Science.gov

Sample records for platinum gallium compounds

  1. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  2. Toxicity of platinum compounds.

    PubMed

    Hartmann, Jörg Thomas; Lipp, Hans-Peter

    2003-06-01

    Since the introduction of platinum-based combination chemotherapy, particularly cisplatin, the outcome of the treatment of many solid tumours has changed. The leading platinum compounds in cancer chemotherapy are cisplatin, carboplatin and oxaliplatin. They share some structural similarities; however, there are marked differences between them in therapeutic use, pharmacokinetics and adverse effects profiles [1-4]. Compared to cisplatin, carboplatin has inferior efficacy in germ-cell tumour, head and neck cancer and bladder and oesophageal carcinoma, whereas both drugs seem to have comparable efficacy in advanced non-small cell and small cell lung cancer as well as ovarian cancer [5-7]. Oxaliplatin belongs to the group of diaminocyclohexane platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid [8,9]. Other platinum compounds such as oral JM216, ZD0473, BBR3464 and SPI-77, which is a pegylated liposomal formulation of cisplatin, are still under investigation [10-13], whereas nedaplatin has been approved in Japan for the treatment of non-small cell lung cancer and other solid tumours. This review focuses on cisplatin, carboplatin and oxaliplatin.

  3. Medical applications and toxicities of gallium compounds.

    PubMed

    Chitambar, Christopher R

    2010-05-01

    Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  4. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate.

    PubMed

    Chitambar, Christopher R; Purpi, David P; Woodliff, Jeffrey; Yang, Meiying; Wereley, Janine P

    2007-09-01

    Clinical studies have shown gallium nitrate to have significant antitumor activity against non-Hodgkin's lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents. In this study, we compared the cytotoxicity of gallium maltolate, a novel gallium compound, with gallium nitrate in lymphoma cell lines, including p53 variant and unique gallium nitrate-resistant cells. We found that gallium maltolate inhibited cell proliferation and induced apoptosis through the mitochondrial pathway at lower concentrations and more rapidly than gallium nitrate. Gallium maltolate produced an increase in intracellular reactive oxygen species (ROS) within 2 h of incubation with cells; this effect could be blocked by mitoquinone, a mitochondria-targeted antioxidant. The role of the transferrin receptor (TfR) in gallium maltolate's action was examined using monoclonal antibody (MoAb) 42/6 to block TfR function. However, although MoAb 42/6 reduced gallium maltolate-induced caspase-3 activity, it had only a minor effect on cell growth inhibition. Importantly, gallium maltolate induced apoptosis in cells resistant to gallium nitrate, and, unlike gallium nitrate, its cytotoxicity was not affected by cellular p53 status. Cellular gallium uptake was greater with gallium maltolate than with gallium nitrate. We conclude that gallium maltolate inhibits cell proliferation and induces apoptosis more efficiently than gallium nitrate. Gallium maltolate is incorporated into lymphoma cells to a greater extent than gallium nitrate via both TfR-independent and -dependent pathways; it has significant activity against gallium nitrate-resistant cells and acts independently of p53. Further studies to evaluate its antineoplastic activity in vivo are warranted.

  5. Oligonuclear gallium nitrogen cage compounds: molecular intermediates on the way from gallium hydrazides to gallium nitride.

    PubMed

    Uhl, Werner; Abel, Thomas; Hagemeier, Elke; Hepp, Alexander; Layh, Marcus; Rezaeirad, Babak; Luftmann, Heinrich

    2011-01-03

    Gallium hydrazides are potentially applicable as facile starting compounds for the generation of GaN by thermolysis. The decomposition pathways are, however, complicated and depend strongly on the substituents attached to the gallium atoms and the hydrazido groups. This paper describes some systematic investigations into the thermolysis of the gallium hydrazine adduct Bu(t)(3)Ga←NH(2)-NHMe (1a) and the dimeric gallium hydrazides [R(2)Ga(N(2)H(2)R')](2) (2b, R = Bu(t), R' = Bu(t); 2c, R = Pr(i), R' = Ph; 2d, R = Me, R' = Bu(t)) which have four- or five-membered heterocycles in their molecular cores. Heating of the adduct 1a to 170 °C gave the heterocyclic compound Bu(t)(2)Ga(μ-NH(2))[μ-N(Me)-N(=CH(2))]GaBu(t)(2) (3) by cleavage of N-N bonds and rearrangement. 3 was further converted at 400 °C into the tetrameric gallium cyanide (Bu(t)(2)GaCN)(4) (4). The thermolysis of the hydrazide (Bu(t)(2)Ga)(2)(NH-NHBu(t))(2) (2b) at temperatures between 270 and 420 °C resulted in cleavage of all N-N bonds and the formation of an octanuclear gallium imide, (Bu(t)GaNH)(8) (6). The trimeric dialkylgallium amide (Bu(t)(2)GaNH(2))(3) (5) was isolated as an intermediate. Thermolysis of the hydrazides (Pr(i)(2)Ga)(2)(NH-NHPh)(NH(2)-NPh) (2c) and (Me(2)Ga)(2)(NH-NHBu(t))(2) (2d) proceeded in contrast with retention of the N-N bonds and afforded a variety of novel gallium hydrazido cage compounds with four gallium atoms and up to four hydrazido groups in a single molecule: (Pr(i)Ga)(4)(NH-NPh)(3)NH (7), (MeGa)(4)(NH-NBu(t))(4) (8), (MeGa)(4)(NH-NBu(t))(3)NBu(t) (9), and (MeGa)(4)(NHNBu(t))(3)NH (10). Partial hydrolysis gave reproducibly the unique octanuclear mixed hydrazido oxo compound (MeGa)(8)(NHNBu(t))(4)O(4) (11).

  6. [Platinum compounds: metabolism, toxicity and supportive strategies].

    PubMed

    Lipp, H P; Hartmann, J T

    2005-02-09

    Although the leading platinum compounds, cisplatin, carboplatin, and oxaliplatin, share some structural similarities, there are marked differences between them in therapeutic uses, pharmacokinetics, and adverse effects profiles. Compared with cisplatin, carboplatin has inferior efficacy in germ-cell tumors, head and neck cancers, and bladder and esophageal carcinomas, whereas the two drugs appear to have comparable efficacy in ovarian cancer, extensive small-cell lung cancers (SCLC), and advanced non-small-cell lung cancers (NSCLC). Oxaliplatin belongs to the group of diaminocyclohexane (DACH) platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid. Nedaplatin has been registered in Japan, whereas other derivatives, like JM216 (which is the only orally available platinum derivative), ZD0473, BBR3464, and SPI-77 (a liposomal formulation of cisplatin), are still under investigation. The adverse effects of platinum compounds are reviewed together with possible prevention strategies.

  7. Laser photochemistry of gallium-containing compounds. [Trimethylgallium

    SciTech Connect

    Baughcum, S.L.; Oldenborg, R.C.

    1986-01-01

    The production of gas-phase gallium atoms in the photolysis of trimethylgallium has been investigated at 193 nm and at other laser wavelengths. Ground state (4 /sup 2/P/sup 0//sub 1/2) and metastable (4 /sup 2/P/sup 0//sub 3/2/) gallium atoms are detected using laser-induced fluorescence techniques. Our results indicate that gallium atoms continue to be produced at long times after the laser pulse. The observed dependence on photolysis laser fluence, trimethylgallium pressure, and buffer gas pressure are consistent with a mechanism in which highly excited gallium methyl radicals undergo unimolecular decomposition to produce gallium atoms. Since this process is observed to happen on the time scale of hundreds of microseconds, these results have important implications for studies of metal deposition and direct laser writing by laser photolysis of organometallic compounds. 31 refs., 5 figs.

  8. Request for Correction 11001 Toxicological Review of Halogenated Platinum Salts and Platinum Compounds

    EPA Pesticide Factsheets

    Request for Correction by the International Platinum Group Metals Association seeking the correction of information disseminated in the draft EPA document Toxicological Review of Halogenated Platinum Salts and Platinum Compounds: In Support of Summary Information on the Integrated Risk Information System (IRIS).

  9. Combination of three metals for the treatment of cancer: gallium, rhenium and platinum. 1. Determination of the optimal schedule of treatment.

    PubMed

    Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; D'Angelo, Jean; Morgant, Georges; Desmaele, Didier; Tomas, Alain; Collery, Thomas; Wei, Ming; Badawi, Abdelfattah

    2012-07-01

    Platinum is well known for its anticancer activity, firstly used as cis-diaminedichloroplatinum (II) (CDDP), with a wide range of activity. Its main mechanism of action involves its binding to DNA. Gallium, another metal, has also demonstrated apoptotic effects on malignant cells, but through interaction with targets other than DNA, such as the membrane, cytoskeleton and proteasome, and on enzyme activities. An antitumor synergism between CDDP and both gallium and rhenium compounds has been demonstrated. For these reasons, we proposed to combine these three metals and to determine at which doses each compound could be administered without major toxicity. CDDP, tetrakis(1-octanol) tris(5-aminosalicylate)gallium(III), and a diseleno-ether rhenium(I) complex were used in this experimental study in breast cancer MCF-7 tumor-bearing mice. CDDP was administered intraperitoneally (i.p.) twice a week at the dose of 3 mg/kg. Tetrakis(1-octanol) tris(5-aminosalicylate) gallium (III) and rhenium(I) diseleno-ether complexes were administered orally, daily, five days a week for three weeks, at doses ranging from 20 to 100 mg/kg for the gallium compound and from 10 to 50 mg/kg for the rhenium compound. Doses of 10 mg/kg of rhenium(I) diseleno-ether, and 100 mg/kg of the salicylate gallium compound, in combination with CDDP induced a significant decrease of 50% of the tumor volume, by comparison with the control group. In contrast, the decrease of the tumor volume in mice treated by CDDP alone was less than 25%. Changes in the sequence of administration of the three metals will be discussed to improve the therapeutic index.

  10. Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability.

    PubMed

    Bernstein, L R; Tanner, T; Godfrey, C; Noll, B

    2000-01-01

    Gallium maltolate, tris(3-hydroxy-2-methyl-4H-pyran-4-onato)gallium (GaM), is an orally active gallium compound for therapeutic use. It is moderately soluble in water (10.7 +/- 0.9 mg/mL at 25 composite functionC) with an octanol partition coefficient of 0.41+/-0.08. The molecule is electrically neutral in aqueous solution at neutral pH; a dilute aqueous solution (2.5 x10-(-5) M) showed little dissociation at pH 5.5-8.0. Single crystal X-ray diffraction analysis found the GaM molecule to consist of three maltolate ligands bidentately bound to a central gallium atom in a propeller-like arrangement, with one of the ligands disordered in two possible orientations. The compound is orthorhombic, space group Pbca, unit cell a = 16.675(3), b = 12.034(2), c = 18.435(2) A at 158K. GaM was administered to healthy human volunteers at single doses of 100, 200, 300, and 500 mg (three subjects per dose). GaM was very well tolerated. Oral absorption of Ga into plasma was fairly rapid (absorption half life = 0.8-2.0h), with a central compartment excretion half life of 17-21h. Absorption appeared dose proportional over the dosage range studied. Estimated oral gallium bioavailability was approximately 25-57%, based on comparison with published data on intravenous gallium nitrate. Urinary Ga excretion following oral GaM administration was approximately 2% of the administered dose over 72h, in contrast to 49-94% urinary Ga excretion over 24h following i.v. gallium nitrate administration. We suggest that oral administration of GaM results in nearly all plasma gallium being bound to transferrin, whereas i.v. administration of gallium nitrate results in formation of considerable plasma gallate [Ga(OH)(4) (-)], which is rapidly excreted in the urine. These data support the continued investigation of GaM as an orally active therapeutic gallium compound.

  11. Chemistry and Pharmacokinetics of Gallium Maltolate, a Compound With High Oral Gallium Bioavailability

    PubMed Central

    Tanner, Trevor; Godfrey, Claire; Noll, Bruce

    2000-01-01

    Gallium maltolate, tris(3-hydroxy-2-methyl-4H-pyran-4-onato)gallium (GaM), is an orally active gallium compound for therapeutic use. It is moderately soluble in water (10.7 ± 0.9 mg/mL at 25∘C) with an octanol partition coefficient of 0.41±0.08. The molecule is electrically neutral in aqueous solution at neutral pH; a dilute aqueous solution (2.5 ×10−-5 M) showed little dissociation at pH 5.5-8.0. Single crystal X-ray diffraction analysis found the GaM molecule to consist of three maltolate ligands bidentately bound to a central gallium atom in a propeller-like arrangement, with one of the ligands disordered in two possible orientations. The compound is orthorhombic, space group Pbca, unit cell a = 16.675(3), b = 12.034(2), c = 18.435(2) Å at 158K. GaM was administered to healthy human volunteers at single doses of 100, 200, 300, and 500 mg (three subjects per dose). GaM was very well tolerated. Oral absorption of Ga into plasma was fairly rapid (absorption half life = 0.8-2.0h), with a central compartment excretion half life of 17-21h. Absorption appeared dose proportional over the dosage range studied. Estimated oral gallium bioavailability was approximately 25-57%, based on comparison with published data on intravenous gallium nitrate. Urinary Ga excretion following oral GaM administration was approximately 2% of the administered dose over 72h, in contrast to 49-94% urinary Ga excretion over 24h following i.v. gallium nitrate administration. We suggest that oral administration of GaM results in nearly all plasma gallium being bound to transferrin, whereas i.v. administration of gallium nitrate results in formation of considerable plasma gallate [Ga(OH)4−], which is rapidly excreted in the urine. These data support the continued investigation of GaM as an orally active therapeutic gallium compound. PMID:18475921

  12. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  13. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  14. Thin film Heusler compounds manganese nickel gallium

    NASA Astrophysics Data System (ADS)

    Jenkins, Catherine Ann

    Multiferroic Heusler compounds Mn3--xNi xGa (x=0,1,2) have a tetragonal unit cell that can variously be used for magneto-mechanically coupled shape memory ( x=1,2) and spin-mechanical applications (x=0). The first fabrication of fully epitaxial thin films of these and electronically related compounds by sputtering is discussed. Traditional and custom lab characterization of the magnetic and temperature driven multiferroic behavior is augmented by more detailed synchrotron-based high energy photoemission spectroscopic techniques to describe the atomic and electronic structure. Integration of the MnNi2Ga magnetic shape memory compound in microwave patch antennas and active free-standing structures represents a fraction of the available and promising applications for these compounds. Prototype magnetic tunnel junctions are demonstrated by Mn3Ga electrodes with perpendicular anisotropy for spin torque transfer memory structures. The main body of the work concentrates on the definition and exploration of the material series Mn3--xNi xGa (x=0,1,2) and the relevant multiferroic phenomena exhibited as a function of preparation and external stimuli. Engineering results on each x=0,1,2 are presented with device prototypes where relevant. In the appendices the process of the materials design undertaken with the goal of developing new ternary intermetallics with enhanced properties is presented with a full exploration of the road from band structure calculations to device implementation. Cobalt based compounds in single crystal and nanoparticle form are fabricated with an eye to developing the production methods for new cobalt- and iron-based magnetic shape memory compounds for device applications in different forms. Mn2CoSn, a compound isolectronic and with similar atomic ordering to Mn2NiGa is experimentally determined to be a nearly half-metallic ferromagnet in contrast to the metallic ferrimagnetism in the parent compound. High energy photoemission spectroscopy is shown to

  15. Platinum(II)-Oligonucleotide Coordination Based Aptasensor for Simple and Selective Detection of Platinum Compounds.

    PubMed

    Cai, Sheng; Tian, Xueke; Sun, Lianli; Hu, Haihong; Zheng, Shirui; Jiang, Huidi; Yu, Lushan; Zeng, Su

    2015-10-20

    Wide use of platinum-based chemotherapeutic regimens for the treatment for carcinoma calls for a simple and selective detection of platinum compound in biological samples. On the basis of the platinum(II)-base pair coordination, a novel type of aptameric platform for platinum detection has been introduced. This chemiluminescence (CL) aptasensor consists of a designed streptavidin (SA) aptamer sequence in which several base pairs were replaced by G-G mismatches. Only in the presence of platinum, coordination occurs between the platinum and G-G base pairs as opposed to the hydrogen-bonded G-C base pairs, which leads to SA aptamer sequence activation, resulting in their binding to SA coated magnetic beads. These Pt-DNA coordination events were monitored by a simple and direct luminol-peroxide CL reaction through horseradish peroxidase (HRP) catalysis with a strong chemiluminescence emission. The validated ranges of quantification were 0.12-240 μM with a limit of detection of 60 nM and selectivity over other metal ions. This assay was also successfully used in urine sample determination. It will be a promising candidate for the detection of platinum in biomedical and environmental samples.

  16. Gallium

    SciTech Connect

    1996-01-01

    Discovered in 1875 through a study of its spectral properties, gallium was the first element to be uncovered following the publication of Mendeleev`s Periodic Table. French chemist, P.E. Lecoq de Boisbaudran, named his element discovery in honor of his native country; gallium is derived from the Latin word for France-{open_quotes}Gallia.{close_quotes}. This paper describes the properties, sources, and market for gallium.

  17. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  18. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    SciTech Connect

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R. ); Jones, K.W. )

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig.

  19. Gallium compounds in solar cells. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of gallium compounds in solar cells to increase solar cell efficiency. Computer models, theories, and performance tests are included. Gallium compounds used in thin film cells, cascade solar cells, large area solar cells, cells designed for industrial and space applications, and as antireflection coatings are discussed. Resistance to radiation damage, cooling to improve efficiency, grain boundary behavior, and economic considerations are also covered. (Contains 250 citations and includes a subject term index and title list.)

  20. Developing Central Nervous System and Vulnerability to Platinum Compounds

    PubMed Central

    Bernocchi, G.; Bottone, M. G.; Piccolini, V. M.; Dal Bo, V.; Santin, G.; De Pascali, S. A.; Migoni, D.; Fanizzi, F. P.

    2011-01-01

    Comparative studies on the effects of the platinum complexes in use or in clinical trials are carried out in order to discover differences in the neurotoxic potential and the reversibility of neurotoxicity. In this paper, we summarized the current literature on neurotoxicity and chemoresistance of cisplatin (cisPt) and discussed our recent efforts on the interference of cisPt and a new platinum compound [Pt(O,O′-acac)(γ-acac)(DMS)] (PtAcacDMS), with high specific reactivity with sulphur ligands instead of nucleobases as cisPt, on some crucial events of rat postnatal cerebellum development. The acute effects of drug treatments on cell proliferation and death in the external granular layer and granule cell migration and the late effects on the dendrite growth of Purkinje cells were evaluated. Together with the demonstrated antineoplastic effectiveness in vitro, compared with cisPt, data suggest a lower neurotoxicity of PtAcacDMS, in spite of its presence in the brain that involves considerations on the blood brain barrier permeability. PMID:22312552

  1. Gallium compounds in solar cells. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of gallium compounds in solar cells to increase solar cell efficiency. Computer models, theories, and performance tests are included. Gallium compounds used in thin film cells, cascade solar cells, large area solar cells, cells designed for industrial and space applications, and as antireflection coatings are discussed. Resistance to radiation damage, cooling to improve efficiency, grain boundary behavior, and economic considerations are also covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Optical characterization of platinum-halide ladder compounds

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji; Ohara, Jun

    2007-12-01

    Varieties of quasi-one-dimensional halogen (X) -bridged transition-metal (M) complexes, (C8H6N4)[Pt(C2H8N2)X]2X(ClO4)3•H2O (X=Br,Cl) and (C10H8N2)[Pt(C4H13N3)Br]2Br4•2H2O , comprising two-leg ladders of mixed-valent platinum ions, are described in terms of a multiband extended Peierls-Hubbard Hamiltonian. The polarized optical-conductivity spectra are theoretically reproduced, and the ground-state valence distributions are reasonably determined. The latter variety, whose interchain valence arrangement is out of phase, is reminiscent of conventional MX single-chain compounds, while the former variety, whose interchain valence arrangement is in phase, reveals itself as a d-p-π -hybridized multiband ladder material.

  3. Photoemission and Electrical Studies of the Titanium/gallium -ARSENIDE(110) and PLATINUM/GALLIUM-ARSENIDE(110) Interfaces.

    NASA Astrophysics Data System (ADS)

    McCants, Carl Emery

    Multilayer metallization using Ti-based contacts such as Ti-Pt-Au is used for Schottky gate contacts in the fabrication of GaAs metal-semiconductor field-effect transistors (MESFET's) and high electron mobility transistors (HEMT's). Ti was initially used as a wetting metal; however, the chemical interactions with the GaAs substrate and their effect on the electrical properties were not well understood. A systematic investigation of the interfacial and electrical properties of Ti and Pt deposited in ultrahigh vacuum on cleaved GaAs(110) surfaces was undertaken to address these issues. Soft x-ray, x-ray and ultraviolet photoemission spectroscopies of the Ti/GaAs(110) interface formed at room temperature (RT), at low temperature (LT) and after annealing to 475^circC, and the Pt/GaAs(110) interface at RT will be presented. Emphasis will be placed on the Ti studies, with differences between the Ti and Pt reaction products examined. Current-voltage measurements were made at RT for both interfaces and for the Ti/GaAs(110) after annealing to 450^ circC. Computer controlled curve fitting techniques, used to decompose the photoemission data, allowed for the determination of the extent of chemical reactions, gave an indication of the nature of the reaction products, and separated band bending shifts. The annealing studies on the Ti/GaAs(110) show that the Schottky barrier height increases by 0.1 eV at 200^circC on n-GaAs(110) and also suggest that the Ti-As compound formed at RT is stable at high temperatures. At LT, the Ti/GaAs(110) interface shows only small differences in band bending and almost none in chemical reactions than is observed at room temperature. This is in contrast to a common behavior for less reactive metals and does not support models of Schottky barrier formation that depend solely on changes in the metallicity of the overlayer due to substrate temperature. These results agree with the Advanced Unified Defect model which suggests that As antisites along

  4. Platinum-containing compound platinum pyrithione is stronger and safer than cisplatin in cancer therapy

    PubMed Central

    Zang, Dan; Lan, Xiaoying; Liao, Siyan; Yang, Changshan; Zhang, Peiquan; Wu, Jinjie; Li, Xiaofen; Liu, Ningning; Liao, Yuning; Huang, Hongbiao; Shi, Xianping; Jiang, Lili; Liu, Xiuhua; He, Zhimin; Wang, Xuejun; Liu, Jinbao

    2017-01-01

    DNA is the well-known molecular target of current platinum-based anticancer drugs; consequently, their clinical use is severely restricted by their systemic toxicities and drug resistance originating from non-selective DNA damage. Various strategies have been developed to circumvent the shortcomings of platinum-based chemotherapy but the inherent problem remains unsolved. Here we report that platinum pyrithione (PtPT), a chemically well-characterized synthetic complex of platinum, inhibits proteasome function and thereby exhibits greater and more selective cytotoxicity to multiple cancer cells than cisplatin, without showing discernible DNA damage both in vitro and in vivo. Moreover, unlike the classical proteasome inhibitor bortezomib/Velcade which inhibits the proteasome via blocking the peptidase activity of 20S proteasomes, PtPT primarily deactivates 26S proteasome-associated deubiquitinases USP14 and UCHL5. Furthermore, PtPT can selectively induce cytotoxicity and proteasome inhibition in cancer cells from leukemia patients but not peripheral blood mononuclear cells from healthy humans. In nude mice, PtPT also remarkably inhibited tumor xenograft growth, without showing the adverse effects that were induced by cisplatin. Hence, we have discovered a new platinum-based anti-tumor agent PtPT which targets 26S proteasome-associated deubiquitinases rather than DNA in the cell and thereby exerts safer and more potent anti-tumor effects, identifying a highly translatable new platinum-based anti-cancer strategy. PMID:27381943

  5. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  6. Innovative use of platinum compounds to selectively detect live microorganisms by polymerase chain reaction.

    PubMed

    Soejima, Takashi; Minami, Jun-Ichi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-02-01

    PCR cannot distinguish live microorganisms from dead ones. To circumvent this disadvantage, ethidium/propidium-monoazide (EMA/PMA) and psoralen to discriminate live from dead bacteria have been used for 2 decades. These methods require the use of numerous laborious procedures. We introduce an innovative method that uses platinum compounds, which are primarily used as catalysts in organic chemistry and partly used as anti-cancer drugs. Microorganisms are briefly exposed to platinum compounds in vivo, and these compounds penetrate dead (compromised) microorganisms but not live ones and are chelated by chromosomal DNA. The use of platinum compounds permits clear discrimination between live and dead microorganisms in water and milk (including Cronobacter sakazakii and Escherichia coli) via PCR compared with typically used PMA. This platinum-PCR method could enable the specific detection of viable coliforms in milk at a concentration of 5-10 CFU mL(-1) specified by EU/USA regulations after a 4-h process. For sample components, environmental water contains lower levels of PCR inhibitors than milk does, and milk is similar to infant formula, skim milk and blood; thus, the use of the platinum-PCR method could also prevent food poisoning due to the presence of C. sakazakii in dairy products. This method could provide outstanding rapidity for use in environmental/food/clinical tests. Platinum-PCR could also be a substitute for the typical culture-based methods currently used.

  7. UV excimer laser photochemistry of hybrid organometallic compounds of gallium

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Cleaver, W. M.; Stuke, M.; Barron, A. R.

    1992-09-01

    The gas phase ultraviolet (UV) excimer laser induced photolysis of the gallium-alkyls Ga( t-C4H9) n - (CH3)3- n ( n=0, 1, 2, 3) was studied, using photolysis wavelengths of 308, 248, and 193 nm. The photofragments Ga, GaH, and GaCH3 were detected by laser ionization time-of-flight mass spectroscopy, while the hydrocarbon products CH4, C2H6, HC(CH3)3 and H2C=C(CH3)2 were identified using Fourier transform infrared (FTIR) spectroscopy. The formation of the GaH photofragment, and a high olefin-to-alkane product ratio, for Ga( t-C4H9)2(CH3) and Ga( t-C4H9)3 are interpreted to indicate a β-hydrogen elimination process. However, β-hydrogen elimination only occurs after fission of the weakest Ga-C bond, thus no β-hydride elimination is observed for Ga( t-C4H9)(CH3)2. Detection of C2H6 for Ga(CH3)3 and Ga( t-C4H9)(CH3)2, but not for Ga( t-C4H9)2(CH3), shows that under our experimental conditions the formation of ethane is as a result of the reductive elimination of the methyl groups, and is not due to the recombination of two free methyl radicals.

  8. Radio- and photosensitization of DNA with compounds containing platinum and bromine atoms

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Ptasińska, Sylwia; Gow, Jason; Vrønning Hoffmann, Søren; Mason, Nigel J.

    2015-05-01

    Irradiations of plasmid DNA by both X-rays and UV light in the presence and absence of compounds containing platinum and bromine atoms were performed in order to asses the sensitization potential of these compounds. Plasmid DNA pBR322 was incubated with platinum (II) bromide, hydrogen hexabromoplatinate (IV), hydrogen hexahydroxyplatinate (IV) and sodium hexahydroxyplatinate (IV). Incubation was followed by X-ray or UV irradiations. It was found that amongst the sensitizers tested, during irradiations carried out in the presence of platinum (II) bromide, the highest levels of double strand breaks formation upon X-ray treatment were recorded. In contrast much less damage was induced by UV light. Data presented here suggests that this compound may be a promising radiosensitizer for cancer treatment. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  9. Gallium Compounds: A Possible Problem for the G2 Approaches

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Melius, Carl F.; Allendorf, Mark D.; Arnold, James (Technical Monitor)

    1998-01-01

    The G2 atomization energies of fluorine and oxygen containing Ga compounds are greatly in error. This arises from an inversion of the Ga 3d core orbital and the F 2s or O 2s valence orbitals. Adding the Ga 3d orbital to the correlation treatment or removing the F 2s orbitals from the correlation treatment are shown to eliminate the problem. Removing the O 2s orbital from the correlation treatment reduces the error, but it can still be more than 6 kcal/mol. It is concluded that the experimental atomization energy of GaF2 is too large.

  10. Behavior of platinum(iv) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation.

    PubMed

    Schreiber-Brynzak, Ekaterina; Pichler, Verena; Heffeter, Petra; Hanson, Buck; Theiner, Sarah; Lichtscheidl-Schultz, Irene; Kornauth, Christoph; Bamonti, Luca; Dhery, Vineet; Groza, Diana; Berry, David; Berger, Walter; Galanski, Markus; Jakupec, Michael A; Keppler, Bernhard K

    2016-04-01

    Hypoxia in solid tumors remains a challenge for conventional cancer therapeutics. As a source for resistance, metastasis development and drug bioprocessing, it influences treatment results and disease outcome. Bioreductive platinum(iv) prodrugs might be advantageous over conventional metal-based therapeutics, as biotransformation in a reductive milieu, such as under hypoxia, is required for drug activation. This study deals with a two-step screening of experimental platinum(iv) prodrugs with different rates of reduction and lipophilicity with the aim of identifying the most appropriate compounds for further investigations. In the first step, the cytotoxicity of all compounds was compared in hypoxic multicellular spheroids and monolayer culture using a set of cancer cell lines with different sensitivities to platinum(ii) compounds. Secondly, two selected compounds were tested in hypoxic xenografts in SCID mouse models in comparison to satraplatin, and, additionally, (LA)-ICP-MS-based accumulation and distribution studies were performed for these compounds in hypoxic spheroids and xenografts. Our findings suggest that, while cellular uptake and cytotoxicity strongly correlate with lipophilicity, cytotoxicity under hypoxia compared to non-hypoxic conditions and antitumor activity of platinum(iv) prodrugs are dependent on their rate of reduction.

  11. Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation.

    PubMed

    Charest, Gabriel; Paquette, Benoit; Fortin, David; Mathieu, David; Sanche, Léon

    2010-04-01

    Despite significant advances, the radiotherapy and chemotherapy protocols marginally improve the overall survival of patients with glioblastoma. Lipoplatin(TM), and Lipoxal(TM), the liposomal formulations of cisplatin and oxaliplatin respectively, were tested on the F98 glioma cells for their ability to improve the cell uptake and increase the synergic effect when combined with ionizing radiation. The cytotoxicity and synergic effect of platinum compounds were assessed by colony formation assay, while the cellular uptake was measured by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). After 4 h exposure with platinum compounds, cells were irradiated (1.5-6.6 Gy) with a (60)Co source. The liposomal formulations were compared to their liposome-free analogs and to carboplatin. The concomitant treatment of F98 cells with carboplatin and radiation produced the highest radiosensitizing effect (30-fold increase). Among the platinum compounds tested, Lipoplatin(TM) produced the most promising results. This liposomal formulation of cisplatin improved the cell uptake by 3-fold, and its radiosensitizing potential was enhanced by 14-fold. Although Lipoxal(TM) can potentially reduce the adverse effect of oxaliplatin, a synergic effect with radiation was measured only when incubated at a concentration higher than its IC50. Conversely, concomitant treatment with cisplatin did not result in a synergic effect, as in fact a radioprotective effect was measured on the F98 cells. In conclusion, among the five platinum compounds tested, carboplatin and Lipoplatin(TM) showed the best radiosensitizing effect. Lipoplatin(TM) seems the most promising since it led to the best cellular incorporation and has already been reported to be less neurotoxic than other platinum compounds.

  12. 78 FR 57656 - S & S Pharmacy, Inc., d/b/a Platinum Pharmacy & Compounding; Decision and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... Enforcement Administration S & S Pharmacy, Inc., d/b/a Platinum Pharmacy & Compounding; Decision and Order On... Cause and Immediate Suspension of Registration to S & S Pharmacy, Inc., d/b/a Platinum Pharmacy... revocation of Registrant's Certificate of Registration as a retail pharmacy, which before it...

  13. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Majsterek, Ireneusz; Blasiak, Janusz

    2005-07-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic compound found in grapes and wine, has been shown to have anti-inflammatory, anti-oxidant, anti-tumor and anti-platelet activities. Using different methods, we show that resveratrol reduces oxidative stress induced by cisplatin (cis-diamminedichloroplatinum II) and selenium-cisplatin conjugate ([NH(3)](2)Pt(SeO(3)), Se-Pt) in human blood platelets, lymphocytes and plasma. Resveratrol decreased the production of 8-epi-prostaglandin F(2) (a biomarker of lipid peroxidation) in control blood platelets and platelets treated with platinum compounds (10 microg/ml), and markedly reduced activities of different anti-oxidative enzymes (glutathione peroxidase, superoxide dismutase and catalase) in these cells. A combined action of resveratrol and Se-Pt evoked a significant decrease of DNA damage (measured by comet assay) in lymphocytes compared with cells treated with Se-Pt only. Resveratrol also caused a distinct reduction of total anti-oxidant level in plasma after incubation with platinum compounds. Therefore, anti-oxidative activity of resveratrol may diminish oxidative stress and damage to cellular biomolecules (lipids, proteins and DNA) induced by platinum compounds.

  14. Resonance enhancement of nonlinear photoluminescence in gallium selenide and related compounds

    SciTech Connect

    Angermann, Ch; Karich, P; Kador, Lothar; Allakhverdiev, K R; Baykara, T; Salaev, E Yu

    2012-05-31

    Maker fringe experiments on the layered chalcogenide semiconductor gallium selenide (GaSe) with weak cw diode lasers are presented. It is demonstrated that nonlinear photoluminescence emitted by this material and by the similar compound GaSe{sub 0.9}S{sub 0.1} under illumination with a 632.8-nm He - Ne laser shows very strong resonance enhancement upon heating when the absorption edge and exciton levels are shifted towards the laser line. The photoluminescence appears to be strongest when the energy level of the direct exciton, which emits it, is resonant with the photon energy of the laser. The previously observed enhancement of the photoluminescence by electric fields is interpreted in this context.

  15. E platinum, a newly synthesized platinum compound, induces apoptosis through ROS-triggered ER stress in gastric carcinoma cells.

    PubMed

    Wang, Xiaoping; Guo, Qinglong; Tao, Lei; Zhao, Li; Chen, Yan; An, Teng; Chen, Zhen; Fu, Rong

    2017-01-01

    Gastric cancer (GC) is still one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the antitumor effect of E Platinum, a newly platinum-based chemotherapeutic agent bearing the basic structure of Oxaliplatin, in a variety of gastric carcinoma cells and the underlying mechanisms. We demonstrated that E Platinum significantly induced apoptosis in gastric cancer cells via mitochondrial apoptotic pathway as a result of increased reactive oxygen species (ROS). We also found that E Platinum enhanced Ca(2+) flux out from the endoplasmic reticulum by increasing the protein expression of IP3R type 1 (IP3R1) and decreasing the expression of ERp44. Dysfunction of Ca(2+) homeostasis in endoplasmic reticulum (ER) leads to accumulation of unfolded proteins and ER stress. Mechanically, E Platinum increased ER stress associated protein expression such as GRP78, p-PERK, p-eIF2α, ATF4, and CHOP. However, knocking down CHOP reversed E Platinum-induced apoptosis by blocking mitochondrial apoptotic pathway. Furthermore, 10 mg/kg of E Platinum significantly suppressed BGC-823 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, E Platinum inhibited tumor growth and induced apoptosis by ROS-mediated ER stress activation both in vitro and in vivo. Our study indicated that E Platinum may be a potential and effective treatment for gastric cancer in clinical. © 2016 Wiley Periodicals, Inc.

  16. Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics

    PubMed Central

    Georgieva, Ivelina; Nikolov, George St.

    1998-01-01

    A series of Pt(ll) complexes with antitumor properties: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL2 (meso-1-PtL2) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL2, [2L=2Cl−,2I−,SO42−; halo = F (erythro-8-PtL2),halo = Cl (erythro-9-PtL2)] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-δ, meso-λ, d,l-δ, d,I-λ. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL2 < erythro-9-PtL2 < erythro-8-PtL2 for L=I−, Cl− and SO42− are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL2). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type. PMID:18475828

  17. Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics.

    PubMed

    Trendafilova, N; Georgieva, I; Nikolov, G S

    1998-01-01

    A SERIES OF PT(LL) COMPLEXES WITH ANTITUMOR PROPERTIES: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL(2) (meso-1-PtL(2)) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL(2), [2L=2Cl-,2I-,SO(4) (2)-; halo = F (erythro-8-PtL(2)),halo = Cl (erythro-9-PtL(2))] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-delta, meso-lambda, d,l-delta, d,I-lambda. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL(2) < erythro-9-PtL(2) < erythro-8-PtL(2) for L=I-, Cl- and SO(4) (2-) are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL(2)). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type.

