The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity
Longman, Randy S.; Littman, Dan R.
2016-01-01
Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030
Predicting materials for sustainable energy sources: The key role of density functional theory
NASA Astrophysics Data System (ADS)
Galli, Giulia
Climate change and the related need for sustainable energy sources replacing fossil fuels are pressing societal problems. The development of advanced materials is widely recognized as one of the key elements for new technologies that are required to achieve a sustainable environment and provide clean and adequate energy for our planet. We discuss the key role played by Density Functional Theory, and its implementations in high performance computer codes, in understanding, predicting and designing materials for energy applications.
National Trauma Institute: A National Coordinating Center for Trauma Research Funding
2013-10-01
identified as the key regulator of iron homeostasis, and plays a major role in how and why anemia develops. Hepcidin reduces iron availability by: (1...cells. High levels of hepcidin induce a state of functional iron deficiency . Hepcidin is increased in states of inflammation, and likely plays an...elevated in trauma, this will confirm that inability to use iron stores is key to the anemia of trauma. Dr Napolitano suspects that hepcidin will be
Cellular and Synaptic Properties of Local Inhibitory Circuits.
Hull, Court
2017-05-01
Inhibitory interneurons play a key role in sculpting the information processed by neural circuits. Despite the wide range of physiologically and morphologically distinct types of interneurons that have been identified, common principles have emerged that have shed light on how synaptic inhibition operates, both mechanistically and functionally, across cell types and circuits. This introduction summarizes how electrophysiological approaches have been used to illuminate these key principles, including basic interneuron circuit motifs, the functional properties of inhibitory synapses, and the main roles for synaptic inhibition in regulating neural circuit function. It also highlights how some key electrophysiological methods and experiments have advanced our understanding of inhibitory synapse function. © 2017 Cold Spring Harbor Laboratory Press.
NASA Astrophysics Data System (ADS)
Gold, Zachary Samuel
Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.
Chong, Hyun Ju; Han, Soo Jeong; Kim, Yong Jae; Park, Hye Young; Kim, Soo Ji
2014-01-01
While a number of studies have tested the therapeutic effectiveness of playing musical instruments, such as the electronic keyboard using Musical Instrument Digital Interface (MIDI), it is still unclear whether outcomes of electronic keyboard playing are related to hand function tests. The purpose of this study was to investigate the correlation between MIDI-keyboard playing and hand function tests, including grip strength, Box and Block test (BBT), and Jensen-Taylor Hand Function Test (JTHF). A total of 66 stroke patients were recruited from medical centers and were classified into acute (n = 21), subacute (n = 28), and chronic (n = 17) recovery stages. The participants' mean age was 60.5 years. The MIDI-keyboard playing protocol based on sequential key pressing was implemented. All hand function tests were performed by certified occupational therapists. MIDI scores from participants at all three recovery stages were significantly correlated with BBT and grip strength. Overall, MIDI-keyboard playing scores demonstrated moderate to high correlations with hand function tests except for participants at the chronic stage and the JTHF, which showed no correlation. These findings suggest that MIDI-keyboard playing has great potential as an assessment tool of hand function, especially hand dexterity in acute and subacute stroke patients. Further studies are needed to refine the specific keyboard playing tasks that increase responsiveness to traditional hand function tests.
More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration
Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim
2014-01-01
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875
Wang, Yan; Xu, Heng-Yong; Zhu, Qing
2007-10-01
Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme that plays a central role in the metabolism of cellular glycerolipids. DGAT catalyzes the final step in triacylglycerol (TAG) biosynthesis by converting diacylgycerol (DAG) and fatty acyl-coenzyme A (CoA) into triacylglycero1. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. Therefore, DGAT is not only an key factor for control triglycerides and fatty acids, but also may play a key modulatory role in animal fat deposition.
Effects of Environmental Toxicants on the Neuroendocrine Control of Female Reproduction
The hypothalamus and pituitary are known to play key roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently, the endocrine contro...
Pisarska, Margareta D; Barlow, Gillian; Kuo, Fang-Ting
2011-04-01
The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells.
Minireview: Roles of the Forkhead Transcription Factor FOXL2 in Granulosa Cell Biology and Pathology
Barlow, Gillian; Kuo, Fang-Ting
2011-01-01
The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells. PMID:21248146
School Influences on Child and Youth Development
ERIC Educational Resources Information Center
Osher, David; Kendziora, Kimberly; Spier, Elizabeth; Garibaldi, Mark L.
2014-01-01
Schools play a key role in child and youth development as both social microcosms of the broader society and reciprocally influencing people and communities. As such, schools can function as a protective factor that promotes safety, motivation, relationships, and support for positive student outcomes. However, schools may also function as a risk…
Phosphatidic acid and neurotransmission
Raben, Daniel M.; Barber, Casey N.
2016-01-01
Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system. PMID:27671966
Memory-guided attention in the anterior thalamus.
Leszczyński, Marcin; Staudigl, Tobias
2016-07-01
The anterior thalamus is densely connected with both the hippocampus and the prefrontal cortex. It is known to play a role in learning and episodic memory. Given its connectivity profile with the prefrontal cortex, it may also be expected to contribute to executive functions. Recent studies in both rodents and humans add to our understanding of anterior thalamic function, suggesting that it is a key region for allocating attention. We discuss the convergence between studies in rodents and humans, both of which imply that the anterior thalamus may play a key role in memory-guided attention. We suggest that efficient allocation of attention to memory representations requires interaction between the memory-related hippocampal and the attention related fronto-parietal networks. We further propose that the anterior thalamus is a hub that connects and modulates both systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functions in Contemporary Secondary Mathematics Textbook Series in the United States
ERIC Educational Resources Information Center
Ross, Daniel J.
2011-01-01
Textbooks play a central role in US mathematics classrooms (Stein, Remillard, & Smith, 2007) and functions are a key topic in secondary mathematics (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). This study presents results from an analysis of this essential topic in the latest editions of three textbook series: the Glencoe Mathematics…
Middle School Principals' Perceptions of Middle School Counselors' Roles and Functions
ERIC Educational Resources Information Center
Zalaquett, Carlos P.; Chatters, Seriashia J.
2012-01-01
The findings of this study expand current knowledge regarding principals' perceptions of school counselors. School principals play a key role in school counselors hiring or dismissal, and their perceptions of school counselors' roles and functions may influence their decisions. Reflecting on their views may also assist school principals in…
Remote Control of Gene Function by Local Translation
Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.
2014-01-01
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524
Aquaporins in the eye: Expression, function, and roles in ocular disease☆
Schey, Kevin L.; Wang, Zhen; Wenke, Jamie L.; Qi, Ying
2015-01-01
Background All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. Scope of review This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. Major conclusions Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. General significance Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins. PMID:24184915
Minne, Elizabeth Portman; Semrud-Clikeman, Margaret
2012-11-01
The key features of Asperger Syndrome (AS) and high functioning autism (HFA) include marked and sustained impairment in social interactions. A multi-session, small group program was developed to increase social perception based on the assumption perceptual or interpretive problems underlying these social difficulties. Additionally, the group format espoused a play therapy orientation and the use of sociodramatic play was the primary therapeutic modality used. Qualitative analyses of the data resulted in an explanation of the key changes in social interactions that took place through the course of the intervention. Although each participant's experience in this group was unique, all children in this program demonstrated improvements in their social interactions, as they experienced development both emotionally and behaviorally. Findings suggest that, despite their rigid interests and behavior patterns, the social limitations of these children improved when provided with the necessary environmental resources.
Yu, Yihe; Xu, Weirong; Wang, Jie; Wang, Lei; Yao, Wenkong; Xu, Yan; Ding, Jiahua; Wang, Yuejin
2013-01-01
RING-finger proteins (RFP) function as ubiquitin ligases and play key roles in plant responses to biotic and abiotic stresses. However, little information is available on the regulation of RFP expression. Here, we isolate and characterize the RFP promoter sequence from the disease-resistant Chinese wild grape Vitis pseudoreticulata accession Baihe-35-1. Promoter-GUS fusion assays revealed that defense signaling molecules, powdery mildew infection, and heat stress induce VpRFP1 promoter activity. By contrast, the RFP1 promoter isolated from Vitis vinifera was only slightly induced by pathogen infection and heat treatment. By promoter deletion analysis, we found that the -148 bp region of the VpRFP1 promoter was the core functional promoter region. We also found that, in Arabidopsis, VpRFP1 expressed under its own promoter activated defense-related gene expression and improved disease resistance, but the same construct using the VvRFP1 promoter slightly improve disease resistance. Our results demonstrated that the -148 bp region of the VpRFP1 promoter plays a key role in response to pathogen and heat stress, and suggested that expression differences between VpRFP1 and VvRFP1 may be key for the differing disease resistance phenotypes of the two Vitis genotypes.
Phosphatidic acid and neurotransmission.
Raben, Daniel M; Barber, Casey N
2017-01-01
Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rehabilitation and return to play after foot and ankle injuries in athletes.
Hudson, Zoe
2009-09-01
Rehabilitation after acute ankle injury can be categorized in to early, middle, and late phases. This paper aims to cover some of the key concepts from initial management to end stage rehabilitation that could be applied to many musculoskeletal injuries around the foot and ankle. Pathology specific rehabilitation, functional performance tests, and sports specific and return to play issues are also addressed, as the aim of any rehabilitation programme is to return the athlete to the field of play as quickly as it is safe to do so.
Lenz, Kathryn M; Nelson, Lars H
2018-01-01
Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.
Insulin: its Role in the Central Control of Reproduction
Sliwowska, Joanna H.; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N.
2014-01-01
Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. PMID:24874777
Insulin: its role in the central control of reproduction.
Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N
2014-06-22
Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. Copyright © 2014 Elsevier Inc. All rights reserved.
Caenorhabditis elegans chemical biology: lessons from small molecules
USDA-ARS?s Scientific Manuscript database
How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...
ERIC Educational Resources Information Center
Remine, Maria D.; Care, Esther; Brown, P. Margaret
2008-01-01
The internal use of language during problem solving is considered to play a key role in executive functioning. This role provides a means for self-reflection and self-questioning during the formation of rules and plans and a capacity to control and monitor behavior during problem-solving activity. Given that increasingly sophisticated language is…
Damon T. Ely; J. Bruce Wallace
2010-01-01
Clear-cut logging rapidly affects stream macroinvertebrates through substantial alteration of terrestrialâaquatic resource linkages; however, lesser known are the long-term influences of forest succession on benthic macroinvertebrate assemblages, which play key roles in stream ecosystem function. We compared secondary production and standing crops of detritus in two...
USDA-ARS?s Scientific Manuscript database
Evidence going as far back as the early part of the 20th century suggests that both light and chloroplast function may play key roles in host susceptibility to viruses. Despite the long history of such work, confirmation of these phenomena and a determination of the underlying mechanisms remain elu...
Doebel, Sabine; Zelazo, Philip David
2016-01-01
Engaging executive function often requires overriding a prepotent response in favor of a conflicting but adaptive one. Language may play a key role in this ability by supporting integrated representations of conflicting rules. We tested whether experience with contrastive language that could support such representations benefits executive function in 3-year-old children. Children who received brief experience with language highlighting contrast between objects, attributes, and actions showed greater executive function on two of three ‘conflict’ executive function tasks than children who received experience with contrasting stimuli only and children who read storybooks with the experimenter, controlling for baseline executive function. Experience with contrasting stimuli did not benefit executive function relative to reading books with the experimenter, indicating experience with contrastive language, rather than experience with contrast generally, was key. Experience with contrastive language also boosted spontaneous attention to contrast, consistent with improvements in representing contrast. These findings indicate a role for language in executive function that is consistent with the Cognitive Complexity and Control theory's key claim that coordinating conflicting rules is critical to overcoming perseveration, and suggest new ideas for testing theories of executive function. PMID:27658118
Doebel, Sabine; Zelazo, Philip David
2016-12-01
Engaging executive function often requires overriding a prepotent response in favor of a conflicting but adaptive one. Language may play a key role in this ability by supporting integrated representations of conflicting rules. We tested whether experience with contrastive language that could support such representations benefits executive function in 3-year-old children. Children who received brief experience with language highlighting contrast between objects, attributes, and actions showed greater executive function on two of three 'conflict' executive function tasks than children who received experience with contrasting stimuli only and children who read storybooks with the experimenter, controlling for baseline executive function. Experience with contrasting stimuli did not benefit executive function relative to reading books with the experimenter, indicating experience with contrastive language, rather than experience with contrast generally, was key. Experience with contrastive language also boosted spontaneous attention to contrast, consistent with improvements in representing contrast. These findings indicate a role for language in executive function that is consistent with the Cognitive Complexity and Control theory's key claim that coordinating conflicting rules is critical to overcoming perseveration, and suggest new ideas for testing theories of executive function. Copyright © 2016 Elsevier B.V. All rights reserved.
The adenoid as a key factor in upper airway infections.
van Cauwenberge, P B; Bellussi, L; Maw, A R; Paradise, J L; Solow, B
1995-06-01
The adenoids (and the nasopharynx) play a key role in the normal functioning and in various pathologies of the upper respiratory tract. In this paper the role of adenoidal pathology and the beneficial effect of adenoidectomy in some upper respiratory tract and facial anomalies and diseases are discussed; otitis media with effusion, recurrent acute otitis media, sinusitis, snoring and sleep apnea and abnormal patterns in the midface growth and development.
Zeng, Ying; Zhao, Tiehan; Kermode, Allison R
2013-01-01
ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.
Social Networks and Community-Based Natural Resource Management
NASA Astrophysics Data System (ADS)
Lauber, T. Bruce; Decker, Daniel J.; Knuth, Barbara A.
2008-10-01
We conducted case studies of three successful examples of collaborative, community-based natural resource conservation and development. Our purpose was to: (1) identify the functions served by interactions within the social networks of involved stakeholders; (2) describe key structural properties of these social networks; and (3) determine how these structural properties varied when the networks were serving different functions. The case studies relied on semi-structured, in-depth interviews of 8 to 11 key stakeholders at each site who had played a significant role in the collaborative projects. Interview questions focused on the roles played by key stakeholders and the functions of interactions between them. Interactions allowed the exchange of ideas, provided access to funding, and enabled some stakeholders to influence others. The exchange of ideas involved the largest number of stakeholders, the highest percentage of local stakeholders, and the highest density of interactions. Our findings demonstrated the value of tailoring strategies for involving stakeholders to meet different needs during a collaborative, community-based natural resource management project. Widespread involvement of local stakeholders may be most appropriate when ideas for a project are being developed. During efforts to exert influence to secure project approvals or funding, however, involving specific individuals with political connections or influence on possible sources of funds may be critical. Our findings are consistent with past work that has postulated that social networks may require specific characteristics to meet different needs in community-based environmental management.
Student Development and Campus Ecology: A Rapprochement.
ERIC Educational Resources Information Center
Hurst, James C.
1987-01-01
Investigates campus ecology from several innovative perspectives, considering both theory and practice. Conceptualizes current functions of the student affairs administrator playing a key role in higher education and articulates how campus ecology and student development theories complement each other when applied through a systems approach to…
Varroa destructor: research avenues towards sustainable control
USDA-ARS?s Scientific Manuscript database
Pollination by honeybees plays a key role in the functioning of ecosystems and optimization of agricultural yields. Severe honeybee colony losses worldwide have raised concerns about the sustainability of these pollination services. In most cases, bee morbidity appears to be the product of many inte...
The bioactive acidic serine- and aspartate-rich motif peptide.
Minamizaki, Tomoko; Yoshiko, Yuji
2015-01-01
The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.
DNA recombination protein-dependent mechanism of homoplasmy and its proposed functions.
Shibata, Takehiko; Ling, Feng
2007-01-01
Homoplasmy is a basic genetic state of mitochondria, in which all of the hundreds to thousands of mitochondrial (mt)DNA copies within a cell or an individual have the same nucleotide-sequence. It was recently found that "vegetative segregation" to generate homoplasmic cells is an active process under genetic control. In the yeast Saccharomyces cerevisiae, the Mhr1 protein which catalyzes a key reaction in mtDNA homologous recombination, plays a pivotal role in vegetative segregation. Conversely, within the nuclear genome, homologous DNA recombination causes genetic diversity. Considering these contradictory roles of this key reaction in DNA recombination, possible functions of homoplasmy are discussed.
Fetterman, J Gregor; Killeen, P Richard
2010-09-01
Pigeons pecked on three keys, responses to one of which could be reinforced after a few pecks, to a second key after a somewhat larger number of pecks, and to a third key after the maximum pecking requirement. The values of the pecking requirements and the proportion of trials ending with reinforcement were varied. Transits among the keys were an orderly function of peck number, and showed approximately proportional changes with changes in the pecking requirements, consistent with Weber's law. Standard deviations of the switch points between successive keys increased more slowly within a condition than across conditions. Changes in reinforcement probability produced changes in the location of the psychometric functions that were consistent with models of timing. Analyses of the number of pecks emitted and the duration of the pecking sequences demonstrated that peck number was the primary determinant of choice, but that passage of time also played some role. We capture the basic results with a standard model of counting, which we qualify to account for the secondary experiments. Copyright 2010 Elsevier B.V. All rights reserved.
Functional inhibition of UQCRB suppresses angiogenesis in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok
2013-04-19
Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less
Density functional study of molecular interactions in secondary structures of proteins.
Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki
2016-01-01
Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.
Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis
USDA-ARS?s Scientific Manuscript database
Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...
Exposure to Polychlorinated Biphenyls (PCBs): Implications for School Psychologists
ERIC Educational Resources Information Center
Cook-Cottone, Catherine
2004-01-01
Pediatric exposure to polychlorinated biphynels (PCBs) is a national health concern with significant implications for school psychologists. According to the healthcare collaboration model, the school psychologist plays a key role in the provision of services to children affected by environmental teratogens. To effectively function as healthcare…
Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng
2013-01-01
Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brain evolution relating to family, play, and the separation call.
MacLean, P D
1985-04-01
Mammals stem from the mammal-like reptiles (therapsids) that were widely prevalent in Pangaea 250 million years ago. In the evolutionary transition from reptiles to mammals, three key developments were (1) nursing, in conjunction with maternal care; (2) audiovocal communication for maintaining maternal-offspring contact; and (3) play. The separation call perhaps ranks as the earliest and most basic mammalian vocalization, while play may have functioned originally to promote harmony in the nest. How did such family related behavior develop? In its evolution, the forebrain of advanced mammals has expanded as a triune structure that anatomically and chemically reflects ancestral commonalities with reptiles, early mammals, and late mammals. Recent findings suggest that the development of the behavioral triad in question may have depended on the evolution of the thalamocingulate division of the limbic system, a derivative from early mammals. The thalamocingulate division (which has no distinctive counterpart in the reptilian brain) is, in turn, geared in with the prefrontal neocortex that, in human beings, may be inferred to play a key role in familial acculturation.
Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM).
Teotia, Sachin; Zhang, Dabing; Tang, Guiliang
2017-01-01
Small RNAs, including microRNAs (miRNAs), are abundant in plants and play key roles in controlling plant development and physiology. miRNAs regulate the expression of the target genes involved in key plant processes. Due to functional redundancy among miRNA family members in plants, an ideal approach to silence the expression of all members simultaneously, for their functional characterization, is desirable. Target mimic (TM) was the first approach to achieve this goal. Short tandem target mimic (STTM) is a potent approach complementing TM for silencing miRNAs in plants. STTMs have been successfully used in dicots to block miRNA functions. Here, we describe in detail the protocol for designing STTM construct to block miRNA functions in rice. Such approach can be applied to silence miRNAs in other monocots as well.
Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits
Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.
2014-01-01
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237
Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.
2015-01-01
The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128
Exploring Symmetry to Assist Alzheimer's Disease Diagnosis
NASA Astrophysics Data System (ADS)
Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.
Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard
2018-05-15
The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.
Theory to Practice: Cultivating Academic Language Proficiency in Developmental Reading Classrooms
ERIC Educational Resources Information Center
Neal, Heather N.
2015-01-01
Academic language plays a key role in reading comprehension, disciplinary thinking, and overall academic success. However, many approaches to teaching academic language, such as a focus on academic vocabulary, overlook other language features that can pose challenges for students. Systemic Functional Linguistics (SFL), arguably one of the three…
Developmental acquisition of regulomes underlies innate lymphoid cell functionality
USDA-ARS?s Scientific Manuscript database
Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis, and they mirror adaptive CD4+ T helper (Th) cell subtypes in both usages of effector molecules and ·transcription factors. To better understand ILC subsets and their relationship with Th cells, we measur...
Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine
USDA-ARS?s Scientific Manuscript database
Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. Gut microbiota, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease...
Preface to Special Topic: Emerging materials for photonics
NASA Astrophysics Data System (ADS)
Vitiello, Miriam S.; Razeghi, Manijeh
2017-03-01
Photonics plays a major role in all aspects of human life. It revolutionized science by addressing fundamental scientific questions and by enabling key functions in many interdisciplinary fields spanning from quantum technologies to information and communication science, and from biomedical research to industrial process monitoring and life entertainment.
Determination of succession of rumen bacterial species in nursing beef calves
USDA-ARS?s Scientific Manuscript database
Ruminants are typically born with a non-functional rumen essentially devoid of microorganisms. The succession of the microbial population in the rumen from birth to animal maturity is of interest due to the key role that the rumen microbial population plays in the overall health and productivity of ...
Hyaluronic acid: its role in voice.
Ward, P Daniel; Thibeault, Susan L; Gray, Steven D
2002-09-01
The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.
Phosphoinositides: Key modulators of energy metabolism☆
Bridges, Dave; Saltiel, Alan R.
2014-01-01
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P3 levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides. PMID:25463477
Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase
Ma, Wen; Whitley, Kevin D; Schulten, Klaus
2018-01-01
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. PMID:29664402
Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase.
Ma, Wen; Whitley, Kevin D; Chemla, Yann R; Luthey-Schulten, Zaida; Schulten, Klaus
2018-04-17
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. © 2018, Ma et al.
Rac1-PAK2 pathway is essential for zebrafish heart regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xiangwen; He, Quanze; Li, Guobao
P-21 activated kinases, or PAKs, are serine–threonine kinases that play important roles in diverse heart functions include heart development, cardiovascular development and function in a range of models; however, the mechanisms by which PAKs mediate heart regeneration are unknown. Here, we demonstrate that PAK2 and PAK4 expression is induced in cardiomyocytes and vessels, respectively, following zebrafish heart injury. Inhibition of PAK2 and PAK4 using a specific small molecule inhibitor impedes cardiomyocyte proliferation/dedifferentiation and cardiovascular regeneration, respectively. Cdc42 is specifically expressed in the ventricle and may function upstream of PAK2 but not PAK4 under normal conditions and that cardiomyocyte proliferentation duringmore » heart regeneration relies on Rac1-mediated activation of Pak2. Our results indicate that PAKs play a key role in heart regeneration.« less
Parts, Cavities, and Object Representation in Infancy
ERIC Educational Resources Information Center
Hayden, Angela; Bhatt, Ramesh S.; Kangas, Ashley; Zieber, Nicole
2011-01-01
Part representation is not only critical to object perception but also plays a key role in a number of basic visual cognition functions, such as figure-ground segregation, allocation of attention, and memory for shapes. Yet, virtually nothing is known about the development of part representation. If parts are fundamental components of object shape…
Post-Larval Developmental Trajectory of Zebrafish Fry is Altered by Exposure to T3 or T4 Analogues
The thyroid axis plays a key role in development. While the impacts of perturbing thyroid axis development and/or function are documented in embryonic and larval zebrafish, the effects on developmental milestones at later life stages are not well-delineated. To assess potential l...
Barbara H. Allen-Diaz
2004-01-01
Livestock grazing plays an integral role in the grass-dominated ecosystems of the Sierra Nevada. Grazing has been asserted to influence such key ecological characteristics as water quality, net primary productivity, nutrient cycling, plant and animal diversity, wildlife habitat availability, and oak regeneration (Belsky and others 1999, Kauffmann and Krueger 1984)....
USDA-ARS?s Scientific Manuscript database
Soil microbes play a key role in soil health, and understanding the functional role of this living component of soil organic matter is critical to developing sustainable systems in major vegetable production regions like Salinas, California. Soil microbial community size and composition was evaluat...
Succession of ruminal bacterial species and fermentation characteristics in nursing Brangus calves
USDA-ARS?s Scientific Manuscript database
Ruminants are typically born with a non-functional rumen essentially devoid of microorganism. The succession of the microbial population in the rumen from birth to animal maturity is of interest due to the key role the rumen microbial population plays in the overall health and productivity of the ho...
The Anaphase Promoting Complex Is Required for Memory Function in Mice
ERIC Educational Resources Information Center
Kuczera, Tanja; Stilling, Roman Manuel; Hsia, Hung-En; Bahari-Javan, Sanaz; Irniger, Stefan; Nasmyth, Kim; Sananbenesi, Farahnaz; Fischer, Andre
2011-01-01
Learning and memory processes critically involve the orchestrated regulation of de novo protein synthesis. On the other hand it has become clear that regulated protein degradation also plays a major role in neuronal plasticity and learning behavior. One of the key pathways mediating protein degradation is proteosomal protein destruction. The…
O’Connor, Sean Timothy Francis; Lan, Jiaqi; North, Matthew; Loguinov, Alexandre; Zhang, Luoping; Smith, Martyn T.; Gu, April Z.; Vulpe, Chris
2012-01-01
Benzo[a]pyrene (BaP) is a ubiquitous, potent, and complete carcinogen resulting from incomplete organic combustion. BaP can form DNA adducts but other mechanisms may play a role in toxicity. We used a functional toxicology approach in S. cerevisiae to assess the genetic requirements for cellular resistance to BaP. In addition, we examined translational activities of key genes involved in various stress response pathways. We identified multiple genes and processes involved in modulating BaP toxicity in yeast which support DNA damage as a primary mechanism of toxicity, but also identify other potential toxicity pathways. Gene ontology enrichment analysis indicated that DNA damage and repair as well as redox homeostasis and oxidative stress are key processes in cellular response to BaP suggesting a similar mode of action of BaP in yeast and mammals. Interestingly, toxicant export is also implicated as a potential novel modulator of cellular susceptibility. In particular, we identified several transporters with human orthologs (solute carrier family 22) which may play a role in mammalian systems. PMID:23403841
Brain abnormalities in antisocial individuals: implications for the law.
Yang, Yaling; Glenn, Andrea L; Raine, Adrian
2008-01-01
With the increasing popularity in the use of brain imaging on antisocial individuals, an increasing number of brain imaging studies have revealed structural and functional impairments in antisocial, psychopathic, and violent individuals. This review summarizes key findings from brain imaging studies on antisocial/aggressive behavior. Key regions commonly found to be impaired in antisocial populations include the prefrontal cortex (particularly orbitofrontal and dorsolateral prefrontal cortex), superior temporal gyrus, amygdala-hippocampal complex, and anterior cingulate cortex. Key functions of these regions are reviewed to provide a better understanding on how deficits in these regions may predispose to antisocial behavior. Objections to the use of imaging findings in a legal context are outlined, and alternative perspectives raised. It is argued that brain dysfunction is a risk factor for antisocial behavior and that it is likely that imaging will play an increasing (albeit limited) role in legal decision-making. (c) 2008 John Wiley & Sons, Ltd.
Diagnosing and improving functioning in interdisciplinary health care teams.
Blackmore, Gail; Persaud, D David
2012-01-01
Interdisciplinary teams play a key role in the delivery of health care. Team functioning can positively or negatively impact the effective and efficient delivery of health care services as well as the personal well-being of group members. Additionally, teams must be able and willing to work together to achieve team goals within a climate that reflects commitment to team goals, accountability, respect, and trust. Not surprisingly, dysfunctional team functioning can limit the success of interdisciplinary health care teams. The first step in improving dysfunctional team function is to conduct an analysis based on criteria necessary for team success, and this article provides meaningful criteria for doing such an analysis. These are the following: a common team goal, the ability and willingness to work together to achieve team goals, decision making, communication, and team member relationships. High-functioning interdisciplinary teams must exhibit features of good team function in all key domains. If a team functions well in some domains and needs to improve in others, targeted strategies are described that can be used to improve team functioning.
Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko
2014-01-01
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155
Tian, Zhongyuan; Fauré, Adrien; Mori, Hirotada; Matsuno, Hiroshi
2013-01-01
Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.
Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong
2016-01-01
Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494
Oxytocin and experimental therapeutics in autism spectrum disorders.
Bartz, Jennifer A; Hollander, Eric
2008-01-01
Autism is a developmental disorder characterized by three core symptom domains: speech and communication abnormalities, social functioning impairments and repetitive behaviours and restricted interests. Oxytocin (OXT) is a nine-amino-acid peptide that is synthesized in the paraventricular and supraoptic nucleus of the hypothalamus and released into the bloodstream by axon terminals in the posterior pituitary where it plays an important role in facilitating uterine contractions during parturition and in milk let-down. In addition, OXT and the structurally similar peptide arginine vasopressin (AVP) are released within the brain where they play a key role in regulating affiliative behaviours, including sexual behaviour, mother-infant and adult-adult pair-bond formation and social memory/recognition. Finally, OXT has been implicated in repetitive behaviours and stress reactivity. Given that OXT is involved in the regulation of repetitive and affiliative behaviours, and that these are key features of autism, it is believed that OXT may play a role in autism and that OXT may be an effective treatment for these two core symptom domains. In this chapter we review evidence to date supporting a relationship between OXT and autism; we then discuss research looking at the functional role of OXT in autism, as well as a pilot study investigating the therapeutic efficacy of OXT in treating core autism symptom domains. Finally, we conclude with a discussion of directions for future research.
Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz
2016-01-01
Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...
The critical role of peptide chemistry in the life sciences.
Kent, Stephen B H
2015-03-01
Peptide chemistry plays a key role in the synthesis and study of protein molecules and their functions. Modern ligation methods enable the total synthesis of enzymes and the systematic dissection of the chemical basis of enzyme catalysis. Predicted developments in peptide science are described. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Modeling of DNA and Protein Organization Levels with Cn3D Software
ERIC Educational Resources Information Center
Stasinakis, Panagiotis K.; Nicolaou, Despoina
2017-01-01
The molecular structure of living organisms and the complex interactions amongst its components are the basis for the diversity observed at the macroscopic level. Proteins and nucleic acids are some of the major molecular components, and play a key role in several biological functions, such as those of development and evolution. This article…
USDA-ARS?s Scientific Manuscript database
Chlorogenic acid (CGA) plays an important role in protecting plants against pathogens and promoting human health. Although CGA accumulates to high levels in potato tubers, the key enzyme p-coumaroyl quinate/shikimate 3’-hydroxylase (C3’H) for CGA biosynthesis has not been isolated or characterized i...
Changing Attitudes over Time: Assessing the Effectiveness of a Workplace Diversity Course
ERIC Educational Resources Information Center
Probst, Tahira M.
