific workflows as productivity tools for drug discovery.
Shon, John; Ohkawa, Hitomi; Hammer, Juergen
2008-05-01
Large pharmaceutical companies annually invest tens to hundreds of millions of US dollars in research informatics to support their early drug discovery processes. Traditionally, most of these investments are designed to increase the efficiency of drug discovery. The introduction of do-it-yourself scientific workflow platforms has enabled research informatics organizations to shift their efforts toward scientific innovation, ultimately resulting in a possible increase in return on their investments. Unlike the handling of most scientific data and application integration approaches, researchers apply scientific workflows to in silico experimentation and exploration, leading to scientific discoveries that lie beyond automation and integration. This review highlights some key requirements for scientific workflow environments in the pharmaceutical industry that are necessary for increasing research productivity. Examples of the application of scientific workflows in research and a summary of recent platform advances are also provided.
Genome-wide transcriptional profiling by microarrays provides a powerful platform for gene expression-based biomarker discovery. After their wide acceptance in human disease diagnosis, prognosis, and drug discovery, these gene signatures are increasingly being adopted for environ...
Genome-wide transcriptional profiling by microarrays provides a powerful platform for gene expression-based biomarker discovery. After their wide acceptance in human disease diagnosis, prognosis, and drug discovery, these gene signatures are increasingly being adopted for environ...
ERIC Educational Resources Information Center
Uz, Cigdem; Cagiltay, Kursat
2015-01-01
Digital games have become popular due to great technological improvements in recent years. They have been increasingly transformed from co-located experiences into multi-played, socially oriented platforms (Herodotou, 2009). Multi-User Online Games provide the opportunity to create a social environment for friendships and strengthen the…
A methodological, task-based approach to Procedure-Specific Simulations training.
Setty, Yaki; Salzman, Oren
2016-12-01
Procedure-Specific Simulations (PSS) are 3D realistic simulations that provide a platform to practice complete surgical procedures in a virtual-reality environment. While PSS have the potential to improve surgeons' proficiency, there are no existing standards or guidelines for PSS development in a structured manner. We employ a unique platform inspired by game design to develop virtual reality simulations in three dimensions of urethrovesical anastomosis during radical prostatectomy. 3D visualization is supported by a stereo vision, providing a fully realistic view of the simulation. The software can be executed for any robotic surgery platform. Specifically, we tested the simulation under windows environment on the RobotiX Mentor. Using urethrovesical anastomosis during radical prostatectomy simulation as a representative example, we present a task-based methodological approach to PSS training. The methodology provides tasks in increasing levels of difficulty from a novice level of basic anatomy identification, to an expert level that permits testing new surgical approaches. The modular methodology presented here can be easily extended to support more complex tasks. We foresee this methodology as a tool used to integrate PSS as a complementary training process for surgical procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; Henry, Michael J.; Burtner, IV, E. R.
The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile informationmore » platform. PNNL’s safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide “vision” for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.« less
Kahle, Kate; Sharon, Aviv J; Baram-Tsabari, Ayelet
2016-01-01
Although the scientific community increasingly recognizes that its communication with the public may shape civic engagement with science, few studies have characterized how this communication occurs online. Social media plays a growing role in this engagement, yet it is not known if or how different platforms support different types of engagement. This study sets out to explore how users engage with science communication items on different platforms of social media, and what are the characteristics of the items that tend to attract large numbers of user interactions. Here, user interactions with almost identical items on five of CERN's social media platforms were quantitatively compared over an eight-week period, including likes, comments, shares, click-throughs, and time spent on CERN's site. The most popular items were qualitatively analyzed for content features. Findings indicate that as audience size of a social media platform grows, the total rate of engagement with content tends to grow as well. However, per user, engagement tends to decline with audience size. Across all platforms, similar topics tend to consistently receive high engagement. In particular, awe-inspiring imagery tends to frequently attract high engagement across platforms, independent of newsworthiness. To our knowledge, this study provides the first cross-platform characterization of public engagement with science on social media. Findings, although focused on particle physics, have a multidisciplinary nature; they may serve to benchmark social media analytics for assessing science communication activities in various domains. Evidence-based suggestions for practitioners are also offered.
Baram-Tsabari, Ayelet
2016-01-01
Although the scientific community increasingly recognizes that its communication with the public may shape civic engagement with science, few studies have characterized how this communication occurs online. Social media plays a growing role in this engagement, yet it is not known if or how different platforms support different types of engagement. This study sets out to explore how users engage with science communication items on different platforms of social media, and what are the characteristics of the items that tend to attract large numbers of user interactions. Here, user interactions with almost identical items on five of CERN's social media platforms were quantitatively compared over an eight-week period, including likes, comments, shares, click-throughs, and time spent on CERN's site. The most popular items were qualitatively analyzed for content features. Findings indicate that as audience size of a social media platform grows, the total rate of engagement with content tends to grow as well. However, per user, engagement tends to decline with audience size. Across all platforms, similar topics tend to consistently receive high engagement. In particular, awe-inspiring imagery tends to frequently attract high engagement across platforms, independent of newsworthiness. To our knowledge, this study provides the first cross-platform characterization of public engagement with science on social media. Findings, although focused on particle physics, have a multidisciplinary nature; they may serve to benchmark social media analytics for assessing science communication activities in various domains. Evidence-based suggestions for practitioners are also offered. PMID:27232498
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.
2015-01-01
NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.
Small unmanned aircraft systems for remote sensing and Earth science research
NASA Astrophysics Data System (ADS)
Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken
2012-06-01
To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).
Geostationary platform systems concepts definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
The results of a geostationary platform concept analysis are summarized. Mission and payloads definition, concept selection, the requirements of an experimental platform, supporting research and technology, and the Space Transportation System interface requirements are addressed. It is concluded that platforms represent a logical extension of current trends toward larger, more complex, multifrequency satellites. Geostationary platforms offer significant cost savings compared to individual satellites, with the majority of these economies being realized with single Shuttle launched platforms. Further cost savings can be realized, however, by having larger platforms. Platforms accommodating communications equipment that operates at multiple frequencies and which provide larger scale frequency reuse through the use of large aperture multibeam antennas and onboard switching maximize the useful capacity of the orbital arc and frequency spectrum. Projections of market demand indicate that such conservation measures are clearly essential if orderly growth is to be provided for. In addition, it is pointed out that a NASA experimental platform is required to demonstrate the technologies necessary for operational geostationary platforms of the 1990's.
CROPPER: a metagene creator resource for cross-platform and cross-species compendium studies.
Paananen, Jussi; Storvik, Markus; Wong, Garry
2006-09-22
Current genomic research methods provide researchers with enormous amounts of data. Combining data from different high-throughput research technologies commonly available in biological databases can lead to novel findings and increase research efficiency. However, combining data from different heterogeneous sources is often a very arduous task. These sources can be different microarray technology platforms, genomic databases, or experiments performed on various species. Our aim was to develop a software program that could facilitate the combining of data from heterogeneous sources, and thus allow researchers to perform genomic cross-platform/cross-species studies and to use existing experimental data for compendium studies. We have developed a web-based software resource, called CROPPER that uses the latest genomic information concerning different data identifiers and orthologous genes from the Ensembl database. CROPPER can be used to combine genomic data from different heterogeneous sources, allowing researchers to perform cross-platform/cross-species compendium studies without the need for complex computational tools or the requirement of setting up one's own in-house database. We also present an example of a simple cross-platform/cross-species compendium study based on publicly available Parkinson's disease data derived from different sources. CROPPER is a user-friendly and freely available web-based software resource that can be successfully used for cross-species/cross-platform compendium studies.
An airborne robotic platform for mapping thermal structure in surface water bodies
NASA Astrophysics Data System (ADS)
Thompson, S. E.; Chung, M.; Detweiler, C.; Ore, J. P.
2015-12-01
The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally resolved observations of the thermal structure of lakes and rivers remains challenging. For relatively shallow water bodies, observations of water temperature from aerial platforms are attractive: they do not require shoreline access, they can be quickly and easily deployed and redeployed, facilitating repeated sampling, and they can rapidly move between measurement locations, allowing multiple measurements to be made during single flights. However, they are also subject to well-known limitations including payload, flight duration and operability, and their effectiveness as a mobile platform for thermal sensing is still poorly characterized. In this talk, I will introduce an aerial thermal sensing platform that enables water temperature measurements to be made and spatially located throughout a water column, and present preliminary results from initial field experiments comparing in-situ temperature observations to those made from the UAS platform. The results highlight the potential scalability of the platform to provide high-resolution 3D thermal mapping of a ~1 ha lake in 2-3 flights (circa 1 hour), sufficient to resolve diurnal variations. Operability constraints and key needs for further development are also identified.
SO-QT: Collaborative Tool to Project the Future Space Object Population
NASA Technical Reports Server (NTRS)
Stupl, Jan
2017-01-01
Earth orbit gets increasingly congested, a challenge to space operators, both in governments and industry. We present a web tool that provides: 1) data on todays and the historic space object environments, by aggregating object-specific tracking data; and 2) future trends through a collaboration platform to collect information on planed launches. The collaborative platform enables experts to pool and compare their data in order to generate future launch scenarios. The tool is intended to support decision makers and mission designers while they investigate future missions and scholars as they develop strategies for space traffic management.
Li, Pin-Lan; Zhang, Yang
2013-01-01
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where trans-membrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial–temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways. PMID:23563657
Importance of strategy in social media: getting the most out of your post
NASA Astrophysics Data System (ADS)
Bohon, W.; Sumy, D. F.
2016-12-01
Social media is playing an ever-increasing role in informal science education due to its broad and ubiquitous reach, low overhead costs and versatility. However, to fully capitalize on the educational potential and dissemination capabilities of social media platforms, science organizations with a social media presence must move forward with an effective strategy that clearly outlines their audience, goals, messaging, content and growth objectives. It is also imperative that organizations perform a regular, rigorous evaluation of social media platform performance and conduct user engagement surveys and that they utilize this information to improve online performance and engagement. Here, we examine the IRIS EPO Facebook and Twitter platforms before and after the adoption of a more formal and detailed social media strategy. Some of the most effective growth tools thus far have been the content posting schedule, content media type guidelines and periodic platform performance evaluation. We also examine the results of a user survey assessing the efficacy of the IRIS social media presence. In the 8 months since the implementation of the new, more rigorous social media strategy the IRIS Facebook page following has grown by more than 90% and the Twitter page following has increased by almost 75%. This is a significant increase in growth as compared to the preceding years, which corresponds to significant increase in reach (Figure 1). By implementing a defined strategy with clear goals, scientific organizations can fully harness the educational potential offered by social media networks. [Figure 1: Facebook provided metrics showing the reach of the IRIS EPO Facebook page between 7/21/2014 and 7/22/2016. Although there are spikes in post reach in 2015 corresponding to newsworthy earthquake events, a significant increase in sustained reach occurred beginning in Dec of 2105 when the IRIS social media strategy was implemented.
Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).
Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank
2017-01-01
The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.
An Innovative Technology to Support Independent Living: The Smarter Safer Homes Platform.
Karunanithi, Mohanraj; Zhang, Qing
2018-01-01
Australian population aged over 65 years is 14% (3.3 million) and this expected to increase to 21% by 2053 (8.3 million), of which 1.9% to 4.2% is attributed to Australians over 85 years. With increase in ageing, there is high prevalence in long-term health conditions and more likely multiple visits to the doctors or the hospitals, particularly when one's functional condition declines. This adds burden to the already stretched health system such as the overcrowding of emergency departments in hospitals. This is partly due to many ageing patients with high care needs occupying significant number of hospital beds because they are waiting for entry to the limited placements in residential care. To address this increase in ageing population and its impact in the society, the Australian government has funded aged care reforms for initiatives for older community stay at home longer. Recently, this was implemented through consumer directed age care reform. Advances in information and communication technologies, particularly in the advancement of lifestyle technologies and its increased use, show promise in the uptake of telehealth approach to support older people to live longer in their homes. In 2011, CSIRO took the initiative to a develop consumer designed innovative platform that would assist and support the older community in their functional ability and health for day to day living in their home environment. This platform was called the Smarter Safer Homes technology. The Smarter Safer Homes platform infers the Activities of Daily Living information from a passive sensor-enabled environment and correlates the information with home-based health monitoring measurements. The use of sensors enables the information to be captured in an unobtrusive manner. This information is then provided to the individual in the household through an iPad application while information can also be shared with formal and informal carers. The platform has undergone a few pilot studies to explore an objective and individualised approach to Activities of daily living based on an individual's profile and its applicability in multi-resident home setting in individual's in regional Queensland. Furthermore, the platform is being validated in a clinical study for its application in the aged care service in various geographical settings such as in urban and remote communities. This paper describes the platform, outcomes of pilot studies, and its future application.
VAAPA: a web platform for visualization and analysis of alternative polyadenylation.
Guan, Jinting; Fu, Jingyi; Wu, Mingcheng; Chen, Longteng; Ji, Guoli; Quinn Li, Qingshun; Wu, Xiaohui
2015-02-01
Polyadenylation [poly(A)] is an essential process during the maturation of most mRNAs in eukaryotes. Alternative polyadenylation (APA) as an important layer of gene expression regulation has been increasingly recognized in various species. Here, a web platform for visualization and analysis of alternative polyadenylation (VAAPA) was developed. This platform can visualize the distribution of poly(A) sites and poly(A) clusters of a gene or a section of a chromosome. It can also highlight genes with switched APA sites among different conditions. VAAPA is an easy-to-use web-based tool that provides functions of poly(A) site query, data uploading, downloading, and APA sites visualization. It was designed in a multi-tier architecture and developed based on Smart GWT (Google Web Toolkit) using Java as the development language. VAAPA will be a valuable addition to the community for the comprehensive study of APA, not only by making the high quality poly(A) site data more accessible, but also by providing users with numerous valuable functions for poly(A) site analysis and visualization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assuring the privacy and security of transmitting sensitive electronic health information.
Peng, Charlie; Kesarinath, Gautam; Brinks, Tom; Young, James; Groves, David
2009-11-14
The interchange of electronic health records between healthcare providers and public health organizations has become an increasingly desirable tool in reducing healthcare costs, improving healthcare quality, and protecting population health. Assuring privacy and security in nationwide sharing of Electronic Health Records (EHR) in an environment such as GRID has become a top challenge and concern. The Centers for Disease Control and Prevention's (CDC) and The Science Application International Corporation (SAIC) have jointly conducted a proof of concept study to find and build a common secure and reliable messaging platform (the SRM Platform) to handle this challenge. The SRM Platform is built on the open standards of OASIS, World Wide Web Consortium (W3C) web-services standards, and Web Services Interoperability (WS-I) specifications to provide the secure transport of sensitive EHR or electronic medical records (EMR). Transmitted data may be in any digital form including text, data, and binary files, such as images. This paper identifies the business use cases, architecture, test results, and new connectivity options for disparate health networks among PHIN, NHIN, Grid, and others.
Health Information Research Platform (HIReP)--an architecture pattern.
Schreiweis, Björn; Schneider, Gerd; Eichner, Theresia; Bergh, Björn; Heinze, Oliver
2014-01-01
Secondary use or single source is still far from routine in healthcare, although lots of data are available either structured or unstructured. As data are stored in multiple systems, using them for biomedical research is difficult. Clinical data warehouses already help overcoming this issue, but currently they are only used for certain parts of biomedical research. A comprehensive research platform based on a generic architecture pattern could increase the benefits of existing data warehouses for both patient care and research by meeting two objectives: serving as a so called single point-of-truth and acting as a mediator between them strengthening interaction and close collaboration. Another effect is to reduce boundaries for the implementation of data warehouses. Taking further settings into account the architecture of a clinical data warehouse supporting patient care and biomedical research needs to be integrated with biomaterial banks and other sources. This work provides a solution conceptualizing a comprehensive architecture pattern of a Health Information Research Platform (HIReP) derived from use cases of the patient care and biomedical research domain. It serves as single IT infrastructure providing solutions for any type of use case.
NASA Astrophysics Data System (ADS)
Bunus, Peter
Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.
Johnson, Tylor J; Gibbons, Jaimie L; Gu, Liping; Zhou, Ruanbao; Gibbons, William R
2016-11-01
The rapid increase in worldwide population coupled with the increasing demand for fossil fuels has led to an increased urgency to develop sustainable sources of energy and chemicals from renewable resources. Using microorganisms to produce high-value chemicals and next-generation biofuels is one sustainable option and is the focus of much current research. Cyanobacteria are ideal platform organisms for chemical and biofuel production because they can be genetically engineered to produce a broad range of products directly from CO 2 , H 2 O, and sunlight, and require minimal nutrient inputs. The purpose of this review is to provide an overview on advances that have been or could be made to improve strains of cyanobacteria for industrial purposes. First, the benefits of using cyanobacteria as a platform for chemical and biofuel production are discussed. Next, an overview of cyanobacterial strain improvements by genetic engineering is provided. Finally, mutagenesis techniques to improve the industrial potential of cyanobacteria are described. Along with providing an overview on various areas of research that are currently being investigated to improve the industrial potential of cyanobacteria, this review aims to elucidate potential targets for future research involving cyanobacteria as an industrial microorganism. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1357-1371, 2016. © 2016 American Institute of Chemical Engineers.
Toward Ubiquitous Communication Platform for Emergency Medical Care
NASA Astrophysics Data System (ADS)
Ishibashi, Kenichi; Morishima, Naoto; Kanbara, Masayuki; Sunahara, Hideki; Imanishi, Masami
Interaction between emergency medical technicians (EMTs) and doctors is essential in emergency medical care. Doctors require diverse information related to a patient to provide efficient aid. In 2005, we started the Ikoma119 project and have developed a ubiquitous communication platform for emergency medical care called Mobile ER. Our platform, which is based on wireless internet technology, has such desirable properties as low-cost, location-independent service, and ease of service introduction. We provide an overview of our platform and describe the services that we have developed. We also discuss the remaining issues to realize our platform's actual operation.
The Value of Video in Online Instruction
ERIC Educational Resources Information Center
Rudd, Denis P., II.; Rudd, Denis P.
2014-01-01
Online educational instruction has become more prevalent in American and international educational institutions and is increasingly the chosen format for many academic programs. The use of web conferencing, virtual classrooms, and computer-based training are becoming the common platform in which schools provide education in online teaching. This…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tranter, P.
Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.
DROP: Durable Reconnaissance and Observation Platform
NASA Technical Reports Server (NTRS)
Parness, Aaron; McKenzie, Clifford F.
2012-01-01
Robots have been a valuable tool for providing a remote presence in areas that are either inaccessible or too dangerous for humans. Having a robot with a high degree of adaptability becomes crucial during such events. The adaptability that comes from high mobility and high durability greatly increases the potential uses of a robot in these situations, and therefore greatly increases its usefulness to humans. DROP is a lightweight robot that addresses these challenges with the capability to survive large impacts, carry a usable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. The platform is crash-proof, allowing it to be deployed in ways including being dropped from an unmanned aerial vehicle or thrown from a large MSL-class (Mars Science Laboratory) rover.
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent; Meyer, Wieland
2017-04-01
The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. Copyright © 2017 American Society for Microbiology.
Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors
Daneault, Jean-François; Carignan, Benoit; Codère, Carl Éric; Sadikot, Abbas F.; Duval, Christian
2013-01-01
Introduction: Smart phones are becoming ubiquitous and their computing capabilities are ever increasing. Consequently, more attention is geared toward their potential use in research and medical settings. For instance, their built-in hardware can provide quantitative data for different movements. Therefore, the goal of the current study was to evaluate the capabilities of a standalone smart phone platform to characterize tremor. Results: Algorithms for tremor recording and online analysis can be implemented within a smart phone. The smart phone provides reliable time- and frequency-domain tremor characteristics. The smart phone can also provide medically relevant tremor assessments. Discussion: Smart phones have the potential to provide researchers and clinicians with quantitative short- and long-term tremor assessments that are currently not easily available. Methods: A smart phone application for tremor quantification and online analysis was developed. Then, smart phone results were compared to those obtained simultaneously with a laboratory accelerometer. Finally, results from the smart phone were compared to clinical tremor assessments. PMID:23346053
Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management
USDA-ARS?s Scientific Manuscript database
Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...
ERIC Educational Resources Information Center
Demirbilek, Muhammet
2015-01-01
Web 2.0 tools are becoming increasingly pervasive in higher education, and as a result, there is increasing interest in the use of online feedback activities. This study investigated students' actual experiences and perceptions using social media, Wiki and Facebook, tools to provide peer feedback on students' instructional material projects and to…
NASA Astrophysics Data System (ADS)
Tsiokos, Dimitris M.; Dabos, George; Ketzaki, Dimitra; Weeber, Jean-Claude; Markey, Laurent; Dereux, Alain; Giesecke, Anna Lena; Porschatis, Caroline; Chmielak, Bartos; Wahlbrink, Thorsten; Rochracher, Karl; Pleros, Nikos
2017-05-01
Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs. In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.
Implementation of a Big Data Accessing and Processing Platform for Medical Records in Cloud.
Yang, Chao-Tung; Liu, Jung-Chun; Chen, Shuo-Tsung; Lu, Hsin-Wen
2017-08-18
Big Data analysis has become a key factor of being innovative and competitive. Along with population growth worldwide and the trend aging of population in developed countries, the rate of the national medical care usage has been increasing. Due to the fact that individual medical data are usually scattered in different institutions and their data formats are varied, to integrate those data that continue increasing is challenging. In order to have scalable load capacity for these data platforms, we must build them in good platform architecture. Some issues must be considered in order to use the cloud computing to quickly integrate big medical data into database for easy analyzing, searching, and filtering big data to obtain valuable information.This work builds a cloud storage system with HBase of Hadoop for storing and analyzing big data of medical records and improves the performance of importing data into database. The data of medical records are stored in HBase database platform for big data analysis. This system performs distributed computing on medical records data processing through Hadoop MapReduce programming, and to provide functions, including keyword search, data filtering, and basic statistics for HBase database. This system uses the Put with the single-threaded method and the CompleteBulkload mechanism to import medical data. From the experimental results, we find that when the file size is less than 300MB, the Put with single-threaded method is used and when the file size is larger than 300MB, the CompleteBulkload mechanism is used to improve the performance of data import into database. This system provides a web interface that allows users to search data, filter out meaningful information through the web, and analyze and convert data in suitable forms that will be helpful for medical staff and institutions.
The Case for GEO Hosted SSA Payloads
NASA Astrophysics Data System (ADS)
Welsch, C.; Armand, B.; Repp, M.; Robinson, A.
2014-09-01
Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.
Regulation and policy working group
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
The potential environmental impact of offshore platform disposal can be illustrated by both the numbers of platforms and the complexity of their abandonment options. Some 7,000 platforms are in place worldwide. In the US, approximately a quarter of the platforms are more than 25 years old and in sight of their end of service. In addition, 22,000 miles of pipeline are located on the Outer Continental Shelf (OCS) in the United States. There are more offshore platforms in the U.S. Gulf of Mexico than in any other single area in the world. It is estimated that between October 1995 andmore » December 2000, approximately 665 of the nearly 3,800 existing structures will be removed. Couple this with the mammoth size, the vagaries of the ocean, and the levels of sometimes conflicting international and federal laws, and the magnitude of the challenge to protect the environment becomes clear. The Offshore International Newsletter (11/06/95) stated, {open_quotes}In three of the last four years, annual Gulf of Mexico platform removals have exceeded installations, a trend that will likely continue.{close_quotes} Between 100 and 150 platforms have been removed from the OCS each year for the past six or seven years. As increasing numbers of wells, pipelines, and platforms are decommissioned and disposed of, it is important that the relevant techniques, policies, and regulations be discussed and evaluated. The goal of this workshop is to facilitate and document this discussion in an open, objective, and inclusive way. Since U.S. practices and policies provide precedents for other countries, international participation is encouraged and anticipated.« less
Seaman, Jennifer B; Arnold, Robert M; Scheunemann, Leslie P; White, Douglas B
2017-06-01
The increased focus on patient and family-centered care in adult intensive care units (ICUs) has generated multiple platforms for clinician-family communication beyond traditional interdisciplinary family meetings (family meetings)-including family-centered rounds, bedside or telephone updates, and electronic family portals. Some clinicians and administrators are now using these platforms instead of conducting family meetings. For example, some institutions are moving toward using family-centered rounds as the main platform for clinician-family communication, and some physicians rely on brief daily updates to the family at the bedside or by phone, in lieu of family meetings. We argue that although each of these platforms is useful in some circumstances, there remains an important role for family meetings. We outline five goals of clinician-family communication-establishing trust, providing emotional support, conveying clinical information, understanding the patient as a person, and facilitating careful decision making-and we examine the extent to which various communication platforms are likely to achieve the goals. We argue that because no single platform can achieve all communication goals, an integrated strategy is needed. We present a model that integrates multiple communication platforms to effectively and efficiently support families across the arc of an ICU stay. Our framework employs bedside/telephone conversations and family-centered rounds throughout the admission to address high informational needs, along with well-timed family meetings that attend to families' emotions as well as patients' values and goals. This flexible model uses various communication platforms to achieve consistent, efficient communication throughout the ICU stay.
Arnold, Robert M.; Scheunemann, Leslie P.; White, Douglas B.
2017-01-01
The increased focus on patient and family-centered care in adult intensive care units (ICUs) has generated multiple platforms for clinician–family communication beyond traditional interdisciplinary family meetings (family meetings)—including family-centered rounds, bedside or telephone updates, and electronic family portals. Some clinicians and administrators are now using these platforms instead of conducting family meetings. For example, some institutions are moving toward using family-centered rounds as the main platform for clinician–family communication, and some physicians rely on brief daily updates to the family at the bedside or by phone, in lieu of family meetings. We argue that although each of these platforms is useful in some circumstances, there remains an important role for family meetings. We outline five goals of clinician–family communication—establishing trust, providing emotional support, conveying clinical information, understanding the patient as a person, and facilitating careful decision making—and we examine the extent to which various communication platforms are likely to achieve the goals. We argue that because no single platform can achieve all communication goals, an integrated strategy is needed. We present a model that integrates multiple communication platforms to effectively and efficiently support families across the arc of an ICU stay. Our framework employs bedside/telephone conversations and family-centered rounds throughout the admission to address high informational needs, along with well-timed family meetings that attend to families’ emotions as well as patients’ values and goals. This flexible model uses various communication platforms to achieve consistent, efficient communication throughout the ICU stay. PMID:28282227
Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform
NASA Technical Reports Server (NTRS)
Roche, Rigoberto
2016-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The Glenn Research Center (GRC) team made a software-defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development on an STRS compliant platform to support future space communication systems for advanced exploration missions. Validated STRS compliant applications provided tested code with extensive documentation to potentially reduce risk, cost and efforts in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, the sample waveform, and wrapper development efforts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation SDRs for advance exploration missions.
Claborn, Kasey; Becker, Sara; Ramsey, Susan; Rich, Josiah; Friedmann, Peter D
2017-03-14
People living with HIV (PLWH) with a substance use disorder (SUD) tend to receive inadequate medical care in part because of a siloed healthcare system in which HIV and substance use services are delivered separately. Ideal treatment requires an interdisciplinary, team-based coordinated care approach, but many structural and systemic barriers impede the integration of HIV and SUD services. The current protocol describes the development and preliminary evaluation of a care coordination intervention (CCI), consisting of a tablet-based mobile platform for HIV and SUD treatment providers, an interagency communication protocol, and a training protocol. We hypothesize that HIV and SUD treatment providers will find the CCI to be acceptable, and that after receipt of the CCI, providers will: exhibit higher retention in dual care among patients, report increased frequency and quality of communication, and report increased rates of relational coordination. A three phase approach is used to refine and evaluate the CCI. Phase 1 consists of in-depth qualitative interviews with 8 key stakeholders as well as clinical audits of participating HIV and SUD treatment agencies. Phase 2 contains functionality testing of the mobile platform with frontline HIV and SUD treatment providers, followed by refinement of the CCI. Phase 3 consists of a pre-, post-test trial with 30 SUD and 30 HIV treatment providers. Data will be collected at the provider, organization, and patient levels. Providers will complete assessments at baseline, immediately post-training, and at 1-, 3-, and 6-months post-training. Organizational data will be collected at baseline, 1-, 3-, and 6-months post training, while patient data will be collected at baseline and 6-months post training. This study will develop and evaluate a CCI consisting of a tablet-based mobile platform for treatment providers, an interagency communication protocol, and a training protocol as a means of improving the integration of care for PLWH who have a SUD. Results have the potential to advance the field by bridging gaps in a fragmented healthcare system, and improving treatment efficiency, work flow, and communication among interdisciplinary providers from different treatment settings. NCT02906215.