  18. Pharmacokinetics and tissue distribution of two novel isomerism anticancer platinum compounds.

    PubMed

    He, Donglin; Yin, Shuhui; Han, Fuguo; Zhu, Jingjie; Shi, Yun; Tong, Zhiyuan; Liu, Qingfei

    2016-11-01

    LLC-0601(S,S) and LLC-0601(R,R) are two novel synthesized isomerism platinum compounds both with encouraging anticancer activity. However, the previous study showed that toxicity of LLC-0601(R,R) was much higher than that of LLC-0601(S,S) with higher body weight loss and mortality rate of tested rats. This paper is focused on the comparison of the two compounds with their pharmacokinetic (PK) profiles in rats and tissue distribution in mice after intravenous administration. The atomic absorption spectrometry (AAS) method was successfully developed and applied for the determination of platinum in plasma and tissues. The results showed that main PK parameters such as half-life, AUC and MRT of the two compounds had no significant difference after intravenous administration to rats (p  > 0.05). The tissue distribution after intravenous administration to mice showed that the concentration of LLC-0601(R,R) in heart at 0.083 h was higher than that of LLC-0601(S,S) (p  < 0.05) and it was the same case for AUC5min-4 h (p  < 0.05). Different distribution of the two compounds in heart was possibly the main reason of different toxicity and more in-depth research on the metabolites and other mechanism are needed to investigate the toxicity.

  19. Molten gallium flux synthesis of known thermoelectric and novel magnetic inorganic clathrate compounds: Improving thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Bryan, John Daniel

    Molten gallium metal has been used as a solvent to grow large single crystals of known inorganic thermoelectric clathrates Sr8Ga 16Ge30, Ba8Ga16Ge30, and Ba8Ga16Si30. X-ray diffraction, thermal analysis, electron microprobe, Glow Discharge Mass Spectrometry, temperature dependent electrical conductivity and Seebeck coefficient measurements characterized the single crystals. The Thermoelectric performance was shown to be heavily dependent on the synthetic conditions including container choice, thermal history and impurity concentration. Inorganic Clathrates have attracted intense interest in last several years as potential new materials for thermoelectric devices. If a small to moderate increase in thermoelectric performance over the currently used materials is realized, substantial environmental and technological gains could be achieved. Since thermoelectric refrigeration modules require no moving parts or heat exchange gas (freon) they offer significant advantages over conventional refrigeration technology that tends to fail due to the finite lifetime of the pumping equipment. High temperature devices are also extremely useful for power generation in harsh unforgiving environments where excess heat is available. The thermoelectric performance, primarily at room temperature, of these compounds was found to be heavily dependent on the synthetic procedures used to obtain them. A flux growth procedure was developed to overcome the problems of the traditional melt-quench-anneal solid-state chemical approach. This procedure yielded large single crystals of the Sr8Ga16Ge 30, Ba8Ga16Ge30 and Ba8Ga 16Si30 compounds which ready facilitated their chemical and electronic study. Finally, an outlook on the application of these compounds as thermoelectric devices is given. Application of the flux method to other systems was also successful in the discovery of two new inorganic clathrate compounds: type IV Eu4Ga 8Ge16 and type V Yb8Ga16Ge14. The Eu4Ga8Ge16 compound was found to

  20. GALLIUM ARSENIDE DENDRITE SINGLE CRYSTAL PROGRAM

    DTIC Science & Technology

    ARSENIDES, *GALLIUM COMPOUNDS, *LABORATORY FURNACES, * SOLAR CELLS , CRUCIBLES, DESIGN, DIFFUSION, EXPLOSIONS, INTERMETALLIC COMPOUNDS, MATERIALS, PHOSPHORUS, SINGLE CRYSTALS, TEMPERATURE CONTROL, ZINC

  1. Electrodeposition of gallium for photovoltaics

    SciTech Connect

    Bhattacharya, Raghu N.

    2016-08-09

    An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.

  2. Screening and identification of novel compounds with potential anti-proliferative effects on gallium-resistant lung cancer through an AXL kinase pathway.

    PubMed

    Oyewumi, Moses O; Alazizi, Adnan; Liva, Sophia; Lin, Li; Geldenhuys, Werner J

    2014-09-15

    The clinical application of gallium compounds as anticancer agents is hampered by development of resistance. As a potential strategy to overcome the limitation, eight series of compounds were identified through virtual screening of AXL kinase homology model. Anti-proliferative studies were carried using gallium-sensitive (S) and gallium-resistant (R) human lung adenocarcinoma (A549) cells. Compounds 5476423 and 7919469 were identified as leads. The IC50 values from treating R-cells showed compounds 5476423 and 7919469 had 80 fold and 13 fold increased potency, respectively, compared to gallium acetylacetonate (GaAcAc). The efficacy of GaAcAc against R-cells was increased 2 fold and 1.2 fold when combined with compounds 5476423 and 7919469, respectively. Compared with S-cells, R-cells showed elevated expression of AXL protein, which was significantly suppressed through treatments with the lead compounds. It is anticipated that the lead compounds could be applied in virtual screening programs to identify novel scaffolds for new therapeutic agents as well as combinatorial therapy agents in gallium resistant lung cancer.

  3. Novel platinum(II) compounds with O,S bidentate ligands: synthesis, characterization, antiproliferative properties and biomolecular interactions.

    PubMed

    Mügge, Carolin; Liu, Ruiqi; Görls, Helmar; Gabbiani, Chiara; Michelucci, Elena; Rüdiger, Nadine; Clement, Joachim H; Messori, Luigi; Weigand, Wolfgang

    2014-02-28

    Cisplatin and its analogues are first-line chemotherapeutic agents for the treatment of numerous human cancers. A major inconvenience in their clinical use is their strong tendency to link to sulfur compounds, especially in kidney, ultimately leading to severe nephrotoxicity. To overcome this drawback we prepared a variety of platinum complexes with sulfur ligands and analyzed their biological profiles. Here, a series of six platinum(II) compounds bearing a conserved O,S binding moiety have been synthesized and characterized as experimental anticancer agents. The six compounds differ in the nature of the O,S bidentate β-hydroxydithiocinnamic alkyl ester ligand where both the substituents on the aromatic ring and the length of the alkyl chain may be varied. The two remaining coordination positions at the square-planar platinum(II) center are occupied by a chloride ion and a DMSO molecule. These novel platinum compounds showed an acceptable solubility profile in mixed DMSO-buffer solutions and an appreciable stability at physiological pH as judged from analysis of their time-course UV-visible absorption spectra. Their anti-proliferative and pro-apoptotic activities were tested against the cisplatin-resistant lung cancer cell line A549. Assays revealed significant effects of the sample drugs at low concentrations (in the μmolar range); initial structure-activity-relationships are proposed. The activity of the apoptosis-promoting protein caspase 3/7 was determined; results proved that these novel platinum compounds, under the chosen experimental conditions, preferentially induce apoptosis over necrosis. Reactions with the model proteins cytochrome c, lysozyme and albumin were studied by ESI MS and ICP-OES to gain preliminary mechanistic information. The tested compounds turned out to metalate the mentioned proteins to a large extent. In view of the obtained results these novel platinum complexes qualify themselves as promising cytotoxic agents and merit, in our

  4. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions

    NASA Astrophysics Data System (ADS)

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-06-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES).

  5. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions

    PubMed Central

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-01-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES). PMID:27283394

  6. The effects of cisplatin and other divalent platinum compounds on glucose metabolism and pancreatic endocrine function.

    PubMed

    Goldstein, R S; Mayor, G H; Gingerich, R L; Hook, J B; Rosenbaum, R W; Bond, J T

    1983-07-01

    Three divalent platinum compounds, cis-dichlorodiammineplatinum (cis-DDP), trans-dichlorodiammineplatinum (trans-DDP), and ammonium tetrachloroplatinate, were examined for their effects on glucose metabolism in male F-344 rats. Rats were treated with a single iv dose of cis-DDP (0, 2.5, or 5 mg/kg), trans-DDP (0, 5, 7.5, or 15 mg/kg) or tetrachloroplatinate (0, 6, or 18 mg/kg). Glucose tolerance was evaluated 2, 4, 7, and 14 days following platinum treatment by serially measuring plasma glucose before and following an ip glucose load. Administration of 5 mg/kg cis-DDP impaired glucose tolerance on Days 2 and 4, but not on Days 7 and 14. Plasma immunoreactive glucagon (IRG) was elevated at all times following cis-DDP treatment and thus was not correlated with the transient impairment in glucose tolerance. Plasma immunoreactive insulin (IRI) response to a glucose load was deficient relative to the degree of hyperglycemia in cis-DDP-treated (5 mg/kg) animals on Days 2 and 4. However, neither histopathological damage of the pancreas nor pancreatic stores of IRI were affected by cis-DDP treatment. In contrast to cis-DDP, equimolar or greater than equimolar doses of trans-DDP or tetrachloroplatinate did not significantly affect glucose tolerance at any time examined. These results indicate that cis-DDP-mediated glucose intolerance is unique to the geometry of the complex and is related to properties other than the presence of a divalent platinum atom. Furthermore, glucose intolerance following cis-DDP treatment appears to be related to a relative deficiency in insulin secretion.

  7. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  8. Preparation and study of binary compounds of actinides and lanthanides. X. Separation of the TPE and platinum (palladium) by extraction chromatography

    SciTech Connect

    Lebedeva, L.S.; Nezgovorov, N.Yu.; Radchenko, V.M.; Vasil'ev, V.Ya.

    1988-03-01

    The possibility of separation of TPE from compounds bearing platinum or palladium by extraction chromatography using D2EHPA has been explored. It has been found that TPE loss is practically nil. The coefficient of TPE isolation from platinum metals is above 10/sup 3/. It has been shown that macroamounts of platinum can be removed preliminarily by its precipitation as the sparingly soluble salt (NH/sub 4/)/sub 2/PtCl/sub 6/ without a significant loss of TPE. The technique can also be applied for regeneration of platinum group elements from compounds with TPE. The purity of regenerated platinum (palladium) is enough for repeated use as components of compounds with TPE.

  9. Gallium phosphinoarylbisthiolato complexes counteract drug resistance of cancer cells.

    PubMed

    Fischer-Fodor, Eva; Vălean, Ana-Maria; Virag, Piroska; Ilea, Petru; Tatomir, Corina; Imre-Lucaci, Florica; Schrepler, Maria Perde; Krausz, Ludovic Tibor; Tudoran, Lucian Barbu; Precup, Calin George; Lupan, Iulia; Hey-Hawkins, Evamarie; Silaghi-Dumitrescu, Luminita

    2014-04-01

    In cancer therapy the platinum-based drugs are used frequently with a good clinical outcome, but besides unwanted side effects which occur, the tumour cells subjected to treatment are prone to develop tolerance or even multidrug resistance (MDR). Metal compounds with a central atom other than platinum are efficient in targeting the chemoresistant cells, therefore the biological outcome of two recently synthesized gallium phosphinoarylbisthiolato complexes was studied, having the formula [X][Ga{PPh(2-SC6H4)2-κ(3)S,S',P}{PPh(2-SC6H4)2-κ(2)S,S'}] where [X] is either the NEt3H (1) or PPh4 (2) cation. Compounds 1 and 2 display in vitro cytotoxicity against both platinum-sensitive and platinum-resistant cell lines (A2780 and A2780cis). Morphological and ultrastructural evidence points toward their capacity to impair tumour cells survival. This behaviour is based on malignant cells capacity to selectively intake gallium, and to bind to the cellular DNA. They are able to cause massive DNA damage in treated cancer cells, focusing on 7-methylguanine and 8-oxoguanine sites and oxidizing the pyrimidine bases; this leads to early apoptosis of a significant percent of treated cells. The intrinsic and extrinsic apoptotic pathways are influenced through the modulation of gene expression following the treatment with complexes 1 and 2, which accompanies the negative regulation of P-glycoprotein 1 (Pgp-1), an important cellular ABC-type transporter from the multidrug resistance (MDR) family. The studied Ga(III) compounds demonstrated the capacity to counteract the chemoresistance mechanisms in the tumours defiant to standard drug action. Compound 2 shows a good anticancer potential and it could represent an alternative to platinum-based drugs especially in the situation of standard treatment failure.

  10. A Capped Octahedral MHC6 Compound of a Platinum Group Metal.

    PubMed

    Eguillor, Beatriz; Esteruelas, Miguel A; Lezáun, Virginia; Oliván, Montserrat; Oñate, Enrique; Tsai, Jui-Yi; Xia, Chuanjun

    2016-06-27

    A MHC6 complex of a platinum group metal with a capped octahedral arrangement of donor atoms around the metal center has been characterized. This osmium compound OsH{κ(2) -C,C-(PhBIm-C6 H4 )}3 , which reacts with HBF4 to afford the 14 e(-) species [Os{κ(2) -C,C-(PhBIm-C6 H4 )}(Ph2 BIm)2 ]BF4 stabilized by two agostic interactions, has been obtained by reaction of OsH6 (PiPr3 )2 with N,N'-diphenylbenzimidazolium chloride ([Ph2 BImH]Cl) in the presence of NEt3 . Its formation takes place through the C,C,C-pincer compound OsH2 {κ(3) -C,C,C-(C6 H4 -BIm-C6 H4 )}(PiPr3 )2 , the dihydrogen derivative OsCl{κ(2) -C,C-(PhBIm-C6 H4 )}(η(2) -H2 )(PiPr3 )2 , and the five-coordinate osmium(II) species OsCl{κ(2) -C,C-(PhBIm-C6 H4 )}(PiPr3 )2 .

  11. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties.

    PubMed

    Frik, Malgorzata; Fernández-Gallardo, Jacob; Gonzalo, Oscar; Mangas-Sanjuan, Víctor; González-Alvarez, Marta; Serrano del Valle, Alfonso; Hu, Chunhua; González-Alvarez, Isabel; Bermejo, Marival; Marzo, Isabel; Contel, María

    2015-08-13

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl6(2-) or PF6(-) respectively, display almost identical IC50 values in the sub-micromolar range (25-335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration.

  12. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties

    PubMed Central

    2015-01-01

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  13. [The effects of complex platinum compounds on the neuraminidase activity of the Sendai virus].

    PubMed

    Repanovici, R; Călinoiu, A; Iliescu, R; Löber, G; Popa, L M

    1989-01-01

    The effect of di- and tetravalent cis-diaminoplatinum chlorides on Sendai virus envelop HN glycoprotein was investigated. The partial inhibition of neuraminidase activity was greater in the case of the divalent platinum complex derivative.

  14. Glioblastoma Treatment: Bypassing the Toxicity of Platinum Compounds by Using Liposomal Formulation and Increasing Treatment Efficiency With Concomitant Radiotherapy

    SciTech Connect

    Charest, Gabriel; Sanche, Leon; Fortin, David; Mathieu, David; Paquette, Benoit

    2012-09-01

    Purpose: Treatments of glioblastoma with cisplatin or oxaliplatin only marginally improve the overall survival of patients and cause important side effects. To prevent adverse effects, improve delivery, and optimize the tumor response to treatment in combination with radiotherapy, a potential approach consists of incorporating the platinum agent in a liposome. Methods and Materials: In this study, cisplatin, oxaliplatin, carboplatin, Lipoplatin (the liposomal formulation of cisplatin), and Lipoxal (the liposomal formulation of oxaliplatin) were tested on F98 glioma orthotopically implanted in Fischer rats. The platinum compounds were administered by intracarotid infusion and were assessed for the ability to reduce toxicity, improve cancer cell uptake, and increase survival of animals when combined or not combined with radiotherapy. Results: The tumor uptake was 2.4-fold more important for Lipoxal than the liposome-free oxaliplatin. Lipoxal also improved the specificity of oxaliplatin as shown by a higher ratio of tumor to right hemisphere uptake. Surprisingly, Lipoplatin led to lower tumor uptake compared with cisplatin. However, Lipoplatin had the advantage of largely reducing the toxicity of cisplatin and allowed us to capitalize on the anticancer activity of this agent. Conclusion: Among the five platinum compounds tested, carboplatin showed the best increase in survival when combined with radiation for treatment of glioma implanted in Fischer rats.

  15. Glioblastoma Treatment: Bypassing the Toxicity of Platinum Compounds by Using Liposomal Formulation and Increasing Treatment Efficiency With Concomitant Radiotherapy

    PubMed Central

    Charest, Gabriel; Sanche, Léon; Fortin, David; Mathieu, David; Paquette, Benoit

    2013-01-01

    PURPOSE Treatments of glioblastoma (GBM) with cisplatin or oxaliplatin only marginally improve the overall survival of patients and cause important side effects. To prevent adverse effects, improve delivery and optimize the tumor response to treatment in combination with radiotherapy, a potential approach consists in incorporating the platinum agent in a liposome. METHODS AND MATERIALS In this study, cisplatin, oxaliplatin, carboplatin, Lipoplatin™ and Lipoxal™, the liposomal formulations of cisplatin and oxaliplatin respectively, were tested on F98 glioma orthotopically implanted in Fischer rats. The platinum compounds were administered by intracarotid infusion and were assessed for the ability to reduce toxicity, improve cancer cell uptake and increase survival of animals when combined or not with radiotherapy. RESULTS The tumor uptake was 2.4-fold more important for Lipoxal™ than the liposome-free oxaliplatin. Lipoxal™ also improved the specificity of oxaliplatin as shown by a higher ratio of tumor/right hemisphere uptake. Surprisingly, Lipoplatin™ led to lower tumor uptake compare to cisplatin. However, Lipoplatin™ had the advantage of largely reducing the toxicity of cisplatin and allowed to capitalize on the anti-cancer activity of this agent. CONCLUSION Among the five platinum compounds tested, carboplatin showed the best increase in survival when combined with radiation for treatment of glioma implanted in Fischer rats. PMID:22284691

  16. Crystal structure and chemotherapeutic efficacy of the novel compound, gallium tetrachloride betaine, against breast cancer using nanotechnology.

    PubMed

    Salem, Ahmed; Noaman, Eman; Kandil, Eman; Badawi, Abdelfattah; Mostafa, Nihal

    2016-08-01

    The objective of this study was to investigate the antitumor efficacy of a novel synthesized compound, betaine gallium-tetrachloride (BTG), alone or combined with ZnO-nanoparticles (BTG + ZnO-NPs) on the incidence of 7, 12-dimethylbenz-anthrathene-induced mammary tumor in female rats. Crystal and molecular structure of the prepared BTG were identified using X-ray crystallography. In vitro study revealed BTG more cytotoxic than BTG + ZnO-NPs on human breast cancer (MCF-7) cell line. In vivo study demonstrated that the blood antioxidant status of tumor-bearing rats (DMBA group) was significantly lower than normal noticeable by a significant decrease in GSH content, GPx, SOD, and CAT activities associated with a significantly high MDA content. Both treatments have significantly elevated SOD and CAT activities with a concomitant decrease of MDA level compared to DMBA group. However, BTG + ZnO-NPs accentuated the decrease of GSH regarding DMBA group. The results showed also that both treatments significantly activate caspase-3 enzyme and apoptosis in mammary glands. Their administration to tumor-bearing rats was found to significantly reduce plasma iron and iron-binding capacity (TIBC) compared to DMBA group. Regarding liver function, both treatments significantly reduced the increase of ALT and AST activities compared to DMBA group. However, BTG + ZnO-NPs decreased albumin below normal level. Histopathological studies showed that normalization of tissue structures was higher in BTG than BTG + ZnO-NPs treatment. According to the results obtained, it is observed that the antitumor effect of BTG alone was as strong as BTG + ZnO-NPs and even more efficient in some aspects accordingly, a combination is not needed. Thus, the novel synthetic gallium derivatives may potentially present a new hope for the development of breast cancer therapeutics, which should attract further scientific and pharmaceutical interest.

  17. Metal Compounds in Therapy and Diagnosis

    NASA Astrophysics Data System (ADS)

    Abrams, Michael J.; Murrer, Barry A.

    1993-08-01

    There is increasing interest in the use of metal-containing compounds in medicine. This review describes several therapeutic applications, such as the use of platinum complexes in cancer chemotherapy, gold compounds in the treatment of arthritis, gallium in hypercalcemia, bismuth in anti-ulcer medication, and sodium nitroprusside in hypertension. The use of metal radionuclides in diagnosis and radiotherapy and the role of paramagnetic metal complexes as contrast agents in magnetic resonance imaging are also discussed.

  18. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    SciTech Connect

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  19. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets.

    PubMed

    Farrell, N P

    2015-12-21

    This tutorial review summarizes chemical, biophysical and cellular biological properties of formally substitution-inert "non-covalent" polynuclear platinum complexes (PPCs). We demonstrate how modulation of the pharmacological factors affecting platinum compound cytotoxicity such as cellular accumulation, reactivity toward extracellular and intracellular sulfur-ligand nucleophiles and consequences of DNA binding is achieved to afford a profile of biological activity distinct from that of covalently-binding agents. The DNA binding of substitution-inert complexes is achieved by molecular recognition through minor groove spanning and backbone tracking of the phosphate clamp. In this situation, the square-planar tetra-am(m)ine Pt(ii) coordination units hydrogen bond to phosphate oxygen OP atoms to form bidentate N-O-N motifs. The modular nature of the polynuclear compounds results in high-affinity binding to DNA and very efficient nuclear condensation. These combined effects distinguish the phosphate clamp as a third mode of ligand-DNA binding, discrete from intercalation and minor-groove binding. The cellular consequences mirror those of the biophysical studies and a significant portion of nuclear DNA is compacted, a unique effect different from mitosis, senescence or apoptosis. Substitution-inert PPCs display cytotoxicity similar to cisplatin in a wide range of cell lines, and sensitivity is indifferent to p53 status. Cellular accumulation is mediated through binding to heparan sulfate proteoglycans (HSPG) allowing for possibilities of tumor selectivity as well as disruption of HSPG function, opening new targets for platinum antitumor agents. The combined properties show that covalently-binding chemotypes are not the unique arbiters of cytotoxicity and antitumor activity and meaningful antitumor profiles can be achieved even in the absence of Pt-DNA bond formation. These dual properties make the substitution-inert compounds a unique class of inherently dual

  20. Synthesis and in vitro characterization of platinum(II) anticancer coordinates using FTIR spectroscopy and NCI COMPARE: A fast method for new compound discovery.

    PubMed

    Berger, Gilles; Leclercqz, Hélène; Derenne, Allison; Gelbcke, Michel; Goormaghtigh, Erik; Nève, Jean; Mathieu, Véronique; Dufrasne, François

    2014-07-01

    Platinum-based drugs have been used for several decades to treat various cancers successfully. Cisplatin is the original compound in this class; it cross-links DNA, resulting in cell cycle arrest and cell death via apoptosis. Cisplatin is effective against several tumor types but exhibits toxic side effects; in addition, tumors often develop resistance. An original in vitro approach is proposed to determine whether platinum-based research compounds are good candidates for further study by comparing them to marketed drugs using FTIR spectroscopy and the COMPARE analysis from the NCI. Both methods can produce fingerprints and highlight differences between the compounds, classifying the candidates and revealing promising derivatives.

  1. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells.

    PubMed

    Turkson, James; Zhang, Shumin; Mora, Linda B; Burns, Audrey; Sebti, Said; Jove, Richard

    2005-09-23

    Previous studies have established constitutive activation of Stat3 protein as one of the molecular changes required for tumorigenesis. To develop novel therapeutics for tumors harboring constitutively active Stat3, compounds from the NCI 2000 diversity set were evaluated for inhibition of Stat3 DNA-binding activity in vitro. Of these, a novel platinum (IV) compound, IS3 295, interacted with Stat3 and inhibited its binding to specific DNA-response elements. Further analysis suggested noncompetitive-type kinetics for the inhibition of Stat3 binding to DNA. In human and mouse tumor cell lines with constitutively active Stat3, IS3 295 selectively attenuated Stat3 signaling, thereby inducing cell growth arrest at G0/G1 phase and apoptosis. Moreover, in transformed cells, IS3 295 repressed expression of cyclin D1 and bcl-xL, two of the known Stat3-regulated genes that are overexpressed in malignant cells, suggesting that IS3 295 mediates anti-tumor cell activity in part by blocking Stat3-mediated sub-version of cell growth and apoptotic signals. Together, our findings provide evidence for the inhibition of Stat3 activity and biological functions by IS3 295 through interaction with Stat3 protein. This study represents a significant advance in small molecule-based approaches to target Stat3 and suggests potential new applications for platinum (IV) complexes as modulators of the Stat3 pathway for cancer therapy.

  2. Ligand modulation of a dinuclear platinum compound leads to mechanistic differences in cell cycle progression and arrest.

    PubMed

    Menon, Vijay R; Peterson, Erica J; Valerie, Kristoffer; Farrell, Nicholas P; Povirk, Lawrence F

    2013-12-15

    Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin.

  3. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research.

    PubMed

    Ali, Badreldin H; Al Moundhri, Mansour S

    2006-08-01

    Cisplatin (cis-diamminedichloroplatinum (II)) is an effective agent against various solid tumours. Despite its effectiveness, the dose of cisplatin that can be administered is limited by its nephrotoxicity. Hundreds of platinum compounds (e.g. carboplatin, oxaliplatin, nedaplatin and the liposomal form lipoplatin) have been tested over the last two decades in order to improve the effectiveness and to lessen the toxicity of cisplatin. Several agents have been tested to see whether they could ameliorate or augment the nephrotoxicity of platinum drugs. This review summarizes these studies and the possible mechanisms of actions of these agents. The agents that have been shown to ameliorate experimental cisplatin nephrotoxicity include antioxidants (e.g. melatonin, vitamin E, selenium, and many others), modulators of nitric oxide (e.g. zinc histidine complex), agents interfering with metabolic pathways of cisplatin (e.g. procaine HCL), diuretics (e.g. furosemide and mannitol), and cytoprotective and antiapoptotic agents (e.g. amifostine and erythropoietin). Only few of these agents have been tested in humans. Those agents that have been shown to augment cisplatin nephrotoxicity include nitric oxide synthase inhibitors, spironolactone, gemcitabine and others. Combining these agents with cisplatin should be avoided.

  4. X-ray absorption spectroscopy of an investigational anticancer gallium(III) drug: interaction with serum proteins, elemental distribution pattern, and coordination of the compound in tissue.

    PubMed

    Hummer, Alfred A; Bartel, Caroline; Arion, Vladimir B; Jakupec, Michael A; Meyer-Klaucke, Wolfram; Geraki, Tina; Quinn, Paul D; Mijovilovich, Ana; Keppler, Bernhard K; Rompel, Annette

    2012-06-14

    Tris(8-quinolinolato)gallium(III) (1, KP46) is a very promising investigational anticancer drug. Its interaction with serum proteins, elemental distribution, and coordination in tissue were investigated with X-ray absorption (XAS) methods. Model compounds with mixed O, N, and/or S donor atoms are reported. The coordination and structure of 1 in cell culture medium (minimum essential medium, MEM) and fetal calf serum (FCS) were probed by XANES and EXAFS. The interaction of 1 with the serum proteins apotransferrin (apoTf) and human serum albumin (HSA) was addressed as well. By application of micro-XAS to tissue samples from mice treated with 1, the gallium distribution pattern was analyzed and compared to those of physiological trace elements. The complex 1 turned out to be very stable under physiological conditions, in cell culture media and in tissue samples. The coordination environment of the metal center remains intact in the presence of apoTf and HSA. The gallium distribution pattern in tumor and liver tissue revealed high similarities to the distribution patterns of Zn and Fe, minor similarities to Cu and Ni, and no similarity to Ca.

  5. Surface reconstructions and morphology of indium gallium arsenide compound semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Riposan, Alexandru

    Lattice-matched In0.53Ga0.47As/InP(001) and compressively strained In0.27Ga0.73As/GaAs(001) and In0.81Ga 0.19As/InP(001) compound semiconductor layers were grown by molecular beam epitaxy (MBE) and analyzed by in-situ scanning tunneling microscopy (STM) and ex-situ atomic force microscopy (AFM). Regular (4x3) and irregular (nx3) alloy reconstructions were observed at all compositions. In addition, the strained surfaces contain alpha2(2x4) and beta2(2x4) reconstructions at the lower and higher In compositions, respectively. New models were proposed for the (4x3) reconstruction, which are consistent with the experimental results and obey the electron counting rule. In these models, the (4x3) reconstruction is As-rich, but contains As-metal heterodimers, in addition to As dimers and metal dimers. These models can also be used to compose disordered (nx3) surfaces while still obeying the electron counting rule. The experiments suggest that the (2x4) reconstructions are favored by compressive misfit strain and are enriched in In compared with the (4x3)/(nx3) reconstructions. At moderate misfit strains and temperatures, the critical film thickness for three-dimensional (3D) growth is increased by increasing the As overpressure during film deposition. This effect provides an additional method to control the transition to 3D growth and has applications in device fabrication. Large 3D islands form during the annealing of planar pseudomorphic In 0.27Ga0.73As/GaAs films, and later disappear with continuing annealing. These islands are different from those formed during film deposition. The formation of these features is strain-driven, while their dissolution is triggered by In desorption. A step instability was also observed during annealing at this composition, consisting in the cusping of step edges and the formation of surface pits and step bunches. The driving force for this instability is likely the creation of new step line due to the compressive strain, through step

  6. Deposition and electrical, chemical, and microstructural characterization of the interface formed between platinum, gold and silver rectifying contacts on cleaned n-type gallium nitride (0001) surfaces

    NASA Astrophysics Data System (ADS)

    Tracy, Kieran Mark

    2000-10-01

    The characteristics of clean n-type GaN surfaces and the interface between this surface and Pt, Au and Ag, have been investigated. Gallium-terminated (0001) surfaces of GaN, free of carbon and oxygen within the detection limits of XPS have been achieved by annealing in ammonia at 860°C for 15 minutes. Additional, in-situ surface analysis indicated a flat, stoichometric, and unreconstructed surface free of other contaminants. The electron affinity of this surface was 3.1 +/- 0.2 eV. The valence band maximum was located 3.0 +/- 0.1 eV below the Fermi level, indicating the presence of a surface state near the valence band maximum. Individual layers of Pt, Au or Ag were deposited in-situ on the cleaned surface and the interfaces characterized using XPS, UPS, LEED and TEM. All as-deposited meta/GaN interfaces were abrupt and unreacted; the Pt and Au were deposited epitaxially. The Schottky barrier heights obtained from photoemission measurements were 1.2, 0.9 and 0.5 +/- 0.2 eV for Pt, Au and Ag, respectively. Values of the metal work function from UPS results were 5.7, 5.3 and 4.4 +/- 0.2 eV for Pt, Au and Ag, respectively. Schottky barrier heights determined via ex-situ current-voltage measurements were 1.15, 0.88 and 0.56 +/- 0.05 eV for Pt, Au and Ag, respectively. Capacitance-voltage measurements yielded barrier heights of 1.25 and 0.96 +/- 0.05 eV, for Pt and Au, respectively. These results indicate that the Fermi level of the cleaned surface is not pinned. Upon annealing the aforementioned contacts from 400 to 800°C for 3 minutes each. The rectifying behavior of the Pt and Au contacts degraded as a function of temperature during annealing at 400, 600 and 800°C for 3 minutes each until they became ohmic. This was correlated with TEM of the annealed interfaces, which displayed increased chemical reaction and roughening as a function of temperature.

  7. THE MECHANISM OF OXIDATION OF LOW MOLECULAR WEIGHT ORGANIC COMPOUNDS AT PLATINUM ELECTRODES IN AQUEOUS SOLUTIONS

    DTIC Science & Technology

    Cyclic voltammetry , chronopot iometry, potential decay, and controlled potential oxidation were used. A new method for studying the kinetic order of electrode reactions was used. At low organic-compound concentrations, the rate of electrolytic oxidation of the organic compound is first order with respect to the concentration of the organic compound and first order with respect to the surface area of the electrode; at higher concentrations, an equilibrium reaction is observed. It w s concluded that his equilibrium reaction is adsorption of the organic molecules on the

  8. Synthesis and study of binary compounds of actinides and lanthanides. VIII. Intermetallides of berkelium and californium with platinum

    SciTech Connect

    Radchenko, V.M.; Shushakov, V.D.; Seleznev, A.G.; Lebedeva, L.S.; Ryabinin, M.A.; Vasil'ev, V.Ya.

    1987-03-01

    Samples of intermetallic compounds Pt/sub 5//sup 249/Cf and Pt/sub 5//sup 249/Bk were obtained in the form of thin layers on a platinum support. It was found that the Pt/sub 5/Bk and Pt/sub 5/Cf intermetallides have a hexagonal structure of the Cu/sub 5/Ca type with parameters: a = 0.5270 +/- 0.0005, c = 0.4423 +/- 0.0004 for Pt/sub 5/Bk and a = 0.5266 +/- 0.0008, c = 0.4420 +/- 0.0005 nm for Pt/sub 5/Cf. The x-ray amorphization of the crystal lattice of the Pt/sub 5/Cf intermetallide was discovered after approx. 70 days of holding at room temperature, and its restoration after short-term annealing at 500/sup 0/C in vacuo. It was found that lattice parameters and volume of the unit cell of Pt/sub 5/Bk intermetallide increases after approx. 140 days of holding. This is due to the accumulation of /sup 249/Cf as the result of ..beta..-decay of /sup 249/Bk and the corresponding increase in the ..cap alpha..-activity of the sample.

  9. Optical Properties and Electronic Structures of d- and F-Electron Metals and Alloys, Silver-Indium Nickel - GOLD-GALLIUM(2), PLATINUM-GALLIUM(2), - - Cobalt-Aluminum CERIUM-TIN(3), and LANTHANUM-TIN(3)

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Joo

    1990-01-01

    Optical properties and electronic structures of disordered Ag_{1-x}In_ {x} (x = 0.0, 0.04, 0.08, 0.12) and Ni_{1-x}Cu_{x }(x = 0.0, 0.1, 0.3, 0.4) alloys and ordered AuGa_2, PtGa _2, beta^' -NiAl, beta^' -CoAl, CeSn_3, and LaSn_3 have been studied. The complex dielectric functions have been determined for Ag_{1-x}In _{x},Ni_{1-x}Cu_ {x},AuGa_2, and PtGa_2 in the 1.2-5.5 eV region and for CeSn_3 and LaSn_3 in the 1.5-4.5 eV region using spectroscopic ellipsometry. Self-consistent relativistic band calculations using the linearized-augmented -plane-wave method have been performed for AuGa _2, PtGa_2,beta^' -CoAl, CeSn_3, and LaSn_3 to interpret the experimental optical spectra. In Ag_{1-x}In_{x} , the intraband scattering rate increases with increasing In concentration in the low-energy region (<3.5 eV). As the In concentration increases, the onset energy of the L_3to L_sp{2}{'}( E_{F}) transitions, 4.03 eV for pure Ag, shifts to higher energies, while that of the L_sp{2}{'}(E _{F}) to L_1 transitions, 3.87 eV for pure Ag, shifts to lower energies. This is only partly attributable to the rise of the Fermi level E_{F} caused by an increase in the average number of electrons per atom due to the In solute and to the narrowing of the Ag 4d-bands. The L_1-band may also lower as In is added. In Ni_{1-x}Cu_ {x}, the 4.7-eV edge (from transitions between the s-d-hybridized bands well below E_ {F} and the s-p-like bands above E _{F}, e.g., X_1 to X_sp{4}{'} ) shifts to higher energies, while the 1.5-eV edge (from transitions between a p-like band below E _{F} and a d-band above E _{F}, e.g., L_sp {2}{'} to L_3) remains at the same energy as the Cu concentration increases. A structure grows in the (2-3)-eV region as Cu is added, and it is interpreted as being due to transitions between the localized Cu subbands. For AuGa_2 and PtGa _2, both compounds show interband absorption at low photon energies (<1.3 eV). The interband absorption for AuGa_2 is strong at about 2 eV while

  10. Cross-reactivity of Halogenated Platinum Salts

    EPA Science Inventory

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  11. Hepatocellular carcinoma detection by gallium scan and subsequent treatment by gallium maltolate: rationale and case study.

    PubMed

    Bernstein, Lawrence R; van der Hoeven, Jacobus J M; Boer, Robbert O

    2011-07-01

    Gallium is antiproliferative to many types of cancer, due primarily to its ability to act as a non-functional mimic of ferric iron (Fe(3+)). Because Fe(3+) is needed for ribonucleotide reductase activity--and thus DNA synthesis--gallium can inhibit DNA production and cell division. Diagnostic gallium scans have shown that hepatocellular carcinoma (HCC) is commonly avid for gallium. Furthermore, in vitro studies have found that gallium nitrate, and particularly gallium maltolate (GaM), have dose-dependent antiproliferative activity against HCC cell lines. Rationale thus exists to use GaM, an orally active compound that has been well tolerated in Phase I clinical trials, to treat patients whose HCC is gallium-avid in a gallium scan. Because gallium absorbed from orally administered GaM is bound predominately to serum transferrin, which travels to all tissues in the body, GaM has the potential to treat even distant metastases. A patient with advanced HCC (20 × 10 cm primary tumor, ascites around liver and spleen, resistant to Nexavar(®) (sorafenib)), whose cancer was highly gallium-avid in a (67)Ga-scan, was treated with oral gallium maltolate at 1500 mg/day q.d. After four weeks of treatment, the patient had a large reduction in pain, with greatly increased mobility and quality of life, and significantly lowered serum bilirubin and inflammation-related liver enzymes. At eight weeks, CT scans showed apparent necrosis of the tumor.