2003-01-01
Diversity is increasing within the United States, and higher education will likely play a key role in preparing people to function in this new environment. This study assessed the effectiveness of a semester-long psychology workplace diversity course at changing student levels of ethnocentrism and attitudes regarding gender roles; the disabled;…
The Self-Concept of Spanish Young Adults with Retinitis Pigmentosa
ERIC Educational Resources Information Center
Lopez-Justicia, Maria Dolores; Cordoba, Inmaculada Nieto
2006-01-01
Retinitis pigmentosa (RP) is a degenerative disease of the retina that causes the severe impairment of visual functioning similar to low vision, leading, in many cases, to blindness. Because the construct of self-concept plays a key role in personality, this study was designed to measure self-concept in a group of young adults with RP. The…
Ian Thompson; Kimiko Okabe; Jason Tylianakis; Pushpam Kumar; Eckehard G. Brockerhoff; Nancy Schellhorn; John A. Parrotta; Robert Nasi
2011-01-01
Biodiversity is integral to almost all ecosystem processes, with some species playing key functional roles that are essential for maintaining the value of ecosystems to humans. However, many ecosystem services remain nonvalued, and decisionmakers rarely consider biodiversity in policy development, in part because the relationships between biodiversity and the provision...
Presenting the Straddle Lemma in an Introductory Real Analysis Course
ERIC Educational Resources Information Center
Soares, A.; dos Santos, A. L.
2017-01-01
In this article, we revisit the concept of strong differentiability of real functions of one variable, underlying the concept of differentiability. Our discussion is guided by the Straddle Lemma, which plays a key role in this context. The proofs of the results presented are designed to meet a young audience in mathematics, typical of students in…
Mekuchi, Miyuki; Asakura, Taiga; Sakata, Kenji; Yamaguchi, Tomofumi; Teruya, Kazuhisa; Kikuchi, Jun
2018-01-01
Aquaculture is currently a major source of fish and has the potential to become a major source of protein in the future. These demands require efficient aquaculture. The intestinal microbiota plays an integral role that benefits the host, providing nutrition and modulating the immune system. Although our understanding of microbiota in fish gut has increased, comprehensive studies examining fish microbiota and host metabolism remain limited. Here, we investigated the microbiota and host metabolism in the coral leopard grouper, which is traded in Asian markets as a superior fish and has begun to be produced via aquaculture. We initially examined the structural changes of the gut microbiota using next-generation sequencing and found that the composition of microbiota changed between fasting and feeding conditions. The dominant phyla were Proteobacteria in fasting and Firmicutes in feeding; interchanging the dominant bacteria required 12 hours. Moreover, microbiota diversity was higher under feeding conditions than under fasting conditions. Multivariate analysis revealed that Proteobacteria are the key bacteria in fasting and Firmicutes and Fusobacteria are the key bacteria in feeding. Subsequently, we estimated microbiota functional capacity. Microbiota functional structure was relatively stable throughout the experiment; however, individual function activity changed according to feeding conditions. Taken together, these findings indicate that the gut microbiota could be a key factor to understanding fish feeding conditions and play a role in interactions with host metabolism. In addition, the composition of microbiota in ambient seawater directly affects the fish; therefore, it is important to monitor the microbiota in rearing tanks and seawater circulating systems.
Myosin motor function: the ins and outs of actin-based membrane protrusions
Nambiar, Rajalakshmi; McConnell, Russell E.
2011-01-01
Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion. PMID:20107861
The Extracellular δ-Domain is Essential for the Formation of CD81 Tetraspanin Webs
Homsi, Yahya; Schloetel, Jan-Gero; Scheffer, Konstanze D.; Schmidt, Thomas H.; Destainville, Nicolas; Florin, Luise; Lang, Thorsten
2014-01-01
CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function. PMID:24988345
**1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.
Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.
1986-01-01
Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.
Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin
2014-01-01
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172
Veresoglou, Stavros D.; Halley, John M.; Rillig, Matthias C.
2015-01-01
No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology. PMID:26593272
Dopamine does double duty in motivating cognitive effort
Westbrook, Andrew; Braver, Todd S.
2015-01-01
Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: 1) modulating the functional parameters of working memory circuits subserving effortful cognition, and 2) mediating value-learning and decision-making about effortful cognitive action. Here we tie together these two lines of research, proposing how dopamine serves “double duty”, translating incentive information into cognitive motivation. PMID:26889810
Functional resilience of microbial ecosystems in soil: How important is a spatial analysis?
NASA Astrophysics Data System (ADS)
König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin
2015-04-01
Microbial life in soil is exposed to fluctuating environmental conditions influencing the performance of microbially mediated ecosystem services such as biodegradation of contaminants. However, as this environment is typically very heterogeneous, spatial aspects can be expected to play a major role for the ability to recover from a stress event. To determine key processes for functional resilience, simple scenarios with varying stress intensities were simulated within a microbial simulation model and the biodegradation rate in the recovery phase monitored. Parameters including microbial growth and dispersal rates were varied over a typical range to consider microorganisms with varying properties. Besides an aggregated temporal monitoring, the explicit observation of the spatio-temporal dynamics proved essential to understand the recovery process. For a mechanistic understanding of the model system, scenarios were also simulated with selected processes being switched-off. Results of the mechanistic and the spatial view show that the key factors for functional recovery with respect to biodegradation after a simple stress event depend on the location of the observed habitats. The limiting factors near unstressed areas are spatial processes - the mobility of the bacteria as well as substrate diffusion - the longer the distance to the unstressed region the more important becomes the process growth. Furthermore, recovery depends on the stress intensity - after a low stress event the spatial configuration has no influence on the key factors for functional resilience. To confirm these results, we repeated the stress scenarios but this time including an additional dispersal network representing a fungal network in soil. The system benefits from an increased spatial performance due to the higher mobility of the degrading microorganisms. However, this effect appears only in scenarios where the spatial distribution of the stressed area plays a role. With these simulations we show that spatial aspects play a main role for recovering after a severe stress event in a highly heterogeneous environment such as soil, and thus the relevance of the exact distribution of the stressed area. In consequence a spatial-mechanistic view is necessary for examining the functional resilience as the aggregated temporal view alone could not have led to these conclusions. Further research should explore the importance of a spatial view for quantifying the recovery of the ecosystem service also after more complex stress regimes.
Cao, Xiaobing; Zhi, Lili; Li, Yahui; Fang, Fei; Cui, Xian; Yao, Youwei; Ci, Lijie; Ding, Kongxian; Wei, Jinquan
2017-09-27
High-quality perovskite films can be fabricated from Lewis acid-base adducts through molecule exchange. Substantial work is needed to fully understand the formation mechanism of the perovskite films, which helps to further improve their quality. Here, we study the formation of CH 3 NH 3 PbI 3 perovskite films by introducing some dimethylacetamide into the PbI 2 /N,N-dimethylformamide solution. We reveal that there are three key processes during the formation of perovskite films through the Lewis acid-base adduct approach: molecule intercalation of solvent into the PbI 2 lattice, molecule exchange between the solvent and CH 3 NH 3 I, and dissolution-recrystallization of the perovskite grains during annealing. The Lewis base solvents play multiple functions in the above processes. The properties of the solvent, including Lewis basicity and boiling point, play key roles in forming smooth perovskite films with large grains. We also provide some rules for choosing Lewis base additives to prepare high-quality perovskite films through the Lewis adduct approach.
Plant diversity and root traits benefit physical properties key to soil function in grasslands.
Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D
2016-09-01
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Lorenzo, Alessandra Di; Bedford, Mark T.
2012-01-01
Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527
Sirtuins, Bioageing, and Cancer
McGuinness, D.; McGuinness, D. H.; McCaul, J. A.; Shiels, P. G.
2011-01-01
The Sirtuins are a family of orthologues of yeast Sir2 found in a wide range of organisms from bacteria to man. They display a high degree of conservation between species, in both sequence and function, indicative of their key biochemical roles. Sirtuins are heavily implicated in cell cycle, cell division, transcription regulation, and metabolism, which places the various family members at critical junctures in cellular metabolism. Typically, Sirtuins have been implicated in the preservation of genomic stability and in the prolongation of lifespan though many of their target interactions remain unknown. Sirtuins play key roles in tumourigenesis, as some have tumour-suppressor functions and others influence tumours through their control of the metabolic state of the cell. Their links to ageing have also highlighted involvement in various age-related and degenerative diseases. Here, we discuss the current understanding of the role of Sirtuins in age-related diseases while taking a closer look at their roles and functions in maintaining genomic stability and their influence on telomerase and telomere function. PMID:21766030
New fronts emerge in the influenza cytokine storm.
Guo, Xi-Zhi J; Thomas, Paul G
2017-07-01
Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.
Duran-Pinedo, Ana E.; Frias-Lopez, Jorge
2015-01-01
The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject. PMID:25862077
Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan
2015-01-01
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877
Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan
2015-01-01
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.
DoDLive | Department of Defense Blog
her surgical career and her marriage to a Navy chief. Surgeon and Spouse: How One Navy Wife Balances Memorial Day Deal Legacy Mentors Play Key Role In TAPS Good Grief Camps Legacy mentors at the Memorial Day themselves. Legacy Mentors Play Key Role In TAPS Good Grief Camps Legacy Mentors Play Key Role In TAPS Good
USDA-ARS?s Scientific Manuscript database
Aluminum (Al) toxicity is a major constraint for crop production on acid soils which comprise approximately 40% of arable land in the tropics and subtropics. Rice is the most Al tolerant cereal crop, and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natu...
USDA-ARS?s Scientific Manuscript database
A maternal low-protein (LP) diet results in low birth weight, increased offspring rapid adipose tissue catch-up growth, adult obesity, and insulin resistance in Sprague-Dawley rats. The placenta plays key roles in nutrient transport and fetal growth. Placental function is dependent on regulation of ...
Functional response of U.S. grasslands to the early 21st-century drought
M. Susan Moran; Guillermo E. Ponce-Campos; Alfredo Huete; Mitchel P. McClaran; Yongguang Zhang; Erik P. Hamerlynck; David J. Augustine; Stacey A. Gunter; Stanley G. Kitchen; Debra P. C. Peters; Patrick J. Starks; Mariano Hernandez
2014-01-01
Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that...
ERIC Educational Resources Information Center
Collet, Bruce A.
2007-01-01
Public schools have historically been key sites where children learn of and adopt a common national identity. In states where multiculturalism plays a central role in the articulation of a national identity, schools actively recognize and support the diverse cultures of their students in fulfilling this function. Canada is a state where, via…
Identifying best practices for audit committees.
Burke, J V; Luecke, R W; Meeting, D
1996-06-01
Most healthcare organizations have an audit committee of the governing board, or a finance committee, that fulfills the audit oversight function. Financial managers play a key role in shaping the content, agency, and operation of the audit committee. The findings of a recent research study conducted by Arthur Anderson & Co., SC, into the best practices of audit committees have implications for healthcare organizations.
ERIC Educational Resources Information Center
Washington State Board for Community and Technical Colleges, 2017
2017-01-01
The purpose of this study is to answer key questions about the structure of certificates and their function in employability and degree attainment in the Washington State Community and Technical College (CTC) System. Specifically, this study addresses the following: (1) Do certificates play a role in helping students progress along career pathways…
Jiang, Yu-Feng; Ling, Juan; Dong, Jun-De; Chen, Biao; Zhang, Yan-Ying; Zhang, Yuan-Zhou; Wang, You-Shao
2015-10-01
In order to increase our understanding of the microbial diversity associated with seagrass Thalassia hemprichii in Xincun Bay, South China Sea, 16S rRNA gene was identified by highthrough sequencing method. Bacteria associated with seagrass T. hemprichii belonged to 37 phyla, 99 classes. The diversity of bacteria associated with seagrass was similar among the geographically linked coastal locations of Xincun Bay. Proteobacteria was the dominant bacteria and the α-proteobacteria had adapted to the seagrass ecological niche. As well, α-proteobacteria and Pseudomonadales were associated microflora in seagrass meadows, but the interaction between the bacteria and plant is needed to further research. Burkholderiales and Verrucomicrobiae indicated the influence of the bay from anthropogenic activities. Further, Cyanobacteria could imply the difference of the nutrient conditions in the sites. γ-proteobacteria, Desulfobacterales and Pirellulales played a role in the cycle of sulfur, organic mineralization and meadow ecosystem, respectively. In addition, the less abundance bacteria species have key functions in the seagrass meadows, but there is lack knowledge of the interaction of the seagrass and less abundance bacteria species. Microbial communities can response to surroundings and play key functions in the biochemical cycle.
Zhao, Bin; Wei, Xiaomu; Li, Weiquan; Udan, Ryan S.; Yang, Qian; Kim, Joungmok; Xie, Joe; Ikenoue, Tsuneo; Yu, Jindan; Li, Li; Zheng, Pan; Ye, Keqiang; Chinnaiyan, Arul; Halder, Georg; Lai, Zhi-Chun; Guan, Kun-Liang
2007-01-01
The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact. PMID:17974916
Diagnosis and Management of Budd Chiari Syndrome: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copelan, Alexander, E-mail: alexander.copelan@beaumont.edu; Remer, Erick M., E-mail: remere1@ccf.org; Sands, Mark, E-mail: sandsm@ccf.org
Imaging plays a crucial role in the early detection and assessment of the extent of disease in Budd Chiari syndrome (BCS). Early diagnosis and intervention to mitigate hepatic congestion is vital to restoring hepatic function and alleviating portal hypertension. Interventional radiology serves a key role in the management of these patients. The interventionist should be knowledgeable of the clinical presentation as well as key imaging findings, which often dictate the approach to treatment. This article concisely reviews the etiology, pathophysiology, and clinical presentation of BCS and provides a detailed description of imaging and treatment options, particularly interventional management.
MRAS: A Close but Understudied Member of the RAS Family.
Young, Lucy C; Rodriguez-Viciana, Pablo
2018-01-08
MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
The role of vision processing in prosthetic vision.
Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette
2012-01-01
Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.
The structure and function of Alzheimer's gamma secretase enzyme complex.
Krishnaswamy, Sudarsan; Verdile, Giuseppe; Groth, David; Kanyenda, Limbikani; Martins, Ralph N
2009-01-01
The production and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer's disease (AD). A multi-subunit enzyme complex, referred to as gamma (gamma) secretase, plays a pivotal role in the generation of Abeta from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Abeta levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of gamma-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the gamma-secretase enzyme and the effects of inhibiting its activity.
MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis
Lee, Seongju; Chang, Jaerak; Renvoisé, Benoît; Tipirneni, Anita; Yang, Sarah; Blackstone, Craig
2012-01-01
Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission. PMID:23015756
Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway
Matsunaga, Mayu; Takeda, Taka-aki
2017-01-01
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339
Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.
Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki
2017-10-19
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.
Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan
2015-04-24
Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by adopting liquid chromatography tandem mass spectrometry. The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulate expression of specific cellulases and hemicellulases, and expression level as a function of substrate. Post translational modifications revealed deamidation of key cellulases including endoglucanases, cellobiohydrolases and glucosidases; and hemicellulases and lignin degrading enzymes. The knowledge on deamidated enzymes along with specific sites of modifications could be crucial information for further functional studies of these enzymes of A. fumigatus. Copyright © 2015 Elsevier B.V. All rights reserved.
Designing and Evaluating an Online Role Play in Conflict Management
ERIC Educational Resources Information Center
Hrastinski, Stefan; Watson, Jason
2009-01-01
Purpose: This paper aims to identify, through a literature review, key issues regarding how online role plays can be designed and to apply them when designing a role play on conflict management. Design/methodology/approach: By drawing on the key issues identified in the literature review, a role play on conflict management was designed and…
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
The mysterious light of dark chocolate.
Şentürk, Tunay; Günay, Şeyda
2015-03-01
A healthy diet plays a key role in the prevention and management of cardiovascular diseases. Dark chocolate in particular has been shown to improve endothelial functions and lipid profile and to have cardiovascular protective effects via an inhibitory action on platelet functions. Recently, several studies have demonstrated the beneficial effects of chocolate, primarily on hypertension and other conditions such as coronary artery disease and hyperlipidemia. The present review provides a summary of the ingredients, bioavailability and cardiovascular protective effects of chocolate / cocoa and the published effects of chocolate on a number of cardiovascular diseases.
Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro
2005-01-01
Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.
Raibert, M H
1986-03-14
Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.
Trends in sensorimotor research and countermeasures for exploration-class space flights.
Shelhamer, Mark
2015-01-01
Research in the area of sensorimotor and neurovestibular function has played an important role in enabling human space flight. This role, however, is changing. One of the key aspects of sensorimotor function relevant to this role will build on its widespread connections with other physiological and psychological systems in the body. The firm knowledge base in this area can provide a strong platform to explore these interactions, which can also provide for the development of effective and efficient countermeasures to the deleterious effects of space flight.
ERIC Educational Resources Information Center
Dembo, Richard; Walters, Wansley; Meyers, Kathleen
2005-01-01
Effectively identifying and responding to the psychosocial problems and recidivism risk of arrested youths remain critical needs in the field. Centralized intake facilities, such as juvenile assessment centers (JACs), can play a key role in this process. As part of a U.S. National Demonstration Project, the Miami-Dade JAC, serving a…
[Adjuvants in modern anesthesia - magnesium].
Picardi, Susanne; Lirk, Philipp; Blobner, Manfred; Schönherr, Marianne E; Hollmann, Markus W
2015-06-01
Magnesium plays a key role in many cellular functions and there is growing interest in its role in perioperative medicine. While experimental studies provided promising results for several disease states, clinical trials mainly gave conflicting results. This review article summarizes current knowledge on the homeostasis of magnesium as well as on its proposed indications and recommendations in the clinical setting. © Georg Thieme Verlag Stuttgart · New York.
USDA-ARS?s Scientific Manuscript database
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate and evaluate the expression of candidate JAK-STAT pathway genes and their regulators and interactor...
Education as a Gateway to Development: Case of Rural Poor at Thabaneng Village in Lesotho
ERIC Educational Resources Information Center
Matsepe, Mokone W.
2015-01-01
The study explores and unfolds the purpose of education in general, its value and the role it plays in helping development of the people in rural areas especially at Thabaneng Village in Lesotho. It reveals that education is the key to development and functions to equip the rural population in Lesotho with knowledge, training and worthwhile skills…
NASA Astrophysics Data System (ADS)
Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford
2015-03-01
The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.
Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.
Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong
2015-01-01
Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.
A molecular imaging analysis of C×43 association with Cdo during skeletal myoblast differentiation
NASA Astrophysics Data System (ADS)
Nosi, Daniele; Mercatelli, Raffaella; Chellini, Flaminia; Soria, Silvia; Pini, Alessandro; Formigli, Lucia; Quercioli, Franco
2014-02-01
Cell-to-cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects are independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel-independent function of Cx43.
Schwieterman, Alicia A.; Steves, Alyse N.; Yee, Vivian; Donelson, Cory J.; Bentley, Melissa R.; Santorella, Elise M.; Mehlenbacher, Taylor V.; Pital, Aaron; Howard, Austin M.; Wilson, Melissa R.; Ereddia, Danielle E.; Effrein, Kelsie S.; McMurry, Jonathan L.; Ackley, Brian D.; Chisholm, Andrew D.; Hudson, Martin L.
2016-01-01
The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system. PMID:26645816
Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron.
Rivera-Oliver, Marla; Moreno, Estefanía; Álvarez-Bagnarol, Yocasta; Ayala-Santiago, Christian; Cruz-Reyes, Nicole; Molina-Castro, Gian Carlo; Clemens, Stefan; Canela, Enric I; Ferré, Sergi; Casadó, Vicent; Díaz-Ríos, Manuel
2018-05-24
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A 1 -dopamine D 1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D 1 receptor-mediated signaling. A 1 -D 1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.
NASA Astrophysics Data System (ADS)
Ali, Rejwan
2010-03-01
Large unilamallar vesicle has been a model system to study many membrane functions. High Tg lipid systems offer many potential biomedical applications in lipid-based delivery applications. While the optimized vesicle functionalities are achieved by Polyethylene Glycol (PEG) polymer, modified PEG and other functional molecule incorporation, however, the host binary lipid system plays the pivotal role in pH-dependent phase transition based lipid vehicular methods. We have investigated a lipid binary system composed of 21:0 PC (1,2-dihenarachidoyl-sn-glycero-3-phosphocholine) and 18:0 PS(1,2-distearoyl-sn-glycero-3-phospho-L-serine). Preliminary studies implementing differential scanning calorimetry shows pH plays key role in temperature shift and thermotropic phase behavior of the binary system. While dynamic light scattering study shows lipid vesicle size is almost independent of pH changes. We will also present pH-dependent thermodynamic parameters to correlate underlying molecular mechanism in relevant pH-range.
Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.
Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke
2017-05-01
Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.
Development of protected endorsement for online banking using mobile phones
NASA Astrophysics Data System (ADS)
Narayana, Galla; Venkateswarlu, Tammineni; Kumar, G. S. P.; Padmavathamma, Mokkala; Sreekanth, G.; Delhibabu, K.; Prasad, A. R.
2013-03-01
Securing Online Banking transactions for customer is the primary goal of financial institutions that provides Internet banking facility. Mobile phones play an important role in our society as more and more functions having been integrated within mobile phones, such as Internet browsing, mobile banking, and shopping. Mobiles phones can be used to secure ATM card pins by sending to the customer directly rather than in emails or by other means which has a possibility of hacking. In this paper we have proposed method of generating a Private Key Security Token by bank authentication servers which uses IMSI registers and IMEI number of client's mobile registered. The key is generated by implementing RIPE MD160 and Hex Encode Algorithm. Token received is valid only for that client mobile only and can be generated upon request by customer dynamically. The client is given a PIN and a Master Key when registered to the Online Banking Services. If in case a client's mobile is lost, authentication is done using Unique Master Key, else the Private Key Token is used there by making transactions secured and simple without the need of carrying any USB Tokens. The additional functionality provides the client more security on their transactions. Due to this Phishing attacks by the hackers is avoided.
Li, Zi-Yu; Li, Bin; Dong, Ai-Wu
2012-01-01
Plant cells frequently undergo endoreduplication, a modified cell cycle in which genome is repeatedly replicated without cytokinesis. As the key step to achieve final size and function for cells, endoreduplication is prevalent during plant development. However, mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood. Here, we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes, as well as in rapidly dividing and vascular tissues. Expression of AtTCP15SRDX, AtTCP15 fused with a SRDX repressor domain, induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis. On the contrary, overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells. Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation. AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes, which play key roles in endoreduplication. Taken together, AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.
Nutrition, frailty, and sarcopenia.
Cruz-Jentoft, Alfonso J; Kiesswetter, Eva; Drey, Michael; Sieber, Cornel C
2017-02-01
Frailty and sarcopenia are important concepts in the quest to prevent physical dependence, as geriatrics are shifting towards identifications of early stages of disability. Definitions of both sarcopenia and frailty are still developing, and both concepts clearly overlap in their physical aspects. Malnutrition (both undernutrition and obesity) plays a key role in the pathogenesis of frailty and sarcopenia. The quality of the diet along the lifespan has a close relation with the incidence of both entities, and nutritional interventions may be able to reduce the incidence or revert either of them. This brief review explores the role of energy and protein intake and other key nutrients on muscle function. Nutrition may be a key element of multimodal interventions for frailty and sarcopenia. The results of the "Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies" (SPRINTT) trial will offer key insights on the effect of such interventions in frail, sarcopenic older individuals.
Reaching and Grasping in Autism Spectrum Disorder: A Review of Recent Literature
Sacrey, Lori-Ann R.; Germani, Tamara; Bryson, Susan E.; Zwaigenbaum, Lonnie
2013-01-01
Impairments in motor functioning, which, until recently, have rarely been a primary focus in autism spectrum disorder (ASD) research, may play a key role in the early expression of biological vulnerability and be associated with key social-communication deficits. This review summarizes current knowledge of motor behavior in ASD, focusing specifically on reaching and grasping. Convergent data across the lifespan indicate that impairments to reaching and grasping emerge early in life, affect the planning and execution of motor programs, and may be impacted by additional impairments to sensory control of motor behavior. The relationship between motor impairments and diagnostic outcomes will be discussed. PMID:24478753
The EVOTION Decision Support System: Utilizing It for Public Health Policy-Making in Hearing Loss.
Katrakazas, Panagiotis; Trenkova, Lyubov; Milas, Josip; Brdaric, Dario; Koutsouris, Dimitris
2017-01-01
As Decision Support Systems start to play a significant role in decision making, especially in the field of public-health policy making, we present an initial attempt to formulate such a system in the concept of public health policy making for hearing loss related problems. Justification for the system's conceptual architecture and its key functionalities are presented. The introduction of the EVOTION DSS sets a key innovation and a basis for paradigm shift in policymaking, by incorporating relevant models, big data analytics and generic demographic data. Expected outcomes for this joint effort are discussed from a public-health point of view.
The notochord: structure and functions.
Corallo, Diana; Trapani, Valeria; Bonaldo, Paolo
2015-08-01
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang
In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.
Farré-Armengol, Gerard; Filella, Iolanda; Llusià, Joan; Peñuelas, Josep
2017-07-13
β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here.
Functional diversity of soil invertebrates: a potential tool to explain N2O emission?
NASA Astrophysics Data System (ADS)
Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem
2017-04-01
Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, P<0.001). No proof was found to explain faunal-induced N2O emissions through differences in stimulated microbial activity. On the other hand, soil structural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.
Hodges, Robin R.
2016-01-01
Abstract Purpose: Purinergic receptors play a key role in the function of the lacrimal gland (LG) as P1 purinergic receptors A1, A2A, and A2B, P2X1–7 receptors, and many of the P2Y receptors are expressed. Methods: This review examines the current knowledge of purinergic receptors in the LG as well as the signaling pathways activated by these receptors. Results: These receptors are expressed on the acinar, ductal, and myoepithelial cells. Considerable crosstalk exists between the pathways activated by P2X7 receptors with those activated by M3 muscarinic or α1D adrenergic receptors. The mechanism of the crosstalk between P2X7 and M3 muscarinic receptors differs from that of the crosstalk between P2X7 and α1D adrenergic receptors. Conclusions: Understanding purinergic receptors and how they modulate protein secretion could play a key role in normal and pathological responses of the LG. PMID:27463365
[Standardization of the terms for Chinese herbal functions based on functional targeting].
Xiao, Bin; Tao, Ou; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang
2011-03-01
Functional analysis concisely summarizes and concentrates on the therapeutic characteristics and features of Chinese herbal medicine. Standardization of the terms for Chinese herbal functions not only plays a key role in modern research and development of Chinese herbal medicine, but also has far-reaching clinical applications. In this paper, a new method for standardizing the terms for Chinese herbal function was proposed. Firstly, functional targets were collected. Secondly, the pathological conditions and the mode of action of every functional target were determined by analyzing the references. Thirdly, the relationships between the pathological condition and the mode of action were determined based on Chinese medicine theory and data. This three-step approach allows for standardization of the terms for Chinese herbal functions. Promoting the standardization of Chinese medicine terms will benefit the overall clinical application of Chinese herbal medicine.
Sousa, Filipa L; Parente, Daniel J; Shis, David L; Hessman, Jacob A; Chazelle, Allen; Bennett, Matthew R; Teichmann, Sarah A; Swint-Kruse, Liskin
2016-02-22
Protein families evolve functional variation by accumulating point mutations at functionally important amino acid positions. Homologs in the LacI/GalR family of transcription regulators have evolved to bind diverse DNA sequences and allosteric regulatory molecules. In addition to playing key roles in bacterial metabolism, these proteins have been widely used as a model family for benchmarking structural and functional prediction algorithms. We have collected manually curated sequence alignments for >3000 sequences, in vivo phenotypic and biochemical data for >5750 LacI/GalR mutational variants, and noncovalent residue contact networks for 65 LacI/GalR homolog structures. Using this rich data resource, we compared the noncovalent residue contact networks of the LacI/GalR subfamilies to design and experimentally validate an allosteric mutant of a synthetic LacI/GalR repressor for use in biotechnology. The AlloRep database (freely available at www.AlloRep.org) is a key resource for future evolutionary studies of LacI/GalR homologs and for benchmarking computational predictions of functional change. Copyright © 2015 Elsevier Ltd. All rights reserved.
Presenting the Straddle Lemma in an introductory Real Analysis course
NASA Astrophysics Data System (ADS)
Soares, A.; Santos, A. L. dos
2017-04-01
In this article, we revisit the concept of strong differentiability of real functions of one variable, underlying the concept of differentiability. Our discussion is guided by the Straddle Lemma, which plays a key role in this context. The proofs of the results presented are designed to meet a young audience in mathematics, typical of students in a first course of Real Analysis or an honors-level Calculus course.
Functional Nanomaterial’s Synthesis and Characterization
2015-04-28
synthesis and characterization of nanoparticles and polymers. Current progress is being made at Argonne National Labs (ANL) and at AFRL in characterization... currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida A&M University 1700 Lee Hall Drive 400 Foote-Hilyer Admin...at Florida A&M University (FAMU) which will play a key role in synthesis and characterization of nanoparticles and polymers. Current progress is
2016-05-27
often discussed in the field of thermosetting materials, crystal engineering1-4 plays a key role in facilitating the successful utilization of these...not to alter the desirable properties of the polymerized networks. Fortunately, the field of crystal engineering provides examples where even very...Chickos and Acree.26 For molecular modeling, methods ranging from atomistic simulations with semi-empirical force fields to density functional
Self-averaging in complex brain neuron signals
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Fukayama, D.; Yadid, G.
2002-12-01
Nonlinear statistical properties of Ventral Tegmental Area (VTA) of limbic brain are studied in vivo. VTA plays key role in generation of pleasure and in development of psychological drug addiction. It is shown that spiking time-series of the VTA dopaminergic neurons exhibit long-range correlations with self-averaging behavior. This specific VTA phenomenon has no relation to VTA rewarding function. Last result reveals complex role of VTA in limbic brain.
The broaden-and-build theory of positive emotions.
Fredrickson, Barbara L
2004-01-01
The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528
Coutinho, Joana; Goncalves, Oscar Filipe; Soares, José Miguel; Marques, Paulo; Sampaio, Adriana
2016-10-30
Obsessive-compulsive personality (OCPD) disorder is characterized by a pattern of excessive self-control, perfectionism and behavioral and cognitive rigidity. Despite the fact that OCPD is the most common personality disorder in the general population, published studies looking at the brain correlates of this disorder are practically nonexistent. The main goal of this study was to analyze the presence of brain alterations in OCPD when compared to healthy controls, specifically at the level of the Default Mode Network (DMN). The DMN is a well-established resting state network which was found to be associated with psychological processes that may play a key role in OCPD (e.g., self-awareness, episodic future thinking and mental simulation). Ten individuals diagnosed with OCPD and ten healthy controls underwent a clinical assessment interview and a resting-state functional magnetic resonance imaging (fMRI) acquisition. The results show that OCPD patients presented an increased functional connectivity in the precuneus (i.e., a posterior node of the DMN), known to be involved in the retrieval manipulation of past events in order to solve current problems and develop plans for the future. These results suggest that this key node of the DMN may play an important role in the pathophysiology of OCPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effects of Learning Melodies by Ear on Performance Skills and Student Attitudes
ERIC Educational Resources Information Center
Musco, Ann Marie
2009-01-01
This study examined the effects of playing by ear in selected keys on the abilities of musicians (N = 28) to play by ear and sight-read in those keys. Middle school band students in the experimental group learned melodies by ear in one familiar and two unfamiliar keys, and did no music reading in the new keys, while students in the contact-control…
Brain glucose sensing, glucokinase and neural control of metabolism and islet function.