Ultrasonic Ranging System With Increased Resolution
NASA Technical Reports Server (NTRS)
Meyer, William E.; Johnson, William G.
1987-01-01
Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.
Build platform that provides mechanical engagement with additive manufacturing prints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Amelia M.
A build platform and methods of fabricating an article with such a platform in an extrusion-type additive manufacturing machine are provided. A platform body 202 includes features 204 that extend outward from the body 202. The features 204 define protrusive areas 206 and recessive areas 208 that cooperate to mechanically engage the extruded material that forms the initial layers 220 of an article when the article is being fabricated by a nozzle 12 of the additive manufacturing machine 10.
Send Student Interest Skyward! Soaring Teaches Aeronautics Basics
ERIC Educational Resources Information Center
Scarcella, Joe; Wallace, Art
2011-01-01
Gliders and sailplanes provide a great launching platform for teaching about technology and scientific principles. Soaring is technological innovation in action, using earth's natural resources for energy and endurance during flight. This article focuses on the basics of soaring, which educators can use to increase excitement and interest in the…
Send Student Interest Skyward!: Soaring Teaches Aeronautics Basics
ERIC Educational Resources Information Center
Scarcella, Joe; Wallace, Art
2011-01-01
Gliders and sailplanes provide a great launching platform for teaching about technology and scientific principles. Soaring is technological innovation in action, using earth's natural resources for energy and endurance during flight. This article focuses on the basics of soaring, which educators can use to increase excitement and interest in the…
A low-cost dual-camera imaging system for aerial applicators
USDA-ARS?s Scientific Manuscript database
Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
Industrial-Like Vehicle Platforms for Postgraduate Laboratory Courses on Robotics
ERIC Educational Resources Information Center
Navarro, P. J.; Fernandez, C.; Sanchez, P.
2013-01-01
The interdisciplinary nature of robotics allows mobile robots to be used successfully in a broad range of courses at the postgraduate level and in Ph.D. research. Practical industrial-like mobile robotic demonstrations encourage students and increase their motivation by providing them with learning benefits not achieved with traditional…
An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers
USDA-ARS?s Scientific Manuscript database
Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a SNP-based genotyping platform was developed a...
Data management in the mission data system
NASA Technical Reports Server (NTRS)
Wagner, David A.
2005-01-01
As spacecraft evolve from simple embedded devices to become more sophisticated computing platforms with complex behaviors it is increasingly necessary to model and manage the flow of data, and to provide uniform models for managing data that promote adaptability, yet pay heed to the physical limitations of the embedded and space environments.
Bioelectrochemical system platform for sustainable environmental remediation and energy generation.
Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason
2015-01-01
The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. Copyright © 2015 Elsevier Inc. All rights reserved.
Demand for online platforms for medical word-of-mouth.
Lin, Shih Han; Lin, Tom M Y
2018-05-01
The choice of medical services affects an individual's treatment and health. However, few studies have focused on medical electronic word-of-mouth (eWOM), which has the greatest impact on such choices. This study was performed to explore the need for and general public's attitude toward medical eWOM and provide a reference for government, media, and medical practitioners. In this study, 84% of the respondents had experience using online evaluation platforms to search for eWOM, and those who were satisfied with the online evaluation platforms substantially outnumbered those who were dissatisfied. The respondents generally believed that there is a need for physician evaluation platforms, although a difference remained between respondents who needed the online evaluation platforms (72.0%) and were willing to reference them (72.0%) and those who trusted them (46.5%) and were willing to provide their opinions (55.0%). These results could signify that despite the public's need, the public remains doubtful of the information provided by these online evaluation platforms.
Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines. PMID:26184194
Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming
2015-07-08
Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a '3D well' was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines.
Ali, Yousuf O; Bradley, Gillian; Lu, Hui-Chen
2017-03-07
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer's, Huntington's, Parkinson's diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Ali, Yousuf O.; Bradley, Gillian; Lu, Hui-Chen
2017-01-01
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons. PMID:28266613
[Online gaming. Potential risk and prevention programs].
Malischnig, Doris
2014-12-01
Online gaming is more and more common and increasingly accessible. Due to a lack of social control the participation could be a potential risk for certain customers. The given article focuses on prevention measures that are provided by the Austrian online gaming operator, the Austrian Lotteries, provider of the online gaming platform win2day, in the light of the specifics of Internet gaming in order to avoid problems with gaming.
Development of cloud-operating platform for detention facility design
NASA Astrophysics Data System (ADS)
Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping
2017-04-01
In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.
Goldsztein, Guillermo H.
2016-01-01
Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke’s law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them. PMID:27304857
Goldsztein, Guillermo H
2016-01-01
Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke's law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them.
Researcher and Author Profiles: Opportunities, Advantages, and Limitations
2017-01-01
Currently available online profiling platforms offer various services for researchers and authors. Opening an individual account and filling it with scholarly contents increase visibility of research output and boost its impact. This article overviews some of the widely used and emerging profiling platforms, highlighting their tools for sharing scholarly items, crediting individuals, and facilitating networking. Global bibliographic databases and search platforms, such as Scopus, Web of Science, PubMed, and Google Scholar, are widely used for profiling authors with indexed publications. Scholarly networking websites, such as ResearchGate and Academia.edu, provide indispensable services for researchers poorly visible elsewhere on the Internet. Several specialized platforms are designed to offer profiling along with their main functionalities, such as reference management and archiving. The Open Researcher and Contributor Identification (ORCID) project has offered a solution to the author name disambiguation. It has been integrated with numerous bibliographic databases, platforms, and manuscript submission systems to help research managers and journal editors select and credit the best reviewers, and other scholarly contributors. Individuals with verifiable reviewer and editorial accomplishments are also covered by Publons, which is an increasingly recognized service for publicizing and awarding reviewer comments. Currently available profiling formats have numerous advantages and some limitations. The advantages are related to their openness and chances of boosting the researcher impact. Some of the profiling websites are complementary to each other. The underutilization of various profiling websites and their inappropriate uses for promotion of ‘predatory’ journals are among reported limitations. A combined approach to the profiling systems is advocated in this article. PMID:28960025
Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury
van der Merwe, Yolandi
2015-01-01
Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910
Knoerl, Robert; Dudley, William N; Smith, Gloria; Bridges, Celia; Kanzawa-Lee, Grace; Lavoie Smith, Ellen M
2017-04-01
Because numerous barriers hinder the assessment and management of chemotherapy-induced peripheral neuropathy in clinical practice, the Carevive Care Planning System, a novel Web-based platform, was developed to address these barriers. It provides patients an opportunity to report their symptoms before their clinic visit and generates customizable care plans composed of evidence-based management strategies. The purpose of this study was to evaluate patient and provider perspectives of feasibility, usability, acceptability, and satisfaction with the Carevive platform. We used a single-arm, pretest/posttest, prospective design and recruited 25 women with breast cancer who were receiving neurotoxic chemotherapy and six advanced practice providers from an academic hospital. At three consecutive clinical visits, patients reported their neuropathy symptoms on a tablet via the Carevive system. The Diffusion of Innovations Theory served as an overarching evaluation framework. The Carevive platform was feasible to use. However, patients had higher ratings of usability, acceptability, and satisfaction with the platform than did the providers, who disliked the amount of time required to use the platform and had difficulty logging into Carevive. If issues regarding provider dissatisfaction can be addressed, the Carevive platform may aid in the screening of neuropathy symptoms and facilitate the use of evidence-based management strategies.
iMetaLab 1.0: A web platform for metaproteomics data analysis.
Liao, Bo; Ning, Zhibin; Cheng, Kai; Zhang, Xu; Li, Leyuan; Mayne, Janice; Figeys, Daniel
2018-06-15
The human gut microbiota, a complex, dynamic and biodiverse community, has been increasingly shown to influence many aspects of health and disease. Metaproteomic analysis has proven to be a powerful approach to study the functionality of the microbiota. However, the processing and analyses of metaproteomic mass spectrometry (MS) data remains a daunting task in metaproteomics data analysis. We developed iMetaLab, a web based platform to provide a user-friendly and comprehensive data analysis pipeline with a focus on lowering the technical barrier for metaproteomics data analysis. iMetaLab is freely available through at http://imetalab.ca. Supplementary data are available at Bioinformatics online.
Methylxanthine Drug Monitoring with Wearable Sweat Sensors.
Tai, Li-Chia; Gao, Wei; Chao, Minghan; Bariya, Mallika; Ngo, Quynh P; Shahpar, Ziba; Nyein, Hnin Y Y; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Wu, Eric; Fahad, Hossain M; Lien, Der-Hsien; Ota, Hiroki; Cho, Gyoujin; Javey, Ali
2018-06-01
Drug monitoring plays crucial roles in doping control and precision medicine. It helps physicians tailor drug dosage for optimal benefits, track patients' compliance to prescriptions, and understand the complex pharmacokinetics of drugs. Conventional drug tests rely on invasive blood draws. While urine and sweat are attractive alternative biofluids, the state-of-the-art methods require separate sample collection and processing steps and fail to provide real-time information. Here, a wearable platform equipped with an electrochemical differential pulse voltammetry sensing module for drug monitoring is presented. A methylxanthine drug, caffeine, is selected to demonstrate the platform's functionalities. Sweat caffeine levels are monitored under various conditions, such as drug doses and measurement time after drug intake. Elevated sweat caffeine levels upon increasing dosage and confirmable caffeine physiological trends are observed. This work leverages a wearable sweat sensing platform toward noninvasive and continuous point-of-care drug monitoring and management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms
Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C.; Periasamy, Vengadesh
2014-01-01
The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms.
Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C; Periasamy, Vengadesh
2014-12-22
The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, C.; Evans, J.; Hom, W.
1998-09-01
Nine-year (1986--1995) records of barium (Ba) concentrations in surficial, subsurface, and suspended sediments near offshore oil and gas platforms in the Santa Maria Basin, California, USA, were analyzed to evaluate temporal trends related to drilling activities. These trends provide important information on the long-term effects of drilling discharges on geochemical conditions. Drilling during the 1986 through 1989 (phase II) monitoring period resulted in significant changes in Ba concentrations in suspended particles and surficial sediments, whereas the relatively shorter 1993 through 1994 (phase III) drilling operations resulted in only minor increases in Ba concentrations in suspended sediments. Residual excess Ba wasmore » present in some sediments within 500 m of the platforms at concentrations up to an order of magnitude above background. These elevated levels probably were associated with cuttings particles deposited near the base of the platforms. Calculated excess Ba in sediments within 500 m of the platforms represented 6 to 11% of the total Ba discharged during the two drilling periods.« less
Assembly Platform For Use In Outer Space
NASA Technical Reports Server (NTRS)
Rao, Niranjan S.; Buddington, Patricia A.
1995-01-01
Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.
Wang, Dongwen
2017-01-01
We analyzed four interactive case simulation tools (ICSTs) from a statewide online clinical education program. Results have shown that ICSTs are increasingly used by HIV healthcare providers. Smart phone has become the primary usage platform for specific ICSTs. Usage patterns depend on particular ICST modules, usage stages, and use contexts. Future design of ICSTs should consider these usage patterns for more effective dissemination of clinical evidence to healthcare providers.
Smoothing Data Friction through building Service Oriented Data Platforms
NASA Astrophysics Data System (ADS)
Wyborn, L. A.; Richards, C. J.; Evans, B. J. K.; Wang, J.; Druken, K. A.
2017-12-01
Data Friction has been commonly defined as the costs in time, energy and attention required to simply collect, check, store, move, receive, and access data. On average, researchers spend a significant fraction of their time finding the data for their research project and then reformatting it so that it can be used by the software application of their choice. There is an increasing role for both data repositories and software to be modernised to help reduce data friction in ways that support the better use of the data. Many generic data repositories simply accept data in the format as supplied: the key check is that the data have sufficient metadata to enable discovery and download. Few generic repositories have both the expertise and infrastructure to support the multiple domain specific requirements that facilitate the increasing need for integration and reusability. In contrast, major science domain-focused repositories are increasingly able to implement and enforce community endorsed best practices and guidelines that ensure reusability and harmonization of data for use within the community by offering semi-automated QC workflows to improve quality of submitted data. The most advanced of these science repositories now operate as service-oriented data platforms that extend the use of data across domain silos and increasingly provide server-side programmatically-enabled access to data via network protocols and community standard APIs. To provide this, more rigorous QA/QC procedures are needed to validate data against standards and community software and tools. This ensures that the data can be accessed in expected ways and also demonstrates that the data works across different (non-domain specific) packages, tools and programming languages deployed by the various user communities. In Australia, the National Computational Infrastructure (NCI) has created such a service-oriented data platform which is demonstrating how this approach can reduce data friction, servicing both individual domains as well as facilitating cross-domain collaboration. The approach has required an increase in effort for the repository to provide the additional expertise, so as to enable a better capability and efficient system which ultimately saves time by the individual researcher.
Healthcare in the Pocket: Mapping the Space of Mobile-Phone Health Interventions
Klasnja, Predrag; Pratt, Wanda
2011-01-01
Mobile phones are becoming an increasingly important platform for the delivery of health interventions. In recent years, researchers have used mobile phones as tools for encouraging physical activity and healthy diets, for symptom monitoring in asthma and heart disease, for sending patients reminders about upcoming appointments, for supporting smoking cessation, and for a range of other health problems. This paper provides an overview of this rapidly growing body of work. We describe the features of mobile phones that make them a particularly promising platform for health interventions, and we identify five basic intervention strategies that have been used in mobile-phone health applications across different health conditions. Finally, we outline the directions for future research that could increase our understanding of functional and design requirements for the development of highly effective mobile-phone health interventions. PMID:21925288
``Astrophysique sur Mesure'', E-learning in Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Mosser, Benoît; Delsanti, Audrey; Guillaume, Damien; Balança, Christian; Balkowski, Chantal
2011-06-01
``Astrophysique sur Mesure'' (astrophysics made-to-measure) is a set of e-learning programmes started 4 years ago at the Paris Observatory. In order to deliver attractive and efficient programmes, we have added many multimedia tools to usual lectures: animations, Java applets. The programmes are presented on two different platforms. The first one offers the content of all the lectures in free access. A second platform with restricted access is provided to registered students taking part in the e-learning program and benefiting from the help of tutors. The development of these programs helps to increase the sphere of influence of astronomy taught at the Paris Observatory, hence to increase the presence of astronomy in various degree courses. Instead of teaching classical astronomy lectures to a happy few, we can bring astronomy and astrophysics to a wider audience.
Application of online measures to monitor and evaluate multiplatform fusion performance
NASA Astrophysics Data System (ADS)
Stubberud, Stephen C.; Kowalski, Charlene; Klamer, Dale M.
1999-07-01
A primary concern of multiplatform data fusion is assessing the quality and utility of data shared among platforms. Constraints such as platform and sensor capability and task load necessitate development of an on-line system that computes a metric to determine which other platform can provide the best data for processing. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. Entropy measures quality of processed information such as localization, classification, and ambiguity in measurement-to-track association. Lower entropy scores imply less uncertainty about a particular target. When new information is provided, we compuete the level of improvement a particular track obtains from one measurement to another. The measure permits us to evaluate the utility of the new information. We couple entropy with intelligent agents that provide two main data gathering functions: estimation of another platform's performance and evaluation of the new measurement data's quality. Both functions result from the entropy metric. The intelligent agent on a platform makes an estimate of another platform's measurement and provides it to its own fusion system, which can then incorporate it, for a particular target. A resulting entropy measure is then calculated and returned to its own agent. From this metric, the agent determines a perceived value of the offboard platform's measurement. If the value is satisfactory, the agent requests the measurement from the other platform, usually by interacting with the other platform's agent. Once the actual measurement is received, again entropy is computed and the agent assesses its estimation process and refines it accordingly.
Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform
NASA Technical Reports Server (NTRS)
Roche, Rigoberto J.; Shalkhauser, Mary Jo; Hickey, Joseph P.; Briones, Janette C.
2016-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The NASA Glenn Research Center (GRC) team made a software defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development onto an STRS compliant platform to support future space communication systems for advanced exploration missions. The use of validated STRS compliant applications provides tested code with extensive documentation to potentially reduce risk, cost and e ort in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, and the test waveform and wrapper development e orts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation flight system SDRs for advanced exploration missions.
Thomas, David G.
1976-01-01
The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.
A microfabricated platform to form three-dimensional toroidal multicellular aggregate.
Masuda, Taisuke; Takei, Natsuki; Nakano, Takuma; Anada, Takahisa; Suzuki, Osamu; Arai, Fumihito
2012-12-01
Techniques that allow cells to self-assemble into three-dimensional (3D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular in fields such as stem cell research, tissue engineering, and cancer biology. Appropriate simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. We have developed a unique multicellular aggregate formation platform that utilizes a maskless gray-scale photolithography. The cellular aggregate formed using this platform has a toroidal-like geometry and includes a micro lumen that facilitates the supply of oxygen and growth factors and the expulsion of waste products. As a result, this platform was capable of rapidly producing hundreds of multicellular aggregates at a time, and of regulating the diameter of aggregates with complex design. These toroidal multicellular aggregates can grow as long-term culture. In addition, the micro lumen can be used as a continuous channel and for the insertion of a vascular system or a nerve system into the assembled tissue. These platform characteristics highlight its potential to be used in a wide variety of applications, e.g. as a bioactuator, as a micro-machine component or in drug screening and tissue engineering.
SMS-Based Learning in Tertiary Education: Achievement and Attitudinal Outcomes
ERIC Educational Resources Information Center
Katz, Yaacov J.
2013-01-01
SMS delivery platforms are being increasingly used at the university level to enhance student achievement as well as traits and attitudes related to the learning process. SMS delivery provides access to learning materials without being limited by space or time and sophisticated technological advances in SMS delivery have led to enhanced learner…
Integrated Approach to User Account Management
NASA Technical Reports Server (NTRS)
Kesselman, Glenn; Smith, William
2007-01-01
IT environments consist of both Windows and other platforms. Providing user account management for this model has become increasingly diffi cult. If Microsoft#s Active Directory could be enhanced to extend a W indows identity for authentication services for Unix, Linux, Java and Macintosh systems, then an integrated approach to user account manag ement could be realized.
ERIC Educational Resources Information Center
Palilonis, Jennifer; Butler, Darrell
2015-01-01
The increasing adoption of mobile platforms and digital textbooks in university classrooms continues to have a profound impact on higher education. Advocates believe that providing students digital textbooks with built-in annotation features and interactive study tools will improve learning by facilitating active reading, a task essential to…
ERIC Educational Resources Information Center
Chang, Ray I.; Hung, Yu Hsin; Lin, Chun Fu
2015-01-01
With the rapid development of web techniques, information and communication technology is being increasingly used in curricula, and learning portfolios can be automatically retrieved and maintained as learners interact through e-learning platforms. Further, massive open online courses (MOOCs), which apply such technology to provide open access to…
A Classroom on the Mall: Indigenous Women and the Culture of Development.
ERIC Educational Resources Information Center
Farmelo, Martha
1995-01-01
When rural women do not participate in relevant decision making, development projects risk diminished effectiveness and may increase already onerous workloads. Consisting of 139 Mapuche women textile artisans in Chile, the Casa de la Mujer Mapuche provides its members with income, role models, and a platform to express women's needs and…
Facilitating Student Success in Introductory Chemistry with Feedback in an Online Platform
ERIC Educational Resources Information Center
Van Horne, Sam; Curran, Maura; Smith, Anna; VanBuren, John; Zahrieh, David; Larsen, Russell; Miller, Ross
2018-01-01
Instructional technologists and faculty in post-secondary institutions have increasingly adopted learning analytics interventions such as dashboards that provide real-time feedback to students to support student' ability to regulate their learning. But analyses of the effectiveness of such interventions can be confounded by measures of students'…
Using Digital Media to Promote Kidney Disease Education
Goldstein, Karen; Briggs, Michael; Oleynik, Veronica; Cullen, Mac; Jones, Jewel; Newman, Eileen
2013-01-01
Healthcare providers and patients increasingly turn to the Internet—websites as well as social media platforms—for health-related information and support. Informed by research on audience behaviors and preferences related to digital health information, the National Kidney Disease Education Program (NKDEP) developed a comprehensive and user-friendly digital ecosystem featuring content and platforms relevant for each audience. NKDEP's analysis of website metrics and social media conversation mapping related to chronic kidney disease revealed gaps and opportunities, informing the development of a digital strategy to position NKDEP as a trustworthy digital source for evidence-based kidney disease information. NKDEP launched a redesigned website (www.nkdep.nih.gov) with enhanced content for multiple audiences as well as a complementary social media presence on Twitter and Facebook, serving to drive traffic to the website as well as actively engage target audiences in conversations about kidney disease. The results included improved website metrics and increasing social media engagement among consumers and healthcare providers. NKDEP will continue to monitor trends, explore new directions, and work to improve communication across digital platforms. PMID:23809289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan
With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less
Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan; ...
2018-01-01
With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less
Rasheed, P Abdul; Sandhyarani, N
2017-11-15
Development of a sensitive, specific and cost-effective DNA detection method is motivated by increasing demand for the early stage diagnosis of genetic diseases. Recent developments in the design and fabrication of efficient sensor platforms based on nanostructures make the highly sensitive sensors which could indicate very low detection limit to the level of few molecules, a realistic possibility. Electrochemical detection methods are widely used in DNA diagnostics as it provide simple, accurate and inexpensive platform for DNA detection. In addition, the electrochemical DNA sensors provide direct electronic signal without the use of expensive signal transduction equipment and facilitates the immobilization of single stranded DNA (ssDNA) probe sequences on a wide variety of electrode substrates. It has been found that a range of nanomaterials such as metal nanoparticles (MNPs), carbon based nanomaterials, quantum dots (QDs), magnetic nanoparticles and polymeric NPs have been introduced in the sensor design to enhance the sensing performance of electrochemical DNA sensor. In this review, we discuss recent progress in the design and fabrication of efficient electrochemical genosensors based on carbon nanostructures such as carbon nanotubes, graphene, graphene oxide and nanodiamonds. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Guanghui; Tan, Jie; Tang, Minghui; Zhang, Changbin; Zhang, Dongying; Ji, Wenbin; Chen, Junhao; Ho, Ho-Pui; Zhang, Xuping
2018-03-16
Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform. With the help of Euler force, our platform allows free switching of both left and right states based on a rather simple mechanical structure. The periodical switching of state would provide a "clock" signal for a sequence of droplet binary logic operations. With the binary state platform and the "clock" signal, we can accurately handle the droplet separately in each time step with a maximum main frequency of about 10 S s-1 (switching per second). Apart from droplet manipulations such as droplet generation and metering, we also demonstrate a series of droplet logic operations, such as binary valving, droplet routing and digital addressable droplet storage. Furthermore, complex bioassays such as the Bradford assay and DNA purification assay are demonstrated on a binary platform, which is totally impossible for a traditional LOAD system. Our binary platform largely improves the capability for logic operation on the LOAD platform, and it is a simple and promising approach for microfluidic lab-on-a-disc large-scale integration.
Empey, Philip E; Stevenson, James M; Tuteja, Sony; Weitzel, Kristin W; Angiolillo, Dominick J; Beitelshees, Amber L; Coons, James C; Duarte, Julio D; Franchi, Francesco; Jeng, Linda J B; Johnson, Julie A; Kreutz, Rolf P; Limdi, Nita A; Maloney, Kristin A; Owusu Obeng, Aniwaa; Peterson, Josh F; Petry, Natasha; Pratt, Victoria M; Rollini, Fabiana; Scott, Stuart A; Skaar, Todd C; Vesely, Mark R; Stouffer, George A; Wilke, Russell A; Cavallari, Larisa H; Lee, Craig R
2017-12-26
CYP2C19 genotype-guided antiplatelet therapy following percutaneous coronary intervention is increasingly implemented in clinical practice. However, challenges such as selecting a testing platform, communicating test results, building clinical decision support processes, providing patient and provider education, and integrating methods to support the translation of emerging evidence to clinical practice are barriers to broad adoption. In this report, we compare and contrast implementation strategies of 12 early adopters, describing solutions to common problems and initial performance metrics for each program. Key differences between programs included the test result turnaround time and timing of therapy changes, which are both related to the CYP2C19 testing model and platform used. Sites reported the need for new informatics infrastructure, expert clinicians such as pharmacists to interpret results, physician champions, and ongoing education. Consensus lessons learned are presented to provide a path forward for those seeking to implement similar clinical pharmacogenomics programs within their institutions. © 2018, The American Society for Clinical Pharmacology and Therapeutics.
SATORI: a system for ontology-guided visual exploration of biomedical data repositories.
Lekschas, Fritz; Gehlenborg, Nils
2018-04-01
The ever-increasing number of biomedical datasets provides tremendous opportunities for re-use but current data repositories provide limited means of exploration apart from text-based search. Ontological metadata annotations provide context by semantically relating datasets. Visualizing this rich network of relationships can improve the explorability of large data repositories and help researchers find datasets of interest. We developed SATORI-an integrative search and visual exploration interface for the exploration of biomedical data repositories. The design is informed by a requirements analysis through a series of semi-structured interviews. We evaluated the implementation of SATORI in a field study on a real-world data collection. SATORI enables researchers to seamlessly search, browse and semantically query data repositories via two visualizations that are highly interconnected with a powerful search interface. SATORI is an open-source web application, which is freely available at http://satori.refinery-platform.org and integrated into the Refinery Platform. nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online.
Concurrent Flow Lanes - Phase II
DOT National Transportation Integrated Search
2009-04-17
This report provides the findings from a research effort designed to ascertain whether or not a chosen simulation software platform, the VISSIM micro-simulation platform, provides a suitable environment for modeling and analyzing traffic operations, ...
A survey on platforms for big data analytics.
Singh, Dilpreet; Reddy, Chandan K
The primary purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data analytics. This paper surveys different hardware platforms available for big data analytics and assesses the advantages and drawbacks of each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, real-time processing, data size supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within each of these platforms is also discussed along with their strengths and drawbacks. Some of the critical characteristics described here can potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs. Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six characteristics that are critical for the algorithms of big data analytics. In order to provide more insights into the effectiveness of each of the platform in the context of big data analytics, specific implementation level details of the widely used k-means clustering algorithm on various platforms are also described in the form pseudocode.
Gamification and Multimedia for Medical Education: A Landscape Review.
McCoy, Lise; Lewis, Joy H; Dalton, David
2016-01-01
Medical education is rapidly evolving. Students enter medical school with a high level of technological literacy and an expectation for instructional variety in the curriculum. In response, many medical schools now incorporate technology-enhanced active learning and multimedia education applications. Education games, medical mobile applications, and virtual patient simulations are together termed gamified training platforms. To review available literature for the benefits of using gamified training platforms for medical education (both preclinical and clinical) and training. Also, to identify platforms suitable for these purposes with links to multimedia content. Peer-reviewed literature, commercially published media, and grey literature were searched to compile an archive of recently published scientific evaluations of gamified training platforms for medical education. Specific educational games, mobile applications, and virtual simulations useful for preclinical and clinical training were identified and categorized. Available evidence was summarized as it related to potential educational advantages of the identified platforms for medical education. Overall, improved learning outcomes have been demonstrated with virtual patient simulations. Games have the potential to promote learning, increase engagement, allow for real-word application, and enhance collaboration. They can also provide opportunities for risk-free clinical decision making, distance training, learning analytics, and swift feedback. A total of 5 electronic games and 4 mobile applications were identified for preclinical training, and 5 electronic games, 10 mobile applications, and 12 virtual patient simulation tools were identified for clinical training. Nine additional gamified, virtual environment training tools not commercially available were also identified. Many published studies suggest possible benefits from using gamified media in medical curriculum. This is a rapidly growing field. More research is required to rigorously evaluate the specific educational benefits of these interventions. This archive of hyperlinked tools can be used as a resource for all levels of medical trainees, providers, and educators.
Martin, Erika G; Law, Jennie; Ran, Weijia; Helbig, Natalie; Birkhead, Guthrie S
Government datasets are newly available on open data platforms that are publicly accessible, available in nonproprietary formats, free of charge, and with unlimited use and distribution rights. They provide opportunities for health research, but their quality and usability are unknown. To describe available open health data, identify whether data are presented in a way that is aligned with best practices and usable for researchers, and examine differences across platforms. Two reviewers systematically reviewed a random sample of data offerings on NYC OpenData (New York City, all offerings, n = 37), Health Data NY (New York State, 25% sample, n = 71), and HealthData.gov (US Department of Health and Human Services, 5% sample, n = 75), using a standard coding guide. Three open health data platforms at the federal, New York State, and New York City levels. Data characteristics from the coding guide were aggregated into summary indices for intrinsic data quality, contextual data quality, adherence to the Dublin Core metadata standards, and the 5-star open data deployment scheme. One quarter of the offerings were structured datasets; other presentation styles included charts (14.7%), documents describing data (12.0%), maps (10.9%), and query tools (7.7%). Health Data NY had higher intrinsic data quality (P < .001), contextual data quality (P < .001), and Dublin Core metadata standards adherence (P < .001). All met basic "web availability" open data standards; fewer met higher standards of "hyperlinked to other data." Although all platforms need improvement, they already provide readily available data for health research. Sustained effort on improving open data websites and metadata is necessary for ensuring researchers use these data, thereby increasing their research value.