  12. Gallium interactions with Zircaloy

    SciTech Connect

    Woods, A.L.; West, M.K.

    1999-01-01

    This study focuses on the effects of gallium ion implantation into zircaloy cladding material to investigate the effects that gallium may have in a reactor. High fluence ion implantation of Ga ions was conducted on heated Zircaloy-4 in the range of 10{sup 16}--10{sup 18} Ga ions/cm2. Surface effects were studied using SEM and electron microprobe analysis. The depth profile of Ga in the Zircaloy was characterized with Rutherford backscattering and SIMS techniques. Results indicate that the Zirc-4 is little affected up to a fluence of 10{sup 17} Ga ions/cm{sup 2}. After implantation of 10{sup 18} Ga ions/cm{sup 2}, sub-grain features on the order of 2 {micro}m were observed which may be due to intermetallic compound formation between Ga and Zr. For the highest fluence implant, Ga content in the Zirc-4 reached a saturation value of between 30 and 40 atomic %; significant enhanced diffusion was observed but gallium was not seen to concentrate at grain boundaries.

  13. Aquated cisplatin and heparin-pluronic nanocomplexes exhibiting sustainable release of active platinum compound and NCI-H460 lung cancer cell antiproliferation.

    PubMed

    Tong, Nhat-Anh N; Nguyen, Thi Phuong; Cuu Khoa, Nguyen; Tran, Ngoc Quyen

    2016-01-01

    In recent decades, platinum compounds have been many contributions in medicine. Development of new drugs from the active platinum compounds as well as nanocarriers for targeted delivery and reducing side effects of the drugs has paid much attention. In the study, nanocomplexes were prepared from aquated species of cisplatin and pluronic-conjugated heparin which distributed in the range of 80-100 nm by Transmission Electron Microscopy and 134 nm by Dynamic light scattering (DLS). Formation of the complex was confirmed by FTIR and DLS. The nanocomplexes exhibited high drug-loading capacity (approximately 42.5% wt/wt at 37 °C and 37.5% wt/wt at 25 °C). In vitro, drug-loaded nanogels showed much slower release profiles of cisplatin CDDP in pH 7.4 (physiological pH) compared with pH 5.5 condition at 37 °C. Moreover, the cytotoxicity assay results also indicated that Hep-F127 was cytocompatible; meanwhile, CDDP-loaded nanocomplex was able to reduce the cytotoxic ability of free CDDP (IC50 = 5.68 ± 0.73 μg/ml), which still maintain a significantly antiproliferative activity on NCI-H460 lung cancer cell. The in vitro preliminarily obtained results indicate that the nanocomplex is a candidate for CDDP delivery which can be studied further in cancer therapy.

  14. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    DOEpatents

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  15. The Dihydronaphthalene Elimination Reaction as a Route to Gallium-Nitrogen Compounds. Crystal and Molecular Structure of (PhMe2CCH2)2GaNHPh2

    DTIC Science & Technology

    2007-11-02

    Dihydronaphthalene Elimination Reaction as a Route to Gallium-Nitrogen Compounds. Crystal and Molecular Structure of [(PhMe2CCH2)2GaNHPh]2...these three. An X-ray structural study of [(PhMe2CCH.2)2GaNHPh]2 identified it as the trans isomer. 14. SUBJECT TERMS Organogallium compounds...and Molecular Structure of r(PhMe2CCH2’)2GaNHPhl2 by O. T. Beachley, Jr.*, Matthew J. Noble, Melvyn Rowen Churchill* and Charles H. Lake Prepared

  16. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  17. Nanocarriers for delivery of platinum anticancer drugs☆

    PubMed Central

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  18. A flexible approach to strained sandwich compounds: chiral [1]ferrocenophanes with boron, gallium, silicon, and tin in bridging positions.

    PubMed

    Sadeh, Saeid; Schatte, Gabriele; Müller, Jens

    2013-09-27

    The enantiomerically pure dibromoferrocene 3 [(Sp,Sp )-1,1'-dibromo-2,2'-di(isopropyl)ferrocene], equipped with two iPr groups in α positions, was prepared using known "Ugi amine" chemistry. Species 3 was targeted in order to gain access to new [1]ferrocenophanes ([1]FCPs) to be used as monomers for ring-opening polymerization. The iPr groups on the sandwich unit were introduced to stabilize bridging moieties, as well as to increase solubilities of targeted metallopolymers. The planar chiral dibromide 3 can quantitatively be lithiated at 0°C [2 equiv nBuLi, hexanes/thf (9:1), 30 min]. Salt-metathesis reactions with respective element dichloride species gave chiral [1]FCPs with a variety of bridging moieties [ERx =Ga[2-(Me2NCH2)C6H4] (4 a), SiMe2 (4 b), SntBu2 (4 c), BNiPr2 (4 d)]. The new [1]FCPs were fully characterized including single-crystal X-ray analysis. The stabilizing iPr groups on the Cp rings increase the thermal stabilities of 4 b-d compared to known [1]FCPs, equipped with the same bridging moieties. All three compounds 4 b-d are volatile and could be isolated by vacuum sublimation. Our new approach to [1]FCPs has the potential to overcome many of the existing difficulties in ferrocenophane chemistry, such as limited stability of starting monomers and low solubilities of resulting polyferrocenes.

  19. Efficient water reduction with gallium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-07-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

  20. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  1. Antiandrogen and Antimicrobial Aspects of Coordination Compounds of Palladium(II), Platinum(II) and Lead(II)

    PubMed Central

    Joshi, S. C.; Kulshrestha, Shalini; Nagpal, Pooja; Bansal, Anil

    2001-01-01

    Synthesis, characterization and antimicrobial activities of an interesting class of biologically potent macrocyclic complexes have been carried out. All the complexes have been evaluated for their antimicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. The resulting biologically active [M(MaLn)(R2)]Cl2 and [Pb(MaLn)(R2)X2] (where, M = PdII or PtII and X = Cl or NO3) type of complexes have been synthesized by the reactions of macrocyclic ligands (MaLn) with metal salts and different diamines in 1:1:1 molar ratio in methanol. Initially the complexes were characterized by elemental analyses, molecular weight determinations and conductivity measurements. The mode of bonding was established on the basis of IR, 1H NMR, 13C NMR, 195Pt NMR, 207Pb NMR, XRD and electronic spectral studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium and platinum complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. PMID:18475989

  2. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    SciTech Connect

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga{sub 2}O{sub 3} (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at {ge}300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed.

  3. Interactions of zircaloy cladding with gallium -- 1997 status

    SciTech Connect

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga{sub 2}O{sub 3} (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at {ge} 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed.

  4. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    USGS Publications Warehouse

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  5. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  6. Investigations in gallium removal

    SciTech Connect

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  7. THE INDIUM-GALLIUM RADIATION LOOP OF THE IRT NUCLEAR REACTOR,

    DTIC Science & Technology

    NUCLEAR REACTORS, *ISOTOPES), (*INDIUM, *GALLIUM), GAMMA RAYS, NEUTRONS, INTERMETALLIC COMPOUNDS, ALUMINUM, SHIELDING, GENERATORS, EUTECTICS, ARGON, OXALIC ACID , ELECTROMAGNETIC PUMPS, HALF LIFE, HEAT TRANSFER

  8. Palladium(II) and platinum(II) organometallic complexes with the model nucleobase anions of thymine, uracil, and cytosine: antitumor activity and interactions with DNA of the platinum compounds.

    PubMed

    Ruiz, José; Lorenzo, Julia; Sanglas, Laura; Cutillas, Natalia; Vicente, Consuelo; Villa, María Dolores; Avilés, Francesc X; López, Gregorio; Moreno, Virtudes; Pérez, José; Bautista, Delia

    2006-08-07

    Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).

  9. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  10. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii.

    PubMed

    de Léséleuc, Louis; Harris, Greg; KuoLee, Rhonda; Chen, Wangxue

    2012-10-01

    We investigated the ability of compounds interfering with iron metabolism to inhibit the growth of Acinetobacter baumannii. Iron restriction with transferrin or 2,2-bipyridyl significantly inhibited A. baumannii growth in vitro. Gallium nitrate alone was moderately effective at reducing A. baumannii growth but became bacteriostatic in the presence of serum or transferrin. More importantly, gallium nitrate treatment reduced lung bacterial burdens in mice. The use of gallium-based therapies shows promise for the control of multidrug-resistant A. baumannii.

  11. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  12. Behavior of Zircaloy Cladding in the Presence of Gallium

    SciTech Connect

    DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.; Wilson, D.F.

    1998-09-28

    The U.S. Department of Energy has established a dual-track approach to the disposition of plutonium arising from the dismantling of nuclear weapons. Both immobilization and reactor-based mixed-oxide (MOX) fuel technologies are being evaluated. The reactor-based MOX fuel option requires assessment of the potential impact of concentrations of gallium (on the order of 1 to 10 ppm), not present in conventional MOX fuel, on cladding material performance. An experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium, and (2) various concentrations of G~03. Three types of tests were performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests were to determine corrosion mechanisms, thresholds for temperature and concentration of gallium that delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Results have generally been favorable for the use of weapons-grade (WG) MOX fhel. The Zircaloy cladding does react with gallium to form intermetallic compounds at >3000 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Furthermore, no evidence for grain boundary penetration by gallium or liquid metal embrittlement was observed.

  13. Hybrid organometallic compounds of gallium: UV excimer laser photochemistry of Ga( t-C 4H 9) n(CH 3) 3- n ( n = 0, 1, 2, 3)

    NASA Astrophysics Data System (ADS)

    Cleaver, W. M.; Barron, A. R.; Zhang, Y.; Stuke, M.

    1992-01-01

    The gas-phase ultraviolet (UV) excimer laser induced photolysis of the gallium-alkyls Ga( t-C 4H 9) n(CH 3) 3- n ( n = 0, 1, 2, 3) was studied, using photolysis wavelenghts of 308, 248 and 193 nm. The photofragments Ga, GaH and GaCH 3 were detected by laser ionization time-of-flight mass spectroscopy, while the hydrocarbon products CH 4, C 2H 6, HC(CH 3) 3 and H 2C=C(CH 3) 2 were identified using Fourier transform infrared (FTIR) spectroscopy. The formation of the GaH photofragment, and a high olefin-to-alkane product ratio, for Ga( t-C 4H 9) 2(CH 3) and Ga( t-C 4H 9) 3 is interpreted to indicate a β-hydrogen elimination process. However, β-hydrogen elimination only occurs after fission of the weakest Ga-C bond, thus no β-hydride elimination is observed for Ga( t-C 4H 9)(CH 3) 2.

  14. Interleukin-1beta expression in murine J774A.1 macrophages exposed to platinum compounds: the role of p38 and ERK 1/2 mitogen-activated protein kinases.

    PubMed

    Arkusz, Joanna; Stepnik, Maciej; Lewińska, Dobrosława; Stańczyk, Małgorzata; Palus, Jadwiga; Dziubałtowska, Elzbieta

    2007-04-01

    Although skin and respiratory sensitizing properties of platinum compounds have been proved in humans and mice, little is known about signal transduction pathways leading to cytokine production in the induction phase. It is generally assumed that induction of skin sensitization, but not skin irritation, is associated with a rapid increase in the IL-1beta mRNA expression. In this study, IL-1beta expression and a role of mitogen-activated protein kinases (MAPKs) in this process were investigated in murine macrophages J774A.1 exposed to four platinum compounds. Potassium tetrachloroplatinate (K(2)PtCl(4); TCPP), ammonium tetrachloroplatinate ((NH(4))(2)PtCl(4); TCPA), ammonium hexachloroplatinate ((NH(4))(2)PtCl(6); HCPA) showed a very similar range of cytotoxic concentrations (IC(50) values: 238 microM+/-30; 269 microM+/-39 and 245 microM+/-31, respectively) as assessed in the 24-h MTT reduction test. Cytotoxicity of cis-diammineplatinum dichloride (cisplatin) was considerably higher (IC(50) of 23 microM+/-4). While increased expression of IL-1beta mRNA was observed in the macrophages exposed to each test compound, IL-1beta protein production was detected in cell lysates after treatment with TCPP, TCPA and HCPA for 24h (concentration range of 150-350 microM) as well as for 2h (450-650 microM). The treatment with each compound resulted in the phosphorylation of both p38 MAPK and ERK 1/2 (p44/42). Blocking the activation of p38 MAPK as well as ERK 1/2 with specific inhibitors (SB203580 and U0126, respectively) down-regulated the IL-1beta expression. Interestingly, the skin irritant sodium dodecyl sulfate did not trigger phosphorylation of these kinases, nor induced IL-1beta production. These data suggest that p38 MAPK and ERK 1/2 play an important role in induction of IL-1beta expression in J774A.1 macrophages exposed to test platinum compounds.

  15. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  16. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect

    Faraby, H.; DiBattista, M.; Bandaru, P. R.

    2014-04-28

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  17. Fate of platinum metals in the environment.

    PubMed

    Pawlak, Justyna; Łodyga-Chruścińska, Elżbieta; Chrustowicz, Jakub

    2014-07-01

    For many years now automotive exhaust catalysts have been used to reduce the significant amounts of harmful chemical substances generated by car engines, such as carbon monoxide, nitrogen oxides, and aromatic hydrocarbons. Although they considerably decrease environmental contamination with the above-mentioned compounds, it is known that catalysts contribute to the environmental load of platinum metals (essential components of catalysts), which are released with exhaust fumes. Contamination with platinum metals stems mainly from automotive exhaust converters, but other major sources also exist. Since platinum group elements (PGEs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and iridium (Ir) seem to spread in the environment and accumulate in living organisms, they may pose a threat to animals and humans. This paper discusses the modes and forms of PGE emission as well as their impact on the environment and living organisms.

  18. Interactions of Zircaloy Cladding with Gallium: Final Report

    SciTech Connect

    D.F. Wilson; E.T. Manneschmidt; J.F. King; J.P. Strizak; J.R. DiStefano

    1998-09-01

    The U.S. Department of Energy has established a dual-track approach to the disposition of plutonium arising from the dismantling of nuclear weapons. Both immobilization and reactor-based mixed-oxide (MOX) fuel technologies are being evaluated. The reactor-based MOX fuel option requires assessment of the potential impact of concentrations of gallium (on the order of 1 to 10 ppm), not present in conventional MOX fhel, on cladding material performance. Three previous repmts"3 identified several compatibility issues relating to the presence of gallium in MOX fuel and its possible reaction with fiel cladding. Gallium initially present in weapons-grade (WG) plutonium is largely removed during processing to produce MOX fhel. After blending the plutonium with uranium, only 1 to 10 ppm gallium is expected in the sintered MOX fuel. Gallium present as gallium oxide (G~OJ could be evolved as the suboxide (G~O). Migration of the evolved G~O and diffusion of gallium in the MOX matrix along thermal gradients could lead to locally higher concentrations of G~03. Thus, while an extremely low concentration of gallium in MOX fiel almost ensures a lack of significant interaction of gallium whh Zircaloy fhel cladding, there remains a small probability that corrosion effects will not be negligible. General corrosion in the form of surface alloying resulting from formation of intermetallic compounds between Zircaloy and gallium should be ma& limited and, therefore, superficial because of the expected low ratio of gallium to the surface area or volume of the Zircaloy cladding. Although the expected concentration of gallium is low and there is very limited volubility of gallium in zirconium, especially at temperatures below 700 "C,4 grain boundary penetration and liquid metal embrittlement (LME) are forms of localized corrosion that were also considered. One fuel system darnage mechanism, pellet clad interaction, has led to some failure of the Zircaloy cladding in light-water reactors (LWRS

  19. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  20. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  1. Interaction of sodium with tellurium in gallium melts

    SciTech Connect

    Dergacheva, M.B.; Sarsekeeva, R.Zh.; Kozin, L.F.

    1988-09-20

    The purpose of this work was to study interaction of sodium with admixtures of tellurium and to determine the composition and phase state of the intermetallic compounds formed. The investigations were carried out by a potentiometric method with measurement of emf of the concentration cells. Sodium was introduced into the original gallium-tellurium binary alloy by electrolysis. The results of measurements of the emf of the cell were used for plotting potentiometric curves. The emf values found on the horizontal region of the potentiometric were subjected to mathematical analysis for determination of deviations from the regression line of the results of three parallel series of measurement. The emf of concentration cells with a solid electrolyte, based on melts of the gallium-sodium-tellurium ternary system, deviate from the theoretical values at 855 K; this is attributed to formation of the intermetallic compound, sparingly soluble in gallium, the free energy of formation of which is -266 +/- 15 kJ/mole.

  2. Synthesis, Characterization, and Photochemistry of a Dinuclear Cyanide-Bridged Iron(II)-Platinum(IV) Mixed-Valence Compound and Its Implications for the Corresponding Iron(II)-Platinum(IV)-Iron(II) Complex.

    PubMed

    Pfennig, Brian W.; Lockard, Jenny V.; Cohen, Jamie L.; Watson, David F.; Ho, Douglas M.; Bocarsly, Andrew B.

    1999-06-14

    The mixed-valence compound [(NH(3))(5)Pt(IV)(&mgr;-NC)Fe(II)(CN)(5)].6H(2)O was synthesized by the substitution reaction of [Pt(IV)(NH(3))(5)OSO(2)CF(3)](OSO(2)CF(3))(3) and [Fe(II)(CN)(6)](4)(-) in aqueous solution and was characterized by UV/vis, IR, and resonance Raman spectroscopies, cyclic voltammetry, and single-crystal X-ray diffractometry. The monoclinic crystal (space group P2(1)/m (No. 11)) consists of a dinuclear, cyanide-bridged Fe(II)-Pt(IV) moiety with unit cell dimensions of a = 9.3241(5) Å, b = 14.0466(7) Å, c = 9.6938(4) Å, beta = 111.467(2) degrees, and Z = 2. There are also an average of six waters of hydration per unit cell. The R-factors for this structure are R = 3.66% and R(w) = 7.90%. The electronic spectrum reveals a broad intervalent (IT) charge-transfer absorption at approximately 420 nm (epsilon = 540 M(-)(1) cm(-)(1)). Both the ground-state spectroscopy and the electrochemistry of this compound are very similar to those of the corresponding trinuclear adduct [(NC)(5)Fe(II)(&mgr;-CN)Pt(IV)(NH(3))(4)(&mgr;-NC)Fe(II)(CN)(5)](4)(-), which has been reported previously. Classical Marcus-Hush theory has been applied in the analysis of the IT band of the dinuclear compound in an effort to elucidate a fuller understanding of the photophysics of the trinuclear complex. The data suggest that this latter, centrosymmetric species can be treated theoretically as two back-to-back dinuclear donor-acceptor (D-A) compounds of the form D-A/A-D, where the Pt(IV) inversion center acts as the acceptor for both halves of the molecule. The photochemistry of the dinuclear complex was also investigated.

  3. Bulk Cubic Gallium Nitride

    DTIC Science & Technology

    1999-02-09

    microcrysta. form at bottom of «he reaction vessel. The objective of the second step is the solvothermal transport of the gallium nitride residing in the...system using pressure pumps can be used to gain precise control of the pressure. High pressure is typically used for the solvothermal transport. The...takes place in the reaction vessel during heating is a solvothermal reaction that is conducted at or above the critical point of the solvent The

  4. Selenium-platinum coordination compounds as novel anticancer drugs: selectively killing cancer cells via a reactive oxygen species (ROS)-mediated apoptosis route.

    PubMed

    Zeng, Lingwu; Li, Yang; Li, Tianyu; Cao, Wei; Yi, Yu; Geng, Weijia; Sun, Zhiwei; Xu, Huaping

    2014-08-01

    We report the preparation of selenium-containing platinum-based anticancer drug EG-Se/Pt. EG-Se/Pt was obtained from the coordination of selenium-containing molecules (EG-Se) with cisplatin (CDDP). The structure of EG-Se/Pt was characterized by (1) H and (77) Se NMR spectroscopy, XPS, ESI-MS, and MALDI-TOF. In aqueous solution, EG-Se/Pt self-assembles to form spherical aggregates. EG-Se/Pt shows enhanced stability against dilution and high salt concentration compared with EG-Se. EG-Se/Pt induces cell apoptosis via reactive oxygen species (ROS), which leads to high selectivity between cancer cells and normal cells in cytotoxicity assays. More importantly, EG-Se/Pt effectively inhibits tumor growth in vivo in tumor-bearing mice. It is anticipated that tuning the ROS level through the assembly of selenium-containing molecules can be a general method to realize anticancer selectivity.

  5. Oxidative dissolution of gallium arsenide and separation of gallium from arsenic

    SciTech Connect

    Coleman, J.P.; Monzyk, B.F.

    1988-07-26

    The method of dissociating gallium arsenide into a gallium-containing component and an arsenic-containing component, is described which comprises contacting the gallium arsenide with an oxidizing agent and a liquid comprising hydroxamic acid to convert the gallium to a gallium-hydroxamic acid complex and to oxidize the arsenic to a positive valence state.

  6. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  7. Modified anthracites as selective sorbents for platinum metals

    SciTech Connect

    Tikhonova, L.P.; Lyubchik, S.B.; Tarasenko, Y.A.; Goncharik, V.P.; Galushko, O.L.; Fonseca, I.

    2006-05-15

    Methods of preliminary modification were used to obtain activated carbons with low ash content (0.2%), developed pi-conjugated electronic system, large surface area, and wide pore size distribution, from exclusively microporous carbons to those of mesoporous type. The adsorption of compounds of platinum-group metals on activated anthracite from single-component (as regards the platinum metal: Pd, Pt, or Rh) and multicomponent (Pd, Pt) solutions containing compounds of concomitant metals was studied.

  8. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  9. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  10. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  11. Challenges for critical raw material recovery from WEEE - The case study of gallium.

    PubMed

    Ueberschaar, Maximilian; Otto, Sarah Julie; Rotter, Vera Susanne

    2017-02-01

    Gallium and gallium compounds are more frequently used in future oriented technologies such as photovoltaics, light diodes and semiconductor technology. In the long term the supply risk is estimated to be critical. Germany is one of the major primary gallium producer, recycler of gallium from new scrap and GaAs wafer producer. Therefore, new concepts for a resource saving handling of gallium and appropriate recycling strategies have to be designed. This study focus on options for a possible recycling of gallium from waste electric and electronic equipment. To identify first starting points, a substance flow analysis was carried out for gallium applied in integrated circuits applied on printed circuit boards and for LEDs used for background lighting in Germany in 2012. Moreover, integrated circuits (radio amplifier chips) were investigated in detail to deduce first approaches for a recycling of such components. An analysis of recycling barriers was carried out in order to investigate general opportunities and risks for the recycling of gallium from chips and LEDs. Results show, that significant gallium losses arose in primary production and in waste management. 93±11%, equivalent to 43,000±4700kg of the total gallium potential was lost over the whole primary production process until applied in electronic goods. The largest share of 14,000±2300kggallium was lost in the production process of primary raw materials. The subsequent refining process was related to additional 6900±3700kg and the chip and wafer production to 21,700±3200kg lost gallium. Results for the waste management revealed only low collection rates for related end-of-life devices. Not collected devices held 300 ± 200 kg gallium. Due to the fact, that current waste management processes do not recover gallium, further 80 ± 10 kg gallium were lost. A thermal pre-treatment of the chips, followed by a manual separation allowed an isolation of gallium rich fractions, with gallium mass fractions up to

  12. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  13. Improving Platinum Efficiency:. Nanoformulations

    NASA Astrophysics Data System (ADS)

    Carmona, Rolando; Liang, Xing-Jie

    2013-09-01

    Platinum-based drugs continue being the support of therapy for many different kinds of cancer. Cancer patients often present irreversible resistance to platinum after repeated treatment in clinic. Despite of the great efforts, chemoresistance (intrinsic or acquired) already is a major limitation in the management of this disease. In this review, the last current research on cancer characteristic and cancer chemical resistance is summarized, the major and novel strategies to reverse resistance to platinum- based drugs are discussed and this article mainly emphasizes the contribution of nanotechnology and combination therapies to target sites and reduce the cancer chemoresistance.

  14. Gallium Arsenide and Related Compounds, 1986.

    DTIC Science & Technology

    1986-01-01

    application of MBE to microwave devices, such as FETs, Mixer and IMPATT diodes, and the fabrication of optical devices, such as the laser, LED and...undoped, In-alloyed and whole ingot annealed semi- insulating GaAs substrates for low noise microwave amplifiers H Kanber and D C Wang 509- 514 Evaluation...is negligibly small at low temperatures of 400-500°C. d) No edge growth in selective epitaxy Selective epitaxy, growth through the window of a SiO 2

  15. Gallium Safety in the Laboratory

    SciTech Connect

    Cadwallader, L.C.

    2003-05-07

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  16. Gallium Safety in the Laboratory

    SciTech Connect

    Lee C. Cadwallader

    2003-06-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  17. Platinum(II)-Acyclovir Complexes: Synthesis, Antiviral and Antitumour Activity

    PubMed Central

    Coluccia, M.; Boccarelli, A.; Cermelli, C.; Portolani, M.; Natile, G.

    1995-01-01

    A platinum(II) complex with the antiviral drug acyclovir was synthesized and its antiviral and anticancer properties were investigated in comparison to those of acyclovir and cisplatin. The platinum-acyclovir complex maintained the antiviral activity of the parent drug acyclovir, though showing a minor efficacy on a molar basis (ID50  =   7.85 and 1.02 μΜ for platinum-acyclovir and cisplatin, respectively). As anticancer agent, the platinum-acyclovir complex was markedly less potent than cisplatin on a mole-equivalent basis, but it was as effective as cisplatin when equitoxic dosages were administered in vivo to P388 leukaemia-bearing mice (%T/C = 209 and 211 for platinum-acyclovir and cisplatin, respectively). The platinum-acyclovir complex was also active against a cisplatin-resistant subline of the P388 leukaemia (%T/C = 140), thus suggesting a different mechanism of action. The DNA interaction properties (sequence specificity and interstrand cross-linking ability) of platinum-acyclovir were also investigated in comparison to those of cisplatin and [Pt(dien)Cl]+, an antitumour-inactive platinum-triamine compound. The results of this study point to a potential new drug endowed, at the same time, with antiviral and anticancer activity and characterized by DNA interaction properties different from those of cisplatin. PMID:18472776

  18. Cisplatin and platinum drugs at the molecular level. (Review).

    PubMed

    Boulikas, Teni; Vougiouka, Maria

    2003-01-01

    Over twenty years of intensive work toward improvement of cisplatin, and with hundreds of platinum drugs tested, has resulted in the introduction of the widely used carboplatin and of oxaliplatin used only for a very narrow spectrum of cancers. A number of interesting platinum compounds including the orally administered platinum drug JM216, nedaplatin, the sterically hindered platinum(II) complex ZD0473, the trinuclear platinum complex BBR3464, and the liposomal forms Lipoplatin and SPI-77 are under clinical evaluation. This review summarizes the molecular mechanisms of platinum compounds for DNA damage, DNA repair and induction of apoptosis via activation or modulation of signaling pathways and explores the basis of platinum resistance. Cisplatin, carboplatin, oxaliplatin and most other platinum compounds induce damage to tumors via induction of apoptosis; this is mediated by activation of signal transduction leading to the death receptor mechanisms as well as mitochondrial pathways. Apoptosis is responsible for the characteristic nephrotoxicity, ototoxicity and most other toxicities of the drugs. The major limitation in the clinical applications of cisplatin has been the development of cisplatin resistance by tumors. Mechanisms explaining cisplatin resistance include the reduction in cisplatin accumulation inside cancer cells because of barriers across the cell membrane, the faster repair of cisplatin adducts, the modulation of apoptotic pathways in various cells, the upregulation in transcription factors, the loss of p53 and other protein functions and a higher concentration of glutathione and metallothioneins in some type of tumors. A number of experimental strategies to overcome cisplatin resistance are at the preclinical or clinical level such as introduction of the bax gene, inhibition of the JNK pathway, introduction of a functional p53 gene, treatment of tumors with aldose reductase inhibitors and others. Particularly important are combinations of platinum

  19. Synthesis, Reactivity Investigation, and X-ray Diffraction Structures of New Platinum(II) Compounds Containing Redox-Active Diphosphine Ligands

    SciTech Connect

    Wang, Xiaoping; Richmond, Michael G.; Hunt, Sean W

    2009-01-01

    Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl2(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl2(bpcd) (2). Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding 2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl2(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na2mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). Compounds 2 C4 have been fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2 C4 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in these systems has been established by MO calculations at the extended H ckel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives.

  20. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  1. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  2. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  3. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet...

  4. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  5. Progress in gallium arsenide semiconductors

    SciTech Connect

    Brodsky, M.H. )

    1990-02-01

    After almost 30 years as the technology of the future, gallium arsenide has begun to make a place for itself, not by supplanting silicon but by complementing it in new applications. The inherent advantages of the material lie in the speed with which electrons move through it, in weak-signal operations and in the generation and detection of light. These advantages suit it for roles in computing, television reception and the optoelectronic transmission of data through optical-fiber networks. Gallium arsenide light-emitting diodes and lasers used in visual-display technologies and audio-disk players already account for more than $1 billion in sales annually. Hundreds of thousands of satellite-receiving dishes that use gallium arsenide detectors are sold every year, and high-speed circuits using gallium arsenide transistors are projected to reach a similar turnover in a few years. In an economy and society that depend on the rapid exchange of information as well as on the processing of it, many silicon-dominated processors will require a considerable admixture of gallium arsenide components in order to do their jobs.

  6. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  7. Gallium and Reactor Neutrino Anomalies

    NASA Astrophysics Data System (ADS)

    Acero, M. A.; Giunti, C.; Laveder, M.

    2009-03-01

    The observed deficit in the Gallium radioactive source experiments may be interpreted as a possible indication of active-sterile ν mixing. In the effective framework of two-neutrino mixing we obtain sin2ϑ≳0.03 and Δm≳0.1 eV. The compatibility of this result with the data of the Bugey reactor ν disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02≲sin2ϑ≲0.08 and Δm≈1.8 eV, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analysis of Gallium, Bugey, and Chooz data.

  8. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian W.

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  9. Renal amyloidosis. Evaluation by gallium imaging

    SciTech Connect

    Lee, V.W.; Skinner, M.; Cohen, A.S.; Ngai, S.; Peng, T.T.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity for detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.

  10. Potential effects of gallium on cladding materials

    SciTech Connect

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  11. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide.

    PubMed

    Tanaka, Akiyo

    2004-08-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials.

  12. Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic.

    PubMed

    Vrana, Oldrich; Novohradsky, Vojtech; Medrikova, Zdenka; Burdikova, Jana; Stuchlikova, Olga; Kasparkova, Jana; Brabec, Viktor

    2016-02-18

    Anticancer therapy by platinum complexes, based on nanocarrier-based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis-[PtCl2 (NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross-links on DNA.

  13. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  14. Mono- and di-bromo platinum(IV) prodrugs via oxidative bromination: synthesis, characterization, and cytotoxicity.

    PubMed

    Xu, Zoufeng; Wang, Zhigang; Yiu, Shek-Man; Zhu, Guangyu

    2015-12-14

    Platinum(IV)-based anticancer prodrugs have attracted much attention due to their relative inertness under physiological conditions, being activated inside cells, and their capacity for functionalization with a variety of small-molecule or macromolecule moieties. Novel asymmetric platinum(IV) compounds synthesized through expedient and unique methods are desired. Here we utilize N-bromosuccinimide (NBS) and carry out oxidative bromination on platinum(II) drugs, namely cisplatin, carboplatin, and oxaliplatin, to obtain asymmetric and mono-bromo platinum(IV) prodrugs. Different solvents are used to obtain various compounds, and the compounds are further functionalized. Di-bromo compounds are also obtained through NBS-directed oxidative bromination in ethanol. The crystal structures of representative compounds are discussed, and the reduction potentials of some compounds are examined. A cytotoxicity test shows that the mono- and di-bromo platinum(IV) compounds are active against human ovarian cancer cells. Our study enriches the family of asymmetric platinum(IV) prodrugs and provides with a convenient strategy to obtain brominated platinum(IV) complexes.

  15. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  16. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  17. Gallium scan in intracerebral sarcoidosis

    SciTech Connect

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  18. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  19. Functionalization of Platinum Complexes for Biomedical Applications.

    PubMed

    Wang, Xiaoyong; Wang, Xiaohui; Guo, Zijian

    2015-09-15

    , anticancer theranostic agents, and anti-AD compounds relevant to functionalized platinum complexes are provided. All the examples exhibit new potential of platinum complexes for future applications in biomedical areas. The emphases of this Account are placed on the functionalization for targeted drug delivery and theranostic agents. In the end, a general assessment of various strategies has been made according to their major shortcomings and defects. The original information in this Account comes entirely from literature appearing since 2010.

  20. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  1. Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications.

    PubMed

    Soundarrajan, C; Sankari, A; Dhandapani, P; Maruthamuthu, S; Ravichandran, S; Sozhan, G; Palaniswamy, N

    2012-06-01

    The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H(2)PtCl(6)·6H(2)O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.

  2. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.

    PubMed

    Xu, Sheng-Liang; Cui, Hua

    2007-01-01

    Platinum colloids prepared by the reduction of hexachloroplatinic acid with citrate in the presence of different stabilizers were found to enhance the chemiluminescence (CL) of the luminol-H(2)O(2) system, and the most intensive CL signals were obtained with citrate-protected Pt colloids synthesized with citrate as both a reductant and a stabilizer. Light emission was intense and reproducible. Transmission electron microscopy and X-ray photoelectron spectroscopy studies were conducted before and after the CL reaction to investigate the possible CL enhancement mechanism. It is suggested that this CL enhancement is attributed to the catalysis of platinum nanoparticles, which could accelerate the electron-transfer process and facilitate the CL radical generation in aqueous solution. The effects of Pt colloids prepared by the hydroborate reduction were also investigated. The application of the luminol-H(2)O(2)-Pt colloids system was exploited for the determination of compounds such as uric acid, ascorbic acid, phenols and amino acids.

  3. Synthesis and properties of platinum hydride

    NASA Astrophysics Data System (ADS)

    Scheler, Thomas; Degtyareva, Olga; Marqués, Miriam; Guillaume, Christophe L.; Proctor, John E.; Evans, Shaun; Gregoryanz, Eugene

    2011-06-01

    Synchrotron x-ray diffraction experiments on compressed platinum-hydrogen mixtures reveal the formation of platinum hydride at a pressure of 27(1) GPa at room temperature. This compound exhibits two phases, PtH-I and PtH-II, coexisting up to the pressure of 42 GPa, above which the single phase of PtH-II is observed. Pt atoms in the PtH-II phase are shown to form a hexagonal closed-packed structure. This phase exhibits a high bulk modulus of 310 (10) GPa and is stable up to at least 53 GPa. Ab initio calculations show that PtH-II is superconducting with Tc = 12 K at 90 GPa, the highest temperature of superconducting transition among any known metal hydride.

  4. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  5. Construction of Gallium Point at NMIJ

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Saito, I.; Yamazawa, K.

    2017-03-01

    Two open-type gallium point cells were fabricated using ingots whose nominal purities are 7N. Measurement systems for the realization of the melting point of gallium using these cells were built. The melting point of gallium is repeatedly realized by means of the measurement systems for evaluating the repeatability. Measurements for evaluating the effect of hydrostatic pressure coming from the molten gallium existing during the melting process and the effect of gas pressure that fills the cell were also performed. Direct cell comparisons between those cells were conducted. This comparison was aimed to evaluate the consistency of each cell, especially related to the nominal purity. Direct cell comparison between the open-type and the sealed-type gallium point cell was also conducted. Chemical analysis was conducted using samples extracted from ingots used in both the newly built open-type gallium point cells, from which the effect of impurities in the ingot was evaluated.

  6. New platinum compounds containing the diphosphine ligand 2-(ferrocenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (fbpcd): Synthesis, redox behavior, and X-ray diffraction structures Of PtCl2(fbpcd) and Pt(mnt)(fbpcd)

    SciTech Connect

    Poola, Bhaskar; Hunt, Sean W; Wang, Xiaoping; Richmond, Michael G.

    2008-01-01

    The reaction of the redox-active diphosphine ligand 2-(ferrocenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (fbpcd) with PtCl2(1,5-cod) furnishes the platinum(II) compound PtCl2(fbpcd) (2). Treatment of 2 with disodium maleonitriledithiolate (Na(2)mnt) yields the chelating thiolate compound Pt(mnt)(fbpcd) (3). Both 2 and 3 have been fully characterized in solution by IR, UV-Vis, and NMR spectroscopies, and their molecular structures established by X-ray crystallography. The redox properties of the fbpcd ligand and compounds 2 and 3 have been investigated by cyclic voltammetry, and the composition of the HOMO and LUMO levels in these systems have been determined by extended Huckel MO calculations, the results of which are discussed with respect to electrochemical data.