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-09-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.
Brain glucose sensing, glucokinase and neural control of metabolism and islet function
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-01-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel – emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. PMID:25200293
Schiavella, Mauro; Pelagatti, Matteo; Westin, Jerker; Lepore, Gabriele; Cherubini, Paolo
2018-01-12
Poker playing and responsible gambling both entail the use of the executive functions (EF), which are higher-level cognitive abilities. This study investigated if online poker players of different ability showed different performances in their EF and if so, which functions were the most discriminating for their playing ability. Furthermore, it assessed if the EF performance was correlated to the quality of gambling, according to self-reported questionnaires (PGSI, SOGS, GRCS). Three poker experts evaluated anonymized poker hand history files and, then, a trained professional administered an extensive neuropsychological test battery. Data analysis determined which variables of the tests correlated with poker ability and gambling quality scores. The highest correlations between EF test results and poker ability and between EF test results and gambling quality assessment showed that mostly different clusters of executive functions characterize the profile of the strong(er) poker player and those ones of the problem gamblers (PGSI and SOGS) and the one of the cognitions related to gambling (GRCS). Taking into consideration only the variables overlapping between PGSI and SOGS, we found some key predictive factors for a more risky and harmful online poker playing: a lower performance in the emotional intelligence competences (Emotional Quotient inventory Short) and, in particular, those grouped in the Intrapersonal scale (emotional self-awareness, assertiveness, self-regard, independence and self-actualization).
Lin, Chien-Ru; Lee, Kuo-Wei; Chen, Chih-Yu; Hong, Ya-Fang; Chen, Jyh-Long; Lu, Chung-An; Chen, Ku-Ting; Ho, Tuan-Hua David; Yu, Su-May
2014-01-01
In plants, source-sink communication plays a pivotal role in crop productivity, yet the underlying regulatory mechanisms are largely unknown. The SnRK1A protein kinase and transcription factor MYBS1 regulate the sugar starvation signaling pathway during seedling growth in cereals. Here, we identified plant-specific SnRK1A-interacting negative regulators (SKINs). SKINs antagonize the function of SnRK1A, and the highly conserved GKSKSF domain is essential for SKINs to function as repressors. Overexpression of SKINs inhibits the expression of MYBS1 and hydrolases essential for mobilization of nutrient reserves in the endosperm, leading to inhibition of seedling growth. The expression of SKINs is highly inducible by drought and moderately by various stresses, which is likely related to the abscisic acid (ABA)–mediated repression of SnRK1A under stress. Overexpression of SKINs enhances ABA sensitivity for inhibition of seedling growth. ABA promotes the interaction between SnRK1A and SKINs and shifts the localization of SKINs from the nucleus to the cytoplasm, where it binds SnRK1A and prevents SnRK1A and MYBS1 from entering the nucleus. Our findings demonstrate that SnRK1A plays a key role regulating source-sink communication during seedling growth. Under abiotic stress, SKINs antagonize the function of SnRK1A, which is likely a key factor restricting seedling vigor. PMID:24569770
Respiration in a changing environment.
Perry, Steven F; Spinelli Oliveira, Elisabeth
2010-08-31
Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia
2016-09-15
Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.
Sox proteins in melanocyte development and melanoma
Harris, Melissa L.; Baxter, Laura L.; Loftus, Stacie K.; Pavan, William J.
2010-01-01
Over ten years has passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma. PMID:20444197
Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis
Nieto-Torres, Jose L.; Verdiá-Báguena, Carmina; Castaño-Rodriguez, Carlos; Aguilella, Vicente M.; Enjuanes, Luis
2015-01-01
Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology. PMID:26151305
Heme oxygenase: the key to renal function regulation
Cao, Jian; Sacerdoti, David; Li, Xiaoying; Drummond, George
2009-01-01
Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function. PMID:19570878
NASA Astrophysics Data System (ADS)
Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia
2016-09-01
Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.
A genomic perspective on the generation and maintenance of genetic diversity in herbivorous insects
Gloss, Andrew D.; Groen, Simon C.; Whiteman, Noah K.
2017-01-01
Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales—from variation within populations to divergence among populations—to form a comprehensive view of adaptation in herbivorous insects. PMID:28736510
A Role for Brain Stress Systems in Addiction
Koob, George F.
2009-01-01
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry. PMID:18614026
Immune heterogeneity in neuroinflammation: dendritic cells in the brain.
Colton, Carol A
2013-03-01
Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC's act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain's response to neuroinflammatory disease with emphasis on how the brain's microenvironment impacts these actions.
Guillaume, Maeva; Montagner, Alexandra; Fontaine, Coralie; Lenfant, Françoise; Arnal, Jean-François; Gourdy, Pierre
2017-01-01
Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.
Introduction to the special section on "translational models of prefrontal cortical function".
Baxter, Mark G
2011-06-01
Impaired functioning of the prefrontal cortex is particularly prominent in many forms of psychopathology and in degenerative brain diseases. Because it is challenging to draw causal links between specific brain abnormalities and impaired cognition in these conditions, research using nonhuman animals has a key role to play in elucidating the neurobiological mechanisms of prefrontal cortex function and aiding the search for treatments. This role is clearly illustrated in the review articles and original research reports in this special section. Taken together, these papers demonstrate the insights that have already been gained from research with nonhuman animals as well as the work that still needs to be done to attain the goal of understanding human prefrontal cortical function in both health and disease.
FUNCTIONS OF VATA (BASED ON CHARAKA) A Passage from Vaatkalaakaleeyam.
Trivedi, A R
1982-04-01
The author has chosen 12(th) Chapter from the Sutra Sthana of this great epic containing 12,000 verses and passages which is replete with materials to revive the whole art of healing even if the whole medical literatures is lost. The passage puts in a nutshell the key role played by Vayu / Vata in the working of the tantra and yantra of the body. Though exploration of the humours is yet to be done by modern physiologists to explain the Ayurvedic Vata which is responsible to no less than 18 functions of the normal body mechanism.
Functional hierarchy of the N-terminal tyrosines of SLP-76.
Jordan, Martha S; Sadler, Jeffrey; Austin, Jessica E; Finkelstein, Lisa D; Singer, Andrew L; Schwartzberg, Pamela L; Koretzky, Gary A
2006-02-15
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.
Conceptual model of consumer’s willingness to eat functional foods
Babicz-Zielinska, Ewa; Jezewska-Zychowicz, Maria
The functional foods constitute the important segment of the food market. Among factors that determine the intentions to eat functional foods, the psychological factors play very important roles. Motives, attitudes and personality are key factors. The relationships between socio-demographic characteristics, attitudes and willingness to purchase functional foods were not fully confirmed. Consumers’ beliefs about health benefits from eaten foods seem to be a strong determinant of a choice of functional foods. The objective of this study was to determine relations between familiarity, attitudes, and beliefs in benefits and risks about functional foods and develop some conceptual models of willingness to eat. The sample of Polish consumers counted 1002 subjects at age 15+. The foods enriched with vitamins or minerals, and cholesterol-lowering margarine or drinks were considered. The questionnaire focused on familiarity with foods, attitudes, beliefs about benefits and risks of their consumption was constructed. The Pearson’s correlations and linear regression equations were calculated. The strongest relations appeared between attitudes, high health value and high benefits, (r = 0.722 and 0.712 for enriched foods, and 0.664 and 0.693 for cholesterol-lowering foods), and between high health value and high benefits (0.814 for enriched foods and 0.758 for cholesterol-lowering foods). The conceptual models based on linear regression of relations between attitudes and all other variables, considering or not the familiarity with the foods, were developed. The positive attitudes and declared consumption are more important for enriched foods. The beliefs on high health value and high benefits play the most important role in the purchase. The interrelations between different variables may be described by new linear regression models, with the beliefs in high benefits, positive attitudes and familiarity being most significant predictors. Health expectations and trust to functional foods are the key factors in their choice.
Watanabe, Mutsumi; Mochida, Keiichi; Kato, Tomohiko; Tabata, Satoshi; Yoshimoto, Naoko; Noji, Masaaki; Saito, Kazuki
2008-01-01
Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles. PMID:18776059
Wang, Yiping; Zhang, Xiaojian; Liu, Qing; Ai, Chenbing; Mo, Hongyu; Zeng, Jia
2009-07-01
The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, which plays several key roles in maintaining the redox environment of the cell. In Acidithiobacillus ferrooxidans, thioredoxin system may play important functions in the activity regulation of periplasmic proteins and energy metabolism. Here, we cloned thioredoxin (trx) and thioredoxin reductase (trxR) genes from Acidithiobacillus ferrooxidans, and expressed the genes in Escherichia coli. His-Trx and His-TrxR were purified to homogeneity with one-step Ni-NTA affinity column chromatography. Site-directed mutagenesis results confirmed that Cys33, Cys36 of thioredoxin, and Cys142, Cys145 of thioredoxin reductase were active-site residues.
Symbiodinium—Invertebrate Symbioses and the Role of Metabolomics
Gordon, Benjamin R.; Leggat, William
2010-01-01
Symbioses play an important role within the marine environment. Among the most well known of these symbioses is that between coral and the photosynthetic dinoflagellate, Symbiodinium spp. Understanding the metabolic relationships between the host and the symbiont is of the utmost importance in order to gain insight into how this symbiosis may be disrupted due to environmental stressors. Here we summarize the metabolites related to nutritional roles, diel cycles and the common metabolites associated with the invertebrate-Symbiodinium relationship. We also review the more obscure metabolites and toxins that have been identified through natural products and biomarker research. Finally, we discuss the key role that metabolomics and functional genomics will play in understanding these important symbioses. PMID:21116405
Multi-functional quantum router using hybrid opto-electromechanics
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang
2018-03-01
Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.
Exosomes and other extracellular vesicles in host–pathogen interactions
Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L
2015-01-01
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940
Targeting vacuolar H+-ATPases as a new strategy against cancer.
Fais, Stefano; De Milito, Angelo; You, Haiyan; Qin, Wenxin
2007-11-15
Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.
Nanometric summation architecture based on optical near-field interaction between quantum dots.
Naruse, Makoto; Miyazaki, Tetsuya; Kubota, Fumito; Kawazoe, Tadashi; Kobayashi, Kiyoshi; Sangu, Suguru; Ohtsu, Motoichi
2005-01-15
A nanoscale data summation architecture is proposed and experimentally demonstrated based on the optical near-field interaction between quantum dots. Based on local electromagnetic interactions between a few nanometric elements via optical near fields, we can combine multiple excitations at a certain quantum dot, which allows construction of a summation architecture. Summation plays a key role for content-addressable memory, which is one of the most important functions in optical networks.
Warren B. Cohen; Sean P. Healey; Samuel Goward; Gretchen G. Moisen; Jeffrey G. Masek; Robert E. Kennedy; Scott L. Powell; Chengquan Huang; Nancy Thomas; Karen Schleeweis; Michael A. Wulder
2007-01-01
The exchange of carbon between forests and the atmosphere is a function of forest type, climate, and disturbance history, with previous studies illustrating that forests play a key role in the terrestrial carbon cycle. The North American Carbon Program (NACP) has supported the acquisition of biennial Landsat image time-series for sample locations throughout much of...
Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research
Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the
Genome-Wide Detection and Analysis of Multifunctional Genes
Pritykin, Yuri; Ghersi, Dario; Singh, Mona
2015-01-01
Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655
Molecular mechanisms of floral mimicry in orchids.
Schlüter, Philipp M; Schiestl, Florian P
2008-05-01
Deceptive plants do not produce floral rewards, but attract pollinators by mimicking signals of other organisms, such as food plants or female insects. Such floral mimicry is particularly common in orchids, in which flower morphology, coloration and odour play key roles in deceiving pollinators. A better understanding of the molecular bases for these traits should provide new insights into the occurrence, mechanisms and evolutionary consequences of floral mimicry. It should also reveal the molecular bases of pollinator-attracting signals, in addition to providing strategies for manipulating insect behaviour in general. Here, we review data on the molecular bases for traits involved in floral mimicry, and we describe methodological advances helpful for the functional evaluation of key genes.
Uzhachenko, Roman; Shanker, Anil; Yarbrough, Wendell G.; Ivanova, Alla V.
2015-01-01
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context. PMID:26246474
Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements
NASA Technical Reports Server (NTRS)
Lyatsky, W.; Khazanov, G. V.
2007-01-01
Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.
Gong, Cuihua; Sun, Shangtong; Liu, Bing; Wang, Jing; Chen, Xiaodong
2017-06-01
The study aimed to identify the potential target genes and key miRNAs as well as to explore the underlying mechanisms in the pathogenesis of oral lichen planus (OLP) by bioinformatics analysis. The microarray data of GSE38617 were downloaded from Gene Expression Omnibus (GEO) database. A total of 7 OLP and 7 normal samples were used to identify the differentially expressed genes (DEGs) and miRNAs. The DEGs were then performed functional enrichment analyses. Furthermore, DEG-miRNA network and miRNA-function network were constructed by Cytoscape software. Total 1758 DEGs (598 up- and 1160 down-regulated genes) and 40 miRNAs (17 up- and 23 down-regulated miRNAs) were selected. The up-regulated genes were related to nuclear factor-Kappa B (NF-κB) signaling pathway, while down-regulated genes were mainly enriched in the function of ribosome. Tumor necrosis factor (TNF), caspase recruitment domain family, member 11 (CARD11) and mitochondrial ribosomal protein (MRP) genes were identified in these functions. In addition, miR-302 was a hub node in DEG-miRNA network and regulated cyclin D1 (CCND1). MiR-548a-2 was the key miRNA in miRNA-function network by regulating multiple functions including ribosomal function. The NF-κB signaling pathway and ribosome function may be the pathogenic mechanisms of OLP. The genes such as TNF, CARD11, MRP genes and CCND1 may be potential therapeutic target genes in OLP. MiR-548a-2 and miR-302 may play important roles in OLP development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources.
Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik
2014-05-01
Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts--for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts.
Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources
Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik
2014-01-01
Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts—for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts. PMID:23460073
The role of play objects and object play in human cognitive evolution and innovation
Johannsen, Niels N.; Högberg, Anders; Nowell, April; Lombard, Marlize
2018-01-01
Abstract In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation's material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life‐history model of the costs and benefits of experimentation with a niche‐construction perspective. Niche‐construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens' niche is the active provisioning of children with play objects — sometimes functional miniatures of adult tools — and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research. PMID:29446561
Crosse, Michael J; Di Liberto, Giovanni M; Bednar, Adam; Lalor, Edmund C
2016-01-01
Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter-often referred to as a temporal response function-that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application.
Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping
2013-12-27
With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.
Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces
Jones, George H.
2018-01-01
Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichia coli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally. PMID:29562650
DNA methylation in insects: on the brink of the epigenomic era.
Glastad, K M; Hunt, Brendan G; Yi, S V; Goodisman, M A D
2011-10-01
DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics.
Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Tixier, Aude; Cochard, Hervé; Herbette, Stéphane
2014-03-01
Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency. © 2013 Scandinavian Plant Physiology Society.
Plasma and cellular fibronectin: distinct and independent functions during tissue repair
2011-01-01
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes. PMID:21923916
Kolehmainen, Niina; Francis, Jillian J; Ramsay, Craig R; Owen, Christine; McKee, Lorna; Ketelaar, Marjolijn; Rosenbaum, Peter
2011-11-07
Children with motor impairments (e.g. difficulties with motor control, muscle tone or balance) experience significant difficulties in participating in physical play and leisure. Current interventions are often poorly defined, lack explicit hypotheses about why or how they might work, and have insufficient evidence about effectiveness. This project will identify (i) the 'key ingredients' of an effective intervention to increase participation in physical play and leisure in children with motor impairments; and (ii) how these ingredients can be combined in a feasible and acceptable intervention. The project draws on the WHO International Classification of Functioning, Disability and Health and the UK Medical Research Council guidance for developing 'complex interventions'. There will be five steps: 1) identifying biomedical, personal and environmental factors proposed to predict children's participation in physical play and leisure; 2) developing an explicit model of the key predictors; 3) selecting intervention strategies to target the predictors, and specifying the pathways to change; 4) operationalising the strategies in a feasible and acceptable intervention; and 5) modelling the intervention processes and outcomes within single cases. The primary output from this project will be a detailed protocol for an intervention. The intervention, if subsequently found to be effective, will support children with motor difficulties to attain life-long well-being and participation in society. The project will also be an exemplar of methodology for a systematic development of non-drug interventions for children.
2011-01-01
Background Children with motor impairments (e.g. difficulties with motor control, muscle tone or balance) experience significant difficulties in participating in physical play and leisure. Current interventions are often poorly defined, lack explicit hypotheses about why or how they might work, and have insufficient evidence about effectiveness. This project will identify (i) the 'key ingredients' of an effective intervention to increase participation in physical play and leisure in children with motor impairments; and (ii) how these ingredients can be combined in a feasible and acceptable intervention. Methods/Design The project draws on the WHO International Classification of Functioning, Disability and Health and the UK Medical Research Council guidance for developing 'complex interventions'. There will be five steps: 1) identifying biomedical, personal and environmental factors proposed to predict children's participation in physical play and leisure; 2) developing an explicit model of the key predictors; 3) selecting intervention strategies to target the predictors, and specifying the pathways to change; 4) operationalising the strategies in a feasible and acceptable intervention; and 5) modelling the intervention processes and outcomes within single cases. Discussion The primary output from this project will be a detailed protocol for an intervention. The intervention, if subsequently found to be effective, will support children with motor difficulties to attain life-long well-being and participation in society. The project will also be an exemplar of methodology for a systematic development of non-drug interventions for children. PMID:22061203
Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.
2013-01-01
Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801
Biophoton signal transmission and processing in the brain.
Tang, Rendong; Dai, Jiapei
2014-10-05
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.
Berridge, Michael J
2018-02-01
The process of development depends on a number of signaling systems that regulates the progressive sequence of developmental events. Infertility and neurodevelopmental diseases, such as attention deficit hyperactivity disorder, autism spectrum disorders, and schizophrenia, are caused by specific alterations in these signaling processes. Calcium signaling plays a prominent role throughout development beginning at fertilization and continuing through early development, implantation, and organ differentiation such as heart and brain development. Vitamin D plays a major role in regulating these signaling processes that control development. There is an increase in infertility and an onset of neurodevelopmental diseases when vitamin D is deficient. The way in which vitamin D deficiency acts to alter development is a major feature of this review. One of the primary functions of vitamin D is to maintain the phenotypic stability of both the Ca 2+ and redox signaling pathways that play such a key role throughout development.
Chang, Chia-Ming; Yang, Yi-Ping; Chuang, Jen-Hua; Chuang, Chi-Mu; Lin, Tzu-Wei; Wang, Peng-Hui; Yu, Mu-Hsien
2017-01-01
The clinical characteristics of clear cell carcinoma (CCC) and endometrioid carcinoma EC) are concomitant with endometriosis (ES), which leads to the postulation of malignant transformation of ES to endometriosis-associated ovarian carcinoma (EAOC). Different deregulated functional areas were proposed accounting for the pathogenesis of EAOC transformation, and there is still a lack of a data-driven analysis with the accumulated experimental data in publicly-available databases to incorporate the deregulated functions involved in the malignant transformation of EOAC. We used the microarray gene expression datasets of ES, CCC and EC downloaded from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database. Then, we investigated the pathogenesis of EAOC by a data-driven, function-based analytic model with the quantified molecular functions defined by 1454 Gene Ontology (GO) term gene sets. This model converts the gene expression profiles to the functionome consisting of 1454 quantified GO functions, and then, the key functions involving the malignant transformation of EOAC can be extracted by a series of filters. Our results demonstrate that the deregulated oxidoreductase activity, metabolism, hormone activity, inflammatory response, innate immune response and cell-cell signaling play the key roles in the malignant transformation of EAOC. These results provide the evidence supporting the specific molecular pathways involved in the malignant transformation of EAOC. PMID:29113136
Client relations in South Asia: programmatic and societal determinants.
Simmons, R; Koblinsky, M A; Phillips, J F
1986-01-01
Client relations constitute a neglected area of research in family planning. Findings from studies in northern India and Bangladesh reveal considerable variation in both the quantity and quality of contacts in programs that function under roughly comparable socioeconomic conditions. Client relations are determined by a complex set of forces in which both programmatic factors and conditions pertaining to the societal environment play a key role. Worker-client exchanges have a net, incremental effect on contraceptive use.
Shape of the growing front of biofilms
NASA Astrophysics Data System (ADS)
Wang, Xin; Stone, Howard A.; Golestanian, Ramin
2017-12-01
The spatial organization of bacteria in dense biofilms is key to their collective behaviour, and understanding it will be important for medical and technological applications. Here we study the morphology of a compact biofilm that undergoes unidirectional growth, and determine the condition for the stability of the growing interface as a function of the nutrient concentration and mechanical tension. Our study suggests that transient behaviour may play an important role in shaping the structure of a biofilm.
Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Newell, Dominick; Melonakos, Eric D; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek
2017-01-26
We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition. Copyright © 2016. Published by Elsevier Ltd.
Eisenhut, Michael; Wallace, Helen
2011-04-01
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
Nitric Oxide and Mitochondrial Function in Neurological Diseases.
Ghasemi, Mehdi; Mayasi, Yunis; Hannoun, Anas; Eslami, Seyed Majid; Carandang, Raphael
2018-04-15
Mitochondria are key cellular organelles that play crucial roles in the energy production and regulation of cellular metabolism. Accumulating evidence suggests that mitochondrial activity can be modulated by nitric oxide (NO). As a key neurotransmitter in biologic systems, NO mediates the majority of its function through activation of the cyclic guanylyl cyclase (cGC) signaling pathway and S-nitrosylation of a variety of proteins involved in cellular functioning including those involved in mitochondrial biology. Moreover, excess NO or the formation of reactive NO species (RNS), e.g., peroxynitrite (ONOO - ), impairs mitochondrial functioning and this, in conjunction with nuclear events, eventually affects neuronal cell metabolism and survival, contributing to the pathogenesis of several neurodegenerative diseases. In this review we highlight the possible mechanisms underlying the noxious effects of excess NO and RNS on mitochondrial function including (i) negative effects on electron transport chain (ETC); (ii) ONOO - -mediated alteration in mitochondrial permeability transition; (iii) enhanced mitochondrial fragmentation and autophagy through S-nitrosylation of key proteins involved in this process such as dynamin-related protein 1 (DRP-1) and Parkin/PINK1 (protein phosphatase and tensin homolog-induced kinase 1) complex; (iv) alterations in the mitochondrial metabolic pathways including Krebs cycle, glycolysis, fatty acid metabolism, and urea cycle; and finally (v) mitochondrial ONOO - -induced nuclear toxicity and subsequent release of apoptosis-inducing factor (AIF) from mitochondria, causing neuronal cell death. These proposed mechanisms highlight the multidimensional nature of NO and its signaling in the mitochondrial function. Understanding the mechanisms by which NO mediates mitochondrial (dys)function can provide new insights into the treatment of neurodegenerative diseases. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Musumeci, Giuseppe; Castorina, Sergio; Castrogiovanni, Paola; Loreto, Carla; Leonardi, Rosi; Aiello, Flavia Concetta; Magro, Gaetano; Imbesi, Rosa
2015-01-01
The pituitary gland and the hypothalamus are morphologically and functionally associated in the endocrine and neuroendocrine control of other endocrine glands. They therefore play a key role in a number of regulatory feedback processes that co-ordinate the whole endocrine system. Here we review the neuroendocrine system, from the discoveries that led to its identification to some recently clarified embryological, functional, and morphological aspects. In particular we review the pituitary gland and the main notions related to its development, organization, cell differentiation, and vascularization. Given the crucial importance of the factors controlling neuroendocrine system development to understand parvocellular neuron function and the aetiology of the congenital disorders related to hypothalamic-pituitary axis dysfunction, we also provide an overview of the molecular and genetic studies that have advanced our knowledge in the field. Through the action of the hypothalamus, the pituitary gland is involved in the control of a broad range of key aspects of our lives: the review focuses on the hypothalamic-pituitary-gonadal axis, particularly GnRH, whose abnormal secretion is associated with clinical conditions involving delayed or absent puberty and reproductive dysfunction. Copyright © 2015 Elsevier GmbH. All rights reserved.
Pizzi, Stefano Delli; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A.; Di Giulio, Camillo; Onofrj, Marco
2017-01-01
The amygdala–medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala–mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala–mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion. PMID:27566606
Delli Pizzi, Stefano; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A; Di Giulio, Camillo; Onofrj, Marco; Bonanni, Laura
2017-04-01
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala-mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala-mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1 H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion.
Bazan, Nicolas G.; Molina, Miguel F.; Gordon, William C.
2012-01-01
Essential polyunsaturated fatty acids (PUFAs) are critical nutritional lipids that must be obtained from the diet to sustain homeostasis. Omega-3 and -6 PUFAs are key components of biomembranes and play important roles in cell integrity, development, maintenance, and function. The essential omega-3 fatty acid family member docosahexaenoic acid (DHA) is avidly retained and uniquely concentrated in the nervous system, particularly in photoreceptors and synaptic membranes. DHA plays a key role in vision, neuroprotection, successful aging, memory, and other functions. In addition, DHA displays anti-inflammatory and inflammatory resolving properties in contrast to the proinflammatory actions of several members of the omega-6 PUFAs family. This review discusses DHA signalolipidomics, comprising the cellular/tissue organization of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains rich in DHA-containing phospholipids, and the cellular and molecular events revealed by the uncovering of signaling pathways regulated by DHA and docosanoids, the DHA-derived bioactive lipids, which include neuroprotectin D1 (NPD1), a novel DHA-derived stereoselective mediator. NPD1 synthesis agonists include neurotrophins and oxidative stress; NPD1 elicits potent anti-inflammatory actions and prohomeostatic bioactivity, is anti-angiogenic, promotes corneal nerve regeneration, and induces cell survival. In the context of DHA signalolipidomics, this review highlights aging and the evolving studies on the significance of DHA in Alzheimer’s disease, macular degeneration, Parkinson’s disease, and other brain disorders. DHA signalolipidomics in the nervous system offers emerging targets for pharmaceutical intervention and clinical translation. PMID:21756134
The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.
Wang, Dashan
2018-06-01
The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049
2014-10-03
Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less
Biocuration at the Saccharomyces genome database.
Skrzypek, Marek S; Nash, Robert S
2015-08-01
Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system provides a foundation for further analysis of experimental data coming from research on yeast as well as other organisms. In this review we will demonstrate how biocuration and biocurators add a key component, the biological context, to our understanding of how genes, proteins, genomes and cells function and interact. We will explain the role biocurators play in sifting through the wealth of biological data to incorporate and connect key information. We will also discuss the many ways we assist researchers with their various research needs. We hope to convince the reader that manual curation is vital in converting the flood of data into organized and interconnected knowledge, and that biocurators play an essential role in the integration of scientific information into a coherent model of the cell. © 2015 Wiley Periodicals, Inc.
Biocuration at the Saccharomyces Genome Database
Skrzypek, Marek S.; Nash, Robert S.
2015-01-01
Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system provides a foundation for further analysis of experimental data coming from research on yeast as well as other organisms. In this review we will demonstrate how biocuration and biocurators add a key component, the biological context, to our understanding of how genes, proteins, genomes and cells function and interact. We will explain the role biocurators play in sifting through the wealth of biological data to incorporate and connect key information. We will also discuss the many ways we assist researchers with their various research needs. We hope to convince the reader that manual curation is vital in converting the flood of data into organized and interconnected knowledge, and that biocurators play an essential role in the integration of scientific information into a coherent model of the cell. PMID:25997651
mRNA Traffic Control Reviewed: N6-Methyladenosine (m6 A) Takes the Driver's Seat.
Visvanathan, Abhirami; Somasundaram, Kumaravel
2018-01-01
Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are non-editing events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m 6 A) has gained the attention of RNA biologists. The m 6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m 6 A epitranscriptome. © 2017 WILEY Periodicals, Inc.
[Management of adverse drug effects].
Schlienger, R G
2000-09-01
Adverse drug reactions (ADRs) are still considered one of the main problems of drug therapy. ADRs are associated with considerable morbidity, mortality, decreased compliance and therapeutic success as well as high direct and indirect medical costs. Several considerations have to come into play when managing a potential ADR. It is critical to establish an accurate clinical diagnosis of the adverse event. Combining information about drug exposure together with considering other possible causes of the reaction is crucial to establish a causal relationship between the reaction and the suspected drug. Identification of the underlying pathogenesis of an ADR together with the severity of the reaction will have profound implications on continuation of drug therapy after an ADR. Since spontaneous reports about ADRs are a key stone of a functioning post-marketing surveillance system and therefore play a key role in improving drug safety, health care professionals are highly encouraged to report ADRs to a local or national organization. However, because the majority of ADRs is dose-dependent and therefore preventable, individualization of pharmacotherapy may have a major impact on reducing such events.
Mass transport on adsorbate multilayers studied by surface plasmon polariton wave excitation
NASA Astrophysics Data System (ADS)
Wang, X.; Fei, Y. Y.; Zhu, X. D.
2011-12-01
We excited surface-plasmon polariton waves (SPPW) on Cu(111) by coupling a monochromatic optical beam with a xenon multilayer thickness grating on the metal. The SPPW excitation was detected with an angle-resolved oblique-incidence reflectivity difference technique (OI-RD). The amplitude of the resonance OI-RD signal was a quadratic function of the grating modulation depth. By monitoring the decay of the resonance OI-RD signal as a function of time and temperature, we were able to study the mass transport of xenon that plays a key role in the annealing of a "rough" Xe multilayer crystalline film.
Laboratory Information Systems.
Henricks, Walter H
2015-06-01
Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.
The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease.
Lane-Donovan, Courtney; Herz, Joachim
2017-06-01
The LDL receptor (LDLR) family has long been studied for its role in cholesterol transport and metabolism; however, the identification of ApoE4, an LDLR ligand, as a genetic risk factor for late-onset Alzheimer's disease has focused attention on the role this receptor family plays in the CNS. Surprisingly, it was discovered that two LDLR family members, ApoE receptor 2 (Apoer2) and VLDL receptor (Vldlr), play key roles in brain development and adult synaptic plasticity, primarily by mediating Reelin signaling. This review focuses on Apoer2 and Vldlr signaling in the CNS and its role in human disease. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain
Mather, Mara; Harley, Carolyn W.
2016-01-01
Research on cognitive aging has focused on how decline in various cortical and hippocampal regions influence cognition. However, brainstem regions play essential modulatory roles, and new evidence suggests that among these, the integrity of the locus coeruleus-norepinephrine system plays a key role in determining late life cognitive abilities. The locus coeruleus is especially vulnerable to toxins and infection and is often the first place Alzheimer’s related pathology appears, with most people showing at least some tau pathology by their mid-twenties. On the other hand, norepinephrine released from the locus coeruleus during arousing, mentally challenging or novel situations helps protect neurons from damage, which may help explain how education and engaging careers prevent cognitive decline in later years. PMID:26895736
The dynamic regulation of NAD metabolism in mitochondria
Stein, Liana Roberts; Imai, Shin-ichiro
2012-01-01
Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213
Multimodal connectivity of motor learning-related dorsal premotor cortex.