Shrime, Mark G.; Sekidde, Serufusa; Linden, Allison; Cohen, Jessica L.; Weinstein, Milton C.; Salomon, Joshua A.
2016-01-01
Background The recently adopted Sustainable Development Goals call for the end of poverty and the equitable provision of healthcare. These goals are often at odds, however: health seeking can lead to catastrophic spending, an outcome for which cancer patients and the poor in resource-limited settings are at particularly high risk. How various health policies affect the additional aims of financial wellbeing and equity is poorly understood. This paper evaluates the health, financial, and equity impacts of governmental and charitable policies for surgical oncology in a resource-limited setting. Methods Three charitable platforms for surgical oncology delivery in Uganda were compared to six governmental policies aimed at improving healthcare access. An extended cost-effectiveness analysis using an agent-based simulation model examined the numbers of lives saved, catastrophic expenditure averted, impoverishment averted, costs, and the distribution of benefits across the wealth spectrum. Findings Of the nine policies and platforms evaluated, two were able to provide simultaneous health and financial benefits efficiently and equitably: mobile surgical units and governmental policies that simultaneously address surgical scaleup, the cost of surgery, and the cost of transportation. Policies that only remove user fees are dominated, as is the commonly employed short-term “surgical mission trip”. These results are robust to scenario and sensitivity analyses. Interpretation The most common platforms for increasing access to surgical care appear unable to provide health and financial risk protection equitably. On the other hand, mobile surgical units, to date an underutilized delivery platform, are able to deliver surgical oncology in a manner that meets sustainable development goals by improving health, financial solvency, and equity. These platforms compare favorably with policies that holistically address surgical delivery and should be considered as countries strengthen health systems. PMID:28036357
Robitaille, Nicolas; Jackson, Philip L; Hébert, Luc J; Mercier, Catherine; Bouyer, Laurent J; Fecteau, Shirley; Richards, Carol L; McFadyen, Bradford J
2017-10-01
This proof of concept study tested the ability of a dual task walking protocol using a recently developed avatar-based virtual reality (VR) platform to detect differences between military personnel post mild traumatic brain injury (mTBI) and healthy controls. The VR platform coordinated motion capture, an interaction and rendering system, and a projection system to present first (participant-controlled) and third person avatars within the context of a specific military patrol scene. A divided attention task was also added. A healthy control group was compared to a group with previous mTBI (both groups comprised of six military personnel) and a repeated measures ANOVA tested for differences between conditions and groups based on recognition errors, walking speed and fluidity and obstacle clearance. The VR platform was well tolerated by both groups. Walking fluidity was degraded for the control group within the more complex navigational dual tasking involving avatars, and appeared greatest in the dual tasking with the interacting avatar. This navigational behaviour was not seen in the mTBI group. The present findings show proof of concept for using avatars, particularly more interactive avatars, to expose differences in executive functioning when applying context-specific protocols (here for the military). Implications for rehabilitation Virtual reality provides a means to control context-specific factors for assessment and intervention. Adding human interaction and agency through avatars increases the ecologic nature of the virtual environment. Avatars in the present application of the Virtual Reality avatar interaction platform appear to provide a better ability to reveal differences between trained, military personal with and without mTBI.
Shrime, Mark G; Sekidde, Serufusa; Linden, Allison; Cohen, Jessica L; Weinstein, Milton C; Salomon, Joshua A
2016-01-01
The recently adopted Sustainable Development Goals call for the end of poverty and the equitable provision of healthcare. These goals are often at odds, however: health seeking can lead to catastrophic spending, an outcome for which cancer patients and the poor in resource-limited settings are at particularly high risk. How various health policies affect the additional aims of financial wellbeing and equity is poorly understood. This paper evaluates the health, financial, and equity impacts of governmental and charitable policies for surgical oncology in a resource-limited setting. Three charitable platforms for surgical oncology delivery in Uganda were compared to six governmental policies aimed at improving healthcare access. An extended cost-effectiveness analysis using an agent-based simulation model examined the numbers of lives saved, catastrophic expenditure averted, impoverishment averted, costs, and the distribution of benefits across the wealth spectrum. Of the nine policies and platforms evaluated, two were able to provide simultaneous health and financial benefits efficiently and equitably: mobile surgical units and governmental policies that simultaneously address surgical scaleup, the cost of surgery, and the cost of transportation. Policies that only remove user fees are dominated, as is the commonly employed short-term "surgical mission trip". These results are robust to scenario and sensitivity analyses. The most common platforms for increasing access to surgical care appear unable to provide health and financial risk protection equitably. On the other hand, mobile surgical units, to date an underutilized delivery platform, are able to deliver surgical oncology in a manner that meets sustainable development goals by improving health, financial solvency, and equity. These platforms compare favorably with policies that holistically address surgical delivery and should be considered as countries strengthen health systems.
Cloud computing and validation of expandable in silico livers.
Ropella, Glen E P; Hunt, C Anthony
2010-12-03
In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.
A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform.
Agarwala, Shweta; Lee, Jia Min; Ng, Wei Long; Layani, Michael; Yeong, Wai Yee; Magdassi, Shlomo
2018-04-15
Bioelectronics platforms are gaining widespread attention as they provide a template to study the interactions between biological species and electronics. Decoding the effect of the electrical signals on the cells and tissues holds the promise for treating the malignant tissue growth, regenerating organs and engineering new-age medical devices. This work is a step forward in this direction, where bio- and electronic materials co-exist on one platform without any need for post processing. We fabricate a freestanding and flexible hydrogel based platform using 3D bioprinting. The fabrication process is simple, easy and provides a flexible route to print materials with preferred shapes, size and spatial orientation. Through the design of interdigitated electrodes and heating coil, the platform can be tailored to print various circuits for different functionalities. The biocompatibility of the printed platform is tested using C2C12 murine myoblasts cell line. Furthermore, normal human dermal fibroblasts (primary cells) are also seeded on the platform to ascertain the compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.
The COMET Sleep Research Platform.
Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A
2014-01-01
The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.
The COMET Sleep Research Platform
Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.
2014-01-01
Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590
NASA Astrophysics Data System (ADS)
Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart
2016-10-01
Citizen science platforms allow untrained volunteers to take part in scientific research across a range of disciplines, and often involve the analysis of remotely sensed imagery. The data collected by increasingly advanced and automated instruments has made planetary science a prime candidate for, and user of, citizen science online platforms. In order to process this large volume of information, such systems are increasingly performed in conjunction with data-mining analysis software, with varying configurations of computer and volunteer contribution. Despite citizen science being a relatively new approach, there has been a growing field of research considering the practice in its own right beyond the scientific problems they address, with studies involving interface HCI, platform functionality, and motivation particularly adding to a growing body of citizen science scholarship.Through iterations of the FP7 iMars project's 'Mars in Motion' platform, the work presented studied the effect that guidance information had on volunteers' accuracy and trust. Whilst analysing imagery for change, volunteers were told whether automated change detection software or the consensus of other citizen scientists had found change, with this information varying in terms of accuracy. Results showed that volunteers' ability to both identify change and the type of feature undergoing change was improved when both the software result and crowd opinion guidance information provided had a greater accuracy. However, when guidance information was less accurate volunteers' level of trust fell at a sharper rate when it came from the crowd than when it came from the algorithm, and participants reported more frustration - a counter-intuitive result compared to existing research. Citizen science practitioners need to consider the information they provide to volunteers and how they present it; the results of software analysis or the consensus of a crowd need to be conclusive and above all accurate in order to improve both the performance and engagement of their volunteer community.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement 607379.
An adaptable XML based approach for scientific data management and integration
NASA Astrophysics Data System (ADS)
Wang, Fusheng; Thiel, Florian; Furrer, Daniel; Vergara-Niedermayr, Cristobal; Qin, Chen; Hackenberg, Georg; Bourgue, Pierre-Emmanuel; Kaltschmidt, David; Wang, Mo
2008-03-01
Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.
An Adaptable XML Based Approach for Scientific Data Management and Integration.
Wang, Fusheng; Thiel, Florian; Furrer, Daniel; Vergara-Niedermayr, Cristobal; Qin, Chen; Hackenberg, Georg; Bourgue, Pierre-Emmanuel; Kaltschmidt, David; Wang, Mo
2008-02-20
Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery
Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O
2011-01-01
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493
Open Targets: a platform for therapeutic target identification and validation
Koscielny, Gautier; An, Peter; Carvalho-Silva, Denise; Cham, Jennifer A.; Fumis, Luca; Gasparyan, Rippa; Hasan, Samiul; Karamanis, Nikiforos; Maguire, Michael; Papa, Eliseo; Pierleoni, Andrea; Pignatelli, Miguel; Platt, Theo; Rowland, Francis; Wankar, Priyanka; Bento, A. Patrícia; Burdett, Tony; Fabregat, Antonio; Forbes, Simon; Gaulton, Anna; Gonzalez, Cristina Yenyxe; Hermjakob, Henning; Hersey, Anne; Jupe, Steven; Kafkas, Şenay; Keays, Maria; Leroy, Catherine; Lopez, Francisco-Javier; Magarinos, Maria Paula; Malone, James; McEntyre, Johanna; Munoz-Pomer Fuentes, Alfonso; O'Donovan, Claire; Papatheodorou, Irene; Parkinson, Helen; Palka, Barbara; Paschall, Justin; Petryszak, Robert; Pratanwanich, Naruemon; Sarntivijal, Sirarat; Saunders, Gary; Sidiropoulos, Konstantinos; Smith, Thomas; Sondka, Zbyslaw; Stegle, Oliver; Tang, Y. Amy; Turner, Edward; Vaughan, Brendan; Vrousgou, Olga; Watkins, Xavier; Martin, Maria-Jesus; Sanseau, Philippe; Vamathevan, Jessica; Birney, Ewan; Barrett, Jeffrey; Dunham, Ian
2017-01-01
We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org. PMID:27899665
NASA Astrophysics Data System (ADS)
McNab, A.
2017-10-01
This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.
Navigation Architecture For A Space Mobile Network
NASA Technical Reports Server (NTRS)
Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell
2016-01-01
The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.
Chisholm, Elinor; O'Sullivan, Kimberley
2017-11-21
While increasingly used for research, Twitter remains largely untapped as a source of data about housing. We explore the growth of social media and use of Twitter in health and social research, and question why housing researchers have avoided using Twitter to explore housing issues to date. We use the #characterbuildings campaign, initiated by an online media platform in New Zealand in 2014 to illustrate that Twitter can provide insights into housing as a public health and social problem. We find that Twitter users share details of problems with past and present homes on this public platform, and that this readily available data can contribute to the case for improving building quality as a means of promoting public health. Moreover, the way people responded to the request to share details about their housing experiences provides insight into how New Zealanders conceive of housing problems.
2017-01-01
While increasingly used for research, Twitter remains largely untapped as a source of data about housing. We explore the growth of social media and use of Twitter in health and social research, and question why housing researchers have avoided using Twitter to explore housing issues to date. We use the #characterbuildings campaign, initiated by an online media platform in New Zealand in 2014 to illustrate that Twitter can provide insights into housing as a public health and social problem. We find that Twitter users share details of problems with past and present homes on this public platform, and that this readily available data can contribute to the case for improving building quality as a means of promoting public health. Moreover, the way people responded to the request to share details about their housing experiences provides insight into how New Zealanders conceive of housing problems. PMID:29160814
Assessment of navigation cues with proximal force sensing during endovascular catheterization.
Rafii-Taril, Hedyeh; Payne, Christopher J; Riga, Celia; Bicknell, Colin; Lee, Su-Lin; Yang, Guang-Zhong
2012-01-01
Despite increased use of robotic catheter navigation systems for endovascular intervention procedures, current master-slave platforms have not yet taken into account dexterous manipulation skill used in traditional catheterization procedures. Information on tool forces applied by operators is often limited. A novel force/torque sensor is developed in this paper to obtain behavioural data across different experience levels and identify underlying factors that affect overall operator performance. The miniature device can be attached to any part of the proximal end of the catheter, together with a position sensor attached to the catheter tip, for relating tool forces to catheter dynamics and overall performance. The results show clear differences in manipulation skills between experience groups, thus providing insights into different patterns and range of forces applied during routine endovascular procedures. They also provide important design specifications for ergonomically optimized catheter manipulation platforms with added haptic feedback while maintaining natural skills of the operators.
Web Content Management Systems: An Analysis of Forensic Investigatory Challenges.
Horsman, Graeme
2018-02-26
With an increase in the creation and maintenance of personal websites, web content management systems are now frequently utilized. Such systems offer a low cost and simple solution for those seeking to develop an online presence, and subsequently, a platform from which reported defamatory content, abuse, and copyright infringement has been witnessed. This article provides an introductory forensic analysis of the three current most popular web content management systems available, WordPress, Drupal, and Joomla! Test platforms have been created, and their site structures have been examined to provide guidance for forensic practitioners facing investigations of this type. Result's document available metadata for establishing site ownership, user interactions, and stored content following analysis of artifacts including Wordpress's wp_users, and wp_comments tables, Drupal's "watchdog" records, and Joomla!'s _users, and _content tables. Finally, investigatory limitations documenting the difficulties of investigating WCMS usage are noted, and analysis recommendations are offered. © 2018 American Academy of Forensic Sciences.
Evolutionary space platform concept study. Volume 2, part A: SASP special emphasis trade studies
NASA Technical Reports Server (NTRS)
1982-01-01
Efforts are in progress to define an approach to provide a simple and cost effective solution to the problem of long duration space flight. This approach involves a Space Platform in low Earth orbit, which can be tended by the Space Shuttle and which will provide, for extended periods of time, stability, utilities and access for a variety of replaceable payloads. The feasibility of an evolutionary space system which would cost effectively support unmanned payloads in groups, using a Space Platform which provides centralized basic subsystems is addressed.
A Droplet Microfluidic Platform for Automating Genetic Engineering.
Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K
2016-05-20
We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.
Sundberg, Kay; Eklöf, Ann Langius; Blomberg, Karin; Isaksson, Ann-Kristin; Wengström, Yvonne
2015-10-01
The aim of this study was to test the feasibility and acceptability of an Information and Communication Technology platform for assessing and managing patient reported symptoms during radiotherapy for prostate cancer. In cooperation with a health management company, using a patient experience co-design, we developed the platform operated by an interactive application for reporting and managing symptoms in real time. Nine patients diagnosed with prostate cancer and receiving radiotherapy were recruited from two university hospitals in Sweden. Evidence-based symptoms and related self-care advice specific to prostate cancer were implemented in the application based on a literature review and interviews with patients and health care professionals. In the test of the platform the patients reported symptoms, via a mobile phone, daily for two weeks and were afterwards interviewed about their experiences. Overall, the patients found the symptom questionnaire and the self-care advice relevant and the application user friendly. The alert system was activated on several occasions when the symptoms were severe leading to a nurse contact and support so the patients felt safe and well cared for. The platform enabled increased patient involvement and facilitated symptom assessment and communication between the patient and the health care provider. The study's results support further development of the platform, as well as tests in full-scale studies and in other populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improvement of Resilience to Disasters in Local Community Using Information Sharing Platform
NASA Astrophysics Data System (ADS)
Hayama, Toru; Suzuki, Yuji; Park, Wonho; Hayashi, Akira
This paper presents a proposal for Disaster Information Sharing Platform, which enable local government and residents to share the disaster information, and to cope with the disaster under the proper balance of Self-help, Mutual-help and Public-help. Informagic, which has been developed as a concrete example of the information sharing platform, enable us to collect information from variety of sources, such as government, local government, research institutes, private contents providers and so forth, and to transmit these information to residents through multi-media, such as internet, mobile-phone network and wireless system. An experiment was conducted under the cooperation of City of Fujisawa, to investigate the effectiveness of such platform for the disaster mitigation. Further, the platform was utilized to provide information to refugees at refuges for the Iwate-Miyagi Inland Earthquake. Through these experiments, effectiveness and issues of the platform and information sharing were investigated.
NiftyNet: a deep-learning platform for medical imaging.
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom
2018-05-01
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Development of a UAV system for VNIR-TIR acquisitions in precision agriculture
NASA Astrophysics Data System (ADS)
Misopolinos, L.; Zalidis, Ch.; Liakopoulos, V.; Stavridou, D.; Katsigiannis, P.; Alexandridis, T. K.; Zalidis, G.
2015-06-01
Adoption of precision agriculture techniques requires the development of specialized tools that provide spatially distributed information. Both flying platforms and airborne sensors are being continuously evolved to cover the needs of plant and soil sensing at affordable costs. Due to restrictions in payload, flying platforms are usually limited to carry a single sensor on board. The aim of this work is to present the development of a vertical take-off and landing autonomous unmanned aerial vehicle (VTOL UAV) system for the simultaneous acquisition of high resolution vertical images at the visible, near infrared (VNIR) and thermal infrared (TIR) wavelengths. A system was developed that has the ability to trigger two cameras simultaneously with a fully automated process and no pilot intervention. A commercial unmanned hexacopter UAV platform was optimized to increase reliability, ease of operation and automation. The designed systems communication platform is based on a reduced instruction set computing (RISC) processor running Linux OS with custom developed drivers in an efficient way, while keeping the cost and weight to a minimum. Special software was also developed for the automated image capture, data processing and on board data and metadata storage. The system was tested over a kiwifruit field in northern Greece, at flying heights of 70 and 100m above the ground. The acquired images were mosaicked and geo-corrected. Images from both flying heights were of good quality and revealed unprecedented detail within the field. The normalized difference vegetation index (NDVI) was calculated along with the thermal image in order to provide information on the accurate location of stressors and other parameters related to the crop productivity. Compared to other available sources of data, this system can provide low cost, high resolution and easily repeatable information to cover the requirements of precision agriculture.
Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.
Ronconi, Robert A; Allard, Karel A; Taylor, Philip D
2015-01-01
Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar, cameras, acoustic recordings, and telemetry, hold promise for continuous monitoring. Recommendations are provided for a rigorous and comprehensive monitoring approach within an adaptive management framework. Copyright © 2014 Elsevier Ltd. All rights reserved.
BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations
NASA Astrophysics Data System (ADS)
Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I.; Strydis, Christos
2017-12-01
Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload’s performance characteristics. Main results. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. Significance. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.
NASA Astrophysics Data System (ADS)
Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.
2016-12-01
New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.
BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations.
Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I; Strydis, Christos
2017-12-01
The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload's performance characteristics. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.
National Community Solar Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupert, Bart
This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groupsmore » of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative« less
Fourier transform spectrometer controller for partitioned architectures
NASA Astrophysics Data System (ADS)
Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.
The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.
SurfaceSlide: a multitouch digital pathology platform.
Wang, Yinhai; Williamson, Kate E; Kelly, Paul J; James, Jacqueline A; Hamilton, Peter W
2012-01-01
Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human-digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.
SurfaceSlide: A Multitouch Digital Pathology Platform
Wang, Yinhai; Williamson, Kate E.; Kelly, Paul J.; James, Jacqueline A.; Hamilton, Peter W.
2012-01-01
Background Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. Methodology In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. Conclusion SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice. PMID:22292040
Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan
2009-01-01
Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385
Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper
2017-10-25
Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi
2015-01-01
This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…
Localization system for use in GPS denied environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trueblood, J. J.
The military uses to autonomous platforms to complete missions to provide standoff for the warfighters. However autonomous platforms rely on GPS to provide their global position. In many missions spaces the autonomous platforms may encounter GPS denied environments which limits where the platform operates and requires the warfighters to takes its place. GPS denied environments can occur due to tall building, trees, canyon wall blocking the GPS satellite signals or a lack of coverage. An Inertial Navigation System (INS) uses sensors to detect the vehicle movement and direction its traveling to calculate the vehicle. One of biggest challenges with anmore » INS system is the accuracy and accumulation of errors over time of the sensors. If these challenges can be overcome the INS would provide accurate positioning information to the autonomous vehicle in GPS denied environments and allow them to provide the desired standoff for the warfighters.« less
Wireless Sensor Network-Based Service Provisioning by a Brokering Platform
Guijarro, Luis; Pla, Vicent; Vidal, Jose R.; Naldi, Maurizio; Mahmoodi, Toktam
2017-01-01
This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility. PMID:28498347
Wireless Sensor Network-Based Service Provisioning by a Brokering Platform.
Guijarro, Luis; Pla, Vicent; Vidal, Jose R; Naldi, Maurizio; Mahmoodi, Toktam
2017-05-12
This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility.
Hwang, Byungjin; Bang, Duhee
2016-01-01
All synthetic DNA materials require prior programming of the building blocks of the oligonucleotide sequences. The development of a programmable microarray platform provides cost-effective and time-efficient solutions in the field of data storage using DNA. However, the scalability of the synthesis is not on par with the accelerating sequencing capacity. Here, we report on a new paradigm of generating genetic material (writing) using a degenerate oligonucleotide and optomechanical retrieval method that leverages sequencing (reading) throughput to generate the desired number of oligonucleotides. As a proof of concept, we demonstrate the feasibility of our concept in digital information storage in DNA. In simulation, the ability to store data is expected to exponentially increase with increase in degenerate space. The present study highlights the major framework change in conventional DNA writing paradigm as a sequencer itself can become a potential source of making genetic materials. PMID:27876825
Hwang, Byungjin; Bang, Duhee
2016-11-23
All synthetic DNA materials require prior programming of the building blocks of the oligonucleotide sequences. The development of a programmable microarray platform provides cost-effective and time-efficient solutions in the field of data storage using DNA. However, the scalability of the synthesis is not on par with the accelerating sequencing capacity. Here, we report on a new paradigm of generating genetic material (writing) using a degenerate oligonucleotide and optomechanical retrieval method that leverages sequencing (reading) throughput to generate the desired number of oligonucleotides. As a proof of concept, we demonstrate the feasibility of our concept in digital information storage in DNA. In simulation, the ability to store data is expected to exponentially increase with increase in degenerate space. The present study highlights the major framework change in conventional DNA writing paradigm as a sequencer itself can become a potential source of making genetic materials.
Schaffert, David H; Okholm, Anders H; Sørensen, Rasmus S; Nielsen, Jesper S; Tørring, Thomas; Rosen, Christian B; Kodal, Anne Louise B; Mortensen, Michael R; Gothelf, Kurt V; Kjems, Jørgen
2016-05-01
DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok
2011-08-05
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.
Park, Kt; Harris, Merissa; Khavari, Nasim; Khosla, Chaitan
2014-02-01
Patients with celiac disease (CD) are increasingly interconnected through social media, exchanging patient experiences and health-tracking information between individuals through various web-based platforms. Social media represents potentially unique communication interface between gastroenterologists and active social media users - especially young adults and adolescents with celiac disease-regarding adherence to the strict gluten-free diet, gastrointestinal symptoms, and meaningful discussion about disease management. Yet, various social media platforms may be underutilized for research purposes to collect patient-reported outcomes data. In this commentary, we summarize the scientific rationale and potential for future growth of social media in patient-reported outcomes research, focusing on college freshmen with celiac disease as a case study and provide overview of the methodological approach. Finally, we discuss how social media may impact patient care in the future through increasing mobile technology use.
On-Board Mining in the Sensor Web
NASA Astrophysics Data System (ADS)
Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.
2004-12-01
On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans provide capabilities for autonomous data mining, classification and feature extraction using both streaming and buffered data sources. A ground-based testbed provides a heterogeneous, embedded hardware and software environment representing both space-based and ground-based sensor platforms, including wireless sensor mesh architectures. The AODP project explores the EVE concepts in the world of sensor-networks, including ad-hoc networks of small sensor platforms.
ERIC Educational Resources Information Center
Byrne, Elizabeth; Vessey, Judith A.; Pfeifer, Lauren
2018-01-01
Social media has become an increasingly prevalent fixture in youths' lives, with over 90% of teenagers reporting daily usage. These online sites and applications have provided many positive opportunities for youths to connect and share ideas with others; however, social media has also become a major platform for cyberbullying. Victims often…
Hybrid Tandem Solar Cells | Photovoltaic Research | NREL
Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research
Wiki Use that Increases Communication and Collaboration Motivation
ERIC Educational Resources Information Center
Davidson, Robyn
2012-01-01
Communication and collaboration can be readily enabled by the use of many ICT tools. A wiki, which is an easily accessible and editable website, is one such platform that provides the opportunity for students to work on group projects without the barriers that arise from traditional group work. Whilst wiki use is becoming more common, its use in…
NASA Astrophysics Data System (ADS)
Lenhardt, W. C.; Krishnamurthy, A.; Blanton, B.; Conway, M.; Coposky, J.; Castillo, C.; Idaszak, R.
2017-12-01
An integrated science cyberinfrastructure platform is fast becoming a norm in science, particularly where access to distributed resources, access to compute, data management tools, and collaboration tools are accessible to the end-user scientist without the need to spin up these services on their own. There platforms have various types of labels ranging from data commons to science-as-a-service. They tend to share common features, as outlined above. What tends to distinguish these platforms, however, is their affinity for particular domains, NanoHub - nanomaterials, iPlant - plant biology, Hydroshare - hydrology, and so on. The challenge still remains how to enable these platforms to be more easily adopted for use by other domains. This paper will provide an overview of RENCI's approach to creating a science platform that can be more easily adopted by new communities while also endeavoring to accelerate their research. At RENCI, we started with Hydroshare, but have now worked to generalize the methodology for application to other domains. This new effort is called xDCi, or {cross-disciplinary} Data CyberInfrastructure. We have adopted a broader approach to the challenge of domain adoption and includes two key elements in addition to the technology component. The first of these is how development is operationalized. RENCI implements a DevOps model of continuous development and deployment. This greatly increases the speed by which a new platform can come online and be refined to meet domain needs. DevOps also allows for migration over time, i.e. sustainability. The second element is a concierge model. In addition to the technical elements, and the more responsive development process, RENCI also supports domain adoption of the platform by providing a concierge service— dedicated expertise- in the following areas, Information Technology, Sustainable Software, Data Science, and Sustainability. The success of the RENCI methodology is illustrated by the adoption of the approach by two domains in conjunction with its release, neurobiology and an advanced care planning information system. In addition to the overview of the approach, this paper will describe the existing integrations in the Earth and environmental science domains as well as illustrations of how the technology may be adopted for other related research.
Advanced propulsion for LEO and GEO platforms
NASA Technical Reports Server (NTRS)
Sovey, James S.; Pidgeon, David J.
1990-01-01
Mission requirements and mass savings applicable to specific low earth orbit and geostationary earth orbit platforms using three highly developed propulsion systems are described. Advanced hypergolic bipropellant thrusters and hydrazine arcjets can provide about 11 percent additional instrument payload to 14,000 kg LEO platforms. By using electric propulsion on a 8,000 kg class GEO platform, mass savings in excess of 15 percent of the beginning-of-life platform mass are obtained. Effects of large, advanced technology solar arrays and antennas on platform propulsion requirements are also discussed.
Integrated long-range UAV/UGV collaborative target tracking
NASA Astrophysics Data System (ADS)
Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv
2009-05-01
Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.