  7. Running droplets of gallium from evaporation of gallium arsenide.

    PubMed

    Tersoff, J; Jesson, D E; Tang, W X

    2009-04-10

    High-temperature annealing of gallium arsenide in vacuum causes excess evaporation of arsenic, with accumulation of gallium as liquid droplets on the surface. Using real-time in situ surface electron microscopy, we found that these droplets spontaneously run across the crystal surface. Running droplets have been seen in many systems, but they typically require special surface preparation or gradient forces. In contrast, we show that noncongruent evaporation automatically provides a driving force for running droplets. The motion is predicted and observed to slow and stop near a characteristic temperature, with the speed increasing both below and above this temperature. The same behavior is expected to occur during the evaporation of similar III-V semiconductors such as indium arsenide.

  8. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  9. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  10. Influence of novel gallium complexes on the homeostasis of some biochemical and hematological parameters in rats.

    PubMed

    Gârban, Gabriela; Silaghi-Dumitrescu, Radu; Ioniţă, Hortensia; Gârban, Zeno; Hădărugă, Nicoleta-Gabriela; Ghibu, George-Daniel; Baltă, Cornel; Simiz, Florin-Dan; Mitar, Carmen

    2013-12-01

    The aim of this study was to detect possible homeostasis changes in some biochemical and hematological parameters after the administration of gallium (Ga) complexes C (24) and C (85) on an experimental animal model (Wistar strain rats). In order to observe chronobiological aspects, a morning (m) and an evening (e) animal series were constituted. Further on, each series were divided into three groups: control (C), experimental I (EI), and experimental II (EII). Both Ga complexes were solubilized in a carrier solution containing polyethylene glycol (PEG) 400, water, and ethanol. Animals of the C groups received the carrier solution by intraperitoneal injection, those from the EI groups received the solubilized C(24) gallium complex, and those of the EII groups received the solubilized C(85) gallium complex. At the end of the experiment, blood and tissue samples were taken and the following parameters were determined: serum concentration of the nonprotein nitrogenous compounds (uric acid, creatinine, and blood urea nitrogen), hematological parameters (erythrocytes, hemoglobin, leukocytes, and platelets), and the kidney tissue concentration of three essential trace elements (Fe, Cu, and Zn). With the exception of uric acid, the results revealed increased concentrations of the nonprotein nitrogenous compounds both in the morning and in the evening experimental groups. Hematological data showed increased levels of erythrocytes, hemoglobin, and leukocytes and decreased platelet levels in the experimental group given the C(24) gallium complex in the morning (EI-m) group; increased levels of leukocytes and decreased levels of the other parameters in the experimental group given the C(24) gallium complex in the evening (EI-e) group; and increased levels of all hematological parameters in the experimental groups receiving the C(85) gallium complex in the morning (EII-m) group and in the evening (EII-e) group. Decreased kidney tissue concentrations of metals were found in all

  11. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  12. Comparison of Intracellular Stress Response of NCI-H526 Small Cell Lung Cancer (SCLC) Cells to Platinum(II) Cisplatin and Platinum(IV) Oxoplatin

    PubMed Central

    Hamilton, Gerhard

    2014-01-01

    In attempts to develop an orally applicable platinum-based drug, platinum(IV) drugs which exhibit higher in vivo stability compared to the platinum(II) drug cisplatin were formulated. The first such chemotherapeutic agent, namely satraplatin, failed to receive approval. In the present work, we checked the initial cellular stress response of the chemosensitive NCI-H526 small cell lung cancer (SCLC) cells by determination of the relative phosphorylation of 46 specific phosphorylation sites of 38 selected proteins in a six hours response to cisplatin (platinum(II)) or oxoplatin (platinum(IV)), respectively. Oxoplatin is considered as prodrug of cisplatin, although several findings point to differences in intracellular effects. Cisplatin induced hyperphosphorylation of p38α MAPK and AMPKα1, whereas oxoplatin treatment resulted in increased phosphorylation of a large number of signaling proteins involved in stress response/drug resistance, including JNK, GSK-3α, AMPKα1, src kinases, STATs, CHK-2 and especially focal adhesion kinase (FAK). Cisplatin exerts markedly higher cytotoxicity upon four hours short-term exposure in comparison to oxoplatin and, correspondingly, the extended initial stress response to the platinum(IV) drug oxoplatin thus is expected to increase clinical drug resistance. Induction of a substantial stress response to any prodrug of a platinum-based compound may likewise limit the effectivity of its active metabolite(s), such contributing to the failure of selected derivatized platinum complexes. PMID:25006835

  13. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  14. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  15. One-dimensional Magnus-type platinum double salts

    PubMed Central

    Hendon, Christopher H.; Walsh, Aron; Akiyama, Norinobu; Konno, Yosuke; Kajiwara, Takashi; Ito, Tasuku; Kitagawa, Hiroshi; Sakai, Ken

    2016-01-01

    Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt2+ compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt2.33+ needles. The loss of one electron per double salt results in a metallic state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm−1 at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry. PMID:27320502

  16. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  17. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  18. Fundamental rotating disk study of platinum recovery from aqueous solution by a reduction/collection technique

    SciTech Connect

    Angelidis, T.N.; Kydros, K.A.; Sklavounos, S.A.

    1997-05-01

    A reduction/collection procedure for the recovery of platinum from aqueous solutions applying metallic iron (in the form of a rotating disk) as reductant and lead or copper ions as reduced platinum collectors was studied. Fundamental kinetic aspects of the process, such as the influence of the pH and of the collector`s concentration on platinum recovery yield, were examined experimentally. The two collectors were compared with respect to the particle size of the precipitant falling from the disk surface. Lead ions seem to give a coarser precipitant compared to copper and increase the pH region at which the reaction takes place. The final product was a mixture of platinum and platinum/lead bimetallic compounds (mainly PbPt).

  19. Water-soluble platinum phthalocyanines as potential antitumor agents.

    PubMed

    Bologna, Giuseppina; Lanuti, Paola; D'Ambrosio, Primiano; Tonucci, Lucia; Pierdomenico, Laura; D'Emilio, Carlo; Celli, Nicola; Marchisio, Marco; d'Alessandro, Nicola; Santavenere, Eugenio; Bressan, Mario; Miscia, Sebastiano

    2014-06-01

    Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 μM) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 μM. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment.

  20. Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust.

    PubMed

    Voorhoeve, R J; Remeika, J P; Freeland, P E; Matthias, B T

    1972-07-28

    The perovskite-like compounds RE(1-X)Pb(5)MnO(3) and RECoO(3), where RE (rare earth) is lanthanum, praseodymium, or neodymium, are active catalysts for the oxidation of carbon monoxide. Crushed single crystals of these compounds compare favorably with commercial platinum catalysts in initial activity and lifetime. Therefore, these compounds are promising substitutes for platinum in devices for the catalytic treatment of auto exhaust.

  1. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  2. Clinical applications of Gallium-68.

    PubMed

    Banerjee, Sangeeta Ray; Pomper, Martin G

    2013-06-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a (68)Ge/(68)Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. (68)Ga-DOTATOC, (8)Ga-DOTATATE, (68)Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with (68)Ga over the past few years around the world, including within the United States. An estimated ∼10,000 scans are being performed yearly in Europe at about 100 centers utilizing (68)Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied (68)Ga-labeled imaging agents used in nuclear medicine.

  3. Status of gallium-67 in tumor detector

    SciTech Connect

    Hoffer, P.

    1980-04-01

    The efficacy of gallium-67 citrate in detecting specific tumors is discussed. Tumors in which gallium-67 imaging is useful as a diagnostic tool include Hodgkin's disease, histiocystic lymphoma, Burkitt's lymphoma, hepatoma melanoma, and leukemia. It has not been found to be effective in diagnosing head and neck tumors, gastrointestinal tumors, genitourinary tract tumors, breast tumors, and pediatric tumors. Gallium may be useful in the evaluation of non-Hodgkin's lymphoma, testicular carcinoma, mesothelioma, and carcinoma of the lung. It may also be useful for determining response to treatment and prognosis in some neoplasms.

  4. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect

    Hibst, N.; Strehle, S.; Knittel, P.; Kranz, C.; Mizaikoff, B.

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  5. Survey of the market, supply, and availability of gallium

    SciTech Connect

    Rosi, F.D.

    1980-01-01

    The present and potential availability of gallium metal in connection with materials evaluation recommendations for satellite power systems is examined in the following areas: (1) market considerations - the present and emerging uses of gallium, as well as the consumption and price of gallium; (2) supply considerations - present sources of gallium, commercial and new methods for extracting gallium from bauxite, and summary comments; (3) methods for purifying gallium to satisfy market demands; (4) principal suppliers of gallium; and (5) gallium availability from bauxite on the basis of primary aluminum production; and bauxite production, reserves and resources. The study was based on published information as well as information derived from private communications with both major and potential suppliers and users of gallium, and with staff members at the Bureau of Mines. 16 references, 3 figures, 6 tables.

  6. Platinum availability for future automotive technologies.

    PubMed

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-04

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users.

  7. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs.

    PubMed

    Doucette, Kaitlin A; Hassell, Kelly N; Crans, Debbie C

    2016-12-01

    Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs.

  8. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  9. Materials synthesis: Two-dimensional gallium nitride

    NASA Astrophysics Data System (ADS)

    Koratkar, Nikhil A.

    2016-11-01

    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  10. Pure spin current transport in gallium doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Althammer, Matthias; Mukherjee, Joynarayan; Geprägs, Stephan; Goennenwein, Sebastian T. B.; Opel, Matthias; Ramachandra Rao, M. S.; Gross, Rudolf

    2017-01-01

    We study the flow of a pure spin current through zinc oxide by measuring the spin Hall magnetoresistance (SMR) in thin film trilayer samples consisting of bismuth-substituted yttrium iron garnet (Bi:YIG), gallium-doped zinc oxide (Ga:ZnO), and platinum. We investigate the dependence of the SMR magnitude on the thickness of the Ga:ZnO interlayer and compare to a Bi:YIG/Pt bilayer. We find that the SMR magnitude is reduced by almost one order of magnitude upon inserting a Ga:ZnO interlayer and continuously decreases with increasing interlayer thickness. Nevertheless, the SMR stays finite even for a 12 nm thick Ga:ZnO interlayer. These results show that a pure spin current indeed can propagate through a several nm-thick degenerately doped zinc oxide layer. We also observe differences in both the temperature and the field dependence of the SMR when comparing tri- and bilayers. Finally, we compare our data to the predictions of a model based on spin diffusion. This shows that interface resistances play a crucial role for the SMR magnitude in these trilayer structures.

  11. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    PubMed Central

    Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J.

    2016-01-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing non-classical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore non-classical platinum(II) complexes with trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is about to arrive. PMID:26865551

  12. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs.

    PubMed

    Johnstone, Timothy C; Suntharalingam, Kogularamanan; Lippard, Stephen J

    2016-03-09

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.

  13. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  14. Gallium poisoning: a rare case report.

    PubMed

    Ivanoff, Chris S; Ivanoff, Athena E; Hottel, Timothy L

    2012-02-01

    The authors present a case of a college student who suffered acute gallium poisoning as a result of accidental exposure to gallium halide complexes. This is extremely rare and has never been reported in the literature. Acute symptoms after the incident, which initially presented as dermatitis and appeared relatively not life-threatening, rapidly progressed to dangerous episodes of tachycardia, tremors, dyspnea, vertigo, and unexpected black-outs. Had there been effective emergency medical care protocols, diagnostic testing, treatment and antidotes, the latent manifestations of irreversible cardiomyopathy may have been prevented. Given how quickly exposure led to morbidity, this article aims to raise an awareness of the toxic potential of gallium. This has particular relevance for workers involved in the production of semiconductors where there is a potential for accidental exposure to gallium by-products during device processing. It may also have implications for dentists who use gallium alloys to replace mercury containing amalgam. In the absence of threshold limit values and exposure limits for humans, as well as emergency medical guidelines for treatment of poisoning, the case calls on the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration to establish guidelines and medical management protocols specific for gallium.

  15. Gallium Arsenide wafer scale integration

    NASA Astrophysics Data System (ADS)

    McDonald, J. F.; Taylor, G.; Steinvorth, R.; Donlan, B.; Bergendahl, A. S.

    1985-08-01

    Gallium Arsenide (GaAs) digital MESFET technology has recently begun to appear in the semiconductor marketplace. The initial commercial offerings are at the small to medium scale integration levels. The high speed of these parts would seem to be very attractive for designers of high performance signal processing equipment. Persistent yield problems, however, have prevented the appearance of large scale integrated circuits. As a result, intrapackage and interpackage signal propagation problems such as coupling, parasitics and delay are likely to negate much of the benefits of the fast MESFET logic devices for large systems constructed with such small scale building blocks. An early packaging concept, Wafer Scale Integration (WSI), which could possibly be used to address some of these limitations is reexamined.

  16. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  17. Thermochromic platinum complexes

    DOEpatents

    Kostic, Nenad M.; Zhou, Xia-Ying

    1990-05-29

    Thermochromic compounds containing the [Pt(dipic)Cl].sup.- anion. These compounds are yellow and monomeric at high temperatures or in low concentrations and abruptly change to red and polymeric at low temperatures or higher solution concentrations. This unusual property allows them to be used as temperature sensors.

  18. Thermochromic platinum complexes

    DOEpatents

    Kostic, Nenad M.; Zhou, Xia-Ying

    1989-08-15

    Thermochromic compounds containing the [Pt(dipic)Cl].sup.- anion. These compounds are yellow and monomeric at high temperatures or in low concentrations and abruptly change to red and polymeric at low temperatures or higher solution concentrations. This unusual property allows them to be used as temperature sensors.

  19. Novel Pentacyano Complexes of Tri- and Tetravalent Platinum.

    PubMed

    Maliarik, Mikhail; Glaser, Julius; Tóth, Imre

    1998-10-19

    New pentacyano complexes of tri- and tetravalent platinum were obtained in aqueous solution and characterized by multinuclear NMR ((195)Pt, (13)C) supported by Raman spectroscopy. The complexes form as products of redox decomposition of metal-metal bonded platinum-thallium compounds. The trimetallic [(NC)(5)Pt-Tl-Pt(CN)(5)](3)(-) yields a new dimeric compound of Pt(III), [(NC)(5)Pt-Pt(CN)(5)](4)(-). The latter is a rare representative of unbridged dimeric complexes of trivalent platinum; it was obtained through an oxidation of monomeric square-planar platinum(II) species by a metal complex. From the bimetallic compounds [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 0-2) tetravalent platinum complexes are formed. Depending on the Pt-Tl species, electron transfer is initiated either by heat or by exposition to light; it results in [Pt(CN)(6)](2)(-) or in the hitherto unknown complexes [Pt(CN)(5)(OH)](2)(-) and [Pt(CN)(5)(H(2)O)](-), with the (195)Pt NMR chemical shift values 1638.7 (+/-0.6) and 1766.7 (+/-0.6), respectively. Proton dissociation constant of [Pt(CN)(5)(H(2)O)](-) has been determined, pK(a) = 2.51 (+/-0.01). In both Pt(III) and Pt(IV) pentacyano complexes platinum is hexacoordinated forming a pseudo-octahedron with two types of cyano ligands: four equivalent equatorial cyanides and one apical. Related platinum(IV) species, [Pt(CN)(5)X](2)(-) (X = Cl, Br, I), have also been studied. In all the pentacyano complexes a pronounced trans influence is reflected in a substantial difference between the (195)Pt-(13)C spin-spin coupling constant for the apical (trans) and the equatorial (cis) carbon sites. In this respect, the studied X ligands can be ordered in a series of decreasing (195)Pt-(13)C(trans) coupling constant: H(2)O > Cl(-) > Br(-) > I(-) > OH(-) > CN(-).

  20. In Vitro Evaluation of Oxoplatin: An Oral Platinum(IV) Anticancer Agent

    PubMed Central

    Olszewski, Ulrike; Ach, Florian; Ulsperger, Ernst; Baumgartner, Gerhard; Zeillinger, Robert; Bednarski, Patrick; Hamilton, Gerhard

    2009-01-01

    Platinum(IV) compounds like oxoplatin (cis, cis, trans-diammine-dichlorido-dihydroxido-platinum(IV)) show increased stability and therefore can be applied orally. In a panel of 38 human cancer cell lines this drug induced S-phase arrest and cell death with IC50 values 2.5-fold higher than cisplatin. Oxoplatin may be converted to cisplatin by intracellular reducing agents, however, exposure to 0.1 M HCl mimicking gastric acid yielded cis-diammine-tetrachlorido-platinum(IV) exhibiting twofold increased activity. Similar results were obtained for another platinum(IV) compound, JM 149 (ammine-dichlorido-(cyclohexylamine)-dihydroxido-platinum(IV)), but not for its parent drug JM 216/satraplatin. Genome-wide expression profiling of H526 small cell lung cancer cells treated with these platinum species revealed clear differences in the expression pattern of affected genes between oxoplatin and cisplatin. In conclusion, oxoplatin constitutes a potent oral agent that is either reduced or converted to distinct active compounds, for example, by gastric acid or acidic areas prevailing in solid tumors, in dependence of the respective pharmaceutical formulation. PMID:19587824

  1. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  2. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity.

    PubMed

    Turkson, James; Zhang, Shumin; Palmer, Jay; Kay, Heidi; Stanko, Joseph; Mora, Linda B; Sebti, Said; Yu, Hua; Jove, Richard

    2004-12-01

    DNA-alkylating agents that are platinum complexes induce apoptotic responses and have wide application in cancer therapy. The potential for platinum compounds to modulate signal transduction events that contribute to their therapeutic outcome has not been extensively examined. Among the signal transducer and activator of transcription (STAT) proteins, Stat3 activity is frequently up-regulated in many human tumors. Various lines of evidence have established a causal role for aberrant Stat3 activity in malignant transformation and provided validation for its targeting in the development of small-molecule inhibitors as novel cancer therapeutics. We report here that platinum-containing compounds disrupt Stat3 signaling and suppress its biological functions. The novel platinum (IV) compounds, CPA-1, CPA-7, and platinum (IV) tetrachloride block Stat3 activity in vitro at low micromolar concentrations. In malignant cells that harbor constitutively activated Stat3, CPA-1, CPA-7, and platinum (IV) tetrachloride inhibit cell growth and induce apoptosis in a manner that reflects the attenuation of persistent Stat3 activity. By contrast, cells that do not contain persistent Stat3 activity are marginally affected or are not affected by these compounds. Moreover, CPA-7 induces the regression of mouse CT26 colon tumor, which correlates with the abrogation of persistent Stat3 activity in tumors. Thus, the modulation of oncogenic signal transduction pathways, such as Stat3, may be one of the key molecular mechanisms for the antitumor effects of platinum (IV)-containing complexes.

  3. Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents.

    PubMed

    Cincinelli, Raffaella; Musso, Loana; Dallavalle, Sabrina; Artali, Roberto; Tinelli, Stella; Colangelo, Donato; Zunino, Franco; De Cesare, Michelandrea; Beretta, Giovanni Luca; Zaffaroni, Nadia

    2013-05-01

    The design, modeling, synthesis and biological activity evaluation of two hybrid agents formed by 7-oxyiminomethylcamptothecin derivatives and diaminedichloro-platinum (II) complex are reported. The compounds showed growth inhibitory activity against a panel of human tumor cell lines, including sublines resistant to topotecan and platinum compounds. The derivatives were active in all the tested cell lines, and compound 1b, the most active one, was able to overcome cisplatin resistance in the osteosarcoma U2OS/Pt cell line. Platinum-containing camptothecins produced platinum-DNA adducts and topoisomerase I-mediated DNA damage with cleavage pattern and persistence similar to SN38, the active principle of irinotecan. Compound 1b exhibited an appreciable antitumor activity in vivo against human H460 tumor xenograft, comparable to that of irinotecan at lower well-tolerated dose levels and superior to cisplatin. The results support the interpretation that the diaminedichloro-platinum (II) complex conjugated via an oxyiminomethyl linker at the 7-position of the camptothecin resulted in a new class of effective antitumor compounds.

  4. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    SciTech Connect

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  5. Antitumor activities and interaction with DNA of oxaliplatin-type platinum complexes with linear or branched alkoxyacetates as leaving groups.

    PubMed

    Yin, Runting; Gou, Shaohua; Liu, Xia; Lou, Liguang

    2011-08-01

    Five oxaliplatin-typed platinum complexes containing trans-1R, 2R-diaminocyclohexane chelating platinum cores, characteristic of linear or branched alkoxycarboxylates as leaving groups, were biologically evaluated. These compounds showed higher antitumor activity, lower toxicity in vivo than cisplatin or oxaliplatin. And the results revealed that the antitumor activity and interaction with DNA of these compounds were highly related to the nature of leaving groups. Among these complexes, 5a, cis-(trans-1R, 2R-diaminocyclohexane) bis (2-tert-butoxyacetate) platinum(II), showed the highest antitumor activity and the lowest toxicity.

  6. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  7. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  8. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  9. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  10. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  11. Gallium Zeolites for Light Paraffin Aromatization

    SciTech Connect

    Price, G.L.; Dooley, K.M.

    1999-02-10

    The primary original goal of this project was to investigate the active state of gallium-containing MFI catalysts for light paraffin aromatization, in particular the state of gallium in the active material. Our original hypothesis was that the most active and selective materials were those which contained gallium zeolitic cations, and that previously reported conditions for the activation of gallium-containing catalysts served to create these active centers. We believed that in high silica materials such as MFI, ion-exchange is most effectively accomplished with metals in their 1+ oxidation state, both because of the sparsity of the anionic ion-exchange sites associated with the zeolite, and because the large hydration shells associated with aqueous 3+ cations hinder transport. Metals such as Ga which commonly exist in higher oxidation states need to be reduced to promote ion-exchange and this is the reason that reduction of gallium-containing catalysts for light paraffin aromatization often yields a dramatic enhancement in catalytic activity. We have effectively combined reduction with ion-exchange and we term this combined process ''reductive solid-state ion-exchange''. Our hypothesis has largely been proven true, and a number of the papers we have published directly address this hypothesis.

  12. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  13. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  14. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.

  15. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  16. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  17. New SMU Gallium Fixed-Point Cells

    NASA Astrophysics Data System (ADS)

    Ranostaj, Juraj; Ďuriš, Stanislav; Knorová, Renáta; Kaskötö, Mariana; Vyskočilová, Irena

    2011-08-01

    In the framework of the European research project EURAMET 732, the Slovak Institute of Metrology (SMU) built three primary gallium fixed-point cells of different designs. The cells are designed for the calibration of the long-stem SPRT. In regard to the procedure commonly used at SMU when realizing the gallium point, the cells are designed for use in a stirred liquid bath. This article provides information about the cell designs, materials used, method of filling, and results of the performed experiments. The experiments were focused on the study of the cells' metrological characteristics, some effects that could influence the melting-point temperature and the effect of the melted metal fraction on the immersion profile. New cells were compared with the SMU reference gallium cell.

  18. [Formylation of porphyrin platinum complexes].

    PubMed

    Rumiantseva, V D; Konovalenko, L I; Nagaeva, E A; Mironov, A F

    2005-01-01

    The formylation reaction of platinum complexes of beta-unsubstituted porphyrins was studied. The interaction of deuteroporphyrin IX derivatives with the Vilsmeyer reagent led to the selective formylation of their macrocycles in the beta position. The resulting formyl derivatives of the porphyrins are of interest for fluorescent immunoassay.

  19. /sup 67/Gallium lung scans in progressive systemic sclerosis

    SciTech Connect

    Baron, M.; Feiglin, D.; Hyland, R.; Urowitz, M.B.; Shiff, B.

    1983-08-01

    /sup 67/Gallium lung scans were performed in 19 patients with progressive systemic sclerosis (scleroderma). Results were expressed quantitatively as the /sup 67/Gallium Uptake Index. The mean total pulmonary /sup 67/Gallium Uptake Index in patients was significantly higher than that in controls (41 versus 25), and 4 patients (21%) fell outside the normal range. There were no clinical or laboratory variables that correlated with the /sup 56/Gallium uptake. Increased pulmonary /sup 67/Gallium uptake in scleroderma may prove useful as an index of pulmonary disease activity.

  20. A Gallium Arsenide MESFET Operational Amplifier for Use in Composite Operational Amplifiers

    DTIC Science & Technology

    1993-12-01

    bandwidth in digital and analog circuits respectively. This compound semiconductor is formed from gallium and arsenic. It is duly noted for its high drift...channel is formed and (2) how tat gate-control electrode is coupled to the channel. First, the channel of the device is formed by GaAs or Si semiconductor ...layer. Conversely, a MESFET uses a thin doped channel the thickness of which is controlled by the depletion of the metal semiconductor junction

  1. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  2. Synthesis, characterization and biomolecule-binding properties of novel tetra-platinum(II)-thiopyridylporphyrins.

    PubMed

    Lourenço, Leandro M O; Iglesias, Bernardo A; Pereira, Patrícia M R; Girão, Henrique; Fernandes, Rosa; Neves, Maria G P M S; Cavaleiro, José A S; Tomé, João P C

    2015-01-14

    The new complexes tetra-platinum(II)-thiopyridylporphyrin 3 and tetra-platinum(II)-thiopyridylporphyrinato Zn(II) 4 were obtained by coordination of the peripheral thiopyridyl units of the free-base 5,10,15,20-tetrakis[2,3,5,6-tetrafluoro-4-(4-pyridylsulfanyl)phenyl]porphyrin 1 or their corresponding zinc complex 2, respectively, with four chloro(2,2'-bipyridine)platinum(II) [Pt(bpy)Cl](+) units. Both compounds were characterized by several spectroscopic techniques demonstrating a particular behaviour in the emission spectra due to the absence or presence of zinc. The tetra-platinum(II)-thiopyridylporphyrins exhibited an increase in the emission quantum yield when compared with the starting thiopyridylporphyrins 1 and 2. Spectroscopic studies of both platinum derivatives reveal their ability to interact unequivocally with DNA from calf thymus and DNA of low molecular weight from salmon sperms, and also with the most abundant protein in human blood plasma, human serum albumin (HSA). Herein, both tetra-platinum(II)-thiopyridylporphyrins 3 and 4 exhibit electrostatic surface binding with the negative phosphate groups of DNA. Similar to cationic-anionic binding with DNA, tetra-platinum(II)-thiopyridylporphyrinato zinc(II) demonstrates a particular binding intercalation mode with DNA. Photophysical studies demonstrated that both porphyrins are photostable and able to generate singlet oxygen ((1)O2) after light irradiation. Exposure of pMT123 plasmid DNA to tetra-platinum(II)-thiopyridylporphyrins and irradiation with light lead to single-strand breakage as determined by the conversion of the supercoiled form of the plasmid (form I) into the nicked circular form (form II). The tetra-platinum(II)-thiopyridylporphyrinato Zn(II) demonstrates a particular intercalation binding mode with DNA and an ability to cleave DNA after photo-excitation.

  3. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  4. Four Terminal Gallium Nitride MOSFETs

    NASA Astrophysics Data System (ADS)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  5. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  6. Synchrotron X-ray fluorescence microscopy of gallium in bladder tissue following gallium maltolate administration during urinary tract infection.

    PubMed

    Ball, Katherine R; Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L; Blyth, Robert I R; Sham, Tsun-Kong; Dowling, Patricia M; Thompson, Julie

    2013-11-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli.

  7. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    PubMed Central

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie

    2013-01-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  8. Spin-phonon coupling in scandium doped gallium ferrite

    SciTech Connect

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Paul, Barnita; Roy, Anushree; Grover, Vinita; Tyagi, A. K.

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5 K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1−x}Sc{sub x}FeO{sub 3}: x = 0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Néel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  9. Gallium-67 imaging in pulmonary eosinophilic granuloma

    SciTech Connect

    Makhija, M.C.; Davis, G.

    1984-03-01

    Gallium-67 citrate has been known to localize in the lungs in a variety of pulmonary diseases. Abnormal lung activity implies active underlying disease. Serial Ga-67 lung scans may be helpful when steroids are used as therapeutic agents. A case of pulmonary eosinophic granuloma is reported here with diffuse bilateral Ga-67 pulmonary activity.

  10. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  11. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  12. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  13. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  14. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  15. SPECT gallium imaging in abdominal lymphoma

    SciTech Connect

    Adcock, K.A.; Friefeld, G.D.; Waldron, J.A. Jr.

    1986-05-01

    A case of non-Hodgkin's lymphoma of the abdomen studied by gallium SPECT imaging is reported. The tomographic slices accurately demonstrated the location of residual disease after chemotherapy in the region of the transverse mesocolon. Previous transmission CT had shown considerable persistent retroperitoneal lymphadenopathy, but was not helpful in determining the presence of viable lymphoma.

  16. A Gallium Multiphase Equation of State

    NASA Astrophysics Data System (ADS)

    Crockett, Scott; Greeff, Carl

    2009-06-01

    A new SESAME multiphase gallium equation of state (EOS) has been developed. The equation of state includes two of the solid phases (Ga I, Ga III) and a fluid phase. The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniot data. We will also explore refreezing via isentropic release and compression.

  17. Gallium-positive Lyme disease myocarditis

    SciTech Connect

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-09-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved.

  18. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  19. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  20. (Pt1-xCux)3Cu2B and Pt9Cu3B5, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    NASA Astrophysics Data System (ADS)

    Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.

    2015-09-01

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.

  1. Hydrogen chemisorption on gallium oxide polymorphs.

    PubMed

    Collins, Sebastián E; Baltanás, Miguel A; Bonivardi, Adrian L

    2005-02-01

    The chemisorption of H(2) over a set of gallia polymorphs (alpha-, beta-, and gamma-Ga(2)O(3)) has been studied by temperature-programmed adsorption equilibrium and desorption (TPA and TPD, respectively) experiments, using in situ transmission infrared spectroscopy. Upon heating the gallium oxides above 500 K in 101.3 kPa of H(2), two overlapped infrared signals developed. The 2003- and 1980-cm(-1) bands were assigned to the stretching frequencies of H bonded to coordinatively unsaturated (cus) gallium cations in tetrahedral and octahedral positions [nu(Ga(t)-H) and nu(Ga(o)-H), respectively]. Irrespective to the gallium cation geometrical environment, (i) a linear relationship between the integrated intensity of the whole nu(Ga-H) infrared band versus the Brunauer-Emmett-Teller surface area of the gallia was found and (ii) TPA and TPD results revealed that molecular hydrogen is dissociatively chemisorbed on any bulk gallium oxide polymorph following two reaction pathways. An endothermal, homolytic dissociation occurs over surface cus-gallium sites at T > 450 K, giving rise to Ga-H(I) bonds. The heat and entropy of this type I hydrogen adsorption were determined by the Langmuir's adsorption model as Deltah(I) = 155 +/- 25 kJ mol(-1) and Deltas(I) = 0.27 +/- 0.11 kJ mol(-1) K(-1). In addition, another exothermic, heterolytic adsorption sets in already in the low-temperature region. This type of hydrogen chemisorption involves surface Ga-O-Ga species, originating GaO-H and Ga-H(II) bonds which can only be removed from the gallia surface after heating under evacuation at T > 650 K. The measured desorption energy of this last, second-order process was equal to 77 +/- 10 kJ mol(-1). The potential of the H(2) chemisorption as a tool to measure or estimate the specific surface area of gallia and to discern the nature and proportion of gallium cation coordination sites on the surface of bulk gallium oxides is also analyzed.

  2. Gallium 67 scintigraphy in glomerular disease

    SciTech Connect

    Bakir, A.A.; Lopez-Majano, V.; Levy, P.S.; Rhee, H.L.; Dunea, G.

    1988-12-01

    To evaluate the diagnostic usefulness of gallium 67 scintigraphy in glomerular disease, 45 patients with various glomerulopathies, excluding lupus nephritis and renal vasculitis, were studied. Persistent renal visualization 48 hours after the gallium injection, a positive scintigram, was graded as + (less than), ++ (equal to), and +++ (greater than) the hepatic uptake. Positive scintigrams were seen in ten of 16 cases of focal segmental glomerulosclerosis, six of 11 cases of proliferative glomerulonephritis, and one case of minimal change, and one of two cases of membranous nephropathy; also in three of six cases of sickle glomerulopathy, two cases of diabetic neuropathy, one of two cases of amyloidosis, and one case of mild chronic allograft rejection. The 25 patients with positive scans were younger than the 20 with negative scans (31 +/- 12 v 42 +/- 17 years; P less than 0.01), and exhibited greater proteinuria (8.19 +/- 7.96 v 2.9 +/- 2.3 S/d; P less than 0.01) and lower serum creatinine values (2 +/- 2 v 4.1 +/- 2.8 mg/dL; P less than 0.01). The amount of proteinuria correlated directly with the intensity grade of the gallium image (P less than 0.02), but there was no correlation between the biopsy diagnosis and the outcome of the gallium scan. It was concluded that gallium scintigraphy is not useful in the differential diagnosis of the glomerular diseases under discussion. Younger patients with good renal function and heavy proteinuria are likely to have a positive renal scintigram regardless of the underlying glomerulopathy.

  3. Self- and zinc diffusion in gallium antimonide

    SciTech Connect

    Nicols, Samuel Piers

    2002-01-01

    The technological age has in large part been driven by the applications of semiconductors, and most notably by silicon. Our lives have been thoroughly changed by devices using the broad range of semiconductor technology developed over the past forty years. Much of the technological development has its foundation in research carried out on the different semiconductors whose properties can be exploited to make transistors, lasers, and many other devices. While the technological focus has largely been on silicon, many other semiconductor systems have applications in industry and offer formidable academic challenges. Diffusion studies belong to the most basic studies in semiconductors, important from both an application as well as research standpoint. Diffusion processes govern the junctions formed for device applications. As the device dimensions are decreased and the dopant concentrations increased, keeping pace with Moore's Law, a deeper understanding of diffusion is necessary to establish and maintain the sharp dopant profiles engineered for optimal device performance. From an academic viewpoint, diffusion in semiconductors allows for the study of point defects. Very few techniques exist which allow for the extraction of as much information of their properties. This study focuses on diffusion in the semiconductor gallium antimonide (GaSb). As will become clear, this compound semiconductor proves to be a powerful one for investigating both self- and foreign atom diffusion. While the results have direct applications for work on GaSb devices, the results should also be taken in the broader context of III-V semiconductors. Results here can be compared and contrasted to results in systems such as GaAs and even GaN, indicating trends within this common group of semiconductors. The results also have direct importance for ternary and quaternary semiconductor systems used in devices such as high speed InP/GaAsSb/InP double heterojunction bipolar transistors (DHBT) [Dvorak

  4. Surface characterization of platinum electrodes.

    PubMed

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.

  5. Proton and gallium(III) binding properties of a biologically active salicylidene acylhydrazide.

    PubMed

    Hakobyan, Shoghik; Boily, Jean-François; Ramstedt, Madeleine

    2014-09-01

    Bacterial biofilm formation causes a range of problems in our society, especially in health care. Salicylidene acylhydrazides (hydrazones) are promising antivirulence drugs targeting secretion systems used during bacterial infection of host cells. When mixed with the gallium ion they become especially potent as bacterial and biofilm growth-suppressing agents, although the mechanisms through which this occurs are not fully understood. At the base of this uncertainty lies the nature of hydrazone-metal interactions. This study addresses this issue by resolving the equilibrium speciation of hydrazone-gallium aqueous solutions. The protonation constants of the target 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) hydrazone species and of its 2,4,6-trihydroxybenzaldehyde and oxamic acid hydrazide building blocks were determined by UV-visible spectrophotometry to achieve this goal. These studies show that the hydrazone is an excessively strong complexing agent for gallium and that its antivirulence properties are predominantly ascribed to monomeric 1:1Ga-ME0163 complexes of various Ga hydrolysis and ME0163 protonation states. The chelation of Ga(III) to the hydrazone also increased the stability of the compounds against acid-induced hydrolysis, making this group of compounds very interesting for biological applications where the Fe-antagonist action of both Ga(III) and the hydrazone can be combined for enhanced biological effect.

  6. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  7. Survey of the market, supply and availability of gallium

    SciTech Connect

    Rosi, F.D.

    1980-07-01

    The objective of this study was to assess the present consumption and supply of gallium, its potential availability in the satellite power system (SPS) implementation time frame, and commercial and new processing methods for increasing the production of gallium. Findings are reported in detail. The findings strongly suggest that with proper long range planning adequate gallium would be available from free-enterprise world supplies of bauxite for SPS implementation.

  8. Magnetostriction and Magnetic Heterogeneities in Iron-Gallium

    DTIC Science & Technology

    2010-07-08

    REPORT Magnetostriction and Magnetic Heterogeneities in Iron-Gallium 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Iron-gallium alloys Fe1-xGax exhibit...an exceptional increase in magnetostriction with gallium content. We present small-angle neutron scattering investigations on a Fe0.81Ga0.19 single...magnetic heterogeneities in the mechanism for magnetostriction in this material. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES

  9. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  10. Inflammatory pseudotumor: A gallium-avid mobile mesenteric mass

    SciTech Connect

    Auringer, S.T.; Scott, M.D.; Sumner, T.E. )

    1991-08-01

    An 8-yr-old boy with a 1-mo history of culture-negative fever and anemia underwent gallium, ultrasound, and computed tomography studies as part of the evaluation of a fever of unknown origin. These studies revealed a mobile gallium-avid solid abdominal mass subsequently proven to be an inflammatory pseudotumor of the mesentery, a rare benign mass. This report documents the gallium-avid nature of this rare lesion and discusses associated characteristic clinical, pathologic, and radiographic features.