Hardwick, Robert M; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B
2015-12-01
The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Friedman, Nizan; Chan, Vicky; Zondervan, Danny; Bachman, Mark; Reinkensmeyer, David J
2011-01-01
People with stroke typically must perform much of their hand exercise at home without professional assistance as soon as two weeks after the stroke. Without feedback and encouragement, individuals often lose motivation to practice using the affected hand, and this disuse contributes to further declines in hand function. We developed the MusicGlove as a way to facilitate and motivate at home practice of hand movement. This low-cost device uses music as an interactive and motivating medium to guide hand exercise and to quantitatively assess hand movement recovery. It requires the user to practice functional movements, including pincer grip, key-pinch grip, and finger-thumb opposition, by using those movements to play different musical notes, played along to songs displayed by an interactive computer game. We report here the design of the glove and the results of a single-session experiment with 10 participants with chronic stroke. We found that the glove is well suited for use by people with an impairment level quantified by a Box and Blocks score of at least around 7; that the glove can be used to obtain a measure of hand dexterity (% of notes hit) that correlates strongly with the Box and Blocks score; and that the incorporation of music into training significantly improved both objective measures of hand motor performance and self-ratings of motivation for training in the single session.
Global urban signatures of phenotypic change in animal and plant populations
Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu
2017-01-01
Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends. PMID:28049817
Global urban signatures of phenotypic change in animal and plant populations.
Alberti, Marina; Correa, Cristian; Marzluff, John M; Hendry, Andrew P; Palkovacs, Eric P; Gotanda, Kiyoko M; Hunt, Victoria M; Apgar, Travis M; Zhou, Yuyu
2017-08-22
Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends.
Yang, Ke; He, Peng; Dong, Shuang-Lin
2014-01-01
Abstract Chemosensory proteins (CSPs) play various roles in insect physiology including olfaction and development. The brown planthopper, Nilaparvata lugens Stål , is one of the most notorious rice pests worldwide. The wing-from variation and annually long distance migration imply that olfaction would play a key role in N. lugens behavior. In this study, full-length cDNAs of nine CSPs were cloned by the rapid amplification of cDNA ends procedure, and their expression profiles were determined by the quantitative real-time Polymerase Chain Reaction (qPCR), with regard to developmental stage, wing-form, gender, and tissues of short-wing adult. These NlugCSP genes showed distinct expression patterns, indicating different roles they play. In particular, NlugCSP5 was long wing form biased and highly expressed in female wings among tissues; NlugCSP1 was mainly expressed in male adults and abdomen; NlugCSP7 was widely expressed in chemosensory tissues but little in the nonchemosensory abdomen. The function of NlugCSP7 in olfaction was further explored by the competitive fluorescence binding assay using the recombinant protein. However, the recombinant NlugCSP7 showed no obvious binding with all tested volatile compounds, suggesting that it may participate in physiological processes other than olfaction. Our results provide bases and some important clues for the function of NlugCSPs . PMID:25527582
Shah, Dinen D.; Singh, Surinder M.; Dzieciatkowska, Monika
2017-01-01
Binding immunoglobulin protein (BiP) is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR) in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE). BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD) where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell. PMID:28886061
Tellegen, Cassandra L.; Sanders, Matthew R.
2012-01-01
Parenting is central to the health and well-being of children. Children with developmental disabilities have been shown to be at increased risk of developing emotional and behavioral problems. Parent training programs are effective interventions for improving child behavior and family functioning. This paper describes the outcomes of a brief 4-session parenting intervention (Primary Care Stepping Stones Triple P) targeting compliance and cooperative play skills in an 8-year-old girl with Asperger's disorder and ADHD combined type. The intervention was associated with decreases in child behavior problems, increases in parenting confidence, and decreases in dysfunctional parenting styles. This paper demonstrates that low-intensity parenting interventions can lead to significant improvements in child behavior and family functioning. Such brief interventions are cost effective, can be widely disseminated, and have been designed to be delivered within primary health care settings. Pediatricians can play a key role in identifying parents in need of assistance and in helping them access evidence-based parenting interventions. PMID:22928141
SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.
Song, Guiqin; Liu, Kang; Yang, Xiaolin; Mu, Bo; Yang, Junbao; He, Lang; Hu, Xin; Li, Qiujiang; Zhao, Yunxia; Cai, Xiaoming; Feng, Gang
2017-03-14
Esophageal cancer is a highly aggressive malignancy with very poor overall prognosis. Given the strong clinical relevance of SATB1 in esophagus cancer and other cancers suggested by previous studies, the exact function of SATB1 in esophagus cancer development is still unknown. Here we showed that the knockdown of SATB1 in esophageal cancer cell lines diminished the cell proliferation, survival and invasion. Whole genome transcriptome analysis of SATB1 knockdown cells revealed the different gene expression profiles between TE-1 cells and MDA-MB-231 cells. Network analysis and functional experiments further identified FN1 and PDGFRB to be key downstream genes regulated by SATB1 in esophageal cancer cells. Importantly, FN1 and PDGFRB were found to be highly expressed in human esophageal cancer. In summary, we provided the first molecular evidence that SATB1 played an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.
Insular Volume Reduction in Patients with Social Anxiety Disorder
Kawaguchi, Akiko; Nemoto, Kiyotaka; Nakaaki, Shutaro; Kawaguchi, Takatsune; Kan, Hirohito; Arai, Nobuyuki; Shiraishi, Nao; Hashimoto, Nobuhiko; Akechi, Tatsuo
2016-01-01
Despite the fact that social anxiety disorder (SAD) is highly prevalent, there have been only a few structural imaging studies. Moreover, most of them reported about a volume reduction in amygdale, which plays a key role in the neural function of SAD. Insula is another region of interest. Its hyperactivity in regard to processing negative emotional information or interoceptive awareness has been detected in patients with SAD. Referring to these studies, we hypothesized that insular volumes might reduce in patients with SAD and made a comparison of insular volumes between 13 patients with SAD and 18 healthy controls with matched age and gender using voxel-based morphometry. As a result, we found a significant volume reduction in insula in the SAD group. Our results suggest that the patients with SAD might have an insular volume reduction apart from amygdala. Since insula plays a critical role in the pathology of SAD, more attention should be paid not only to functional study but also morphometrical study of insula. PMID:26834652
Comparative genomics of the lactic acid bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, K.; Slesarev, A.; Wolf, Y.
Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less
Plant Hormones: Key Players in Gut Microbiota and Human Diseases?
Chanclud, Emilie; Lacombe, Benoît
2017-09-01
It is well established that plant hormones such as auxins, cytokinins (CKs), and abscisic acid (ABA) not only govern important plant physiological traits but are key players in plant-microbe interactions. A poorly appreciated fact, however, is that both microbes and animals produce and perceive plant hormones and their mimics. Moreover, dietary plant hormones impact on human physiological process such as glucose assimilation, inflammation, and cell division. This leads us to wonder whether plant hormones could ensure functions in microbes per se as well as in animal-microbe interactions. We propose here and explore the hypothesis that plant hormones play roles in animal-microbiota relationships, with consequences for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao
2017-01-01
Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.
Jetten, Anton M
2018-05-19
Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. GLI-similar 1-3 (GLIS1-3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repressors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator of pancreatic β cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunction leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1-3 have regulatory functions in several stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological functions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.
Xinyinqin: a computer-based heart sound simulator.
Zhan, X X; Pei, J H; Xiao, Y H
1995-01-01
"Xinyinqin" is the Chinese phoneticized name of the Heart Sound Simulator (HSS). The "qin" in "Xinyinqin" is the Chinese name of a category of musical instruments, which means that the operation of HSS is very convenient--like playing an electric piano with the keys. HSS is connected to the GAME I/O of an Apple microcomputer. The generation of sound is controlled by a program. Xinyinqin is used as a teaching aid of Diagnostics. It has been applied in teaching for three years. In this demonstration we will introduce the following functions of HSS: 1) The main program has two modules. The first one is the heart auscultation training module. HSS can output a heart sound selected by the student. Another program module is used to test the student's learning condition. The computer can randomly simulate a certain heart sound and ask the student to name it. The computer gives the student's answer an assessment: "correct" or "incorrect." When the answer is incorrect, the computer will output that heart sound again for the student to listen to; this process is repeated until she correctly identifies it. 2) The program is convenient to use and easy to control. By pressing the S key, it is able to output a slow heart rate until the student can clearly identify the rhythm. The heart rate, like the actual rate of a patient, can then be restored by hitting any key. By pressing the SPACE BAR, the heart sound output can be stopped to allow the teacher to explain something to the student. The teacher can resume playing the heart sound again by hitting any key; she can also change the content of the training by hitting RETURN key. In the future, we plan to simulate more heart sounds and incorporate relevant graphs.
Clues to the Foundations of Numerical Cognitive Impairments: Evidence From Genetic Disorders
Simon, Tony J.
2011-01-01
Several neurodevelopmental disorders of known genetic etiology generate phenotypes that share the characteristic of numerical and mathematical cognitive impairments. This article reviews some of the main findings that suggest a possible key role that spatial and temporal information processing impairments may play in the atypical development of numerical cognitive competence. The question of what neural substrate might underlie these impairments is also addressed, as are the challenges for interpreting neural structure/cognitive function mapping in atypically developing populations. PMID:21761998
From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules
Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine
2011-01-01
Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709
Effect of Estrogen on Mutagenesis in Human Mammary Epithelial Cells
2005-06-01
instability remains undefined in most human cancers, it appears to arise from subtle, intragenic mutations of the genes , whose products play a key role in...cells and is less labor-intensive. A G-G or T-G mismatch was introduced into ATG start codon of the enhanced green fluorescent protein (EGFP) gene ...Repair of the G-G or T-G mismatch to G-C or T-A, respectively in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex
Cabral-Costa, J V; Andreotti, D Z; Mello, N P; Scavone, C; Camandola, S; Kawamoto, E M
2018-06-05
Phosphatase and tensin homolog (PTEN) is an important protein with key modulatory functions in cell growth and survival. PTEN is crucial during embryogenesis and plays a key role in the central nervous system (CNS), where it directly modulates neuronal development and synaptic plasticity. Loss of PTEN signaling function is associated with cognitive deficits and synaptic plasticity impairment. Accordingly, Pten mutations have a strong link with autism spectrum disorder. In this study, neuronal Pten haploinsufficient male mice were subjected to a long-term environmental intervention - intermittent fasting (IF) - and then evaluated for alterations in exploratory, anxiety and learning and memory behaviors. Although no significant effects on spatial memory were observed, mutant mice showed impaired contextual fear memory in the passive avoidance test - an outcome that was effectively rescued by IF. In this study, we demonstrated that IF modulation, in addition to its rescue of the memory deficit, was also required to uncover behavioral phenotypes otherwise hidden in this neuronal Pten haploinsufficiency model.
What do mouse models of muscular dystrophy tell us about the DAPC and its components?
Whitmore, Charlotte; Morgan, Jennifer
2014-12-01
There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.
Jers, Carsten; Soufi, Boumediene; Grangeasse, Christophe; Deutscher, Josef; Mijakovic, Ivan
2008-08-01
Bacteria use protein phosphorylation to regulate all kinds of physiological processes. Protein phosphorylation plays a role in several key steps of the infection process of bacterial pathogens, such as adhesion to the host, triggering and regulation of pathogenic functions as well as biochemical warfare; scrambling the host signaling cascades and impairing its defense mechanisms. Recent phosphoproteomic studies indicate that the bacterial protein phosphorylation networks could be more complex than initially expected, comprising promiscuous kinases that regulate several distinct cellular functions by phosphorylating different protein substrates. Recent advances in protein labeling with stable isotopes in the field of quantitative mass spectrometry phosphoproteomics will enable us to chart the global phosphorylation networks and to understand the implication of protein phosphorylation in cellular regulation on the systems scale. For the study of bacterial pathogens, in particular, this research avenue will enable us to dissect phosphorylation-related events during different stages of infection and stimulate our efforts to find inhibitors for key kinases and phosphatases implicated therein.
The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity.
Escobedo, Noelia; Oliver, Guillermo
2017-10-03
Obesity is a key risk factor for metabolic and cardiovascular diseases, and although we understand the mechanisms regulating weight and energy balance, the causes of some forms of obesity remain enigmatic. Despite the well-established connections between lymphatics and lipids, and the fact that intestinal lacteals play key roles in dietary fat absorption, the function of the lymphatic vasculature in adipose metabolism has only recently been recognized. It is well established that angiogenesis is tightly associated with the outgrowth of adipose tissue, as expanding adipose tissue requires increased nutrient supply from blood vessels. Results supporting a crosstalk between lymphatic vessels and adipose tissue, and linking lymphatic function with metabolic diseases, obesity, and adipose tissue, also started to accumulate in the last years. Here we review our current knowledge of the mechanisms by which defective lymphatics contribute to obesity and fat accumulation in mouse models, as well as our understanding of the lymphatic-adipose tissue relationship. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach
NASA Astrophysics Data System (ADS)
Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.
2013-12-01
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
Sequencing of the Cheese Microbiome and Its Relevance to Industry.
Yeluri Jonnala, Bhagya R; McSweeney, Paul L H; Sheehan, Jeremiah J; Cotter, Paul D
2018-01-01
The microbiota of cheese plays a key role in determining its organoleptic and other physico-chemical properties. It is essential to understand the various contributions, positive or negative, of these microbial components in order to promote the growth of desirable taxa and, thus, characteristics. The recent application of high throughput DNA sequencing (HTS) facilitates an even more accurate identification of these microbes, and their functional properties, and has the potential to reveal those microbes, and associated pathways, responsible for favorable or unfavorable characteristics. This technology also facilitates a detailed analysis of the composition and functional potential of the microbiota of milk, curd, whey, mixed starters, processing environments, and how these contribute to the final cheese microbiota, and associated characteristics. Ultimately, this information can be harnessed by producers to optimize the quality, safety, and commercial value of their products. In this review we highlight a number of key studies in which HTS was employed to study the cheese microbiota, and pay particular attention to those of greatest relevance to industry.
Fan, Jing; Kuai, Bin; Wu, Guifen; Wu, Xudong; Chi, Binkai; Wang, Lantian; Wang, Ke; Shi, Zhubing; Zhang, Heng; Chen, She; He, Zhisong; Wang, Siyuan; Zhou, Zhaocai; Li, Guohui; Cheng, Hong
2017-10-02
The exosome is a key RNA machine that functions in the degradation of unwanted RNAs. Here, we found that significant fractions of precursors and mature forms of mRNAs and long noncoding RNAs are degraded by the nuclear exosome in normal human cells. Exosome-mediated degradation of these RNAs requires its cofactor hMTR4. Significantly, hMTR4 plays a key role in specifically recruiting the exosome to its targets. Furthermore, we provide several lines of evidence indicating that hMTR4 executes this role by directly competing with the mRNA export adaptor ALYREF for associating with ARS2, a component of the cap-binding complex (CBC), and this competition is critical for determining whether an RNA is degraded or exported to the cytoplasm. Together, our results indicate that the competition between hMTR4 and ALYREF determines exosome recruitment and functions in creating balanced nuclear RNA pools for degradation and export. © 2017 The Authors.
Teaching about the French Revolution--A Play.
ERIC Educational Resources Information Center
Pezone, Michael
2002-01-01
Presents a play about the French Revolution, discussing how the play was used within a global history course. States that students read the play, work in groups to rewrite the play, and perform their version of the play. Includes key questions that are asked of the students. (CMK)
Li, Jin; Zheng, Le; Uchiyama, Akihiko; Bin, Lianghua; Mauro, Theodora M; Elias, Peter M; Pawelczyk, Tadeusz; Sakowicz-Burkiewicz, Monika; Trzeciak, Magdalena; Leung, Donald Y M; Morasso, Maria I; Yu, Peng
2018-06-13
A large volume of biological data is being generated for studying mechanisms of various biological processes. These precious data enable large-scale computational analyses to gain biological insights. However, it remains a challenge to mine the data efficiently for knowledge discovery. The heterogeneity of these data makes it difficult to consistently integrate them, slowing down the process of biological discovery. We introduce a data processing paradigm to identify key factors in biological processes via systematic collection of gene expression datasets, primary analysis of data, and evaluation of consistent signals. To demonstrate its effectiveness, our paradigm was applied to epidermal development and identified many genes that play a potential role in this process. Besides the known epidermal development genes, a substantial proportion of the identified genes are still not supported by gain- or loss-of-function studies, yielding many novel genes for future studies. Among them, we selected a top gene for loss-of-function experimental validation and confirmed its function in epidermal differentiation, proving the ability of this paradigm to identify new factors in biological processes. In addition, this paradigm revealed many key genes in cold-induced thermogenesis using data from cold-challenged tissues, demonstrating its generalizability. This paradigm can lead to fruitful results for studying molecular mechanisms in an era of explosive accumulation of publicly available biological data.
Why There Are 88 Keys on the Piano: "88 Logic-The Mackay Method for Piano." Volume 1
ERIC Educational Resources Information Center
Mackay, Stephen R.
2005-01-01
Background: After trying to define the reason why the piano ended up with 88 keys, I found patterns to explain ways of playing the piano with an 8:8 ratio which gives purpose to why the piano has 88 keys on it. Purpose: The first purpose is to enable piano teachers and music students to benefit from understanding how to play piano and be…
An essential role for IL-2 receptor in regulatory T cell function
Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.
2016-01-01
Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233
Relationship between diet, the gut microbiota, and brain function.
Tengeler, Anouk C; Kozicz, Tamas; Kiliaan, Amanda J
2018-04-28
The human intestinal microbiota, comprising trillions of microorganisms, exerts a substantial effect on the host. The microbiota plays essential roles in the function and development of several physiological processes, including those in the brain. A disruption in the microbial composition of the gut has been associated with many metabolic, inflammatory, neurodevelopmental, and neurodegenerative disorders. Nutrition is one of several key factors that shape the microbial composition during infancy and throughout life, thereby affecting brain structure and function. This review examines the effect of the gut microbiota on brain function. The ability of external factors, such as diet, to influence the microbial composition implies a certain vulnerability of the gut microbiota. However, it also offers a potential therapeutic strategy for ameliorating symptoms of mental and physical disorders. Therefore, this review examines the potential effect of nutritional components on gut microbial composition and brain function.
Li, Changping; Thompson, Michael A.; Tamayo, Archito T.; Zuo, Zhuang; Lee, John; Vega, Francisco; Ford, Richard J.; Pham, Lan V.
2012-01-01
Diffuse Large B cell lymphomas (DLBCL) are the most prevalent of the non-Hodgkin lymphomas and are currently initially treated fairly successfully, but frequently relapse as refractory disease, resulting in poor salvage therapy options and short survival. The greatest challenge in improving survival of DLBCL patients is overcoming chemo-resistance, whose basis is poorly understood. Among the potential mediators of DLBCL chemo-resistance is the thioredxoin (Trx) family, primarily because Trx family members play critical roles in the regulation of cellular redox homeostasis, and recent studies have indicated that dysregulated redox homeostasis also plays a key role in chemoresistance. In this study, we showed that most of the DLBCL-derived cell lines and primary DLBCL cells express higher basal levels of Trx-1 than normal B cells and that Trx-1 expression level is associated with decreased patients survival. Our functional studies showed that inhibition of Trx-1 by small interfering RNA or a Trx-1 inhibitor (PX-12) inhibited DLBCL cell growth, clonogenicity, and also sensitized DLBCL cells to doxorubicin-induced cell growth inhibition in vitro. These results indicate that Trx-1 plays a key role in cell growth and survival, as well as chemoresistance, and is a potential target to overcome drug resistance in relapsed/refractory DLBCL. PMID:22447839
The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus.
Dewi, Intan M W; van de Veerdonk, Frank L; Gresnigt, Mark S
2017-10-04
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus -infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus . Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus -infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
The role of play objects and object play in human cognitive evolution and innovation.
Riede, Felix; Johannsen, Niels N; Högberg, Anders; Nowell, April; Lombard, Marlize
2018-01-01
In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation's material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life-history model of the costs and benefits of experimentation with a niche-construction perspective. Niche-construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens' niche is the active provisioning of children with play objects - sometimes functional miniatures of adult tools - and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research. © 2018 The Authors Evolutionary Anthropology Published by Wiley Periodicals, Inc.
Thioredoxin plays a key role in retinal neuropathy prior to endothelial damage in diabetic mice
Ren, Xiang; Li, Chen; Liu, Junli; Zhang, Chenghong; Fu, Yuzhen; Wang, Nina; Ma, Haiying; Lu, Heyuan; Kong, Hui; Kong, Li
2017-01-01
Diabetes is a chronic metabolic syndrome that results in changes in carbohydrate, lipid and protein metabolism. With diabetes for a long time, it increases the risk of diabetic retinopathy (DR) and long-term morbidity and mortality. Moreover, emerging evidence suggests that neuron damage occurs earlier than microvascular complications in DR patients, but the underlying mechanism is unclear. We investigated diabetes-induced retinal neuropathy and elucidated key molecular events to identify new therapeutic targets for the clinical treatment and prevention of DR. For in vivo studies, a high-fat diet and streptozotocin (STZ) injection were used to generate the diabetes model. Hematoxylin-eosin staining was used for morphological observations and measurements of the outer nuclear layer thickness. Electroretinography (ERG) was used to assess retinal function. For in vitro studies, Neuro2a cells were incubated in normal (5.5 mM) and high-glucose (30 mM) conditions. Flow cytometry assays were performed to analyze apoptosis. Additionally, real-time PCR and Western blotting analyses were carried out to determine gene and protein expression in vitro and in vivo. Taken together, the results indicated that retinal neuropathy occurred prior to endothelial damage induced by diabetes, and thioredoxin (Trx) plays a key role in this process. This underlying mechanism may be related to activation of the Trx/ASK1/p-p38/Trx-interacting protein pathway. PMID:28977868
[Application of bioinformatics in researches of industrial biocatalysis].
Yu, Hui-Min; Luo, Hui; Shi, Yue; Sun, Xu-Dong; Shen, Zhong-Yao
2004-05-01
Industrial biocatalysis is currently attracting much attention to rebuild or substitute traditional producing process of chemicals and drugs. One of key focuses in industrial biocatalysis is biocatalyst, which is usually one kind of microbial enzyme. In the recent, new technologies of bioinformatics have played and will continue to play more and more significant roles in researches of industrial biocatalysis in response to the waves of genomic revolution. One of the key applications of bioinformatics in biocatalysis is the discovery and identification of the new biocatalyst through advanced DNA and protein sequence search, comparison and analyses in Internet database using different algorithm and software. The unknown genes of microbial enzymes can also be simply harvested by primer design on the basis of bioinformatics analyses. The other key applications of bioinformatics in biocatalysis are the modification and improvement of existing industrial biocatalyst. In this aspect, bioinformatics is of great importance in both rational design and directed evolution of microbial enzymes. Based on the successful prediction of tertiary structures of enzymes using the tool of bioinformatics, the undermentioned experiments, i.e. site-directed mutagenesis, fusion protein construction, DNA family shuffling and saturation mutagenesis, etc, are usually of very high efficiency. On all accounts, bioinformatics will be an essential tool for either biologist or biological engineer in the future researches of industrial biocatalysis, due to its significant function in guiding and quickening the step of discovery and/or improvement of novel biocatalysts.
Moon, Sue Jin; Jeong, Byong Chang; Kim, Hwa Jin; Lim, Joung Eun; Kwon, Ghee Young; Kim, Jeong Hoon
2018-03-01
Constitutively active AR-V7, one of the major androgen receptor (AR) splice variants lacking the ligand-binding domain, plays a key role in the development of castration-resistant prostate cancer (CRPC) and anti-androgen resistance. However, our understanding of the regulatory mechanisms of AR-V7-driven transcription is limited. Here we report DBC1 as a key regulator of AR-V7 transcriptional activity and stability in CRPC cells. DBC1 functions as a coactivator for AR-V7 and is required for the expression of AR-V7 target genes including CDH2, a mesenchymal marker linked to CRPC progression. DBC1 is required for recruitment of AR-V7 to its target enhancers and for long-range chromatin looping between the CDH2 enhancer and promoter. Mechanistically, DBC1 enhances DNA-binding activity of AR-V7 by direct interaction and inhibits CHIP E3 ligase-mediated ubiquitination and degradation of AR-V7 by competing with CHIP for AR-V7 binding, thereby stabilizing and activating AR-V7. Importantly, DBC1 depletion suppresses the tumorigenic and metastatic properties of CRPC cells. Our results firmly establish DBC1 as a critical AR-V7 coactivator that plays a key role in the regulation of DNA binding and stability of AR-V7 and has an important physiological role in CRPC progression.
Ocean processes at the Antarctic continental slope
Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker
2014-01-01
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389
Ocean processes at the Antarctic continental slope.
Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker
2014-07-13
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.
Yaldizli, Ozguer; Kumar, Manoj; Vago, Susanne; Kreuzfelder, Erich; Limmroth, Volker; Putzki, Norman
2009-01-01
The pathophysiology of multiple sclerosis (MS)-associated fatigue is poorly understood. Immunological mechanisms may play a role. Alterations in immunological profile indicate a chronic immune activation in MS patients with fatigue. T-regulatory (Treg) cells seem to play a key role in coordinating autoimmune mechanisms in MS. This is the first study investigating the relationship between Treg cell function and fatigue in MS patients. In this cross-sectional in vitro, ex vivo study, we isolated peripheral blood mononuclear cells (PBMCs) from 20 MS patients with fatigue, determined lymphocyte subsets by flow cytometry and suppressive function of Treg cells in PBMC cultures with antigen stimulation. Forkhead box protein 3 expression was evaluated by PCR. Results were compared with 20 MS patients without fatigue and with 19 healthy controls. Leukocytes and lymphocyte subsets including Treg cell frequency did not differ in patients with and without fatigue. Co-culturing of Treg cells with CD4+CD25- cells did not lead to a significant suppression of myelin basic protein- and pokeweed mitogen-induced proliferation in MS patients in contrast to healthy controls. There were no statistical differences between MS patients with and without fatigue regarding this suppression activity. Fatigue seems not to be associated with impaired function of Treg cells in untreated MS patients.
Identifying MicroRNAs and Transcript Targets in Jatropha Seeds
Galli, Vanessa; Guzman, Frank; de Oliveira, Luiz F. V.; Loss-Morais, Guilherme; Körbes, Ana P.; Silva, Sérgio D. A.; Margis-Pinheiro, Márcia M. A. N.; Margis, Rogério
2014-01-01
MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play a key role in diverse plant biological processes. Jatropha curcas L. has received significant attention as a potential oilseed crop for the production of renewable oil. Here, a sRNA library of mature seeds and three mRNA libraries from three different seed development stages were generated by deep sequencing to identify and characterize the miRNAs and pre-miRNAs of J. curcas. Computational analysis was used for the identification of 180 conserved miRNAs and 41 precursors (pre-miRNAs) as well as 16 novel pre-miRNAs. The predicted miRNA target genes are involved in a broad range of physiological functions, including cellular structure, nuclear function, translation, transport, hormone synthesis, defense, and lipid metabolism. Some pre-miRNA and miRNA targets vary in abundance between the three stages of seed development. A search for sequences that produce siRNA was performed, and the results indicated that J. curcas siRNAs play a role in nuclear functions, transport, catalytic processes and disease resistance. This study presents the first large scale identification of J. curcas miRNAs and their targets in mature seeds based on deep sequencing, and it contributes to a functional understanding of these miRNAs. PMID:24551031
Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.
Kim, Chang H
2018-02-01
Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.
Diversification of caldesmon-linked actin cytoskeleton in cell motility
Mayanagi, Taira
2011-01-01
The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD's structural features and functions. PMID:21350330
Partners in crime: The role of tandem modules in gene transcription.
Sharma, Rajal; Zhou, Ming-Ming
2015-09-01
Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.
The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B.
Lapinski, Philip E; Oliver, Jennifer A; Bodie, Jennifer N; Marti, Francesc; King, Philip D
2009-11-01
Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.
Poor caregiver mental health predicts mortality of patients with neurodegenerative disease
Ford, Brett Q.; Casey, James J.; Miller, Bruce L.; Levenson, Robert W.
2017-01-01
Dementia and other neurodegenerative diseases cause profound declines in functioning; thus, many patients require caregivers for assistance with daily living. Patients differ greatly in how long they live after disease onset, with the nature and severity of the disease playing an important role. Caregiving can also be extremely stressful, and many caregivers experience declines in mental health. In this study, we investigated the role that caregiver mental health plays in patient mortality. In 176 patient–caregiver dyads, we found that worse caregiver mental health predicted greater patient mortality even when accounting for key risk factors in patients (i.e., diagnosis, age, sex, dementia severity, and patient mental health). These findings highlight the importance of caring for caregivers as well as patients when attempting to improve patients’ lives. PMID:28655841
Poor caregiver mental health predicts mortality of patients with neurodegenerative disease.
Lwi, Sandy J; Ford, Brett Q; Casey, James J; Miller, Bruce L; Levenson, Robert W
2017-07-11
Dementia and other neurodegenerative diseases cause profound declines in functioning; thus, many patients require caregivers for assistance with daily living. Patients differ greatly in how long they live after disease onset, with the nature and severity of the disease playing an important role. Caregiving can also be extremely stressful, and many caregivers experience declines in mental health. In this study, we investigated the role that caregiver mental health plays in patient mortality. In 176 patient-caregiver dyads, we found that worse caregiver mental health predicted greater patient mortality even when accounting for key risk factors in patients (i.e., diagnosis, age, sex, dementia severity, and patient mental health). These findings highlight the importance of caring for caregivers as well as patients when attempting to improve patients' lives.
The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain.
Mather, Mara; Harley, Carolyn W
2016-03-01
Research on cognitive aging has focused on how decline in various cortical and hippocampal regions influence cognition. However, brainstem regions play essential modulatory roles, and new evidence suggests that, among these, the integrity of the locus coeruleus (LC)-norepinephrine (NE) system plays a key role in determining late-life cognitive abilities. The LC is especially vulnerable to toxins and infection and is often the first place Alzheimer's-related pathology appears, with most people showing at least some tau pathology by their mid-20s. On the other hand, NE released from the LC during arousing, mentally challenging, or novel situations helps to protect neurons from damage, which may help to explain how education and engaging careers prevent cognitive decline in later years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Romano, Jacob; Nimrod, Guy; Ben-Tal, Nir; Shadkchan, Yona; Baruch, Koti; Sharon, Haim; Osherov, Nir
2006-07-01
The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.