2017-01-01
Background Medicaid populations are less engaged in their health care than the rest of the population, translating to worse health outcomes and increased health care costs. Since theory-based mobile health (mHealth) interventions have been shown to increase patient engagement, mobile phones may be an optimal strategy to reach this population. With increased development of theory-based mHealth technology, these interventions must now be evaluated with these medically underserved populations in a real-world setting. Objective The aim of our study was to investigate care coordinators’ perceived value of using a health behavior theory-based mHealth platform with Medicaid clients. In particular, attention was paid to the perceived impact on patient engagement. This research was conducted using the patient-provider text messaging (short message service, SMS) platform, Sense Health (now Wellpass), which integrates the transtheoretical model (TTM), also called the stages of change model; social cognitive theory (SCT); supportive accountability; and motivational interviewing (MI). Methods Interviews based in grounded theory methodology were conducted with 10 care managers to understand perceptions of the relationship between mHealth and patient engagement. Results The interviews with care managers yielded a foundation for a grounded theory model, presenting themes that suggested 4 intertwined correlative relationships revolving around patient engagement: (1) A text messaging (short message service, SMS) platform supplements the client-care manager dynamic, which is grounded in high quality, reciprocal-communication to increase patient engagement; (2) Texting enhances the relationship between literacy and access to care for Medicaid patients, increasing low-literacy patients’ agency to access services; (3) Texting enhances communication, providing care managers with a new means to support their clients; and (4) Reminders augment client accountability, leading to both increased motivation and readiness to change behaviors, as well as an improved client-care manager relationship. Conclusions Messaging platform features tied to health behavior theory appear to be effective in improving patient engagement. Two-way communication (supportive accountability), trusted relationships (supportive accountability, SCT), personalized messages (TTM), and patient input (TTM, SCT, MI) appeared as the most relevant components in achieving desired outcomes. Additionally, reminder messages were noted as especially useful in making Medicaid patients accountable and in turn engaging them in their health and health care. These findings convey suggested elements for inclusion in other mHealth interventions aiming to improve patient engagement in Medicaid populations. PMID:28325711
Sigler, Brittany Erika
2017-03-21
Medicaid populations are less engaged in their health care than the rest of the population, translating to worse health outcomes and increased health care costs. Since theory-based mobile health (mHealth) interventions have been shown to increase patient engagement, mobile phones may be an optimal strategy to reach this population. With increased development of theory-based mHealth technology, these interventions must now be evaluated with these medically underserved populations in a real-world setting. The aim of our study was to investigate care coordinators' perceived value of using a health behavior theory-based mHealth platform with Medicaid clients. In particular, attention was paid to the perceived impact on patient engagement. This research was conducted using the patient-provider text messaging (short message service, SMS) platform, Sense Health (now Wellpass), which integrates the transtheoretical model (TTM), also called the stages of change model; social cognitive theory (SCT); supportive accountability; and motivational interviewing (MI). Interviews based in grounded theory methodology were conducted with 10 care managers to understand perceptions of the relationship between mHealth and patient engagement. The interviews with care managers yielded a foundation for a grounded theory model, presenting themes that suggested 4 intertwined correlative relationships revolving around patient engagement: (1) A text messaging (short message service, SMS) platform supplements the client-care manager dynamic, which is grounded in high quality, reciprocal-communication to increase patient engagement; (2) Texting enhances the relationship between literacy and access to care for Medicaid patients, increasing low-literacy patients' agency to access services; (3) Texting enhances communication, providing care managers with a new means to support their clients; and (4) Reminders augment client accountability, leading to both increased motivation and readiness to change behaviors, as well as an improved client-care manager relationship. Messaging platform features tied to health behavior theory appear to be effective in improving patient engagement. Two-way communication (supportive accountability), trusted relationships (supportive accountability, SCT), personalized messages (TTM), and patient input (TTM, SCT, MI) appeared as the most relevant components in achieving desired outcomes. Additionally, reminder messages were noted as especially useful in making Medicaid patients accountable and in turn engaging them in their health and health care. These findings convey suggested elements for inclusion in other mHealth interventions aiming to improve patient engagement in Medicaid populations. ©Brittany Erika Sigler. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 21.03.2017.
Neurofibromin Loss of Function Drives Excessive Grooming in Drosophila
King, Lanikea B.; Koch, Marta; Murphy, Keith R.; Velazquez, Yoheilly; Ja, William W.; Tomchik, Seth M.
2016-01-01
Neurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1) exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models. In order to understand how loss of Nf1 affects motor behavior in flies, we combined traditional activity monitoring with video analysis of grooming behavior. In nf1 mutants, spontaneous grooming was increased up to 7x. This increase in activity was distinct from previously described dopamine-dependent hyperactivity, as dopamine transporter mutants exhibited slightly decreased grooming. Finally, we found that relative grooming frequencies can be compared in standard activity monitors that measure infrared beam breaks, enabling the use of activity monitors as an automated method to screen for grooming phenotypes. Overall, these data suggest that loss of nf1 produces excessive activity that is manifested as increased grooming, providing a platform to dissect the molecular genetics of neurofibromin signaling across neuronal circuits. PMID:26896440
Neurofibromin Loss of Function Drives Excessive Grooming in Drosophila.
King, Lanikea B; Koch, Marta; Murphy, Keith R; Velazquez, Yoheilly; Ja, William W; Tomchik, Seth M
2016-04-07
Neurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1) exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models. In order to understand how loss of Nf1 affects motor behavior in flies, we combined traditional activity monitoring with video analysis of grooming behavior. In nf1 mutants, spontaneous grooming was increased up to 7x. This increase in activity was distinct from previously described dopamine-dependent hyperactivity, as dopamine transporter mutants exhibited slightly decreased grooming. Finally, we found that relative grooming frequencies can be compared in standard activity monitors that measure infrared beam breaks, enabling the use of activity monitors as an automated method to screen for grooming phenotypes. Overall, these data suggest that loss of nf1 produces excessive activity that is manifested as increased grooming, providing a platform to dissect the molecular genetics of neurofibromin signaling across neuronal circuits. Copyright © 2016 King et al.
Decentralized asset management for collaborative sensing
NASA Astrophysics Data System (ADS)
Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig
2017-05-01
There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.
NASA Technical Reports Server (NTRS)
Birkhimer, Craig; Newman, Wyatt; Choi, Benjamin; Lawrence, Charles
1994-01-01
Increasing research is being done into industrial uses for the microgravity environment aboard orbiting space vehicles. However, there is some concern over the effects of reaction forces produced by moving objects, especially motors, robotic actuators, and astronauts. Reaction forces produced by the movement of these objects may manifest themselves as undesirable accelerations in the space vehicle making the vehicle unusable for microgravity applications. It is desirable to provide compensation for such forces using active means. This paper presents the design and experimental evaluation of the NASA three degree of freedom reaction compensation platform, a system designed to be a testbed for the feasibility of active attenuation of reaction forces caused by moving objects in a microgravity environment. Unique 'linear motors,' which convert electrical current directly into rectilinear force, are used in the platform design. The linear motors induce accelerations of the displacer inertias. These accelerations create reaction forces that may be controlled to counteract disturbance forces introduced to the platform. The stated project goal is to reduce reaction forces by 90 percent, or -20 dB. Description of the system hardware, characterization of the actuators and the composite system, and design of the software safety system and control software are included.
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
Takemiya, Makoto; Majima, Kei; Tsukamoto, Mitsuaki; Kamitani, Yukiyasu
2016-01-01
Data-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis. This facilitates learning the relationship between behavior and brain activity. Using a common data file format also simplifies data processing and analyses. Properties describing data are unambiguously defined using a schema, allowing machine-readable definition of data. The BrainLiner platform allows users to upload and download data, as well as to explore and search for data from the web platform. A WebGL-based data explorer can visualize highly detailed neurophysiological data from within the web browser, and a data-driven search feature allows users to search for similar time windows of data. This increases transparency, and allows for visual inspection of neural coding. BrainLiner thus provides an essential set of tools for data sharing and data-driven modeling. PMID:26858636
New technologies in robotic surgery: the Korean experience.
Tuliao, Patrick H; Kim, Sang W; Rha, Koon H
2014-01-01
The development of the robotic systems has made surgery an increasingly technology-driven field. Since the introduction of the first robotic platform in 2005, surgical practice in South Korea has also been caught up in the global robotic revolution. Consequently, a market focused on improving the robotic systems was created and Korea has emerged as one of its frontrunners. This article reviews the Korean experience in developing various robotic technologies and then Korea's most recent contributions to the development of new technologies in robotic surgery. The goal of new technologies in the field of robotic surgery has been to improve on the current platforms by eliminating their disadvantages. The pressing goal is to develop a platform that is less bulky, more ergonomic, and capable of providing force feedback to the surgeon. In Korea, the Lapabot and two new robotic systems for single-port laparoscopic surgery are the most recent advances that have been reported. Robotic surgery is rapidly evolving and Korea has stayed in the forefront of its development. These new advancements in technology will eventually produce better robotic platforms that will greatly improve the manner in which surgical care is delivered.
MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data
Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko
2007-01-01
Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892
End effector with astronaut foot restraint
NASA Technical Reports Server (NTRS)
Monford, Leo G., Jr. (Inventor)
1991-01-01
The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.
Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology
Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh
2009-01-01
Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744
Analyzing Cyber-Physical Threats on Robotic Platforms.
Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J
2018-05-21
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.
Analyzing Cyber-Physical Threats on Robotic Platforms †
2018-01-01
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403
Arkheia: Data Management and Communication for Open Computational Neuroscience
Antolík, Ján; Davison, Andrew P.
2018-01-01
Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community. To address this important gap in the current computational modeling software infrastructure, here we introduce Arkheia. Arkheia is a web-based open science platform for computational models in systems neuroscience. It provides an automatic, interactive, graphical presentation of simulation results, experimental protocols, and interactive exploration of parameter searches, in a web browser-based application. Arkheia is focused on automatic presentation of these resources with minimal manual input from users. Arkheia is written in a modular fashion with a focus on future development of the platform. The platform is designed in an open manner, with a clearly defined and separated API for database access, so that any project can write its own backend translating its data into the Arkheia database format. Arkheia is not a centralized platform, but allows any user (or group of users) to set up their own repository, either for public access by the general population, or locally for internal use. Overall, Arkheia provides users with an automatic means to communicate information about not only their models but also individual simulation results and the entire experimental context in an approachable graphical manner, thus facilitating the user's ability to collaborate in the field and outreach to a wider audience. PMID:29556187
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iledare, O.O.; Pulsipher, A.G.; Baumann, R.H.
1996-12-31
The current expanded role of smaller independent oil producers in the OCS has led to concern about the possibility of increased risk of accidents in E&P operations on the Gulf of Mexico OCS. In addition, questions have been posed concerning the effects of the Minerals Management Service`s (MMS) safety regulations and inspection program, firm size, and industry practices on the risk of accidents in E&P operations on the Gulf of Mexico OCS. The specific purposes of the study reported in this paper were to ascertain (1) whether any empirical justification exists for the widespread concern that an increase in independentsmore » relative share of E&P operations in the Gulf OCS region will be detrimental to safety, and (2) whether MMS policies and safety programs have reduced the frequency or severity of accidents on the OCS. Our statistical and descriptive analyses of data on accidents from MMS provide no statistical evidence to support the apprehension that an expanded role for independents in E&P activity constitutes any major threat to safety on the OCS. Further, the results of our econometrics analysis confirm the expectation that the more effective MMS inspectors are at detecting incidents of noncompliance the lower the rate of accidents on the OCS is, ceteris paribus. In addition the results indicate that the variability in platform exposure years--cumulative age of operating platform--in comparison to other factors explains a significant portion of the variation in accidents per operating platform. That is, the platform aging process provides more opportunity for accidents than any other contributing factors. Our econometrics analysis also suggests that, if the other factors contributing to offshore accidents are held constant, the responsiveness of accident rate to drilling activity is inelastic while the response of accident rate to production activity levels is elastic.« less
Arkheia: Data Management and Communication for Open Computational Neuroscience.
Antolík, Ján; Davison, Andrew P
2018-01-01
Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community. To address this important gap in the current computational modeling software infrastructure, here we introduce Arkheia. Arkheia is a web-based open science platform for computational models in systems neuroscience. It provides an automatic, interactive, graphical presentation of simulation results, experimental protocols, and interactive exploration of parameter searches, in a web browser-based application. Arkheia is focused on automatic presentation of these resources with minimal manual input from users. Arkheia is written in a modular fashion with a focus on future development of the platform. The platform is designed in an open manner, with a clearly defined and separated API for database access, so that any project can write its own backend translating its data into the Arkheia database format. Arkheia is not a centralized platform, but allows any user (or group of users) to set up their own repository, either for public access by the general population, or locally for internal use. Overall, Arkheia provides users with an automatic means to communicate information about not only their models but also individual simulation results and the entire experimental context in an approachable graphical manner, thus facilitating the user's ability to collaborate in the field and outreach to a wider audience.
Increasing Flight Software Reuse with OpenSatKit
NASA Technical Reports Server (NTRS)
McComas, David C.
2018-01-01
In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospace's command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for users to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS "App Store".. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans.
Bernhard, Gerda; Mahler, Cornelia; Seidling, Hanna Marita; Stützle, Marion; Ose, Dominik; Baudendistel, Ines; Wensing, Michel; Szecsenyi, Joachim
2018-03-27
Information technology tools such as shared patient-centered, Web-based medication platforms hold promise to support safe medication use by strengthening patient participation, enhancing patients' knowledge, helping patients to improve self-management of their medications, and improving communication on medications among patients and health care professionals (HCPs). However, the uptake of such platforms remains a challenge also due to inadequate user involvement in the development process. Employing a user-centered design (UCD) approach is therefore critical to ensure that user' adoption is optimal. The purpose of this study was to identify what patients with type 2 diabetes mellitus (T2DM) and their HCPs regard necessary requirements in terms of functionalities and usability of a shared patient-centered, Web-based medication platform for patients with T2DM. This qualitative study included focus groups with purposeful samples of patients with T2DM (n=25), general practitioners (n=13), and health care assistants (n=10) recruited from regional health care settings in southwestern Germany. In total, 8 semistructured focus groups were conducted. Sessions were audio- and video-recorded, transcribed verbatim, and subjected to a computer-aided qualitative content analysis. Appropriate security and access methods, supported data entry, printing, and sending information electronically, and tracking medication history were perceived as the essential functionalities. Although patients wanted automatic interaction checks and safety alerts, HCPs on the contrary were concerned that unspecific alerts confuse patients and lead to nonadherence. Furthermore, HCPs were opposed to patients' ability to withhold or restrict access to information in the platform. To optimize usability, there was consensus among participants to display information in a structured, chronological format, to provide information in lay language, to use visual aids and customize information content, and align the platform to users' workflow. By employing a UCD, this study provides insight into the desired functionalities and usability of patients and HCPs regarding a shared patient-centered, Web-based medication platform, thus increasing the likelihood to achieve a functional and useful system. Substantial and ongoing engagement by all intended user groups is necessary to reconcile differences in requirements of patients and HCPs, especially regarding medication safety alerts and access control. Moreover, effective training of patients and HCPs on medication self-management (support) and optimal use of the tool will be a prerequisite to unfold the platform's full potential. ©Gerda Bernhard, Cornelia Mahler, Hanna Marita Seidling, Marion Stützle, Dominik Ose, Ines Baudendistel, Michel Wensing, Joachim Szecsenyi. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.03.2018.
NASA Astrophysics Data System (ADS)
Ye, Fei
2018-04-01
With the rapid increase of electric automobiles and charging piles, the elastic expansion and online rapid upgrade were required for the vehicle networking system platform (system platform for short). At present, it is difficult to meet the operation needs due to the traditional huge rock architecture used by the system platform. This paper studied the system platform technology architecture based on "cloud platform +micro-service" to obtain a new generation of vehicle networking system platform with the combination of elastic expansion and application, thus significantly improving the service operation ability of system.
Diabetes management using modern information and communication technologies and new care models.
Spanakis, Emmanouil G; Chiarugi, Franco; Kouroubali, Angelina; Spat, Stephan; Beck, Peter; Asanin, Stefan; Rosengren, Peter; Gergely, Tamas; Thestrup, Jesper
2012-10-04
Diabetes, a metabolic disorder, has reached epidemic proportions in developed countries. The disease has two main forms: type 1 and type 2. Disease management entails administration of insulin in combination with careful blood glucose monitoring (type 1) or involves the adjustment of diet and exercise level, the use of oral anti-diabetic drugs, and insulin administration to control blood sugar (type 2). State-of-the-art technologies have the potential to assist healthcare professionals, patients, and informal carers to better manage diabetes insulin therapy, help patients understand their disease, support self-management, and provide a safe environment by monitoring adverse and potentially life-threatening situations with appropriate crisis management. New care models incorporating advanced information and communication technologies have the potential to provide service platforms able to improve health care, personalization, inclusion, and empowerment of the patient, and to support diverse user preferences and needs in different countries. The REACTION project proposes to create a service-oriented architectural platform based on numerous individual services and implementing novel care models that can be deployed in different settings to perform patient monitoring, distributed decision support, health care workflow management, and clinical feedback provision. This paper presents the work performed in the context of the REACTION project focusing on the development of a health care service platform able to support diabetes management in different healthcare regimes, through clinical applications, such as monitoring of vital signs, feedback provision to the point of care, integrative risk assessment, and event and alarm handling. While moving towards the full implementation of the platform, three major areas of research and development have been identified and consequently approached: the first one is related to the glucose sensor technology and wearability, the second is related to the platform architecture, and the third to the implementation of the end-user services. The Glucose Management System, already developed within the REACTION project, is able to monitor a range of parameters from various sources including glucose levels, nutritional intakes, administered drugs, and patient's insulin sensitivity, offering decision support for insulin dosing to professional caregivers on a mobile tablet platform that fulfills the need of the users and supports medical workflow procedures in compliance with the Medical Device Directive requirements. Good control of diabetes, as well as increased emphasis on control of lifestyle factors, may reduce the risk profile of most complications and contribute to health improvement. The REACTION project aims to respond to these challenges by providing integrated, professional, management, and therapy services to diabetic patients in different health care regimes across Europe in an interoperable communication platform.
Mahler, Cornelia; Seidling, Hanna Marita; Stützle, Marion; Ose, Dominik; Baudendistel, Ines; Wensing, Michel; Szecsenyi, Joachim
2018-01-01
Background Information technology tools such as shared patient-centered, Web-based medication platforms hold promise to support safe medication use by strengthening patient participation, enhancing patients’ knowledge, helping patients to improve self-management of their medications, and improving communication on medications among patients and health care professionals (HCPs). However, the uptake of such platforms remains a challenge also due to inadequate user involvement in the development process. Employing a user-centered design (UCD) approach is therefore critical to ensure that user’ adoption is optimal. Objective The purpose of this study was to identify what patients with type 2 diabetes mellitus (T2DM) and their HCPs regard necessary requirements in terms of functionalities and usability of a shared patient-centered, Web-based medication platform for patients with T2DM. Methods This qualitative study included focus groups with purposeful samples of patients with T2DM (n=25), general practitioners (n=13), and health care assistants (n=10) recruited from regional health care settings in southwestern Germany. In total, 8 semistructured focus groups were conducted. Sessions were audio- and video-recorded, transcribed verbatim, and subjected to a computer-aided qualitative content analysis. Results Appropriate security and access methods, supported data entry, printing, and sending information electronically, and tracking medication history were perceived as the essential functionalities. Although patients wanted automatic interaction checks and safety alerts, HCPs on the contrary were concerned that unspecific alerts confuse patients and lead to nonadherence. Furthermore, HCPs were opposed to patients’ ability to withhold or restrict access to information in the platform. To optimize usability, there was consensus among participants to display information in a structured, chronological format, to provide information in lay language, to use visual aids and customize information content, and align the platform to users’ workflow. Conclusions By employing a UCD, this study provides insight into the desired functionalities and usability of patients and HCPs regarding a shared patient-centered, Web-based medication platform, thus increasing the likelihood to achieve a functional and useful system. Substantial and ongoing engagement by all intended user groups is necessary to reconcile differences in requirements of patients and HCPs, especially regarding medication safety alerts and access control. Moreover, effective training of patients and HCPs on medication self-management (support) and optimal use of the tool will be a prerequisite to unfold the platform’s full potential. PMID:29588269
Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-06-24
Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.
Synchronised integrated online e-health profiles.
Liang, Jian; Iannella, Renato; Sahama, Tony
2011-01-01
Web-based social networking applications have become increasingly important in recent years. The current applications in the healthcare sphere can support the health management, but to date there is no patient-controlled integrator. This paper proposes a platform called Multiple Profile Manager (MPM) that enables a user to create and manage an integrated profile that can be shared across numerous social network sites. Moreover, it is able to facilitate the collection of personal healthcare data, which makes a contribution to the development of public health informatics. Here we want to illustrate how patients and physicians can be benefited from enabling the platform for online social network sites. The MPM simplifies the management of patients' profiles and allows health professionals to obtain a more complete picture of the patients' background so that they can provide better health care. To do so, we demonstrate a prototype of the platform and describe its protocol specification, which is an XMPP (Extensible Messaging and Presence Protocol) [1] extension, for sharing and synchronising profile data (vCard²) between different social networks.
Pedestrian evacuation at the subway station under fire
NASA Astrophysics Data System (ADS)
Xiao-Xia, Yang; Hai-Rong, Dong; Xiu-Ming, Yao; Xu-Bin, Sun
2016-04-01
With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xuanwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians’ visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties. Project supported by the National Natural Science Foundation of China (Grant Nos. 61322307 and 61233001).
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.
Smith, David S; Gore, John C; Yankeelov, Thomas E; Welch, E Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.
User definition and mission requirements for unmanned airborne platforms, revised
NASA Technical Reports Server (NTRS)
Kuhner, M. B.; Mcdowell, J. R.
1979-01-01
The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.
Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís
2012-05-01
MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)
MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants.
Elshazly, Hatem; Souilmi, Yassine; Tonellato, Peter J; Wall, Dennis P; Abouelhoda, Mohamed
2017-01-20
Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the use of the recent development in the cloud computing market, which have witnessed more providers competing in terms of products and prices. In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge, this is the first solution that optimizes the execution of the workflow using computational resources from different cloud providers. MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations. The package can run in different commercial cloud platforms, which enables the user to seize the best offers. The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it provides an efficient solution to the sudden termination of spot machines as a result of a sudden price increase. The package has a web-interface and it is available for free for academic use.
Design of penicillin fermentation process simulation system
NASA Astrophysics Data System (ADS)
Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi
2011-10-01
Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.
A software platform for the analysis of dermatology images
NASA Astrophysics Data System (ADS)
Vlassi, Maria; Mavraganis, Vlasios; Asvestas, Panteleimon
2017-11-01
The purpose of this paper is to present a software platform developed in Python programming environment that can be used for the processing and analysis of dermatology images. The platform provides the capability for reading a file that contains a dermatology image. The platform supports image formats such as Windows bitmaps, JPEG, JPEG2000, portable network graphics, TIFF. Furthermore, it provides suitable tools for selecting, either manually or automatically, a region of interest (ROI) on the image. The automated selection of a ROI includes filtering for smoothing the image and thresholding. The proposed software platform has a friendly and clear graphical user interface and could be a useful second-opinion tool to a dermatologist. Furthermore, it could be used to classify images including from other anatomical parts such as breast or lung, after proper re-training of the classification algorithms.
Sharing Health Big Data for Research - A Design by Use Cases: The INSHARE Platform Approach.
Bouzillé, Guillaume; Westerlynck, Richard; Defossez, Gautier; Bouslimi, Dalel; Bayat, Sahar; Riou, Christine; Busnel, Yann; Le Guillou, Clara; Cauvin, Jean-Michel; Jacquelinet, Christian; Pladys, Patrick; Oger, Emmanuel; Stindel, Eric; Ingrand, Pierre; Coatrieux, Gouenou; Cuggia, Marc
2017-01-01
Sharing and exploiting Health Big Data (HBD) allow tackling challenges: data protection/governance taking into account legal, ethical, and deontological aspects enables trust, transparent and win-win relationship between researchers, citizens, and data providers. Lack of interoperability: compartmentalized and syntactically/semantica heterogeneous data. INSHARE project using experimental proof of concept explores how recent technologies overcome such issues. Using 6 data providers, platform is designed via 3 steps to: (1) analyze use cases, needs, and requirements; (2) define data sharing governance, secure access to platform; and (3) define platform specifications. Three use cases - from 5 studies and 11 data sources - were analyzed for platform design. Governance derived from SCANNER model was adapted to data sharing. Platform architecture integrates: data repository and hosting, semantic integration services, data processing, aggregate computing, data quality and integrity monitoring, Id linking, multisource query builder, visualization and data export services, data governance, study management service and security including data watermarking.
APEX/SPIN: a free test platform to measure speech intelligibility.
Francart, Tom; Hofmann, Michael; Vanthornhout, Jonas; Van Deun, Lieselot; van Wieringen, Astrid; Wouters, Jan
2017-02-01
Measuring speech intelligibility in quiet and noise is important in clinical practice and research. An easy-to-use free software platform for conducting speech tests is presented, called APEX/SPIN. The APEX/SPIN platform allows the use of any speech material in combination with any noise. A graphical user interface provides control over a large range of parameters, such as number of loudspeakers, signal-to-noise ratio and parameters of the procedure. An easy-to-use graphical interface is provided for calibration and storage of calibration values. To validate the platform, perception of words in quiet and sentences in noise were measured both with APEX/SPIN and with an audiometer and CD player, which is a conventional setup in current clinical practice. Five normal-hearing listeners participated in the experimental evaluation. Speech perception results were similar for the APEX/SPIN platform and conventional procedures. APEX/SPIN is a freely available and open source platform that allows the administration of all kinds of custom speech perception tests and procedures.
NASA Astrophysics Data System (ADS)
Walsh, Elizabeth Mary; McGowan, Veronica Cassone
2017-01-01
Science education trends promote student engagement in authentic knowledge in practice to tackle personally consequential problems. This study explored how partnering scientists and students on a social media platform supported students' development of disciplinary practice knowledge through practice-based learning with experts during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. Through the online platform, scientists provided feedback on students' infographics, visual argumentation artifacts that use data to communicate about climate change science. We conceptualize the infographics and professional data sets as boundary objects that supported authentic argumentation practices across classroom and professional contexts, but found that student generated data was not robust enough to cross these boundaries. Analysis of the structure and content of the scientists' feedback revealed that when critiquing argumentation, scientists initiated engagement in multiple scientific practices, supporting a holistic rather than discrete model of practice-based learning. While traditional classroom inquiry has emphasized student experimentation, we found that engagement with existing professional data sets provided students with a platform for developing expertise in systemic scientific practices during argument construction. We further found that many students increased the complexity and improved the visual presentation of their arguments after feedback.
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Smartphone-Based Food Diagnostic Technologies: A Review.
Rateni, Giovanni; Dario, Paolo; Cavallo, Filippo
2017-06-20
A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies.
Smartphone-Based Food Diagnostic Technologies: A Review
Rateni, Giovanni; Dario, Paolo; Cavallo, Filippo
2017-01-01
A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies. PMID:28632188
2016-10-19
A heavy-lift crane lowers the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, for installation on the south side of High Bay 3 in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
ERIC Educational Resources Information Center
Jiao, Jian
2013-01-01
The Internet has revolutionized the way users share and acquire knowledge. As important and popular Web-based applications, online discussion forums provide interactive platforms for users to exchange information and report problems. With the rapid growth of social networks and an ever increasing number of Internet users, online forums have…
ERIC Educational Resources Information Center
Kim, Uk; Yang, Junyoung
2015-01-01
Living conditions and social environment are changing through time, and recently schooling population is diminishing in Korea. Thus the number of abandoned schools has increased. In order to utilize unused space a mechanism is required for the exchange of various ideas. However, there is little effort to provide a platform for this purpose. This…
ERIC Educational Resources Information Center
Mnubi, Godfrey Magoti
2017-01-01
This paper analyses whether the gender-sensitive and democratically elected student councils helped in strengthening school leadership and providing a platform for increased awareness and advocacy for male and female students to address their needs and rights in primary and secondary schools in Tanzania. The data were collected through qualitative…
2008-02-01
tu- mor cells. In this regard, herpesvirus samiri (HVS) was de- monstrated to be naturally selectively oncolytic for the pancreatic cancer line PANC-1...the hexon virus. Therefore, Ad can provide a versatile platform for selective binding of AuNPs, resulting in a multifunctional agent capable of...utility remained unaffected. Therefore, Ad can provide a versatile platform for selective binding of nanoparticles, resulting in a multifunctional agent
A healthcare edition of sporting equipment for middle-aged and elderly.
Wang, Ching-Sung; Lin, Tsung-Ching; Wang, Teng-Hui; Lee, Da-Lin
2013-01-01
The aging phenomenon results in body organ system debilitating, which causes the balance weakening and makes a fall, fracture rate, and further medical cost to increase. The lack of exercise has been linked to increasing the incidence of hypertension, coronary artery disease, osteoporosis, degenerative arthritis, and diabetes. Chronic disease affects patients both in psychological and physiological functions which limit their daily activity. In the past, many researches pointed out that these patients can improve their balance sensation by exercise. Because of the above reasons, this research implementation forms a wireless platform of information connection system and medical data analysis. First of all, the target population in the society focuses on those elderly with the common chronic diseases, such as skeletal muscle diseases and degenerative arthritis. Using the hydraulic resist practicing equipment as the mainstay intervention can help examinee collecting the practice value and further analysis. The platform of information accords not only the data prior and after the exercise but also graphic data presentation and analysis from the medical staff members providing services in the society. It can also provide the medical unit to create data mold and a body health counselor when services in the society.
Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina
2015-01-01
A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409
Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae
2018-01-01
Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energizing Eukaryotic Cell-Free Protein Synthesis With Glucose Metabolism
Hodgman, C. Eric; Jewett, Michael C.
2015-01-01
Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL−1 active luciferase in batch reactions with 16mM glucose and 25mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976
Boldon, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon; ...
2015-12-01
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. With the increase in emissions, it is necessary to promote and develop alternative energy technologies to meet the needs in a sustainable and eco-friendly manner. Furthermore, Nuclear and Renewable Energy Integration (NREI) may offer an effective and environmentally responsible energy solution that enhances energy use and productivity while reducing emissions. Our study of the NREI system provides background on sustainability and its drivers, outlines methods of developing a strong sustainability platform, and assesses sustainability based on the fundamental pillars of economy, environment, andmore » society—all of which aim to promote future sustainable development.« less
Cross-platform validation and analysis environment for particle physics
NASA Astrophysics Data System (ADS)
Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.
2017-11-01
A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.
VOLTTRON™: An Agent Platform for Integrating Electric Vehicles and Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.
2013-12-06
The VOLTTRON™ platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehiclemore » charging with home energy usage« less
A cloud computing based platform for sleep behavior and chronic diseases collaborative research.
Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui
2014-01-01
The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.
47 CFR 64.617 - Neutral Video Communication Service Platform.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 3 2013-10-01 2013-10-01 false Neutral Video Communication Service Platform... Related Customer Premises Equipment for Persons With Disabilities § 64.617 Neutral Video Communication... Neutral Video Communication Service Platform to process VRS calls. Each VRS CA service provider shall be...
47 CFR 64.617 - Neutral Video Communication Service Platform.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 3 2014-10-01 2014-10-01 false Neutral Video Communication Service Platform... Related Customer Premises Equipment for Persons With Disabilities § 64.617 Neutral Video Communication... Neutral Video Communication Service Platform to process VRS calls. Each VRS CA service provider shall be...
openECA Detailed Design Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Russell
This document describes the functional and non-functional requirements for: The openECA platform The included analytic systems that will: Validate the operational readiness and performance of the openECA platform Provide out-of-box value to those that implement the openECA platform with an initial collection of analytics
Validation of the three web quality dimensions of a minimally invasive surgery e-learning platform.
Ortega-Morán, Juan Francisco; Pagador, J Blas; Sánchez-Peralta, Luisa Fernanda; Sánchez-González, Patricia; Noguera, José; Burgos, Daniel; Gómez, Enrique J; Sánchez-Margallo, Francisco M
2017-11-01
E-learning web environments, including the new TELMA platform, are increasingly being used to provide cognitive training in minimally invasive surgery (MIS) to surgeons. A complete validation of this MIS e-learning platform has been performed to determine whether it complies with the three web quality dimensions: usability, content and functionality. 21 Surgeons participated in the validation trials. They performed a set of tasks in the TELMA platform, where an e-MIS validity approach was followed. Subjective (questionnaires and checklists) and objective (web analytics) metrics were analysed to achieve the complete validation of usability, content and functionality. The TELMA platform allowed access to didactic content with easy and intuitive navigation. Surgeons performed all tasks with a close-to-ideal number of clicks and amount of time. They considered the design of the website to be consistent (95.24%), organised (90.48%) and attractive (85.71%). Moreover, they gave the content a high score (4.06 out of 5) and considered it adequate for teaching purposes. The surgeons scored the professional language and content (4.35), logo (4.24) and recommendations (4.20) the highest. Regarding functionality, the TELMA platform received an acceptance of 95.24% for navigation and 90.48% for interactivity. According to the study, it seems that TELMA had an attractive design, innovative content and interactive navigation, which are three key features of an e-learning platform. TELMA successfully met the three criteria necessary for consideration as a website of quality by achieving more than 70% of agreements regarding all usability, content and functionality items validated; this constitutes a preliminary requirement for an effective e-learning platform. However, the content completeness, authoring tool and registration process required improvement. Finally, the e-MIS validity methodology used to measure the three dimensions of web quality in this work can be applied to other clinical areas or training fields. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang
2015-07-01
Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T
2012-01-01
Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.
A Qualitative Investigation on Patient Empowerment in Prostate Cancer
Renzi, Chiara; Fioretti, Chiara; Oliveri, Serena; Mazzocco, Ketti; Zerini, Dario; Alessandro, Ombretta; Rojas, Damaris P.; Jereczek-Fossa, Barbara A.; Pravettoni, Gabriella
2017-01-01
Purpose: Men with prostate cancer often describe low levels of empowerment. eHealth interventions may represent useful tools to deliver care and education and to meet patients' needs within an empowerment framework. In order to design a platform for cancer patients' empowerment within the H2020 iManageCancer project, the perspective of the target population for the platform was assessed. The present study aims to assess the qualitative experience of prostate cancer patients during treatment in order to provide insights for clinical practice with a particular focus on the design of a web platform to promote cancer patients' empowerment. Methods: Ten patients undergoing radiation therapy treatment took part in a semi-structured interview to explore different aspects of patient empowerment. Four main thematic areas were addressed: patient-healthcare providers' communication, decision-making, needs, and resources. A qualitative approach using thematic analysis was followed. Results: Half of the patients reported little to no possibility to share information and questions with healthcare providers. With regards to decision-making, the role of healthcare providers was perceived as directive/informative, but half of the patients perceived to assume an active role in at least one interaction. Difficulties and needs included the choice of the specialist or of the structure after diagnosis, clinicians' support in self-management, surgical consequences, and side effects, preparation for radiation therapy. Resources included family and social support both from a practical and from an emotional perspective, coping style, and work schedule management. Conclusions: These results suggest that relations with healthcare providers should be supported, especially immediately after diagnosis and after surgery. Support to self-management after surgery and at the beginning of radiation therapy treatment also constitutes a priority. The adoption of a personalized approach from the beginning of prostate cancer care flow may promote patient empowerment, overcoming the aforementioned needs and mobilizing resources. The social network represents an important resource that could be integrated in interventions. These considerations will be taken into account in the design of a cancer self-management platform aiming to increase patients' empowerment. PMID:28798701
Spaceflight Nutrition Research: Platforms and Analogs
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.
2002-01-01
Understanding human adaptation to weightlessness requires research in either the true microgravity environment or iii a ground-based model. Over the years, many flight platforms have been available, and many ground models have emerged for both human and animal studies of the effects of spaceflight on physiology. In this review, we provide a brief description of these models and the main points to be considered when choosing a model. We do not intend to provide a comprehensive overview of each platform or model, but rather to provide the reader with an overview of the options available for space nutrition research, and the relative merits and/or drawbacks of each.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalkowski, Jim; Lyon, Adam; Paterno, Marc
Over the past few years, container technology has become increasingly promising as a means to seamlessly make our software available across a wider range of platforms. In December 2015, we decided to put together a set of docker images that serve as a demonstration of this container technology for managing a run-time environment for art-related software projects, and also serve as a set of test cases for evaluation of performance. Docker[1] containers provide a way to “wrap up a piece of software in a complete filesystem that contains everything it needs to run”. In combination with Shifter[2], such containers providemore » a way to run software developed and deployed on “typical” HEP platforms (such as SLF 6, in common use at Fermilab and on OSG platforms) on HPC facilities at NERSC. Docker containers provide a means of delivering software that can be run on a variety of hosts without needing to be compiled specially for each OS to be supported. This could substantially reduce the effort required to create and validate a new release, since one build could be suitable for use on both grid machines (both FermiGrid and OSG) as well as any machine capable of running the Docker container. In addition, docker containers may provide for a quick and easy way for users to install and use a software release in a standardized environment. This report contains the results and status of this demonstration and evaluation.« less
Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-01-01
Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791
Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyol, Bora A.; Haack, Jereme N.; Carpenter, Brandon J.
Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.
Selecting a Virtual World Platform for Learning
ERIC Educational Resources Information Center
Robbins, Russell W.; Butler, Brian S.
2009-01-01
Like any infrastructure technology, Virtual World (VW) platforms provide affordances that facilitate some activities and hinder others. Although it is theoretically possible for a VW platform to support all types of activities, designers make choices that lead technologies to be more or less suited for different learning objectives. Virtual World…
[Application of the life sciences platform based on oracle to biomedical informations].
Zhao, Zhi-Yun; Li, Tai-Huan; Yang, Hong-Qiao
2008-03-01
The life sciences platform based on Oracle database technology is introduced in this paper. By providing a powerful data access, integrating a variety of data types, and managing vast quantities of data, the software presents a flexible, safe and scalable management platform for biomedical data processing.
ERIC Educational Resources Information Center
Selwyn, N.; Banaji, S.; Hadjithoma-Garstka, C.; Clark, W.
2011-01-01
This paper investigates how schools are supporting parents' involvement with their children's education through the use of "Learning Platform" technologies--i.e. the integrated use of virtual learning environments, management information systems, communications, and other information and resource-sharing technologies. Based on in-depth…
An open-source platform to study uniaxial stress effects on nanoscale devices
NASA Astrophysics Data System (ADS)
Signorello, G.; Schraff, M.; Zellekens, P.; Drechsler, U.; Bürge, M.; Steinauer, H. R.; Heller, R.; Tschudy, M.; Riel, H.
2017-05-01
We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.
2016-10-19
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, construction workers assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, has been installed on the south side of the high bay. In view below are several levels of previously installed platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Design and development of a prototype platform for gait analysis
NASA Astrophysics Data System (ADS)
Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.
2017-04-01
The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.
Developing a social media platform for nurses.
Jackson, Jennifer; Kennedy, Maggie
2015-11-18
Social media tools provide opportunities for nurses to connect with colleagues and patients and to advance personally and professionally. This article describes the process of developing an innovative social media platform at a large, multi-centre teaching hospital, The Ottawa Hospital, Canada, and its benefits for nurses. The platform, TOH Nurses, was developed using a nursing process approach, involving assessment, planning, implementation and evaluation. The aim of this initiative was to address the barriers to communication inherent in the large number of nurses employed by the organisation, the physical size of the multi-centre hospital and the shift-work nature of nursing. The platform was used to provide educational materials for clinical nurses, and to share information about professional practice. The implications of using a social media platform in a healthcare setting were considered carefully during its development and implementation, including concerns regarding privacy and confidentiality.
Novel droplet platforms for the detection of disease biomarkers.
Zec, Helena; Shin, Dong Jin; Wang, Tza-Huei
2014-09-01
Personalized medicine - healthcare based on individual genetic variation - has the potential to transform the way healthcare is delivered to patients. The promise of personalized medicine has been predicated on the predictive and diagnostic power of genomic and proteomic biomarkers. Biomarker screening may help improve health outcomes, for example, by identifying individuals' susceptibility to diseases and predicting how patients will respond to drugs. Microfluidic droplet technology offers an exciting opportunity to revolutionize the accessibility of personalized medicine. A framework for the role of droplet microfluidics in biomarker detection can be based on two main themes. Emulsion-based microdroplet platforms can provide new ways to measure and detect biomolecules. In addition, microdroplet platforms facilitate high-throughput screening of biomarkers. Meanwhile, surface-based droplet platforms provide an opportunity to develop miniaturized diagnostic systems. These platforms may function as portable benchtop environments that dramatically shorten the transition of a benchtop assay into a point-of-care format.
NASA Astrophysics Data System (ADS)
Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka
2017-08-01
In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary
2016-11-10
A heavy-lift crane lowers the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, into High Bay 3 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. In view below are several of the previously installed levels of platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
NASA Technical Reports Server (NTRS)
Grotzinger, John P.
2003-01-01
Work has been completed on the digital mapping of a terminal Proterozoic reef complex in Namibia. This complex formed an isolated carbonate platform developed downdip on a carbonate ramp of the Nama Group. The stratigraphic evolution of the platform was digitally reconstructed from an extensive dataset that was compiled by using digital surveying technologies. The platform comprises three accommodation cycles in which each subsequent cycle experienced progressively greater influence of a long-term accommodation increase. Aggradation and progradation during the first cycle resulted in a flat, uniform, sheet-like platform. The coarsening and shallowing-upward sequence representing the first cycle is dominated by columnar stromatolitic thrombolites and massive dolostones with interbedded mudstone-grainstone at the base of the sequence grading into cross-bedded dolostones. The second cycle features aggradation, formation of a distinct margin containing thrombolite mounds and domes, and the development of a bucket geometry. Columnar stromatolitic thrombolites dominate the platform interior. The final stage of platform development shows a deepening trend with initial aggradation and formation of well-bedded, thin deposits in the interior and mound development at the margins. While the interior drowned, the platform margin kept up with rising sea level and a complex pinnacle reef formed containing fused and coalesced thrombolite mounds flanked by bioclastic grainstones (containing Cloudina and Namacalathus fossils) and collapse breccias. A set of isolated large thrombolite mounds flanked by shales indicate the final stage of the carbonate platform. During a progressive increase in accommodation, a flat-topped isolated carbonate platform becomes aerially less extensive by either backstepping or formation of smaller pinnacles or a combination of both. The overall geometric evolution of the studied platform from flat-topped to bucket with elevated margins is recorded in many Proterozoic and Phanerozoic isolated carbonate platforms with similar dimensions. The terminal Proterozoic, microbial-dominated, isolated carbonate platform of this study clearly illustrates that the answer to accommodation changes was already familiar among carbonate platforms before the dawn of metazoan-dominated platforms.
Media additives to promote spheroid circularity and compactness in hanging drop platform.
Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi
2015-02-01
Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadayappan, Ponnuswamy
Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model providesmore » simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research results from the work done at the Ohio State University towards the larger goals of the project listed above.« less
VR Medical Gamification for Training and Education.
Nicola, Stelian; Virag, Ioan; Stoicu-Tivadar, Lăcrămioara
2017-01-01
The new virtual reality based medical applications is providing a better understanding of healthcare related subjects for both medical students and physicians. The work presented in this paper underlines gamification as a concept and uses VR as a new modality to study the human skeleton. The team proposes a mobile Android platform application based on Unity 5.4 editor and Google VR SDK. The results confirmed that the approach provides a more intuitive user experience during the learning process, concluding that the gamification of classical medical software provides an increased interactivity level for medical students during the study of the human skeleton.
Buried waste integrated demonstration human engineered control station. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.
Kantsevoy, Sergey V; Bitner, Marianne; Piskun, Gregory
2016-07-01
Endoscopic removal of gastrointestinal tract lesions is increasingly popular around the world. We evaluated feasibility, safety, effectiveness, and user learning curve of new endoscopic platform for complex intraluminal interventions. A novel system, consisting of expandable working chamber with two independent instrument guides (LIG), was inserted into colon. Simulated colonic lesions were removed with endoscopic submucosal (ESD) and submuscular (ESmD) dissection. In all nine in vivo models, an intraluminal chamber and its dynamic tissue retractors (via LIG) provided a stable working space with excellent visualization and adequate access to target tissue. Endoscopic platform facilitated successful completion of 11 en bloc ESDs (mean size 43.0 ± 11.3 mm, mean time 46.3 ± 41.2 min) and eight ESmD (mean size 50.0 ± 14.1 mm, mean time 48.0 ± 21.2 min). The learning curve for ESD using this platform demonstrated three phases: rapid improvement in procedural skills took place during the first three procedures (mean ESD time 98.7 ± 40.0 min). A plateau phase then occurred (procedures 4-7) with mean procedure time 42.0 ± 13.4 min (p = 0.04), followed by another sharp improvement in procedural skills (procedures 8-11) requiring only 16.3 ± 11.4 min (p = 0.03) to complete ESD. Especially dramatic (p = 0.002) was the time difference between the first three procedures (mean time 98.7 ± 40.0 min) and subsequent eight procedures (mean time 29.1 ± 17.9 min). A newly developed endoscopic platform provides stable intraluminal working space, dynamic tissue retraction, and instrument triangulation, improving visualization and access to the target tissue for safer and more effective en bloc endoscopic submucosal and submuscular dissection. The learning curve for ESD was markedly facilitated by this new endoscopic platform.
[Development and application of hospital customer service center platform].
Chen, Minya; Zheng, Konglin; Xia, Yong
2012-01-01
This paper introduces the construction and application of the platform of client service center in the general hospital and discusses how to provide patients with an entire service including service before clinic, on clinic and after clinic. It can also provide references for a new service mode for clinic service.
An, Gary; Kulkarni, Swati
2015-02-01
Inflammation plays a critical role in the development and progression of cancer, evident in multiple patient populations manifesting increased, non-resolving inflammation, such as inflammatory bowel disease, viral hepatitis and obesity. Given the complexity of both the inflammatory response and the process of oncogenesis, we utilize principles from the field of Translational Systems Biology to bridge the gap between basic mechanistic knowledge and clinical/epidemiologic data by integrating inflammation and oncogenesis within an agent-based model, the Inflammation and Cancer Agent-based Model (ICABM). The ICABM utilizes two previously published and clinically/epidemiologically validated mechanistic models to demonstrate the role of an increased inflammatory milieu on oncogenesis. Development of the ICABM required the creation of a generative hierarchy of the basic hallmarks of cancer to provide a foundation to ground the plethora of molecular and pathway components currently being studied. The ordering schema emphasizes the essential role of a fitness/selection frame shift to sub-organismal evolution as a basic property of cancer, where the generation of genetic instability as a negative effect for multicellular eukaryotic organisms represents the restoration of genetic plasticity used as an adaptive strategy by colonies of prokaryotic unicellular organisms. Simulations with the ICABM demonstrate that inflammation provides a functional environmental context that drives the shift to sub-organismal evolution, where increasingly inflammatory environments led to increasingly damaged genomes in microtumors (tumors below clinical detection size) and cancers. The flexibility of this platform readily facilitates tailoring the ICABM to specific cancers, their associated mechanisms and available epidemiological data. One clinical example of an epidemiological finding that could be investigated with this platform is the increased incidence of triple negative breast cancers in the premenopausal African-American population, which has been identified as having up-regulated of markers of inflammation. The fundamental nature of the ICABM suggests its usefulness as a base platform upon which additional molecular detail could be added as needed. Copyright © 2014 Elsevier Inc. All rights reserved.
Samiei, Ehsan; de Leon Derby, Maria Diaz; den Berg, Andre Van; Hoorfar, Mina
2017-01-17
This paper presents an electrohydrodynamic technique for rapid mixing of droplets in open and closed digital microfluidic (DMF) platforms. Mixing is performed by applying a high frequency AC voltage to the coplanar or parallel electrodes, inducing circulation zones inside the droplet which results in rapid mixing of the content. The advantages of the proposed method in comparison to conventional mixing methods that operate based on transporting the droplet back and forth and side to side include 1) a shorter mixing time (as fast as 0.25 s), 2) the use of a fewer number of electrodes, reducing the size of the chip, and 3) the stationary nature of the technique which reduces the chance of cross-contamination and surface biofouling. Mixing using the proposed method is performed to create a uniform mixture after merging a water droplet with another droplet containing either particles or dye. The results show that increasing the frequency, and or the amplitude of the applied voltage, enhances the mixing process. However, actuation with a very high frequency and voltage may result in shedding pico-liter satellite droplets. Therefore, for each frequency there is an effective range of the amplitude which provides rapid mixing and avoids shedding satellite droplets. Also, the increase in the gap height between the two plates (for the closed DMF platforms) significantly enhances the mixing efficiency due to the lower viscous effects. Effects of the addition of salts and DNA to the samples were also studied. The electrothermal effect decreased for these cases, which was solved by increasing the frequency of the applied voltage. To assure the high frequency actuation does not increase the sample temperature excessively, the temperature change was monitored using a thermal imaging camera and it was found that the increase in temperature is negligible.
Zowawi, Hosam Mamoon; Abedalthagafi, Malak; Mar, Florie A; Almalki, Turki; Kutbi, Abdullah H; Harris-Brown, Tiffany; Harbarth, Stephan; Balkhy, Hanan H; Paterson, David L; Hasanain, Rihab Abdalazez
2015-10-15
The increasing emergence and spread of antimicrobial resistance (AMR) is a serious public health issue. Increasing the awareness of the general public about appropriate antibiotic use is a key factor for combating this issue. Several public media campaigns worldwide have been launched; however, such campaigns can be costly and the outcomes are variable and difficult to assess. Social media platforms, including Twitter, Facebook, and YouTube, are now frequently utilized to address health-related issues. In many geographical locations, such as the countries of the Gulf Cooperation Council (GCC) States (Saudi Arabia, United Arab Emirates, Kuwait, Oman, Qatar, and Bahrain), these platforms are becoming increasingly popular. The socioeconomic status of the GCC states and their reliable communication and networking infrastructure has allowed the penetration and scalability of these platforms in the region. This might explain why the Saudi Ministry of Health is using social media platforms alongside various other media platforms in a large-scale public awareness campaign to educate at-risk communities about the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper discusses the potential for using social media tools as cost-efficient and mass education platforms to raise awareness of appropriate antibiotic use in the general public and in the medical communities of the Arabian Peninsula.
Zowawi, Hosam Mamoon; Abedalthagafi, Malak; Mar, Florie A; Almalki, Turki; Kutbi, Abdullah H; Harris-Brown, Tiffany; Harbarth, Stephan; Balkhy, Hanan H; Paterson, David L
2015-01-01
The increasing emergence and spread of antimicrobial resistance (AMR) is a serious public health issue. Increasing the awareness of the general public about appropriate antibiotic use is a key factor for combating this issue. Several public media campaigns worldwide have been launched; however, such campaigns can be costly and the outcomes are variable and difficult to assess. Social media platforms, including Twitter, Facebook, and YouTube, are now frequently utilized to address health-related issues. In many geographical locations, such as the countries of the Gulf Cooperation Council (GCC) States (Saudi Arabia, United Arab Emirates, Kuwait, Oman, Qatar, and Bahrain), these platforms are becoming increasingly popular. The socioeconomic status of the GCC states and their reliable communication and networking infrastructure has allowed the penetration and scalability of these platforms in the region. This might explain why the Saudi Ministry of Health is using social media platforms alongside various other media platforms in a large-scale public awareness campaign to educate at-risk communities about the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper discusses the potential for using social media tools as cost-efficient and mass education platforms to raise awareness of appropriate antibiotic use in the general public and in the medical communities of the Arabian Peninsula. PMID:26471079
Cross-platform validation and analysis environment for particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.
A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for onlinemore » validation of Monte Carlo event samples through a web interface.« less
Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto
2016-09-01
Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.
The Promise of E-Platform Technology in Medical Education.
Dawd, Siraj
2016-03-01
Increasing the number as well as improving the capacity and quality of medical professionals to achieve an equitable health care for all is a global priority and a global challenge. In developing countries, which are facing the largest burden of disease, to achieve the above stated objective, there is a big need for more well-trained, competent and dedicated health care providers. Currently, there is a well-documented shortage of trained health workers globally, with the poorest countries having the greatest shortfalls. The time tested, traditional approach of training health care force by importing professionals from overseas is not only prohibitively expensive but also not sufficient to achieve the scale and pace of the required human capacity building. Considering this fact, distance learning programs, which include m-Health as well as other information technology (IT) platforms and tools, can provide unique, timely, cost-effective, easily scalable and valuable opportunities to expand access to training health care manpower in developing countries where the shortage is critical.
An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.
Bradley, Stuart
2015-11-20
Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.
Thompson, Michael A; Ahlstrom, Jenny; Dizon, Don S; Gad, Yash; Matthews, Greg; Luks, Howard J; Schorr, Andrew
2017-10-01
Social media utilizes specific media platforms to allow increased interactivity between participants. These platforms serve diverse groups and purposes including participation from patients, family caregivers, research scientists, physicians, and pharmaceutical companies. Utilization of these information outlets has increased with integration at conferences and between conferences with the use of hashtags and "chats". In the realm of the "e-Patient" it is key to not underestimate your audience. Highly technical information is just as useful as a basic post. With growing use, social media analytics help track the volume and impact of content. Additionally, platforms are leveraging each other for uses, including Twitter, blogs, web radio, and recorded video and images. We explore information on social media resources and applications from varying perspectives. While these platforms will evolve over time, or disappear with new platforms taking their place, it is apparent they are now a part of the everyday experience of oncology communication. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja
A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.
Understanding the Cray X1 System
NASA Technical Reports Server (NTRS)
Cheung, Samson
2004-01-01
This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer system, and provides hints and information to enable the reader to port codes to the system. It provides a comparison between the basic performance of the X1 platform and other platforms that are available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with different parallel paradigms, is used to understand some features of the X1 compiler. An example code from the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 platform.
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter; ...
2018-06-12
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser.
Deka, Gitanjal; Okano, Kazunori; Kao, Fu-Jen
2014-01-01
Cellular micropattering has been increasingly adopted in quantitative biological experiments. A Q-switched pulsed neodymium-doped yttrium ortho-vanadate (Nd∶YVO4) laser directed in-situ microfabrication technique for cell patterning is presented. A platform is designed uniquely to achieve laser ablation. The platform is comprised of thin gold coating over a glass surface that functions as a thermal transducer and is over-layered by a cell repellant polymer layer. Micropatterns are engraved on the platform, subsequently exposing specific cell adhesive micro-domains by ablating the gold-polymer coating photothermally. Experimental results indicate that the proposed approach is applicable under culture conditions, viable toward cells, and has a higher engraving speed. Possible uses in arraying isolated single cells on the platform are also shown. Additionally, based on those micro-patterns, dynamic cellular morphological changes and migrational speed in response to geometrical barriers are studied to demonstrate the potential applications of the proposed approach. Our results further demonstrate that cells in narrower geometry had elongated shapes and higher migrational speed than those in wider geometry. Importantly, the proposed approach will provide a valuable reference for efforts to study single cell dynamics and cellular migration related processes for areas such as cell division, wound healing, and cancer invasion.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2017-01-01
SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540
NASA Astrophysics Data System (ADS)
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-04-01
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali
2016-01-01
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564
McCowan, Colin; Thomson, Elizabeth; Szmigielski, Cezary A.; Kalra, Dipak; Sullivan, Frank M.; Prokosch, Hans-Ulrich; Dugas, Martin; Ford, Ian
2015-01-01
Background. The conduct of clinical trials is increasingly challenging due to greater complexity and governance requirements as well as difficulties with recruitment and retention. Electronic Health Records for Clinical Research (EHR4CR) aims at improving the conduct of trials by using existing routinely collected data, but little is known about stakeholder views on data availability, information governance, and acceptable working practices. Methods. Senior figures in healthcare organisations across Europe were provided with a description of the project and structured interviews were subsequently conducted to elicit their views. Results. 37 structured interviewees in Germany, UK, Switzerland, and France indicated strong support for the proposed EHR4CR platform. All interviewees reported that using the platform for assessing feasibility would enhance the conduct of clinical trials and the majority also felt it would reduce workloads. Interviewees felt the platform could enhance trial recruitment and adverse event reporting but also felt it could raise either ethical or information governance concerns in their country. Conclusions. There was clear support for EHR4CR and a belief that it could reduce workloads and improve the conduct and quality of trials. However data security, privacy, and information governance issues would need to be carefully managed in the development of the platform. PMID:26539523
Evaluation of Game Engines for Cross-Platform Development of Mobile Serious Games for Health.
Kleinschmidt, Carina; Haag, Martin
2016-01-01
Studies have shown that serious games for health can improve patient compliance and help to increase the quality of medical education. Due to a growing availability of mobile devices, especially the development of cross-platform mobile apps is helpful for improving healthcare. As the development can be highly time-consuming and expensive, an alternative development process is needed. Game engines are expected to simplify this process. Therefore, this article examines the question whether using game engines for cross-platform serious games for health can simplify the development compared to the development of a plain HTML5 app. At first, a systematic review of the literature was conducted in different databases (MEDLINE, ACM and IEEE). Afterwards three different game engines were chosen, evaluated in different categories and compared to the development of a HTML5 app. This was realized by implementing a prototypical application in the different engines and conducting a utility analysis. The evaluation shows that the Marmalade engine is the best choice for development in this scenario. Furthermore, it is obvious that the game engines have great benefits against plain HTML5 development as they provide components for graphics, physics, sounds, etc. The authors recommend to use the Marmalade Engine for a cross-platform mobile Serious Game for Health.