  11. Gallium Nitride (GaN) High Power Electronics (FY11)

    DTIC Science & Technology

    2012-01-01

    Gallium Nitride (GaN) High Power Electronics (FY11) by Kenneth A. Jones, Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander...Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5903 January 2012 Gallium Nitride (GaN) High Power Electronics (FY11) Kenneth A...DSI 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Gallium Nitride (GaN) High Power Electronics (FY11) 5a. CONTRACT NUMBER 5b. GRANT

  12. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  13. Optoelectronic method for determining platinum in biological products

    NASA Astrophysics Data System (ADS)

    Radu, Simona; Ionicǎ, Mihai; Macovei, Radu Alexandru; Caragea, Genica; Forje, Mǎrgǎrita; Grecu, Iulia; Vlǎdescu, Marian; Viscol, Oana

    2016-12-01

    Of all platinum metals, platinum has the most uses and it's the most abundant and most easily to be processed. Its use in auto catalysts results in environmental contamination of crowded cities and high-traffic roads. In medicine, Pt is used as a cytostatic drug. In order to study the degree of contamination of the population with Pt or the correctness of treatment with Pt, it has been developed a method for its determination from urine or blood samples with a system Graphite Furnance - Atomic Absorption Spectrometer, (GF-AAS) Varian. There are presented the methods of sampling processing for blood or urine that followed the digest of the organic matrix. In the determination of the operating parameters for the system GF-AAS, was aimed the reducing of the nonanatomic absorbance by optimizing the drying temperatures, the calcination and atomization temperatures and the removal of the nonanatomic absorbance with D2 lamp. As a result of the use of the method are presented the concentrations of Pt in the blood or urine of a group of patients in Bucharest, a city with heavy traffic of vehicles. GF-AAS method presented is sensitive, reproducible, and relatively easy to apply with an acceptable cost. With this method, the concentration of Pt can be determined from blood and urine, both in order to establish the degree of contamination with Pt and for monitoring cancer therapy with platinum compounds.

  14. Mouse Model of Halogenated Platinum Salt Hypersensitivity

    EPA Science Inventory

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate a...

  15. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  16. Platinum electrodes for electrochemical detection of bacteria

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1979-01-01

    Bacteria is detected electro-chemically by measuring evolution of hydrogen in test system with platinum and reference electrode. Using system, electrodes of platinum are used to detect and enumerate varieties of gram-positive and gram-negative organisms compared in different media.

  17. C-H Oxidation by Platinum Group Metal Oxo or Peroxo Species

    SciTech Connect

    Zhou, Meng; Crabtree, Robert H

    2011-01-01

    While C–H oxidation by ruthenium oxo compounds has been broadly applied in organic synthesis, examples of C–H oxidation by metal oxo complexes from the rest of the platinum group are still rare. We survey the preparation and reactivity of these late-transition metal oxo and peroxo complexes in this tutorial review.

  18. Lewis Acid Mediated Vinylogous Additions of Enol Nucleophiles into an α,β-Unsaturated Platinum Carbene

    PubMed Central

    Allegretti, Paul A.; Huynh, Khoi; Ozumerzifon, Tarik J.; Ferreira, Eric M.

    2016-01-01

    A variety of substituted indoles and benzofurans are accessed via a platinum catalyzed annulation and vinylogous addition of enol nucleophiles. Several β-dicarbonyl compounds participate in the reaction, as do α-nitro and α-cyano carbonyl species. Subjecting the indole products to acidic conditions results in the formation of fused heterocycles. PMID:26652926

  19. A Gallium multiphase equation of state

    SciTech Connect

    Crockett, Scott D; Greeff, Carl

    2009-01-01

    A new SESAME multiphase Gallium equation of state (EOS) has been developed. The equation of state includes three of the solid phases (Ga I, Ga II, Ga III) and a fluid phase (liquid/gas). The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniol data. We also explore the possibility of re-freezing via dynamic means such as isentropic and shock compression.

  20. Gallium-67 radionuclide imaging in acute pyelonephritis

    SciTech Connect

    Mendez, G.; Morillo, G.; Alonso, M.; Isikoff, M.B.

    1980-01-01

    The symptoms and clinical course of patients with acute pyelonephritis are variable; likewise, urinalysis, blood cultures, and excretory urography may be normal or equivocal. The ability of gallium-67 to accumulate in areas of active inflammation was useful in the diagnosis of acute pyelonephritis in 12 cases. A multiplane tomographic scanner was used for imaging four of these patients. Initial experience with this scanner is also discussed.

  1. a Gallium Multiphase Equation of State

    NASA Astrophysics Data System (ADS)

    Crockett, Scott D.; Greeff, Carl W.

    2009-12-01

    A new SESAME multiphase Gallium equation of state (EOS) has been developed. It includes three of the solid phases (Ga I, Ga II, Ga III) and a fluid phase (liquid/gas). The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniot data. We also explore the possibility of re-freezing via dynamic means such as isentropic and shock compression. We predict an unusual spontaneous spreading of low pressure shocks from STP.

  2. Positron study of annealing of gallium arsenide

    SciTech Connect

    Rice-Evans, P.C.; Smith, D.L.; Evans, H.E.; Gledhill, G.A. )

    1991-02-01

    A positron beam has been used to investigate the sub-surface changes in semi-insulating gallium arsenide which had been annealed to a range of temperatures. The variations of the Doppler S parameter as a function of positron implantation energy, when subjected to a diffusion analysis, indicate variations in positron trapping at different depths. The results indicate the changes in the type of point defect that accompany the annealing.

  3. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  4. High-dose gallium imaging in lymphoma

    SciTech Connect

    Anderson, K.C.; Leonard, R.C.; Canellos, G.P.; Skarin, A.T.; Kaplan, W.D.

    1983-08-01

    The role of gallium-67 imaging in the management of patients with lymphoma, traditionally assessed using low tracer doses and the rectilinear scanner, was assessed when using larger doses (7 to 10 mCi) and a triple-peak Anger camera. Gallium scan results in 51 patients with non-Hodgkin's lymphoma and 21 patients with Hodgkin's disease were compared with simultaneous radiologic, clinical, and histopathologic reports. Subsequent disease course was also evaluated in light of radionuclide findings. Sensitivity and specificity of the scans were 0.90 or greater for both non-Hodgkin's lymphoma and Hodgkin's disease, and overall accuracy by site was 96 percent. Although there are insufficient numbers of pretreatment scans to allow any conclusions, our data suggest that newer approaches to gallium scanning in treated patients are (1) highly specific in all lymphomas and most sensitive in high-grade non-Hodgkin's lymphoma and Hodgkin's disease; (2) valuable in assessing the mediastinum in both non-Hodgkin's lymphoma and Hodgkin's disease; and (3) helpful adjuncts to computed tomographic scanning and ultrasonography in assessing abdominal node disease.

  5. Cross-reactivity of Halogenated Platinum Salts | Science ...

    EPA Pesticide Factsheets

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitization to one Pt compound may result in hypersensitivity reactions to other Pt compounds. We investigated the potential for this type of cross-reactivity using a mouse model of Pt hypersensitivity. Mice were sensitized through application of 100 µL 1% ammonium hexachloroplatinate (AHCP) in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by intratracheal aspiration (IA) with saline or 100 µg AHCP or 100 g ammonium tetrachloroplatinate (ATCP) in saline. Before and immediately after dosing, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP. All mice dosed with AHCP demonstrated significant increases in total serum IgE, suggesting the animals were sensitized. An immediate airway response (IAR) was observed in mice sensitized and challenged with AHCP. Dose-dependent increases in Mch responsiveness occurred in mice sensitized and challenged with AHCP. Bronchoalveolar lavage fluid (BALF) harvested from mice sensitized and challenged with AHCP contained an avera

  6. Compensation and Characterization of Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Roush, Randy Allen

    1995-01-01

    The properties of transition metals in gallium arsenide have been previously investigated extensively with respect to activation energies, but little effort has been made to correlate processing parameters with electronic characteristics. Diffusion of copper in gallium arsenide is of technological importance due to the development of GaAs:Cu bistable photoconductive devices. Several techniques are demonstrated in this work to develop and characterize compensated gallium arsenide wafers. The material is created by the thermal diffusion of copper into silicon-doped GaAs. Transition metals generally form deep and shallow acceptors in GaAs, and therefore compensation is possible by material processing such that the shallow silicon donors are compensated by deep acceptors. Copper is an example of a transition metal that forms deep acceptors in GaAs, and therefore this work will focus on the compensation and characterization of GaAs:Si:Cu. The compensation of the material has shown that the lower diffusion temperatures (500-600^ circC) form primarily the well-known Cu _{rm B} centers whereas the higher temperature anneals (>750 ^circC) result in the formation of CU_{rm A}. Using compensation curves, the copper density is found by comparing the compensation temperature with copper solubility curves given by others. These curves also show that the formation of CU_{rm B}, EL2, and CU_{rm A} can be manipulated by varying processing parameters such as annealing temperature and arsenic pressure. The compensation results are confirmed using Temperature-Dependent Hall (TDH) measurements to detect the copper levels. Also, the photoconductive properties of the material under illumination from 1.06 and 2.1 μm wavelength laser pulses have been used to demonstrate the effects of the different processing procedures. The persistent photoconductivity inherent to these devices under illumination from the 1.06 μm laser pulse is used to predict the concentration of the Cu_ {rm B

  7. Gallium maltolate inhibits human cutaneous T-cell lymphoma tumor development in mice.

    PubMed

    Wu, Xuesong; Wang, Timothy W; Lessmann, George M; Saleh, Jamal; Liu, Xiping; Chitambar, Christopher R; Hwang, Sam T

    2015-03-01

    Cutaneous T-cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin's lymphoma characterized by an accumulation of malignant CD4 T cells in the skin. The group IIIa metal salt, gallium nitrate, is known to have antineoplastic activity against B-cell lymphoma in humans, but its activity in CTCLs has not been elaborated in detail. Herein, we examined the antineoplastic efficacy of a gallium compound, gallium maltolate (GaM), in vitro and in vivo with murine models of CTCLs. GaM inhibited cell growth and induced apoptosis of cultured CTCL cells. In human CTCL xenograft models, peritumoral injection of GaM limited the growth of CTCL cells, shown by fewer tumor formations, smaller tumor sizes, and decreased neovascularization in tumor microenvironment. To identify key signaling pathways that have a role in GaM-mediated reduction of tumor growth, we analyzed inflammatory cytokines, as well as signal transduction pathways in CTCL cells treated by GaM. IFN-γ-induced chemokines and IL-13 were found to be notably increased in GaM-treated CTCL cells. However, immunosuppressive cytokines, such as IL-10, were decreased with GaM treatment. Interestingly, both oxidative stress and p53 pathways were involved in GaM-induced cytotoxicity. These results warrant further investigation of GaM as a therapeutic agent for CTCLs.

  8. Repurposing of gallium-based drugs for antibacterial therapy.

    PubMed

    Bonchi, Carlo; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo; Frangipani, Emanuela

    2014-01-01

    While the occurrence and spread of antibiotic resistance in bacterial pathogens is vanishing current anti-infective therapies, the antibiotic discovery pipeline is drying up. In the last years, the repurposing of existing drugs for new clinical applications has become a major research area in drug discovery, also in the field of anti-infectives. This review discusses the potential of repurposing previously approved gallium formulations in antibacterial chemotherapy. Gallium has no proven function in biological systems, but it can act as an iron-mimetic in both prokaryotic and eukaryotic cells. The activity of gallium mostly relies on its ability to replace iron in redox enzymes, thus impairing their function and ultimately hampering cell growth. Cancer cells and bacteria are preferential gallium targets due to their active metabolism and fast growth. The wealth of knowledge on the pharmacological properties of gallium has opened the door to the repurposing of gallium-based drugs for the treatment of infections sustained by antibiotic-resistant bacterial pathogens, such as Acinetobacter baumannii or Pseudomonas aeruginosa, and for suppression of Mycobacterium tuberculosis growth. The promising antibacterial activity of gallium both in vitro and in different animal models of infection raises the hope that gallium will confirm its efficacy in clinical trials, and will become a valuable therapeutic option to cure otherwise untreatable bacterial infections.

  9. Gallium scintigraphy in bone infarction. Correlation with bone imaging

    SciTech Connect

    Armas, R.R.; Goldsmith, S.J.

    1984-01-01

    The appearance of gallium-67 images in bone infarction was studied in nine patients with sickle cell disease and correlated with the bone scan findings. Gallium uptake in acute infarction was decreased or absent with a variable bone scan uptake, and normal in healing infarcts, which showed increased uptake on bone scan. The significance of these findings is discussed.

  10. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, L.C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  11. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  12. Nuclear Factor-kappa B as a Resistance Factor to Platinum-Based Antineoplasic Drugs

    PubMed Central

    Lagunas, Vilma Maldonado; Meléndez-Zajgla, Jorge

    2008-01-01

    Platinum drugs continue to be major chemotherapy drugs for cancer treatment. Nevertheless, acquired or intrinsic resistance to these compounds is common in human tumors. One important mechanism for this resistance is the avoidance of cells entering the apoptotic pathway. Nuclear factor-kappa B (NF-kappa B, NF-κB) is a pleiotropic transcription factor key in determining the death threshold of human cells. This factor is important in the final response of cells to platinum drugs, as exemplified by in vitro and in vivo models showing that inhibition of NF-κB sensitizes cancer cells to the effects of these drugs. New approaches focusing on the inhibition of NF-κB could help to minimize or even eliminate intrinsic or acquired resistance to platinum drugs. PMID:18414584

  13. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  14. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.

    PubMed

    Adams, Richard D; Captain, Burjor; Smith, Mark D; Beddie, Chad; Hall, Michael B

    2007-05-09

    Two new compounds PtRe3(CO)12(PBut3)(micro-H)3, 9, and PtRe2(CO)9(PBut3)(micro-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re3(CO)12(micro-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt2Re2(CO)7(PBut3)2(micro-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBut3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBut3)2(micro-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97 degrees C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt2Re2(CO)8(PBut3)2(micro-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO)6(PBut3)3(micro-H)2, 14, and Pt3Re2(CO)6(PBut3)3(micro-H)4, 15, respectively. Density

  15. Two chain gallium fluorodiphosphates: synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate.

    PubMed

    Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard

    2002-04-21

    Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.

  16. [Mechanism of Platinum Derivatives Induced Kidney Injury].

    PubMed

    Yan, Feifei; Duan, Jianchun; Wang, Jie

    2015-09-20

    Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug's toxicity such as the cisplatin's nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.

  17. Stabilizing platinum in phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  18. Synthesis and Analysis of the Structure, Diffusion and Cytotoxicity of Heterocyclic Platinum(IV) Complexes.

    PubMed

    Macias, Freddy J; Deo, Krishant M; Pages, Benjamin J; Wormell, Paul; Clegg, Jack K; Zhang, Yingjie; Li, Feng; Zheng, Gang; Sakoff, Jennette; Gilbert, Jayne; Aldrich-Wright, Janice R

    2015-11-16

    We have developed six dihydroxidoplatinum(IV) compounds with cytotoxic potential. Each derived from active platinum(II) species, these complexes consist of a heterocyclic ligand (HL) and ancillary ligand (AL) in the form [Pt(HL)(AL)(OH)2](2+), where HL is a methyl-functionalised variant of 1,10-phenanthroline and AL is the S,S or R,R isomer of 1,2-diaminocyclohexane. NMR characterisation and X-ray diffraction studies clearly confirmed the coordination geometry of the octahedral platinum(IV) complexes. The self-stacking of these complexes was determined using pulsed gradient stimulated echo nuclear magnetic resonance. The self-association behaviour of square planar platinum(II) complexes is largely dependent on concentration, whereas platinum(IV) complexes do not aggregate under the same conditions, possibly due to the presence of axial ligands. The cytotoxicity of the most active complex, exhibited in several cell lines, has been retained in the platinum(IV) form.

  19. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.

    PubMed

    Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi

    2016-06-01

    A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting.

  20. A Photoactivatable Platinum(IV) Anticancer Complex Conjugated to the RNA Ligand Guanidinoneomycin.

    PubMed

    Shaili, Evyenia; Fernández-Giménez, Marta; Rodríguez-Astor, Savina; Gandioso, Albert; Sandín, Lluís; García-Vélez, Carlos; Massaguer, Anna; Clarkson, Guy J; Woods, Julie A; Sadler, Peter J; Marchán, Vicente

    2015-12-07

    A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.

  1. Catalytic reforming with rhenium-platinum catalyst containing more rhenium than platinum

    SciTech Connect

    Gallagher, J.P.; Yarrington, R.M.

    1982-10-26

    A new reforming process employs a new rhenium-platinum catalytic composite having a rhenium to platinum weight ratio in the range of not less than 2 to about 5, whereby longer relative cycle length is obtained when reforming a naphtha having less than about 0.5 ppm by weight of sulfur than if the rhenium-platinum ratio is outside of such range.

  2. Retained platinum uptake and indifference to p53 status make novel transplatinum agents active in platinum-resistant cells compared to cisplatin and oxaliplatin

    PubMed Central

    Murphy, Robert F.; Komlodi-Pasztor, Edina; Robey, Rob; Balis, Frank M.; Farrell, Nicholas P.; Fojo, Tito

    2012-01-01

    Despite the clinical success of platinum-containing drugs in the treatment of solid tumors, acquired resistance remains a major obstacle. We previously identified a group of novel transplanaramine or transplatinum compounds based on distinct activity profiles in the NCI-60 panel. In the present study, parental KB-3.1 cells with wild-type p53 and its cisplatin- and oxaliplatin-resistant sublines harboring mutant p53 proteins were used to contrast several transplatinum compounds with cisplatin and oxaliplatin. The transplatinum compounds retained cytotoxic activity in the resistant cell lines. While intracellular accumulation and DNA platination of cisplatin and oxaliplatin was decreased in the resistant cells, the transplatinum compounds both accumulated intracellularly and platinated DNA at comparable levels in all cell lines. Cytoflow analysis confirmed that cisplatin and oxaliplatin alter the cell cycle distribution and result in apoptosis; however, at comparably toxic concentrations, the transplatinum compounds did not alter the cell cycle distribution. Analysis of the cytoplasmic fraction treated with acetone showed that cisplatin and oxaliplatin readily bound to macromolecules in the pellet, whereas a larger percentage of the transplatinum compounds remained in the supernatant. We concluded that, distinct from platinum compounds currently in use, transplatinum compounds accumulate intracellularly in resistant cells at levels comparable to those in drug-sensitive cells, do not affect the cell cycle and thus retain cytotoxicity independent of p53 status and likely have cytoplasmic targets that are important in their activity. PMID:22333583

  3. Teaching the Chemistry of Platinum.

    PubMed

    Anderson, Robert G W

    2015-01-01

    Following colonisation of South America by the Spanish, many new naturally occurring substances were sent to Europe. One of these was the silvery, unreactive metal, platinum, discovered in New Grenada in the mid-eighteenth century. It was often found in granular form, associated with gold, and the challenge to chemists was to refine it, produce it as wire or sheet, and determine its chemical properties. This interested the professor of chemistry at the University of Edinburgh, Joseph Black, who was able to obtain samples from London-based Spanish contacts, particularly Ignacio Luzuriaga. This paper examines how Black transmitted his knowledge of the metal to large numbers of students attending his annual course.

  4. Calibration of platinum resistance thermometers.

    NASA Technical Reports Server (NTRS)

    Sinclair, D. H.; Terbeek, H. G.; Malone, J. H.

    1972-01-01

    Results of five years experience in calibrating about 1000 commercial platinum resistance thermometers (PRT) are reported. These PRT were relatively small and rugged, with ice-point resistances from 200 to 5000 ohms. Calibrations normalized in terms of resistance-difference ratios (Cragoe Z function) were found to be remarkably uniform for five of six different types of PRT tested, and to agree very closely with normalized calibrations of the primary reference standard type PRT. The Z function normalization cancels residual resistances which are not temperature dependent and simplifies interpolation between calibration points when the quality of a given type of PRT has been established in terms of uniform values of the Z function. Measurements at five or six well spaced base-point temperatures with Z interpolation will suffice to calibrate a PRT accurately from 4 to 900 K.

  5. Evaluation of platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, Lawrence A.

    1988-01-01

    An evaluation procedure for the characterization of industrial platinum resistance thermometers (PRTs) for use in the temperature range -120 to 160 C was investigated. This evaluation procedure consisted of calibration, thermal stability and hysteresis testing of four surface measuring PRTs. Five different calibration schemes were investigated for these sensors. The IPTS-68 formulation produced the most accurate result, yielding average sensor systematic error of 0.02 C and random error of 0.1 C. The sensors were checked for thermal stability by successive and thermal cycling between room temperature, 160 C, and boiling point of nitrogen. All the PRTs suffered from instability and hysteresis. The applicability of the self-heating technique as an in situ method for checking the calibration of PRTs located inside wind tunnels was investigated.

  6. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  7. Platinum group elements in the environment and their health risk.

    PubMed

    Ravindra, Khaiwal; Bencs, László; Van Grieken, René

    2004-01-05

    Accumulation of platinum group elements (PGEs) in the environment has been increased over the time. Catalytic converters of modern vehicles are considered to be the main sources of PGE pollution, since the correlation is between the Pt:Rh ratios in various environmental compartments and in converter units. The present literature survey shows that the concentration of these metals has increased significantly in the last decades in diverse environmental matrices; like airborne particulate matter, soil, roadside dust and vegetation, river, coastal and oceanic environment. Generally, PGEs are referred to behave in an inert manner and to be immobile. However, there is an evidence of spread and bioaccumulation of these elements in the environment. Platinum content of road dusts can be soluble, consequently, it enters the waters, sediments, soil and finally, the food chain. The effect of chronic occupational exposure to Pt compounds is well-documented, and certain Pt species are known to exhibit allergenic potential. However, the toxicity of biologically available anthropogenic Pt is not clear. Hence, there is a need to study the effect on human health of long-term chronic exposure to low levels of Pt compounds.

  8. Proof-of-Concept Experiments on a Gallium-Based Ignitron for Pulsed Power Applications

    NASA Technical Reports Server (NTRS)

    Ali, H. K.; Hanson, V. S.; Polzin, K. A.; Pearson, J. B.

    2015-01-01

    ignitron designs have used mercury as the liquid metal cathode, owing to its presence as a liquid at room temperatures and a vapor pressure of 10 Pa (75 mtorr) at room temperature. While these are favorable properties, there are obvious environmental and personal safety concerns with the storage, handling, and use of mercury and its compounds. The purpose of the present work was to fabricate and test an ignitron that used as its cathode an alternate liquid metal that was safe to handle and store. To that end, an ignitron test article that used liquid gallium as the cathode material was developed and tested. Gallium is a metal that has a melting temperature of 29.76 C, which is slightly above room temperature, and a boiling point of over 2,300 C at atmospheric pressure. This property makes gallium the element with the largest relative difference between melting and boiling points. Gallium has a limited role in biology, and when ingested, it will be subsequently processed by the body and expelled rather than accumulating to toxic levels. The next section of this Technical Memorandum (TM) provides background information on the development of mercury-based ignitrons, which serves as the starting point for the development of the gallium-based variant. Afterwards, the experimental hardware and setup used in proof-of-concept testing of a basic gallium ignitron are presented. Experimental data, consisting of discharge voltage and current waveforms as well as high-speed imaging of the gallium arc discharge in the gallium ignitron test article, are presented to demonstrate the efficacy of the concept. Discussion of the data and suggestions on improvements for future iterations of the design are presented in the final two sections of this TM.

  9. Electrical characterization of germanium implanted gallium arsenide

    NASA Astrophysics Data System (ADS)

    Pedrotti, F. L.

    1980-06-01

    The amphoteric electrical properties of germanium single implants into gallium arsenide, and of dual implants of germanium with either gallium or arsenic into gallium arsenide, have been studied. Room temperature implantation was performed for all implanted ions at 120 keV, with doses ranging from 5E12 to 3E15 ions per square centimeter. Implanted samples were annealed with pyrolytic silicon nitride encapsulants at temperatures ranging from 700 to 1000 degrees Celsius. Both p- and n-type layers were observed. Type of conductivity, electrical activation, and carrier mobility were found to depend critically upon ion dose and anneal temperature. The general electrical behavior suggests that in samples of lower dose and anneal temperature, the implanted Ge ions go into As sites preferentially, producing p-type activity, whereas in samples of higher dose and anneal temperature, more Ge ions go into Ga sites, producing n-type activity. Conductivity was found to change from p- to n-type at an intermediate dose of 3E14 ions per square centimeter and at an anneal temperature between 900 and 950 degrees Celsius. It has been determined that additional implantation of As into GaAs Ge favors Ge occupancy of Ga sites and an enhancement of n-type activity, whereas the additional implantation of Ga encourages Ge occupancy of As sites and an enhancement of p-type activity. Enhancement factors of as much as 8 for p-type activations, and as much as 50 for n-type activations have been measured.

  10. Gallium scintigraphic pattern in lung CMV infections

    SciTech Connect

    Ganz, W.I.; Cohen, D.; Mallin, W.

    1994-05-01

    Due to extensive use of prophylactic therapy for Pneumonitis Carinii Pneumonia (PCP), Cytomegalic Viral (CMV) infection may now be the most common lung infection in AIDS patients. This study was performed to determine Gallium-67 patterns in AIDS patients with CMV. Pathology reports were reviewed in AIDS patients who had a dose of 5 to 10 mCi of Gallium-67 citrate. Analysis of images were obtained 48-72 hours later of the entire body was performed. Gallium-67 scans in 14 AIDS patients with biopsy proven CMV, were evaluated for eye, colon, adrenal, lung and renal uptake. These were compared to 40 AIDS patients without CMV. These controls had infections including PCP, Mycobacterial infections, and lymphocytic interstitial pneumonitis. 100% of CMV patients had bowel uptake greater than or equal to liver. Similar bowel activity was seen in 50% of AIDS patients without CMV. 71% had intense eye uptake which was seen in only 10% of patients without CMV. 50% of CMV patients had renal uptake compared to 5% of non-CMV cases. Adrenal uptake was suggested in 50%, however, SPECT imaging is needed for confirmation. 85% had low grade lung uptake. The low grade lung had perihilar prominence. The remaining 15% had high grade lung uptake (greater than sternum) due to superimposed PCP infection. Colon uptake is very sensitive indicator for CMV infection. However, observing eye, renal, and or adrenal uptake improved the diagnostic specificity. SPECT imaging is needed to confirm renal or adrenal abnormalities due to intense bowel activity present in 100% of cases. When high grade lung uptake is seen superimposed PCP is suggested.

  11. Transforming LiTMP Lithiation of Challenging Diazines through Gallium Alkyl Trans‐Metal‐Trapping

    PubMed Central

    Uzelac, Marina; Kennedy, Alan R.

    2016-01-01

    Abstract This study establishes a new trans‐metal‐trapping (TMT) procedure based on a mixture of LiTMP (the base) and tris(trimethylsilylmethyl)gallium [Ga(CH2SiMe3)3, GaR3] (the trap) that, operating in a tandem manner, is effective for the regioselective deprotonation of sensitive diazines in hydrocarbon solution, as illustrated through reactions of pyrazine, pyridazine, and pyrimidine, as well as through the N‐S heterocycle benzothiazole. The metallo‐activated complexes of all of these compounds were isolated and structurally defined. PMID:27647741

  12. Structure and physical properties of gallium selenide laser-intercalated with nickel

    NASA Astrophysics Data System (ADS)

    Pokladok, N. T.; Grygorchak, I. I.; Lukiyanets, B. A.; Popovich, D. I.

    2007-04-01

    Intercalated crystals of indium and gallium selenide are prepared. It is shown that laser intercalation of nickel into GaSe samples leads to a giant magnetoresistive effect whose magnitude and sign depend on the concentration of the guest component. The giant magnetoresistive effect in the InSe intercalation compounds is considerably weaker and does not exceed 5%. The experimental data obtained are explained in terms of magnetic delocalization (localization) of charge carriers with the participation of states of intercalated magnetically active atoms in the vicinity of the Fermi level.

  13. Transforming LiTMP Lithiation of Challenging Diazines through Gallium Alkyl Trans-Metal-Trapping.

    PubMed

    Uzelac, Marina; Kennedy, Alan R; Hevia, Eva; Mulvey, Robert E

    2016-10-10

    This study establishes a new trans-metal-trapping (TMT) procedure based on a mixture of LiTMP (the base) and tris(trimethylsilylmethyl)gallium [Ga(CH2 SiMe3 )3 , GaR3 ] (the trap) that, operating in a tandem manner, is effective for the regioselective deprotonation of sensitive diazines in hydrocarbon solution, as illustrated through reactions of pyrazine, pyridazine, and pyrimidine, as well as through the N-S heterocycle benzothiazole. The metallo-activated complexes of all of these compounds were isolated and structurally defined.

  14. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  15. Gallium Lanthanum Sulphide Fibers for Infrared Transmission

    NASA Astrophysics Data System (ADS)

    West, Y. D.; Schweizer, T.; Brady, D. J.; Hewak, D. W.

    Gallium lanthanum sulphide (GLS) glass and fiber have potential for use in both active and passive infrared applications. In this paper the optical, thermal, and other key properties, which are essential for understanding the applications and crucial in the quest for practical fibres, are discussed. Glass preparation by melt-quenchingand subsequent fibre fabrication is described using both rod-in-tube and extruded preforms. Absorptive and scattering losses are explored as they could represent a fundamental limitation to successful device fabrication. Potential passive and active applications are reported and the prospects for a future generation of sulphide fiber-based devices examined.

  16. Patterned gallium surfaces as molecular mirrors.

    PubMed

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2007-09-30

    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  17. Platinum-Resistor Differential Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  18. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  19. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  20. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  1. VB Platinum Tile & Carpet, Inc. Information Sheet

    EPA Pesticide Factsheets

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  2. Cholesteric Liquid Crystal Glass Platinum Acetylides

    DTIC Science & Technology

    2014-06-01

    cholesteric glasses at room temperature, a series of platinum acetylide complexes modified with cholesterol has been synthesized. The materials synthesized...have the formula trans-Pt(PR3)( cholesterol (3 or 4)- ethynyl benzoate)(1-ethynyl-4-X-benzene), where R = Et, Bu or Oct and X = H, F, OCH3 and CN. A...glasses at room temperature, a series of platinum acetylide complexes modified with cholesterol has been synthesized. The materials synthesized

  3. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  4. IRIS Toxicological Review of Halogenated Platinum Salts and Platinum Compounds (External Review Draft)

    EPA Science Inventory

    EPA released the draft toxicological review for public comment under the Integrated Risk Information System (IRIS) Program. The original draft assessment (January 2009) has been archived but is available on this web page for the sake of transparency.

  5. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  6. The effect of gallium nitrate on synoviocyte MMP activity.

    PubMed

    Panagakos, F S; Kumar, E; Venescar, C; Guidon, P

    2000-02-01

    Gallium, a group IIIa metal salt, has been demonstrated to be an effective immunosuppressive agent. Gallium has also been shown to inhibit the production of inflammatory cytokines, such as IL-1beta, produced by macrophage-like cells in vitro. To further characterize the effects of gallium on the inflammatory process, we examined the effects of gallium nitrate on matrix metalloproteinase (MMP) activity utilizing the rabbit synoviocyte cell line HIG-82. HIG-82 cells were incubated with IL-1beta and TPA, with and without increasing concentrations of gallium nitrate. Conditioned medium was collected and assayed for MMP activity using a synthetic substrate and substrate gel zymography. IL-1beta and TPA alone induced MMP activity in HIG-82 cells. A dose-dependent inhibition of IL-1beta and TPA stimulated MMP activity by gallium nitrate at increasing concentrations was observed. This study demonstrates that gallium nitrate can inhibit the activity of MMPs and may be useful as a modulator of inflammation in arthritis.

  7. Gallium scanning in lymphoid interstitial pneumonitis of children with AIDS

    SciTech Connect

    Schiff, R.G.; Kabat, L.; Kamani, N.

    1987-12-01

    Lymphoid interstitial pneumonitis (LIP) is a frequent pulmonary complication in the child with the acquired immune deficiency syndrome (AIDS) and human immunodeficiency virus (HIV) infection. We report the gallium scan findings in two children with AIDS and LIP. Gallium scintigraphy in both children demonstrated increased radionuclide concentration throughout the lungs, a pattern indistinguishable scintigraphically from that of Pneumocystis carinii pneumonia (PCP). This should alert nuclear medicine practitioners and referring physicians to another cause of diffusely increased gallium uptake in the lungs of patients with AIDS.

  8. On the system cerium-platinum-silicon

    SciTech Connect

    Gribanov, Alexander Grytsiv, Andriy; Royanian, Esmaeil; Rogl, Peter; Bauer, Ernst; Giester, Gerald; Seropegin, Yurii

    2008-11-15

    Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction, metallography, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) techniques on about 120 alloys, which were prepared by various methods employing arc-melting under argon or powder reaction sintering. Nineteen ternary compounds were observed. Atom order in the crystal structures of {tau}{sub 18}-Ce{sub 5}(Pt,Si){sub 4} (Pnma; a=0.77223(3) nm, b=1.53279(8) nm c=0.80054(5) nm), {tau}{sub 3}-Ce{sub 2}Pt{sub 7}Si{sub 4} (Pnma; a=1.96335(8) nm, b=0.40361(4) nm, c=1.12240(6) nm) and {tau}{sub 10}-CePtSi{sub 2} (Cmcm; a=0.42943(2) nm, b=1.67357(5) nm, c=0.42372(2) nm) was determined by direct methods from X-ray single-crystal CCD data and found to be isotypic with the Sm{sub 5}Ge{sub 4}-type, the Ce{sub 2}Pt{sub 7}Ge{sub 4}-type and the CeNiSi{sub 2}-type, respectively. Rietveld refinements established the atom arrangement in the structures of Pt{sub 3}Si (Pt{sub 3}Ge-type, C2/m, a=0.7724(2) nm, b=0.7767(2) nm, c=0.5390(2) nm, {beta}=133.86(2){sup o}), {tau}{sub 16}-Ce{sub 3}Pt{sub 5}Si (Ce{sub 3}Pd{sub 5}Si-type, Imma, a=0.74025(8) nm, b=1.2951(2) nm, c=0.7508(1) nm) and {tau}{sub 17}-Ce{sub 3}PtSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm, a=0.41065(5) nm, b=0.43221(5) nm, c=1.8375(3) nm). Phase equilibria in Ce-Pt-Si are characterised by the absence of cerium solubility in platinum silicides. Cerium silicides and cerium platinides, however, dissolve significant amounts of the third component, whereby random substitution of the almost equally sized atom species platinum and silicon is reflected in extended homogeneous regions at constant Ce content such as for {tau}{sub 13}-Ce(Pt{sub x}Si{sub 1-x}){sub 2}, {tau}{sub 6}-Ce{sub 2}Pt{sub 3+x}Si{sub 5-x} or {tau}{sub 7}-CePt{sub 2-x}Si{sub 2+x}. - Graphical abstract: Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal

  9. Methylation of platinum by methylcobalamin

    SciTech Connect

    Taylor, R.T.; Hanna, M.L.

    1984-01-01

    Incubation of micromolar levels of potassium hexachloroplatinate (K/sub 2/PtCl/sub 6/) and methylcobalamin (MeB-12) results in the complete conversion of MeB-12 to aquocobalamin (aquoB-12). Demethylation is optimal at approximately pH 2.0 and is accelerated by the addition of potassium tetrachloroplatinate (K/sub 2/PtCl/sub 4/). The reaction is stoichiometric between MeB-12 and the K/sub 2/PtCl/sub 6/ added (1:1). Isosbestic points at 492, 367, and 335 nm during the course of the reaction indicate that MeB-12 is demethylated to aquoB-12 with no accumulation of corrinoid intermediates. Higher alkylcobalamins and methylcobinamide react at much slower rates compared with MeB-12. Incubation of 40..mu..M K/sub 2/ PtCl/sub 6/ with either 40..mu..M (Me-/sup 14/C)MeB-12 or (Me-/sup 3/H)MeB-12 followed by lyophilization converts 70% of the label to a stable form that is associated with platinum upon subsequent paper chromatography and electrophoresis. There is no preferential loss of /sup 3/H relative to /sup 14/C in the reaction product. Difference spectra indicated that the platinum reaction product had an absorption maximum at 260 nm. When 50 ..mu..moles each of (Me-/sup 14/C)MeB-12 and K/sub 2/PtCl/sub 6/ were reacted and subjected to Sephadex G-15 chromatography, the /sup 14/C label eluted with 260 nm of absorbing material. Further chromatography on Sephadex G-15 and CM-cellulose yielded a labeled ultraviolet-absorbing product with a /sup 14/C/Pt ratio of 1.2. The overall recovery was 36 to 42% on the basis of the /sup 14/C. The /sup 14/C-Pt product has absorption maximums at 260 nm and 208 nm, with a minimum at 240 nm (A/sub 240/ nm/A/sub 260/ nm = 0.5). Proton-nuclear magnetic resonance (NMR) spectroscopy confirmed the presence of an H-C-Pt covalent bonding pattern (J for /sup 1/H, /sup 195/Pt = 78.2 Hz; tau for /sup 194/Pt-Me + /sup 196/Pt-Me = 6.956).