Soybean kinome: functional classification and gene expression patterns
Liu, Jinyi; Chen, Nana; Grant, Joshua N.; Cheng, Zong-Ming (Max); Stewart, C. Neal; Hewezi, Tarek
2015-01-01
The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean. PMID:25614662
Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana
2011-01-01
Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306
Liu, Caiyun; Li, Zhigang; Xing, Junjie; Yang, Jun; Wang, Zhao; Zhang, Hong; Chen, Deng; Peng, You-Liang; Chen, Xiao-Lin
2018-04-16
Protein post-translational modifications play critical roles in cellular processes, development and stress response. The small ubiquitin-like modifier (SUMO) to proteins is one of the essential modifications in eukaryotes, but its function remains largely unknown in plant pathogenic fungi. We present a comprehensive analysis combined with proteomic, molecular and cellular approaches to explore the roles of sumoylation in the model plant fungal pathogen, Magnaporthe oryzae. We found the SUMO pathway plays key roles in colony growth, conidia formation and virulence to the host, as well as cell-cycle-related phenotypes. Sumoylation is also involved in responding to different stresses. Affinity purification identified 940 putative SUMO substrates, many of which were reported to be involved in development, stress response and infection. Interestingly, four septins were also shown to be sumoylated. Mutation of consensus sumoylation sites in each septin all resulted in reduced virulence to the host and dislocation of septins in appressoria. Moreover, sumoylation is also involved in extracellular secretion of different effector proteins. Our study on the functions of sumoylation provides novel insight into development and infection of the rice blast fungus. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Hartwig, Thomas; Corvalan, Claudia; Best, Norman B; Budka, Joshua S; Zhu, Jia-Ying; Choe, Sunghwa; Schulz, Burkhard
2012-01-01
Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA(3) co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species.
Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders?
Mannon, Roslyn B
2012-02-01
Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury, while more recent studies indicate that they may play a reparative role, depending on phenotype - M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid-organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage-mediated injury, explore their potential reparative role, and determine if they or their functional products are biomarkers of poor graft outcomes.
The neural substrates of action identification.
Marsh, Abigail A; Kozak, Megan N; Wegner, Daniel M; Reid, Marguerite E; Yu, Henry H; Blair, R J R
2010-12-01
Mentalization is the process by which an observer views a target as possessing higher cognitive faculties such as goals, intentions and desires. Mentalization can be assessed using action identification paradigms, in which observers choose mentalistic (goals-focused) or mechanistic (action-focused) descriptions of targets' actions. Neural structures that play key roles in inferring goals and intentions from others' observed or imagined actions include temporo-parietal junction, ventral premotor cortex and extrastriate body area. We hypothesized that these regions play a role in action identification as well. Data collected using functional magnetic resonance imaging (fMRI) confirmed our predictions that activity in ventral premotor cortex and middle temporal gyrus near the extrastriate body area varies both as a function of the valence of the target and the extent to which actions are identified as goal-directed. In addition, the inferior parietal lobule is preferentially engaged when participants identify the actions of mentalized targets. Functional connectivity analyses suggest support from other regions, including the medial prefrontal cortex and amygdala, during mentalization. We found correlations between action identification and Autism Quotient scores, suggesting that understanding the neural correlates of action identification may enhance our understanding of the underpinnings of essential social cognitive processes.
[Understanding and development strategy of health food containing Chinese materia medica].
Wang, Lin-Yuan; Zhang, Jian-Jun; Wang, Chun; Wang, Jing-Xia; Zhu, Ying-Li; Wang, Jia; Gao, Xue-Min
2016-11-01
Health food containing Chinese materia medica (CMM) conforms to the development demands of the age of big health and the theory of preventive treatment. In the view of health care and improvement of resisting diseases, it plays an important role in the market. It is very necessary to have further study and discussion on health food containing CMM. First of all, by comparing, analyzing and summarizing, the health food containing CMM could be defined as the health food which is qualified in security and functionality evaluation, with the traditional Chinese medicines(TCM) within TCM standards as the main raw materials, and the formulation-composition is based on the theory of TCM. It is characterized by higher safety than medicines, stronger biological activities than common food, multiple forms, abundant raw materials and integrated supervision and management. Secondly, we discussed the research and development (R&D) strategies and rules of health food containing CMM, pointing out that the core tasks of R&D include the investigation of formula, technology and the standards of quality. The fundamental principles of declaration and production include scientificity, rationality, reality and uniformity. Three key requirements (security, functionality and controllability) in the review as well as the process management of R&D and the key-points of risks control were summarized in this paper. Finally, the dynamic trends of policies and regulations related to health food containing CMM were analyzed in the view of registration, recording, raw materials and functions, and then related suggestions were proposed. Therefore, this article will be helpful in overall understanding the health food containing CMM and play a guiding role for its research and development. Copyright© by the Chinese Pharmaceutical Association.
Dick, Taylor J M; Wakeling, James M
2017-12-01
When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.
Crosse, Michael J.; Di Liberto, Giovanni M.; Bednar, Adam; Lalor, Edmund C.
2016-01-01
Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter—often referred to as a temporal response function—that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application. PMID:27965557
Neumayer, Gernot; Helfricht, Angela; Shim, Su Yeon; Le, Hoa Thi; Lundin, Cecilia; Belzil, Camille; Chansard, Mathieu; Yu, Yaping; Lees-Miller, Susan P.; Gruss, Oliver J.; van Attikum, Haico; Helleday, Thomas; Nguyen, Minh Dang
2012-01-01
The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G0 and G1 phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage. PMID:23045526
Yang, Haixia; Xiao, Lei; Wang, Nanping
2017-04-01
Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young
2013-02-01
Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.
Right heart on multidetector CT
Gopalan, D
2011-01-01
Right ventricular function plays an integral role in the pathogenesis and outcome of many cardiovascular diseases. Imaging the right ventricle has long been a challenge because of its complex geometry. In recent years there has been a tremendous expansion in multidetector row CT (MDCT) and its cardiac applications. By judicious modification of contrast medium protocol, it is possible to achieve good opacification of the right-sided cardiac chambers, thereby paving the way for exploring the overshadowed right heart. This article will describe the key features of right heart anatomy, review MDCT acquisition techniques, elaborate the various morphological and functional information that can be obtained, and illustrate some important clinical conditions associated with an abnormal right heart. PMID:22723537
Mitochondrial DNA Unwinding Enzyme Required for Liver Regeneration | Center for Cancer Research
The liver has an exceptional capacity to proliferate. This ability allows the liver to regenerate its mass after partial surgical removal or injury and is the key to successful partial liver transplants. Liver cells, called hepatocytes, are packed with mitochondria, and regulating mitochondrial DNA (mtDNA) copy number is crucial to mitochondrial function, including energy production, during proliferation. Yves Pommier, M.D., Ph.D., of CCR’s Developmental Therapeutics Branch, and his colleagues recently showed that the vertebrate mitochondrial topoisomerase, Top1mt, was critical in maintaining mitochondrial function in the heart after doxorubicin-induced damage. The group wondered whether Top1mt might play a similar role in liver regeneration.
Exercise and ankle sprain injuries: a comprehensive review.
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan Carlos; Flandez, Jorge; Page, Phil; Andersen, Lars L
2014-02-01
Ankle sprains are common in team sports and sports played on courts, and often result in structural and functional alterations that lead to a greater reinjury risk. Specific exercises are often used to promote neuromuscular improvements in the prevention and rehabilitation of ankle injuries. This literature review summarizes the neuromuscular characteristics of common ankle sprains and the effectiveness of exercise as an intervention for improving neuromuscular function and preventing reinjury. Our review found that appropriate exercise prescription can increase static and dynamic balance and decrease injury recurrence. In particular, the addition of dynamic activities in the exercise program can be beneficial because of the anticipatory postural adjustments identified as a key factor in the injury mechanism.
Xerostomia in geriatric patients: a burgeoning global concern.
Anil, Sukumaran; Vellappally, Sajith; Hashem, Mohamed; Preethanath, Reghunathan S; Patil, Shankargouda; Samaranayake, Lakshman P
2016-02-01
Saliva plays a key role in maintaining oral homeostasis, function, and health. The prevalence of xerostomia and its consequences are rising due to the increasing aging population, the effects of some systemic diseases, medical management, and commonly-prescribed medications that reduce saliva production. When salivary function is diminished, patients are at a greater risk of developing caries, discomfort in wearing dentures, and opportunistic diseases, such as candidiasis. The psychosocial aspects of xerostomia can range from a mild effect on self-rated oral health to frustration, embarrassment, unhappiness, or substantial disruptions in quality of life. This article reviews the clinical features, diagnosis, and prevalence of dry mouth, as well as its treatment strategies. © 2014 Wiley Publishing Asia Pty Ltd.
Brouse, Lon; Brouse, Richard; Brouse, Daniel
2017-01-01
Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms that grow in evaporative cooling water systems, but can adversely affect the environment and human health. However, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years to inhibit microorganisms with excellent results. The water chemistry method concentrates natural minerals in highly-softened water to produce elevated pH and dissolved solids, while maintaining low calcium and magnesium content. The method provides further benefits in water conservation, and generates a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This report describes the antimicrobial effects of these chemistry modifications in the cooling water environment and the resultant collective inhibition of microbes, biofilm, and pathogen growth. This article also presents a novel perspective of parasitic microbiome functional relationships, including “Trojan Protozoans” and biofilms, and the function of polyvalent metal ions in the formation and inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Concurrently, scientists have concluded that discharge of antibacterial agents plays a key role in development of pathogen resistance to antimicrobials as well as antibiotics. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner. PMID:28420074
Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review
Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping
2018-01-01
Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231
Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.
Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing
2016-09-02
Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.
Inhibitors of Protein Methyltransferases and Demethylases
2017-01-01
Post-translational modifications of histones by protein methyltransferases (PMTs) and histone demethylases (KDMs) play an important role in the regulation of gene expression and transcription and are implicated in cancer and many other diseases. Many of these enzymes also target various nonhistone proteins impacting numerous crucial biological pathways. Given their key biological functions and implications in human diseases, there has been a growing interest in assessing these enzymes as potential therapeutic targets. Consequently, discovering and developing inhibitors of these enzymes has become a very active and fast-growing research area over the past decade. In this review, we cover the discovery, characterization, and biological application of inhibitors of PMTs and KDMs with emphasis on key advancements in the field. We also discuss challenges, opportunities, and future directions in this emerging, exciting research field. PMID:28338320
Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution.
Rui, Zhe; Zhang, Wenjun
2016-01-01
Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery.
Circular RNA: an emerging key player in RNA world.
Meng, Xianwen; Li, Xue; Zhang, Peijing; Wang, Jingjing; Zhou, Yincong; Chen, Ming
2017-07-01
Insights into the circular RNA (circRNA) exploration have revealed that they are abundant in eukaryotic transcriptomes. Diverse genomic regions can generate different types of RNA circles, implying their diversity. Covalently closed loop structures elevate the stability of this new type of noncoding RNA. High-throughput sequencing analyses suggest that circRNAs exhibit tissue- and developmental-specific expression, indicating that they may play crucial roles in multiple cellular processes. Strikingly, several circRNAs could function as microRNA sponges and regulate gene transcription, highlighting a new class of important regulators. Here, we review the recent advances in knowledge of endogenous circRNA biogenesis, properties and functions. We further discuss the current findings about circRNAs in human diseases. In plants, the roles of circRNAs remain a mystery. Online resources and bioinformatics identification of circRNAs are essential for the analysis of circRNA biology, although different strategies yield divergent results. The understanding of circRNA functions remains limited; however, circRNAs are enriching the RNA world, acting as an emerging key player. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.
Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y
2016-01-01
Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara
Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less
Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; ...
2014-10-07
Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less
An Empirical Mass Function Distribution
NASA Astrophysics Data System (ADS)
Murray, S. G.; Robotham, A. S. G.; Power, C.
2018-03-01
The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.
Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O’Connor, Jason C.; Xu, Yong; Liu, Meilian; Dong, Lily Q.
2017-01-01
Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction. PMID:29087318
The unseen iceberg: Plant roots in arctic tundra
Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.
2015-01-01
Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.
Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng
2017-11-14
Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.
Type IV secretion system of Brucella spp. and its effectors
Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang
2015-01-01
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis. PMID:26528442
Type IV secretion system of Brucella spp. and its effectors.
Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang
2015-01-01
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.
Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.
Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F
2017-01-01
The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella
Hameed, Muhammad Salman; Wang, Zhengbing; Yang, Guang
2018-01-01
Argonaute (Ago) protein family plays a key role in the RNA interference (RNAi) process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella (PxAgo3) with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile) domain and PIWI (P-element-induced whimpy testes) domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3). The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA)-regulated RNAi pathway in P. xylostella. PMID:29677157
Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella.
Hameed, Muhammad Salman; Wang, Zhengbing; Vasseur, Liette; Yang, Guang
2018-04-20
Argonaute (Ago) protein family plays a key role in the RNA interference (RNAi) process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella ( PxAgo3 ) with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile) domain and PIWI (P-element-induced whimpy testes) domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3). The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA)-regulated RNAi pathway in P. xylostella .
CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis
Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi
2013-01-01
Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed. [BMB Reports 2013; 46(12): 567-574] PMID:24238363
Montanari, Elita; Di Meo, Chiara; Oates, Angela; Coviello, Tommasina; Matricardi, Pietro
2018-04-18
Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is ‘Cluster of Differentiation 44’ (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as ‘reservoirs’ for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a ‘Trojan Horse’. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.
Zhang, Junjie; Zhang, Shuangshuang; Li, Hui; Du, Hai; Huang, Huanhuan; Li, Yangping; Hu, Yufeng; Liu, Hanmei; Liu, Yinghong; Yu, Guowu; Huang, Yubi
2016-01-01
Maize is the leading crop worldwide in terms of both planting area and total yields, but environmental stresses cause significant losses in productivity. Phenylpropanoid compounds play an important role in plant stress resistance; however, the mechanism of their synthesis is not fully understood, especially in regard to the expression and regulation of key genes. Phenylalanine ammonia-lyase (PAL) is the first key enzyme involved in phenylpropanoid metabolism, and it has a significant effect on the synthesis of important phenylpropanoid compounds. According to the results of sequence alignments and functional prediction, we selected two conserved R2R3-MYB transcription factors as candidate genes for the regulation of phenylpropanoid metabolism. The two candidate R2R3-MYB genes, which we named ZmMYB111 and ZmMYB148, were cloned, and then their structural characteristics and phylogenetic placement were predicted and analyzed. In addition, a series of evaluations were performed, including expression profiles, subcellular localization, transcription activation, protein-DNA interaction, and transient expression in maize endosperm. Our results indicated that both ZmMYB111 and ZmMYB148 are indeed R2R3-MYB transcription factors and that they may play a regulatory role in PAL gene expression.
Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.
Weston, Nathaniel B; Joye, Samantha B
2005-11-22
The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures.
Playing with Mathematics: Play in Early Childhood as a Context for Mathematical Learning
ERIC Educational Resources Information Center
Mathematics Education Research Group of Australasia, 2010
2010-01-01
Play is an essential part of young children's lives. This symposium highlights the integral role of play in young children's mathematics learning and examines the teacher's role in facilitating and extending this. Papers examine key tenets of play, contributing to theoretical understandings and presenting data on teacher's perceptions of play and…
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.
Sato, Trey K; Panda, Satchidananda; Miraglia, Loren J; Reyes, Teresa M; Rudic, Radu D; McNamara, Peter; Naik, Kinnery A; FitzGerald, Garret A; Kay, Steve A; Hogenesch, John B
2004-08-19
The mammalian circadian clock plays an integral role in timing rhythmic physiology and behavior, such as locomotor activity, with anticipated daily environmental changes. The master oscillator resides within the suprachiasmatic nucleus (SCN), which can maintain circadian rhythms in the absence of synchronizing light input. Here, we describe a genomics-based approach to identify circadian activators of Bmal1, itself a key transcriptional activator that is necessary for core oscillator function. Using cell-based functional assays, as well as behavioral and molecular analyses, we identified Rora as an activator of Bmal1 transcription within the SCN. Rora is required for normal Bmal1 expression and consolidation of daily locomotor activity and is regulated by the core clock in the SCN. These results suggest that opposing activities of the orphan nuclear receptors Rora and Rev-erb alpha, which represses Bmal1 expression, are important in the maintenance of circadian clock function.
Functions and regulation of the multitasking FANCM family of DNA motor proteins.
Xue, Xiaoyu; Sung, Patrick; Zhao, Xiaolan
2015-09-01
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. © 2015 Xue et al.; Published by Cold Spring Harbor Laboratory Press.
Harnessing glycomics technologies: integrating structure with function for glycan characterization
Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram
2013-01-01
Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536
Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie
2009-10-01
MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.
Razin, S V
2018-04-01
This issue of Biochemistry (Moscow) is devoted to the cell nucleus and mechanisms of transcription regulation. Over the years, biochemical processes in the cell nucleus have been studied in isolation, outside the context of their spatial organization. Now it is clear that segregation of functional processes within a compartmentalized cell nucleus is very important for the implementation of basic genetic processes. The functional compartmentalization of the cell nucleus is closely related to the spatial organization of the genome, which in turn plays a key role in the operation of epigenetic mechanisms. In this issue of Biochemistry (Moscow), we present a selection of review articles covering the functional architecture of the eukaryotic cell nucleus, the mechanisms of genome folding, the role of stochastic processes in establishing 3D architecture of the genome, and the impact of genome spatial organization on transcription regulation.
[K+ channels and lung epithelial physiology].
Bardou, Olivier; Trinh, Nguyen Thu Ngan; Brochiero, Emmanuelle
2009-04-01
Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.
An SVM model with hybrid kernels for hydrological time series
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Functional defect in regulatory T cells in myasthenia gravis
Thiruppathi, Muthusamy; Rowin, Julie; Jiang, Qin Li; Sheng, Jian Rong; Prabhakar, Bellur S.; Meriggioli, Matthew N.
2012-01-01
Forkhead box P3 (FOXP3)+ is a transcription factor necessary for the function of regulatory T cells (Treg cells). Treg cells maintain immune homeostasis and self-tolerance, and play an important role in the prevention of autoimmune disease. Here, we discuss the role of Treg cells in the pathogenesis of myasthenia gravis (MG) and review evidence indicating that a significant defect in Treg cell in vitro suppressive function exists in MG patients, without an alteration in circulating frequency. This functional defect is associated with a reduced expression of key functional molecules such as FOXP3 on isolated Treg cells and appears to be more pronounced in immunosuppression-naive MG patients. In vitro administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the suppressive function of Treg cells and up-regulated FOXP3 expression. These findings indicate a clinically relevant Treg cell–intrinsic defect in immune regulation in MG that may reveal a novel therapeutic target. PMID:23252899
Functional Annotation of Ion Channel Structures by Molecular Simulation.
Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P
2016-12-06
Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nostrand, J.D. Van; Wu, L.; Wu, W.M.
2010-08-15
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less
Functional morphology of the primate head and neck.
Nalley, Thierra K; Grider-Potter, Neysa
2015-04-01
The vertebral column plays a key role in maintaining posture, locomotion, and transmitting loads between body components. Cervical vertebrae act as a bridge between the torso and head and play a crucial role in the maintenance of head position and the visual field. Despite its importance in positional behaviors, the functional morphology of the cervical region remains poorly understood, particularly in comparison to the thoracic and lumbar sections of the spinal column. This study tests whether morphological variation in the primate cervical vertebrae correlates with differences in postural behavior. Phylogenetic generalized least-squares analyses were performed on a taxonomically broad sample of 26 extant primate taxa to test the link between vertebral morphology and posture. Kinematic data on primate head and neck postures were used instead of behavioral categories in an effort to provide a more direct analysis of our functional hypothesis. Results provide evidence for a function-form link between cervical vertebral shape and postural behaviors. Specifically, taxa with more pronograde heads and necks and less kyphotic orbits exhibit cervical vertebrae with longer spinous processes, indicating increased mechanical advantage for deep nuchal musculature, and craniocaudally longer vertebral bodies and more coronally oriented zygapophyseal articular facets, suggesting an emphasis on curve formation and maintenance within the cervical lordosis, coupled with a greater resistance to translation and ventral displacement. These results not only document support for functional relationships in cervical vertebrae features across a wide range of primate taxa, but highlight the utility of quantitative behavioral data in functional investigations. © 2015 Wiley Periodicals, Inc.
Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.
Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun
2014-01-01
Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.
Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong
2011-01-01
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771
Comparison of microbial taxonomic and functional shift pattern along contamination gradient.
Ren, Youhua; Niu, Jiaojiao; Huang, Wenkun; Peng, Deliang; Xiao, Yunhua; Zhang, Xian; Liang, Yili; Liu, Xueduan; Yin, Huaqun
2016-06-14
The interaction mechanism between microbial communities and environment is a key issue in microbial ecology. Microbial communities usually change significantly under environmental stress, which has been studied both phylogenetically and functionally, however which method is more effective in assessing the relationship between microbial communities shift and environmental changes still remains controversial. By comparing the microbial taxonomic and functional shift pattern along heavy metal contamination gradient, we found that both sedimentary composition and function shifted significantly along contamination gradient. For example, the relative abundance of Geobacter and Fusibacter decreased along contamination gradient (from high to low), while Janthinobacterium and Arthrobacter increased their abundances. Most genes involved in heavy metal resistance (e.g., metc, aoxb and mer) showed higher intensity in sites with higher concentration of heavy metals. Comparing the two shift patterns, there were correlations between them, because functional and phylogenetic β-diversities were significantly correlated, and many heavy metal resistance genes were derived from Geobacter, explaining their high abundance in heavily contaminated sites. However, there was a stronger link between functional composition and environmental drivers, while stochasticity played an important role in formation and succession of phylogenetic composition demonstrated by null model test. Overall our research suggested that the responses of functional traits depended more on environmental changes, while stochasticity played an important role in formation and succession of phylogenetic composition for microbial communities. So profiling microbial functional composition seems more appropriate to study the relationship between microbial communities and environment, as well as explore the adaptation and remediation mechanism of microbial communities to heavy metal contamination.
Glucocorticoid programming of neuroimmune function.
Walker, David J; Spencer, Karen A
2018-01-15
Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
The intercultural and interracial therapeutic relationship: challenges and recommendations.
Qureshi, Adil; Collazos, Francisco
2011-01-01
Although research has demonstrated that mental health services function with patients from different cultural backgrounds, a variety of culture- and race-related factors can result in services being of lower quality than that which occurs when the clinician and patient are from the same culture. The provision of culturally competent care requires many institutional and organizational adaptations that lie beyond the control of most mental health professionals. The therapeutic relationship, however, remains a key factor of mental healthcare that can be attended to by individual therapists. The therapeutic relationship plays an important role in almost every therapeutic approach, and has been increasingly recognized as representing a means to the provision of quality intercultural and interracial treatment. At the same time, a host of cultural and racial factors relating to both the patient and clinician can compromise the development of the therapeutic relationship. This paper will explore some of the key issues that complicate therapeutic contact and communication, and will outline means by which to strengthen key components of the therapeutic relationship.
Food Design To Feed the Human Gut Microbiota.
Ercolini, Danilo; Fogliano, Vincenzo
2018-04-18
The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and the production of microbiota metabolites. In this perspective, the current possibilities to address food design toward a better feeding of gut microbiota are highlighted, together with a summary of the most interesting microbial metabolites that can be made from dietary precursors.
Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research
Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the aging process. This concept is supported by the fact that many premature aging syndromes are caused by mutations in DNA repair proteins.
More on rotations as spin matrix polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtright, Thomas L.
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
Markers of Developmentally Regulated Programmed Cell Death and Their Analysis in Cereal Seeds.
Domínguez, Fernando; Cejudo, Francisco Javier
2018-01-01
Programmed cell death (PCD) is a key process for the development and differentiation of multicellular organisms, which is characterized by well-defined morphological and biochemical features. These include chromatin condensation, DNA degradation and nuclear fragmentation, with nucleases and proteases playing a relevant function in these processes. In this chapter we describe methods routinely used for the analysis of hallmarks of developmentally regulated PCD in cereal seed tissues, which are based on agarose and polyacrylamide gel electrophoresis, in situ staining of DNA fragmentation, and cell-free assays of relevant enzymatic activities.
Osteoblast role in osteoarthritis pathogenesis.
Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P
2017-11-01
Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Arginine Methylation: The Coming of Age.
Blanc, Roméo S; Richard, Stéphane
2017-01-05
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Evidence for the Involvement of Lfc and Tctex-1 in Axon Formation
Conde, Cecilia; Arias, Cristina; Robin, Maria; Li, Aiqun; Saito, Masaki; Chuang, Jen-Zen; Nairn, Angus C.; Sung, Ching-Hwa; Cáceres, Alfredo
2013-01-01
RhoA and Rac play key and opposite roles during neuronal polarization. We now show that Lfc, a guanosine nucleotide exchange factor (GEF), localizes to the Golgi apparatus and growth cones of developing neurons and negatively regulates neurite sprouting and axon formation through a Rho signaling pathway. Tctex-1, a dynein light chain implicated in axon outgrowth by modulating actin dynamics and Rac activity, colocalizes and physically interacts with Lfc, thus inhibiting its GEF activity, decreasing Rho-GTP levels, and functionally antagonizing Lfc during neurite formation. PMID:20463241
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
Amorphous-amorphous transition in a porous coordination polymer.
Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki
2017-07-04
The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.
Anatomy and Physiology of the Blood-Brain Barrier
Serlin, Yonatan; Shelef, Ilan; Knyazer, Boris; Friedman, Alon
2015-01-01
Essential requisite for the preservation of normal brain activity is to maintain a narrow and stable homeostatic control in the neuronal environment of the CNS. Blood flow alterations and altered vessel permeability are considered key determinants in the pathophysiology of brain injuries. We will review the present-day literature on the anatomy, development and physiological mechanisms of the blood-brain barrier, a distinctive and tightly regulated interface between the CNS and the peripheral circulation, playing a crucial role in the maintenance of the strict environment required for normal brain function. PMID:25681530
Interorganizational Systems Adoption: A Socio-Technical Perspective
NASA Astrophysics Data System (ADS)
Bunker, Deborah; Kautz, Karlheinz; Pyne, Clayton
This paper discusses a case study of an electronic data interchange (EDI) interorganizational system (IOS) adoption project between two organizations (ProvideCo and BuildCo) highlighting that IOS adoption is not only technological in nature and orientation but that organizational factors also play their part. As a result of the case analysis and key findings, an interorganizational collaboration model (Barratt 2004) is amended to explain and highlight the effect of organizational factors on IOS adoption. The amended model includes the relationship of technology (IOS) adoption to cross-functional collaborative activities and risk, power, opportunism, and trust.
Advances in food crystallization.
Hartel, Richard W
2013-01-01
Crystals often play an important role in food product quality and shelf life. Controlling crystallization to obtain the desired crystal content, size distribution, shape, and polymorph is key to manufacturing products with desired functionality and shelf life. Technical developments in the field have improved the tools with which we study and characterize crystals in foods. These developments also help our understanding of the physico-chemical phenomena that govern crystallization and improve our ability to control it during processing and storage. In this review, some of the more important recent developments in measuring and controlling crystallization are discussed.
Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma
Oesterle, Elizabeth C.
2012-01-01
Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236
Role of acetylcholinesterase in lung cancer
Xi, Hui-Jun; Wu, Ren-Pei; Liu, Jing-Jing; Zhang, Ling-Juan; Li, Zhao-Shen
2015-01-01
Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy. PMID:26273392
Food Design To Feed the Human Gut Microbiota
2018-01-01
The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and the production of microbiota metabolites. In this perspective, the current possibilities to address food design toward a better feeding of gut microbiota are highlighted, together with a summary of the most interesting microbial metabolites that can be made from dietary precursors. PMID:29565591
Remote stereoscopic video play platform for naked eyes based on the Android system
NASA Astrophysics Data System (ADS)
Jia, Changxin; Sang, Xinzhu; Liu, Jing; Cheng, Mingsheng
2014-11-01
As people's life quality have been improved significantly, the traditional 2D video technology can not meet people's urgent desire for a better video quality, which leads to the rapid development of 3D video technology. Simultaneously people want to watch 3D video in portable devices,. For achieving the above purpose, we set up a remote stereoscopic video play platform. The platform consists of a server and clients. The server is used for transmission of different formats of video and the client is responsible for receiving remote video for the next decoding and pixel restructuring. We utilize and improve Live555 as video transmission server. Live555 is a cross-platform open source project which provides solutions for streaming media such as RTSP protocol and supports transmission of multiple video formats. At the receiving end, we use our laboratory own player. The player for Android, which is with all the basic functions as the ordinary players do and able to play normal 2D video, is the basic structure for redevelopment. Also RTSP is implemented into this structure for telecommunication. In order to achieve stereoscopic display, we need to make pixel rearrangement in this player's decoding part. The decoding part is the local code which JNI interface calls so that we can extract video frames more effectively. The video formats that we process are left and right, up and down and nine grids. In the design and development, a large number of key technologies from Android application development have been employed, including a variety of wireless transmission, pixel restructuring and JNI call. By employing these key technologies, the design plan has been finally completed. After some updates and optimizations, the video player can play remote 3D video well anytime and anywhere and meet people's requirement.
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Genomic Regions in Local Endangered Sheep Encode Potentially Favorable Genes.
Moioli, Bianca; Steri, Roberto; Catillo, Gennaro
2018-01-02
The economic evaluation of farm animal genetic resources plays a key role in developing conservation programs. However, to date, the link between diversity as assessed by neutral genetic markers and the functional diversity is not yet understood. Two genome-wide comparisons, using over 44,000 Single Nucleotide Polymorphisms, identified the markers with the highest difference in allele frequency between the Alpago endangered breed and two clusters, composed of four specialized dairy sheep, and four meat breeds respectively. The genes in proximity of these markers were mapped to known pathways of the Gene Ontology to determine which ones were most represented. Our results indicated that the differences of the Alpago breed from the more productive sheep rely upon genes involved in cellular defense and repair mechanisms. A higher number of different markers and genes were detected in the comparison with the specialized dairy sheep. These genes play a role in complex biological processes: metabolic, homeostatic, neurological system, and macromolecular organization; such processes may possibly explain the evolution of gene function as a result of selection to improve milk yield.
Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine
2013-01-01
Summary Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation. PMID:24286029
Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine
2013-01-01
Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.
Chen, Jinhua; Chen, Ying; Pu, Jiali
2018-04-27
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the midbrain. The pathogenesis of PD is not fully understood but is likely caused by a combination of genetic and environmental factors. Several genes are associated with the onset and progression of familial PD. There is increasing evidence that leucine-rich repeat kinase 2 (LRRK2) plays a significant role in PD pathophysiology. Many studies have been conducted to elucidate the functions of LRRK2 and identify effective LRRK2 inhibitors for PD treatment. In this review, we discuss the role of LRRK2 in PD and recent progress in the use of LRRK2 inhibitors as therapeutic agents. Key Messages: LRRK2 plays a significant role in the pathophysiology of PD, and pharmacological inhibition of LRRK2 has become one of the most promising potential therapies for PD. Further research is warranted to determine the functions of LRRK2 and expand the applications of LRRK2 inhibitors in PD treatment. © 2018 S. Karger AG, Basel.
Functional hypothalamic amenorrhea: current view on neuroendocrine aberrations.
Meczekalski, Blazej; Podfigurna-Stopa, Agnieszka; Warenik-Szymankiewicz, Alina; Genazzani, Andrea Riccardo
2008-01-01
Functional hypothalamic amenorrhea (FHA) is defined as a non-organic and reversible disorder in which the impairment of gonadotropin-releasing hormone (GnRH) pulsatile secretion plays a key role. There are main three types of FHA: stress-related amenorrhea, weight loss-related amenorrhea and exercise-related amenorrhea. The spectrum of GnRH-luteinizing hormone (LH) disturbances in FHA is very broad and includes lower mean frequency of LH pulses, complete absence of LH pulsatility, normal-appearing secretion pattern and higher mean frequency of LH pulses. Precise mechanisms underlying the pathophysiology of FHA are very complex and unclear. Numerous neuropeptides, neurotransmitters and neurosteroids play important roles in the physiological regulation of GnRH pulsatile secretion and there is evidence that different neuropeptides may be involved in the pathophysiology of FHA. Particular attention is paid to such substances as allopregnanolone, neuropeptide Y, corticotropin-releasing hormone, leptin, ghrelin and beta-endorphin. Some studies reveal significant changes in these mentioned substances in patients with FHA. There are also speculations about use some of these substances or their antagonists in the treatment of FHA.