McCowan, Colin; Thomson, Elizabeth; Szmigielski, Cezary A; Kalra, Dipak; Sullivan, Frank M; Prokosch, Hans-Ulrich; Dugas, Martin; Ford, Ian
2015-01-01
The conduct of clinical trials is increasingly challenging due to greater complexity and governance requirements as well as difficulties with recruitment and retention. Electronic Health Records for Clinical Research (EHR4CR) aims at improving the conduct of trials by using existing routinely collected data, but little is known about stakeholder views on data availability, information governance, and acceptable working practices. Senior figures in healthcare organisations across Europe were provided with a description of the project and structured interviews were subsequently conducted to elicit their views. 37 structured interviewees in Germany, UK, Switzerland, and France indicated strong support for the proposed EHR4CR platform. All interviewees reported that using the platform for assessing feasibility would enhance the conduct of clinical trials and the majority also felt it would reduce workloads. Interviewees felt the platform could enhance trial recruitment and adverse event reporting but also felt it could raise either ethical or information governance concerns in their country. There was clear support for EHR4CR and a belief that it could reduce workloads and improve the conduct and quality of trials. However data security, privacy, and information governance issues would need to be carefully managed in the development of the platform.
Vassileva, J; Simeonov, F; Avramova-Cholakova, S
2015-07-01
According to the Bulgarian regulation for radiation protection at medical exposure, the National Centre of Radiobiology and Radiation Protection (NCRRP) is responsible for performing national dose surveys in diagnostic and interventional radiology and nuclear medicine and for establishing of national diagnostic reference levels (DRLs). The next national dose survey is under preparation to be performed in the period of 2015-16, with the aim to cover conventional radiography, mammography, conventional fluoroscopy, interventional and fluoroscopy guided procedures and CT. It will be performed electronically using centralised on-line data collection platform established by the NCRRP. The aim is to increase the response rate and to improve the accuracy by reducing human errors. The concept of the on-line dose data collection platform is presented. Radiological facilities are provided with a tool to determine local typical patient doses, and the NCRRP to establish national DRLs. Future work will include automatic retrieval of dose data from hospital picture archival and communicating system. The on-line data collection platform is expected to facilitate the process of dose audit and optimisation of radiological procedures in Bulgarian hospitals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Xavier Basurto; Diana Hadley
2006-01-01
The semi-arid grasslands in the Mexico-United States border region are relatively intact and provide one of the best opportunities in North America to preserve and nurture an extensive series of grassland ecosystems. The conference was organized to increase appreciation for the importance of the remaining semi-arid grasslands and to create a platform for expanding the...
ERIC Educational Resources Information Center
Baños, Rocío; Sokoli, Stavroula
2015-01-01
The purpose of this paper is to present the rationale and outcomes of ClipFlair, a European-funded project aimed at countering the factors that discourage Foreign Language Learning (FLL) by providing a motivating, easily accessible online platform to learn a foreign language through revoicing (e.g. dubbing) and captioning (e.g. subtitling). This…
"Her Story Was Complex": A Twine Workshop for Ten- to Twelve-Year-Old Girls
ERIC Educational Resources Information Center
Tran, Kelly M.
2016-01-01
In this study, I discuss the need to increase girls' involvement with game design due to the numerous benefits that engaging in this practice might have. In particular, I discuss the tool Twine, an accessible and relatively easy-to-use platform for creating text-based games. I provide an overview of the tool and its potential benefits for…
Validation of Biomarker Proteins Using Reverse Capture Protein Microarrays.
Jozwik, Catherine; Eidelman, Ofer; Starr, Joshua; Pollard, Harvey B; Srivastava, Meera
2017-01-01
Genomics has revolutionized large-scale and high-throughput sequencing and has led to the discovery of thousands of new proteins. Protein chip technology is emerging as a miniaturized and highly parallel platform that is suited to rapid, simultaneous screening of large numbers of proteins and the analysis of various protein-binding activities, enzyme substrate relationships, and posttranslational modifications. Specifically, reverse capture protein microarrays provide the most appropriate platform for identifying low-abundance, disease-specific biomarker proteins in a sea of high-abundance proteins from biological fluids such as blood, serum, plasma, saliva, urine, and cerebrospinal fluid as well as tissues and cells obtained by biopsy. Samples from hundreds of patients can be spotted in serial dilutions on many replicate glass slides. Each slide can then be probed with one specific antibody to the biomarker of interest. That antibody's titer can then be determined quantitatively for each patient, allowing for the statistical assessment and validation of the diagnostic or prognostic utility of that particular antigen. As the technology matures and the availability of validated, platform-compatible antibodies increases, the platform will move further into the desirable realm of discovery science for detecting and quantitating low-abundance signaling proteins. In this chapter, we describe methods for the successful application of the reverse capture protein microarray platform for which we have made substantial contributions to the development and application of this method, particularly in the use of body fluids other than serum/plasma.
Cloud computing and validation of expandable in silico livers
2010-01-01
Background In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. Results The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. Conclusions The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware. PMID:21129207
Constructing temporary sampling platforms for hydrologic studies
Manuel H. Martinez; Sandra E. Ryan
2000-01-01
This paper presents instructions for constructing platforms that span the width of stream channels to accommodate the measurement of hydrologic parameters over a wide range of discharges. The platforms provide a stable, safe, noninvasive, easily constructed, and relatively inexpensive means for permitting data collection without wading in the flow. We have used the...
Ideas for a future earth observing system from geosynchronous orbit
NASA Technical Reports Server (NTRS)
Shenk, William E.; Hall, Forrest; Esaias, Wayne; Maxwell, Marvin; Suomi, Verner E.; Von Bun, Fritz
1986-01-01
Uses for the proposed geosynchronous platform are described. The geosynchronous satellite could provide good spatial and temporal resolution, a large field-of-view, easier calibration, stereography, and data relay. The limitations of the platform are discussed. The applications of the geosynchronous platform to meteorology, earth surveying, and oceanography are examined.
Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies.
Ahadian, Samad; Civitarese, Robert; Bannerman, Dawn; Mohammadi, Mohammad Hossein; Lu, Rick; Wang, Erika; Davenport-Huyer, Locke; Lai, Ben; Zhang, Boyang; Zhao, Yimu; Mandla, Serena; Korolj, Anastasia; Radisic, Milica
2018-01-01
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...
2017-04-18
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Huang, Chao; Lin, Yi-Dong
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
NASA Astrophysics Data System (ADS)
Wang, Tingting; Zhao, Lei
2017-10-01
The emergence of car-hailing service satisfies the need of public travel in Internet era. Didi—the representative of car-hailing service, provides users with cost-effective service and great travel experience and quickly became the leader in the field of mobile travel depending on its price advantage, market segmentation, fast respond and some other competitive strategies. However, the promulgation of the new car-hailing regulation brings many challenges to Didi. After the new regulation, it is hard for Didi to gap away significantly from its competitors in scale and price. Thus the differentiated service is the competitive focus for all platforms. So there is an urgent need for Didi to do something to make difference, such as improving the interface design of the platform and the process of order allocation, establishing exclusive ‘station’, increasing the interaction between drivers and passengers. By doing so, Didi can reduce the information asymmetry and increase the user engagement and loyalty with high quality service.
The potential benefits of photonics in the computing platform
NASA Astrophysics Data System (ADS)
Bautista, Jerry
2005-03-01
The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.
GridAPPS-D Conceptual Design v1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, Ronald B.; Schneider, Kevin P.; McDermott, Thomas E.
2017-05-31
The purpose of this document is to provide a conceptual design of the distribution system application development platform being developed for the U.S. Department of Energy’s Advanced Distribution Management System (ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063. The platform will be referred to as GridAPPS-D. This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as themore » project progresses.« less
NASA Technical Reports Server (NTRS)
1979-01-01
Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.
NASA Astrophysics Data System (ADS)
Wygant, M.
2015-12-01
As droughts continue to impact businesses and communities throughout the United States, there needs to be a greater emphasis on drought communication through interdisciplinary approaches, risk communication, and digital platforms. The purpose of this research is to provide an overview of the current literature on communicating drought and suggests areas for further improvement. Specifically, this research focuses on communicating drought through social media platforms such as Facebook, Twitter, and Instagram. It also focuses on the conglomeration of theoretical frameworks within the realm of risk communication, to provide a strong foundation towards future drought communication. This research proposal provides a critical step to advocate for paradigmatic shifts within natural hazard communication.
Space Station as a Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Folley, Adrienne; Scheib, Jim
1995-01-01
There is need for a space platform for experiments investigating long duration exposure to space. This platform should be maintainable in the event of a malfunction, and experiments should be easily recoverable for analysis on Earth. The International Space Station provides such a platform. The current Space Station configuration has six external experiment attachment sites, providing utilities and data support distributed along the external truss. There are also other sites that could potentially support long duration exposure experiments. This paper describes the resources provided to payloads at these sites, and cites examples of integration of proposed long duration exposure experiments on these sites. The environments to which external attached payloads will be exposed are summarized.
Friedlander, Alan M; Ballesteros, Enric; Fay, Michael; Sala, Enric
2014-01-01
The marine biodiversity of Gabon, West Africa has not been well studied and is largely unknown. Our examination of marine communities associated with oil platforms in Gabon is the first scientific investigation of these structures and highlights the unique ecosystems associated with them. A number of species previously unknown to Gabonese waters were recorded during our surveys on these platforms. Clear distinctions in benthic communities were observed between older, larger platforms in the north and newer platforms to the south or closer to shore. The former were dominated by a solitary cup coral, Tubastraea sp., whereas the latter were dominated by the barnacle Megabalanus tintinnabulum, but with more diverse benthic assemblages compared to the northerly platforms. Previous work documented the presence of limited zooxanthellated scleractinian corals on natural rocky substrate in Gabon but none were recorded on platforms. Total estimated fish biomass on these platforms exceeded one ton at some locations and was dominated by barracuda (Sphyraena spp.), jacks (Carangids), and rainbow runner (Elagatis bipinnulata). Thirty-four percent of fish species observed on these platforms are new records for Gabon and 6% are new to tropical West Africa. Fish assemblages closely associated with platforms had distinct amphi-Atlantic affinities and platforms likely extend the distribution of these species into coastal West Africa. At least one potential invasive species, the snowflake coral (Carijoa riisei), was observed on the platforms. Oil platforms may act as stepping stones, increasing regional biodiversity and production but they may also be vectors for invasive species. Gabon is a world leader in terrestrial conservation with a network of protected areas covering >10% of the country. Oil exploration and biodiversity conservation currently co-exist in terrestrial and freshwater ecosystems in Gabon. Efforts to increase marine protection in Gabon may benefit by including oil platforms in the marine protected area design process.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the south wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a construction worker assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Liu, Shenglin; Zhang, Xutian; Wang, Guohong; Zhang, Qiang
2012-03-01
Based on specified demands on medical devices maintenance for clinical engineers and Browser/Server architecture technology, a medical device maintenance information platform was developed, which implemented the following modules such as repair, preventive maintenance, accessories management, training, document, system management and regional cooperation. The characteristics of this system were summarized and application in increase of repair efficiency, improvement of preventive maintenance and cost control was introduced. The application of this platform increases medical device maintenance service level.
Comparison of precision and speed in laparoscopic and robot-assisted surgical task performance.
Zihni, Ahmed; Gerull, William D; Cavallo, Jaime A; Ge, Tianjia; Ray, Shuddhadeb; Chiu, Jason; Brunt, L Michael; Awad, Michael M
2018-03-01
Robotic platforms have the potential advantage of providing additional dexterity and precision to surgeons while performing complex laparoscopic tasks, especially for those in training. Few quantitative evaluations of surgical task performance comparing laparoscopic and robotic platforms among surgeons of varying experience levels have been done. We compared measures of quality and efficiency of Fundamentals of Laparoscopic Surgery task performance on these platforms in novices and experienced laparoscopic and robotic surgeons. Fourteen novices, 12 expert laparoscopic surgeons (>100 laparoscopic procedures performed, no robotics experience), and five expert robotic surgeons (>25 robotic procedures performed) performed three Fundamentals of Laparoscopic Surgery tasks on both laparoscopic and robotic platforms: peg transfer (PT), pattern cutting (PC), and intracorporeal suturing. All tasks were repeated three times by each subject on each platform in a randomized order. Mean completion times and mean errors per trial (EPT) were calculated for each task on both platforms. Results were compared using Student's t-test (P < 0.05 considered statistically significant). Among novices, greater errors were noted during laparoscopic PC (Lap 2.21 versus Robot 0.88 EPT, P < 0.001). Among expert laparoscopists, greater errors were noted during laparoscopic PT compared with robotic (PT: Lap 0.14 versus Robot 0.00 EPT, P = 0.04). Among expert robotic surgeons, greater errors were noted during laparoscopic PC compared with robotic (Lap 0.80 versus Robot 0.13 EPT, P = 0.02). Among expert laparoscopists, task performance was slower on the robotic platform compared with laparoscopy. In comparisons of expert laparoscopists performing tasks on the laparoscopic platform and expert robotic surgeons performing tasks on the robotic platform, expert robotic surgeons demonstrated fewer errors during the PC task (P = 0.009). Robotic assistance provided a reduction in errors at all experience levels for some laparoscopic tasks, but no benefit in the speed of task performance. Robotic assistance may provide some benefit in precision of surgical task performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Developing the concept of a geostationary platform. [for communication services
NASA Technical Reports Server (NTRS)
Carey, W. T.; Bowman, R. M.; Stone, G. R.
1980-01-01
A geostationary platform concept with a proliferation of low-cost earth stations is discussed. Candidate platform concepts, servicing, life, and Orbital Transfer Vehicle (OTV) options are considered. A Life Cycle Costing model is used to select the minimum cost concept meeting program criteria. It is concluded that the geostationary platform concept is a practical and economical approach to providing expanding communication services within the limitations imposed by the available frequency spectrum and orbital arc.
Geostationary platform systems concepts definition study. Volume 2: Technical, book 3
NASA Technical Reports Server (NTRS)
1980-01-01
The supporting research and technology, and space demonstrations required to support the 1990s operational geostationary platforms are identified. Also the requirements on and interfaces with the Space Transportation System hardware elements supporting the geostationary platform program, including the shuttle, orbital transfer vehicles, teleoperator, etc., are investigated to provide integrated support requirements. Finally, a preliminary evaluation of the practicability and capabilities of an experimental platform from the standpoint of technology, schedule, and cost is given.
Increasing Flight Software Reuse with OpenSatKit
NASA Technical Reports Server (NTRS)
McComas, David
2018-01-01
In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospaceâ€"TM"s command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for userâ€"TM"s to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS 'App Store'. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans.
Dicoogle Mobile: a medical imaging platform for Android.
Viana-Ferreira, Carlos; Ferreira, Daniel; Valente, Frederico; Monteiro, Eriksson; Costa, Carlos; Oliveira, José Luís
2012-01-01
Mobile computing technologies are increasingly becoming a valuable asset in healthcare information systems. The adoption of these technologies helps to assist in improving quality of care, increasing productivity and facilitating clinical decision support. They provide practitioners with ubiquitous access to patient records, being actually an important component in telemedicine and tele-work environments. We have developed Dicoogle Mobile, an Android application that provides remote access to distributed medical imaging data through a cloud relay service. Besides, this application has the capability to store and index local imaging data, so that they can also be searched and visualized. In this paper, we will describe Dicoogle Mobile concept as well the architecture of the whole system that makes it running.
Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays
Garcia, Ernest J [Albuquerque, NM; Polosky, Marc A [Tijeras, NM; Sleefe, Gerard E [Cedar Crest, NM
2006-12-12
A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Large Tandemloc bars have been attached to the platform to keep it level during lifting and installation. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2017-01-01
Direct analysis by mass spectrometry (imaging) has become increasingly deployed in preclinical and clinical research due to its rapid and accurate readouts. However, when it comes to biomarker discovery or histopathological diagnostics, more sensitive and in-depth profiling from localized areas is required. We developed a comprehensive, fully automated online platform for high-resolution liquid extraction surface analysis (HR-LESA) followed by micro–liquid chromatography (LC) separation and a data-independent acquisition strategy for untargeted and low abundant analyte identification directly from tissue sections. Applied to tissue sections of rat pituitary, the platform demonstrated improved spatial resolution, allowing sample areas as small as 400 μm to be studied, a major advantage over conventional LESA. The platform integrates an online buffer exchange and washing step for removal of salts and other endogenous contamination that originates from local tissue extraction. Our carry over–free platform showed high reproducibility, with an interextraction variability below 30%. Another strength of the platform is the additional selectivity provided by a postsampling gas-phase ion mobility separation. This allowed distinguishing coeluted isobaric compounds without requiring additional separation time. Furthermore, we identified untargeted and low-abundance analytes, including neuropeptides deriving from the pro-opiomelanocortin precursor protein and localized a specific area of the pituitary gland (i.e., adenohypophysis) known to secrete neuropeptides and other small metabolites related to development, growth, and metabolism. This platform can thus be applied for the in-depth study of small samples of complex tissues with histologic features of ∼400 μm or more, including potential neuropeptide markers involved in many diseases such as neurodegenerative diseases, obesity, bulimia, and anorexia nervosa. PMID:28945354
Earth resources instrumentation for the Space Station Polar Platform
NASA Technical Reports Server (NTRS)
Donohoe, Martin J.; Vane, Deborah
1986-01-01
The spacecraft and payloads of the Space Station Polar Platform program are described in a brief overview. Present plans call for one platform in a descending morning-equator-crossing orbit at 824 km and two or three platforms in ascending afternoon-crossing orbits at 542-824 km. The components of the NASA Earth Observing System (EOS) and NOAA payloads are listed in tables and briefly characterized, and data-distribution requirements and the mission development schedule are discussed. A drawing of the platform, a graph showing the spectral coverage of the EOS instruments, and a glossary of acronyms are provided.
Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics
NASA Astrophysics Data System (ADS)
Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey
2018-02-01
We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.
Hussain, M Sazzad; Li, Jane; Brindal, Emily; van Kasteren, Yasmin; Varnfield, Marlien; Reeson, Andrew; Berkovsky, Shlomo; Freyne, Jill
2017-03-01
Total knee replacement (TKR) surgeries have increased in recent years. Exercise programs and other interventions following surgery can facilitate the recovery process. With limited clinician contact time, patients with TKR have a substantial burden of self-management and limited communication with their care team, thus often fail to implement an effective rehabilitation plan. We have developed a digital orthopedic rehabilitation platform that comprises a mobile phone app, wearable activity tracker, and clinical Web portal in order to engage patients with self-management tasks for surgical preparation and recovery, thus addressing the challenges of adherence to and completion of TKR rehabilitation. The study will determine the efficacy of the TKR platform in delivering information and assistance to patients in their preparation and recovery from TKR surgery and a Web portal for clinician care teams (ie, surgeons and physiotherapists) to remotely support and monitor patient progress. The study will evaluate the TKR platform through a randomized controlled trial conducted at multiple sites (N=5) in a number of states in Australia with 320 patients undergoing TKR surgery; the trial will run for 13 months for each patient. Participants will be randomized to either a control group or an intervention group, both receiving usual care as provided by their hospital. The intervention group will receive the app and wearable activity tracker. Participants will be assessed at 4 different time points: 4 weeks before surgery, immediately before surgery, 12 weeks after surgery, and 52 weeks after surgery. The primary outcome measure is the Oxford Knee Score. Secondary outcome measures include quality of life (Short-Form Health Survey); depression, anxiety, and stress (Depression, Anxiety, and Stress Scales); self-motivation; self-determination; self-efficacy; and the level of satisfaction with the knee surgery and care delivery. The study will also collect quantitative usage data related to all components (app, activity tracker, and Web portal) of the TKR platform and qualitative data on the perceptions of the platform as a tool for patients, carers, and clinicians. Finally, an economic evaluation of the impact of the platform will be conducted. Development of the TKR platform has been completed and deployed for trial. The research protocol is approved by 2 human research ethics committees in Australia. A total of 5 hospitals in Australia (2 in New South Wales, 2 in Queensland, and 1 in South Australia) are expected to participate in the trial. The TKR platform is designed to provide flexibility in care delivery and increased engagement with rehabilitation services. This trial will investigate the clinical and behavioral efficacy of the app and impact of the TKR platform in terms of service satisfaction, acceptance, and economic benefits of the provision of digital services. Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12616000504415; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370536 (Archived by WebCite at http://www.webcitation.org/6oKES0Gp1). ©M Sazzad Hussain, Jane Li, Emily Brindal, Yasmin van Kasteren, Marlien Varnfield, Andrew Reeson, Shlomo Berkovsky, Jill Freyne. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 01.03.2017.
76 FR 47469 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... requirements that have not been approved by the Office of Management and Budget (OMB). The Federal... use, sharing of the ACD platform, or sharing the management of the ACD platform may give providers an... require certified iTRS providers to append to their annual reports any documentary evidence required for...
A comprehensive SNP and indel imputability database.
Duan, Qing; Liu, Eric Yi; Croteau-Chonka, Damien C; Mohlke, Karen L; Li, Yun
2013-02-15
Genotype imputation has become an indispensible step in genome-wide association studies (GWAS). Imputation accuracy, directly influencing downstream analysis, has shown to be improved using re-sequencing-based reference panels; however, this comes at the cost of high computational burden due to the huge number of potentially imputable markers (tens of millions) discovered through sequencing a large number of individuals. Therefore, there is an increasing need for access to imputation quality information without actually conducting imputation. To facilitate this process, we have established a publicly available SNP and indel imputability database, aiming to provide direct access to imputation accuracy information for markers identified by the 1000 Genomes Project across four major populations and covering multiple GWAS genotyping platforms. SNP and indel imputability information can be retrieved through a user-friendly interface by providing the ID(s) of the desired variant(s) or by specifying the desired genomic region. The query results can be refined by selecting relevant GWAS genotyping platform(s). This is the first database providing variant imputability information specific to each continental group and to each genotyping platform. In Filipino individuals from the Cebu Longitudinal Health and Nutrition Survey, our database can achieve an area under the receiver-operating characteristic curve of 0.97, 0.91, 0.88 and 0.79 for markers with minor allele frequency >5%, 3-5%, 1-3% and 0.5-1%, respectively. Specifically, by filtering out 48.6% of markers (corresponding to a reduction of up to 48.6% in computational costs for actual imputation) based on the imputability information in our database, we can remove 77%, 58%, 51% and 42% of the poorly imputed markers at the cost of only 0.3%, 0.8%, 1.5% and 4.6% of the well-imputed markers with minor allele frequency >5%, 3-5%, 1-3% and 0.5-1%, respectively. http://www.unc.edu/∼yunmli/imputability.html
qPortal: A platform for data-driven biomedical research.
Mohr, Christopher; Friedrich, Andreas; Wojnar, David; Kenar, Erhan; Polatkan, Aydin Can; Codrea, Marius Cosmin; Czemmel, Stefan; Kohlbacher, Oliver; Nahnsen, Sven
2018-01-01
Modern biomedical research aims at drawing biological conclusions from large, highly complex biological datasets. It has become common practice to make extensive use of high-throughput technologies that produce big amounts of heterogeneous data. In addition to the ever-improving accuracy, methods are getting faster and cheaper, resulting in a steadily increasing need for scalable data management and easily accessible means of analysis. We present qPortal, a platform providing users with an intuitive way to manage and analyze quantitative biological data. The backend leverages a variety of concepts and technologies, such as relational databases, data stores, data models and means of data transfer, as well as front-end solutions to give users access to data management and easy-to-use analysis options. Users are empowered to conduct their experiments from the experimental design to the visualization of their results through the platform. Here, we illustrate the feature-rich portal by simulating a biomedical study based on publically available data. We demonstrate the software's strength in supporting the entire project life cycle. The software supports the project design and registration, empowers users to do all-digital project management and finally provides means to perform analysis. We compare our approach to Galaxy, one of the most widely used scientific workflow and analysis platforms in computational biology. Application of both systems to a small case study shows the differences between a data-driven approach (qPortal) and a workflow-driven approach (Galaxy). qPortal, a one-stop-shop solution for biomedical projects offers up-to-date analysis pipelines, quality control workflows, and visualization tools. Through intensive user interactions, appropriate data models have been developed. These models build the foundation of our biological data management system and provide possibilities to annotate data, query metadata for statistics and future re-analysis on high-performance computing systems via coupling of workflow management systems. Integration of project and data management as well as workflow resources in one place present clear advantages over existing solutions.
Stable metal-organic frameworks as a host platform for catalysis and biomimetics.
Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina; Pang, Jiandong; Alsalme, Ali; Zhou, Hong-Cai
2018-04-24
Recent years have witnessed the exploration and synthesis of an increasing number of metal-organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed. This Feature Article will provide insights into the rational design and synthesis of three types of stable MOF catalysts on the basis of structural features of MOFs, that is, (i) MOF catalysts with catalytic sites on metal nodes, (ii) MOF catalysts with catalytic sites immobilized in organic struts, and (iii) MOF catalysts with catalytic centres encapsulated in the pores. Then, MOFs used in biomimetics including biomimetic mineralization, biosensors and biomimetic replication are introduced. Finally, a discussion on the challenges that must be addressed for successful implementation of MOFs in catalysis and biomimetics is presented.
The use of accelerated radiation testing for avionics
NASA Astrophysics Data System (ADS)
Quinn, Heather
2013-04-01
In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.
Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform.
Russell, Jonathon O; Noureldine, Salem I; Al Khadem, Mai G; Chaudhary, Hamad A; Day, Andrew T; Kim, Hoon Yub; Tufano, Ralph P; Richmon, Jeremy D
2017-09-01
Transoral thyroid surgery allows the surgeon to conceal incisions within the oral cavity without significantly increasing the amount of required dissection. TORT provides an ideal scarless, midline access to the thyroid gland and bilateral central neck compartments. This approach, however, presents multiple technical challenges. Herein, we present our experience using the latest generation robotic surgical system to accomplish transoral robotic thyroidectomy (TORT). In two human cadavers, the da Vinci Xi surgical system (Intuitive Surgical, Sunnyvale, CA, USA) was used to complete TORT. Total thyroidectomy and bilateral central neck dissection was successfully completed in both cadavers. The da Vinci Xi platform offered several technologic advantages over previous robotic generations including overhead docking, narrower arms, and improved range of motion allowing for improved execution of previously described TORT techniques.
Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms.
Holtzapple, Mark T; Granda, Cesar B
2009-05-01
To convert biomass to liquid fuels, three platforms are compared: thermochemical, sugar, and carboxylate. To create a common basis, each platform is fed "ideal biomass," which contains polysaccharides (68.3%) and lignin (31.7%). This ratio is typical of hardwood biomass and was selected so that when gasified and converted to hydrogen, the lignin has sufficient energy to produce ethanol from the carboxylic acids produced by the carboxylate platform. Using balanced chemical reactions, the theoretical yield and energy efficiency were determined for each platform. For all platforms, the ethanol yield can be increased by 71% to 107% by supplying external hydrogen produced from other sources (e.g., solar, wind, nuclear, fossil fuels). The alcohols can be converted to alkanes with a modest loss of energy efficiency (3 to 5 percentage points). Of the three platforms considered, the carboxylate platform has demonstrated the highest product yields.
Futrega, Kathryn; Atkinson, Kerry; Lott, William B; Doran, Michael R
2017-04-01
While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25-400 MSCs and 10 umbilical cord blood (CB)-derived CD34 + progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34 + cell expansion outcomes. By contrast, a substantial increase in CD34 + CD38 - cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34 + CD38 - cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34 + CD38 - cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34 + cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications.
NASA Astrophysics Data System (ADS)
Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Olson, R. E.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Parra-Vasquez, N. A. G.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.
2016-05-01
Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Work is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. The ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.
Risk Management of P2P Internet Financing Service Platform
NASA Astrophysics Data System (ADS)
Yalei, Li
2017-09-01
Since 2005, the world’s first P2P Internet financing service platform Zopa in UK was introduced, in the development of “Internet +” trend, P2P Internet financing service platform has been developed rapidly. In 2007, China’s first P2P platform “filming loan” was established, marking the P2P Internet financing service platform to enter China and the rapid development. At the same time, China’s P2P Internet financing service platform also appeared in different forms of risk. This paper focuses on the analysis of the causes of risk of P2P Internet financing service platform and the performance of risk management process. It provides a solution to the Internet risk management plan, and explains the risk management system of the whole P2P Internet financing service platform and the future development direction.