  10. Platinum in Earth surface environments

    NASA Astrophysics Data System (ADS)

    Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

    2014-04-01

    Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments

  11. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    NASA Astrophysics Data System (ADS)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  12. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.

    PubMed

    Torrance, Keith W; Keenan, Helen E; Hursthouse, Andrew S; Stirling, David

    2010-01-01

    The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900 mgL(-1). Lapping slurries had much lower dissolved arsenic (< 90 mgL(-1)) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15 mgL(-1). All three waste streams are classified as hazardous waste, based on their solids content and dissolved arsenic levels and treatment is required before discharge or disposal. It is calculated that as much as 93% of material is discarded through the entire GaAs device manufacturing process, with limited recycling. Although gallium can be economically recovered from waste slurries, there is little incentive to recover arsenic, which is mostly landfilled. Options for treating GaAs processing waste streams are reviewed and some recommendations made for handling the waste. Therefore, although the quantities of hazardous waste generated are miniscule in comparison to other industries, sustainable manufacturing practices are needed to minimize the environmental impact of GaAs semiconductor device fabrication.

  13. Cyto- and genotoxic effects of coordination complexes of platinum, palladium and rhodium in vitro.

    PubMed

    Bünger, J; Stork, J; Stalder, K

    1996-01-01

    The growing industrial use of platinum group elements as catalysts, especially in automobile exhaust detoxification (trimetal catalytic converters), is causing increasing occupational and environmental pollution. The cytotoxic and mutagenic properties of industrially used coordination complexes of platinum, palladium and rhodium were investigated using the neutral red cytotoxicity assay on two established cell lines and the Salmonella typhimurium/microsome test system (Ames test). Cytotoxic effects of the platinum complexes, measured as ED50, occurred at test concentrations of 0.2 mM. The analogous palladium salts tested were 3 times less toxic with ED50 being 0.6 mM, while the rhodium salts proved to be 30 times less toxic (ED50 = 6 mM). Levels of toxicity of the different complexes of a particular metal did not differ significantly from each other, which indicates that the metal itself is responsible for the toxic effects. In the Ames test, the spontaneous mutation rates increased by factors of 3 to 20 when the four tester strains were exposed to the platinum complexes. The analogous rhodium compounds proved to be considerably less mutagenic, and palladium demonstrated no mutagenic potential. As all of the four tester strains contain different mutations, the mutagenic potential of platinum and rhodium complexes appears to be based on a variety of mechanisms that damage DNA. From these in vitro experiments, it can be concluded that water-soluble complex salts of rhodium are less toxic and have a smaller mutagenic potential than the analogous platinum complexes. For palladium there is no evidence of any mutagenic property. From this point of view, the development of a catalytic converter containing predominantly palladium may be a possible means of minimizing potential health risks from this exhaust detoxification technique.

  14. The dimeric nature of bonding in gallium: from small clusters to the α-gallium phase.

    PubMed

    Tonner, Ralf; Gaston, Nicola

    2014-11-28

    We consider the structural similarity of small gallium clusters to the bulk structure of α-gallium, which has been previously described as a molecular metal, via density functional theory-based computations. Previous calculations have shown that the tetramer, the hexamer, and the octamer of gallium are all structurally similar to the α-phase. We perform an analysis of the bonding in these clusters in terms of the molecular orbitals and atoms in molecules description in order to assess whether we can see similarities at these sizes to the bonding pattern, which is ascribed to the co-existence of covalent and metallic bonding in the bulk. The singlet Ga4 and Ga8 clusters can be constructed in a singlet ground state from the Ga-dimers in the first excited triplet state of the Ga2-molecule, the (3)Σg(-) state. Molecular orbital (MO) analysis confirms that the dimer is an essential building block of these small clusters. Comparison of the AIM characteristics of the bonds within the clusters to the bonds in the bulk α-phase supports the identification of the covalent bond in the bulk as related to the (3)Σg(-) state of the dimer.

  15. Contribution of H-Bonding to the Preference of Platinum Anti-Tumour Drugs for Particular Bases and Particular Cross-Links

    PubMed Central

    Natile, Giovanni

    1994-01-01

    The stereochemical factors that influence the tendencies for sequence specific binding of platinum antitumour drugs to DNA are examined. The NHs of the platinum-amine moiety can form hydrogen bonds to the O6 of guanine or to a phosphate oxygen of DNA. Modelling the stereochemistry of the NH atoms can lead to compounds with a strong preference for forming one type of adduct with DNA. PMID:18476245

  16. Biologically Inspired Phosphino Platinum Complexes

    SciTech Connect

    Jain, Avijita; Helm, Monte L.; Linehan, John C.; DuBois, Daniel L.; Shaw, Wendy J.

    2012-08-01

    Platinum complexes containing phosphino amino acid and amino acid ester ligands, built upon the PPhNR’2 platform, have been synthesized and characterized (PPhNR’2= [1,3-diaza]-5-phenyl phosphacyclohexane, R’=glycine or glycine ester). These complexes were characterized by 31P, 13C, 1H, 195Pt NMR spectroscopy and mass spectrometry. The X-ray crystal structure of one of the complexes, [PtCl2(PPhNGlyester 2)2], is also reported. These biologically inspired ligands have potential use in homogeneous catalysis, with special applications in chiral chemistry and water soluble chemistry. These complexes also provide a foundation upon which larger peptides can be attached, to allow the introduction of enzyme-like features onto small molecule catalysts. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  18. Gallium accumulation in early pulmonary Pneumocystis carinii infection

    SciTech Connect

    Stevens, D.A.; Allegra, J.C.

    1986-09-01

    The accumulation of gallium 67 citrate in pulmonary Pneumocystis carinii is well known. The sensitivity of gallium uptake in detecting early inflammatory processes, even when conventional roentgenograms are normal, would seem to make it possible in immunocompromised patients to make a presumptive diagnosis of this serious infection early in its course without using invasive techniques to demonstrate the organism. However, the presence of gallium uptake in radiation pneumonitis, pulmonary drug toxicity, and other processes that also occur in this group limit its usefulness. In our two patients--a young woman with Hodgkin's disease and an elderly woman with small cell lung cancer--this technique proved helpful. Although the latter patient was successfully treated empirically, such empiric treatment should be reserved for patients unable or unwilling to undergo invasive tests. Pulmonary gallium uptake in patients with respiratory symptoms, even with a normal chest film, should prompt attempts to directly demonstrate the organism.

  19. Preliminary Experimental Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    A low-energy gallium plasma source is used to perform a spatially and temporally broad spectroscopic survey in the 220-520 nm range. Neutral, singly, and doubly ionized gallium are present in a 20 J, 1.8 kA (peak) arc discharge operating with a central cathode. When the polarity of the inner electrode is reversed the discharge current and arc voltage waveforms remain similar. Utilizing a central anode configuration, multiple Ga lines are absent in the 270-340 nm range. In addition, neutral and singly ionized Fe spectral lines are present, indicating erosion of the outer electrode. With graphite present on the insulator to facilitate breakdown, line emission from the gallium species is further reduced and while emissions from singly and doubly ionized carbon atoms and molecular carbon (C2) radicals are observed. These data indicate that a significant fraction of energy is shifted from the gallium and deposited into the various carbon species.

  20. Ellipsometric study of silicon nitride on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Bu-Abbud, G. H.; Woollam, J. A.; Liu, D.; Chung, Y.; Langer, D.

    1982-01-01

    A method for optimizing the sensitivity of ellipsometric measurements for thin dielectric films on semiconductors is described in simple physical terms. The technique is demonstrated for the case of sputtered silicon nitride films on gallium arsenide.

  1. Interfacing epitaxial oxides to gallium nitride

    NASA Astrophysics Data System (ADS)

    Losego, Mark Daniel

    Molecular beam epitaxy (MBE) is lauded for its ability to control thin film material structures at the atomic level. This precision of control can improve performance of microelectronic devices and cultivate the development of novel device structures. This thesis explores the utility of MBE for designing interfaces between oxide epilayers and the wide band gap semiconductor gallium nitride (GaN). The allure of wide gap semiconductor microelectronics (like GaN, 3.4 eV) is their ability to operate at higher frequencies, higher powers, and higher temperatures than current semiconductor platforms. Heterostructures between ferroelectric oxides and GaN are also of interest for studying the interaction between GaN's fixed polarization and the ferroelectric's switchable polarization. Two major obstacles to successful integration of oxides with GaN are: (1) interfacial trap states; and (2) small electronic band offsets across the oxide/nitride interface due to the semiconductor's large band gap. For this thesis, epitaxial rocksalt oxide interfacial layers (˜8 eV band gap) are investigated as possible solutions to overcoming the challenges facing oxide integration with GaN. The cubic close-packed structure of rocksalt oxides forms a suitable epitaxial interface with the hexagonal close-packed wurtzite lattice of GaN. Three rocksalt oxide compounds are investigated in this thesis: MgO, CaO, and YbO. All are found to have a (111) MO || (0001) GaN; <1 10> MO || <11 20> GaN epitaxial relationship. Development of the epilayer microstructure is dominated by the high-energy polar growth surface (drives 3D nucleation) and the interfacial symmetry, which permits the formation of twin boundaries. Using STEM, strain relief for these ionicly bonded epilayers is observed to occur through disorder within the initial monolayer of growth. All rocksalt oxides demonstrate chemical stability with GaN to >1000°C. Concurrent MBE deposition of MgO and CaO is known to form complete solid

  2. Nanoporous Gallium Nitride Through Anisotropic Metal-Assisted Electroless Photochemical Wet Etching Technique

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-12-01

    Nanoporous gallium nitride (GaN) has many potential applications in light-emitting diodes (LEDs), photovoltaics, templates and chemical sensors. This article reports the porosification of GaN through UV enhanced metal-assisted electroless photochemical wet etching technique using three different acid-based etchants and platinum served as catalyst for porosification. The etching process was conducted at room temperature for a duration of 90min. The morphological, structural, spectral and optical features of the developed porous GaN were studied with appropriate characterization techniques and the obtained results were presented. Field emission scanning electron micrographs exhibited the porosity nature along with excellent porous network of the etched samples. Structural studies confirmed the mono crystalline quality of the porous nanostructures. Raman spectral analyzes inferred the presenting phonon modes such as E2 (TO) and A1 (LO) in fabricated nanoporous structures. The resulted porous nanostructures hold the substantially enhanced photoluminescence intensity compared with the pristine GaN epitaxial film that is interesting and desirable for several advances in the applications of Nano-optoelectronic devices.

  3. Synthesis, Characterization, and Cytotoxicity of Platinum(IV) Carbamate Complexes

    PubMed Central

    Wilson, Justin J.; Lippard, Stephen J.

    2011-01-01

    The synthesis, characterization, and cytotoxicity of eight new platinum(IV) complexes having the general formula, c,c,t-[Pt(NH3)2Cl2(O2CNHR)2], are reported, where R = tert-butyl (4), cyclopentyl (5), cyclohexyl (6), phenyl (7), p-tolyl (8), p-anisole (9), 4-fluorophenyl (10), or 1-naphthyl (11). These compounds were synthesized by reacting organic isocyanates with the platinum(IV) complex, c,c,t-[Pt(NH3)2Cl2(OH)2]. The electrochemistry of the compounds was investigated by cyclic voltammetry. The aryl carbamate complexes 7 – 11 exhibit reduction peak potentials near −720 mV vs. Ag/AgCl, whereas the alkyl carbamate complexes display reduction peak potentials between −820 and −850 mV vs. Ag/AgCl. The cyclic voltammograms of c,c,t-[Pt(NH3)2Cl2(O2CCH3)2] (1), c,c,t-[Pt(NH3)2Cl2(O2CCF3)2] (2), and cis-[Pt(NH3)2Cl4] (3) were measured for comparison. Density functional theory (DFT) studies were undertaken to investigate the electronic structures of 1 – 11 and to determine their adiabatic electron affinities. A linear correlation (R2 = 0.887) between computed adiabatic electron affinities and measured reduction peak potential was discovered. The biological activity of 4 – 11 and, for comparison, cisplatin was evaluated in human lung cancer A549 and normal MRC-5 cells by the MTT assay. The compounds exhibit comparable or slightly better activity than cisplatin against the A549 cells. In MRC-5 cells, all are equally or slightly less cytotoxic than cisplatin, except for 4 and 5, which are more toxic. PMID:21361279

  4. Complexometric determination of gallium with calcein blue as indicator

    USGS Publications Warehouse

    Elsheimer, H.N.

    1967-01-01

    A metalfluorechromic indicator, Calcein Blue, has been used for the back-titration of milligram amounts of EDTA in presence of gallium complexes. The indicator was used in conjunction with an ultraviolet titration assembly equipped with a cadmium sulphide detector cell and a microammeter for enhanced end-point detection. The result is a convenient and rapid method with an accuracy approaching 0.1 % and a relative standard deviation of about 0.4% for 10 mg of gallium. ?? 1967.

  5. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  6. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  7. Chemical Imaging of Platinum-Based Drugs and their Metabolites

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2016-01-01

    Platinum-based drugs (cisplatin, carboplatin, and oxaliplatin) are widely used therapeutic agents for cancer treatment. Even though the platinum (Pt)-drugs are routinely used clinically, a clear picture of their distribution within tumor tissues is lacking. The current methods to image the distribution of Pt drugs are limited and do not enable the discrimination of the drug from its metabolites. In this manuscript, we demonstrate a methodology that enables chemical imaging of a Pt drug and its metabolites simultaneously and specifically. Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging (MSI) is combined with an on-tissue chemical derivatization using diethyldithiocarbamate (DDTC). DDTC abstracts the Pt atom to generate ionizable complexes that can be imaged by MALDI MSI. We demonstrate that Pt drugs and their metabolites can be specifically imaged. This approach was successfully applied to map the penetration and metabolism of oxaliplatin in hyperthermic intraperitoneal chemotherapy (HIPEC)-like treated 3D colorectal tumor mimics. The distribution of cisplatin and carboplatin was mapped in additional 3D tumor mimics. We demonstrate that the approach can also be used to image the distribution of copper ions in cells. This method has the potential to be used to evaluate the penetration and distribution of a wide range of compounds. PMID:27917942

  8. Drug Delivery Systems for Platinum Drugs

    NASA Astrophysics Data System (ADS)

    Huynh, Vien T.; Scarano, Wei; Stenzel, Martina H.

    2013-09-01

    Since the discovery of cisplatin, drugs based on platinum, have made a significant impact on the treatment of various cancers. The administration of platinum drugs is however accompanied by significant side effects. This chapter discusses the types of drug delivery systems that have been developed in order to enable the targeted delivery while maintaining controlled temporal supply of the drug. The sizes of carriers range from nanometer to micrometer sized particles. The most common types of drug carriers are micelles, liposomes, nanoparticles, and dendrimers, but also a few microspheres have been developed. Most striking aspect of the delivery of platinum drugs is the possibility of physical encapsulation but also the binding of the drug to the polymer carrier coordinate covalent bond. Since platinum drugs have typically two permanent and two leaving ligands, the polymer can be part of either ligand. As the leaving ligand, the platinum drug is released often as cisplatin. If the polymer provides the functionality for the permanent ligand, a new macromolecular drug has been formed. In addition to the attachment of pt(II) drugs, recent offorts are devoted to the conjugation via the Pt((IV) prodrug.

  9. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  10. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  11. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  12. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  13. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  14. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  15. Cathodoluminescence spectra of gallium nitride nanorods

    PubMed Central

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio. PMID:22168896

  16. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10{sup 5} and mode volumes <10(λ/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  17. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  18. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  19. Gallium arsenide - Solar panel assembly technology

    NASA Astrophysics Data System (ADS)

    Zemmrich, D.; Mardesich, N.; Macfarlane, B.; Loo, R.

    Gallium arsenide (GaAs) solar cell devices are maturing at 18 percent AM0 efficiencies for liquid phase epitaxy (LPE) technology, and efforts must be intensified placing necessary focus on the development of panel assembly techniques, and ultimately panel manufacturing methods capable of maintaining these high efficiencies for on-panel operation. Key problems and solutions are described which were experienced during the assembly of flight qualified solar panels using Spectrolab's mature (silicon) panel manufacturing processes for assembly of LPE GaAs solar cells. These cells were produced by Hughes Malibu (supplied by the U.S. Air Force WPAFB) ranging in efficiency from 15 to 17 percent, air mass zero (AM0) 28 C. Cell assembly methods for coverglass installation, submodule, and circuit soldering, as well as panel bonding are discussed. The LIPS II satellite, using a GaAs solar cell panel was successfully launched in 1983.

  20. Cathodoluminescence spectra of gallium nitride nanorods.

    PubMed

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-12-14

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  1. Thickness dependent thermal conductivity of gallium nitride

    NASA Astrophysics Data System (ADS)

    Ziade, Elbara; Yang, Jia; Brummer, Gordie; Nothern, Denis; Moustakas, Theodore; Schmidt, Aaron J.

    2017-01-01

    As the size of gallium nitride (GaN) transistors is reduced in order to reach higher operating frequencies, heat dissipation becomes the critical bottleneck in device performance and longevity. Despite the importance of characterizing the physics governing the thermal transport in thin GaN films, the literature is far from conclusive. In this letter, we report measurements of thermal conductivity in a GaN film with thickness ranging from 15-1000 nm grown on 4H-SiC without a transition layer. Additionally, we measure the thermal conductivity in the GaN film when it is 1 μm-thick in the temperature range of 300 < T < 600 K and use a phonon transport model to explain the thermal conductivity in this film.

  2. Synthesis and Antiproliferative Activity of Steroidal Thiosemicarbazone Platinum (Pt(II)) Complexes

    PubMed Central

    Huang, Yanmin; Kong, Erbin; Gan, Chunfang; Liu, Zhiping; Lin, Qifu; Cui, Jianguo

    2015-01-01

    Steroidal compounds exhibit particular physiological activities. In this paper, some steroidal thiosemicarbazones platinum (Pt(II)) complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide using estrone, chenodeoxycholic acid, and 7-deoxycholic acid as starting materials and complexation of steroidal thiosesemicarbazones with Pt(II). The complexes were characterized by IR, NMR, and MS, and their antiproliferative activities were evaluated. The results showed that some steroidal thiosemicarbazones platinum (Pt(II)) complexes displayed moderate cytotoxicity to HeLa and Bel-7404 cells. Thereinto, complex 6 showed an excellent inhibited selectivity to HeLa cells with an IC50 value of 9.2 μM and SI value of 21.7. At the same time, all compounds were almost inactive to HEK293T (normal kidney epithelial cells). The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs. PMID:26635511

  3. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  4. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.

  5. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    PubMed

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity.

  6. Platinum Publications, December 1–December 29, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected from among the most recently published Platinum Publications.

  7. Platinum Publications as of December 3, 2013 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  8. 76 FR 8627 - Revision of Class E Airspace; Platinum, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Platinum, AK AGENCY: Federal... Platinum, AK, to accommodate the addition of a Standard Instrument Approach Procedure (SIAP), at the Platinum Airport. The FAA is taking this action to enhance safety and management of Instrument Flight...

  9. Platinum Publications, October 28–November 30, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  10. Platinum Publications, May 1 – June 25, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  11. Platinum Publications, July 31–September 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  12. Platinum Publications as of June 25, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  13. Platinum Publications as of September 25, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  14. Platinum Publications as of May 29, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  15. Platinum Publications as of April 30, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  16. Platinum Publications, June 26–July 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  17. Platinum Publications, September 30–October 27, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  18. Platinum Publications, March 1–March 30, 2017 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected from among the most recently published Platinum Publications.

  19. Platinum Publications, January 26–February 28, 2017 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected from among the most recently published Platinum Publications.

  20. Platinum Publications, March 27 – April 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  1. Mineral resource of the month: platinum-group metals

    USGS Publications Warehouse

    Hilliard, Henry

    2003-01-01

    The precious metals commonly referred to as platinum-group metals (PGM) include iridium, osmium, palladium, platinum, rhodium and ruthenium. PGM are among the rarest of elements, and their market values — particularly for palladium, platinum and rhodium — are the highest of all precious metals.

  2. Platinum Publications, February 27 – March 26, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  3. Platinum Publications, July 1–July 28, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  4. Platinum Publications, October 1–29, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  5. Platinum Publications, September 26 – October 29, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  6. Platinum Publications, July 29–September 29, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  7. Platinum Publications, June 1–June 30, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  8. Platinum Publications, October 30 – November 26, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  9. Platinum Publications as of March 6, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  10. Platinum Publications, November 27, 2014 – February 26, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  11. Platinum Publications, January 1–March 31, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  12. Platinum Publications, October 30–December 31, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  13. Chiral discrimination in platinum anticancer drugs.

    PubMed Central

    Benedetti, Michele; Malina, Jaroslav; Kasparkova, Jana; Brabec, Viktor; Natile, Giovanni

    2002-01-01

    In this article we review the biological activity of analogs of the antitumor drug cisplatin that contain chiral amine ligands. Interaction with DNA and formation of cross-links with adjacent purine bases are considered to be the crucial steps in the antitumor activity of this class of complexes. Because double-helical DNA has a chiral structure, interaction with enantiomeric complexes of platinum should lead to diastereomeric adducts. It has been demonstrated that DNA cross-links of platinum complexes with enantiomeric amine ligands not only can exhibit different conformational features but also can be processed differently by the cellular machinery as a consequence of these conformational differences. These results expand the general knowledge of how the stereochemistry of the platinum-DNA adduct can influence the cell response and contribute to understanding the processes that are crucial for antitumor activity. The steric requirements of the chiral ligands, in terms of configuration and flexibility, are also elucidated. PMID:12426131

  14. Autonomous movement of platinum-loaded stomatocytes

    NASA Astrophysics Data System (ADS)

    Wilson, Daniela A.; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2012-04-01

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity).

  15. Autonomous movement of platinum-loaded stomatocytes.

    PubMed

    Wilson, Daniela A; Nolte, Roeland J M; van Hest, Jan C M

    2012-02-26

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity).

  16. Coadsorbed H and CO interaction on platinum.

    PubMed

    Roman, Tanglaw; Nakanishi, Hiroshi; Kasai, Hideaki

    2008-10-21

    The behavior of hydrogen near a platinum-surface-adsorbed carbon monoxide molecule is described using a potential energy term constructed from density functional theory. A clear nonattractive interaction of hydrogen with CO is confirmed, most notably with oxygen, which retains its strong H-repulsive traits in the Pt-bound CO case. Inhibiting effects of CO greater than what is expected from simple adsorption site exclusion are discussed with regard to adsorption/desorption and mobility on platinum, as well as possibilities of COH and HCO formation.

  17. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: design, synthesis, and antitumor activity.

    PubMed

    Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi

    2016-11-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.

  18. Samarium- and ytterbium-promoted oxidation of silicon and gallium arsenide surfaces

    SciTech Connect

    Franciosi, A.

    1989-02-21

    A method is described for promoting oxidation of a silicon or gallium arsenide surface comprising: depositing a ytterbium overlayer on the silicon or gallium arsenide surface prior to the oxidation of the surface.

  19. The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review.

    PubMed

    Carter, Dean E; Aposhian, H Vasken; Gandolfi, A Jay

    2003-12-15

    The aim of this review is to compare the metabolism, chemistry, and biological effects to determine if either of the industrial arsenicals (arsine and gallium arsenide) act like the environmental arsenic oxides (arsenite and arsenate). The metabolism of the arsenic oxides has been extensively investigated in the past 4 years and the differences between the arsenic metabolites in the oxidation states +III versus +V and with one or two methyl groups added have shown increased importance. The arsenic oxide metabolism has been compared with arsine (oxidation state -III) and arsenide (oxidation state between 0 to -III). The different metabolites appear to have different strengths of reaction for binding arsenic (III) to thiol groups, their oxidation-reduction reactions and their forming an arsenic-carbon bond. It is unclear if the differences in parameters such as the presence or absence of methyl metabolites, the rates of AsV reduction compared to the rates of AsIII oxidation, or the competition of phosphate and arsenate for cellular uptake are large enough to change biological effects. The arsine rate of decomposition, products of metabolism, target organ of toxic action, and protein binding appeared to support an oxidized arsenic metabolite. This arsine metabolite was very different from anything made by the arsenic oxides. The gallium arsenide had a lower solubility than any other arsenic compound and it had a disproportionate intensity of lung damage to suggest that the GaAs had a site of contact interaction and that oxidation reactions were important in its toxicity. The urinary metabolites after GaAs exposure were the same as excreted by arsenic oxides but the chemical compounds responsible for the toxic effects of GaAs are different from the arsenic oxides. The review concludes that there is insufficient evidence to equate the different arsenic compounds. There are several differences in the toxicity of the arsenic compounds that will require substantial

  20. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis.

    PubMed

    Lindgren, Helena; Sjöstedt, Anders

    2015-10-26

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo.

  1. Application of ultrasound in solvent extraction of nickel and gallium

    SciTech Connect

    Pesic, B.

    1996-07-01

    The effects of ultrasound on the rate of solvent extraction of nickel with Lix 65N and Lix 70, and gallium with Kelex 100 were investigated. These solvent extraction systems are noted by their sluggish nature. Low frequency (20 kHz) ultrasound increased the rates of extraction of nickel by factors of four to seven. The ultrasound had no effect on the final chemical equilibrium. Gallium extraction rates were enhanced with the use of ultrasound by as much as a factor of 15. Again, the ultrasound had no effect on extraction equilibrium. For both nickel and gallium, the enhanced rates were attributed to increased interfacial surface area associated with ultrasonically induced cavitation and microdroplet formation. The stability of the microdroplets permitted intermittent application of ultrasound with corresponding decreases in ultrasonic energy requirements. The lowest energy consumption was observed with short (0.25 to 5 s) bursts of high power (41 to 61 W) ultrasonic inputs. The study also provided insight into the factors that affect the complex extraction of gallium from sodium aluminate solutions. The rate controlling step was found to be the dehydration of the gallate ion, Ga(OH)4, and the first complex formation between gallium and Kelex 100. Sodium was found to enhance the extraction rate up to a point, beyond which increased concentration was detrimental. Increasing aluminum concentration was found to slow extraction rates. Modifiers and diluents were shown to markedly affect extraction rates even without ultrasound. Ketone modifiers, particularly 2-undecanone, when used with Kermac 470B or Escaid 200 diluents enhanced extraction rates of gallium to the point that the use of ultrasound provided no additional benefits. The positive effects of ketone modifiers for the solvent extraction of gallium had not been previously reported.

  2. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  3. Use of platinum electrodes for the electrochemical detection of bacteria

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1978-01-01

    Platinum electrodes with surface area ratios of four to one were used to detect and enumerate a variety of gram-positive and gram-negative organisms. Linear relationships were established between inoculum size and detection time. End points for platinum electrodes were similar to those obtained with a platinum-reference electrode combination. Shape of the overall response curves and length of detection times for gram-positive organisms were markedly different than those for the majority of gram-negative species. Platinum electrodes are better than the platinum-reference electrode combination because of cost, ease of handling, and clearer definition of the end point.

  4. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  5. Radiosensitization of high-Z compounds by medium-energy 160 kV vs. high-energy 6 MV X-rays for radiation therapy: Theoretical, in vitro and in vivo studies of platinum compounds activating glioma F98 cancer cells

    NASA Astrophysics Data System (ADS)

    Lim, S.; Pradhan, A.; Nahar, S.; Montenegro, M.; Barth, R.; Nakkula, R.; Turro, C.

    2013-03-01

    Energy dependence of X-ray irradiation of high-Z compounds for enhanced radiosensitization is explored thoeretically and via in vitro and in vivo experiments. The cell killing ability of medium-energy X-rays from 160 kV source are found to be more effective than 6 MV X-rays in activating high-Z contrast agents. Results are presented for a newly synthesized Pt compound, Pyridine Terpyridine Pt(II) Nitrate ([Pt(typ)(py)]) and carboplatin in treating F98 rat glioma. In-vitro results show considerable reduction in cell viability for radiosensitized cells irradiated with a 160 kV irradiator. Cells treated with 6 MV LINAC radiation find little variation with radiation dose. Maximum dose enhancement factors (DEFs) and minimum cancer cell survival fractions correspond to 50-200 keV range, and fall rapidly at higher energies. Theoretical calculations of photoelectric absorption vis-a-vis total scattering demonstrates this energy dependence. However, in vivo studies of rats treated with [Pt(tpy)(py)] had a severe negative neurotoxic response, confirmed by histopathological analysis. But subsequent in vivo studies using carboplatin showed very positive results in the treatment of F98 glioma bearing rats and potential clinical radiation therapy.

  6. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    PubMed

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  7. Altered glutamine metabolism in platinum resistant ovarian cancer

    PubMed Central

    Hudson, Chantelle D.; Savadelis, Alyssa; Nagaraj, Anil Belur; Joseph, Peronne; Avril, Stefanie; DiFeo, Analisa; Avril, Norbert

    2016-01-01

    Ovarian cancer is characterized by an increase in cellular energy metabolism, which is predominantly satisfied by glucose and glutamine. Targeting metabolic pathways is an attractive approach to enhance the therapeutic effectiveness and to potentially overcome drug resistance in ovarian cancer. In platinum-sensitive ovarian cancer cell lines the metabolism of both, glucose and glutamine was initially up-regulated in response to platinum treatment. In contrast, platinum-resistant cells revealed a significant dependency on the presence of glutamine, with an upregulated expression of glutamine transporter ASCT2 and glutaminase. This resulted in a higher oxygen consumption rate compared to platinum-sensitive cell lines reflecting the increased dependency of glutamine utilization through the tricarboxylic acid cycle. The important role of glutamine metabolism was confirmed by stable overexpression of glutaminase, which conferred platinum resistance. Conversely, shRNA knockdown of glutaminase in platinum resistant cells resulted in re-sensitization to platinum treatment. Importantly, combining the glutaminase inhibitor BPTES with platinum synergistically inhibited platinum sensitive and resistant ovarian cancers in vitro. Apoptotic induction was significantly increased using platinum together with BPTES compared to either treatment alone. Our findings suggest that targeting glutamine metabolism together with platinum based chemotherapy offers a potential treatment strategy particularly in drug resistant ovarian cancer. PMID:27191653

  8. Oral co-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats.

    PubMed

    Bhatt, Kapil; Flora, S J S

    2009-07-01

    Gallium arsenide (GaAs), an inter-metallic semiconductor, known to exhibit superior optical and electronic properties compared to silicon, promotes its use in semiconductor industries. Extensive use of GaAs will inevitably lead to an increase in the exposure of workers manufacturing these products. Antioxidants are exogenous or endogenous compounds acting in several ways, including scavenging reactive oxygen species (ROS) or their precursors, inhibiting ROS formation, and binding metal ions needed for the catalysis of ROS generation. In the present study we investigated the protective efficacy of α-lipoic acid, quercetin and captopril individually against gallium arsenide exposure. Co-administration of α-lipoic acid with GaAs was most effective in reducing GaAs induced inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver, kidney and brain reduced glutathione (GSH) level and elevation of oxidized glutathione (GSSG). Captopril, on the other hand was effective in reducing thiobarbituric acid reactive substance (TBARS) levels, while quercetin reduced ROS in liver and kidney. The results suggest comparatively better preventive efficacy of concomitant α-lipoic acid administration during Gallium arsenide exposure compared to quercetin and captopril in preventing GaAs induced oxidative stress.

  9. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  10. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  11. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  12. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  13. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  14. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  15. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  16. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    PubMed

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  17. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    ELECTROLUMINESCENCE STUDIES ON LONG WAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS John C...11-46 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS...58 1 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE I

  18. Fraction of platinum surface covered with carbonaceous species following hydrogenolysis of hexane on platinum alumina catalysts

    SciTech Connect

    Rivera Latas, F.J.

    1986-01-01

    Catalytic naphtha reforming plays a major role in satisfying the demand for unleaded, high octane gasoline. Hydrogen containing carbonaceous deposits (coke) accumulation on the surface of the catalysts during reforming operation. This study investigated the following question: what is the fraction of the platinum surface covered with the deposits following a typical reforming reaction. These observations prompted us to prepare a platinum-alumina catalyst with a high metal content (5%) to enhance the sensitivity of experiments designed to examine the platinum surface following hexane hydrogenolysis. The reaction was selected because it is a good model reaction for catalytic reforming and it was also studied by the Somorjai group in the higher temperature range of their work. Hydrogenolysis of hexane was carried out in a flow system for 3 h at 713 K, at atmospheric pressure, and around 0.1 total conversion. The catalyst was cooled down to room temperature in the reactant mixture, and the fraction of surface platinum atoms exposed was measured in situ by four independent methods: titration of adsorbed oxygen by dihydrogen, chemisorption of carbon monoxide, infra-red spectroscopy of carbon monoxide bonded to platinum, and rate of ethylene hydrogenation. Independent gravimetric studies showed that coke deposits of around 1% by weight were formed on the same catalyst during hydrogenolysis of hexane under similar conditions. Each of the four methods indicate that approximately 50% of the platinum surface remains exposed under the conditions.

  19. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  20. Evaluation of industrial platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillontownes, Lawrence A.; Alderfer, David W.

    1987-01-01

    The calibration and stability of four surface temperature measuring industrial platinum resistance thermometers for use in the temperature range -120 C to 160 C was investigated. It was found that the calibration formulation of the International Practical Temperature Scale of 1968 provided the most accurate calibration. It was also found that all the resistance thermometers suffered from varying degrees of instability and hysteresis.

  1. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  2. Growing Single Crystals of Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Lehoczky, Sandor L.; Frazier, Donald O.

    1987-01-01

    Defect reduced by preventing melt/furnace contact and suppressing convention. Large crystals of compound semiconductors with few defects grown by proposed new method. Such materials as gallium arsenide and cadmium telluride produced, with quality suitable for very-large-scale integrated circuits or for large focal-plane arrays of photodetectors. Method used on small scale in Earth gravity, but needs microgravity to provide crystals large enough for industrial use.

  3. Platinum clusters supported on/in Dion-Jacobson phase HLaNb2O7 by topochemical method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbao; Luo, Chunhua; Wang, Caihua; Cui, Yumin; Tang, Kaibin

    2016-12-01

    Platinum clusters were supported on/in HLaNb2O7 nanosheets by topochemical reaction strategy for the first time. The as-prepared samples were analyzed using ICP OES and characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The results showed that HLaNb2O7 nanosheets were modified with platinum clusters with good monodispersity. The product was a mesoporous solid with broad pore size distribution and large surface area. The oxidation state of platinum was zero and the size of Pt clusters was only about 1-2 nm. This study provides a novel approach to support metal clusters on layered compounds.

  4. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  5. In vitro toxicity of gallium arsenide in alveolar macrophages evaluated by magnetometry, cytochemistry and morphology.

    PubMed

    Okada, M; Karube, H; Niitsuya, M; Aizawa, Y; Okayasu, I; Kotani, M

    1999-12-01

    Gallium arsenide (GaAs), a chemical compound of gallium and arsenic, causes various toxic effects including pulmonary diseases in animals. Since the toxicity is not completely investigated, GaAs has been used in workplaces as the material of various semiconductor products. The present study was conducted to clarify the toxicity of GaAs particles in the alveolar macrophages of hamsters using magnetometry, enzyme release assays and morphological examinations. Alveolar macrophages obtained from hamsters by tracheobronchial lavage and adhered to the disks in the bottom of wells were exposed to ferrosoferric oxide and GaAs particles. Ferrosoferric oxide particles were magnetized externally and the remanent magnetic field was measured. Relaxation, a fast decline of the remanent magnetic fields radiated from the alveolar macrophages, was delayed and decay constants were decreased dose-dependently due to exposure to GaAs. Because the relaxation is thought to be associated with cytoskeleton, the exposure of GaAs may have impaired the motor function of them. Enzyme release assay and morphological findings indicated the damage to the macrophages. Thus the cytotoxicity causes cytostructural changes and cell death. According to DNA electrophoresis and the TUNEL method, necrotic changes occur more frequently than apoptotic changes.