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression
Yoo, Byoung Kwon; Emdad, Luni; Su, Zao-zhong; Villanueva, Augusto; Chiang, Derek Y.; Mukhopadhyay, Nitai D.; Mills, Alan Scott; Waxman, Samuel; Fisher, Robert A.; Llovet, Josep M.; Fisher, Paul B.; Sarkar, Devanand
2009-01-01
Hepatocellular carcinoma (HCC) is a highly aggressive vascular cancer characterized by diverse etiology, activation of multiple signal transduction pathways, and various gene mutations. Here, we have determined a specific role for astrocyte elevated gene-1 (AEG1) in HCC pathogenesis. Expression of AEG1 was extremely low in human hepatocytes, but its levels were significantly increased in human HCC. Stable overexpression of AEG1 converted nontumorigenic human HCC cells into highly aggressive vascular tumors, and inhibition of AEG1 abrogated tumorigenesis by aggressive HCC cells in a xenograft model of nude mice. In human HCC, AEG1 overexpression was associated with elevated copy numbers. Microarray analysis revealed that AEG1 modulated the expression of genes associated with invasion, metastasis, chemoresistance, angiogenesis, and senescence. AEG1 also was found to activate Wnt/β-catenin signaling via ERK42/44 activation and upregulated lymphoid-enhancing factor 1/T cell factor 1 (LEF1/TCF1), the ultimate executor of the Wnt pathway, important for HCC progression. Inhibition studies further demonstrated that activation of Wnt signaling played a key role in mediating AEG1 function. AEG1 also activated the NF-κB pathway, which may play a role in the chronic inflammatory changes preceding HCC development. These data indicate that AEG1 plays a central role in regulating diverse aspects of HCC pathogenesis. Targeted inhibition of AEG1 might lead to the shutdown of key elemental characteristics of HCC and could lead to an effective therapeutic strategy for HCC. PMID:19221438
Modeling liver physiology: combining fractals, imaging and animation.
Lin, Debbie W; Johnson, Scott; Hunt, C Anthony
2004-01-01
Physiological modeling of vascular and microvascular networks in several key human organ systems is critical for a deeper understanding of pharmacology and the effect of pharmacotherapies on disease. Like the lung and the kidney, the morphology of its vascular and microvascular system plays a major role in its functional capability. To understand liver function in absorption and metabolism of food and drugs, one must examine the morphology and physiology at both higher and lower level liver function. We have developed validated virtualized dynamic three dimensional (3D) models of liver secondary units and primary units by combining a number of different methods: three-dimensional rendering, fractals, and animation. We have simulated particle dynamics in the liver secondary unit. The resulting models are suitable for use in helping researchers easily visualize and gain intuition on results of in silico liver experiments.
Selection signature in domesticated animals.
Pan, Zhang-yuan; He, Xiao-yun; Wang, Xiang-yu; Guo, Xiao-fei; Cao, Xiao-han; Hu, Wen-ping; Di, Ran; Liu, Qiu-yue; Chu, Ming-xing
2016-12-20
Domesticated animals play an important role in the life of humanity. All these domesticated animals undergo same process, first domesticated from wild animals, then after long time natural and artificial selection, formed various breeds that adapted to the local environment and human needs. In this process, domestication, natural and artificial selection will leave the selection signal in the genome. The research on these selection signals can find functional genes directly, is one of the most important strategies in screening functional genes. The current studies of selection signal have been performed in pigs, chickens, cattle, sheep, goats, dogs and other domestic animals, and found a great deal of functional genes. This paper provided an overview of the types and the detected methods of selection signal, and outlined researches of selection signal in domestic animals, and discussed the key issues in selection signal analysis and its prospects.
Leptin regulation of hippocampal synaptic function in health and disease
Irving, Andrew J.; Harvey, Jenni
2014-01-01
The endocrine hormone leptin plays a key role in regulating food intake and body weight via its actions in the hypothalamus. However, leptin receptors are highly expressed in many extra-hypothalamic brain regions and evidence is growing that leptin influences many central processes including cognition. Indeed, recent studies indicate that leptin is a potential cognitive enhancer as it markedly facilitates the cellular events underlying hippocampal-dependent learning and memory, including effects on glutamate receptor trafficking, neuronal morphology and activity-dependent synaptic plasticity. However, the ability of leptin to regulate hippocampal synaptic function markedly declines with age and aberrant leptin function has been linked to neurodegenerative disorders such as Alzheimer's disease (AD). Here, we review the evidence supporting a cognitive enhancing role for the hormone leptin and discuss the therapeutic potential of using leptin-based agents to treat AD. PMID:24298156
Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.
Rafieva, Lola M; Gasanov, Eugene V
2016-01-01
Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.
Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard
2010-11-15
The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique. 2010 Wiley Periodicals, Inc.
A Window into the Brain: Advances in Psychiatric fMRI
Zhan, Xiaoyan
2015-01-01
Functional magnetic resonance imaging (fMRI) plays a key role in modern psychiatric research. It provides a means to assay differences in brain systems that underlie psychiatric illness, treatment response, and properties of brain structure and function that convey risk factor for mental diseases. Here we review recent advances in fMRI methods in general use and progress made in understanding the neural basis of mental illness. Drawing on concepts and findings from psychiatric fMRI, we propose that mental illness may not be associated with abnormalities in specific local regions but rather corresponds to variation in the overall organization of functional communication throughout the brain network. Future research may need to integrate neuroimaging information drawn from different analysis methods and delineate spatial and temporal patterns of brain responses that are specific to certain types of psychiatric disorders. PMID:26413531
Navy chief. Read More Posted in DoD News, Family Focus Friday, Inside the DoD, Military Families Challenge: It's Kind of a Big Memorial Day Deal Legacy Mentors Play Key Role In TAPS Good Grief Camps Posted Play Key Role In TAPS Good Grief Camps NBA's Rip Hamilton Learns What's Real Vs. Myth on USO Tour
Does IGF-1 play a role in the biology of endometrial cancer?
Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej
2016-01-01
Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature.
Large, Michael J.; Wetendorf, Margeaux; Lanz, Rainer B.; Hartig, Sean M.; Creighton, Chad J.; Mancini, Michael A.; Kovanci, Ertug; Lee, Kuo-Fen; Threadgill, David W.; Lydon, John P.; Jeong, Jae-Wook; DeMayo, Francesco J.
2014-01-01
Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. PMID:24945252
Schenkelaars, Quentin; Quintero, Omar; Hall, Chelsea; Fierro-Constain, Laura; Renard, Emmanuelle; Borchiellini, Carole; Hill, April L
2016-04-15
The Rho associated coiled-coil protein kinase (ROCK) plays crucial roles in development across bilaterian animals. The fact that the Rho/Rock pathway is required to initiate epithelial morphogenesis and thus to establish body plans in bilaterians makes this conserved signaling pathway key for studying the molecular mechanisms that may control early development of basally branching metazoans. The purpose of this study was to evaluate whether or not the main components of this signaling pathway exist in sponges, and if present, to investigate the possible role of the regulatory network in an early branching non-bilaterian species by evaluating ROCK function during Ephydatia muelleri development. Molecular phylogenetic analyses and protein domain predictions revealed the existence of Rho/Rock components in all studied poriferan lineages. Binding assays revealed that both Y-27632 and GSK429286A are capable of inhibiting Em-ROCK activity in vitro. Treatment with both drugs leads to impairment of growth and formation of the basal pinacoderm layer in the developing sponge. Furthermore, inhibition of Em-Rock prevents the establishment of a functional aquiferous system, including the absence of an osculum. In contrast, no effect of ROCK inhibition was observed in juvenile sponges that already possess a fully developed and functional aquiferous system. Thus, the Rho/Rock pathway appears to be essential for the proper development of the freshwater sponge, and may play a role in various cell behaviors (e.g. cell proliferation, cell adhesion and cell motility). Taken together, these data are consistent with an ancestral function of Rho/Rock signaling in playing roles in early developmental processes and may provide a new framework to study the interaction between Wnt signaling and the Rho/Rock pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Interferon regulatory factors: A key to tumour immunity.
Chen, Yan-Jie; Li, Jing; Lu, Nan; Shen, Xi-Zhong
2017-08-01
Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family and were named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and autoimmune diseases. Intensive studies will help uncover the pathogenesis of the disease in a more comprehensive view, and provide novel targets for disease treatment. But the most important problems yet to solve is IRFs function in the development processes of tumour, and whether IRFs can be an important regulator in tumour immune treatment. Copyright © 2017. Published by Elsevier B.V.
Roles for Hedgehog signaling in adult organ homeostasis and repair
Petrova, Ralitsa; Joyner, Alexandra L.
2014-01-01
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867
Commensal-innate immune miscommunication in IBD pathogenesis.
Cario, Elke
2012-01-01
Commensal microbiota plays a key role in the health and disease of the host. The innate immune system comprises an essential functional component of the intestinal mucosal barrier, maintaining hyporesponsiveness to omnipresent harmless commensals in the lumen, but rapidly recognizing and combating invading bacteria through diverse antimicrobial mechanisms. Interactions between commensals and innate immune cells are constant, multidimensional and entirely context-dependent. Environment, genetics and host defense differentially modulate commensal-innate immune effects and functions in the intestinal mucosa. In IBD, dysbiosis, mucus layer disruption, impairment in bacterial clearance, intestinal epithelial cell barrier dysfunction and/or immune cell deregulation may lead to commensal-innate immune miscommunication, which critically drives mucosal inflammation and associated cancer. Copyright © 2012 S. Karger AG, Basel.
[Interactions between human sexual arousal and sexual desire: a challenge for social neuroscience].
Ortigue, Stephanie; Bianchi-Demicheli, Francesco
2007-03-28
The frequent interaction and synergy between sexual arousal and sexual desire occuring during a sexual experience explains the difficulty in disentagling these two phenomena in the human sexual response. Sexual desire is defined as a goal-directed motivational state integrating the other in one's personal sphere on the basis of intentionality, rather than by instinct only. Sexual arousal includes physical manifestations and subjective perception of excitement. Interest in sexual arousal has engendered a growing body of research concerning its nature and function as well as the biological basis of the mechanisms sustaining it. Recent functional imaging has played a key role in seeking to isolate brain regions specific to sexual arousal. This field may represent a new challenge for social neuroscience.
Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms
Cho, Hee Yeon
2014-01-01
Catalytic reactions have played an indispensable role in organic chemistry for the last several decades. In particular, catalytic multicomponent reactions have attracted a lot of attention due to their efficiency and expediency towards complex molecule synthesis. The presence of bismetallic reagents (e.g. B–B, Si–Si, B–Si, Si–Sn, etc.) in this process renders the products enriched with various functional groups and multiple stereocenters. For this reason, catalytic bismetallative coupling is considered an effective method to generate the functional and stereochemical complexity of simple hydrocarbon substrates. This review highlights key developments of transition-metal catalyzed bismetallative reactions involving multiple π components. Specifically, it will highlight the scope, synthetic applications, and proposed mechanistic pathways of this process. PMID:24736839
Hilbert transform evaluation for electron-phonon self-energies
NASA Astrophysics Data System (ADS)
Bevilacqua, Giuseppe; Menichetti, Guido; Pastori Parravicini, Giuseppe
2016-01-01
The electron tunneling current through nanostructures is considered in the presence of the electron-phonon interactions. In the Keldysh nonequilibrium formalism, the lesser, greater, advanced and retarded self-energies components are expressed by means of appropriate Langreth rules. We discuss the key role played by the entailed Hilbert transforms, and provide an analytic way for their evaluation. Particular attention is given to the current-conserving lowest-order-expansion for the treament of the electron-phonon interaction; by means of an appropriate elaboration of the analytic properties and pole structure of the Green's functions and of the Fermi functions, we arrive at a surprising simple, elegant, fully analytic and easy-to-use expression of the Hilbert transforms and involved integrals in the energy domain.
Engineering the robustness of industrial microbes through synthetic biology.
Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin
2012-02-01
Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Recent Advancements towards Full-System Microfluidics
Miled, Amine
2017-01-01
Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics. PMID:28757587
Genomics as the key to unlocking the polyploid potential of wheat.
Borrill, Philippa; Adamski, Nikolai; Uauy, Cristobal
2015-12-01
Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has 'locked up' a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Ecosystem services provided by waterbirds.
Green, Andy J; Elmberg, Johan
2014-02-01
Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.
Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce
2017-08-01
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.
Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E
2005-01-01
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.
PlantTFDB: a comprehensive plant transcription factor database
Guo, An-Yuan; Chen, Xin; Gao, Ge; Zhang, He; Zhu, Qi-Hui; Liu, Xiao-Chuan; Zhong, Ying-Fu; Gu, Xiaocheng; He, Kun; Luo, Jingchu
2008-01-01
Transcription factors (TFs) play key roles in controlling gene expression. Systematic identification and annotation of TFs, followed by construction of TF databases may serve as useful resources for studying the function and evolution of transcription factors. We developed a comprehensive plant transcription factor database PlantTFDB (http://planttfdb.cbi.pku.edu.cn), which contains 26 402 TFs predicted from 22 species, including five model organisms with available whole genome sequence and 17 plants with available EST sequences. To provide comprehensive information for those putative TFs, we made extensive annotation at both family and gene levels. A brief introduction and key references were presented for each family. Functional domain information and cross-references to various well-known public databases were available for each identified TF. In addition, we predicted putative orthologs of those TFs among the 22 species. PlantTFDB has a simple interface to allow users to search the database by IDs or free texts, to make sequence similarity search against TFs of all or individual species, and to download TF sequences for local analysis. PMID:17933783
Soil protists: a fertile frontier in soil biology research.
Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique
2018-05-01
Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.
Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer's disease.
Kimura, Nobuyuki; Yanagisawa, Katsuhiko
2017-07-08
Membrane trafficking pathways, like the endocytic pathway, carry out fundamental cellular processes that are essential for normal functioning. One such process is regulation of cell surface receptor signaling. A growing body of evidence suggests that β-amyloid protein (Aβ) plays a key role in Alzheimer's disease (AD) pathogenesis. Cleavage of Aβ from its precursor, β-amyloid precursor protein (APP), occurs through the endocytic pathway in neuronal cells. In early-stage AD, intraneuronal accumulation of abnormally enlarged endosomes is common, indicating that endosome trafficking is disrupted. Strikingly, genome-wide association studies reveal that several endocytosis-related genes are associated with AD onset. Also, recent studies demonstrate that alteration in endocytosis induces not only Aβ pathology but also the propagation of tau protein pathology, another key pathological feature of AD. Endocytic dysfunction can disrupt neuronal physiological functions, such as synaptic vesicle transport and neurotransmitter release. Thus, "traffic jams" in the endocytic pathway may be involved in AD pathogenesis and may serve as a novel target for the development of new therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice
Pichon, Aurélien; Jeton, Florine; El Hasnaoui-Saadani, Raja; Hagström, Luciana; Launay, Thierry; Beaudry, Michèle; Marchant, Dominique; Quidu, Patricia; Macarlupu, Jose-Luis; Favret, Fabrice; Richalet, Jean-Paul; Voituron, Nicolas
2016-01-01
Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection. PMID:27800506
A conserved glutamine plays a central role in LOV domain signal transmission and duration
Nash, Abigail I.; Ko, Wen-Huang; Harper, Shannon M.; Gardner, Kevin H.
2009-01-01
Light is a key stimulus for plant biological functions, several of which are controlled by light-activated kinases known as phototropins, a group of kinases that contain two light-sensing domains (LOV, Light-Oxygen-Voltage domains) and a C-terminal serine/threonine kinase domain. The second sensory domain, LOV2, plays a key role in regulating kinase enzymatic activity via the photochemical formation of a covalent adduct between a LOV2 cysteine residue and an internally-bound flavin mononucleotide (FMN) chromophore. Subsequent conformational changes in LOV2 lead to the unfolding of a peripheral Jα helix, and ultimately, phototropin kinase activation. To date, the mechanism coupling bond formation and helix dissociation has remained unclear. Previous studies found that a conserved glutamine residue (Q513 in the Avena sativa phototropin 1 LOV2 (AsLOV2) domain) switches its hydrogen-bonding pattern with FMN upon light stimulation. Located in the immediate vicinity of the FMN binding site, this Gln residue is provided by the Iβ strand that interacts with the Jα helix, suggesting a route for signal propagation from the core of the LOV domain to its peripheral Jα helix. To test whether Q513 plays a key role in tuning the photochemical and transduction properties of AsLOV2, we designed two point mutations, Q513L and Q513N, and monitored the effects on the chromophore and protein using a combination of UV-visible absorbance and circular dichroism spectroscopy, limited proteolysis, and solution NMR. The results show that these mutations significantly dampen the changes between the dark and lit state AsLOV2 structures, leaving the protein in a pseudo-dark state (Q513L) or a pseudo-lit state (Q513N) conformation. Further, both mutations changed the photochemical properties of this receptor, particularly the lifetime of the photoexcited signaling states. Together, these data establish that this residue plays a central role in both spectral tuning and signal propagation from the core of the LOV domain through the Iβ strand to the peripheral Jα helix. PMID:19063612
Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome
Dinan, Timothy G; Cryan, John F
2017-01-01
There is now a large volume of evidence to support the view that the immune system is a key communication pathway between the gut and brain, which plays an important role in stress-related psychopathologies and thus provides a potentially fruitful target for psychotropic intervention. The gut microbiota is a complex ecosystem with a diverse range of organisms and a sophisticated genomic structure. Bacteria within the gut are estimated to weigh in excess of 1 kg in the adult human and the microbes within not only produce antimicrobial peptides, short chain fatty acids, and vitamins, but also most of the common neurotransmitters found in the human brain. That the microbial content of the gut plays a key role in immune development is now beyond doubt. Early disruption of the host-microbe interplay can have lifelong consequences, not just in terms of intestinal function but in distal organs including the brain. It is clear that the immune system and nervous system are in continuous communication in order to maintain a state of homeostasis. Significant gaps in knowledge remain about the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. However, studies using germ-free animals, infective models, prebiotics, probiotics, and antibiotics have increased our understanding of the interplay. Early life stress can have a lifelong impact on the microbial content of the intestine and permanently alter immune functioning. That early life stress can also impact adult psychopathology has long been appreciated in psychiatry. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, immune, and central nervous systems in a network of communication that impacts behavior patterns and psychopathology, to eventually translate these findings to the human situation both in health and disease. Even at this juncture, there is evidence to pinpoint key sites of communication where gut microbial interventions either with drugs or diet or perhaps fecal microbiota transplantation may positively impact mental health. PMID:27319972
Dynamics of the sensory response to urethral flow over multiple time scales in rat
Danziger, Zachary C; Grill, Warren M
2015-01-01
The pudendal nerve carries sensory information from the urethra that controls spinal reflexes necessary to maintain continence and achieve efficient micturition. Despite the key role urethral sensory feedback plays in regulation of the lower urinary tract, there is little information about the characteristics of urethral sensory responses to physiological stimuli, and the quantitative relationship between physiological stimuli and the evoked sensory activation is unknown. Such a relation is critical to understanding the neural control of the lower urinary tract and how dysfunction arises in disease states. We systematically quantified pudendal afferent responses to fluid flow in the urethra in vivo in the rat. We characterized the sensory response across a range of stimuli, and describe a previously unreported long-term neural accommodation phenomenon. We developed and validated a compact mechanistic mathematical model capable of reproducing the pudendal sensory activity in response to arbitrary profiles of urethral flows. These results describe the properties and function of urethral afferents that are necessary to understand how sensory disruption manifests in lower urinary tract pathophysiology. Key points Sensory information from the urethra is essential to maintain continence and to achieve efficient micturition and when compromised by disease or injury can lead to substantial loss of function. Despite the key role urethral sensory information plays in the lower urinary tract, the relationship between physiological urethral stimuli, such as fluid flow, and the neural sensory response is poorly understood. This work systematically quantifies pudendal afferent responses to a range of fluid flows in the urethra in vivo and describes a previously unknown long-term neural accommodation phenomenon in these afferents. We present a compact mechanistic mathematical model that reproduces the pudendal sensory activity in response to urethral flow. These results have implications for understanding urinary tract dysfunction caused by neuropathy or nerve damage, such as urinary retention or incontinence, as well as for the development of strategies to mitigate the symptoms of these conditions. PMID:26041695
Satellite Communications for Aeronautical Applications: Recent research and Development Results
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.
2001-01-01
Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.
The future is now: single-cell genomics of bacteria and archaea
Blainey, Paul C.
2013-01-01
Interest in the expanding catalog of uncultivated microorganisms, increasing recognition of heterogeneity among seemingly similar cells, and technological advances in whole-genome amplification and single-cell manipulation are driving considerable progress in single-cell genomics. Here, the spectrum of applications for single-cell genomics, key advances in the development of the field, and emerging methodology for single-cell genome sequencing are reviewed by example with attention to the diversity of approaches and their unique characteristics. Experimental strategies transcending specific methodologies are identified and organized as a road map for future studies in single-cell genomics of environmental microorganisms. Over the next decade, increasingly powerful tools for single-cell genome sequencing and analysis will play key roles in accessing the genomes of uncultivated organisms, determining the basis of microbial community functions, and fundamental aspects of microbial population biology. PMID:23298390
Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis
Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.
2018-01-01
Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250
Dendritic cells: key to fetal tolerance?
Blois, Sandra M; Kammerer, Ulrike; Alba Soto, Catalina; Tometten, Mareike C; Shaikly, Valerie; Barrientos, Gabriela; Jurd, Richard; Rukavina, Daniel; Thomson, Angus W; Klapp, Burghard F; Fernández, Nelson; Arck, Petra C
2007-10-01
Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein.
[Elucidation of key genes in sex determination in genetics teaching].
Li, Meng; He, Zhumei
2014-06-01
Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.
NASA Astrophysics Data System (ADS)
Amaro, T.; Bianchelli, S.; Billett, D. S. M.; Cunha, M. R.; Pusceddu, A.; Danovaro, R.
2010-08-01
Megafaunal organisms play a key role in ecosystem functioning in the deep-sea through bioturbation, bioirrigation and organic matter cycling. At 3500 m water depth in the Nazaré Canyon, NE Atlantic, very high abundances of the infaunal holothurian Molpadia musculus were observed. To quantify the role of M. musculus in sediment cycling, sediment samples and holothurians were collected using an ROV and in situ experiments were conducted with incubation chambers. The biochemical composition of the sediment (in terms of proteins, carbohydrates and lipids), the holothurians' gut contents and holothurians' faecal material were analysed. In the sediments, proteins were the dominant organic compound, followed by carbohydrates and lipids. In the holothurian's gut contents, protein concentrations were higher than the other compounds, decreasing significantly as the material passed through the digestive tract. Approximately 33±1% of the proteins were digested by the time sediment reached the mid gut, with a total digestion rate equal to 67±1%. Carbohydrates and lipids were ingested in smaller amounts and digested with lower efficiencies (23±11% and 50±11%, respectively). As a result, the biopolymeric C digestion rate was on average 62±3%. We estimated that the population of M. musculus could remove approximately 0.49±0.13 g biopolymeric C and 0.13±0.03 g N m-2 d-1 from the sediments. These results suggest that M. musculus plays a key role in the benthic tropho-dynamics and biogeochemical processes in the Nazaré Canyon.
Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung
2014-01-01
Serine-threonine kinase receptor-associated protein (STRAP) is a TGF-β receptor-interacting protein that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP phosphorylation plays an important role in determining the pro- or anti-apoptotic function of STRAP. Murine protein serine/threonine kinase 38 (MPK38) phosphorylates STRAP at Ser188 via direct interaction. Complex formation between STRAP and MPK38 is mediated by Cys152 and Cys270 of STRAP and Cys339 and Cys377 of MPK38, suggesting the redox dependency of this interaction. MPK38-mediated STRAP Ser188 phosphorylation contributes to the pro-apoptotic function of STRAP by modulating key steps in STRAP-dependent ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Moreover, knockdown of endogenous MPK38 using an inducible MPK38 shRNA system and in vivo activation of MPK38 by treatment of HEK293 and STRAP-null MEF cells with 1-chloro-2,4-dinitrobenzene (DNCB), a specific inhibitor of Trx reductase, provide evidence that STRAP Ser188 phosphorylation plays a key role in STRAP-dependent cell death. Adenoviral delivery of MPK38 in mice also demonstrates that STRAP Ser188 phosphorylation in the liver is tightly associated with cell death and proliferation through ASK1, TGF-β, p53, and PI3K/PDK1 pathways, resulting in apoptotic cell death. PMID:25485581
Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung
2014-01-01
Serine-threonine kinase receptor-associated protein (STRAP) is a TGF-β receptor-interacting protein that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP phosphorylation plays an important role in determining the pro- or anti-apoptotic function of STRAP. Murine protein serine/threonine kinase 38 (MPK38) phosphorylates STRAP at Ser(188) via direct interaction. Complex formation between STRAP and MPK38 is mediated by Cys(152) and Cys(270) of STRAP and Cys(339) and Cys(377) of MPK38, suggesting the redox dependency of this interaction. MPK38-mediated STRAP Ser(188) phosphorylation contributes to the pro-apoptotic function of STRAP by modulating key steps in STRAP-dependent ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Moreover, knockdown of endogenous MPK38 using an inducible MPK38 shRNA system and in vivo activation of MPK38 by treatment of HEK293 and STRAP-null MEF cells with 1-chloro-2,4-dinitrobenzene (DNCB), a specific inhibitor of Trx reductase, provide evidence that STRAP Ser(188) phosphorylation plays a key role in STRAP-dependent cell death. Adenoviral delivery of MPK38 in mice also demonstrates that STRAP Ser(188) phosphorylation in the liver is tightly associated with cell death and proliferation through ASK1, TGF-β, p53, and PI3K/PDK1 pathways, resulting in apoptotic cell death.
Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona
2010-11-01
Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.
Effect of antecedent terrestrial land-use on C and N cycling in created wetlands
NASA Astrophysics Data System (ADS)
McCalley, C. K.; Al Graiti, T.; Williams, T.; Huang, S.; McGowan, M. B.; Eddingsaas, N. C.; Tyler, A. C.
2017-12-01
Land-use legacies and their interaction with both management actions and climate variability has a poorly characterized impact on the development of ecosystem functions and the trajectory of climate-carbon feedbacks. The complex structure-function relationships in wetlands foster delivery of valuable, climate sensitive, ecosystem services (carbon sequestration, nutrient removal, flood control, etc.) but also make them susceptible to colonization by invasive plants and lead to emission of key greenhouse gases. This project uses created wetland ecosystems as a model to understand how heterogeneity in antecedent conditions interacts with management options to create unique structure-function scenarios and a range of climate feedback outcomes. We utilized ongoing experiments in created wetlands that differ in antecedent conditions (crop agriculture, livestock grazing) and investigated how management options (invasive species removal, organic matter addition) interact with legacy impacts to promote key ecosystem functions, including greenhouse gas emissions, carbon sequestration, denitrification and plant biodiversity. The effects of antecedent land-use on soil chemistry, coupled with hydrologic patterns resulted in wetlands with divergent C and N dynamics despite their similar creation history. Additionally, the occurrence of extreme weather events (drought and excessive flooding) during the study period highlighted the overarching role that increased climate variability will play in determining key ecosystem processes in wetlands. Responses to management were linked to hydro-period: while organic matter addition successfully increased soil organic matter to more closely replicate natural systems at all sites, it had the largest impact on C and N cycling when soils were saturated. Overall, environmental conditions that promoted saturated soils, both those shaped by human activities or climate extremes, enhanced primary productivity, nutrient removal and greenhouse gas production as well as decreased soil respiration.
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary
2004-03-01
Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.
Transcriptional Profiling Identifies Functional Interactions of TGFβ and PPARβ/δ Signaling
Kaddatz, Kerstin; Adhikary, Till; Finkernagel, Florian; Meissner, Wolfgang; Müller-Brüsselbach, Sabine; Müller, Rolf
2010-01-01
Peroxisome proliferator-activated receptors (PPARs) not only play a key role in regulating metabolic pathways but also modulate inflammatory processes, pointing to a functional interaction between PPAR and cytokine signaling pathways. In this study, we show by genome-wide transcriptional profiling that PPARβ/δ and transforming growth factor-β (TGFβ) pathways functionally interact in human myofibroblasts and that a subset of these genes is cooperatively activated by TGFβ and PPARβ/δ. Using the angiopoietin-like 4 (ANGPTL4) gene as a model, we demonstrate that two enhancer regions cooperate to mediate the observed synergistic response. A TGFβ-responsive enhancer located ∼8 kb upstream of the transcriptional start site is regulated by a mechanism involving SMAD3, ETS1, RUNX, and AP-1 transcription factors that interact with multiple contiguous binding sites. A second enhancer (PPAR-E) consisting of three juxtaposed PPAR response elements is located in the third intron ∼3.5 kb downstream of the transcriptional start site. The PPAR-E is strongly activated by all three PPAR subtypes, with a novel type of PPAR response element motif playing a central role. Although the PPAR-E is not regulated by TGFβ, it interacts with SMAD3, ETS1, RUNX2, and AP-1 in vivo, providing a possible mechanistic explanation for the observed synergism. PMID:20595396
Ruiz Sola, M Aguila; Coiro, Mario; Crivelli, Simona; Zeeman, Samuel C; Schmidt Kjølner Hansen, Signe; Truernit, Elisabeth
2017-12-01
Protophloem and metaphloem sieve tubes are essential for transporting carbohydrates and signalling molecules towards sink tissues. OCTOPUS (OPS) was previously identified as an important regulator of protophloem differentiation in Arabidopsis roots. Here, we investigated the role of OCTOPUS-LIKE 2 (OPL2), a gene homologous to OPS. OPL2 expression patterns were analysed, and functional equivalence of OPS and OPL2 was tested. Mutant and double mutant phenotypes were investigated. OPS and OPL2 displayed overlapping expression patterns and a high degree of functional overlap. A mutation in OPL2 revealed redundant functions of OPS and OPL2 in developmental processes in which OPS was known to play a role, notably cotyledon vascular patterning and protophloem development. Moreover, we also uncovered redundant roles for OPS and OPL2 in leaf vascular patterning and, most interestingly, metaphloem sieve tube differentiation. Our results reveal a novel OPS-like protein that, together with OPS, is an important regulator of vascular patterning, root growth and phloem development. OPS and OPL2 are the first genes identified that play a role in metaphloem sieve tube differentiation. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Phosphatidic acid in neuronal development: a node for membrane and cytoskeleton rearrangements.