Satellite data lift the veil on offshore platforms in the South China Sea
NASA Astrophysics Data System (ADS)
Liu, Yongxue; Sun, Chao; Sun, Jiaqi; Li, Hongyi; Zhan, Wenfeng; Yang, Yuhao; Zhang, Siyu
2016-09-01
Oil and gas exploration in the South China Sea (SCS) has garnered global attention recently; however, uncertainty regarding the accurate number of offshore platforms in the SCS, let alone their detailed spatial distribution and dynamic change, may lead to significant misjudgment of the true status of offshore hydrocarbon production in the region. Using both fresh and archived space-borne images with multiple resolutions, we enumerated the number, distribution, and annual rate of increase of offshore platforms across the SCS. Our results show that: (1) a total of 1082 platforms are present in the SCS, mainly located in shallow-water; and (2) offshore oil/gas exploitation in the SCS is increasing in intensity and advancing from shallow to deep water, and even to ultra-deep-water. Nevertheless, our findings suggest that oil and gas exploration in the SCS may have been over-estimated by one-third in previous reports. However, this overestimation does not imply any amelioration of the potential for future maritime disputes, since the rate of increase of platforms in disputed waters is twice that in undisputed waters.
Satellite data lift the veil on offshore platforms in the South China Sea
Liu, Yongxue; Sun, Chao; Sun, Jiaqi; Li, Hongyi; Zhan, Wenfeng; Yang, Yuhao; Zhang, Siyu
2016-01-01
Oil and gas exploration in the South China Sea (SCS) has garnered global attention recently; however, uncertainty regarding the accurate number of offshore platforms in the SCS, let alone their detailed spatial distribution and dynamic change, may lead to significant misjudgment of the true status of offshore hydrocarbon production in the region. Using both fresh and archived space-borne images with multiple resolutions, we enumerated the number, distribution, and annual rate of increase of offshore platforms across the SCS. Our results show that: (1) a total of 1082 platforms are present in the SCS, mainly located in shallow-water; and (2) offshore oil/gas exploitation in the SCS is increasing in intensity and advancing from shallow to deep water, and even to ultra-deep-water. Nevertheless, our findings suggest that oil and gas exploration in the SCS may have been over-estimated by one-third in previous reports. However, this overestimation does not imply any amelioration of the potential for future maritime disputes, since the rate of increase of platforms in disputed waters is twice that in undisputed waters. PMID:27641542
Nicolai, Leo; Gradel, Maximilian; Antón, Sofia; Pander, Tanja; Kalb, Anke; Köhler, Lisa; Fischer, Martin R; Dimitriadis, Konstantinos; von der Borch, Philip
2017-01-01
Introduction: One of the most important extracurricular aspects of medical studies in Germany is a research thesis completed by most students. This research project often times conveys relevant competencies for the physician's role as scientist. Nevertheless, the choice of the right project remains a challenge. Reasons for this are among others, missing structures for a comprehensive overview of research groups and their respective projects. Description of the project: We developed the online platform Doktabörse as an online marketplace for doctoral research projects. The platform enables authorized researchers to create working groups and upload, deactivate and change research projects within their institute. For interested students, a front end with integrated search function displays these projects in a structured and well-arranged way. In parallel, the Doktabörse provides for a comprehensive overview of research at the medical faculty. We evaluated Researchers' and students' use of the platform. Results: 96,6% of students participating in the evaluation (n=400) were in favor of a centralized research platform at the medical faculty. The platform grew at a steady pace and included 120 research groups in June 2016. The students appreciated the structure and design of the Doktabörse. Two thirds of all uploaded projects matched successfully with doctoral students via the platform and over 94% of researchers stated that they did not need technical assistance with uploading projects and handling the platform. Discussion : The Doktabörse represents an innovative and well accepted platform for doctoral research projects. The platform is perceived positively by researchers and students alike. However, students criticized limited extent and timeliness of offered projects. In addition, the platform serves as databank of research at the medical faculty of the LMU Munich. The future potential of this platform is to provide for an integrated management solution of doctoral thesis projects, possibly beyond the medical field and faculty.
A Preliminary Study on Building an E-Education Platform for Indian School-Level Curricula
ERIC Educational Resources Information Center
Kanth, Rajeev Kumar; Laakso, Mikko-Jussi
2016-01-01
In this study, we explore the possibilities of utilizing and implementing an e-Education platform for Indian school-level curricula. This study will demonstrate how the e-Education platform provides a positive result to the students' learning and how this tool helps in managing the overall teaching processes efficiently. Before describing the…
ERIC Educational Resources Information Center
Song, Yanjie; Kong, Siu-Cheung
2017-01-01
The study aims at investigating university students' acceptance of a statistics learning platform to support the learning of statistics in a blended learning context. Three kinds of digital resources, which are simulations, online videos, and online quizzes, were provided on the platform. Premised on the technology acceptance model, we adopted a…
ERIC Educational Resources Information Center
Ardi, Priyatno
2017-01-01
The advent of mobile learning platforms and Web 2.0 technologies is believed to provide an autonomous learning space that minimizes the power structure between the teacher and students in Indonesian EFL classes, accommodating the students to display their capacity to navigate their own learning. "Schoology" m-learning platform, a social…
Airborne Optical Systems Test Bed (AOSTB)
2016-07-01
resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility
Pringle, Janice L; Kearney, Shannon M; Grasso, Kim; Boyer, Annette D; Conklin, Mark H; Szymanski, Keith A
2015-01-01
To user-test and evaluate a performance information management platform that makes standardized, benchmarked medication use quality data available to both health plans and community pharmacy organizations. Multiple health/drug plans and multiple chain and independent pharmacies across the United States. During the first phase of the study, user experience was measured via user satisfaction surveys and interviews with key personnel (pharmacists, pharmacy leaders, and health plan leadership). Improvements were subsequently made to the platform based on these findings. During the second phase of the study, the platform was implemented in a greater number of pharmacies and by a greater number of payers. User experience was then reevaluated to gather information for further improvements. The surveys and interviews revealed that users found the Web-based platform easy to use and beneficial in terms of understanding and comparing performance metrics. Primary concerns included lack of access to real-time data and patient-specific data. Many users also expressed uncertainty as to how they could use the information and data provided by the platform. The study findings indicate that while information management platforms can be used effectively in both pharmacy and health plan settings, future development is needed to ensure that the provided data can be transferred to pharmacy best practices and improved quality care.
Collaborative Effort for a Centralized Worldwide Tuberculosis Relational Sequencing Data Platform.
Starks, Angela M; Avilés, Enrique; Cirillo, Daniela M; Denkinger, Claudia M; Dolinger, David L; Emerson, Claudia; Gallarda, Jim; Hanna, Debra; Kim, Peter S; Liwski, Richard; Miotto, Paolo; Schito, Marco; Zignol, Matteo
2015-10-15
Continued progress in addressing challenges associated with detection and management of tuberculosis requires new diagnostic tools. These tools must be able to provide rapid and accurate information for detecting resistance to guide selection of the treatment regimen for each patient. To achieve this goal, globally representative genotypic, phenotypic, and clinical data are needed in a standardized and curated data platform. A global partnership of academic institutions, public health agencies, and nongovernmental organizations has been established to develop a tuberculosis relational sequencing data platform (ReSeqTB) that seeks to increase understanding of the genetic basis of resistance by correlating molecular data with results from drug susceptibility testing and, optimally, associated patient outcomes. These data will inform development of new diagnostics, facilitate clinical decision making, and improve surveillance for drug resistance. ReSeqTB offers an opportunity for collaboration to achieve improved patient outcomes and to advance efforts to prevent and control this devastating disease. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.
Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja
2013-11-08
In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.
NASA Astrophysics Data System (ADS)
Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.
2013-10-01
In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.
Influence of the platform jitter on intensity fluctuation for laser launch system
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Qiao, Chunhong; Huang, Tong; Zhang, Jinghui; Fan, Chengyu
2017-10-01
The jitter of the transmitting system can cause the light intensity fluctuation at the target position of the laser transmission, which affects the performance of the laser communication, imaging and the adaptive optical system. In this paper, the platform jitter is modeled by Gaussian random fluctuation phase and the analytic expression of the system jitter effect on the fluctuation of light intensity is obtained under the vacuum condition based on extended Huygens-Fresnel principle. The numerical simulation is compared with the theoretical expression and the consistency is obtained. At the same time, the influence of the jitter of the launch system on the intensity fluctuation of the target system under different turbulence conditions is analyzed by numerical simulation. The result show that normalized intensity fluctuation variance induced by platform jitter seems to be unrestricted. The jitter of the transmitting system has a more important influence on the fluctuation of the target position caused by the atmospheric turbulence, as the jitter increase. This result provides a reference for the application of the actual laser transmission system.
Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie
2016-05-09
The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform's performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.
The pitfalls of platform comparison: DNA copy number array technologies assessed
2009-01-01
Background The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance. Results By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms. Conclusion Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons. PMID:19995423
Meyer, Swanhild U.; Kaiser, Sebastian; Wagner, Carola; Thirion, Christian; Pfaffl, Michael W.
2012-01-01
Background Adequate normalization minimizes the effects of systematic technical variations and is a prerequisite for getting meaningful biological changes. However, there is inconsistency about miRNA normalization performances and recommendations. Thus, we investigated the impact of seven different normalization methods (reference gene index, global geometric mean, quantile, invariant selection, loess, loessM, and generalized procrustes analysis) on intra- and inter-platform performance of two distinct and commonly used miRNA profiling platforms. Methodology/Principal Findings We included data from miRNA profiling analyses derived from a hybridization-based platform (Agilent Technologies) and an RT-qPCR platform (Applied Biosystems). Furthermore, we validated a subset of miRNAs by individual RT-qPCR assays. Our analyses incorporated data from the effect of differentiation and tumor necrosis factor alpha treatment on primary human skeletal muscle cells and a murine skeletal muscle cell line. Distinct normalization methods differed in their impact on (i) standard deviations, (ii) the area under the receiver operating characteristic (ROC) curve, (iii) the similarity of differential expression. Loess, loessM, and quantile analysis were most effective in minimizing standard deviations on the Agilent and TLDA platform. Moreover, loess, loessM, invariant selection and generalized procrustes analysis increased the area under the ROC curve, a measure for the statistical performance of a test. The Jaccard index revealed that inter-platform concordance of differential expression tended to be increased by loess, loessM, quantile, and GPA normalization of AGL and TLDA data as well as RGI normalization of TLDA data. Conclusions/Significance We recommend the application of loess, or loessM, and GPA normalization for miRNA Agilent arrays and qPCR cards as these normalization approaches showed to (i) effectively reduce standard deviations, (ii) increase sensitivity and accuracy of differential miRNA expression detection as well as (iii) increase inter-platform concordance. Results showed the successful adoption of loessM and generalized procrustes analysis to one-color miRNA profiling experiments. PMID:22723911
Application of the GNU Radio platform in the multistatic radar
NASA Astrophysics Data System (ADS)
Szlachetko, Boguslaw; Lewandowski, Andrzej
2009-06-01
This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.
Space transportation, satellite services, and space platforms
NASA Technical Reports Server (NTRS)
Disher, J. H.
1979-01-01
The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).
Cytobank: providing an analytics platform for community cytometry data analysis and collaboration.
Chen, Tiffany J; Kotecha, Nikesh
2014-01-01
Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.
2011-01-01
Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105
Anguissola, Sergio; Garry, David; Salvati, Anna; O'Brien, Peter J; Dawson, Kenneth A
2014-01-01
The fast-paced development of nanotechnology needs the support of effective safety testing. We have developed a screening platform measuring simultaneously several cellular parameters for exposure to various concentrations of nanoparticles (NPs). Cell lines representative of different organ cell types, including lung, endothelium, liver, kidney, macrophages, glia, and neuronal cells were exposed to 50 nm amine-modified polystyrene (PS-NH2) NPs previously reported to induce apoptosis and to 50 nm sulphonated and carboxyl-modified polystyrene NPs that were reported to be silent. All cell lines apart from Raw 264.7 executed apoptosis in response to PS-NH2 NPs, showing specific sequences of EC50 thresholds; lysosomal acidification was the most sensitive parameter. Loss of mitochondrial membrane potential and plasma membrane integrity measured by High Content Analysis resulted comparably sensitive to the equivalent OECD-recommended assays, allowing increased output. Analysis of the acidic compartments revealed good cerrelation between size/fluorescence intensity and dose of PS-NH2 NPs applied; moreover steatosis and phospholipidosis were observed, consistent with the lysosomal alterations revealed by Lysotracker green; similar responses were observed when comparing astrocytoma cells with primary astrocytes. We have established a platform providing mechanistic insights on the response to exposure to nanoparticles. Such platform holds great potential for in vitro screening of nanomaterials in highthroughput format.
Bayón, C; Lerma, S; Ramírez, O; Serrano, J I; Del Castillo, M D; Raya, R; Belda-Lois, J M; Martínez, I; Rocon, E
2016-11-14
Cerebral Palsy (CP) is a disorder of posture and movement due to a defect in the immature brain. The use of robotic devices as alternative treatment to improve the gait function in patients with CP has increased. Nevertheless, current gait trainers are focused on controlling complete joint trajectories, avoiding postural control and the adaptation of the therapy to a specific patient. This paper presents the applicability of a new robotic platform called CPWalker in children with spastic diplegia. CPWalker consists of a smart walker with body weight and autonomous locomotion support and an exoskeleton for joint motion support. Likewise, CPWalker enables strategies to improve postural control during walking. The integrated robotic platform provides means for testing novel gait rehabilitation therapies in subjects with CP and similar motor disorders. Patient-tailored therapies were programmed in the device for its evaluation in three children with spastic diplegia for 5 weeks. After ten sessions of personalized training with CPWalker, the children improved the mean velocity (51.94 ± 41.97 %), cadence (29.19 ± 33.36 %) and step length (26.49 ± 19.58 %) in each leg. Post-3D gait assessments provided kinematic outcomes closer to normal values than Pre-3D assessments. The results show the potential of the novel robotic platform to serve as a rehabilitation tool. The autonomous locomotion and impedance control enhanced the children's participation during therapies. Moreover, participants' postural control was substantially improved, which indicates the usefulness of the approach based on promoting the patient's trunk control while the locomotion therapy is executed. Although results are promising, further studies with bigger sample size are required.
Ghofrani, Mohiedean; Zhao, Chengquan; Davey, Diane D; Fan, Fang; Husain, Mujtaba; Laser, Alice; Ocal, Idris T; Shen, Rulong Z; Goodrich, Kelly; Souers, Rhona J; Crothers, Barbara A
2016-12-01
- Since 2008, the College of American Pathologists has provided the human papillomavirus for cytology laboratories (CHPV) proficiency testing program to help laboratories meet the requirements of the Clinical Laboratory Improvement Amendments of 1988. - To provide an update on trends in proficiency testing performance in the College of American Pathologists CHPV program during the 4-year period from 2011 through 2014 and to compare those trends with the preceding first 3 years of the program. - Responses of laboratories participating in the CHPV program from 2011 through 2014 were analyzed using a nonlinear mixed model to compare different combinations of testing medium and platform. - In total, 818 laboratories participated in the CHPV program at least once during the 4 years, with participation increasing during the study period. Concordance of participant responses with the target result was more than 98% (38 280 of 38 892). Overall performance with all 3 testing media-ThinPrep (Hologic, Bedford, Massachusetts), SurePath (Becton, Dickinson and Company, Franklin Lakes, New Jersey), or Digene (Qiagen, Valencia, California)-was equivalent (P = .51), and all 4 US Food and Drug Administration (FDA)-approved platforms-Hybrid Capture 2 (Qiagen), Cervista (Hologic), Aptima (Hologic), and cobas (Roche Molecular Systems, Pleasanton, California)-outperformed laboratory-developed tests, unspecified commercial kits, and other (noncommercial) methods in ThinPrep medium (P < .001). However, certain off-label combinations of platform and medium, most notably Cervista with SurePath, demonstrated suboptimal performance (P < .001). - Laboratories demonstrated proficiency in using various combinations of testing media and platforms offered in the CHPV program, with statistically significant performance differences in certain combinations. These observations may be relevant in the current discussions about FDA oversight of laboratory-developed tests.
Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases.
Curtis, Chad; Zhang, Mengying; Liao, Rick; Wood, Thomas; Nance, Elizabeth
2017-03-01
Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R.; Stewart, Walter F.; Malin, Bradley; Sun, Jimeng
2014-01-01
Objective Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: 1) cohort construction, 2) feature construction, 3) cross-validation, 4) feature selection, and 5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. Methods To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which 1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, 2) schedules the tasks in a topological ordering of the graph, and 3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. Results We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3 hours in parallel compared to 9 days if running sequentially. Conclusion This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines that are specialized for health data researchers. PMID:24370496
Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R; Stewart, Walter F; Malin, Bradley; Sun, Jimeng
2014-04-01
Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: (1) cohort construction, (2) feature construction, (3) cross-validation, (4) feature selection, and (5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which (1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, (2) schedules the tasks in a topological ordering of the graph, and (3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3h in parallel compared to 9days if running sequentially. This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines that are specialized for health data researchers. Copyright © 2013 Elsevier Inc. All rights reserved.
Automated platform for designing multiple robot work cells
NASA Astrophysics Data System (ADS)
Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.
2017-06-01
Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.
Motion systems providing three or four degrees of freedom
NASA Technical Reports Server (NTRS)
Chou, Richard C. (Inventor)
1982-01-01
A motion system is provided by a platform generally parallel to a base and connected thereto by a column and powered and controlled extensible members, at least three of which are connected between distributed points around the column. In a three degree of freedom device, the column is conical, rigidly supported at its base with a universal joint at its top. The points of attachment define triangles in the base and in the platform surrounding the column with one extensible member connected between each. In the four degree of freedom version, the column is modified by making it effectively a column which is pivoted or guided at the base or contains an extensible member, preferably retains its triangular shape and its universal joint connection to the platform at its apex. For stability four powered and controlled extensible members are provided between points in the base and platform distributed around the column, a preferred pattern of arrangement being a square with the column at the center.
The contribution of the Geohazards Exploitation Platform for the GEO Supersites community
NASA Astrophysics Data System (ADS)
Manunta, Michele; Caumont, Hervé; Mora, Oscar; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Pepe, Susi; Pepe, Antonio; Brito, Fabrice; Romero, Laia; Stumpf, Andre; Malet, Jean-Philippe; Brcic, Ramon; Rodriguez Gonzalez, Fernando; Musacchio, Massimo; Buongiorno, Fabrizia; Briole, Pierre
2016-04-01
The European Space Agency (ESA) initiative for the creation of an ecosystem of Thematic Exploitation Platforms (TEP) focuses on the capitalization of Ground Segment capabilities and ICT technologies to maximize the exploitation of EO data from past and future missions. A TEP refers to a computing platform that complies to a set of exploitation scenarios involving scientific users, data providers and ICT providers, aggregated around an Earth Science thematic area. The Exploitation Platforms are targeted to cover different capacities and they define, implement and validate a platform for effective data exploitation of EO data sources in a given thematic area. In this framework, the Geohazards Thematic Exploitation Platform or Geohazards TEP (GEP) aims at providing on-demand processing services for specific user needs as well as systematic processing services to address the need of the geohazards community for common information layers and, finally, to integrate newly developed processors for scientists and other expert users. The GEP has now on-boarded over 40 European early adopters and will transition during 2016 to pre-operations by developing six new Pilot applications that will significantly augment the Platform's capabilities for systematic production and community building. Each project on the Platform is concerned with either integrating an application, running on demand processing using an application available in the platform or systematically generating a new product collection. The platform will also expand its user base in 2016, to gradually reach a total of about 65 individual users. Under a Consortium lead by Terradue Srl, six new pilot projects have been taken on board: photogrammetric processing using optical EO data with University of Strasbourg (FR), optical based processing method for volcanic hazard monitoring with INGV (IT), systematic generation of deformation time-series with Sentinel-1 data with CNR IREA (IT), systematic processing of Sentinel-1 interferometric imagery with DLR (DE), precise terrain motion mapping with SPN Persistent Scatterers Interferometric chain of Altamira Information (ES) and a campaign to test and exploit GEP applications with the Corinth Rift Laboratory in which Greek and French experts of seismic hazards are engaged. The consortium is in charge of the resources and services management under a sustainable and fair governance model to ensure alignment of the Platform with user community needs, broad collaboration with main data and service providers in the domain, and excellence among user initiatives willing to contribute. In this work we show how the GEO Geohazards Supersites community can fully benefit from availability of an advanced IT infrastructure, where satellite and in-situ data, processing tools and web-based visualization instruments are at the disposal of users to address scientific questions. In particular, we focus on the contributions provided by GEP for the management of EO data, for the implementation of a European e-infrastructure, and for the monitoring and modelling of ground deformations and seismic activity.
Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.
Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J
2018-05-01
There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ras plasma membrane signalling platforms
2005-01-01
The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863
Space assembly fixtures and aids
NASA Technical Reports Server (NTRS)
Bloom, K. A.; Lillenas, A. N.
1980-01-01
Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.
Apparatus to position a microelectromechanical platform
Miller, Samuel Lee; Rodgers, Murray Steven
2003-09-23
The present invention comprises a microelectromechanical positioner to achieve substantially translational positioning of a platform without rotational motion, thereby maintaining a constant angular orientation of the platform during movement. A linkage mechanism of the positioner can comprise parallelogram linkages to constrain the rotational motion of the platform. Such linkages further can comprise flexural hinges or other turning joints at the linkage pivots to eliminate the need for rubbing surfaces. A plurality of the linkage mechanisms can be used to enable translational motion of the platform with two degrees of freedom. A variety of means can be used to actuate the positioner. Independent actuation of the anchor links of the linkage mechanisms with rotary electrostatic actuators can be used to provide controlled translational movement of the platform.
2016-12-16
Construction workers wearing safety harnesses and tethered lines assist with the installation of the second half of the B-level work platforms, B north, for NASA’s Space Launch System (SLS) rocket, high up in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. They are securing the large bolts that hold the platform securely in place on the north side of High Bay 3. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-12-16
A construction worker solders a section of steel during the installation of the second half of the B-level work platforms, B north, for NASA's Space Launch System (SLS) rocket, in High Bay 3 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Construction workers will secure the large bolts that hold the platform in place on the north wall. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Apparatus and method for materials processing utilizing a rotating magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.
An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotatingmore » magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.« less
A novel rotating experimental platform in a superconducting magnet.
Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan
2016-08-01
This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.
Regional input to joint European space weather service
NASA Astrophysics Data System (ADS)
Stanislawska, I.; Belehaki, A.; Jansen, F.; Heynderickx, D.; Lilensten, J.; Candidi, M.
The basis for elaborating within COST 724 Action Developing the scientific basis for monitoring modeling and predicting Space Weather European space weather service is rich by many national and international activities which provide instruments and tools for global as well as regional monitoring and modeling COST 724 stimulates coordinates and supports Europe s goals of development and global cooperation by providing standards for timely and high quality information and knowledge in space weather Existing local capabilities are taken into account to develop synergies and avoid duplication The enhancement of environment monitoring networks and associated instruments technology yields mutual advantages for European service and regional services specialized for local users needs It structurally increases the integration of limited-area services generates a platform employing the same approach to each task differing mostly in input and output data In doing so it also provides complementary description of the environmental state within issued information A general scheme of regional services concept within COST 724 activity can be the processing chain from measurements trough algorithms to operational knowledge It provides the platform for interaction among the local end users who define what kind of information they need system providers who elaborate tools necessary to obtain required information and local service providers who do the actual processing of data and tailor it to specific user s needs Such initiative creates a unique possibility for small
NASA Astrophysics Data System (ADS)
Liu, Joseph; Wang, Ximing; Verma, Sneha; McNitt-Gray, Jill; Liu, Brent
2018-03-01
The main goal of sports science and performance enhancement is to collect video and image data, process them, and quantify the results, giving insight to help athletes improve technique. For long jump in track and field, the processed output of video with force vector overlays and force calculations allow coaches to view specific stages of the hop, step, and jump, and identify how each stage can be improved to increase jump distance. Outputs also provide insight into how athletes can better maneuver to prevent injury. Currently, each data collection site collects and stores data with their own methods. There is no standard for data collection, formats, or storage. Video files and quantified results are stored in different formats, structures, and locations such as Dropbox and hard drives. Using imaging informatics-based principles we can develop a platform for multiple institutions that promotes the standardization of sports performance data. In addition, the system will provide user authentication and privacy as in clinical trials, with specific user access rights. Long jump data collected from different field sites will be standardized into specified formats before database storage. Quantified results from image-processing algorithms are stored similar to CAD algorithm results. The system will streamline the current sports performance data workflow and provide a user interface for athletes and coaches to view results of individual collections and also longitudinally across different collections. This streamlined platform and interface is a tool for coaches and athletes to easily access and review data to improve sports performance and prevent injury.
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets
Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L
2014-01-01
Background As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Methods Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Results Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Conclusions Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. PMID:24464852
A flexible software architecture for scalable real-time image and video processing applications
NASA Astrophysics Data System (ADS)
Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.
2012-06-01
Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.
Services Oriented Smart City Platform Based On 3d City Model Visualization
NASA Astrophysics Data System (ADS)
Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.
2014-04-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.
Biomass Program 2007 Program Peer Review - Full Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.
Zhai, XingChen; Zhang, Hua; Zhang, Min; Yang, Xin; Gu, Cheng; Zhou, GuoPeng; Zhao, HaiTian; Wang, ZhenYu; Dong, AiJun; Wang, Jing
2017-08-01
A rapid monitoring platform for sensitive voltammetric detection of thiamethoxam residues is reported in the present study. A β-cyclodextrin-reduced graphene oxide composite was used as a reinforcing material in electrochemical determination of thiamethoxam. Compared with bare glassy carbon electrodes, the reduction peak currents of thiamethoxam at reduced graphene oxide/glassy carbon electrode and β-cyclodextrin-reduced graphene oxide/glassy carbon electrode were increased by 70- and 124-fold, respectively. The experimental conditions influencing voltammetric determination of thiamethoxam, such as the amount of β-cyclodextrin-reduced graphene oxide, solution pH, temperature, and accumulation time, were optimized. The reduction mechanism and binding affinity of this material is also discussed. Under optimal conditions, the reduction peak currents increased linearly between 0.5 µM and 16 µM concentration of thiamethoxam. The limit of detection was 0.27 µM on the basis of a signal-to-noise ratio of 3. When the proposed method was applied to brown rice in a recovery test, the recoveries were between 92.20% and 113.75%. The results were in good concordance with the high-performance liquid chromatography method. The proposed method therefore provides a promising and effective platform for sensitive and rapid determination of thiamethoxam. Environ Toxicol Chem 2017;36:1991-1997. © 2017 SETAC. © 2017 SETAC.
Enhanced Acoustic Black Hole effect in beams with a modified thickness profile and extended platform
NASA Astrophysics Data System (ADS)
Tang, Liling; Cheng, Li
2017-03-01
The phenomenon of Acoustics Black Hole (ABH) benefits from the bending wave propagating properties inside a thin-walled structure with power-law thickness variation to achieve zero reflection when the structural thickness approaches zero in the ideal scenario. However, manufacturing an ideally tailored power-law profile of a structure with embedded ABH feature can hardly be achieved in practice. Past research showed that the inevitable truncation at the wedge tip of the structure can significantly weaken the expected ABH effect by creating wave reflections. On the premise of the minimum achievable truncation thickness by the current manufacturing technology, exploring ways to ensure and achieve better ABH effect becomes important. In this paper, we investigate this issue by using a previously developed wavelet-decomposed semi-analytical model on an Euler-Bernoulli beam with a modified power-law profile and an extended platform of constant thickness. Through comparisons with the conventional ABH profile in terms of system loss factor and energy distribution, numerical results show that the modified thickness profile brings about a systematic increase in the ABH effect at mid-to-high frequencies, especially when the truncation thickness is small and the profile parameter m is large. The use of an extended platform further increases the ABH effect to broader the frequency band whilst providing rooms for catering particular low frequency applications.
A Cloud Architecture for Teleradiology-as-a-Service.
Melício Monteiro, Eriksson J; Costa, Carlos; Oliveira, José L
2016-05-17
Telemedicine has been promoted by healthcare professionals as an efficient way to obtain remote assistance from specialised centres, to get a second opinion about complex diagnosis or even to share knowledge among practitioners. The current economic restrictions in many countries are increasing the demand for these solutions even more, in order to optimize processes and reduce costs. However, despite some technological solutions already in place, their adoption has been hindered by the lack of usability, especially in the set-up process. In this article we propose a telemedicine platform that relies on a cloud computing infrastructure and social media principles to simplify the creation of dynamic user-based groups, opening up opportunities for the establishment of teleradiology trust domains. The collaborative platform is provided as a Software-as-a-Service solution, supporting real time and asynchronous collaboration between users. To evaluate the solution, we have deployed the platform in a private cloud infrastructure. The system is made up of three main components - the collaborative framework, the Medical Management Information System (MMIS) and the HTML5 (Hyper Text Markup Language) Web client application - connected by a message-oriented middleware. The solution allows physicians to create easily dynamic network groups for synchronous or asynchronous cooperation. The network created improves dataflow between colleagues and also knowledge sharing and cooperation through social media tools. The platform was implemented and it has already been used in two distinct scenarios: teaching of radiology and tele-reporting. Collaborative systems can simplify the establishment of telemedicine expert groups with tools that enable physicians to improve their clinical practice. Streamlining the usage of this kind of systems through the adoption of Web technologies that are common in social media will increase the quality of current solutions, facilitating the sharing of clinical information, medical imaging studies and patient diagnostics among collaborators.
Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang
2014-11-30
Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and increase research interactions among investigators.
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2013-04-01
Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through unified graphical web-interface. Partial support of RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2 and Projects 69, 131, 140 and APN CBA2012-16NSY project is acknowledged.
Framework Design of Unified Cross-Authentication Based on the Fourth Platform Integrated Payment
NASA Astrophysics Data System (ADS)
Yong, Xu; Yujin, He
The essay advances a unified authentication based on the fourth integrated payment platform. The research aims at improving the compatibility of the authentication in electronic business and providing a reference for the establishment of credit system by seeking a way to carry out a standard unified authentication on a integrated payment platform. The essay introduces the concept of the forth integrated payment platform and finally put forward the whole structure and different components. The main issue of the essay is about the design of the credit system of the fourth integrated payment platform and the PKI/CA structure design.
2016-08-30
A section of the second half of the C-level platforms, C North, for NASA’s Space Launch System (SLS) rocket, arrives at the agency’s Kennedy Space Center in Florida. The platform was offloaded from a heavy lift transport truck and secured in a staging area in the west parking lot of the Vehicle Assembly Building (VAB). The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications
NASA Astrophysics Data System (ADS)
Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R.
This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.
Providing Focus via a Social Media Exploitation Strategy
2014-06-01
networking sites, video/photo sharing websites, forums, message boards, blogs and user -generated content in general as a way to determine the volume...that are constantly being updated by users around the world provide an excellent near-real time sensor. This sensor can be used to alert analysts...using the platform is to mine the profiles provided by the various platforms. At a minimum, users require a username, but there is usually a large
2011 Biomass Program Platform Peer Review. Thermochemical Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, Paul E.
This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.
Information services platforms at geosynchronous earth orbit: A requirements analysis
NASA Technical Reports Server (NTRS)
1978-01-01
The potential user requirements for Information Services Platforms at geosynchronous orbits were investigated. A rationale for identifying the corollary system requirements and supporting research and technology needs was provided.
PLATSIM: An efficient linear simulation and analysis package for large-order flexible systems
NASA Technical Reports Server (NTRS)
Maghami, Periman; Kenny, Sean P.; Giesy, Daniel P.
1995-01-01
PLATSIM is a software package designed to provide efficient time and frequency domain analysis of large-order generic space platforms implemented with any linear time-invariant control system. Time domain analysis provides simulations of the overall spacecraft response levels due to either onboard or external disturbances. The time domain results can then be processed by the jitter analysis module to assess the spacecraft's pointing performance in a computationally efficient manner. The resulting jitter analysis algorithms have produced an increase in speed of several orders of magnitude over the brute force approach of sweeping minima and maxima. Frequency domain analysis produces frequency response functions for uncontrolled and controlled platform configurations. The latter represents an enabling technology for large-order flexible systems. PLATSIM uses a sparse matrix formulation for the spacecraft dynamics model which makes both the time and frequency domain operations quite efficient, particularly when a large number of modes are required to capture the true dynamics of the spacecraft. The package is written in MATLAB script language. A graphical user interface (GUI) is included in the PLATSIM software package. This GUI uses MATLAB's Handle graphics to provide a convenient way for setting simulation and analysis parameters.
Implementing Audio-CASI on Windows’ Platforms
Cooley, Philip C.; Turner, Charles F.
2011-01-01
Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743
The cloud paradigm applied to e-Health.
Vilaplana, Jordi; Solsona, Francesc; Abella; Filgueira, Rosa; Rius, Josep
2013-03-14
Cloud computing is a new paradigm that is changing how enterprises, institutions and people understand, perceive and use current software systems. With this paradigm, the organizations have no need to maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many advantages in terms of scalability, maintainability and massive data processing. We present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities, i.e. maximum waiting time of requests. Detailed results for the model formed by a Jackson network of two M/M/m queues from the queueing theory perspective are presented. These results show a significant performance improvement when the number of servers increases. Platform scalability becomes a critical issue since we aim to provide the system with high Quality of Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those therapies that have an important psychological component, such as addictions and chronic diseases.
Efficient Sensor Integration on Platforms (NeXOS)
NASA Astrophysics Data System (ADS)
Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.
2016-12-01
In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory operators. [1] http://www.alseamar-alcen.com [2] http://www.nke-instrumentation.com [3] http://sensorlab.es [4] http://www.smidtechnology.it/ [5] http://www.trios.de/en/products/ [6] Raspberry Pi is a trademark of the Raspberry Pi Foundation
Implementation of a SOA-Based Service Deployment Platform with Portal
NASA Astrophysics Data System (ADS)
Yang, Chao-Tung; Yu, Shih-Chi; Lai, Chung-Che; Liu, Jung-Chun; Chu, William C.
In this paper we propose a Service Oriented Architecture to provide a flexible and serviceable environment. SOA comes up with commercial requirements; it integrates many techniques over ten years to find the solution in different platforms, programming languages and users. SOA provides the connection with a protocol between service providers and service users. After this, the performance and the reliability problems are reviewed. Finally we apply SOA into our Grid and Hadoop platform. Service acts as an interface in front of the Resource Broker in the Grid, and the Resource Broker is middleware that provides functions for developers. The Hadoop has a file replication feature to ensure file reliability. Services provided on the Grid and Hadoop are centralized. We design a portal, in which users can use services on it directly or register service through the service provider. The portal also offers a service workflow function so that users can customize services according to the need of their jobs.
Immersive virtual reality used as a platform for perioperative training for surgical residents.
Witzke, D B; Hoskins, J D; Mastrangelo, M J; Witzke, W O; Chu, U B; Pande, S; Park, A E
2001-01-01
Perioperative preparations such as operating room setup, patient and equipment positioning, and operating port placement are essential to operative success in minimally invasive surgery. We developed an immersive virtual reality-based training system (REMIS) to provide residents (and other health professionals) with training and evaluation in these perioperative skills. Our program uses the qualities of immersive VR that are available today for inclusion in an ongoing training curriculum for surgical residents. The current application consists of a primary platform for patient positioning for a laparoscopic cholecystectomy. Having completed this module we can create many different simulated problems for other procedures. As a part of the simulation, we have devised a computer-driven real-time data collection system to help us in evaluating trainees and providing feedback during the simulation. The REMIS program trains and evaluates surgical residents and obviates the need to use expensive operating room and surgeon time. It also allows residents to train based on their schedule and does not put patients at increased risk. The method is standardized, allows for repetition if needed, evaluates individual performance, provides the possible complications of incorrect choices, provides training in 3-D environment, and has the capability of being used for various scenarios and professions.
Design and Implementation of a Mobile Exergaming Platform
NASA Astrophysics Data System (ADS)
Prévost, Laurent; Liechti, Olivier; Lyons, Michael J.
This paper describes the design, implementation, and initial testing of a reusable platform for the creation of pervasive games with geo-localization services. We concentrate on role-playing games built by combining several types of simpler mini-games having three major components: Quests; Collectables; and Non-player characters (NPC). Quests encourage players to be active in their physical environment and take part in collaborative play; Collectables provide motivation; and NPCs enable player-friendly interaction with the platform. Each of these elements poses different technical requirements, which were met by implementing the gaming platform using the inTrack pervasive middle-ware being developed by our group. Several sample games were implemented and tested within the urban environment of Kyoto, Japan, using gaming clients running on mobile phones from NTT DoCoMo, Japan’s largest mobile provider.
Use of the NetBeans Platform for NASA Robotic Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Sabey, Nickolas J.
2014-01-01
The latest Java and JavaFX technologies are very attractive software platforms for customers involved in space mission operations such as those of NASA and the US Air Force. For NASA Robotic Conjunction Assessment Risk Analysis (CARA), the NetBeans platform provided an environment in which scalable software solutions could be developed quickly and efficiently. Both Java 8 and the NetBeans platform are in the process of simplifying CARA development in secure environments by providing a significant amount of capability in a single accredited package, where accreditation alone can account for 6-8 months for each library or software application. Capabilities either in use or being investigated by CARA include: 2D and 3D displays with JavaFX, parallelization with the new Streams API, and scalability through the NetBeans plugin architecture.
[Application of an improved model of a job-matching platform for nurses].
Huang, Way-Ren; Lin, Chiou-Fen
2015-04-01
The three-month attrition rate for new nurses in Taiwan remains high. Many hospitals rely on traditional recruitment methods to find new nurses, yet it appears that their efficacy is less than ideal. To effectively solve this manpower shortage, a nursing resource platform is a project worth developing in the future. This study aimed to utilize a quality-improvement model to establish communication between hospitals and nursing students and create a customized employee-employer information-matching platform to help nursing students enter the workforce. This study was structured around a quality-improvement model and used current situation analysis, literature review, focus-group discussions, and process re-engineering to formulate necessary content for a job-matching platform for nursing. The concept of an academia-industry strategic alliance helped connect supply and demand within the same supply chain. The nurse job-matching platform created in this study provided job flexibility as well as job suitability assessments and continued follow-up and services for nurses after entering the workforce to provide more accurate matching of employers and employees. The academia-industry strategic alliance, job suitability, and long-term follow-up designed in this study are all new features in Taiwan's human resource service systems. The proposed human resource process re-engineering provides nursing students facing graduation with a professionally managed human resources platform. Allowing students to find an appropriate job prior to graduation will improve willingness to work and employee retention.
NASA Astrophysics Data System (ADS)
Rankin, Drew J.; Jiang, Jin
2011-04-01
Verification and validation (V&V) of safety control system quality and performance is required prior to installing control system hardware within nuclear power plants (NPPs). Thus, the objective of the hardware-in-the-loop (HIL) platform introduced in this paper is to verify the functionality of these safety control systems. The developed platform provides a flexible simulated testing environment which enables synchronized coupling between the real and simulated world. Within the platform, National Instruments (NI) data acquisition (DAQ) hardware provides an interface between a programmable electronic system under test (SUT) and a simulation computer. Further, NI LabVIEW resides on this remote DAQ workstation for signal conversion and routing between Ethernet and standard industrial signals as well as for user interface. The platform is applied to the testing of a simplified implementation of Canadian Deuterium Uranium (CANDU) shutdown system no. 1 (SDS1) which monitors only the steam generator level of the simulated NPP. CANDU NPP simulation is performed on a Darlington NPP desktop training simulator provided by Ontario Power Generation (OPG). Simplified SDS1 logic is implemented on an Invensys Tricon v9 programmable logic controller (PLC) to test the performance of both the safety controller and the implemented logic. Prior to HIL simulation, platform availability of over 95% is achieved for the configuration used during the V&V of the PLC. Comparison of HIL simulation results to benchmark simulations shows good operational performance of the PLC following a postulated initiating event (PIE).
Siretskiy, Alexey; Sundqvist, Tore; Voznesenskiy, Mikhail; Spjuth, Ola
2015-01-01
New high-throughput technologies, such as massively parallel sequencing, have transformed the life sciences into a data-intensive field. The most common e-infrastructure for analyzing this data consists of batch systems that are based on high-performance computing resources; however, the bioinformatics software that is built on this platform does not scale well in the general case. Recently, the Hadoop platform has emerged as an interesting option to address the challenges of increasingly large datasets with distributed storage, distributed processing, built-in data locality, fault tolerance, and an appealing programming methodology. In this work we introduce metrics and report on a quantitative comparison between Hadoop and a single node of conventional high-performance computing resources for the tasks of short read mapping and variant calling. We calculate efficiency as a function of data size and observe that the Hadoop platform is more efficient for biologically relevant data sizes in terms of computing hours for both split and un-split data files. We also quantify the advantages of the data locality provided by Hadoop for NGS problems, and show that a classical architecture with network-attached storage will not scale when computing resources increase in numbers. Measurements were performed using ten datasets of different sizes, up to 100 gigabases, using the pipeline implemented in Crossbow. To make a fair comparison, we implemented an improved preprocessor for Hadoop with better performance for splittable data files. For improved usability, we implemented a graphical user interface for Crossbow in a private cloud environment using the CloudGene platform. All of the code and data in this study are freely available as open source in public repositories. From our experiments we can conclude that the improved Hadoop pipeline scales better than the same pipeline on high-performance computing resources, we also conclude that Hadoop is an economically viable option for the common data sizes that are currently used in massively parallel sequencing. Given that datasets are expected to increase over time, Hadoop is a framework that we envision will have an increasingly important role in future biological data analysis.
NASA Astrophysics Data System (ADS)
Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.
2012-11-01
The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Rourke, Daniel J.; Weber, Cory C.; Richmond, Pamela D.
Federal agencies are made responsible for managing the historic properties under their jurisdiction by the National Historic Preservation Act of 1966, as amended. A component of this responsibility is to mitigate the effect of a federal undertaking on historic properties through mitigation often through documentation. Providing public access to this documentation has always been a challenge. To address the issue of public access to mitigation information, personnel from Argonne National Laboratory created the Box Digital Display Platform, a system for communicating information about historic properties to the public. The platform, developed for the US Army Dugway Proving Ground, uses shortmore » introductory videos to present a topic but can also incorporate photos, drawings, GIS information, and documents. The system operates from a small, self-contained computer that can be attached to any digital monitor via an HDMI cable. The system relies on web-based software that allows the information to be republished as a touch-screen device application or as a website. The system does not connect to the Internet, and this increases security and eliminates the software maintenance fees associated with websites. The platform is designed to incorporate the products of past documentation to make this information more accessible to the public; specifically those documentations developed using the Historic American Building Survey/ Historic American Engineering Record (HABS/HAER) standards. Argonne National Laboratory’s Box Digital Display Platform can assist federal agencies in complying with the requirements of the National Historic Preservation Act. Environmental Practice 18: 209–213 (2016)« less
An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq.
Yuan, Yongxian; Xu, Huaiqian; Leung, Ross Ka-Kit
2016-05-26
Previous studies compared running cost, time and other performance measures of popular sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton sequencing platform remains unexplored. Unlike Illumina sequencing platforms, Proton reads are heterogeneous in length and quality. When sequencing data from different platforms are combined, this can result in reads with various read length. Whether the performance of the commonly used software for handling such kind of data is satisfactory is unknown. By using universal human reference RNA as the initial material, RNaseIII and chemical fragmentation methods in library construction showed similar result in gene and junction discovery number and expression level estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 % to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly consistent results with that of TaqMan array and highest sensitivity. We provided for the first time, the reference statistics of library preparation methods, gene detection and quantification and junction discovery for RNA-Seq by the Ion Proton platform. Chemical fragmentation performed equally well with the enzyme-based one. The optimal Ion Proton sequencing options and analysis software have been evaluated.
Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles.
Han, Chung-Ta; Chao, Ling
2015-01-07
Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.
Joint chemical agent detector (JCAD): the future of chemical agent detection
NASA Astrophysics Data System (ADS)
Laljer, Charles E.
2003-08-01
The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.
CILogon: An Integrated Identity and Access Management Platform for Science
NASA Astrophysics Data System (ADS)
Basney, J.
2016-12-01
When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid, SeedMe, and XSEDE. The "CILogon 2.0" platform, launched in 2016, adds support for virtual organization (VO) membership management, identity linking, international collaborations, and standard integration protocols, through integration with the Internet2 COmanage collaboration software.
Bornkessel, Alexandra; Furberg, Robert; Lefebvre, R Craig
2014-07-01
Social media brings a new dimension to health care for patients, providers, and their support networks. Increasing evidence demonstrates that patients who are more actively involved in their healthcare experience have better health outcomes and incur lower costs. In the field of cardiology, social media are proposed as innovative tools for the education and update of clinicians, physicians, nurses, and medical students. This article reviews the use of social media by healthcare providers and patients and proposes a model of "networked care" that integrates the use of digital social networks and platforms by both patients and providers and offers recommendations for providers to optimize their use and understanding of social media for quality improvement.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket high above the transfer aisle inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up for transfer into High Bay 3 for installation. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Woodard, S.; Juang, J.-N.
1986-01-01
A mathematical model of the open and closed loop in-orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Lagrangian formulation yields equations describing platform pitch, subsatellite tether-line swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1986-01-01
A mathematical model of the open and closed loop in orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Langrangian formulation yields equations describing platform pitch, subsatellite tetherline swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
Virtual Exploitation Environment Demonstration for Atmospheric Missions
NASA Astrophysics Data System (ADS)
Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano
2017-04-01
The scientific and industrial communities are being confronted with a strong increase of Earth Observation (EO) satellite missions and related data. This is in particular the case for the Atmospheric Sciences communities, with the upcoming Copernicus Sentinel-5 Precursor, Sentinel-4, -5 and -3, and ESA's Earth Explorers scientific satellites ADM-Aeolus and EarthCARE. The challenge is not only to manage the large volume of data generated by each mission / sensor, but to process and analyze the data streams. Creating synergies among the different datasets will be key to exploit the full potential of the available information. As a preparation activity supporting scientific data exploitation for Earth Explorer and Sentinel atmospheric missions, ESA funded the "Technology and Atmospheric Mission Platform" (TAMP) [1] [2] project; a scientific and technological forum (STF) has been set-up involving relevant European entities from different scientific and operational fields to define the platforḿs requirements. Data access, visualization, processing and download services have been developed to satisfy useŕs needs; use cases defined with the STF, such as study of the SO2 emissions for the Holuhraun eruption (2014) by means of two numerical models, two satellite platforms and ground measurements, global Aerosol analyses from long time series of satellite data, and local Aerosol analysis using satellite and LIDAR, have been implemented to ensure acceptance of TAMP by the atmospheric sciences community. The platform pursues the "virtual workspace" concept: all resources (data, processing, visualization, collaboration tools) are provided as "remote services", accessible through a standard web browser, to avoid the download of big data volumes and for allowing utilization of provided infrastructure for computation, analysis and sharing of results. Data access and processing are achieved through standardized protocols (WCS, WPS). As evolution toward a pre-operational environment, the "Virtual Exploitation Environment Demonstration for Atmospheric Missions" (VEEDAM) aims at maintaining, running and evolving the platform, demonstrating e.g. the possibility to perform massive processing over heterogeneous data sources. This work presents the VEEDAM concepts, provides pre-operational examples, stressing on the interoperability achievable exposing standardized data access and processing services (e.g. making accessible data and processing resources from different VREs). [1] TAMP platform landing page http://vtpip.zamg.ac.at/ [2] TAMP introductory video https://www.youtube.com/watch?v=xWiy8h1oXQY
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
NASA Astrophysics Data System (ADS)
Esch, T.; Asamer, H.; Boettcher, M.; Brito, F.; Hirner, A.; Marconcini, M.; Mathot, E.; Metz, A.; Permana, H.; Soukop, T.; Stanek, F.; Kuchar, S.; Zeidler, J.; Balhar, J.
2016-06-01
The Sentinel fleet will provide a so-far unique coverage with Earth observation data and therewith new opportunities for the implementation of methodologies to generate innovative geo-information products and services. It is here where the TEP Urban project is supposed to initiate a step change by providing an open and participatory platform based on modern ICT technologies and services that enables any interested user to easily exploit Earth observation data pools, in particular those of the Sentinel missions, and derive thematic information on the status and development of the built environment from these data. Key component of TEP Urban project is the implementation of a web-based platform employing distributed high-level computing infrastructures and providing key functionalities for i) high-performance access to satellite imagery and derived thematic data, ii) modular and generic state-of-the art pre-processing, analysis, and visualization techniques, iii) customized development and dissemination of algorithms, products and services, and iv) networking and communication. This contribution introduces the main facts about the TEP Urban project, including a description of the general objectives, the platform systems design and functionalities, and the preliminary portfolio products and services available at the TEP Urban platform.
Usability studies on e-learning platforms: Preliminary study in USM
NASA Astrophysics Data System (ADS)
Emang, Devinna Win Anak Boniface; Lukman, Raja Nurul Izzati Raja; Kamarulzaman, Muhammad Izzat Syafiq; Zaaba, Zarul Fitri
2017-10-01
This paper explores the end-users' experienced in regards to the usability issues in E-learning platform. An online survey utilising 116 participants were conducted to investigate the end-users understanding and satisfaction on E-learning platform in the Universiti Sains Malaysia (USM). The results indicates that mainly students still experiencing significant challenges in E-learning platform in regards to accessibility, technical terminologies and functionality. On the other hand, the 10 heuristic guideline is chosen to be a referral point to compare five E-learning platforms in order to assess each performance on regards to the usability criteria. Overall, USM E-learning platform can be considered in a good shape. However, there are more works to be done to improve the delivery system of the E-learning if it would like to sustain for a long period of time. Although the result is at the preliminary stage, it provides useful insights to improve the E-learning platform as one of the most popular education platform in Malaysia.
1982-02-01
of 130 kits for the Fire Support Teem Vehicle, an integrated system platform which will provide under - armor protection for the ground laser locator...procureuent of 495 kits for the Fire Support Team Vehicles, an integrated system platform which will provide under - armor protection for the Ground Laser
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.
Cost (non)-recovery by platform technology facilities in the Bio21 Cluster.
Gibbs, Gerard; Clark, Stella; Quinn, Julieanne; Gleeson, Mary Joy
2010-04-01
Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution. Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients.
Cost (Non)-Recovery by Platform Technology Facilities in the Bio21 Cluster
Gibbs, Gerard; Clark, Stella; Quinn, JulieAnne; Gleeson, Mary Joy
2010-01-01
Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution.1 Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients. PMID:20357980
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
Work is underway to secure the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket in High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being secured into position on tower E, about 86 feet above the floor. The K work platforms will provide access to NASA's Space Launch System (SLS) core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
VAB Platform K(2) Lift & Install into Highbay 3
2016-03-07
A 250-ton crane is used to lower the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket into High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.
Bussery, Justin; Denis, Leslie-Alexandre; Guillon, Benjamin; Liu, Pengfeï; Marchetti, Gino; Rahal, Ghita
2018-04-01
We describe the genesis, design and evolution of a computing platform designed and built to improve the success rate of biomedical translational research. The eTRIKS project platform was developed with the aim of building a platform that can securely host heterogeneous types of data and provide an optimal environment to run tranSMART analytical applications. Many types of data can now be hosted, including multi-OMICS data, preclinical laboratory data and clinical information, including longitudinal data sets. During the last two years, the platform has matured into a robust translational research knowledge management system that is able to host other data mining applications and support the development of new analytical tools. Copyright © 2018 Elsevier Ltd. All rights reserved.
Collegial Activity Learning between Heterogeneous Sensors.
Feuz, Kyle D; Cook, Diane J
2017-11-01
Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.
Dust in the underground railway tunnels of an Italian town.
Ripanucci, G; Grana, M; Vicentini, L; Magrini, A; Bergamaschi, A
2006-01-01
This article assesses hazards associated with exposure to dust in tunnels and platforms of the A and B lines of Rome's underground railway and provides an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. The study focused on the analysis and measurement of dust granulometric classes PM10, respirable fraction, respirable combustible dust, and the organic, metallic, siliceous, and fibrous components. Comparing the measurement values from the tunnels and platforms with those found at the entrances to the underground railway stations, it emerges that dust concentration in the tunnels and platforms is three times higher, with a maximum PM10 value of 479 microg/m3. Averaged over 24 hours, in relation to the above ground levels, drivers and station staff are exposed to an additional value of 11 microg/m3 and 10 microg/m3, respectively. If commuters were to remain in the trains or on the station platforms, the 24-hour average exposure would increase by 3 microg/m3. Iron and silica were the major components found in the dust. The use of silica sand in the emergency braking system of the carriages is capable of causing a dispersion of quartz in the air in percentages varying from 5% to 14%. Methods are suggested in this article for the reduction of dust dispersion.
Huang, Ean-Wen; Hung, Rui-Suan; Chiou, Shwu-Fen; Liu, Fei-Ying; Liou, Der-Ming
2011-01-01
Information and communication technologies progress rapidly and many novel applications have been developed in many domains of human life. In recent years, the demand for healthcare services has been growing because of the increase in the elderly population. Consequently, a number of healthcare institutions have focused on creating technologies to reduce extraneous work and improve the quality of service. In this study, an information platform for tele- healthcare services was implemented. The architecture of the platform included a web-based application server and client system. The client system was able to retrieve the blood pressure and glucose levels of a patient stored in measurement instruments through Bluetooth wireless transmission. The web application server assisted the staffs and clients in analyzing the health conditions of patients. In addition, the server provided face-to-face communications and instructions through remote video devices. The platform deployed a service-oriented architecture, which consisted of HL7 standard messages and web service components. The platform could transfer health records into HL7 standard clinical document architecture for data exchange with other organizations. The prototyping system was pretested and evaluated in a homecare department of hospital and a community management center for chronic disease monitoring. Based on the results of this study, this system is expected to improve the quality of healthcare services.
Horstman, Christopher L; Conzemius, Michael G; Evans, Richard; Gordon, Wanda J
2004-01-01
To document, using pressure platform gait analysis, the effect of perioperative oral carprofen on limb function and pain after cranial cruciate ligament surgery in dogs. Blinded, prospective clinical investigation. Twenty dogs with naturally occurring unilateral cranial cruciate disease. Physiologic indices, subjective pain scoring, and pressure platform gait analyses were performed before and 24, 48, and 72 hours after surgery. Correlations were assessed between methods of evaluation and the data was compared across treatment groups. No strong correlations were noted between physiologic data, subjective scoring systems, or gait analysis data at a walk or stance. Although average measures of limb function were nearly twice as large in dogs treated with carprofen, no significant differences between groups over time were identified. No significant differences were noted in any other measure of pain or limb function. Power analysis of peak vertical force at a walk indicated that significant difference would have been detected had the number of dogs in each group been increased to 35. When limb function was assessed with pressure platform gait analysis no statistical difference was noted between groups with respect to PVF and VI at a walk or stance, although average ground reaction forces for dogs in the carprofen group were greater than the traditional pain management group at all time points. Oral carprofen appears to provide some benefit for the treatment of postoperative orthopedic pain.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2012-07-01
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
Yang, Shuang; Zhang, Guoqing; Liu, Wan; Wang, Zhen; Zhang, Jifeng; Yang, Dongshan; Chen, Y Eugene; Sun, Hong; Li, Yixue
2017-05-20
Animal models are increasingly gaining values by cross-comparisons of response or resistance to clinical agents used for patients. However, many disease mechanisms and drug effects generated from animal models are not transferable to human. To address these issues, we developed SysFinder (http://lifecenter.sgst.cn/SysFinder), a platform for scientists to find appropriate animal models for translational research. SysFinder offers a "topic-centered" approach for systematic comparisons of human genes, whose functions are involved in a specific scientific topic, to the corresponding homologous genes of animal models. Scientific topic can be a certain disease, drug, gene function or biological pathway. SysFinder calculates multi-level similarity indexes to evaluate the similarities between human and animal models in specified scientific topics. Meanwhile, SysFinder offers species-specific information to investigate the differences in molecular mechanisms between humans and animal models. Furthermore, SysFinder provides a user-friendly platform for determination of short guide RNAs (sgRNAs) and homology arms to design a new animal model. Case studies illustrate the ability of SysFinder in helping experimental scientists. SysFinder is a useful platform for experimental scientists to carry out their research in the human molecular mechanisms. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valasek, John; Henrickson, James V.; Bowden, Ezekiel; Shi, Yeyin; Morgan, Cristine L. S.; Neely, Haly L.
2016-05-01
As small unmanned aircraft systems become increasingly affordable, reliable, and formally recognized under federal regulation, they become increasingly attractive as novel platforms for civil applications. This paper details the development and demonstration of fixed-wing unmanned aircraft systems for precision agriculture tasks. Tasks such as soil moisture content and high throughput phenotyping are considered. Rationale for sensor, vehicle, and ground equipment selections are provided, in addition to developed flight operation procedures for minimal numbers of crew. Preliminary imagery results are presented and analyzed, and these results demonstrate that fixed-wing unmanned aircraft systems modified to carry non-traditional sensors at extended endurance durations can provide high quality data that is usable for serious scientific analysis.
Cross-Platform Learning: On the Nature of Children's Learning from Multiple Media Platforms
ERIC Educational Resources Information Center
Fisch, Shalom M.
2013-01-01
It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several…
A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies
NASA Astrophysics Data System (ADS)
Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme
2018-05-01
Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.
Particle platforms for cancer immunotherapy
Serda, Rita Elena
2013-01-01
Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. PMID:23761969