  6. Platinum oxidation responsible for degradation of platinum-cobalt alloy cathode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Hidai, Shoichi; Kobayashi, Masaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Nakamori, Yoji; Aoki, Tsutomu

    2012-10-01

    Platinum oxidation of Pt-Co alloy catalysts for polymer electrolyte fuel cells was investigated for a series of Pt-Co alloy catalysts with different specification. The chemical state of platinum evaluated by soft X-ray photoemission spectroscopy was compared with the electrochemical properties to elucidate the origin of catalyst degradation. Increase in the particle size of Pt-Co alloy catalysts caused the decrease in the concentration of platinum hydroxide and improved the catalyst durability. Applying potential cycling below 1.0 V, only platinum hydroxide was observed, while platinum oxides, PtO and PtO2, appeared after potential cycling up to 1.2 V. The peak shift of Pt 4f spectra after the potential cycling implies that these platinum hydroxide and oxide are dissolved and deposited on another platinum catalyst in a reduced metallic state, which causes the catalyst degradation.

  7. Photodynamic antimicrobial chemotherapy activity of (5,10,15,20-tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III).

    PubMed

    Managa, Muthumuni; Amuhaya, Edith K; Nyokong, Tebello

    2015-12-05

    (5,10,15,20-Tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III) (complex 1) was conjugated to platinum nanoparticles (PtNPs) (represented as 1-PtNPs). The resulting conjugate showed 18 nm red shift in the Soret band when compared to 1 alone. Complex 1 and 1-PtNPs showed promising photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus, Escherichia coli and Candida albicans in solution where the log reductions obtained were 4.92, 3.76, and 3.95, respectively for 1-PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 1-PtNPs in DMF while that of 1 was 0.52 in the same solvent. This resulted in improved PACT activity for 1-PtNPs compared to 1 alone.

  8. Incorporation of a platinum center in the pi-conjugated core of push-pull chromophores for nonlinear optics (NLO).

    PubMed

    Durand, Raphaël J; Gauthier, Sébastien; Achelle, Sylvain; Kahlal, Samia; Saillard, Jean-Yves; Barsella, Alberto; Wojcik, Laurianne; Le Poul, Nicolas; Robin-Le Guen, Françoise

    2017-02-20

    In this article, we describe the synthesis, redox characteristics, and linear and nonlinear optical (NLO) properties of seven new unsymmetrical push-pull diacetylide platinum-based complexes. These D-π-Pt-π-A complexes incorporate pyranylidene ligands as pro-aromatic donor groups (D), diazine rings as electron-withdrawing groups (A), and various aromatic fragments (styryl or thienylvinyl) as π-linkers separating the platinum diacetylide unit from the donor and the acceptor groups. This is one of the first examples of push-pull chromophores incorporating a platinum center in the π-conjugated core. The NLO properties of these complexes were compared with those of their purely organic analogues. All compounds (organic and organometallic) exhibited positive μβ values, which dramatically increased upon methylation of the pyrimidine fragment. However, this increase was even more significant in the complexes due to the presence of platinum in the π-conjugated core. The effects of the linker on the redox and spectroscopic properties of the complexes are also discussed. In addition, DFT calculations were performed in order to gain further insight into the intramolecular charge transfer (ICT) occurring through the platinum center.

  9. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.

    PubMed

    Knight, Mark W; Coenen, Toon; Yang, Yang; Brenny, Benjamin J M; Losurdo, Maria; Brown, April S; Everitt, Henry O; Polman, Albert

    2015-02-24

    Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.

  10. Simulation studies on the evolution of gallium nitride on a liquid gallium surface under plasma bombardment.

    PubMed

    Vasquez, M R; Flauta, R E; Wada, M

    2008-02-01

    Monte Carlo simulations were conducted to study the formation of gallium-nitride (GaN) layer on liquid gallium (Ga) sputtering target immersed in nitrogen (N(2)) plasma. In the simulation model, N ions were assumed to possess energy equal to the bias voltage applied to the sputtering target with respect to the plasma. The results showed the surface morphology of GaN changed from a relatively smooth GaN on Ga surface at 50 eV N ion energy to a rough surface with GaN dendrites on liquid Ga at 500 eV ion energy. Further increase in N ion energy up to 1 keV resulted in smaller density of GaN dendrites on surface. Increasing surface coverage of Ga by GaN substantially reduced the sputtering yield of Ga from the target. These simulation results were correlated with previously reported experimental observations on liquid Ga surface immersed in the nitrogen plasma of a plasma-sputter-type ion source.

  11. Gallium nitride photocathodes for imaging photon counters

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  12. Gallium nitride photocathode development for imaging detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  13. Evaluation of the carcinogenicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Gelbke, Heinz-Peter; Schenk, Hermann; Williams, Gary M; Cohen, Samuel M

    2013-05-01

    Gallium arsenide (GaAs) is an important semiconductor material. In 2-year inhalation studies, GaAs increased the incidence of lung tumors in female rats, but not in male rats or male and female mice. Alveolar proteinosis followed by chronic active inflammation was the predominant non-neoplastic pulmonary findings. IARC classified GaAs as carcinogenic to humans (group 1) based on the assumption that As and Ga ions are bioavailable. The European Chemical Agency Risk Assessment Committee concluded that GaAs should be classified into Carcinogenicity Category 1B (presumed to have carcinogenic potential for humans; ECHA). We evaluate whether these classifications are justified. Physico-chemical properties of GaAs particles and the degree of mechanical treatment are critical in this evaluation. The available data on mode of action (MOA), genotoxicity and bioavailability do not support the contribution of As or Ga ions to the lung tumors in female rats. Most toxicological studies utilized small particles produced by strong mechanical treatment, destroying the crystalline structure. The resulting amorphous GaAs is not relevant to crystalline GaAs at production and processing sites. The likely tumorigenic MOA is lung toxicity related to particulate-induced inflammation and increased proliferation. It is concluded that there is no evidence for a primary carcinogenic effect of GaAs.

  14. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  15. Investigation on gallium ions impacting monolayer graphene

    SciTech Connect

    Wu, Xin; Zhao, Haiyan Yan, Dong; Pei, Jiayun

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  16. Gallium nitride T-ray transmission characteristics

    NASA Astrophysics Data System (ADS)

    Ferguson, Bradley; Mickan, Samuel P.; Hubbard, Seth; Pavlidis, Dimitris; Abbott, Derek

    2001-11-01

    T-ray imaging and spectroscopy both exploit the terahertz (THz) region of the spectrum. This gives rise to very promising industrial and biomedical applications, where non-invasive and sensitive identification of a substance is achievable, through a material's distinct absorption features in the THz band. Present T-ray systems are limited by low output power, and the race is now on to find more efficient THz emitters. We discuss the feasibility of a novel high-power gallium nitride emitter for terahertz generation. This paper details the advantages of such an emitter, primarily by virtue of its high-voltage capability, and evaluates the benefits of sapphire and silicon carbide substrates. The far-infrared transmission spectra for thin samples of GaN, sapphire and SiC are reported. A high-power THz emitter, that operates at room temperature and is potentially low-cost will open up a host of new possibilities and applications. The central result in this paper demonstrates that sapphire is the better choice over SiC, for the GaN supporting substrate, as we show that it has superior THz transmission characteristics.

  17. IBIC analysis of gallium arsenide Schottky diodes

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Fizzotti, F.; Mirri, K.; Gargioni, E.; Polesello, P.; LoGiudice, A.; Manfredotti, C.; Galassini, S.; Rossi, P.; Vanni, P.; Nava, F.

    1999-10-01

    Semi-insulating (SI) gallium arsenide (GaAs) devices operating as a reverse biased Schottky diode offer an attractive choice as radiation detector at room temperature both in high energy physics experiments and as X-ray image sensors. However, SI GaAs devices contain a high concentration of traps, which decreases the charge collection efficiency (cce), and affects the energy resolution of such detectors working as nuclear spectrometers. In this paper we present a detailed investigation of the spatial uniformity of the cce carried out by analysing ion beam induced charge (IBIC) space maps obtained by scanning a focused 2 MeV proton microbeam on a SI n-GaAs Schottky diode. The microbeam irradiated both the front (Schottky) and back (ohmic) contacts in order to evaluate the transport properties of both electrons and holes generated by ionisation. The IBIC space maps show a clear non-uniformity of the cce. The poor energy resolution previously observed in such detectors working as alpha particle spectrometers is ascribed to the presence of two different "phases" in the material, which produce two distinct collection efficiency spectra. Such "phases" show different behaviour as a function of the applied bias voltage which is most likely due to the different electric field dependence of the relevant capture cross sections of the trapping centres for both charge carriers.

  18. Electrical characterization of magnesium implanted gallium nitride

    NASA Astrophysics Data System (ADS)

    Krtschil, A.; Kielburg, A.; Witte, H.; Christen, J.; Krost, A.; Wenzel, A.; Rauschenbach, B.

    2002-01-01

    Gallium nitride layers grown by molecular beam epitaxy on c axis oriented sapphire substrates were implanted with 180 keV magnesium ions with ion doses between 1×1014 and 1×1016cm-2. The implantation induced defect states were investigated by temperature dependent conductivity (TDC) as well as by thermal and optical admittance spectroscopy (TAS, OAS) measurements. Dominant carrier emissions having thermal activation energies between 360 and 800 meV were found in TAS and TDC. These states are assigned to implantation induced electron traps since they do not appear in the nonimplanted reference sample. Defect states with similar transition energies were also observed in OAS resulting in an enhancement of defect-to-band transitions in the near band-gap region around 3.45 eV, in the blue band around 3.0 eV, as well as in the midgap range for photon energies between 2.5 and 1.80 eV, respectively. In addition, new transitions were found at 2.1 and 1.95 eV. Furthermore, transitions from implantation induced shallow states were observed, i.e., the magnesium acceptor as well as a new donor level at about 70 meV, tentatively discussed as nitrogen vacancy. The critical ion dose for amorphization was determined to be between 5×1015 and 1×1016Mg+ cm-2 using x-ray diffraction.

  19. Funneling electron beams from gallium arsenide photocathodes

    NASA Astrophysics Data System (ADS)

    Rahman, Omer Habib

    Gallium Arsenide (GaAs) is the most widely used source of polarized electrons around the world. Electrons are extracted from a GaAs surface, terminated by a cesium-oxygen layer. The electrons are accelerated to form a beam by a DC electric field. This beam can ionize residual gas in the chamber, and the DC field accelerates the resulting ions into the cathode surface, damaging the Cesium- Oxygen layer. This process, called Ion Back Bombardment, is the dominant mechanism for limiting photocathode lifetime. As a result, high average current operation yields charge lifetimes too low to be used in a collider design. One idea to extend the charge lifetime is to funnel the beams from multiple cathodes using a rotating magnetic field-if operation of one cathode does not affect the operation of another cathode in the same chamber, then the source's lifetime can be extended by simply adding more cathodes. This dissertation presents the design, construction and commissioning of a unique electron gun capable of operating twenty cathodes. Results of funneling two electron beams with a rotating magnetic field are also presented. For average currents at 175 nA and 350 nA, the charge lifetimes for individual cathodes and two-cathode operation were measured, showing that the charge lifetime for two beam funneling is the sum of the individual ion back bombardment charge lifetimes. The addition of charge lifetime implies that beam funneling can be used to increase charge lifetime by an order of magnitude.

  20. Gallium Nitride Based Logpile Photonic Crystal

    SciTech Connect

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J.; Wang, George T.; Fischer, Arthur J.

    2011-11-09

    A nine-layer logpile three-dimensional photonic crystal (3DPC) is demonstrated composed of single crystalline gallium nitride (GaN) nanorods, ~ 100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a ''line-defect'' cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25–30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride-based optoelectronic devices.

  1. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  2. Estimated thermodynamic stability of intermetallides of actinides with platinum-group metals

    SciTech Connect

    Kalevich, E.S.; Ryabinin, M.A.; Vasil`ev, V.Y.

    1994-07-01

    The upper limits of the molar free energy of formation of intermetallides of actinides (An = Am, Cm, Bk, Cf) with platinum-group metals (M = Pt, Ir, Pd, Rh) and AnM{sub y} (y = 2, 3, 5) are calculated. The quantity {triangle}G{sup O}{sub f} varies from -340 kJ/mole for Cf compounds to -400 kJ/mole for Am compounds. The change of {triangle}G{sup O}{sub f}(AnM{sub y}) as a function of An atomic number correlates with the change of other properties of the studied intermetallides.

  3. Determination of gallium originated from a gallium-based anticancer drug in human urine using ICP-MS.

    PubMed

    Filatova, Darya G; Seregina, Irina F; Foteeva, Lidia S; Pukhov, Vladimir V; Timerbaev, Andrei R; Bolshov, Mikhail A

    2011-05-01

    Urine analysis gives an insight into the excretion of the administered drug which is related to its reactivity and toxicity. In this work, the capability of inductively coupled plasma mass spectrometry (ICP-MS) to measure ultratrace metal levels was utilized for rapid assaying of gallium originating from the novel gallium anticancer drug, tris(8-quinolinolato)gallium(III) (GaQ(3)), in human urine. Sample dilution with 1% (v/v) HNO(3) as the only required pre-treatment was shown to prevent contamination of the sample introduction system and to reduce polyatomic interferences from sample components. The origin of the blank signal at masses of gallium isotopes, 71 and 69, was investigated using high-resolution ICP-MS and attributed, respectively, to the formation of (36)Ar(35)Cl(+) and (40)Ar(31)P(+) ions and, tentatively, to a triplet of doubly charged ions of Ba, La, and Ce. The accuracy and precision performance was tested by evaluating a set of parameters for analytical method validation. The developed assay has been applied for the determination of gallium in urine samples spiked with GaQ(3). The achieved recoveries (95-102%) and quantification limit of 0.2 μg L(-1) emphasize the practical applicability of the presented analytical approach to monitor renal elimination of GaQ(3) at all dose levels in clinical trials that are currently in progress.

  4. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  5. The Soviet-American gallium experiment at Baksan

    SciTech Connect

    Abazov, A. I.; Abdurashitov, D. N.; Anosov, O. L.; Danshin, S. N.; Eroshkina, L. A.; Faizov, E. L.; Gavrin, V. N.; Kalikhov, A. V.; Knodel, T. V.; Knyshenko, I. I.; Kornoukhov, V. N.; Mezentseva, S. A.; Mirmov, I. N.; Ostrinsky, A. I.; Petukhov, V. V; Pshukov, A. M.; Revzin, N. Ye; Shikhin, A. A.; Slyusareva, Ye. D.; Timofeyev, P. V.; Veretenkin, E. P.; Vermul, V. M.; Yantz, V. E.; Zakharov, Yu.; Zatsepin, G. T.; Zhandarov, V. I.

    1990-01-01

    A gallium solar neutrino detector is sensitive to the full range of the solar neutrino spectrum, including the low-energy neutrinos from the fundamental proton-proton fusion reaction. If neutrino oscillations in the solar interior are responsible for the suppressed {sup 8}B flux measured by the Homestake {sup 37}Cl experiment and the Kamiokande water Cherenkov detector, then a comparison of the gallium, chlorine, and water results may make possible a determination of the neutrino mass difference and mixing angle. A 30-ton gallium detector is currently operating in the Baksan laboratory in the Soviet Union, with a ratio of expected solar signal to measured background (during the first one to two {sup 71}Ge half lives) of approximately one. 28 refs.

  6. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  7. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  8. Platinum stable isotopes in ferromanganese crust and nodules

    NASA Astrophysics Data System (ADS)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  9. Magnetostriction and magnetic heterogeneities in iron-gallium.

    PubMed

    Laver, M; Mudivarthi, C; Cullen, J R; Flatau, A B; Chen, W-C; Watson, S M; Wuttig, M

    2010-07-09

    Iron-gallium alloys Fe(1-x)Ga(x) exhibit an exceptional increase in magnetostriction with gallium content. We present small-angle neutron scattering investigations on a Fe(0.81)Ga(0.19) single crystal. We uncover heterogeneities with an average spacing of 15 nm and with magnetizations distinct from the matrix. The moments in and around the heterogeneities are observed to reorient with an applied magnetic field or mechanical strain. We discuss the possible roles played by nanoscale magnetic heterogeneities in the mechanism for magnetostriction in this material.

  10. Magnetostriction and Magnetic Heterogeneities in Iron-Gallium

    SciTech Connect

    Laver, M.; Mudivarthi, C.; Cullen, J. R.; Wuttig, M.; Flatau, A. B.; Chen, W.-C.; Watson, S. M.

    2010-07-09

    Iron-gallium alloys Fe{sub 1-x}Ga{sub x} exhibit an exceptional increase in magnetostriction with gallium content. We present small-angle neutron scattering investigations on a Fe{sub 0.81}Ga{sub 0.19} single crystal. We uncover heterogeneities with an average spacing of 15 nm and with magnetizations distinct from the matrix. The moments in and around the heterogeneities are observed to reorient with an applied magnetic field or mechanical strain. We discuss the possible roles played by nanoscale magnetic heterogeneities in the mechanism for magnetostriction in this material.

  11. Absence of gallium-67 avidity in diffuse pulmonary calcification

    SciTech Connect

    Lecklitner, M.L.; Foster, R.W.

    1985-09-01

    Diffuse pulmonary uptake by bone-seeking radiopharmaceuticals has been reported previously but, in the same patient, would pulmonary uptake of Ga-67 citrate yield clinically meaningful results. A patient with hypercalcemia and renal failure in whom bone scintigraphy demonstrated striking diffuse bilateral pulmonary uptake, but subsequent gallium imaging demonstrated no evidence of pulmonary uptake greater than body background, is discussed. We conclude that pulmonary uptake of gallium cannot be attributed to calcium deposition and should carry the same clinical significance in regard to inflammatory and malignant lesions as would be assigned to patients without pulmonary calcific deposits.

  12. Renal lymphoma imaged by ultrasound and Gallium-67

    SciTech Connect

    Shirkhoda, A.; Staab, E.V.; Mittelstaedt, C.A.

    1980-10-01

    Lymphomatous involvement of the kidneys, usually a secondary process, may be seen as single or multiple sonolucent or weakly echogenic masses on ultrasound. The majority of these patients have a known diagnosis of lymphoma and are being evaluated for change in nodal mass size, flank pain, and/or deteriorating renal function. Occasionally, these masses are discovered on an excretory urogram and are further investigated with ultrasound. The ultrasound findings may be confirmed with gallium scanning. Five such cases are presented along with the ultrasonic and gallium scan findings.

  13. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.

    PubMed

    Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu

    2013-10-01

    Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives.

  14. Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.

    PubMed

    Sugawara, Kazuharu; Okusawa, Makoto; Takano, Yusaku; Kadoya, Toshihiko

    2014-01-01

    Electrodes modified with gallium(III) complexes were constructed to detect ovalbumin (OVA). For immobilization of a gallium(III)-nitrilotriacetate (NTA) complex, the electrode was first covered with collagen film. After the amino groups of the film had reacted with isothiocyanobenzyl-NTA, the gallium(III) was then able to combine with the NTA moieties. Another design featured an electrode cast with a gallium(III)-acetylacetonate (AA) complex. The amount of gallium(III) in the NTA complex was equivalent to one-quarter of the gallium(III) that could be utilized from an AA complex. However, the calibration curves of OVA using gallium(III)-NTA and gallium(III)-AA complexes were linear in the ranges of 7.0 × 10(-11) - 3.0 × 10(-9) M and 5.0 × 10(-10) - 8.0 × 10(-9) M, respectively. The gallium(III) on the electrode with NTA complex had high flexibility due to the existence of a spacer between the NTA and the collagen film, and, therefore, the reactivity of the gallium(III) to OVA was superior to that of the gallium(III)-AA complex with no spacer.

  15. Unintentional gallium incorporation in InGaN layers during epitaxial growth

    NASA Astrophysics Data System (ADS)

    Zhou, Kun; Ren, Huaijin; Ikeda, Masao; Liu, Jianping; Ma, Yi; Gao, Songxin; Tang, Chun; Li, Deyao; Zhang, Liquan; Yang, Hui

    2017-01-01

    Unintentional gallium incorporation was observed and investigated in the epitaxial growth of InGaN by metalorganic vapor phase epitaxy. InGaN was grown without intentional gallium precursor and the gallium incorporation rate was found not dependent on TEGa source but was significantly influenced by temperature and TMIn source flow. The source of the unintentional gallium incorporation is confirmed to be from the flow distributor of the reactor. The incorporation mechanism was analyzed to be the diffusion of resultant of transmetalation reaction between TMIn or its decomposed products (for example DMIn) and residual gallium. Due to the unintentional gallium incorporation, the growth rate and indium content of InGaN layer are determined by indium source, gallium source and the growth temperature.

  16. Method for improving the growth of cadmium telluride on a gallium arsenide substrate

    SciTech Connect

    Reno, J.L.

    1990-12-31

    A method for preparing a gallium arsenide substrate, prior to growing a layer of cadmium telluride on a support surface thereof. The preparation includes the steps of cleaning the gallium arsenide substrate and thereafter forming prepatterned shapes on the support surface of the gallium arsenide substrate. The layer of cadmium telluride then grown on the prepared substrate results in dislocation densities of approximately 1{times}10{sup 6}/cm{sup 2} or less. The prepatterned shapes on the support surface of the gallium arsenide substrate are formed by reactive ion etching an original outer surface of the gallium arsenide substrate and into the body of the gallium arsenide substrate to a depth of at least two microns. The prepatterned shapes have the appearance of cylindrical mesas each having a diameter of at lease twelve microns. After the mesas are formed on the support surface of the gallium arsenide substrate, the substrate is again cleaned.

  17. Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis

    SciTech Connect

    Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.

    1989-01-01

    Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patients with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake.

  18. Gallium arsenide processing for gate array logic

    NASA Technical Reports Server (NTRS)

    Cole, Eric D.

    1989-01-01

    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  19. Gallium arsenide processing for gate array logic

    NASA Astrophysics Data System (ADS)

    Cole, Eric D.

    1989-09-01

    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  20. Remarkable NO oxidation on single supported platinum atoms.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Stocks, G M; Moses-DeBusk, Melanie

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-Al2O3 supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3 supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. Thus, the overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.

  1. Remarkable NO oxidation on single supported platinum atoms

    SciTech Connect

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; Moses-DeBusk, Melanie

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-alumina-supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3-supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. The overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.

  2. Remarkable NO oxidation on single supported platinum atoms

    PubMed Central

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; Moses-DeBusk, Melanie

    2014-01-01

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-Al2O3 supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3 supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. Thus, the overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms. PMID:25429995

  3. Remarkable NO oxidation on single supported platinum atoms

    DOE PAGES

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; ...

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-alumina-supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3-supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms aremore » as active as fully formed platinum particles. The overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.« less

  4. Decorating the lanthanide terminus of self-assembled heterodinuclear lanthanum(III)/gallium(III) helicates.

    PubMed

    Albrecht, Markus; Latorre, Irene; Mehmeti, Gent; Hengst, Konstantin; Oppel, Iris M

    2011-12-07

    Arylacylhydrazones of 2,3-dihydroxybenzaldehyde are appropriate ligands for the preparation of heterodinuclear triple-stranded helicates involving high coordinated lanthanide(III) ions. In the present study, three different kinds of substituents are introduced at the ligands in order to modify the organic periphery of the coordination compounds: (1) alkoxy groups are attached to the terminal phenyl groups, (2) NH protons of the hydrazones are substituted by phenyl moieties and (3) amino acid bearing units are attached to the terminus of the ligand. The new ligands nicely form the desired triple-stranded gallium(III)-lanthanum(III) complexes [(5a-c,7,12,15)(3)GaLa] of which the highly phenylated derivative was crystallized and studied by X-ray diffraction.

  5. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    SciTech Connect

    Jacob, Rajani Philip, Rachel Reena Nazer, Sheeba Abraham, Anitha Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-28

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ∼1.78eV with high absorption coefficient ∼10{sup 6}/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ∼2.6Ωm and the films showed good photo response.

  6. Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH

    SciTech Connect

    Evans, Michael J.; Lee, Myeong H.; Holland, Gregory P.; Daemen, Luke L.; Sankey, Otto F.; Haeussermann, Ulrich

    2009-08-15

    Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH (AeGaTtH) have been investigated by means of inelastic neutron scattering (INS) and first principles calculations. The compounds contain separated Ga-H units being part of a two dimensional polyanionic layer, [TtGaH]{sup 2-} (Tt=Si, Ge, Sn). The INS spectra show internal Ga-H bending and stretching modes at frequencies around 900 and 1200 cm{sup -1}, respectively. While the stretching mode is virtually invariant with respect to the variable chemical environment of the Ga-H unit, the bending mode frequency varies and is highest for BaGaSiH and lowest for BaGaSnH. The stretching mode is a direct measure of the Ga-H bond strength, whereas the bending mode reflects indirectly the strength of alkaline earth metal-hydrogen interaction. Accordingly, the terminal Ga-H bond in solid state AeGaTtH is distinct, but-compared to molecular gallium hydrides-very weak. - Graphical abstract: Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH have been investigated and revealed Ga-H stretching mode frequencies around 1200 cm{sup -1}. This implies that the terminal Ga-H bond in solid state polyanionic gallium hydrides is very weak compared to molecular gallium hydride species.

  7. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires

    SciTech Connect

    Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R.

    2008-02-11

    Molecular beam epitaxy Ga-assisted synthesis of GaAs nanowires is demonstrated. The nucleation and growth are seen to be related to the presence of a SiO{sub 2} layer previously deposited on the GaAs wafer. The interaction of the reactive gallium with the SiO{sub 2} pinholes induces the formation of nanocraters, found to be the key for the nucleation of the nanowires. With SiO{sub 2} thicknesses up to 30 nm, nanocraters reach the underlying substrate, resulting into a preferential growth orientation of the nanowires. Possibly related to the formation of nanocraters, we observe an incubation period of 258 s before the nanowires growth is initiated.

  8. Photodynamic antimicrobial chemotherapy activity of gallium tetra-(4-carboxyphenyl) porphyrin when conjugated to differently shaped platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Managa, Muthumuni; Nyokong, Tebello

    2015-11-01

    This work reports on the conjugation of differently shaped Pt nanoparticles (PtNPs) with ClGa(III) 5,10,15,20-tetrakis-(4-carboxyphenyl) porphyrin (ClGaTCPP). The resulting conjugates were used for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. The degree of photo-inactivation is dependent on concentration of the conjugates, light dose (fluence) and illumination time. The log reduction obtained for ClGaTCPP when conjugated to cubic PtNPs was 4.64 log (which indicate 99.99% of the bacteria have been killed), which is much higher than 3.94 log unit for ClGaTCPP-Hexagonal PtNPs and 3.31 log units for ClGaTCPP-Unshaped PtNPs. ClGaTCPP alone gave a log unit reduction of less than 3, showing the importance of conjugation to PtNPs.

  9. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  10. Strategies for the fabrication of porous platinum electrodes.

    PubMed

    Kloke, Arne; von Stetten, Felix; Zengerle, Roland; Kerzenmacher, Sven

    2011-11-16

    Porous platinum is of high technological importance due to its various applications in fuel cells, sensors, stimulation electrodes, mechanical actuators and catalysis in general. Based on a discussion of the general principles behind the reduction of platinum salts and corresponding deposition processes this article discusses techniques available for platinum electrode fabrication. The numerous, different strategies available to fabricate platinum electrodes are reviewed and discussed in the context of their tuning parameters, strengths and weaknesses. These strategies comprise bottom-up approaches as well as top-down approaches. In bottom-up approaches nanoparticles are synthesized in a fi rst step by chemical, photochemical or sonochemical means followed by an electrode formation step by e.g. thin fi lm technology or network formation to create a contiguous and conducting solid electrode structure. In top-down approaches fabrication starts with an already conductive electrode substrate. Corresponding strategies enable the fabrication of substrate-based electrodes by e.g. electrodeposition or the fabrication of self-supporting electrodes by dealloying. As a further top-down strategy, this review describes methods to decorate porous metals other than platinum with a surface layer of platinum. This way, fabrication methods not performable with platinum can be applied to the fabrication of platinum electrodes with the special benefit of low platinum consumption.

  11. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    PubMed

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  12. Discovery of gallium, germanium, lutetium, and hafnium isotopes

    SciTech Connect

    Gross, J.L.; Thoennessen, M.

    2012-09-15

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  13. Deformation potential constants of gallium impurity in germanium

    NASA Astrophysics Data System (ADS)

    Martin, A. D.; Fisher, P.; Freeth, C. A.; Salib, E. H.; Simmonds, P. E.

    1983-12-01

    The deformation potential constants and intensity parameters of some of the states and optically induced transitions of gallium impurity in germanium have been determined both experimentally and theoretically. The latter are based on the effective mass wavefunctions of Kohn and Schechter and of Mendelson and James. Reasonably good agreement is found between the experimental and theoretical results.

  14. The 100 micron detector development program. [gallium doped germanium photoconductors

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1976-01-01

    An effort to optimize gallium-doped germanium photoconductors (Ge:Ga) for use in space for sensitive detection of far infrared radiation in the 100 micron region is described as well as the development of cryogenic apparatus capable of calibrating detectors under low background conditions.

  15. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.

  16. Gallium accumulation in the stomach. A frequent incidental finding

    SciTech Connect

    MacMahon, H.; Vyborny, C.; Sephardari, S.; Kirchner, P.; Ryan, J.

    1985-10-01

    Accumulation of tracer by the stomach is a frequent incidental occurrence on gallium scans. Gastric concentration of Ga-67 equal to or greater than that seen in the liver was observed in approximately 10% of patients in a large series. Although a few of these patients had known or subsequently demonstrated gastric pathologic conditions, most had no clinically or radiographically identifiable gastric disease.

  17. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  18. Cellular uptake and anticancer activity of carboxylated gallium corroles

    PubMed Central

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  19. Characterization of Heavily Doped ALUMINUM(X)GALLIUM(1 -X)ARSENIDE:TELLURIUM Grown on Semi-Insulating Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Malloy, Kevin John

    The ability to dope a semiconductor into near metallic conduction widens its usefulness as a material and thereby permits the construction of new devices. Aluminum Gallium Arsenide is no exception. Heavily doped n-type Aluminum Gallium Arsenide has important device applications in tandem junction solar cells and in high electron mobility transistors. Aluminum Gallium Arsenide heavily doped with Tellurium was grown on semi-insulating Gallium Arsenide using liquid phase epitaxy. It was found that the addition of 0.4 atomic percent Tellurium to the melt reduced the Aluminum content of solid Aluminum Gallium Arsenide by up to 20 percent. A model was offered for this behavior involving a differential in the degree of association between Aluminum-Tellurium and Gallium-Tellurium in the liquid phase epitaxial melt. The electrical properties of n-type Aluminum Gallium Arsenide grown on semi-insulating Gallium Arsenide were modeled as a two sheet conductor. The two conductors consisted of the epitaxial n-type Aluminum Gallium Arsenide layer and the induced two dimensional electron gas present at the n-type Aluminum Gallium Arsenide-Gallium Arsenide heterojunction. This model showed the two dimensional electron gas as responsible for the constant low temperature carrier concentration observed experimentally. It also successfully explained the observation of a slope equal to the donor ionization potential instead of the donor ionization potential divided by two in the plot of the log of the carrier concentration versus reciprocal temperature. Because of the chemically independent nature of the deep donor ionization potential in Aluminum Gallium Arsenide, a minima interaction model was introduced to describe the donor level. The major matrix elements were determined to be V(,LX) = 4mV (+OR-) 1mV and V(,LL) = 40mV (+OR-) 10mV. These minima interaction matrix elements were an order of magnitude larger than suggested by theory, thus indicating the possible non-coulombic nature of

  20. DNA interactions of new cytotoxic tetrafunctional dinuclear platinum complex trans,trans-[{PtCl2(NH3)}2(piperazine)].

    PubMed

    Brabec, Viktor; Christofis, Petros; Slámová, Martina; Kostrhunová, Hana; Nováková, Olga; Najajreh, Yousef; Gibson, Dan; Kaspárková, Jana

    2007-06-15

    A new tetrafunctional dinuclear platinum complex trans,trans-[{PtCl2(NH3)}2(piperazine)] with sterically rigid linking group was designed, synthesized and characterized. In this novel molecule, the DNA-binding features of two classes of the platinum compounds with proven antitumor activity are combined, namely trans oriented bifunctional mononuclear platinum complexes with a heterocyclic ligand and polynuclear platinum complexes. DNA-binding mode of this new complex was analyzed by various methods of molecular biology and biophysics. The complex coordinates DNA in a unique way and interstrand and intrastrand cross-links are the predominant lesions formed in DNA in cell-free media and in absence of proteins. An intriguing aspect of trans,trans-[{PtCl2(NH3)}2(piperazine)] is that, using a semi-rigid linker, interstrand cross-linking is diminished relative to other dinuclear platinum complexes with flexible linking groups and lesions that span several base pairs, such as tri- and tetrafunctional adducts, become unlikely. In addition, in contrast to the inability of trans,trans-[{PtCl2(NH3)}2(piperazine)] to cross-link two DNA duplexes, the results of the present work convincingly demonstrate that this dinuclear platinum complex forms specific DNA lesions which can efficiently cross-link proteins to DNA. The results substantiate the view that trans,trans-[{PtCl2(NH3)}2(piperazine)] or its analogues could be used as a tool for studies of DNA properties and their interactions or as a potential antitumor agent. The latter view is also corroborated by the observation that trans,trans-[{PtCl2(NH3)}2(piperazine)] is a more effective cytotoxic agent than cisplatin against human tumor ovarian cell lines.

  1. Gallium nitrate ameliorates type II collagen-induced arthritis in mice.

    PubMed

    Choi, Jae-Hyeog; Lee, Jong-Hwan; Roh, Kug-Hwan; Seo, Su-Kil; Choi, Il-Whan; Park, Sae-Gwang; Lim, Jun-Goo; Lee, Won-Jin; Kim, Myoung-Hun; Cho, Kwang-rae; Kim, Young-Jae

    2014-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease. Gallium nitrate has been reported to reserve immunosuppressive activities. Therefore, we assessed the therapeutic effects of gallium nitrate in the mouse model of developed type II collagen-induced arthritis (CIA). CIA was induced by bovine type II collagen with Complete Freund's adjuvant. CIA mice were intraperitoneally treated from day 36 to day 49 after immunization with 3.5mg/kg/day, 7mg/kg/day gallium nitrate or vehicle. Gallium nitrate ameliorated the progression of mice with CIA. The clinical symptoms of collagen-induced arthritis did not progress after treatment with gallium nitrate. Gallium nitrate inhibited the increase of CD4(+) T cell populations (p<0.05) and also inhibited the type II collagen-specific IgG2a-isotype autoantibodies (p<0.05). Gallium nitrate reduced the serum levels of TNF-α, IL-6 and IFN-γ (p<0.05) and the mRNA expression levels of these cytokine and MMPs (MMP2 and MMP9) in joint tissues. Western blotting of members of the NF-κB signaling pathway revealed that gallium nitrate inhibits the activation of NF-κB by blocking IκB degradation. These data suggest that gallium nitrate is a potential therapeutic agent for autoimmune inflammatory arthritis through its inhibition of the NF-κB pathway, and these results may help to elucidate gallium nitrate-mediated mechanisms of immunosuppression in patients with RA.

  2. Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity.

    PubMed

    Vieites, Marisol; Otero, Lucía; Santos, Diego; Olea-Azar, Claudio; Norambuena, Ester; Aguirre, Gabriela; Cerecetto, Hugo; González, Mercedes; Kemmerling, Ulrike; Morello, Antonio; Diego Maya, Juan; Gambino, Dinorah

    2009-03-01

    Eight new platinum(II) complexes with 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-trypanosomal activity were synthesized, characterized and in vitro evaluated. Most of the complexes showed IC(50) values in the micromolar range against two different strains of Trypanosoma cruzi, causative agent of Chagas disease (American Trypanosomiasis). In addition, most of the newly developed complexes, together with the analogous platinum 5-nitrofuraldehyde containing thiosemicarbazones previously reported, resulted more active than the reference trypanocidal drug nifurtimox on the infective trypomastigote form of the parasite. Their capacity to produce free radicals that could lead to parasite death was evaluated by ESR experiments in the parasite and by respiration measurements. Compounds were tested for their DNA interaction ability. Results showed that some of the compounds could act as dual inhibitors in the parasite, through production of toxic free radicals and interaction with DNA. All the results were compared with those previously reported for the free ligands, the analogous palladium(II) compounds and the previously reported series of platinum(II) compounds.

  3. Sputtering of tin and gallium-tin clusters

    SciTech Connect

    Lill, T.; Calaway, W.F.; Ma, Z.; Pellin, M.J.

    1994-08-01

    Tin and gallium-tin clusters have been produced by 4 keV Ar{sup +} ion bombardment of polycrystalline tin and the gallium-tin eutectic alloy and analyzed by time-of-flight mass spectrometry. The sputtered neutral species were photoionized with 193 nm (6.4 eV) excimer laser light. Neutral tin clusters containing up to 10 atoms and mixed gallium-tin clusters Ga{sub (n-m)}Sn{sub m} with n {<=} 4 for the neutrals and N {<=} 3 for the sputtered ionic species have been detected. Laser power density dependent intensity measurements, relative yields, and kinetic energy distributions have been measured. The abundance distributions of the mixed clusters have been found to be nonstatistical due to significant differences in the ionization efficiencies for clusters with equal nuclearity but different number of tin atoms. The results indicate that Ga{sub 2}Sn and Ga{sub 3}Sn like the all-gallium clusters have ionization potentials below 6.4 eV. In the case of Sn{sub 5}, Sn{sub 6}, GaSn and Ga{sub (n-m)}Sn{sub m} clusters with n=2 to 4 and m>1, the authors detect species that have sufficient internal energy to be one photon ionized despite ionization potentials that are higher 6.4 eV. The tin atom signal that is detected can be attributed to photofragmentation of dimers for both sputtering from polycrystalline tin and from the gallium-tin eutectic alloy.