Ammar, Mohamed-Raafet; Kassas, Nawal; Bader, Marie-France; Vitale, Nicolas
2014-12-01
Phosphatidic acid (PA) is the simplest phospholipid naturally existing in all-living organisms. It constitutes only a minor fraction of the total cell lipids but has attracted considerable attention being both a lipid second messenger and a modulator of membrane shape. The pleiotropic functions of PA are the direct consequence of its very simple chemical structure consisting of only two acyl chains linked by ester bonds to two adjacent hydroxyl groups of glycerol, whose remaining hydroxyl group is esterified with a phosphomonoester group. Hence the small phosphate head group of PA gives it the shape of a cone providing flexibility and negative curvatures in the context of a lipid bilayer. In addition, the negatively charged phosphomonoester headgroup of PA is unique because it can potentially carry one or two negative charges playing a role in the recruitment of positively charged molecules to biomembranes. In consequence, PA has been proposed to play various key cellular functions. In the brain, a fine balance between cell growth, migration and differentiation, and cell death is required to sculpt the nervous system during development. In this review, we will summarize the various functions that have been proposed for PA in neuronal development. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Macrophages: Contributors to Allograft Dysfunction, Repair or Innocent Bystanders?
Mannon, Roslyn B.
2012-01-01
Purpose of this review Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Recent Findings Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury while more recent studies indicate that they may play a reparative role, depending on phenotype—M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. Summary These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage mediated injury, explore their potential reparative role and determine if they or their functional products are biomarkers of poor graft outcomes. PMID:22157320
Romeo, Stefano; Yin, Wu; Kozlitina, Julia; Pennacchio, Len A.; Boerwinkle, Eric; Hobbs, Helen H.; Cohen, Jonathan C.
2008-01-01
The relative activity of lipoprotein lipase (LPL) in different tissues controls the partitioning of lipoprotein-derived fatty acids between sites of fat storage (adipose tissue) and oxidation (heart and skeletal muscle). Here we used a reverse genetic strategy to test the hypothesis that 4 angiopoietin-like proteins (ANGPTL3, -4, -5, and -6) play key roles in triglyceride (TG) metabolism in humans. We re-sequenced the coding regions of the genes encoding these proteins and identified multiple rare nonsynonymous (NS) sequence variations that were associated with low plasma TG levels but not with other metabolic phenotypes. Functional studies revealed that all mutant alleles of ANGPTL3 and ANGPTL4 that were associated with low plasma TG levels interfered either with the synthesis or secretion of the protein or with the ability of the ANGPTL protein to inhibit LPL. A total of 1% of the Dallas Heart Study population and 4% of those participants with a plasma TG in the lowest quartile had a rare loss-of-function mutation in ANGPTL3, ANGPTL4, or ANGPTL5. Thus, ANGPTL3, ANGPTL4, and ANGPTL5, but not ANGPTL6, play nonredundant roles in TG metabolism, and multiple alleles at these loci cumulatively contribute to variability in plasma TG levels in humans. PMID:19075393
Bioenergetic adaptation in response to autophagy regulators during rotenone exposure
Giordano, Samantha; Dodson, Matthew; Ravi, Saranya; Redmann, Matthew; Ouyang, Xiaosen; Usmar, Victor M Darley; Zhang, Jianhua
2015-01-01
Parkinson’s disease (PD) is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing PD. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10–100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 hr, caused cell death at 24 hr with an LD50 of 10 nM. Overall autophagic flux was decreased by 10 nM rotenone at both 2 and 24 hr, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 hr, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Upregulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine (3-MA) exacerbated cell death. Interestingly, while 3-MA exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor. PMID:25081478
Endolysosomal Cation Channels and Cancer-A Link with Great Potential.
Grimm, Christian; Bartel, Karin; Vollmar, Angelika M; Biel, Martin
2018-01-05
The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells.
Endolysosomal Cation Channels and Cancer—A Link with Great Potential
Grimm, Christian; Bartel, Karin; Vollmar, Angelika M.; Biel, Martin
2018-01-01
The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells. PMID:29303993
Executive functioning complaints and escitalopram treatment response in late-life depression.
Manning, Kevin J; Alexopoulos, George S; Banerjee, Samprit; Morimoto, Sarah Shizuko; Seirup, Joanna K; Klimstra, Sibel A; Yuen, Genevieve; Kanellopoulos, Theodora; Gunning-Dixon, Faith
2015-05-01
Executive dysfunction may play a key role in the pathophysiology of late-life depression. Executive dysfunction can be assessed with cognitive tests and subjective report of difficulties with executive skills. The present study investigated the association between subjective report of executive functioning complaints and time to escitalopram treatment response in older adults with major depressive disorder (MDD). 100 older adults with MDD (58 with executive functioning complaints and 42 without executive functioning complaints) completed a 12-week trial of escitalopram. Treatment response over 12 weeks, as measured by repeated Hamilton Depression Rating Scale scores, was compared for adults with and without executive complaints using mixed-effects modeling. Mixed effects analysis revealed a significant group × time interaction, F(1, 523.34) = 6.00, p = 0.01. Depressed older adults who reported executive functioning complaints at baseline demonstrated a slower response to escitalopram treatment than those without executive functioning complaints. Self-report of executive functioning difficulties may be a useful prognostic indicator for subsequent speed of response to antidepressant medication. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Colloquium: Physics of the Riemann hypothesis
NASA Astrophysics Data System (ADS)
Schumayer, Dániel; Hutchinson, David A. W.
2011-04-01
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here a particular number-theoretical function is chosen, the Riemann zeta function, and its influence on the realm of physics is examined and also how physics may be suggestive for the resolution of one of mathematics’ most famous unconfirmed conjectures, the Riemann hypothesis. Does physics hold an essential key to the solution for this more than 100-year-old problem? In this work numerous models from different branches of physics are examined, from classical mechanics to statistical physics, where this function plays an integral role. This function is also shown to be related to quantum chaos and how its pole structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations light is shed on how the Riemann hypothesis can highlight physics. Naturally, the aim is not to be comprehensive, but rather focusing on the major models and aim to give an informed starting point for the interested reader.
The key role of extracellular vesicles in the metastatic process.
Zhao, Hongyun; Achreja, Abhinav; Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Nagrath, Deepak; Fais, Stefano
2018-01-01
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of T Cells in Malnutrition and Obesity
Gerriets, Valerie A.; MacIver, Nancie J.
2014-01-01
Nutritional status is critically important for immune cell function. While obesity is characterized by inflammation that promotes metabolic syndrome including cardiovascular disease and insulin resistance, malnutrition can result in immune cell defects and increased risk of mortality from infectious diseases. T cells play an important role in the immune adaptation to both obesity and malnutrition. T cells in obesity have been shown to have an early and critical role in inducing inflammation, accompanying the accumulation of inflammatory macrophages in obese adipose tissue, which are known to promote insulin resistance. How T cells are recruited to adipose tissue and activated in obesity is a topic of considerable interest. Conversely, T cell number is decreased in malnourished individuals, and T cells in the setting of malnutrition have decreased effector function and proliferative capacity. The adipokine leptin, which is secreted in proportion to adipocyte mass, may have a key role in mediating adipocyte-T cell interactions in both obesity and malnutrition, and has been shown to promote effector T cell function and metabolism while inhibiting regulatory T cell proliferation. Additionally, key molecular signals are involved in T cell metabolic adaptation during nutrient stress; among them, the metabolic regulator AMP kinase and the mammalian target of rapamycin have critical roles in regulating T cell number, function, and metabolism. In summary, understanding how T cell number and function are altered in obesity and malnutrition will lead to better understanding of and treatment for diseases where nutritional status determines clinical outcome. PMID:25157251
Proteomic Analysis of Rat Hippocampus under Simulated Microgravity
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin
It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling
Recanatini, Maurizio; Cavalli, Andrea
2011-01-01
In humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1) plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing. To this aim we firstly docked cortisone into the catalytic site of 11β-HSD-1 (both wild type and Y177A mutant), and then we used steered molecular dynamics and metadynamics to simulate its undocking. This methodology helped shedding light at molecular level on the complex relationship between the enzyme and its natural substrate. In particular, the work highlights a) the reason behind the functional dimerisation of 11β-HSD-1, b) the key role of Y177 in the cortisone binding event, c) the fine tuning of the active site degree of solvation, and d) the role of the S228-P237 loop in ligand recognition. PMID:21966510
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?
Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo
2018-01-01
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865
Conserved noncoding sequences conserve biological networks and influence genome evolution.
Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang
2018-05-01
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.
Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J
2017-11-07
The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.
The expanding regulatory universe of p53 in gastrointestinal cancer.
Fesler, Andrew; Zhang, Ning; Ju, Jingfang
2016-01-01
Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs. Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology. With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.
Yang, Jialiang; Qiu, Jing; Wang, Kejing; Zhu, Lijuan; Fan, Jingjing; Zheng, Deyin; Meng, Xiaodi; Yang, Jiasheng; Peng, Lihong; Fu, Yu; Zhang, Dahan; Peng, Shouneng; Huang, Haiyun; Zhang, Yi
2017-01-01
Obesity is a primary risk factor for many diseases such as certain cancers. In this study, we have developed three algorithms including a random-walk based method OBNet, a shortest-path based method OBsp and a direct-overlap method OBoverlap, to reveal obesity-disease connections at protein-interaction subnetworks corresponding to thousands of biological functions and pathways. Through literature mining, we also curated an obesity-associated disease list, by which we compared the methods. As a result, OBNet outperforms other two methods. OBNet can predict whether a disease is obesity-related based on its associated genes. Meanwhile, OBNet identifies extensive connections between obesity genes and genes associated with a few diseases at various functional modules and pathways. Using breast cancer and Type 2 diabetes as two examples, OBNet identifies meaningful genes that may play key roles in connecting obesity and the two diseases. For example, TGFB1 and VEGFA are inferred to be the top two key genes mediating obesity-breast cancer connection in modules associated with brain development. Finally, the top modules identified by OBNet in breast cancer significantly overlap with modules identified from TCGA breast cancer gene expression study, revealing the power of OBNet in identifying biological processes involved in the disease. PMID:29156709
Functional Diversity of the Schistosoma mansoni Tyrosine Kinases
Avelar, Lívia G. A.; Nahum, Laila A.; Andrade, Luiza F.; Oliveira, Guilherme
2011-01-01
Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs) play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs. PMID:21776387
The role of endothelial cells on islet function and revascularization after islet transplantation.
Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David
2016-01-02
Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.
Singh, Sudhir P; Jadaun, Jyoti Singh; Narnoliya, Lokesh K; Pandey, Ashok
2017-10-01
The bacterial groups in the gut ecosystem play key role in the maintenance of host's metabolic and structural functionality. The gut microbiota enhances digestion processing, helps in digestion of complex substances, synthesizes beneficial bioactive compounds, enhances bioavailability of minerals, impedes growth of pathogenic microbes, and prevents various diseases. It is, therefore, desirable to have an adequate intake of prebiotic biomolecules, which promote favorable modulation of intestinal microflora. Prebiotics are non-digestible and chemically stable structures that significantly enhance growth and functionality of gut microflora. The non-digestible carbohydrate, mainly oligosaccharides, covers a major part of total available prebiotics as dietary additives. The review describes the types of prebiotic low molecular weight carbohydrates, i.e., oligosaccharides, their structure, biosynthesis, functionality, and applications, with a special focus given to fructooligosaccharides (FOSs). The review provides an update on enzymes executing hydrolytic and fructosyltransferase activities producing prebiotic FOS biomolecules, and future perspectives.
The role of NSD family histone lysine methyltransferases in cancer
Bennett, Richard L.; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D.
2017-01-01
The Nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyl transferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Since epigenetic therapy is an important emerging anti-cancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. PMID:28193767
Pawah, Salil; Sikri, Arpit; Rexwal, Pushpanjali; Aggarwal, Prachi
2017-01-01
Along with function, aesthetics plays an important role in treating partially or completely edentulous patients. Ageing, trauma, tooth loss and neuromuscular disorders have a high impact on tonicity of facial musculature, elasticity of skin as well as function of muscles. Patients affected with Bell’s palsy face functional, aesthetic as well as psychological impairment. Common problems are the partial closure of upper eyelid, sagging of lower eyelid and drooping of angle of mouth leading to facial asymmetry, along with difficulty in eating, drinking and speaking. The key to aesthetic restoration is to support and harmonize the collapsed facial musculature with the help of various prosthodontic treatment approaches. This case report attempts to focus on treating completely edentulous patient affected with Bell’s palsy with special prosthesis supporting angle of mouth and lower eyelid using novel technique. PMID:28658922
Zhang, Jiachao; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa
2016-01-01
Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry.
Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L.) Peeling
Xu, Chuanbiao; Liu, Sixin; Li, Congfa
2016-01-01
Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry. PMID:27768750
Anatomical Individualized ACL Reconstruction.
Rahnemai-Azar, Amir Ata; Sabzevari, Soheil; Irarrázaval, Sebastián; Chao, Tom; Fu, Freddie H
2016-10-01
The anterior cruciate ligament (ACL) is composed of two bundles, which work together to provide both antero-posterior and rotatory stability of the knee. Understanding the anatomy and function of the ACL plays a key role in management of patients with ACL injury. Anatomic ACL reconstruction aims to restore the function of the native ACL. Femoral and tibial tunnels should be placed in their anatomical location accounting for both the native ACL insertion site and bony landmarks. One main component of anatomical individualized ACL reconstruction is customizing the treatment according to each patient's individual characteristics, considering preoperative and intraoperative evaluation of the native ACL and knee bony anatomy. Anatomical individualized reconstruction surgery should also aim to restore the size of the native ACL insertion as well. Using this concept, while single bundle ACL reconstruction can restore the function of the ACL in some patients, double bundle reconstruction is indicated in others to achieve optimal outcome.
A systematic review of the role of vitamin insufficiencies and supplementation in COPD.
Tsiligianni, Ioanna G; van der Molen, Thys
2010-12-06
Pulmonary inflammation, oxidants-antioxidants imbalance, as well as innate and adaptive immunity have been proposed as playing a key role in the development of COPD. The role of vitamins, as assessed either by food frequency questionnaires or measured in serum levels, have been reported to improve pulmonary function, reduce exacerbations and improve symptoms. Vitamin supplements have therefore been proposed to be a potentially useful additive to COPD therapy. A systematic literature review was performed on the association of vitamins and COPD. The role of vitamin supplements in COPD was then evaluated. The results of this review showed that various vitamins (vitamin C, D, E, A, beta and alpha carotene) are associated with improvement in features of COPD such as symptoms, exacerbations and pulmonary function. High vitamin intake would probably reduce the annual decline of FEV1. There were no studies that showed benefit from vitamin supplementation in improved symptoms, decreased hospitalization or pulmonary function.
Thyroid hormone and cerebellar development.
Anderson, Grant W
2008-01-01
Thyroid hormone (TH) plays a key role in mammalian brain development. The developing brain is sensitive to both TH deficiency and excess. Brain development in the absence of TH results in motor skill deficiencies and reduced intellectual development. These functional abnormalities can be attributed to maldevelopment of specific cell types and regions of the brain including the cerebellum. TH functions at the molecular level by regulating gene transcription. Therefore, understanding how TH regulates cerebellar development requires identification of TH-regulated gene targets and the cells expressing these genes. Additionally, the process of TH-dependent regulation of gene expression is tightly controlled by mechanisms including regulation of TH transport, TH metabolism, toxicologic inhibition of TH signaling, and control of the nuclear TH response apparatus. This review will describe the functional, cellular, and molecular effects of TH deficit in the developing cerebellum and emphasize the most recent findings regarding TH action in this important brain region.
Myostatin-like proteins regulate synaptic function and neuronal morphology.
Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda
2017-07-01
Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.
The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology
Ozier, Annaïg; Allard, Benoit; Bara, Imane; Girodet, Pierre-Olivier; Trian, Thomas; Marthan, Roger; Berger, Patrick
2011-01-01
Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function. PMID:22220184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Sean P.; Contreras-Moreira, Bruno; Woods, Daniel P.
While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely tomore » be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.« less
Gordon, Sean P; Contreras-Moreira, Bruno; Woods, Daniel P; Des Marais, David L; Burgess, Diane; Shu, Shengqiang; Stritt, Christoph; Roulin, Anne C; Schackwitz, Wendy; Tyler, Ludmila; Martin, Joel; Lipzen, Anna; Dochy, Niklas; Phillips, Jeremy; Barry, Kerrie; Geuten, Koen; Budak, Hikmet; Juenger, Thomas E; Amasino, Richard; Caicedo, Ana L; Goodstein, David; Davidson, Patrick; Mur, Luis A J; Figueroa, Melania; Freeling, Michael; Catalan, Pilar; Vogel, John P
2017-12-19
While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.
Perceived Self-Efficacy: A Concept Analysis for Symptom Management in Patients With Cancer .
White, Lynn L; Cohen, Marlene Z; Berger, Ann M; Kupzyk, Kevin A; Swore-Fletcher, Barbara A; Bierman, Philip J
2017-12-01
Perceived self-efficacy (PSE) for symptom management plays a key role in outcomes for patients with cancer, such as quality of life, functional status, symptom distress, and healthcare use. Definition of the concept is necessary for use in research and to guide the development of interventions to facilitate PSE for symptom management in patients with cancer. . This analysis will describe the concept of PSE for symptom management in patients with cancer. . A database search was performed for related publications from 2006-2016. Landmark publications published prior to 2006 that informed the concept analysis were included. . Greater PSE for symptom management predicts improved performance outcomes, including functional health status, cognitive function, and disease status. Clarification of the concept of PSE for symptom management will accelerate the progress of self-management research and allow for comparison of research data and intervention development.
Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function
Wang, Danli; Liu, Yang; Zhang, Rui; Zhang, Fen; Sui, Weihao; Chen, Li; Zheng, Ran; Chen, Xiaowen; Wen, Feiqiu; Ouyang, Hong-Wei; Ji, Junfeng
2016-01-01
Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells. PMID:27056883
The Role of Civil Society Organizations in Monitoring the Global AIDS Response.
Smith, Julia; Mallouris, Christoforos; Lee, Kelley; Alfvén, Tobias
2017-07-01
Civil society organizations (CSOs) are recognized as playing an exceptional role in the global AIDS response. However, there is little detailed research to date on how they contribute to specific governance functions. This article uses Haas' framework on global governance functions to map CSO's participation in the monitoring of global commitments to the AIDS response by institutions and states. Drawing on key informant interviews and primary documents, it focuses specifically on CSO participation in Global AIDS Response Progress Reporting and in Global Fund to Fight AIDS, Tuberculosis and Malaria processes. It argues that the AIDS response is unique within global health governance, in that CSOs fulfill both formal and informal monitoring functions, and considers the strengths and weaknesses of these contributions. It concludes that future global health governance arrangements should include provisions and resources for monitoring by CSOs because their participation creates more inclusive global health governance and contributes to strengthening commitments to human rights.
Kidneys: Key Modulators of HDL Levels and Function
Yang, Haichun; Fogo, Agnes B.; Kon, Valentina
2016-01-01
Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596
Gordon, Sean P.; Contreras-Moreira, Bruno; Woods, Daniel P.; ...
2017-12-19
While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely tomore » be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.« less
Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.
Kumar, Amit; Ratan, Rajiv R
2016-10-01
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Brain Signature Characterizing the Body-Brain-Mind Axis of Transsexuals
Chao, Hsiang-Tai; Tu, Pei-Chi; Li, Cheng-Ta; Cheng, Chou-Ming; Su, Tung-Ping; Lee, Ying-Chiao; Hsieh, Jen-Chuen
2013-01-01
Individuals with gender identity disorder (GID), who are commonly referred to as transsexuals (TXs), are afflicted by negative psychosocial stressors. Central to the psychological complex of TXs is the conviction of belonging to the opposite sex. Neuroanatomical and functional brain imaging studies have demonstrated that the GID is associated with brain alterations. In this study, we found that TXs identify, when viewing male-female couples in erotic or non-erotic (“neutral”) interactions, with the couple member of the desired gender in both situations. By means of functional magnetic resonance imaging, we found that the TXs, as opposed to controls (CONs), displayed an increased functional connectivity between the ventral tegmental area, which is associated with dimorphic genital representation, and anterior cingulate cortex subregions, which play a key role in social exclusion, conflict monitoring and punishment adjustment. The neural connectivity pattern suggests a brain signature of the psychosocial distress for the gender-sex incongruity of TXs. PMID:23923023
Building a Beneficial Microbiome from Birth12
Castanys-Muñoz, Esther; Martin, Maria J; Vazquez, Enrique
2016-01-01
The microbiota has recently been recognized as a driver of health that affects the immune, nervous, and metabolic systems. This influence is partially exerted through the metabolites produced, which may be relevant for optimal infant development and health. The gut microbiota begins developing early in life, and this initial colonization is remarkably important because it may influence long-term microbiota composition and activity. Considering that the microbiome may play a key role in health and disease, maintaining a protective microbiota could be critical in preventing dysbiosis-related diseases such as allergies, autoimmunity disorders, and metabolic syndrome. Breast milk and milk glycans in particular are thought to play a major role in shaping the early-life microbiota and promoting its development, thus affecting health. This review describes some of the effects the microbiota has on the host and discusses the role microbial metabolites play in shaping newborn health and development. We describe the gut microbiota structure and function during early life and the factors that determine its composition and hypothesize about the effects of human milk oligosaccharides and other prebiotic fibers on the neonatal microbiota. PMID:26980815
Building a Beneficial Microbiome from Birth.
Castanys-Muñoz, Esther; Martin, Maria J; Vazquez, Enrique
2016-03-01
The microbiota has recently been recognized as a driver of health that affects the immune, nervous, and metabolic systems. This influence is partially exerted through the metabolites produced, which may be relevant for optimal infant development and health. The gut microbiota begins developing early in life, and this initial colonization is remarkably important because it may influence long-term microbiota composition and activity. Considering that the microbiome may play a key role in health and disease, maintaining a protective microbiota could be critical in preventing dysbiosis-related diseases such as allergies, autoimmunity disorders, and metabolic syndrome. Breast milk and milk glycans in particular are thought to play a major role in shaping the early-life microbiota and promoting its development, thus affecting health. This review describes some of the effects the microbiota has on the host and discusses the role microbial metabolites play in shaping newborn health and development. We describe the gut microbiota structure and function during early life and the factors that determine its composition and hypothesize about the effects of human milk oligosaccharides and other prebiotic fibers on the neonatal microbiota. © 2016 American Society for Nutrition.
The effective theory of shift-symmetric cosmologies
NASA Astrophysics Data System (ADS)
Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca
2018-05-01
A shift symmetry is a ubiquitous ingredient in inflationary models, both in effective constructions and in UV-finite embeddings such as string theory. It has also been proposed to play a key role in certain Dark Energy and Dark Matter models. Despite the crucial role it plays in cosmology, the observable, model independent consequences of a shift symmetry are yet unknown. Here, assuming an exact shift symmetry, we derive these consequences for single-clock cosmologies within the framework of the Effective Field Theory of Inflation. We find an infinite set of relations among the otherwise arbitrary effective coefficients, which relate non-Gaussianity to their time dependence. For example, to leading order in derivatives, these relations reduce the infinitely many free functions in the theory to just a single one. Our Effective Theory of shift-symmetric cosmologies describes, among other systems, perfect and imperfect superfluids coupled to gravity and driven superfluids in the decoupling limit. Our results are the first step to determine observationally whether a shift symmetry is at play in the laws of nature and whether it is broken by quantum gravity effects.
Symbiotic bacteria of helminths: what role may they play in ecosystems under anthropogenic stress?
Morley, N J
2016-11-01
Symbiotic bacteria are a common feature of many animals, particularly invertebrates, from both aquatic and terrestrial habitats. These bacteria have increasingly been recognized as performing an important role in maintaining invertebrate health. Both ecto- and endoparasitic helminths have also been found to harbour a range of bacterial species which provide a similar function. The part symbiotic bacteria play in sustaining homeostasis of free-living invertebrates exposed to anthropogenic pressure (climate change, pollution), and the consequences to invertebrate populations when their symbionts succumb to poor environmental conditions, are increasingly important areas of research. Helminths are also susceptible to environmental stress and their symbiotic bacteria may be a key aspect of their responses to deteriorating conditions. This article summarizes the ecophysiological relationship helminths have with symbiotic bacteria and the role they play in maintaining a healthy parasite and the relevance of specific changes that occur in free-living invertebrate-bacteria interactions under anthropogenic pressure to helminths and their bacterial communities. It also discusses the importance of understanding the mechanistic sensitivity of helminth-bacteria relationships to environmental stress for comprehending the responses of parasites to challenging conditions.
Dry eye disease as an inflammatory disorder.
Calonge, Margarita; Enríquez-de-Salamanca, Amalia; Diebold, Yolanda; González-García, María J; Reinoso, Roberto; Herreras, José M; Corell, Alfredo
2010-08-01
Dry eye disease (DED) is a prevalent inflammatory disorder of the lacrimal functional unit of multifactorial origin leading to chronic ocular surface disease, impaired quality of vision, and a wide range of complications, eventually causing a reduction in quality of life. It still is a frustrating disease because of the present scarcity of therapies that can reverse, or at least stop, its progression. A comprehensive literature survey of English-written scientific publications on the role of inflammation in DED. New investigations have demonstrated that a chronic inflammatory response plays a key role in the pathogenesis of human DED. Additionally, correlations between inflammatory molecules and clinical data suggest that inflammation can be responsible for some of the clinical symptoms and signs. Research efforts to clarify its pathophysiology are leading to a better understanding of DED, demonstrating that inflammation, in addition to many other factors, plays a relevant role.
The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity
Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.
2016-01-01
Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878
Manohar, Sandhya; Nasr, Samih H; Leung, Nelson
2018-05-03
To update and evaluate the current knowledge on pathogenesis and management of light chain cast nephropathy. Light chain cast nephropathy (LCCN) is the leading cause of acute renal failure in patients with multiple myeloma and is currently recognized as a myeloma defining event. The immunoglobulin free light chain plays an integral role in the pathogenesis of LCCN. The level of free light chain (FLC) in the blood and urine is directly associated with the risk of developing LCCN. Recovery of renal function is related to the speed and degree of the serum FLC reduction. Recently, two randomized trials using high cutoff dialyzer for the removal of serum FLC produced different results in terms of renal recovery. FLC plays a key role in the development and resolution of LCCN. Future therapies will aim to rapidly reduce its concentration or interrupt its interaction with Tamm-Horsfall protein.
Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis.
Ravegnini, Gloria; Sammarini, Giulia; Nannini, Margherita; Pantaleo, Maria A; Biasco, Guido; Hrelia, Patrizia; Angelini, Sabrina
2017-03-04
Autophagy and apoptosis are 2 fundamental biological mechanisms that may cooperate or be antagonistic, although both are involved in deciding the fate of cells in physiological or pathological conditions. These 2 mechanisms coexist simultaneously in cells and share common upstream signals and stimuli. Autophagy and apoptosis play pivotal roles in cancer development. Autophagy plays a key function in maintaining tumor cell survival by providing energy during unfavorable metabolic conditions through its recycling mechanism, and supporting the high energy requirement for metabolism and growth. This review focuses on gastrointestinal stromal tumors and cell death through autophagy and apoptosis, taking into account the involvement of both of these processes in tumor development and growth and as mechanisms of drug resistance. We also focus on the crosstalk between autophagy and apoptosis as an emerging field with major implications for the development of novel therapeutic options.
A Social-Interactive Neuroscience Approach to Understanding the Developing Brain.
Redcay, Elizabeth; Warnell, Katherine Rice
2018-01-01
From birth onward, social interaction is central to our everyday lives. Our ability to seek out social partners, flexibly navigate and learn from social interactions, and develop social relationships is critically important for our social and cognitive development and for our mental and physical health. Despite the importance of our social interactions, the neurodevelopmental bases of such interactions are underexplored, as most research examines social processing in noninteractive contexts. We begin this chapter with evidence from behavioral work and adult neuroimaging studies demonstrating how social-interactive context fundamentally alters cognitive and neural processing. We then highlight four brain networks that play key roles in social interaction and, drawing on existing developmental neuroscience literature, posit the functional roles these networks may play in social-interactive development. We conclude by discussing how a social-interactive neuroscience approach holds great promise for advancing our understanding of both typical and atypical social development. © 2018 Elsevier Inc. All rights reserved.
Kim, Ki Joon; Sundar, S Shyam
2013-05-01
Aggressiveness attributed to violent video game play is typically studied as a function of the content features of the game. However, can interface features of the game also affect aggression? Guided by the General Aggression Model (GAM), we examine the controller type (gun replica vs. mouse) and screen size (large vs. small) as key technological aspects that may affect the state aggression of gamers, with spatial presence and arousal as potential mediators. Results from a between-subjects experiment showed that a realistic controller and a large screen display induced greater aggression, presence, and arousal than a conventional mouse and a small screen display, respectively, and confirmed that trait aggression was a significant predictor of gamers' state aggression. Contrary to GAM, however, arousal showed no effects on aggression; instead, presence emerged as a significant mediator.
Molina, M Dolores; Saló, Emili; Cebrià, Francesc
2007-11-01
The bone morphogenetic protein (BMP) pathway has been shown to play an important role in the establishment of the dorsoventral axis during development in both vertebrate and invertebrate species. In an attempt to unravel the role of BMPs in pattern formation during planarian regeneration, we studied this signaling pathway in Schmidtea mediterranea. Here, we functionally characterize planarian homologues of two key elements of the pathway: Smed-BMP and Smed-Smad1. Whole-mount in situ hybridization showed that Smed-BMP is expressed at the planarian dorsal midline, suggesting a role in dorsoventral patterning, while Smed-Smad1 is widely expressed throughout the mesenchyme and in the central nervous system. RNA interference (RNAi) knockdowns of Smed-BMP or Smed-Smad1 led to the disappearance of dorsal markers along with the ectopic expression of ventral markers on the dorsal side of the treated animals. In almost all cases, a duplicated central nervous system differentiated dorsally after Smed-BMP or Smed-Smad1 RNAi. These defects were observed not only during regeneration but also in intact non-regenerating animals. Our results suggest that the BMP signaling pathway is conserved in planarians and that it plays a key role in the regeneration and maintenance of the dorsoventral axis.
The unseen iceberg: plant roots in arctic tundra.
Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D
2015-01-01
Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions. No claim to original US Government works New Phytologist © 2014 New Phytologist Trust.
Taste receptors of the gut: emerging roles in health and disease.
Depoortere, Inge
2014-01-01
Recent progress in unravelling the nutrient-sensing mechanisms in the taste buds of the tongue has triggered studies on the existence and role of chemosensory cells in the gut. Indeed, the gastrointestinal tract is the key interface between food and the human body and can sense basic tastes in much the same way as the tongue, through the use of similar G-protein-coupled taste receptors. These receptors 'taste' the luminal content and transmit signals that regulate nutrient transporter expression and nutrient uptake, and also the release of gut hormones and neurotransmitters involved in the regulation of energy and glucose homeostasis. Hence, they play a prominent role in the communication between the lumen, epithelium, smooth muscle cells, afferent nerve fibres and the brain to trigger adaptive responses that affect gastrointestinal function, food intake and glucose metabolism. This review summarises how sensing of nutrients by taste receptors along the gut plays a key role in the process of digestion, and how disturbances or adaptations of these chemosensory signalling pathways may contribute to the induction or resolution of a number of pathological conditions related to diabetes, obesity, or diet-induced symptom generation in irritable bowel syndrome. Targeting these receptors may represent a promising novel route for the treatment of a number of these diseases.