  4. Gallium Oxide Nanostructures for High Temperature Sensors

    SciTech Connect

    Chintalapalle, Ramana V.

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  5. Gallium vacancies and gallium antisites as acceptors in electron-irradiated semi-insulating GaAs

    SciTech Connect

    Corbel, C.; Pierre, F. ); Saarinen, K.; Hautojaervi, P. ); Moser, P. )

    1992-02-15

    Positron-lifetime measurements show that acceptors are produced in semi-insulating GaAs by 1.5-MeV electron irradiation at 20 K. Two types of acceptors can be separated. The first ones are negative vacancy-type defects which anneal out over a very broad range of temperature between 77 and 500 K. The second ones are negative ion-type defects which are stable still at 450 K. The data show that these two types of defects are independent and do not form close pairs. We attribute both to gallium-related defects. We identify the ion-type acceptors as isolated gallium antisites. The vacancy-type acceptors are identified as gallium vacancies which are isolated or involved in negatively charged complexes. The introduction rate of the gallium antisite is estimated to be 1.8{plus minus}0.3 cm{sup {minus}1} in the fluence range 10{sup 17}--10{sup 18} cm{sup {minus}2} for 1.5-MeV electron irradiation at 20 K.

  6. Effect of thioethers on DNA platination by trans-platinum complexes.

    PubMed

    Li, Chan; Huang, Rongrong; Ding, Yi; Sletten, Einar; Arnesano, Fabio; Losacco, Maurizio; Natile, Giovanni; Liu, Yangzhong

    2011-09-05

    Increasing evidence indicates that sulfur-containing molecules can play important roles in the activity of platinum anticancer drugs. Although nuclear DNA is retained to be the ultimate target, these platinum compounds can readily react with a variety of other substrates containing a soft donor atom, such as proteins, peptides, and low molecular weight biomolecules, before reaching DNA. In a recent study it was demonstrated that the DNA platination rate of a trans-geometry antitumor drug was dramatically enhanced by methionine binding, thus suggesting that the thioether could serve as a catalyst for DNA platination. In this work we performed detailed studies on the reactions of a widely investigated and very promising trans-platinum complex having two iminoethers and two chlorido ligands, trans-EE, with methionine (Met) and guanosine 5'-monophosphate (GMP). The results show that in the reaction of trans-EE with methionine the bisadduct is the dominant species in the early stage of the reaction. The reaction is also influenced by chloride concentration: at low NaCl the bis-methionine adduct is formed in preference, whereas the monoadduct is favored at high NaCl concentration. Not only the monomethionine complex, trans-PtCl(E-iminoether)(2)(AcMet), but also the bis-methionine adduct, trans-Pt(E-iminoether)(2)(AcMet)(2), which has already lost both leaving chlorides, can react with GMP to form the ternary platinum complex trans-Pt(E-iminoether)(2)(AcMet)(GMP). The latter reaction discloses the possibility of direct coordination to DNA of a platinum-protein adduct, in which the two carrier ligands remain intact; this is not the case of cis-oriented platinum complexes, like cisplatin, for which formation of a ternary complex is usually accompanied by loss of at least one carrier ligand. Interestingly, isomerization from S to N coordination of one methionine takes place in the bis-methionine complex at neutral pH, while the monoadduct appears to be stable. The shift from

  7. Platinum(II) Metallomesogens: New External-Stimuli-Responsive Photoluminescence Materials.

    PubMed

    Cuerva, Cristián; Campo, José A; Cano, Mercedes; Lodeiro, Carlos

    2016-07-11

    New dicatenar isoquinoline-functionalized pyrazoles, [Hpz(R(n,n)iq) ] (R(n,n)=C6 H3 (OCn H2n+1 )2 ; n=4, 6, 8, 10, 12, 14, 16, 18), have been strategically designed and synthesized to induce mesomorphic and luminescence properties into the corresponding bis(isoquinolinylpyrazolate)platinum(II) complexes [Pt(pz(R(n,n)iq) )2 ]. Thermal studies reveal that all platinum(II) compounds exhibit columnar mesophases over an exceptionally wide temperature range, above 300 °C in most cases. The photophysical behavior was also investigated in solution and in the solid state. As a consequence of the formation of Pt⋅⋅⋅Pt interactions, the weak greenish emission of the platinum derivatives turns bright orange in the mesophase. Additionally, the complexes are sensitive to a great variety of external inputs, such as temperature, mechanical grinding, pressure, solvents, and vapors. On this basis, they are used as dopant agents of a polyvinylpyrrolidone or poly(methyl methacrylate) polymer matrix to achieve stimuli-responsive thin films.

  8. Synthesis, structure and characterization of two new open-framework gallium phosphite-oxalates of varying dimensionality

    SciTech Connect

    Li, Caixia; Huang, Liangliang; Zhou, Mingdong; Xia, Jing; Ma, Hongwei; Zang, Shuliang; Wang, Li

    2013-12-15

    Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates [Ga{sub 2}(HPO{sub 3}){sub 2}(H{sub 2}PO{sub 3}){sub 2}(C{sub 2}O{sub 4})](C{sub 6}N{sub 2}H{sub 16}) (I) and [Ga{sub 2}(HPO{sub 3}){sub 2}(H{sub 2}PO{sub 3})(C{sub 2}O{sub 4})](C{sub 6}N{sub 2}H{sub 16}){sub 0.5} (II) have been synthesized under solvothermal and hydrothermal conditions, respectively and further characterized by powder X-ray diffraction, IR spectroscopy, TGA, ICP-AES and elemental analyses. Single crystal X-ray diffraction reveals that the striking feature of I and II is that they possess the same second building unit (SBU) Ga{sub 2}P{sub 2} constructed from two GaO{sub 6} octahedra and two [HPO{sub 3}{sup 2−}] pseudo-pyramids sharing oxygen atoms. However, due to the different connecting fashions of SBUs, [C{sub 2}O{sub 4}{sup 2−}] groups and [H{sub 2}PO{sub 3}{sup −}] pseudo-pyramids, the final frameworks of them are distinctly different. Compound I shows 2D layered structures with 8-membered ring (8-MR) windows in the ab plane while compound II presents a 3D open-framework with 8-MR channels along the b axis. - Graphical abstract: Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates I showing 2D layered structure and II presenting 3D open-framework have been synthesized under solvothermal and hydrothermal conditions, respectively. - Highlights: • Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates have been synthesized under solvothermal and hydrothermal conditions, respectively. • The same second building unit (SBU) is displayed in both compounds. • Compound I shows 2D layered structure with 8-MR windows while compound II presents 3D open-framework with 8-MR channels. • The solvent plays an important role on the formation of microporous compounds.

  9. Synthesis of the donor acceptor ligand 2-(4-dimethylaminobenzylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (dbpcd) and X-ray diffraction structure of the platinum(II) compound PtCl2(dbpcd) 1.5CH2Cl2

    SciTech Connect

    Atim, Silvia; Wang, Xiaoping; Richmond, Michael G.

    2010-01-01

    The synthesis of the donor acceptor ligand 2-(4-dimethylaminobenzylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (dbpcd) from the Knoevenagel condensation of 4-(dimethylamino)benzaldehyde with 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) is reported. This new ligand reacts with PtCl2(cod) to afford the platinum(II) complex PtCl2(dbpcd) in high yield. The dbpcd ligand and PtCl2(dbpcd) have been isolated and characterized by IR and NMR spectroscopies, cyclic voltammetry, MO calculations at the extended H ckel level, and X-ray diffraction analysis in the case of PtCl2(dbpcd).

  10. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  11. Synthesis of Two New Group 13 Benzoato-Chloro Complexes: A Structural Study of Gallium and Indium Chelating Carboxylates

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Hepp, Aloysius F.; Woloszynek, Robert; Protasiewicz, John D.; Dequeant, Michael; Ren, Tong

    2010-01-01

    Two new heteroleptic chelated-benzoato gallium (III) and indium (III) complexes have been prepared and structurally characterized. The molecular structures of [GaCl2(4-Mepy)2(O2CPh)]4-Mepy (1) and [InCl(4-Mepy)2(O2CPh)2]4-Mepy (2) have been determined by single-crystal x-ray diffraction. The gallium compound (1) is a distorted octahedron with cis-chloride ligands co-planar with the chelating benzoate and the 4-methylpyridines trans to each other. This is the first example of a Ga(III) structure with a chelating benzoate. The indium compound (2) is a distorted pentagonal bipyramid with two chelating benzoates, one 4-methylpyridine in the plane and a chloride trans to the other 4-methylpyridine. The indium bis-benzoate is an unusual example of a seven-coordinate structure with classical ligands. Both complexes, which due to the chelates, could also be described as pseudo-trigonal bipyramidal, include a three-bladed motif with three roughly parallel aromatic rings that along with a solvent of crystallization and electron-withdrawing chloride ligand(s) stabilize the solid-state structures.

  12. Vapor-deposited platinum as a fuel-cell catalyst

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1974-01-01

    Electrodes are prepared by vacuum deposition of platinum on nickel substrate with conventional vapor-deposition apparatus. Amount of platinum loaded on substrate can be veried by changing exposure time during deposition. These electrodes are significantly more effective than conventional oxygen electrodes.

  13. A DFT study of oxygen dissociation on platinum based nanoparticles.

    PubMed

    Jennings, Paul C; Aleksandrov, Hristiyan A; Neyman, Konstantin M; Johnston, Roy L

    2014-01-21

    Density functional theory calculations are performed on 38 and 79 metal atom truncated octahedron clusters to study oxygen dissociation as a model for the initial stage of the oxygen reduction reaction. Pure platinum and alloyed platinum-titanium core-shell systems are investigated. It is found that barrierless oxygen dissociation occurs on the (111) facet of the pure platinum clusters. A barrier of ~0.3 eV is observed on the (100) facet. For the alloyed cluster, dissociation barriers are found on both facets, typically ~0.6 eV. The differences between the two systems are attributed to the ability of oxygen to distort the (111) surface of the pure platinum clusters. We show that flexibility of the platinum shell is crucial in promotion of fast oxygen dissociation. However, the titanium core stabilises the platinum shell upon alloying, resulting in a less easily distortable surface. Therefore, whilst an alloyed platinum-titanium electrocatalyst has certain advantages over the pure platinum electrocatalyst, we suggest alloying with a more weakly interacting metal will be beneficial for facilitating oxygen dissociation.

  14. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOEpatents

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  15. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan [Havana, IL; Silver, Ronald G [Peoria, IL; Zemskova, Svetlana Mikhailovna [Edelstein, IL; Eckstein, Colleen J [Metamora, IL

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  16. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2012-08-07

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  17. Copper gallium diselenide thin film absorber growth for solar cell device fabrication

    NASA Astrophysics Data System (ADS)

    Kaczynski, Ryan

    2007-12-01

    A custom-built migration-enhanced epitaxy reactor originally optimized for CuInSe2 (CIS) deposition was modified to grow gallium-containing compound semiconductor thin films, such as CuGaSe2 (CGS) and CuIn1-xGaxSe2 (CIGS). The addition of gallium allows for the manufacturing of solar cell absorber layers with wider band gaps. Three distinct growth recipes under several growth temperatures and a wide range of metal-composition ratios are used to deposit polycrystalline CGS thin films. The surface morphology of gallium-rich films is typically very uniform, with long needle-like grains when grown by the first recipe, a constant copper-rate process. In contrast, copper-rich films grown by this same recipe or by a modified three-stage process have island structures with very large grains embedded in a matrix region that possesses small grains. The surface morphology becomes more uniform and the grains in the matrix region become larger when a higher growth temperature is used. The third recipe, an emulated three-stage process, does not produce films with an island-matrix structure, and the grains are uniformly large. The highest conversion efficiency achieved for solar cells based on CGS is 5.3%, delivered by a copper-rich absorber deposited at the highest sustainable growth temperature of 491°C. This device has a large fill factor of 66%, but the open-circuit voltage of 0.48 V is lower than what is expected from a wide band-gap absorber. A set of CIGS solar cells was completely fabricated and characterized in-house. This led to the most efficient device produced from an absorber grown in our reactor, in the form of a 9% CIS solar cell featuring a one-micron film deposited at 491°C. Finally, a dynamic reactor model was created to describe the deposition environment in our epitaxial reactor. All relevant physical features are incorporated, including the cyclic motion of a rotating platen and the spatial distribution of the flux produced by three metal effusion sources

  18. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  19. Far-Infrared and Optical Studies of Gallium Arsenide and Aluminum Gallium Arsenide Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Stanaway, Mark Brian

    Available from UMI in association with The British Library. Requires signed TDF. This thesis reports far-infrared (FIR) and photoluminescence studies, performed at low temperatures (4.2K) and at magnetic fields up to 25T, of selectively and inadvertently doped bulk and low dimensional gallium arsenide (GaAs) and aluminium gallium arsenide (AlGaAs) semiconductor structures grown by molecular beam epitaxy. High-resolution FIR magnetospectroscopy of ultra -high mobility n-GaAs reveals a variety of shallow donor intra-impurity transitions plus spin-split higher Landau level transitions in the photoconductive response. The first observation of polarons bound to D^ - ions in bulk n-GaAs is reported. The excited state spectrum of the confined silicon donor in GaAs/AlGaAs multi-quantum wells (MQWs) has been examined. Narrower linewidths and more higher excited state donor transitions are noted in the present photoconductive investigation compared with previous reports. The electron recombination dynamics has been examined in silicon-doped GaAs/AlGaAs MQWs and homogeneous and sheet -doped bulk n-GaAs samples using time-resolved FIR photoconductivity. The extrinsic response of doped MQW structures suggests a potential use as a fast, sensitive detectors of FIR. FIR transmission measurements are reported for GaAs/AlGaAs quantum wells (QWs) of various widths in magnetic fields of up to 20T, tilted away from the normal to the QW plane by angles up to theta = 50^circ. Deviation of the cyclotron resonance field from a costheta law are interpreted using theoretical models describing Landau level/electric subband coupling. The in-plane magnetic field and excitation power dependence of the photoluminescence intensity of a GaAs/AlGaAs QW spectral feature is interpreted in terms of charge transfer in the QW, using a coupled oscillator model, and the efficiency of nonradiative electronic traps. In-plane magnetic field studies of the photoluminescence from a superlattice structure

  20. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  1. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides

    DTIC Science & Technology

    2014-08-01

    with cholesterol has been synthesized. The materials synthesized have the formula trans-Pt(PR3)( cholesterol (3 or 4)-ethynyl benzoate)(1-ethynyl-4-X...describe the liquid crystal behavior of a series of cholesterol - containing platinum acetylides having the general formula shown in Table 1. We found a...phase are R = Et, A = COO- Cholesterol , B = H, X = polar group and Y = H. EXPERIMENT Table 1 lists the compounds we synthesized. The structure

  2. Antitumor activity of phenylene bridged binuclear bis(imino-quinolyl)palladium(II) and platinum(II) complexes.

    PubMed

    Motswainyana, William M; Onani, Martin O; Madiehe, Abram M; Saibu, Morounke

    2014-04-01

    Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.

  3. Response time correlations for platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.; Dillon-Townes, L. A.

    1985-01-01

    The 'plunge method' recommended by ASTM has been used to determine the time constant of 100-ohm platinum resistance thermometers (PRT) considered for use in the National Transonic Facility. It is shown that the response time of ventilated PRT can be correlated with the reciprocal of the heat transfer coefficient in a given field. Universal correlations are established for the 100- and 1000-ohm PRT with uncertainties of 20 and 30 percent, respectively. The correlations are found to be consistent with the uncertainty involved in heat transfer correlations available in the literature and are recommended for use in flowing liquids and gases.

  4. Platinum Acetylide Two-Photon Chromophores (Postprint)

    DTIC Science & Technology

    2007-01-01

    L.; Pierce, B. M. Science 1994, 265, 632. (14) Prasad, P. N.; Reinhardt, B. A. Chem. Mater. 1990, 2, 660. (15) Larson, E . J.; Friesen , L. A.; Johnson...PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER 4348 5e. TASK NUMBER RG 6. AUTHOR(S) Joy E . Rogers (UES) Jonathan E . Slagle (AT&T Government...afford T1. Platinum Acetylide Two-Photon Chromophores Joy E . Rogers,†,‡ Jonathan E . Slagle,†,§ Douglas M. Krein,†,| Aaron R. Burke,†,| Benjamin C. Hall

  5. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    DOEpatents

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  6. CD71 phenotype and the value of gallium imaging in lymphomas

    SciTech Connect

    Feremans, W.; Bujan, W.; Neve, P.; Delville, J.P.; Schandene, L. )

    1991-03-01

    Tumor cells of 14 cases of non-Hodgkin lymphomas and 2 cases of Hodgkin disease were tested for the presence of the transferrin receptor (CD71) by flow cytofluorimetry before 67gallium imaging. It appeared that expression of CD71 phenotype was closely related to the positivity of gallium scan before therapy. We feel that this test is able to predict the avidity for 67gallium and the clinical implications are discussed.

  7. Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell

    DTIC Science & Technology

    2014-09-01

    Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell by Naresh C Das ARL-TR-7054 September 2014...September 2014 Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell Naresh C Das Sensors and Electron...From - To) 01/02/2014–07/15/2014 4. TITLE AND SUBTITLE Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell 5a

  8. Gallium uptake in the thyroid gland in amiodarone-induced hyperthyroidism

    SciTech Connect

    Ling, M.C.; Dake, M.D.; Okerlund, M.D.

    1988-04-01

    Amiodarone is an iodinated antiarrhythmic agent that is effective in the treatment of atrial and ventricular arrhythmias. A number of side effects are seen, including pulmonary toxicity and thyroid dysfunction. A patient with both amiodarone-induced pneumonitis and hyperthyroidism who exhibited abnormal gallium activity in the lungs, as well as diffuse gallium uptake in the thyroid gland is presented. The latter has not been previously reported and supports the concept of iodide-induced thyroiditis with gallium uptake reflecting the inflammatory response.

  9. Structure-spectroscopic property relationships in a series of platinum acetylides

    NASA Astrophysics Data System (ADS)

    Cooper, Thomas M.; Haley, Joy E.; Krein, Douglas M.; Burke, Aaron R.; Slagle, Jonathan E.

    2016-09-01

    In order to understand electronic and conformational effects on structure-spectroscopic property relationships in platinum acetylides, we synthesized a model series of chromophores trans-Pt(PBu3)2(C-CPhenyl-X)2, where X = NH2, OCH3, diphenylamino, t-Bu, methyl, H, F, benzothiazole, trifluoromethyl, CN and nitro. We collected linear spectra, including ground state absorption, phosphorescence and phosphorescence excitation spectra. We also performed DFT and TDDFT calculations on the ground and excited state properties of these compounds. The calculations and experimental data show the excited state properties are a function of the electronic properties of the substituents and the molecular conformation.

  10. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry.

    PubMed

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L; Bierbach, Ulrich

    2014-03-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide-alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum-acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent.

  11. Fast cleavage of a diselenide induced by a platinum(II)-methionine complex and its biological implications.

    PubMed

    Liu, Qin; Wang, Xiaoyong; Yang, Xiaoliang; Liang, Xiao; Guo, Zijian

    2010-11-01

    Platinum-based anticancer drugs such as cisplatin induce increased oxidative stress and oxidative damage of DNA and other cellular components, while selenium plays an important role in the antioxidant defense system. In this study, the interaction between a platinum(II) methionine (Met) complex [Pt(Met)Cl(2)] and a diselenide compound selenocystine [(Sec)(2)] was studied by electrospray ionization mass spectrometry, high performance liquid chromatography mass spectrometry, and (1)H NMR spectroscopy. The results demonstrate that the diselenide bond in (Sec)(2) can readily and quickly be cleaved by the platinum complex. Formation of the selenocysteine (Sec) bridged dinuclear complex [Pt(2)(Met-S,N)(2)(μ-Sec-Se,Cl)](3+) and Sec chelated species [Pt(Met-S,N)(Sec-Se,N)](2+) was identified at neutral and acidic media, which seems to result from the intermediate [Pt(Met-S,N)(Sec-Se)Cl](+). An accelerated formation of S-Se and S-S bonds was also observed when (Sec)(2) reacted with excessive glutathione in the presence of [Pt(Met)Cl(2)]. These results imply that the mechanism of activity and toxicity of platinum drugs may be related to their fast reaction with seleno-containing biomolecules, and the chemoprotective property of selenium agents against cisplatin-induced toxicity could also be connected with such reactions.

  12. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis.

    PubMed Central

    Kazantzis, G

    1981-01-01

    The possible carcinogenicity of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium is reviewed, taking into account epidemiological data, the results of animal experimental studies, data on mutagenic effects and on other in vitro test systems. Of the great variety of occupations where exposure to one of these metals may occur, only haematite mining has been clearly shown to involve an increased human cancer risk. While the possibility that haematite might in some way act as a carcinogen has to be taken into consideration it is more likely that other carcinogens are responsible. Certain platinum coordination complexes are used in cancer chemotherapy, are mutagenic, and likely to be carcinogenic. Cobalt, its oxide and sulfide, certain lead salts, one organomanganese, and one organotitanium compound have been shown to have a limited carcinogenic effect in experimental animal studies, and except for titanium appear to be mutagenic. Certain mercury compounds are mutagenic but none have been shown to be carcinogenic. The presently available data are inadequate to assess the possible carcinogenicity of selenium compounds, but a few observations suggest that selenium may suppress the effect of other carcinogens administered to experimental animals and may even be associated with lower cancer mortality rates in man. Epidemiological observations are essential for the assessment of a human cancer risk, but the difficulty in collecting past exposure data in occupational groups and the complexity of multiple occupational exposures with changes over time, limits the usefulness of retrospective epidemiological studies. PMID:7023929

  13. Diffuse Gallium-67 Accumulation in the Left Atrial Wall Detected Using SPECT/CT Fusion Images

    PubMed Central

    Kawabe, Joji; Higashiyama, Shigeaki; Yoshida, Atsushi; Shiomi, Susumu

    2016-01-01

    Gallium-67 scintigraphy is useful for detecting active inflammation. We show a 66-year-old female patient with atrial fibrillation and diffuse thickening of the left atrial wall due to acute myocarditis, who presented diffuse abnormal accumulation of gallium-67 in the left atrium on single photon emission computed tomography/computed tomography (SPECT/CT) fusion images. In the second gallium-67 scan 2 months after the first scintigraphy, the abnormal accumulation in the heart was no longer visible. Gallium-67 SPECT/CT images helped understanding the disease condition that temporary inflammation in the left atrium caused atrial fibrillation. PMID:28097031

  14. Fatigue and tensile strength of dental gallium alloys after artificial saliva immersion.

    PubMed

    Meiana, S; Takahashi, H

    1998-12-01

    Fatigue strength using the stair-case method and tensile strength of dental gallium alloys after artificial saliva immersion were measured for evaluating the effects of corrosive environment storage on the mechanical properties of the gallium alloys. The fatigue and the tensile strengths of both gallium alloys stored in artificial saliva were significantly decreased after 12-month storage, while those stored in air increased with storage period. The fracture surfaces of the specimens in artificial saliva showed not only metallic luster but also dark areas. In the dark area, the matrix might have dissolved during immersion. These results suggested that the concern over corrosion resistance of gallium alloys still remained.

  15. Cutaneous gallium uptake in patients with AIDS with mycobacterium avium-intracellulare septicemia

    SciTech Connect

    Allwright, S.J.; Chapman, P.R.; Antico, V.F.; Gruenewald, S.M.

    1988-07-01

    Gallium imaging is increasingly being used for the early detection of complications in patients with AIDS. A 26-year-old homosexual man who was HIV antibody positive underwent gallium imaging for investigation of possible Pneumocystis carinii pneumonia. Widespread cutaneous focal uptake was seen, which was subsequently shown to be due to mycobacterium avium-intracellulare (MAI) septicemia. This case demonstrates the importance of whole body imaging rather than imaging target areas only, the utility of gallium imaging in aiding the early detection of clinically unsuspected disease, and shows a new pattern of gallium uptake in disseminated MAI infection.

  16. Synthesis, characterization, DNA interactions and antiproliferative activity on glioblastoma of iminopyridine platinum(II) chelate complexes.

    PubMed

    Posadas, Inmaculada; Alonso-Moreno, Carlos; Bravo, Iván; Carrillo-Hermosilla, Fernando; Garzón, Andrés; Villaseca, Noemí; López-Solera, Isabel; Albaladejo, José; Ceña, Valentín

    2017-03-01

    A series of iminopyridine platinum chelate compounds has been prepared and characterized by NMR spectroscopy and single-crystal X-ray diffraction. The complexes were evaluated in C6 tumoral cells as an in vitro model for glioblastoma multiforme. The DNA-binding properties of these complexes were studied by UV-Vis absorption and fluorescence spectroscopy and Density Functional Theory calculations were performed in an effort to rationalize the observed properties at the molecular level. The most promising drug candidate displayed a similar potency in inducing cell death to the clinically used reference compound and showed significant inhibition of glioblastoma cell proliferation. Moreover, this compound had a safer profile than cisplatin on non-tumoral cells.

  17. Synthesis and structure of new compounds with Zn-Ga bonds: insertion of the gallium(I) bisimidinate Ga(DDP) into Zn-X (X = CH3, Cl) and the homoleptic complex cation [Zn(GaCp*)4]2+.

    PubMed

    Kempter, Andreas; Gemel, Christian; Cadenbach, Thomas; Fischer, Roland A

    2007-10-29

    Insertion reactions of the low-valent group 13 bisimidinate ligand Ga(DDP) {DDP = 2-[(2,6-diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]-2-pentene} into Zn-Me and Zn-Cl bonds are reported. The reaction of ZnMe2 with 2 equiv of Ga(DDP) yields the double-insertion product [{(DDP)GaMe}2Zn] (1), whereas the insertion of Ga(DDP) into the Zn-Cl bond of ZnCl2 in tetrahydrofuran (THF) leads to the monoinsertion product [{(DDP)GaCl}ZnCl(THF)2] (2). Treatment of 2 with Na[BArF] results in the salt [{THF.Ga(DDP)}Zn(THF)(mu-Cl)]2[BArF]2 (3), with two Cl atoms bridging the Zn centers. The structural features of the Zn-Ga-bonded compounds 1-3 were compared with related complexes and in particular with the compound [Zn(GaCp*)4][BArF]2 (4), which was synthesized by the reaction of ZnMe2, [H(OEt2)2][BArF], and GaCp* in fluorobenzene. The complex cation [Zn(GaCp*)4]2+ of 4 relates to previously reported d10 analogues [M(GaCp*)4] (M = Ni, Pd, Pt). All new compounds were fully characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction analysis.

  18. Mouse Model of Halogenated Platinum Salt Hypersensitivity ...

    EPA Pesticide Factsheets

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate airway responses to Pt, we developed a mouse model of Pt hypersensitivity. Previously, we confirmed the dermal sensitizing potency of ammonium hexachloroplatinate (AHCP) using an ex vivo [3H]methyl thymidine labeling version of the local lymph node assay in BALB/c mice. Here, we investigated the ability of AHCP to induce airway responses in mice sensitized by the dermal route. Mice were sensitized through application of 100 µL 1% AHCP in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by oropharyngeal aspiration (OPA) with 0 or 100 µg AHCP in saline. Before and immediately after challenge, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 7.5% eosinophils compared to less than 0.5% in control mice (p < 0.05). This model will be useful for assessing both relative sensitizing potency and cross-reacti

  19. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  20. Gallium nitride nanowires by maskless hot phosphoric wet etching

    NASA Astrophysics Data System (ADS)

    Bharrat, D.; Hosalli, A. M.; Van Den Broeck, D. M.; Samberg, J. P.; Bedair, S. M.; El-Masry, N. A.

    2013-08-01

    We demonstrate gallium nitride (GaN) nanowires formation by controlling the selective and anisotropic etching of N-polar GaN in hot phosphoric acid. Nanowires of ˜109/cm,2 total height of ˜400 nm, and diameters of 170-200 nm were obtained. These nanowires have both non-polar {11¯00}/ {112¯0} and semi-polar {1011¯} facets. X-Ray Diffraction characterization shows that screw dislocations are primarily responsible for preferential etching to create nanowires. Indium gallium nitride multi-quantum wells (MQWs) grown on these GaN nanowires showed a blue shift in peak emission wavelength of photoluminescence spectra, and full width at half maximum decreased relative to MQWs grown on planar N-polar GaN, respectively.

  1. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    SciTech Connect

    Niu, Nan Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  2. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect

    Atsumi, Katsuhiro; Inoue, Yoku; Nakano, Takayuki; Mimura, Hidenori; Aoki, Toru

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  3. Detection of postcardiotomy bacterial pericarditis with gallium-67 citrate

    SciTech Connect

    Zuckier, L.S.; Weissmann, H.S.; Goldman, M.J.; Brodman, R.; Kamholz, S.L.; Freeman, L.M.

    1986-04-01

    A 46-year-old man who had undergone apical cardiac aneurysmectomy with a ventriculotomy graft and implanted automatic cardioverter-defibrillator electrodes, presented with fever, left-sided pleuritic chest pain, and a draining sinus. A Ga-67 scan was performed to aid in determining whether the infection was limited to the chest wall or if it had penetrated deeper to the cardiac structures. Uptake of gallium within the cardiac region, in association with minimal rib uptake of Tc-99m MDP, strongly supported the existence of infection within the pericardium. CT scan demonstrated a pericardial collection which under CT-guided aspiration proved to be purulent. Definitive surgical drainage was performed, and the patient was discharged 4 weeks postoperatively. Ga-67 imaging can provide an accurate and relatively rapid means of localizing infection in the postcardiotomy patient. A thorough bibliography of pericardial gallium uptake is provided.

  4. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  5. Amorphous carbon buffer layers for separating free gallium nitride films

    NASA Astrophysics Data System (ADS)

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.

    2016-11-01

    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  6. Gallium(III) Tetraphenylporphyrinates Containing Hydrosulfide and Thiolate Ligands: Structural Models for Sulfur-Bound Iron(III) Hemes.

    PubMed

    Meininger, Daniel J; Chee-Garza, Max; Arman, Hadi D; Tonzetich, Zachary J

    2016-03-07

    Gallium(III) tetraphenylporphyrinates (TPP) containing anionic sulfur ligands have been prepared and characterized in the solid state and solution. The complexes serve as structural models for iron(III) heme sites containing sulfur coordination that otherwise prove challenging to synthesize due to the propensity for reduction to iron(II). The compounds prepared include the first well-characterized example of a trivalent metalloporphyrinate containing a terminal hydrosulfide ligand, [Ga(SH)(TPP)], as well as [Ga(SEt)(TPP)], [Ga(SPh)(TPP)], and [Ga(SSi(i)Pr3)(TPP)]. The stability of these compounds toward reduction has permitted an investigation of their solid-state structures and electrochemistry. The structural features and reaction chemistry of the complexes in relation to their iron(III) analogs is discussed.

  7. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this subpart K are applicable to discharges from (a) mines that produce platinum ore and...

  8. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this subpart K are applicable to discharges from (a) mines that produce platinum ore and...

  9. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of this subpart K are applicable to discharges from (a) mines that produce platinum ore and...

  10. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  11. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  12. Dinuclear Pt(II)-bisphosphonate complexes: a scaffold for multinuclear or different oxidation state platinum drugs.

    PubMed

    Piccinonna, Sara; Margiotta, Nicola; Pacifico, Concetta; Lopalco, Antonio; Denora, Nunzio; Fedi, Serena; Corsini, Maddalena; Natile, Giovanni

    2012-08-28

    Geminal bisphosphonates (BPs), used in the clinic for the treatment of hypercalcaemia and skeletal metastases, have been also exploited for promoting the specific accumulation of platinum antitumor drugs in bone tissue. In this work, the platinum dinuclear complex [{Pt(en)}(2)(μ-AHBP-H(2))](+) (1) (the carbon atom bridging the two phosphorous atoms carrying a 2-ammonioethyl and a hydroxyl group, AHBP-H(2)) has been used as scaffold for the synthesis of a Pt(II) trinuclear complex, [{Pt(en)}(3)(μ-AHBP)](+) (2), and a Pt(IV) adamantane-shaped dinuclear complex featuring an oxo-bridge, [{Pt(IV)(en)Cl}(2)(μ-O)(μ-AHBP-H(2))](+) (3) (X-ray structure). Compound 2 undergoes a reversible, pH dependent, rearrangement with a neat switch point around pH = 5.4. Compound 3 undergoes a one-step electrochemical reduction at E(pc) = -0.84 V affording compound 1. Such a potential is far lower than that of glutathione (-0.24 V), nevertheless compound 3 can undergo chemical reduction to 1 by GSH, most probably through a different (inner-sphere) mechanism. In vitro cytotoxicity of the new compounds, tested against murine glioma (C6) and human cervix (HeLa) and hepatoma (HepG2) cell lines, has shown that, while the Pt(IV) dimer 3 is inactive up to a concentration of 50 μM, the two Pt(II) polynuclear compounds 1 and 2 have a cytotoxicity comparable to that of cisplatin with the trinuclear complex 2 generally more active than the dinuclear complex 1.

  13. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    DTIC Science & Technology

    2015-02-09

    cell .................. 10  4.2.3  Effect of Sunlight Concentration (terrestrial applications) ..................................... 11  4.2.4...distribution is unlimited. 1 1 SUMMARY This work evaluates the viability of an intermediate band solar cell design, wherein a superlattice, comprising...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich

  14. Two-photon photovoltaic effect in gallium arsenide.

    PubMed

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  15. Growth of Gallium Nitride Nanorods and Their Coalescence Overgrowth

    DTIC Science & Technology

    2012-09-07

    absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Optics Express, Vol. 20, No. S1, p...constituent atoms ( gallium , indium , which are formed through the decomposition of metalorganic precursors TEGa and TMIn, and nitrogen) projected onto the...found that the QW widths are narrower and the indium contents are higher in the sidewall m-plane QWs, when compared with the top-face c-plane QWs. Also

  16. The Russian-American Gallium solar neutrino Experiment

    SciTech Connect

    Elliott, S.R.; Abdurashitov, J.N.; Bowles, T.J.

    1995-12-31

    The Russian-American Gallium solar neutrino Experiment (SAGE) is described. The solar neutrino flux measured by 31 extractions through October, 1993 is presented. The result of 69 {+-} 10{sub {minus}7}{sup +5} SNU is to be compared with a standard solar model prediction of 132 SNU. The status of a {sup 51}Cr neutrino source irradiation to test the overall operation of the experiment is also presented.

  17. The Russian-American gallium solar neutrino experiment

    SciTech Connect

    Elliott, S.R.; Wilkerson, J.F.; Abdurashitov, J.N.

    1995-08-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) is described. The solar neutrino flux measured by 31 extractions through October, 1993 is presented. The result of 69 {+-} 10{sub {minus}7}{sup +5} SNU is to be compared with a standard solar model prediction of 132 SNU. The status of a {sup 51}Cr neutrino source irradiation to test the overall operation of the experiment is also presented.

  18. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    possibilities of InGaN tandem PV structures”, Solar Energy Materials & Solar Cells, Vol. 87, 595-603, 2004. [6] S. M. Sze, Semiconductor Devices, 2nd edition... ENERGY (EV) TO WAVELENGTH (UM) ..............................................86 D. IV CURVE PLOTS FOR INDIUM GALLIUM NITRIDE QUAD JUNCTION SOLAR... energy on different band gaps (From [15]).....................................19 Figure 13. Simple cubic lattice structure (From [16])......20 Figure

  19. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  20. Radiosensitization of DNA in presence of Pt(II)-based compounds

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Ptasińska, Sylwia; Gow, Jason; Pieve, Chiara Da; Mason, Nigel J.

    2014-04-01

    X-ray irradiation of plasmid DNA in presence of platinum (II)-based compounds was carried out in order to assess the radiosensitization capabilities of these drugs. In present investigations pBR322 plasmid DNA was used to monitor the effectiveness of chosen compounds in inducing strand breaks. Samples were incubated in the presence of potential radiosensitisers: platinum (II) bromide and cis-diamminedibromoplatinum (II). The results were examined against a common cancer chemotherapy drug cis-diamminedichloroplatinum (II). It was found that platinum (II) bromide can greatly increase the levels of single- and double-strand break formation observed in the irradiated samples with respect to the samples containing platinum as a radiosensitizer only, possessing very little chemotherapeutic activity. The suggested drugs exhibit much higher level of radiosensitivity than widely used cisplatin and thus may be good candidates for cancer treatment.