Zhou, Xing-Wen; Fan, Zheng-Qi; Chen, Yue; Zhu, Yu-Lin; Li, Ji-Yuan; Yin, Heng-Fu
2013-09-01
The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.
Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok
2015-05-29
Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication. Copyright © 2015 Elsevier Inc. All rights reserved.
Social Cognition and Executive Functions As Key Factors for Effective Pedagogy in Higher Education.
Correia, Rut; Navarrete, Gorka
2017-01-01
Higher education (HE) faces the challenge of responding to an increasing diversity. In this context, more attention is being paid to teachers and teaching skills positively related to students learning. Beyond the knowledges identified as key components of an effective teacher, teachers also need to be capable of unraveling what their students think and believe, and how they accommodate the new information. More importantly, teachers need to be able to adapt their own teaching to their audience's needs. In learners, social cognition (SC) has been related to a better receptivity to the different teacher-student interactions. Since these interactions are bidirectional, SC could also help to explain teachers' receptiveness to the information available in feedback situations. However, little is known about how SC is related to teacher development, and therefore teaching effectiveness, in HE. In addition, executive functions (EFs), closely related to SC, could play a key role in the ability to self-regulate their own teaching to better answering their students emerging needs. Although there is wide evidence regarding the association of EFs to performance in high demanding settings, as far as we know, there are no studies exploring the relationship between teachers' EFs and teaching effectiveness in HE. Establishing a positive association between teaching effectiveness and these socio-cognitive functions could be a promising first step in designing professional development programs that promote HE academics' ability to understand and care about students thoughts and emotions, to eventually adapt their teaching to their students needs for a better learning.
Mitchell, Sabrina; Ellingson, Clint; Coyne, Thomas; Hall, Lynn; Neill, Meaghan; Christian, Natalie; Higham, Catherine; Dobrowolski, Steven F; Tuchman, Mendel; Summar, Marshall
2009-01-01
The urea cycle is the primary means of nitrogen metabolism in humans and other ureotelic organisms. There are five key enzymes in the urea cycle: carbamoyl-phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). Additionally, a sixth enzyme, N-acetylglutamate synthase (NAGS), is critical for urea cycle function, providing CPS1 with its necessary cofactor. Deficiencies in any of these enzymes result in elevated blood ammonia concentrations, which can have detrimental effects, including central nervous system dysfunction, brain damage, coma, and death. Functional variants, which confer susceptibility for disease or dysfunction, have been described for enzymes within the cycle; however, a comprehensive screen of all the urea cycle enzymes has not been performed. We examined the exons and intron/exon boundaries of the five key urea cycle enzymes, NAGS, and two solute carrier transporter genes (SLC25A13 and SLC25A15) for sequence alterations using single-stranded conformational polymorphism (SSCP) analysis and high-resolution melt profiling. SSCP was performed on a set of DNA from 47 unrelated North American individuals with a mixture of ethnic backgrounds. High-resolution melt profiling was performed on a nonoverlapping DNA set of either 47 or 100 unrelated individuals with a mixture of backgrounds. We identified 33 unarchived polymorphisms in this screen that potentially play a role in the variation observed in urea cycle function. Screening all the genes in the pathway provides a catalog of variants that can be used in investigating candidate diseases. Copyright 2008 Wiley-Liss, Inc.
2012-01-01
Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery. PMID:23281852
Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon
2012-01-01
To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.
Reflectin as a Material for Neural Stem Cell Growth
2015-01-01
Cephalopods possess remarkable camouflage capabilities, which are enabled by their complex skin structure and sophisticated nervous system. Such unique characteristics have in turn inspired the design of novel functional materials and devices. Within this context, recent studies have focused on investigating the self-assembly, optical, and electrical properties of reflectin, a protein that plays a key role in cephalopod structural coloration. Herein, we report the discovery that reflectin constitutes an effective material for the growth of human neural stem/progenitor cells. Our findings may hold relevance both for understanding cephalopod embryogenesis and for developing improved protein-based bioelectronic devices. PMID:26703760
MicroRNAs meet calcium: joint venture in ER proteostasis.
Finger, Fabian; Hoppe, Thorsten
2014-11-04
The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.
Dixon, Jill; Trainor, Paul; Dixon, Michael J
2007-05-01
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development which results from loss-of-function mutations in the gene TCOF1. TCOF1 encodes the nucleolar phosphoprotein, Treacle, which plays a key role in pre-ribosomal processing and ribosomal biogenesis. In mice, haploinsufficiency of Tcof1 results in a depletion of neural crest cell precursors through high levels of cell death in the neuroepithelium, which results in a reduced number of neural crest cells migrating into the developing craniofacial complex. These combined advances have already impacted on clinical practice and provide invaluable resources for the continued dissection of the developmental basis of TCS.
Wu, Jun; Chen, Jian
2013-04-01
After 50 years' development, a rather comprehensive burn care system has been built up in China, and it has played key roles in wound healing and salvaging victims of burn trauma. Since survival is no longer the main priority of treatment, more efforts should be made to cut down the incidence of disabilities and to improve the quality of life of the survivors. The further progress on burn rehabilitation therapies, including functional improvement, psychological rehabilitation, aesthetic recovery, and occupational and social recuperation, would bring new perspectives to our burn care system.
Gas Sorption and Storage Properties of Calixarenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Rahul S.; Banerjee, Debasis; Atwood, Jerry L.
2016-12-01
Calixarenes, a class of organic macrocyclic molecules have shown interesting gas sorption properties towards industrially important gases such as carbon di-oxide, hydrogen, methane and acetylene. These macrocycles are involved in weak van der Waals interaction to form multidimensional supramolecular frameworks. The gas-diffusion and subsequent sorption occurs due to a cooperative behavior between neighboring macrocycles. Furthermore, the flexibility at the upper rim functional group also plays a key role in the overall gas uptake of calixarene. In this book chapter, we give a brief account of interaction and diffusion of gases in calixarene and selected derivatives.
Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction.
Peterson, Amy M; Jensen, Robert E; Palmese, Giuseppe R
2010-04-01
Self-healing materials are particularly desirable for load-bearing applications because they offer the potential for increased safety and material lifetimes. A furan-functionalized polymer network was designed that can heal via covalent bonding across the crack surface with the use of a healing agent consisting of a bismaleimide in solution. Average healing efficiencies of approximately 70% were observed. The healing ability of fiber-reinforced composite specimens was investigated with flexural, short beam shear, and double cantilever beam specimens. It was found that solvent amount and maleimide concentration play key roles in determining healing efficiency.
Identifying passivated dynamic force microscopy tips on H:Si(100)
NASA Astrophysics Data System (ADS)
Sharp, Peter; Jarvis, Sam; Woolley, Richard; Sweetman, Adam; Kantorovich, Lev; Pakes, Chris; Moriarty, Philip
2012-06-01
The chemical reactivity of the tip plays a central role in image formation in dynamic force microscopy, but in very many cases the state of the probe is a key experimental unknown. We show here that an H-terminated and thus chemically unreactive tip can be readily identified via characteristic imaging and spectroscopic (F(z)) signatures, including, in particular, contrast inversion, on hydrogen-passivated Si(100). We determine the tip apex termination by comparing site-specific difference force curves with the results of density functional theory, providing a clear protocol for the identification of chemically unreactive tips on silicon surfaces.
Virus-based nanoparticles as platform technologies for modern vaccines
Lee, Karin L.; Twyman, Richard M.; Fiering, Steven
2017-01-01
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic through multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. PMID:26782096
Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kechen; Li, Jun; Lin, Chensheng
2004-04-21
The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.
Further Structural Intelligence for Sensors Cluster Technology in Manufacturing
Mekid, Samir
2006-01-01
With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.
SCRAM: a pipeline for fast index-free small RNA read alignment and visualization.
Fletcher, Stephen J; Boden, Mikael; Mitter, Neena; Carroll, Bernard J
2018-03-15
Small RNAs play key roles in gene regulation, defense against viral pathogens and maintenance of genome stability, though many aspects of their biogenesis and function remain to be elucidated. SCRAM (Small Complementary RNA Mapper) is a novel, simple-to-use short read aligner and visualization suite that enhances exploration of small RNA datasets. The SCRAM pipeline is implemented in Go and Python, and is freely available under MIT license. Source code, multiplatform binaries and a Docker image can be accessed via https://sfletc.github.io/scram/. s.fletcher@uq.edu.au. Supplementary data are available at Bioinformatics online.
[Research progress on ebola virus glycoprotein].
Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa
2013-03-01
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.
X-ray crystal structure of plasmin with tranexamic acid-derived active site inhibitors.
Law, Ruby H P; Wu, Guojie; Leung, Eleanor W W; Hidaka, Koushi; Quek, Adam J; Caradoc-Davies, Tom T; Jeevarajah, Devadharshini; Conroy, Paul J; Kirby, Nigel M; Norton, Raymond S; Tsuda, Yuko; Whisstock, James C
2017-05-09
The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO ( trans -4-aminomethylcyclohexanecarbonyl-l-tyrosine- n -octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3' subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S' subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders.
X-ray crystal structure of plasmin with tranexamic acid–derived active site inhibitors
Wu, Guojie; Leung, Eleanor W. W.; Hidaka, Koushi; Quek, Adam J.; Caradoc-Davies, Tom T.; Jeevarajah, Devadharshini; Kirby, Nigel M.; Norton, Raymond S.; Tsuda, Yuko; Whisstock, James C.
2017-01-01
The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO (trans-4-aminomethylcyclohexanecarbonyl-l-tyrosine-n-octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3′ subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S′ subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders. PMID:29296720
NASA Astrophysics Data System (ADS)
Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong
2017-12-01
Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.
Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ.
Di Matteo, A; Franceschini, M; Paiardini, A; Grottesi, A; Chiarella, S; Rocchio, S; Di Natale, C; Marasco, D; Vitagliano, L; Travaglini-Allocatelli, C; Federici, L
2017-09-18
Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.
Qualitative similarities in the visual short-term memory of pigeons and people.
Gibson, Brett; Wasserman, Edward; Luck, Steven J
2011-10-01
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.
PPAR-γ in innate and adaptive lung immunity.
Nobs, Samuel Philip; Kopf, Manfred
2018-05-16
The transcription factor PPAR-γ (peroxisome proliferator-activated receptor-γ) is a key regulator of lung immunity exhibiting multiple cell type specific roles in controlling development and function of the lung immune system. It is strictly required for the generation of alveolar macrophages by controlling differentiation of fetal lung monocyte precursors. Furthermore, it plays an important role in lung allergic inflammation by licensing lung dendritic cell t helper 2 (Th2) priming capacity as well as acting as a master transcription factor for pathogenic Th2 cells. Due to this plethora of functions and its involvement in multiple pulmonary diseases including asthma and pulmonary alveolar proteinosis, understanding the role of PPAR-γ in lung immunity is an important subject of ongoing research. ©2018 Society for Leukocyte Biology.
Fibromyalgia: a stress disorder? Piecing the biopsychosocial puzzle together.
Van Houdenhove, Boudewijn; Egle, Ulrich T
2004-01-01
Fibromyalgia (FM) is a controversial syndrome, characterised by persistent widespread pain, abnormal pain sensitivity and additional symptoms such as fatigue and sleep disturbance. The syndrome largely overlaps with other functional somatic disorders, particularly chronic fatigue syndrome (CFS). Although the exact aetiology and pathogenesis of FM are still unknown, it has been suggested that stress may play a key role in the syndrome. This article first reviews the function of the stress response system, placing special emphasis on the relationships between adverse life experiences, stress regulation and pain-processing mechanisms, and summarising the evidence for a possible aetiopathogenetic role of stress in FM. Finally, an integrative biopsychosocial model that conceptualizes FM as a stress disorder is proposed, and the clinical and research implications of the model are discussed.
The cytoskeletal scaffold Shank3 is recruited to pathogen-induced actin rearrangements
Huett, Alan; Leong, John M; Podolsky, Daniel K.; Xavier, Ramnik J.
2009-01-01
Summary The common gastrointestinal pathogens enteropathogenic Escherichia coli (EPEC) and Salmonella Typhimurium both reorganize the gut epithelial cell actin cytoskeleton to mediate pathogenesis, utilizing mimicry of the host signaling apparatus. The PDZ domain-containing protein Shank3, is a large cytoskeletal scaffold protein with known functions in neuronal morphology and synaptic signaling, and is also capable of acting as a scaffolding adaptor during Ret tyrosine kinase signaling in epithelial cells. Using immunofluorescent and functional RNA-interference approaches we show that Shank3 is present in both EPEC- and S. Typhimurium-induced actin rearrangements and is required for optimal EPEC pedestal formation. We propose that Shank3 is one of a number of host synaptic proteins likely to play key roles in bacteria-host interactions. PMID:19371741
Functional and phenotypic heterogeneity of group 3 innate lymphoid cells.
Melo-Gonzalez, Felipe; Hepworth, Matthew R
2017-03-01
Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR + ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.
Differentiation of Effector CD4 T Cell Populations*
Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.
2012-01-01
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806
Macrophage Autophagy and Bacterial Infections
Bah, Aïcha; Vergne, Isabelle
2017-01-01
Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens. PMID:29163544
A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.
Panteleev, Pavel V; Balandin, Sergey V; Ivanov, Vadim T; Ovchinnikova, Tatiana V
2017-01-01
Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play the key role in host defense. Because of the low resistance rate, AMPs have caught extensive attention as possible alternatives to conventional antibiotics. Over the last years, it has become evident that biological functions of AMPs are beyond direct killing of microbial cells. This review focuses on a relatively small family of animal host defense peptides with the β-hairpin structure stabilized by disulfide bridges. Their small size, rigid structure, stability to proteases, and plethora of biological functions, including antibacterial, antifungal, antiviral, anticancer, endotoxin-binding, metabolism- and immune- modulating activities, make natural β-hairpin AMPs an attractive molecular basis for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Non-coding RNAs in virology: an RNA genomics approach.
Isaac, Christopher; Patel, Trushar R; Zovoilis, Athanasios
2018-04-01
Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.
Defect-induced magnetism in cobalt-doped ZnO epilayers
NASA Astrophysics Data System (ADS)
Ciatto, G.; Di Trolio, A.; Fonda, E.; Alippi, P.; Polimeni, A.; Capizzi, M.; Varvaro, G.; Bonapasta, A. Amore
2014-02-01
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoO epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciatto, G.; Fonda, E.; Trolio, A. Di
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoOmore » epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.« less
Xu, Jun; Songyang, Zhou; Liu, Dan; Kim, Hyeung
2017-01-01
Telomeres play an important role in ensuring the integrity of the genome. Telomere shortening can lead to loss of genetic information and trigger DNA damage responses. Cultured mammalian cells have served as critical model systems for studying the function of telomere binding proteins and telomerase. Tremendous heterogeneity can be observed both between species and within a single cell population. Recent advances in genome editing (such as the development of the CRISPR/Cas9 platform) have further enabled researchers to carry out loss-of-function analysis of how disrupting key players in telomere maintenance affects telomere length regulation. Here we describe the steps to be carried out in order to analyze the average length of telomeres in CRISPR-engineered human knockout (KO) cells (TRF analysis).
LncRNA Structural Characteristics in Epigenetic Regulation
Wang, Chenguang; Wang, Lianzong; Ding, Yu; Lu, Xiaoyan; Zhang, Guosi; Yang, Jiaxin; Zheng, Hewei; Wang, Hong; Jiang, Yongshuai; Xu, Liangde
2017-01-01
The rapid development of new generation sequencing technology has deepened the understanding of genomes and functional products. RNA-sequencing studies in mammals show that approximately 85% of the DNA sequences have RNA products, for which the length greater than 200 nucleotides (nt) is called long non-coding RNAs (lncRNA). LncRNAs now have been shown to play important epigenetic regulatory roles in key molecular processes, such as gene expression, genetic imprinting, histone modification, chromatin dynamics, and other activities by forming specific structures and interacting with all kinds of molecules. This paper mainly discusses the correlation between the structure and function of lncRNAs with the recent progress in epigenetic regulation, which is important to the understanding of the mechanism of lncRNAs in physiological and pathological processes. PMID:29292750
Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent
NASA Astrophysics Data System (ADS)
Ibrahim, Hanan S.; Ammar, Nabila S.; Soylak, Mustafa; Ibrahim, Medhat
2012-10-01
Possible usages of dried water hyacinth as biosorbent for metal ions were investigated. A model describing the plant is presented on density functional theory DFT and verified experimentally with FTIR. The model shows that water hyacinth is a mixture of cellulose and lignin. Dried shoot and root were found as good sorbent for Cd(II) and Pb(II) at optimum dosage of 5.0 g/l and pH 5.0; equilibrium time was attained within 30-60 min. The removal using root and shoot were nearly equal and reached more than 75% for Cd and more than 90% for Pb. Finally the second-order kinetics was the applicable model. Hydrogen bonds of reactive functional groups like COOH play the key role in the removal process.
Role of nuclear progesterone receptor isoforms in uterine pathophysiology
Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam
2015-01-01
BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key cellular signaling pathways required for growth. In contrast, progesterone via PR activation appears to increase leiomyoma growth. The exact role of PRs in cervical cancer is unclear. PRs regulate implantation and therefore aberrant PR function may be implicated in recurrent pregnancy loss (RPL). PRs likely regulate key immunogenic factors involved in RPL. However, the exact role of PRs in the pathophysiology of RPL and the use of progesterone for therapeutic benefit remains uncertain. CONCLUSIONS PRs are key mediators of progesterone action in uterine tissues and are essential for normal uterine function. Aberrant PR function (due to abnormal expression and/or function) is a major cause of uterine pathophysiology. Further investigation of the underlying mechanisms of PR isoform action in the uterus is required, as this knowledge will afford the opportunity to create progestin/PR-based therapeutics to treat various uterine pathologies. PMID:25406186
High Precision Prediction of Functional Sites in Protein Structures
Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin
2014-01-01
We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601
Gahbauer, Stefan; Böckmann, Rainer A.
2016-01-01
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function. PMID:27826255
Emerging roles of post-translational modifications in signal transduction and angiogenesis.
Rahimi, Nader; Costello, Catherine E
2015-01-01
The vascular endothelial growth factor receptor-2 (VEGFR-2) belongs to the family of receptor tyrosine kinases and is a key player in vasculogenesis and pathological angiogenesis. An emerging picture of PTMs of VEGFR-2 suggests that they play central roles in generating a highly dynamic and complex signaling system that regulates key angiogenic responses ranging from endothelial cell differentiation, proliferation, migration to permeability. Recent MS analysis of VEGFR-2 uncovered previously unrecognized PTMs on VEGFR-2 with a distinct function. The ligand binding extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains highly decorated with N-glycosylation, while its cytoplasmic domain is subject to multiple PTMs including Tyr, Ser/Thr phosphorylation, Arg and Lys methylation, acetylation and ubiquitination. Here we review the PTMs on VEGFR-2, their importance in angiogenic signaling relays and possible novel therapeutic potentials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identifying and characterizing key nodes among communities based on electrical-circuit networks.
Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying
2014-01-01
Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.
Interactions between Innate Immunity, Microbiota, and Probiotics
Giorgetti, GianMarco; Brandimarte, Giovanni; Fabiocchi, Federica; Ricci, Salvatore; Flamini, Paolo; Sandri, Giancarlo; Trotta, Maria Cristina; Elisei, Walter; Penna, Antonio; Lecca, Piera Giuseppina; Picchio, Marcello
2015-01-01
The term “microbiota” means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called “postbiotics,” has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future. PMID:26090492
Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging.
Staunton, Lisa; O'Connell, Kathleen; Ohlendieck, Kay
2011-03-07
Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.
Resonant electron capture by aspartame and aspartic acid molecules.
Muftakhov, M V; Shchukin, P V
2016-12-30
The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.
2017-10-01
Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.
Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts
NASA Astrophysics Data System (ADS)
AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.
2014-12-01
Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.
Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism.
Kauwe, Grant; Tsurudome, Kazuya; Penney, Jay; Mori, Megumi; Gray, Lindsay; Calderon, Mario R; Elazouzzi, Fatima; Chicoine, Nicole; Sonenberg, Nahum; Haghighi, A Pejmun
2016-12-21
While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans
Douglas, Lois M.; Konopka, James. B.
2017-01-01
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878
Expression and one-step purification of recombinant Arabidopsis thaliana frataxin homolog (AtFH).
Maliandi, Maria V; Busi, Maria V; Clemente, Marina; Zabaleta, Eduardo J; Araya, Alejandro; Gomez-Casati, Diego F
2007-02-01
Frataxin, a nuclear-encoded mitochondrial protein, has been proposed to participate in Fe-S cluster assembly, mitochondrial energy metabolism, respiration, and iron homeostasis. However, its precise function remains elusive. Frataxin is highly conserved in living organisms with no major structural changes, in particular at the C-terminal protein domain, suggesting that it plays a key function in all organisms. Recently, a plant gene, AtFH, with significant homology to other members of the frataxin family has been described. To gain insight on the frataxin role in plants, the frataxin domain was expressed in Escherichia coli BL21-codonPlus (DE3)-RIL cells and purified using a Ni-chelating column. The purified protein, added to a mixture containing Fe(II) and H2O2, attenuates the Fenton reaction indicating that the recombinant plant frataxin is functional. The procedure described here produced high yield of 99% pure protein through only one chromatographic step, suitable for further structure-function studies.
Sumagin, Ronen; Parkos, Charles A
2014-01-01
Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976
Mapping Multiplex Hubs in Human Functional Brain Networks
De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex
2016-01-01
Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443
2016-01-01
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease. PMID:27742732
Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.
Douglas, Lois M; Konopka, James B
2016-03-01
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.
Adaptive sigmoid function bihistogram equalization for image contrast enhancement
NASA Astrophysics Data System (ADS)
Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe
2015-09-01
Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.
Huang, He; Sarai, Akinori
2012-12-01
The evolvability of proteins is not only restricted by functional and structural importance, but also by other factors such as gene duplication, protein stability, and an organism's robustness. Recently, intrinsically disordered proteins (IDPs)/regions (IDRs) have been suggested to play a role in facilitating protein evolution. However, the mechanisms by which this occurs remain largely unknown. To address this, we have systematically analyzed the relationship between the evolvability, stability, and function of IDPs/IDRs. Evolutionary analysis shows that more recently emerged IDRs have higher evolutionary rates with more functional constraints relaxed (or experiencing more positive selection), and that this may have caused accelerated evolution in the flanking regions and in the whole protein. A systematic analysis of observed stability changes due to single amino acid mutations in IDRs and ordered regions shows that while most mutations induce a destabilizing effect in proteins, mutations in IDRs cause smaller stability changes than in ordered regions. The weaker impact of mutations in IDRs on protein stability may have advantages for protein evolvability in the gain of new functions. Interestingly, however, an analysis of functional motifs in the PROSITE and ELM databases showed that motifs in IDRs are more conserved, characterized by smaller entropy and lower evolutionary rate, than in ordered regions. This apparently opposing evolutionary effect may be partly due to the flexible nature of motifs in IDRs, which require some key amino acid residues to engage in tighter interactions with other molecules. Our study suggests that the unique conformational and thermodynamic characteristics of IDPs/IDRs play an important role in the evolvability of proteins to gain new functions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thomson, Susan J; Rippon, Paula; Butts, Chrissie; Olsen, Sarah; Shaw, Martin; Joyce, Nigel I; Eady, Colin C
2013-11-06
Onion and garlic are renowned for their roles as functional foods. The health benefits of garlic are attributed to di-2-propenyl thiosulfinate (allicin), a sulfur compound found in disrupted garlic but not found in disrupted onion. Recently, onions have been grown with repressed lachrymatory factor synthase (LFS) activity, which causes these onions to produce increased amounts of di-1-propenyl thiosulfinate, an isomer of allicin. This investigation into the key health attributes of LFS-silenced (tearless) onions demonstrates that they have some attributes more similar to garlic and that this is likely due to the production of novel thiosulfinate or metabolites. The key finding was that collagen-induced in vitro platelet aggregation was significantly reduced by tearless onion extract over normal onion extract. Thiosulfinate or derived compounds were shown not to be responsible for the observed changes in the inflammatory response of AGS (stomach adenocarcinoma) cells to tumor necrosis factor alpha (TNFα) when pretreated with model onion juices. A preliminary rat feeding trial indicated that the tearless onions may also play a key role in reducing weight gain.
Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease
Hadjihambi, Anna; De Chiara, Francesco; Hosford, Patrick S.; Habtetion, Abeba; Karagiannis, Anastassios; Davies, Nathan
2017-01-01
The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte‐neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia‐lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia‐induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. Conclusion: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel‐mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306‐1318) PMID:28066916
SPLASH: structural pattern localization analysis by sequential histograms.
Califano, A
2000-04-01
The discovery of sparse amino acid patterns that match repeatedly in a set of protein sequences is an important problem in computational biology. Statistically significant patterns, that is patterns that occur more frequently than expected, may identify regions that have been preserved by evolution and which may therefore play a key functional or structural role. Sparseness can be important because a handful of non-contiguous residues may play a key role, while others, in between, may be changed without significant loss of function or structure. Similar arguments may be applied to conserved DNA patterns. Available sparse pattern discovery algorithms are either inefficient or impose limitations on the type of patterns that can be discovered. This paper introduces a deterministic pattern discovery algorithm, called Splash, which can find sparse amino or nucleic acid patterns matching identically or similarly in a set of protein or DNA sequences. Sparse patterns of any length, up to the size of the input sequence, can be discovered without significant loss in performances. Splash is extremely efficient and embarrassingly parallel by nature. Large databases, such as a complete genome or the non-redundant SWISS-PROT database can be processed in a few hours on a typical workstation. Alternatively, a protein family or superfamily, with low overall homology, can be analyzed to discover common functional or structural signatures. Some examples of biologically interesting motifs discovered by Splash are reported for the histone I and for the G-Protein Coupled Receptor families. Due to its efficiency, Splash can be used to systematically and exhaustively identify conserved regions in protein family sets. These can then be used to build accurate and sensitive PSSM or HMM models for sequence analysis. Splash is available to non-commercial research centers upon request, conditional on the signing of a test field agreement. acal@us.ibm.com, Splash main page http://www.research.ibm.com/splash
Rac1 Regulates Endometrial Secretory Function to Control Placental Development.
Davila, Juanmahel; Laws, Mary J; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N; Bagchi, Milan K; Bagchi, Indrani C
2015-08-01
During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.
Al Abo, Muthana; Dejsuphong, Donniphat; Hirota, Kouji; Yonetani, Yasukazu; Yamazoe, Mitsuyoshi; Kurumizaka, Hitoshi; Takeda, Shunichi
2014-02-01
BRCA1, BRCA2, and PALB2 are key players in cellular tolerance to chemotherapeutic agents, including camptothecin, cisplatin, and PARP inhibitor. The N-terminal segment of BRCA2 interacts with PALB2, thus contributing to the formation of the BRCA1-PALB2-BRCA2 complex. To understand the role played by BRCA2 in this complex, we deleted its N-terminal segment and generated BRCA2(Δ)(N) mutant cells. Although previous studies have suggested that BRCA1-PALB2 plays a role in the recruitment of BRCA2 to DNA-damage sites, BRCA2(Δ)(N) mutant cells displayed a considerably milder phenotype than did BRCA2(-/-) null-deficient cells. We hypothesized that the DNA-binding domain (DBD) of BRCA2 might compensate for a defect in BRCA2(ΔN) that prevented stable interaction with PALB2. To test this hypothesis, we disrupted the DBD of BRCA2 in wild-type and BRCA2(Δ)(N) cells. Remarkably, although the resulting BRCA2(Δ)(DBD) cells displayed a moderate phenotype, the BRCA2(Δ)(N+ΔDBD) cells displayed a very severe phenotype, as did the BRCA2(-/-) cells, suggesting that the N-terminal segment and the DBD play a substantially overlapping role in the functionality of BRCA2. We also showed that the formation of both the BRCA1-PALB2-BRCA2 complex and the DBD is required for efficient recruitment of BRCA2 to DNA-damage sites. Our study revealed the essential role played by both the BRCA1-PALB2-BRCA2 complex and the DBD in the functionality of BRCA2, as each can compensate for the other in the recruitment of BRCA2 to DNA-damage sites. This knowledge adds to our ability to accurately predict the efficacy of antimalignant therapies for patients carrying mutations in the BRCA2 gene.
Identification of Key Functional Residues in the Active Site of Human β1,4-Galactosyltransferase 7
Talhaoui, Ibtissam; Bui, Catherine; Oriol, Rafael; Mulliert, Guillermo; Gulberti, Sandrine; Netter, Patrick; Coughtrie, Michael W. H.; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie
2010-01-01
Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, 163DVD165 and 221FWGWGREDDE230, are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp224 as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp228 acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics. PMID:20843813
Transcriptional regulation of mammalian selenoprotein expression
Stoytcheva, Zoia R.; Berry, Marla J.
2009-01-01
Background Selenoproteins contain the twenty-first amino acid, selenocysteine, and are involved in cellular defenses against oxidative damage, important metabolic and developmental pathways, and responses to environmental challenges. Elucidating the mechanisms regulating selenoprotein expression at the transcriptional level is key to understanding how these mechanisms are called into play to respond to the changing environment. Methods This review summarizes published studies on transcriptional regulation of selenoprotein genes, focused primarily on genes whose encoded protein functions are at least partially understood. This is followed by in silico analysis of predicted regulatory elements in selenoprotein genes, including those in the aforementioned category as well as the genes whose functions are not known. Results Our findings reveal regulatory pathways common to many selenoprotein genes, including several involved in stress-responses. In addition, tissue-specific regulatory factors are implicated in regulating many selenoprotein genes. Conclusions These studies provide new insights into how selenoprotein genes respond to environmental and other challenges, and the roles these proteins play in allowing cells to adapt to these changes. General Significance Elucidating the regulatory mechanisms affecting selenoprotein expression is essential for understanding their roles in human diseases, and for developing diagnostic and potential therapeutic approaches to address dysregulation of members of this gene family. PMID:19465084
Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania
2018-04-03
The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Targeting IL-2: an unexpected effect in treating immunological diseases.
Ye, Congxiu; Brand, David; Zheng, Song G
2018-01-01
Regulatory T cells (Treg) play a crucial role in maintaining immune homeostasis since Treg dysfunction in both animals and humans is associated with multi-organ autoimmune and inflammatory disease. While IL-2 is generally considered to promote T-cell proliferation and enhance effector T-cell function, recent studies have demonstrated that treatments that utilize low-dose IL-2 unexpectedly induce immune tolerance and promote Treg development resulting in the suppression of unwanted immune responses and eventually leading to treatment of some autoimmune disorders. In the present review, we discuss the biology of IL-2 and its signaling to help define the key role played by IL-2 in the development and function of Treg cells. We also summarize proof-of-concept clinical trials which have shown that low-dose IL-2 can control autoimmune diseases safely and effectively by specifically expanding and activating Treg. However, future studies will be needed to validate a better and safer dosing strategy for low-dose IL-2 treatments utilizing well-controlled clinical trials. More studies will also be needed to validate the appropriate dose of IL-2/anti-cytokine or IL-2/anti-IL-2 complex in the experimental animal models before moving to the clinic.